
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

C M U - C S - 8 4 - 1 4 5

REASONING A B O U T S Y N C H R O N O U S SYSTEMS

Stephen D. Brookes
Department of Computer Science

Carnegie-Mellon University
Pit tsburgh

Pennsylvania 15213
March 1984

The research reported in this paper was supported in part by funds from the Computer
Science Department of Carnegie-Mellon University, and by the Defense Advanced Research
Projects Agency (DOD), A R P A Order N o . 3597, monitored by the Air Force Avionics
Laboratory under Contract F33615-81-K-1539. The views and conclusions contained in it
are those of the author and should not be interpreted as representing the official policies,
either expressed or implied, of the Defense Advanced Research Projects Agency or the US
Government.

1

0 . A b s t r a c t .

In this paper we describe a simple semantic model for synchronous systems of processes,
suitable for high level functional descriptions of VLSI designs, and use it to justify formal
reasoning about the behaviour of systems. Treating a system as a directed graph in which
the nodes represent computational units and the arcs indicate the communication links
and t ime dependencies, we define the outputs of each node in a system as a function of its
inputs. The inputs and outputs are regarded as data-valued functions of t ime. Basically
the idea is to specify the semantics of a system as a set of (mutually recursive) function
definitions. This set of function definitions amounts to a fixed point equation whose solu
tion is the desired semantics of the system. A solution to these equations is guaranteed
to exist under reasonable assumptions about the type of computational unit used in the
system. For particularly regular or simple systems, the solutions will be explicitly deter
minable by standard methods such as substitution. However, even in cases when this is not
possible, the solutions can be found by elementary fixed point techniques. This model of
systems allows extremely easy and elegant proofs of some interesting results on retimings
and other system transformations such as pipelining. A retiming is a transformation of
the communicat ion graph of a system which preserves the underlying graph but alters the
internode delays in a uniform manner; retiming has a simple effect on the semantics of a
system. These results were first obtained by Leiserson and Saxe [12], but only under cer
tain assumptions on the underlying communication graphs of systems. We show that these
assumptions are unnecessary. Moreover, these authors were able only to give a long and
somewhat complicated proof, because of their choice of semantic model. The fixed point
method also serves as mathematical basis for an "algebraic" approach to VLSI design, such
as the one described by Kung and Lin [9]. Again, however, their results were obtained
under certain assumptions ("well-definedness") which we show to be unnecessary. We
demonstrate the use of our semantic model to develop and justify a design for a palindrome
recogniser, beginning from a mathematical description of the problem.

2

1. I n t r o d u c t i o n .

The rapidly increasing use of VLSI technology and the massive potential offered by
VLSI for parallel computation are well known. If we are to rely on VLSI systems for more
and more applications, it is obviously important that we understand the intended behaviour
of such systems, and develop methods of specifying and proving correctness properties.
Establishing the correctness of large systems of synchronously operating chips, which may
communicate by quite complex links, is generally regarded as a difficult problem. It is not
clear how to provide a tractable semantic description for general VLSI designs. Ideally, we
would like a semantic treatment which facilitates such tasks as specification, verification
and design of correct systems, and which is mathematical ly manageable.

In this paper we show that a large class of VLSI systems, including the so-called
"synchronous" or clocked systems [9,12], can be treated in a uniform and elegant way
using elementary ideas of fixed point theory. Similar ideas on semantics have been applied
in the work of Chen and Mead [2,3] and Cohen [4]. Gordon [5,6] also uses a functional
model for VLSI systems. Our focus is on j;he use of fixed point semantics in the justification
of formal treatments of the behaviour of synchronous systems, in the analysis of system
transformations, and in the specification and design of systems. Fixed point theory has
been well established for some time now and is widely used as the basis for formal semantic
methods [15]. We are not claiming to have discovered a new method of giving semantics
to programming languages. Nevertheless, we maintain that using a fixed point approach
gives rise to a natural, elegant, and tractable mathematical model of complex synchronous
systems and enables us to perform rigorous analysis of the behaviour of such systems as
well as to derive or construct systems conforming to formal specifications. We will show
that our methods , an application of well known ideas from another area, yield potential
benefits in terms of clarity and tractability.

We model a VLSI system as a directed graph whose nodes represent the computational
units and whose arcs represent the communication lines of the system. Each outgoing arc
or edge has an associated output function which describes the output values transmitted
along that edge by the node, as a function of the inputs to the node. All outputs and inputs
are regarded as data-valued functions of t ime. Arcs are labelled by integers (usually, but
not necessarily, non-negative) indicating a propagation delay. Given such a graph, one can
write down a set of equations, in general mutual ly recursive, describing the dependencies
between the functions computed at each node. This set of equations amounts to a fixed
point definition of a set of functions, and the semantic functions describing the outputs of
the nodes of the system should be a solution of this equation. Under natural (and realistic)
assumptions about the functional behaviour of the nodes, we can show very easily that
these equations will indeed have a solution. In the case of a regular system, by which we
mean a system with a particularly regular or simple geometric structure, it will often be
possible to solve the functional equations explicitly, typically by substitution. However,

3

using standard results about fixed points we can explicitly find the solution, even when the
equations are not solvable by substitution. The mathematics is quite straightforward and
fully explained.

A n advantage of this approach is that it is well suited to reasoning about hierarchical
systems and facilitates a modular approach to system design and verification. We can
replace any part of a sys tem by another whose semantics is the same, wi thout affecting
the semantics of the whole system. This fact will be justified by an elementary property
of sets of functional equations; indeed, there are elementary results about the solutions to
fixed point equations that will guarantee the correctness of these transformations.

A simple class of retiming transformations which affect the communicat ion graphs of
systems were first suggested by Leiserson and Saxe [12]. The semantic effects of re t imings
are simple, but the proofs of these properties in [12] required extra assumptions about
the retimings and graphs, and were overly complicated. This was largely because of their
choice of semantic model . We show that an elegant and simple proof goes through in the
more general fixed point sett ing, where no constraints need to be placed on the retimings
and systems considered. Thus w e achieve a simplification and a generalisation of the earlier
results.

Ret imings affect only the communicat ion structure of a graph, leaving the underlying
functional units the same. The retiming results therefore enable us only to compare the
semantics of systems whose underlying graph and functional elements are identical. Since
our methods also allow replacement of any subgraph by a semantically equivalent structure,
we can effectively reason about systems whose underlying structure and combinational
behaviour are different.

Our methods also serve to justify and extend the "algebraic" approach to VLSI system
design advocated in [9]. We illustrate the use of our methods with an example of a
complex VLSI design for recognising palindromes, similar to the design given in [12] (where,
however, no correctness proof was supplied). Beginning with a mathematical description
of the problem, we derive a correct design which meets the mathematica l specification; the
derivation uses both retiming and pipelining. The production of a high-level VLSI design
is, in effect, accompanied by a correctness proof.

We expect to be able to apply our methods to other interesting problems in VLSI
design and verification, such as the polynomial GCD algorithm of Brent and Kung [1] and
various matrix applications such as matrix multiplication and LU decomposit ion [7].

4

2. M o d e l l i n g V L S I s y s t e m s .

For the purposes of formal analysis, a high-level description of a large VLSI system
or circuit, or in general any synchronous system, can be regarded as a graph structure
whose nodes represent functional or computational elements and whose arcs represent
communication links. In order to model the effect of delay along communication paths we
can assign integer weights to the arcs. Each arc also has an associated function symbol
representing the output transmitted along the arc. We may thus model a system S as
an edge-weighted graph (V, E, F). The vertices v £ V of the graph represent functional
elements, and the edges e 6 E correspond to connections between the functional elements,
and each edge has an associated delay and function symbol. F is the set of function
symbols used in the graph. We represent a typical edge, from source node u to destination
v, wi th delay d and function symbol / in the diagrammatic form

i _

We may also write f:(u, d, v) to describe such an edge. Note that there may be several
edges between a pair of nodes, and each edge has a direction. We assume the usual graph-
theoretic notions of path, cycle, and so on.

The commuracoiion graph (V, E) of a system S — (V.E,F) is obtained by ignoring
the function symbols. This specifies the data.-flow paths of the system and their associated
propagation delays. A path leading from node V{ to node Vj with total edge-weight w
indicates that the output computed at node vj at any t ime depends on the value output
by node Vi at the wth previous t ime step; note that the length of a t ime step is not specified,
and that the delay corresponds to the number of t ime steps required to have elapsed during
transmission of a value from one node to another. Since we are thinking about synchronous
or clocked systems, the delay corresponds to the number of elapsed clock cycles.

A cyclic path in a graph indicates a dependence of the output computed at each
node in the path on its own (presumably) earlier output; this may result in the system
exhibiting feedback or race conditions, but we see no reason to exclude such systems from
our analysis. Obviously in any realistic system it is unreasonable to require that an output
value at some time should depend on a future output; thus, in most real systems (and all
of our examples) the delays on arcs will be non-negative. In the interests of generality,
however, we do not make this assumption about the systems we consider. Indeed, in some
applications it may be profitable to think of a negative delay on an arc as equivalent to a
positive delay in the reverse direction.

In order to specify precisely the semantics of a system we must provide an interpreta
tion for the functional elements. In other words, we must provide a rule defining each
output function of a node in terms of the inputs to that node. In general, however, we

may think of an uninterpreted system as a schema which can be instantiated in many
distinct ways by choosing appropriate interpretations for the nodes.

We will be especially interested in transformations on communicat ion graphs which
have a simple effect on the semantics of a system, regardless of the particular interpretation
we place on the output functions, and thus, regardless of the particular choice of computa
tional unit at the nodes. The retimings of Leiserson and Saxe fall into this category of
transformations, and so does the pipelining operation.

Before launching into the general foundations of our approach, an example will serve
to prepare the ground.

3 . A n E x a m p l e s F i n i t e I m p u l s e R e s p o n s e .

As an example, the following system for computing the Finite Impulse Response
function (FIR) appears in [9j. The FIR problem is to compute the terms of the sequence
t / n , where these terms are given by a recurrence relation using a known sequence xn :

Vn = Wl^n + W2Xn-l + W 3 Z n _ 2 + t t / 4 B n _ 3 | U > 3.

The w{ (i — 1 , . . . , 4) , are integer weights and we assume that the xn are integers. Thus,
the problem is to compute weighted sums.

To implement this we can use a simple synchronous system whose structure is sug
gested directly by the mathematical formulation of the problem. We use a graph structure

G = {V,E,F)

V = {t*,Vl ,«2,V3,t>4,o}

E = {x:(i, 0, vi), x:(i, 1, u 2) , x:{i, 2, u 3) , x:(i, 3, v 4) , / i : (v 1 } 0, u 2) ,

/ 2 : (v 2) 0, v 3) , / 3 : (u 3 > 0, *>4), / 4 : ^ 4 , 0 , 0)}

F = {x,h,f2,h,fA,y}

Pictorially, thi3 is represented in the following diagram:

6

Notice, for instance, that the output of node i is x, and one of the inputs to node v2

is x delayed by one clock cycle.

The semantic description of this schema will be given as a set of functional equations.
Since we are modelling t ime as a sequence of discrete steps, we use the set N of natural
numbers to represent t ime. In order to keep in mind the distinction between integer
times and integer data values, we use a distinct symbol T = N for t ime, and let t range
over T. We must provide a defining equation for each output function in terms of the
corresponding inputs. For the node i, which has no incoming edges and represents an
input to the system from outside, we will not specify the output except to require it to be
an integer-valued function of t ime. The other outputs are built up in the obvious manner
suggested by the^fecurrence relation. In describing the semantics we will assign to each
node a computable operation on input values. Thus, in general, since in this system the
nodes are computing integer values, a node such as v2 with two inputs will correspond to
a function F2 : N X N -> N.

Since the system is supposed to compute weighted sums, we choose the defining
equations to be:

fi{t)=w1x{t)

fi{t) = Wix{t - i + 1) + /<_!(*) , i = 2 , 3 , 4

V(t) = /*(*)•

The desired functionalities are

fiiT-+ N, i = 1, 2 , 3 , 4 .

Note that the existence of functions fa satisfying these equations and such that / t (i)
is defined for a l H > % — 1 is easy (but tedious) to establish directly, if we are prepared to
use an inductive argument on t. It is likewise possible to verify that the output y satisfies
the equation:

y(t) = Wix(t) + w2x(t - 1) + w3x(t - 2) + w4x(t - 3), t > 3 .

Thus, if the terms of a sequence xn are input along x, so that x(t) = xt for all t, the output
yt = y(t) satisfies the recurrence relation above. The reason that /,-(t) is not defined by
the above equations when t < i — 1 is that we are thinking of t ime as beginning at zero,
immediately before the first clock cycle: the input x is not defined at any earlier t ime than
0. Thus we can see that the equations specify a set of partial functions fi rather than
total functions. The recurrence relations which defined the FIR problem do not specify
the values of yo,Vi and y% and correspondingly the function /4 is not specified by the
functional equations at t ime 0 ,1 or 2. Alternatively, we can begin with a set of "initial
conditions", specifying the values of the fi at t imes earlier than ¿—1. Again it is clear that ,

for any set of initial conditions there is a solution to the above equations which agrees with
the initial conditions. N o t e our slightly unusual usage here: the initial conditions do not
correspond to time 0, but rather specify the outputs and inputs up to some moment in
t ime.

All of the above informal justification for the existence of solutions can be established,
as we noted, by a somewhat tedious inductive argument. We can, however, be more
succinct. We can eliminate t from the defining equations by rewriting, in terms of the
previously implicit F{ functions:

fx = Fi{x)

fi=Fi{xoZi-i,fi-.l), » = 2 , 3 , 4 y

V = A ,

where the functionalities are:

F i : (T —• iV) —• (T —• N)

Fi :(T -* N)2 -> (T N) i = 2 , 3 , 4

Z : T -> T,

and where we define

Fi(g) = \t.wig(t)

Fi(g,h) =•• \t.{wvj{t) + h(t)) ¿ = 2 , 3 , 4

Z{t) = {t<

Here we have introduced the X-notation; for example, the definition of F\ above simply
means that for all functions g and all t imes t, we have (F±(?))(*) = ^iff(i) . We use the
notat ion (p —> q, r) as a conditional expression. The function Z is a delay operator, similar
to the one also used in [9,16]. Note in particular that for all i > 0

Z*(t) — { t < i - > ± f t - i).

By introducing the special symbol ^ (p r o n o u n c e d "bottom") to represent an undefined
value, we can write expressions explicitly denoting partial functions of t ime. If / (t o) = JL
we say that / is undefined at t ime ¿0» o r > equivalentiy, that / produces no result at t ime
¿0- To be completely rigorous, we should also define the Fi to be strict in the sense that we
want F{(g, h)(t) to be undefined when either g(t) or h(t) is undefined. With these implicit
assumptions, it is clear that these equations define the same functions fi as above. It is
important to realise that we are using J_ only as a convenient notat ion so that we can
write expressions denoting partial functions: we are not thinking of J_as a data value to
be passed around inside a system.

The advantage to be gained from the new formulation of the semantic equations is that
we have effectively hidden the t ime parameter and the equations in this form are susceptible

— 8

to algebraic manipulation without our having to keep track of the time dependencies.
Indeed, we can explicitly solve the equations for in this case to get, by substitution, the
following closed forms for the functions:

/1 = Fi(x)
f2 = F2(xoZ\Fl(x))

h = Fz{xoZ2,F2{xoZ\Fx{x)))

/4 = F,{xo Z3,Fz{x o Z2,F2{x o Z\Fx{x)))).

In this form it is easy to see that provided x is a total function of t ime, so that x o Zl is
defined from time i, then <;ach / t- is defined from time i — 1, as required. The point is that
this fact emerges obviously from an elementary algebraic manipulation of the functional
equations.

This example may not be a very convincing demonstration that there is much to
be gained by using a higher-order formulation of the functional equations. Indeed, this
particular example can be treated from first principles and the solutions to the functional
equations can be found explicitly by substitution. However, in general this need not be the
case. Many published VLSI designs do not at first sight appear to fall into the category of
systems for which the solutions can be found by elementary means. In most cases proofs
of well-definedness can be extremely tedious, if not difficult, because there is generally a
lot of book-keeping to do in order to show that the outputs are transmitted around the
system in such a way that they are always at the right place at the right time. Indeed, this
last property can be quite difficult to formalise and prove, mixed in as it tends to be with
concerns that the individual parts of the system are transforming their inputs correctly.
In cases where the functions being computed by the system are given by equations which
do not obviously have solutions, we would like to have a guarantee first of all that there ia
a solution and secondly a method of reasoning about the solution. If a function satisfying
these equations cannot be guaranteed to exist it does not make sense to transform or
manipulate the equations or to use the "solution'' function to "prove" properties of the
system in which the function appears.

In the next section we offer a rigorous semantic treatment of arbitrary synchronous
systems. Essentially we regard a system as defining a set of fixed point equations whose
solutions are the output functions computed by the nodes of the system. As long as each
node is performing computable operations on its inputs, an eminently reasonable constraint
which any realistic VLSI system is guaranteed to meet by its very definition, the standard
fixed point theory applies here and tells us that the desired equations have a solution
(technically, a least fixed point). Moreover, the solution can always be found (if all else
fails) by a simple iterative method. This general material here is well known, but we give
a full treatment in order to show how elegantly it can be applied to synchronous VLSI
systems. The reader who is already familiar with the concepts of fixed point theory may
want to skip this section.

9

4 . F i x e d p o i n t s e m a n t i c s .

The general system S = (V, E, F) is described by a set of equations for the function
symbols in F. Each function symbol appearing on an output arc of some node in V must
have a defining equation, and in the definition the right-hand side can refer to the inputs
to the node. A typical equation has the form

fi = Hfu--;fn)

where each fj £ F. In our examples of systems the $ t- will have the form

*<(A, • • / ») = W i o z™» ,...,fno zw<»)
but this is not necessary for our treatment to work. Of course, some of the fj will not
appear explicitly on the right-hand side of an equation, since the outputs of a node only
depend explicitly in these equations on fj if fj is an input function to that node.

Associated with these equations also are intended functionalities for the fi, and for
the <I>t-. