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Abstract 

The link and interconnection chip (LINC) is a custom chip whose function is to serve as an efficient link 
between system functional modules, such as arithmetic units, register files, and I/O ports. 

LINC has 4-bit datapaths consisting of an 8x8 crossbar interconnection, a FIFO or programmable delay 
for each of its inputs, and a pipeline register file for each of its outputs. Using pre-stored control patterns 
LINC can configure its interconnection and delays on-the-fly, while running. Therefore the usual functions 
of buses and register files can be realized with this single chip. 

LINC can be used in a bit-sliced fashion to form interconnections with datapaths wider than 4 bits. 
Moreover, by tri-stating the proper data output pins, multiple copies of LINC can form crossbar intercon­
nections larger than 8x8. 

Operating at the target cycle time of 100 ns, LINC makes it possible to implement a variety of high-
performance processing elements with much reduced package counts. This reduction of chip counts is 
especially significant for cost-effective implementations of those multiprocessors such as systolic arrays which 
call for large numbers of processing elements. 

paper gives the architectural specification of LINC, and justifies the specification by some application 



INTRODUCTION 

1. INTRODUCTION 

Many high-speed, high-density building-block chips are rapidly becoming commercially available. 
Notable examples are 32-bit floating-point chips that can perform an arithmetic operation in less than a 
microsecond. If there is efficient hardware support to link these chips together, then very powerful systems 
can be built at low cost. 

LINC is a super "glue" chip for system construction. As depicted in Figure 1 the chip provides physical 
communications and data buffering between functional units of a system. It can also efficiently implement 
some complicated data shuffling operations such as the corner turning used in packing bytes into words and 
unpacking words into bytes. 
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Figure L System components "linked" together by LINC 

LINC can significantly reduce chip counts in many systems, especially for highly pipelined processors 
such as the CMU Warp processor [5, 6], In general, LINC can efficiently link high-speed, off-the-shelf 
arithmetic chips together to form powerful multiprocessor systems for a variety of applications, such as 3-D 
computer graphics and robot arm control. 

The LINC architecture is highly regular. This makes the chip most suitable for custom VLSI implemen­
tation. As of October 1984 the logic design of LINC has been successfully simulated on a Daisy design station 
at CMU, and circuit and layout designs in CMOS technology are being carried out in cooperation with the 
General Electric Company in Schenectady, New York. 
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SYSTEM OVERVIEW 

2. SYSTEM OVERVIEW 

This section gives an overview of LINC from the perspective of its function within a system and its 
interface to the outside world. 

The signal I/O pins of LINC, classified into four groups, are listed in the table below. 

DATA I/O: 

INPUT SIGNALS OUTPUT SIGNALS 
PIN NAME ABBREVIATION PIN NAME ABBREVIATION 

1: 

A input AI[0-3] A output AO[0-3] 
B input BI[0-3] B output BO[0-3] 
C input CI[0-3] C output CO[0-3] 
D input DI[0-3] D output DO[0-3] 
E input EI[0-3] E output EO[0-3] 
F input FI[0-3] F output FO[0-3] 
G input GI[0-3] G output GO[0-3] 
H input HI[0-3] H output HO[0-3] 

FIFO CONTROL AND STATUS: 

Write A-FIFO WAF 
Write B-FIFO WBF 
Read A-FIFO RAF 
Read B-FIFO RBF 

CONTROL PATTERN MEMORY ADDRESS: 

Control address CA[0-4] 

LOADING AND TESTING: 

A-FIFO (almost) full AFF 
B-FIFO (almost) full BFF 
A-FIFO (almost) empty AFE 
B-FIFO (almost) empty BFE 

Chip select 
Mode control 
Run/~Halt 
Reset 

CS 
MC[0-3] 
R/~H 
RESET 

Ctrl pattern in CC[0-7] Ctrl pattern out CC[Q-7] 

Note that pins CC[0-7] are bidirectional. 

In addition to signal pins there are two clock pins (PHI1 and PHI2), two power pins (VDD1 and VDD2), 
and two ground pins (GND1 and GND2). Thus LINC has a total of 98 pins. Using a standard 100 pin grid 
array package, LINC has two pins reserved for possible future needs. 

A system overview of LINC, omitting features related to loading and testing, is depicted in Figure 2. 
Between each data input port and the crossbar is a FIFO or programmable delay (FPD), and between the 
crossbar and each data output port is a pipeline register file (PRF). A PRF is a set of registers that shifts in its 
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Figure 2. System overview of LINC 

In the following we briefly describe die functions of the signal I/O pins in each of the four groups listed in 
the table above. Sections 3 and 4 will give detailed descriptions of these functions. 

