NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-CS5-84-159

LINC:
The Link and Interconnection Chip

F.H. Hsu
H.T. Kung
T. Nishizawa
A. Sussman

Department of Computer Science
Carnegie-Mellon University
Piusburgh, Pennsylvania 15213

May 1984
(Last revised October 1984)

The research was supported in part by the Defense Advanced Rescarch Projects Agency (DoD), ARPA Order
No. 3597, monitored by ihe Air Force Avionics Laboratory under Contract F33615-81-K-1539 and in part by
the OiTice of Naval Research under Contracts N00014-76-C-0370, NR 044-422 and N00014-80-C-0236, NR
048-659. H. T. Kung was supported in part by a Guggenheim F cllowship.

Abstract

The link and interconnection chip (LINC) is a custom chip whose function is to serve as an ¢fficient link
between system functional moduies, such as arithmetic units, register files, and 1/0 ports.

LINC has 4-bit datapaths consisting of an 8x8 crossbar interconnection, a FIFQ or programmable delay
for each of its inputs, and a pipeline register file for each of its outputs. Using pre-stored control patterns
LINC can configure its interconnection and delays on-the-fly, while running. Therefore the usual functions
of buses and register files can be realized with this single chip.

LINC can be used in a bit-sliced fashion to form interconnections with datapaths wider than 4 bits.
Moreover, by tri-stating the proper data output pins, multipie copies of LINC can form crossbar intercon-
nections larger than 3x8, .

Operating at the target cycle time of 100 ns, LINC makes it possible to implement a variety of high-
performance processing elemcnts with much reduced package counts. This reduction of chip counts is
especially significant for cost-effective implementations of these multiprocessors such as systolic arrays which
call for large numbers of processing elements.

This paper gives the architectural specification of LINC, and justifies the specification by some application
examples.

INTRODUCTION

L. INTRODUCTION

Many high-speed, high-density building-block chips arc rapidly becoming commercially available,
Notable examples are 32-bit floating-point chips that can perform an arithmetic operation in less than a

can be built at low cost.

LINC is a super “glue” chip for system construction. As depicted in Figure 1 the chip provides physical
communications and data buffering between functional units of a system. It can also cfficiently implement
some complicated data shuffling operations such as the corner turning used in packing bytes into words and
unpacking words into bytes,

MEM
ADDR ——
INPUT—— —> QUTPUT
INPUT —— ——> OUTFUT
LIN

INPUT —— ¢

MEY
INPUT—

ALU

s

Figure 1. System components “linked" together by LINC

LINC can significantly reduce chip counts in many systems, especially for highly pipelined processors
such as the CMU Warp processor [5,6]. In general, LINC can efficiently link high-specd, off-the-shelf
arithmetic chips together to form powerful multiprocessor systems for a variety of applications, such as 3-D
computer graphics and robot arm control,

The LINC architecture is highly regular. This makes the chip most suitable for custom VLS implemen-
tation. As of October 1984 the logic design of LINC has been successfully simulated on a Daisy design station
at CMU, and circuit and layout designs in CMOS technology arc being carried out in cooperation with the
General Electric Conipany in Schenectady, New York.

SYSTEM OVERVIEW

2. SYSTEM OVERVIEW

This section gives an overview of LINC from the perspective of its function within a system and its
interface to the outside world.

The signal 170 pins of LINC, classified into four groups, are listed in the table below,

INPUT SIGNALS OUTPUT SIGNALS
PIN NAME ABBREVIATION PIN NAME ABBREVIATION
DATA I/0:
A input AI[0-3] A output AO[0-3]
B input BIf0-3] B output BO[0-3]
C input CIf0-3] C output Co[0-3]
D input DI[0-3] D output DO[0-3]
£ input EIf0-3] E output EO[0-3]
F input FI[0-3] F output FO[0-3]
G input GI[0-3] G output GO[0-3]
H input HI[0-3] H output HO[0-3]

FIFO CONTROL AND STATUS:

Write A-FIFOQ WAF A-FIFQ (almost) full AFF
Write B-FIFO WBF B-FIFG (aimost) full BFF
Read A-FIFQ RAF A-FIFC (almost) empty AFE
Read B-FIFO RBF B-FIFO (almost) empty BFE

CONTROL PATTERN MEMORY ADDRESS:
Control ‘address CA[0-4]

LOADING AND TESTING:

Chip select s

Mode control MC{0-3]

Run/~Halt R/~H

Reset RESEY :

Ctrl pattern in CC[0-7] Ctr1 pattern out CC[0-7]

Note that pins CC[0-7] are bidirectional.

In addition to signal pins there are two clock pins (PHI1 and PHI2), two power pins (VDDI1 and VDD?2),
and two ground pins (GND1 and GND2). Thus LINC has a total of 98 pins, Using a standard 100 pin grid
array package, LINC has two pins reserved for possible future needs.

A system overview of LINC, omitting features related to loading and testing, is depicted in Figure 2,
Between each data input port and the crossbar is a FIFO or programmahble delay (FPD), and between the
crossbar and cach data output port is a pipeline register file (PRF). A PRF is a set of registers that shifts in its

SYSTEM OVIRVIEW

input in a pipelined manner, but allows random access into the pipeline for its output. The AMD AM29520
is an examplc of a PRF.

WAF WBF RAF RBF
g)

A —<— CONTROL PATTERN MEMORY K> CC
4 N 4

Al PRE]}~ A0
4 4

Bl 7> B0
4 4

LI —4—) —<—> €0
4 4

01 —<— —%~—> DO
; s CROSSBAR]

BT —— —7——> EQ
4 4

FI ——4 —~—> Ff0
4 4

6T ———) PRF —7—> G0
4+ 4

HI —<— [Firo7eD DL FRE] 4 Ho

Pow bl

Figure 2. System overview af LINC

In the following we briefly describe the functions of the signal 1/0 pins in each of the four groups listed in
the table above. Sections 3 and 4 will give detailed descriptions of these functions.

DATA I/0:

cycle. With a cycle time of 100 ns, this means a total data I/O bandwidth of 80 Mbytes per second. It is
possible to increase the /0 bandwidth further by using multiple copics of LINC in parallel. Figure 3 {(a)
Hustrates that LINC can be used in a bit-sliced fashion to form interconncetions with data paths wider than 4
bits. Figure 3 (b) illustrates that by tri-stating the proper data output pins, multiple copics of LINC can form
Crossbar interconnections larger than 8x3.

Through the data 1/0 ports, LINC can input as weil as output cight 4-bit data items stmuttaneously every

Suppose that LINC inputs data frem its top boundary and outputs data along its right boundary, Then
the 16x16 crossbar interconnection of Figure 3 (b) can be laid out in a regular and compact manner, as shown
in Figure 4. 1t is swraightforward to generalize this layout scheme to implement larger crossbar intercon-

SYSTEM OVERVIEW

(a) (b)
Ly
—
—
LINC (33
— — LINC [—
i __; "

LINC E] 3 §] R
— - — L .
= JLine [= >

— LINC >
—-’
8x16 .
— LINC
— LINC ;
= #
— > —
—
- ——
— LINC
—LINC [
— T 16x16
16x8

Figure 3. Mulltiple copies of LINC to form (a) interconnections with
data paths wider than 4 bits, and (b) interconnections larger than 8x8

nections.
FIFO CONTROL AND STATUS:

LINC can be configured to have up to two FIFQs, an A-FIFQ and a B-FIFQ, The FIFQs' widths can be
set by programmers in 4-bit increments, but the total width of the two FIFOs of course cannot be more than
32-bits (the total width of the eight input data ports). Input data ports not used by the FIFOs are configured
as programmable delays. Typically, the programmable dclays are used to cquaiize the lengihs of various
pipelines for different arithmetic units in the same system,.

The FIFOs of LINC can be used to buffer data coming from other systems at varving rates. Figure
5 depicts a simple scenario of a collection of cooperating svstems—each system receives data from the system
to the left. (FFor an instance of such cooperating systems, sce the geometry system application of LINC in
Section 6.5)) The controller of cach systein sends FIFO read requests (RAF, RBF) to the LINC of the same
sysiem, but sends FIFO write requests (WAF, WBF) to the LINC of the system to the right. The LINC of
each system sends its FIFO status signals AFE and RFE (empty or almost empty) to the controller of the same
system, but sends status signals AFF and BFF (full or almost full) to the controller of the system to the left. A
status signal may be sent before a FIFO becomes completely full or empty, to give sufficicnt time for the
signal to reach the controller.

SYSTEM OVERVIEW

iy
LINC LINCHHHRS
1,
[=M
[=M
ceoeot .
oL . ﬁ!gggﬁﬁg!_[m
L _.J
I, 0,
[=
LING [—LIne—F
[1,
e
[=

Figure 4. Regular and compact layout of the 16x16 crossbar interconnection of Figure 3 (b)

—_— CONTROLLER CONTROLLER CONTROLLER
ra ’d ~
— WAF |AFE |RaAF WAF |AFE Rar/[:._, WAF | AFE RAFL_ WAF
WBF |BFE_|RBF WBF |aFE_|RBF WBF |8FE_{paF waF
AFF AFF AFF AFF
8FF . BFF BFF BFF >
——A[a-r1F0 {(a-F1r0 —
AL8-F1r0) A(B-fifg] —
7
I LIN IN
I% LINC "0 C [ﬂ LINC

Figure 5. Use of FIFO control and status signals in cooperating multiple systems

CONTRCL PATTERN ADDRESS:

The crossbar and pipeline register file of LINC may use a new control pattern every cycle. Since a control
pattern has 64 bits, it is infeasible to input all these bits to LINC every cycle for a chip of 100 pins. Instead, a
5-bit address, CA[0-4], is sent to the chip every cycle, to fetch one of the 32 control patterns pre-stored in one
of the two banks of the control pattern memory of the chip.

LOADING AND TESTING:

The control pattern memory has two banks, with 32 words cach, so that while one bank is in use the other
bank can be loaded with new patterns via pins CC[0-7]. The control register for the F IFOs/programmabie

SYSTEM OVERVIEW

delays also can be loaded with new contents via pins CC[0-7]. The control pattern memory and the control
register should be loaded before LINC starts running., Through the mode control pins, LINC can be con-
figured to test the control pattern memory, the FIFQO/programmable delay controller, and the dawepath,

DATAPATH

3. DATAPATH AND CONTROL

A functional block diagram of LINC is shown in Figure 6. In the following we discuss the main functional
features.

CA[0-4]
BANK F/F
CONTROL PATTERN MEMORY
(TWO-BANK)
D-CODE
REGISTER
N d
WAF WBF
raf.RBF A FIFO/DELAY (CONTROL PATTERN REGISTER]
AFF AFE CONTROLLER scan-1in scan-aut
BFF,BFE n ' 244 . 40 4
Al — > —> AQ
BI — > — BO
C1 — > 3 —> Co
NI —y FIFO/ > > PIPELINE - pgo
CROSSBAR REGISTER
FI — . — FO
GI —3 —> GO
HI —3 —> HO

—Ii >

Figure 6, LINC dawapath block diagram

3.1. Datapath

The datapath operates with a 100 ns minimum cycle time. Every 1/0 port is capable of performing one
data transfer per cycle. This gives a 40 Mbytes/sec input transfer rate with all of the eight 4-bit input ports
active, and a 40 Mbytes/sec total output transfer rate for the cight 4-bit cutput ports. The datapath consists of
eight FPDs (FIFO and/or programmable delay), an 8x8 4-bit wide crossbar, and eight pipeline register files,
There is a minimum delay of 2 ¢clock cycles before an input can appear at an output pert. The control flow
from the control pattern register is matched to the data flow so that the entire transfer of each data item is
controlled by the pattern in the control pattern register when the transfer starts, even though the transfer

DATAPATH

actually takes 2 clock cycles. The net effect of this is that the programmer can view the chip as having zero
internal delay across the FPDs, the crosshar, and the pipeline register files, but having a 2-cycle delay at the
output ports.

FIFOs and/or programmable delays

The cight FPDs can be configured into 0, 1, or 2 FIFOs and/or 0 to 8 4-bit wide
programmable delays. The FIFOs™ widths can be set by the programmer in 4-bit incre-
ments, but the total width of the FIFOs cannot be more than 32-bits. Each FPD can be
selected to be part of one FIFO or as a programmable delay. For example, LINC can be
configured to have two 8-bit wide FIFOs and four 4-bit wide programmable delays. The
programmable delay time can be from 0 to 31 cycles. The two FIFOs, cach 31 deep, are
controlled by the off-chip signals WAF, WBF, RAF, and RBF. Notice that the outputs of
the FPDs, even when configured as FIFOs, go to the on-chip crossbar rather than off-chip
directly. Because there arc logic delays inside LINC in sending out FIFQO status signals
(AFF/AFE and BFF/BFE), these signals refer to an “almost full” or “almost empty"
status. “Almost full” means that the FIFO has at most two empty slots left, and “almost
empty” means that the FIFO holds at most two valid items.” The configuration of the
FPDs is determined by a 64-bit wide control register, called the d-code register (delay code
register), which is loaded before system execution begins and normally does not change
very often thereafter,

Crossbar An 8x38 4-bit wide crossbar connects the FPDs to the pipeline register files. The crossbar is
uni-directional. The inputs come from the FPDs and the outputs go to the pipeline
register files. The control for the crossbar comes from a 24-bit field in the control pattern
register. Each output port of the crossbar, controlled by 3 bits, can accepl any of the eight
input valugs.

Pipcline register files
At the output of the crossbar are eight 4-bit wide pipeline register files (PRFs). Each PRF
has 14 stages, and uses one bit in the control pattern register to decide whether to shift in
the current crossbar output. The output of each PRF, which also serves as one of the
output ports, is specified by a 4-bit field in the control pattern register to be either one of
the 14 stages, the crossbar output, or high-impedance.,

3.2. Control

The functional description of the control circuit in this subsection refers only to the control of the opera-
tonal states. For description of the loading/testing control, see the next section.

Control pattern memory and control pattern register

'A caution to the programmer: when the controller of a system receives the almost empty status signal of a FIFO, the FIFO could still
be heolding up to two valid data items, At the termination of a computation, one must make sure that no valid data are still left in a FIFO.
One method to achicve this is to write two dummy data items to the FIFO while the rest of LINC is halted. The idea is that these two
dummy data will "push out” any valid data that might still be left in the FIFQ. Application independent code can be written to deal with
this “termination problem.”

FPD control

External control

DATAPATIH

The control pattern memory and the control pattern register determine the operation of the
crossbar and the pipeline register files. The control pattern memory, a 64x64 static RAM,
is configured as two 32-word banks, One bank can be loaded with new control patterns
while the other is controlling the data flow. A 5-bit off-chip address, CA[0-4], selects the
control pattern from the bank currently controlling the chip. The control pattern register
holds the pattern addressed in the last cycle and controls the circuit behavior at the current
cycle. (Actually, this is not qQuite true. Because of the requirement to match the control
flow with the data flow, part of the control pattern that controls PRF will still be active on
the next cycle.)

Each FPD is controlled by an 8-bit field in the d-code register. Two bits are used to decide
whether the FPD is a programmable delay, or part of the A-FIFQ or B-FIFO. The other
five bits are a count field. For a programmable delay, the count specifics the fixed length
of the delay, and is set when loading the d-code register. For a FIFQ, the count contains
the current length of the FIFO. When loading the d-code register, it is necessary to set the
count field of the register to zero, effectively creating an empty FIFO. A new d-code can
be loaded into a shift register, whose contents can then be transferred to the d-code register
in one cycle. The shift register is byte-wide and can be loaded through the CC bus in §
cycles. The loading of the shift register can be performed when the chip is running or is
halted. :

The run/~halt pin controls the running state of the chip. When the run pin becomes
inactive, all the circuits. except the FIFO circuits and loading/testing circuits, become
mactive. After the resct pin is active for more than one cycle, the eight data output ports
become high impedance. This is useful in avoiding spurious outputs when loading the
control codes into a LINC chip for the first time.

LOADING AND TESTING

4. LOADING AND TESTING

Warning: First time readers should skip this section. In this section, ¢-code means control pattern, d-code
means delay code, c-addr means control pattern address and s-data means scan daia.

The mode control table shown below defines the various loading and testing modes. Only when the chip
select pin is active do the CC pins and internal loading and testing logic become active. In the following we
discuss the various loading and testing processes.

MODE | C-Cobt 0-CODE S-DATA C-ADDR Bank comment

| Counter F/F
0coo | shift - - - - c-code in
poo1 | shift - - - - c-code out
0010 | load - - - - to c-code REG
0011 | unload - - - - from c-code REG
0100 | store - - post in¢ - to c-code MEM
0101 | read - - post inc - from c-code MEM
0110 | - - - - toggle swap memory banks
0111 | - - - reset - addr cntr
1000] - shift - - - delay code in
1001 | - shift - - - delay code out
1010 i - load - - - to d-code REG
1011 | - unload - - - from d-code REG
1100 | - - shift - - data scan in
1101 | - - shift - - data scan out
1110 | - load - - toggle 1load and swap

4.1. Control Pattern Loading

Conceptually, the control pattern memory can be considered as two swappable memory banks, one
working bank and one loading bank. New control patterns are always loaded into the loading bank. The
loading process can be performed either while the chip is running or when the chip is halted.

Typically, a control pattern loading process starts by resetting the loading address counter to zero (mode
0111). The pattern words are then written sequentially into the loading bank. It is not necessary to fill the
entire bank, thus saving time in loading a new set of control patterns. Users are allowed to skip some words
by using the read-and-increment mode (0101). Each 64-bit pattern word is written by shifting in the new
pattern in cight cycles through the $-bit CC bus, using mode 0000, and then “ex=cuting” a2 storg-and-
increment mode (0100). The swap mode (0110) is used to swap the loading bank and the working bank.

4.2. FIFO/Delay Control Loading

The d-code loading shift register can be loaded with a new d-code through the CC bus in & cycles using
mode 1060. Mode 1010 is then used to load the value in the shift registcr into the d-code register in one cycle.
It is possible to simultaneously load the d-code register and swap the control memory banks with mode 1110
(load and swap).

The internal pipelining of the chip implies that the swap mode (0110) takes one more cycle than the

10

LOADING AND TESTING

d-code loading mode (1010) to become effective after the modes are executed. Therefore the swap mode
should be issued a cycle earlier than the d-code loading mode if the programmer wants them to be effective
on the same data.

4.3. Control Pattern Memory Logic Testing

The testing of the control store normally starts with the control store loading shift register. A test code
pattern is shifted into the shift register with mode 0000. Then the test code pattern is shifted out of the shift
register with mode 0001 to verify the functionality of the shift register. The c-code memory (the current
loading bank only) can be tested by first loading in test patterns and then resctting the counter to 0 (mode
0111) and using read mode (0101) and shiftout mode (0001) to read the patterns. To test the other bank,
mode 0110, swap-memory-banks, can be used to swap the banks. To test the functionality of pattern address-
ing logic, a control address can be set with the CA pins and the contents of the corresponding memory
location are read into the control pattern register, which can then be unloaded in the next cycle into the shift
register (mode 0011) and shifted out (mode 0001) for verification. The functionality of the control pattern
register itself can be tested by first loading from the shift register using mode 0010 and then unloading with
mode 0011,

4.4. FIFO/Delay Control Testing

The delay code loading logic uses a different shift register from the one used by the c-code loading logic.
The delay code shift register can be tested by writing with mode 1000 and then reading out with mode 1001,
The current d-code register can be read by using mode 1011 to unload the d-code into the shift register and
then reading the shift register with mode 1001.

4.5. Datapath Testing

In addition to the input and ourput data ports for indirect observation, the internal datapath can be
examined with the scan path built around the crossbar. The 32-bit input into the crossbar and the 32-bit
output from the crossbar are placed in a scan-in-scan-out path. The scan path can be sct by shifting data in
using mode 1100. Mode 1101 can be used to read out the current content of the scan path. Notice the scan
out process is a destructive read and should NOT be performed while the ¢hip is running. Also, the scan in
process should not be performed while the chip is running. The scan path is only one bit wide, and only pin
CCI0] is used for scan data I/0. Thus, loading or unloading the scan path will take 64 cycles to complete.

It is important to point out that when data are scanned out via pin CC[0], the scan path shifter behaves as a

rotator. That is, after 64 cycles all the data will return to their original positions, although a copy of the data
has been read out. At this point, the chip has returned to its original state, and is ready to resume operation.

11

TIMING SPECIFICATIONS

5. TIMING SPECIFICATIONS

The first implementation of LINC uses an external two-phase clock to provide clocking flexibility after
fabrication. For future implementations it would be possible to use an external single-phase clock and puta
two-phase clock gencrator on the chip,

Figure 7 shows the relationship between the two-phase clock and the input/output signals. Since LINC
uses dynarmic circuits internally, there exists a minimum clock frequency. The target maximum clock rate is at
least 10 MHz.

te » 100ns

PHI1 _J/ 1 / X
PHI2 { X) \

4
R/~H
ES.MC t t
A
AI-HI NN, R NN
WAF , WBF
RAF ,RBF
LCC(write)

top1

¢
AFF,BFF
|AFE,BFE { A

Ltona torp
7|

[A0-HO — N , ' .
CC{read). /

Figure 7. Inpul/output timing diagram

‘The timing diagram for the running state is depicted in Figure 8. To read a control pattern from the
contro! pattern memory, the control pattern address (CA[0-4]) must be supplied one clock cycle earlier. It
takes two cycles for input data to go through the internal circuit being controlled by the control pattern and
come out at the output ports. The input timing for the FIFQO control signals is the same as for the data 1nput.
and FIFQ status signals appear two clock cycles later.

The timing for loading/testing the control pattern, FIFQ/delay control code, and internal data is shown in
Figure 9. The control pattern and FIFO/delay control codes are written/read eight bits (CC[0-7]) at a time,
Therefore it takes eight cycles to read/write one 64-bit word. To access a 64-bit internal data item through the
bit-serial scan linc, on the other hand, takes 64 cycles, since only one bit is shifted ir/out through the CC[0)
pin every cycle. Pins CC[0-7] output contr ol patterns, FIFO/delay control code or internal data only when
the CS pin is active and the MC pins indicate reading. Otherwise, CC[0-7] become high-impedance,

12

TIMING SPECIHACATIONS

P11 _/ L / /\ [[\ /L

PHI2 [\ MM

CA L addr 1 1 addr 2 _X_ addr 3 L ‘X X_
AI-HI X X datain 1 X datain Z_X datain 3 1 1

HREIHEF X_ XJIFO ctrl 1 x FIFO ctril ZlFIFO ctrl 3_X L
ﬂFE.EEF)L X -X_FTFO stes | FIFD stts 2 X FIFQ stts 3 x

AD-HO ——_ — —< gatdout 1

Figure 8, Timing diagram for running state

(a) Control/data shiftin (b) Control/data shiftout

PHIL N TN T\ ein /N L

PHi2 ™\ T\ PHI2 N\ /L
~CS T\ / ~CS T\ /
MC A shirnin X X MC D ST D
CC{write) X A cirizgata X CC(read) @“—

(¢) Control code write/read/load/unload

PHI1 / \ / \ / \

PHI2 [\
~CS T /

MC X N | X

Figure 9. Timing diagram for loading and testing

file:///___J

TIMING SPECIFICATIONS

Figure 10 depicts the internal timing diagram for the running state. LINC contains four (approximately

50 ns) stages, each requiring one half clock cycle 1o exccute, which accounts for the two cycle minimum input
to output delay stated in the datapath description.

14

TIMING SPLCIFICATIONS

tc » 100ns
PHI1 _/ \ L { S
PHIZ) [1 ' *)
MC i i X X X
cA Y] ; A A X
AI-HT___ l‘) X X X
R m - (X :
- NN |
MCdecade X\ \ i‘ X L L
CPMsIct X \\ \\X L L
CPR Xi YX, [X, XAAA
\ AN
PRECP X X \ \ A ! A X
\ \ |
s X B R N B 1 !
NN |
xaARinwus\ / 1_ /nrchg \‘T‘ ' K ‘_ / _
ST X X Do X
N\
PRF tntbus /| \ / \ Jorcng \\\' / A /
PRFout _X X_ X !\ _X
PRFshft X X X 8 T
AFE BFE X i

AD-HO ——

N e

MCdecode -

Mode Control decode

N
Aa

CPMs1ct - Control Fattern Memory salect
CPR - Control Pattern Regfster
PRFCP - Pipeline Register file Control Fattern
FPDout/XBARin - FIFD/Prog. Delay out, XBAR in

N
S

fBAR{intbus - XBAR 1nternal bus
XBARout/PRFin - XBAR out, Pipeline Register File 1n
PRFintbus - PRF internal bus

PRFout - FRF outpit
PRFshfL - PRF shift

Figure 10. Internal timing diagram

15

APPLICATION EXAMPLES

6. APPLICATION EXAMPLES
6.1. Corner Turning

Functional units of a system often have different data input and output formats. As a result, outputs of a
unit may have to be reassembled before they can be used as inputs to another unit. A reassembling operation
that occurs frequently is known as “corner turning.” We show how corner turning can be efficiently carried
out with LINC.

The corner turning operation is like matrix transposition. That is, given an input matrix, say in column-
major ordering, we want to transpose it so that the output will be in row-major ordering. This definition is
illustrated by Figure 11 (a). For example, corner turning operation is needed in preparing input data for some
systolic arrays [1], and in packing bytes into words and unpacking words into bytes.

(a)

dy ¢, by a, - —> 4, 4; a, a,

d, ¢, b, a, = —> b, b, b, b,

d, ¢, b, a, - “CORNER TURNING™ S e, e, <

d, ¢, b, a, — d, d, d, d,
(b)
d, ¢, b, a, ————> o—0—0> a, a, 4, a,
a4, ¢, bz a, o—— CROSSBAR o—o—> b, b:’ b"' b,
dy ¢y by a, > ¢, ¢, ¢, ¢,
d, ¢, b, a, -o—0—0 ———~>d, d, d, d,

Figure 11, (a) “Corner turning", and (b) its implementation

Referring to Figure 11 (a) we see for example that inputs g, a,, a4, and g, all arrive at the same time, but
they must bé buffered so that they can be cutput from the same output port scrially. It is casy 1o sce from
Figure 11 (b) that by providing buffer delays both before and after a crossbar, the corner turning can be
accomplished. Since LINC does provide these buffering facilities and the crossbar, it can implement the
corner mirning operation.

For transposing large matrices, we can use multiple copies of LINC, as depicted by Figure 3 (b} and
Figure 4. Alternatively, we can multiplex in time a single copy of LINC. For example, Figure 12 shows that
We can transpose an 8x4 matrix by transposing the first four rows of the matrix followed by the remaining
four rows. Of course, if the size of the matrix exceeds that of the programmable delays and pipeline registers

16

APPLICATION EXAMPLES

of LINC, additional buffers outside LINC must be used.

dg ¢, b, asl dyc, b, a, — > 4, 4, a, a, a, a, a, a,
dy ¢, by a]d, ¢, b, a, -3 > b, b, by b, b, b, b, b,
d? CT b? a?l da Ca b.’] a3 -% LINC -9 CS c? CG {,'5 C". C3 cZ C1
dg ¢4 b, a' d, ¢, b, a, -3 —> dy d, d d, d, d, d, d

Figure 12, Transposing a large matrix by multiplexing LINC

As its datapath indicates, LINC can buffer inputs at its input ports, and send them through the crossbar to
any of the output ports, at which data can again be buffered by the pipeline register files. These features seem
to be general and powerful. Corner turning is just one example of many data shuffling operations that LINC
can efficiently implement,

6.2. Systolic Array Implementation

CMU is currently building a programmable systolic array processor that can efficiently perform many
essential computations in signal processing, such as the FFT and convolution. As depicted in Figure 13 this is
a one-dimensional systolic array that takes inputs from one end cell and produces outputs at the other end,
with data and controf all flowing in one dircction. We call this particular systolic array a Warp- processor,
suggesting that it can perform various transformations at very high specd [5, 6).

addr - - 3 LTI TE

x CELL 1 CELL 2 | CELL 3 o CELL n

y — s . 5y
entl - - [- Lo s

Figure 13. The Warp processor

Each ccll of the Warp processor uscs a pipelined 32-hit floating-point chip set from Weitek [10] that can
perform 10 million floating-point operations per sccond (MFLOPS). A 10-cell Warp processor can process
1024-point complex FFTs at a rate of one FFT every 600 us. Under program control, the same Processor can
perform many other primitive computations in signal, image and vision processing, including two-
dimensional convolution and complex matrix multiplication, at a rate of 100 MFLOPS. Together with
another processor capable of performing divisions and square roots, the Warp processor can also etficiently
carry out a number of difficult matrix operations such as solving covariant linear systems, a crucial computa-
tion in real-time adaptive signal processing,

Figure 14 summarizes the datapath of each cell of the Warp processor. For the CMU prototype that is
being built, we use only off-the-shelf components, and each cell is implemented on one board. We note that

17

APPLICATION IXAMPLES

all the components inside the region surrounded by the dotted lines are “glue chips” and they can be
implemented efficiently with LINC. In partcular if LINC is used, a board of the same size will be able to
host three or more Warp cells.

MCODE
e e — - ——— - 1
i
YVietx — LINC
R E 3:1
y‘ MUX
Yi-a — ¥-FILE > ¥,
!
Xi-1 1 A 2 ‘
Xy —— A %{ A-FILE S X
MRY
addr, ., ADDR-FILE CROSSBAR REG FILE MPY b — addr

!

|

|

i |_
1 3:1
! [
"--"“""‘"(q"l ALU

AEG FILE

ALY ey

HEMQRY

I
DATA [T
¥
|

Figure 14, Warp cell implemented with LINC

In general, through LINC, processors and memories can be linked together to form various processor
arrays, as illustrated in Figure 15.

6.3. Fast Fourier Transform

We describe how an n-point fast Fourier transform (FFT) can be carried out on a processor implemented
with LINC, based on a scheme originalty proposed for the Warp processor [3].

The FFT uses log, n stages of n/2 butterfly operations, with data shuffling between stages. The so-called
constant geometry version of the FFT allows the same pattern of data shuffling between all stages [9].

In the Warp processor array, the butterfly operations for the i-th stage of the FFT are executed by cell 4
and the results are stored to the data memory of cell i+ 1. The data memory of each ccll is double buffered,
so that cell | can write into the data memory of cell 7+ 1 while cell i+ 1 is working on stage i+ 1 of ancther
FFT problem. In this way, if many FFTs are to be performed, all cells in the array can be kept cccupied at all
times.

Figurc 16 shows the cell block diagram, with LINC controlling all data flow to the processing units.

18

APPLICATION EXAMPLES

CHE]
B

LINC LINC

1y By B G I
LINC LINC LINC LINC|— LINC LINC LINC

@M E]M @M EIM @ EI’] 5

LINC LINC LINC——

NC

Figure 15. Processor arrays implemented with LINC

AE——
~Yin_ DATA MPY
RAM J
N i V.
R-ADDRin LING ALU Y-out = —
W-ADDRin \l
X-int R-ADDRout N
W-ADDR oyt N
—7
X-out N\
7

Figure 16. Cell of constant geometry FFT processor using LINC

A butterfly operation is defined as:

@+ ja) £ (b,+ jb)-(w,+ jw)
= [a, % (b w,— by wl+ jla; % (B Wit by-w))],

requiring four real multiplications and six real additions. Using L