DATA I /O: 

Through the data I/O ports, LINC can input as well as output eight 4-bit data items simultaneously every 
cycle. With a cycle time of ICO ns, this means a total data I /O bandwidth of 80 Mbytes per second. It is 
possible to increase the I/O bandwidth further by using multiple copies of LINC in parallel. Figure 3 (a) 
illustrates that LINC can be used in a bit-sliced fashion to form interconnections with data paths wider than 4 
bits. Figure 3 (b) illustrates that by tri-stating the proper data output pins, multiple copies of LINC can form 
crossbar interconnections larger than 8x8. 

Suppose that LINC inputs data from its top boundary and outputs data along its right boundary. Then 
the 16x16 crossbar interconnection of Figure 3 (b) can be laid out in a regular and compact manner, as shown 
in Figure 4. It is straightforward to generalize this layout scheme to implement larger crossbar intercon-
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Figure 3. Multiple copies of LINC to form (a) interconnections with 
data paths wider than 4 bits, and (b) interconnections larger than 8x8 

nections. 

FIFO CONTROL AND STATUS: 

LINC can be configured to have up to two FIFOs, an A-FIFO and a B-FIFO. The FIFOs' widths can be 
set by programmers in 4-bit increments, but the total width of the two FIFOs of course cannot be more than 
32-bits (the total width of the eight input data ports). Input data ports not used by die FIFOs are configured 
as programmable delays. Typically, the programmable delays are used to equalize the lengths of various 
pipelines for different arithmetic units in the same system. 

The FIFOs of LINC can be used to buffer data coming from other systems at varying rates. Figure 
5 depicts a simple scenario of a collection of cooperating systems—each system receives data from the system 
to the left. (For an instance of such cooperating systems, see the geometry system application of LINC in 
Section 6.5.) The controller of each system sends FIFO read requests (RAF, RBF) to the LINC of the same 
system, but sends FIFO write requests (WAF, WBF) to the LINC of the system to the right. The LINC of 
each system sends its FIFO status signals AFE and BFE (empty or almost empty) to the controller of the same 
system, but sends status signals AFF and BFF (full or almost full) to the controller of the system to the left. A 
status signal may be sent before a FIFO becomes completely full or empty, to give sufficient time for the 
signal to reach the controller. 
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Figure 5. Use of FIFO control and status signals in cooperating multiple systems 

CONTROL PATTERN ADDRESS: 

The crossbar and pipeline register file of LINC may use a new control pattern every cycle. Since a control 
pattern has 64 bits, it is infeasible to input all these bits to LINC every cycle for a chip of 100 pins. Instead, a 
5-bit address, CA[0-4], is sent to the chip every cycle, to fetch one of the 32 control patterns pre-stored in one 
of the two banks of die control pattern memory of the chip. 

LOADING AND TESTING: 

The control pattern memory has two banks, with 32 words each, so that while one bank is in use the other 
bank can be loaded with new patterns via pins CC[0-7]. The control register for the FIFOs/programmable 
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SYSTEM OVERVIEW 

delays also can be loaded with new contents via pins CC[0-7]. The control pattern memory and the control 
register should be loaded before LINC starts running. Through the mode control pins, LINC can be con­
figured to test the control pattern memory, the FIFO/programmable delay controller, and the datapath. 
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DATAPATH 

3. DATAPATH AND CONTROL 
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Figure 6. LINC datapath block diagram 
3.1. Datapath 

The datapath operates with a 100 ns minimum cycle time. Every I /O port is capable of performing one 
data transfer per cycle. This gives a 40 Mbytes/sec input transfer rate with all of the eight 4-bit input ports 
active, and a 40 Mbytes/sec total output transfer rate for the eight 4-bit output ports. The datapath consists of 
eight FPDs (FIFO and/or programmable delay), an 8x8 4-bit wide crossbar, and eight pipeline register files. 
There is a minimum delay of 2 clock cycles before an input can appear at an output port. The control flow 
from the control pattern register is matched to the data flow so that the enure transfer of each data item is 
controlled by the pattern in the control pattern register when the transfer starts, even though the transfer 
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DATAPATH 

actually takes 2 clock cycles. The net effect of this is that the programmer can view the chip as having zero 
internal delay across the FPDs, the crossbar, and the pipeline register files, but having a 2-cycle delay at the 
output ports. 

FIFOs and/or programmable delays 
The eight FPDs can be configured into 0, 1, or 2 FIFOs and/or 0 to 8 4-bit wide 
programmable delays. The FIFOs' widths can be set by the programmer in 4-bit incre­
ments, but the total width of the FIFOs cannot be more than 32-bits. Each FPD can be 
selected to be part of one FIFO or as a programmable delay. For example, LINC can be 
configured to have two 8-bit wide FIFOs and four 4-bit wide programmable delays. The 
programmable delay time can be from 0 to 31 cycles. The two FIFOs, each 31 deep, are 
controlled by the off-chip signals WAF, WBF, RAF, and RBF. Notice that the outputs of 
the FPDs, even when configured as FIFOs, go to the on-chip crossbar rather than off-chip 
directly. Because there are logic delays inside LINC in sending out FIFO status signals 
(AFF/AFE and BFF/BFE), these signals refer to an "almost full" or "almost empty" 
status. "Almost full" means that the FIFO has at most two empty slots left, and "almost 
empty" means that the FIFO holds at most two valid items.* The configuration of the 
FPDs is determined by a 64-bit wide control register, called the d-code register (delay code 
register), which is loaded before system execution begins and normally does not change 
very often thereafter. 

Crossbar An 8x8 4-bit wide crossbar connects the FPDs to the pipeline register files. The crossbar is 
uni-directional. The inputs come from the FPDs and the outputs go to the pipeline 
register files. The control for the crossbar comes from a 24-bit field in the control pattern 
register. Each output port of the crossbar, controlled by 3 bits, can accept any of die eight 
input values. 

Pipeline register files 
At the output of the crossbar are. eight 4-bit wide pipeline register files (PRFs). Each PRF 
has 14 stages, and uses one bit in the control pattern register to decide whether to shift in 
the current crossbar output. The output of each PRF, which also serves as one of the 
output ports, is specified by a 4-bit field in the control pattern register to be either one of 
the 14 stages, the crossbar output, or high-impedance. 

3.2. Control 

The functional description of the control circuit in this subsection refers only to die control of the opera­
tional states. For description of die loading/testing control, see the next section. 

Control pattern memory and control pattern register 

A caution to the programmer: when the controller of a system receives the almost empty status signal of a FIFO, the FIFO could still 
be holding up to two valid data items. At the termination of a computation, one must make sure that no valid data are still left in a FIFO. 
One method to achieve this is to write two dummy data items to the FIFO while the rest of U N C is halted. The idea is that these two 
dummy data will "push out" any valid data that might still be left in the FIFO. Application independent code can be written to deal with 
this "termination problem." 
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FPD control 

External control 

The control pattern memory and the control pattern register determine the operation of the 
crossbar and the pipeline register files. The control pattern memory, a 64x64 static RAM, 
is configured as two 32-word banks. One bank can be loaded with new control patterns 
while the other is controlling the data flow. A 5-bit off-chip address, CA[0-4], selects the 
control pattern from the bank currently controlling the chip. The control pattern register 
holds the pattern addressed in the last cycle and controls the circuit behavior at the current 
cycle. (Actually, this is not quite true. Because of the requirement to match the control 
flow with the data flow, part of the control pattern that controls PRF will still be active on 
the next cycle.) 

Each FPD is controlled by an 8-bit field in the d-code register. Two bits are used to decide 
whether the FPD is a programmable delay, or part of the A-FIFO or B-FIFO. The other 
five bits are a count field. For a programmable delay, the count specifies the fixed length 
of the delay, and is set when loading the d-code register. For a FIFO, the count contains 
the current length of the FIFO. When loading the d-code register, it is necessary to set the 
count field of the register to zero, effectively creating an empty FIFO. A new d-code can 
be loaded into a shift register, whose contents can then be transferred to the d-code register 
in one cycle. The shift register is byte-wide and can be loaded through the CC bus in 8 
cycles. The loading of the shift register can be performed when the chip is running or is 
halted. 

The run/~halt pin controls the running state of the chip. When the run pin becomes 
inactive, all the circuits, except the FIFO circuits and loading/testing circuits, become 
inactive. After the reset pin is active for more than one cycle, the eight data output ports 
become high impedance. This is useful in avoiding spurious outputs when loading the 
control codes into a LINC chip for the first time. 
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LOADING AND TESTING 

4. LOADING AND TESTING 

Warning: First time readers should skip this section. In this section, c-code means control pattern, d-code 
means delay code, caddr means control pattern address and s-data means scan data. 

The mode control table shown below defines the various loading and testing modes. Only when the chip 
select pin is active do the CC pins and internal loading and testing logic become active. In the following we 
discuss the various loading and testing processes. 

MODE | C-CODE 
1 

D-CODE S-DATA C-ADDR 
Counter 

Bank 
F/F 

comment 

0000 | shift - - - - c-code in 
0001 | shift - - - - c-code out 
0010 | load - - - - to c-code REG 
0011 | unload - - - - from c-code REG 
0100 | store - - post inc - to c-code MEM 
0101 | read - - post inc - from c-code MEM 
0110 1 - - - toggle swap memory banks 
0111 1 - - reset - addr cntr 
1000 1 shift - - - delay code in 
1001 I shift - - - delay code out 
1010 | load - - - to d-code REG 
1011 I unload - - - from d-code REG 
1100 I - shift - - data scan in 
1101 I - shift - - data scan out 
1110 1 load - - toggle load and swap 

4.1. Control Pattern Loading 

Conceptually, the control pattern memory can be considered as two swappable memory banks, one 
working bank and one loading bank. New control patterns are always loaded into the loading bank. The 
loading process can be performed either while the chip is running or when the chip is halted. 

Typically, a control pattern loading process starts by resetting the loading address counter to zero (mode 
0111). The pattern words are then written sequentially into the loading bank. It is not necessary to fill the 
entire bank, thus saving time in loading a new set of control patterns. Users are allowed to skip some words 
by using the read-and-increment mode (0101). Each 64-bit pattern word is written by shifting in the new 
pattern in eight cycles through the 8-bit CC bus, using mode 0000, and then "executing" a store-and-
increment mode (0100). The swap mode (0110) is used to swap the loading bank and the working bank. 

4.2. FIFO/Delay Control Loading 

The d-code loading shift register can be loaded with a new d-code through the CC bus in 8 cycles using 
mode 1000. Mode 1010 is then used to load the value in the shift register into the d-code register in one cycle. 
It is possible to simultaneously load the d-code register and swap the control memory banks with mode 1110 
(load and swap). 

The internal pipelining of the chip implies that the swap mode (0110) takes one more cycle than the 
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d-code loading mode (1010) to become effective after the modes are executed. Therefore die swap mode 
should be issued a cycle earlier than the d-code loading mode if the programmer wants them to be effective 
on die same data. 

4.3. Control Pattern Memory Logic Testing 

The testing of the control store normally starts with the control store loading shift register. A test code 
pattern is shifted into the shift register with mode 0000. Then die test code pattern is shifted out of the shift 
register with mode 0001 to verify the functionality of the shift register. The c-code memory (the current 
loading bank only) can be tested by first loading in test patterns and then resetting the counter to 0 (mode 
0111) and using read mode (0101) and shiftout mode (0001) to read the patterns. To test the other bank, 
mode 0110, swap-memory-banks, can be used to swap the banks. To test the functionality of pattern address­
ing logic, a control address can be set with the CA pins and the contents of the corresponding memory 
location are read into the control pattern register, which can tiien be unloaded in the next cycle into the shift 
register (mode 0011) and shifted out (mode 0001) for verification. The functionality of the control pattern 
register itself can be tested by first loading from the shift register using mode 0010 and then unloading with 
mode 0011. 

4.4. FIFO/Delay Control Testing 

The delay code loading logic uses a different shift register from the one used by the c-code loading logic. 
The delay code shift register can be tested by writing with mode 1000 and then reading out with mode 1001. 
The current d-code register can be read by using mode 1011 to unload the d-code into the shift register and 
then reading the shift register with mode 1001. 

4.5. Datapath Testing 

In addition to the input and output data ports for indirect observation, the internal datapath can be 
examined with the scan path built around die crossbar. The 32-bit input into the crossbar and die 32-bit 
output from the crossbar are placed in a scan-in-scan-out path. The scan path can be set by shifting data in 
using mode 1100. Mode 1101 can be used to read out the current content of the scan path. Notice the scan 
out process is a destructive read and should NOT be performed while the chip is running. Also, the scan in 
process should not be performed while the chip is running. The scan path is only one bit wide, and only pin 
CC[0] is used for scan data I /O. Thus, loading or unloading the scan path will take 64 cycles to complete. 

It is important to point out that when data are scanned out via pin CC[0], the scan path shifter behaves as a 
rotator. That is, after 64 cycles all the data will return to their original positions, although a copy of the data 
has been read out. At this point, the chip has returned to its original state, and is ready to resume operation. 
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TIMING SPECIFICATIONS 

5. TIMING SPECIFICATIONS 

The first implementation of LINC uses an external two-phase clock to provide clocking flexibility after 
fabrication. For future implementations it would be possible to use an external single-phase clock and put a 
two-phase clock generator on the chip. 

Figure 7 shows the relationship between the two-phase clock and the input/output signals. Since LINC 
uses dynamic circuits internally, there exists a minimum clock frequency. The target maximum clock rate is at 
least 10 MHz. 
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RAF,RBF 

l,CC(write) 

AFF,BFF 
(AFE,BFE 
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t c * 100ns 

:QD1 

»OD2 >J 

Figure 7. Input/output timing diagram 

The timing diagram for the running state is depicted in Figure 8. To read a control pattern from die 
control pattern memory, the control pattern address (CA[0-4J) must be supplied one clock cycle earlier. It 
takes two cycles for input data to go through the internal circuit being controlled by the control pattern and 
come out at the output ports. The input timing for the FIFO control signals is the same as for the data input, 
and FIFO status signals appear two clock cycles later, 

The timing for loading/testing the control pattern, FIFO/delay control code, and internal data is shown in 
Figure 9. The control pattern and FIFO/delay control codes are written/read eight bits (CC[0-7]) at a time. 
Therefore it takes eight cycles to read/write one 64-bit word. To access a 64-bit internal data item through the 
bit-serial scan line, on die other hand, takes 64 cycles, since only one bit is shifted in/out through the CC[0] 
pin every cycle. Pins CC[0-7j output control patterns, FIFO/delay control code or internal data only when 
the CS pin is active and the MC pins indicate reading. Otherwise, CQO-7] become high-impedance. 
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TIMING SPECIFICATIONS 

Figure 10 depicts the internal timing diagram for the running state. LINC contains four (approximately 
50 ns stages each requiring one half clock cycle to execute, which accounts for die two cycle minimum input 
to output delay stated in the datapath description. « " « I U I I I input 
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6. APPLICATION EXAMPLES 

6.1. Corner Turning 

Functional units of a system often have different data input and output formats. As a result, outputs of a 
unit may have to be reassembled before they can be used as inputs to another unit. A reassembling operation 
that occurs frequently is known as "corner turning." We show how corner turning can be efficiendy carried 
out with LINC. 

The corner turning operation is like matrix transposition. That is, given an input matrix, say in column-
major ordering, we want to transpose it so that the output will be in row-major ordering. This definition is 
illustrated by Figure 11 (a). For example, corner turning operation is needed in preparing input data for some 
systolic arrays [1], and in packing bytes into words and unpacking words into bytes. 

(a) 
d i c i b i * i 
d2 C2 b2 a2 
dZ

 C 3 bZ az S 
d* cA bA aA 

" C O R N E R T U R N I N G " 
-> *><b3 b 

° 4 a3 °Z « l 

C 4 C 3 CZ Cl 
d* d3 dt dt 

(b) 

dt e t bx a, « 3 a2 a, 

C 3 
^ ^ 4 

Figure 11. (a) "Corner turning**, and(b) its implementation 

Referring to Figure 11 (a) we see for example that inputs alt av al and aA all arrive at the same time, but 
they must be buffered so that they can be output from the same output port serially. It is easy to see from 
Figure 11 (b) that by providing buffer delays both before and after a crossbar, the corner turning can be 
accomplished. Since LINC does provide these buffering facilities and the crossbar, it can implement the 
corner turning operation. 

For transposing large matrices, we can use multiple copies of LINC, as depicted by Figure 3 (b) and 
Figure 4. Alternatively, we can multiplex in time a single copy of LINC, For example, Figure 12 shows that 
we can transpose an 8x4 matrix by transposing the first four rows of the matrix followed by the remaining 
four rows. Of course, if the size of the matrix exceeds that of the programmable delays and pipeline registers 
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of LINC, additional buffers outside LINC must be used. 

d * c6 b

6

 as\ d i <?i b1 ax 

d * ce 6

6

 a
6l ^ <2 b2 a2 

d7 c i b i <*j\ d3 c3 b3 a3 

d* cb bs fl
8l d< *4 at 

a i c6 a6 a* a

3 ax 

h> *8 *, K K bt b3 b2 b, 
cs Ci c6 c6 ct c3 c2 ct 

d i ds d* d< d

3 dz d1 

Figure 12. Transposing a large matrix by multiplexing LINC 

As its datapath indicates, LINC can buffer inputs at its input ports, and send them through the crossbar to 
any of the output ports, at which data can again be buffered by the pipeline register files. These features seem 
to be general and powerful. Corner turning is just one example of many data shuffling operations that LINC 
can efficiently implement. 

6.2. Systolic Array Implementation 

CMU is currently building a programmable systolic array processor that can efficiently perform many 
essential computations in signal processing, such as the FFT and convolution. As depicted in Figure 13 this is 
a one-dimensional systolic array that takes inputs from one end cell and produces outputs at the other end, 
with data and control all flowing in one direction. We call this particular systolic array a Warp processor, 
suggesting that it can perform various transformations at very high speed [5, 6]. 

addr -

y — 
cntl 

, \ 
m \ 

• 
\ C E L L 1 

> CELL 2 ) C E L L 3 > • • • i CELL n 
) y . . . ^ 

/ 
_ _ _s ---> ... .._> 

Figure 13. The Warp processor 

Each cell of the Warp processor uses a pipelined 32-bit floating-point chip set from Weitck [10] that can 
perform 10 million floating-point operations per second (MFLOPS). A 10-ccll Warp processor can process 
1024-point complex FFTs at a rate of one FFT every 600 [is. Under program control, the same processor can 
perform many other primidve computations in signal, image and vision processing, including two-
dimensional convolution and complex matrix multiplication, at a rate of 100 MFLOPS. Together with 
another processor capable of performing divisions and square roots, the Warp processor can also efficiently 
carry out a number of difficult matrix operations such as solving covariant linear systems, a crucial computa­
tion in real-time adaptive signal processing. 

Figure 14 summarizes the datapath of each cell of the Warp processor. For the CMU prototype diat is 
being built, we use only off-the-shelf components, and each cell is implemented on one board. We note that 
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all the components inside the region surrounded by the dotted lines are "glue chips" and they can be 
implemented efficiently with LINC. In particular if LINC is used, a board of the same size will be able to 
host three or more Warp cells. 
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Xt 

addri.1 

3:1 
MUX Y-FILE 

^ AOOR-FILE M 

ie 3:l| 
MUX 

DATA 
MEMORY 

CROSSBAR 

LINC 

^ MPY 
^ REG FILE 

^ ALU 
^ REG FILE 

MPY 

-> 

^ addr / 

Figure 14. Warp ce// implemented with LINC 

In general, through LINC, processors and memories can be linked together to form various processor 
arrays, as illustrated in Figure 15. 

6.3. Fast Fourier Transform 

We describe how an n-point fast Fourier transform (FFT) can be carried out on a processor implemented 
widi LINC, based on a scheme originally proposed for the Warp processor [5]. 

The F F r uses log2 az stages of n/2 butterfly operations, with data shuffling between stages. The so-called 
constant geometry version of the F F r allows the same pattern of data shuffling between all stages [9]. 

In the Warp processor array, the butterfly operations for the /-th stage of die FFT are executed by cell /, 
and the results are stored to the data memory of cell / + 1 . The data memory of each cell is double buffered, 
so that cell / can write into the data memory of cell / + 1 while cell / + 1 is working on stage / + 1 of another 
FFT problem. In this way, if many FFTs are to be performed, all cells in the array can be kept occupied at all 
times. 

Figure 16 shows the cell block diagram, with LINC controlling all data flow to the processing units. 
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Figure 15. Processor arrays implemented with LINC 

LINC 

LINC 
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Figure 16. Cell of constant geometry FFT processor using LINC 

A butterfly operation is defined as: 

(ar+ja,) ± (br+jbHwr+Jwi) 
= [ar±(bf H > - br wfl +j[ai ± {bf Wj+ brwr)], 

requiring four real multiplications and six real additions. Using LINC to control the data 
flow, it is possible 
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to fully occupy the ALU so that it actually takes the minimum of six cycles to do a butterfly. This is 
accomplished by interleaving up to four different butterfly operations in all cells at all times. LINC solves the 
problem of reusing the inputs to each butterfly twice, by storing such inputs inside LINC and reading them 
out at the appropriate times. 

We now define the data streams for LINC and for the cell. The cell >>-data stream provides the input for 
the data memory and is written into the address provided by the waddr stream. The r-addr stream provides 
the read address for the data memory, and the data memory provides the butterfly inputs (ar, ai% br, 6/) for 
LINC. The weight inputs for the butterfly operations (»vr, w/) are provided by the x-data stream. There are 
also feedback loops in the cell from die outputs of the ALU and multiplier back to the inputs of LINC. This 
allows LINC to control the correct accumulation of the results of the butterfly. The cell youtput is the output 
from the ALU, while the rest of the output streams are simply the corresponding input streams, delayed by 
two cycles (the pipeline delay of LINC). All data streams pass systolically from cell to cell, including 
addresses for the data memory. This is a good reason to implement the FFT in the constant geometry version, 
because the method uses the same data shuffling between all cells. 

Programming LINC for this application is not a difficult task. As we have already noted, data shuffling is 
the same between all cells, which means that all cells require the same LINC control. A total of eight 
different control patterns are used, six for the main loop of the FFT and two more to allow for the case of 
shifting in new weights for the current butterfly operation. The decision on whether to shift in new weights is 
made by the cell controller, based on the method described in [5]. The general method by which LINC 
controls the data for a butterfly operation is quite simple. First it buffers br and b-t in one pipeline register file 
connected to the multiplier, and the corresponding weights in the other pipeline register file connected to the 
multiplier. Then, as the multiplier computes the products diey are sent back through LINC and buffered in 
the pipeline register files connected to the ALU. As soon as both operands are available, diey are sent to the 
ALU to continue the butterfly operation. Once the ALU finishes this set of computations, the results are sent 
back through LINC once again, buffered as inputs to the ALU, and used as operands with ar and at (which 
are also buffered), to produce the final cell outputs. The important point to notice is that LINC provides the 
flexibility necessary to regulate several data streams concurrently, without inserting unnecessary empty cycles 
into the pipelines of the processing units. It is also important to note that up to four different butterfly 
operations are going on simultaneously in one cell, but that LINC can handle all the necessary control with 
only eight distinct control patterns. 

6.4. Robot Arm Control 

The problem of controlling a robot manipulator can best be described as a problem in transforming the 
easily specified desired Cartesian (world) coordinates into the arm's joint coordinates. These transformations 
are defined by a set of homogeneous transformations, each of which is a 4x4 matrix which when applied to a 
coordinate's 4-vcctor (xy ? 2, and scale) transforms it into another 4-vector [7]. The standard transformations 
include translation, rotation, stretching and scaling. Since the major computational problem involved is that 
of matrix multiplication (composing the necessary homogeneous transformations to tranform Cartesian to 
joint coordinates), a systolic array to perform matrix multiplication could provide the necessary computational 
power for robot arm control. 

A method for doing matrix multiplication with linear systolic arrays using pipelined aridimetic and mul­
tiplier units is described in [5], The systolic cell requires buffering for both data streams associated with the 
matrices being multiplied, and also for the result data stream. The cell would look exacdy like Figure 16, with 
the only difference between such a cell and an FFT cell being the programming of LINC and the cell 
controller. The matrices we are discussing are 4x4, so a four-cell systolic array could process a single matrix 
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multiplication in exactly sixteen cycles, since we know that by interleaving independent matrix multiplications 
a new task can enter each adder every cycle. This implies that, with a 200 ns arithmetic unit cycle time, it 
would take 3.2 [is to do a single matrix multiply. 

Two robot arm problems that illustrate the necessity for the powerful processing elements we describe 
above are that of generating the robot arm joint position error and joint velocity set points. The equations for 
solving these problems involve composing many homogeneous transformations and computing inverse 
homogeneous transformations, both of which require many scalar multiplications (to compute matrix 
products and inner products, respectively). The equations needed to solve these problems [8] are quite 
complex, but what is more important is calculating the necessary requirements on computing the solutions. 
One part of the solution derivation requires a computation of approximately 2000 multiplications (scalar, not 
matrix) to do the necessary matrix multiplications. The time delay in computing the joint servo of a typical 
robot arm is important in determining the computation rate, and requires a delay of less than 250 fis. This is 
well within the capability of our systolic array, which can do the 2000 multiplications in 
(l/4)-(2000)-200 ns( = 100 jits). Then the evaluations of the two set points can be done, requiring ap­
proximately another 1000 multiplications within the same 250 /ts delay, which is also easily met by the systolic 
array's capabilities. 

Robot arm control is clearly amenable to applying the computational power of a systolic array based on 
LINC. It seems that the task requires too much computation in too short a period of time for a conventional 
architecture to be able to handle it effectively, and any other method of solving the problem requires ap­
proximation algorithms that are not completely adequate for the task. As a measure of how cost-effective we 
expect LINC to be in doing this task, we know that a Warp processor board can handle the computations 
described above, and such a board would require only 45 chips using LINC. The flexibility available in 
programming LINC to control data flow and the computational power of a systolic array can be a major help 
in alleviating the computational difficulties of robot manipulator control. 

6.5. 3-D Computer Graphics 

Hardware for high performance three-dimensional computer graphics can be viewed as consisting of two 
main parts: a geometry system and a display system. The geometry system transforms object descriptions in 
world coordinates into descriptions in normalized device coordinates. The display system eliminates hidden 
surfaces and outputs each pixel to a raster-scan display. There have been several attempts to apply VLSI 
technology to both systems [3, 4]. In comparing the two systems, the geometry system requires many floating­
point operations and is appropriate for implementation with LINC and floating-point processors, whereas the 
display system needs sorting operations of fixed-point values. Although LINC could be useful in implement­
ing the display system we will not explore that idea at the present time. We will now discuss further the 
architecture of the geometry system. 

There are three tasks in the geometry system: 

• Matrix multiplication 
For the transformation from world to normalized device coordinates, we need to perform 
homogeneous transformations defined by 4x4 matrices. The computation involves many matrix-
vector multiplications. 

• Clipping 
The transformed data in normalized device coordinates are clipped into the space which a viewer 
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can see through a virtual window. In world coordinates, this space corresponds to a truncated 
viewing pyramid with "front" and "back" planes. 

• Scaling 
This step transforms the data in a homogeneous coordinate system [x, y, zt w] (where w is a scaling 
factor) resulting from clipping, into another coordinate system [x't y\ z', 1]. 

Clipping 1 Clipping 2 Clipping 3 

Figure 17. Implementation of the geometry system 

Figure 17 shows die implementation of the geometry system. The first cell performs the matrix mul­
tiplications, the next three cells do clipping, and the last cell does the scaling operation. Each cell is composed 
of copies of LINC, a floating-point multiplier and a floating-point ALU. (In the figure, one LINC box 
represents two copies of LINC). 

The matrix multiplication cell has a random-access memory which stores die coefficients of the 
homogeneous transformations. The cell inputs memory addresses and vertex vectors in world coordinates 
[JC, y, z, 1], The transformed coordinates of a vertex vector are output every 32 LINC cycles. 

Given an input point, each of the clipping cells clips every edge of a polygon by two planes that are 
parallel in normalized device coordinates, such as x— w=0 and x+ n>=0. The first part of a clipping cell 
computes the two intersections of an infinite line with the two planes. The second part selects at most two 
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points from the input point and the two intersection points. These selected points correspond to the 
endpoints of the edge of the polygon between the planes. Notice that data may be output at different rates. 
That is, even though the data output rate from the matrix multiplier cell is constant (1 vector per 32 LINC 
cycles), each clipping cell has the possibility of outputting no points, 1 point or 2 points. The FIFOs in LINC 
are useful for smoothing this variance in I/O rates between cells. In particular the LINC at the input of each 
clipping cell provides a FIFO to buffer inputs which may arrive in bursts. 

The scaling cell performs divisions to compute [x/w, y/w, z/w]. This can be efficiently implemented, for 
example, by a custom chip being designed at CMU that is capable of computing reciprocals of 32-bit floating­
point numbers at the rate of one every 200 ns. However, if no special hardware for divisions is assumed, we 
can still use existing schemes that can replace a quotient computation (no remainder) with a few multiplica­
tions [2]. In particular, for 32-bit floating point numbers with a 24-bit mantissa, computing the inverse of w 
takes no more than eighteen LINC cycles. With the addition of the six LINC cycles required for multiplying 
x, y and z by the inverse of w, we need no more than a total of 24 LINC cycles to scale one vertex vector. 

Each cell in Figure 17 is capable of computing one result vector in 32 LINC cycles (3.2 /xs). Therefore the 
maximum throughput of this system is approximately 9K vertices in one frame period (30 ms). 
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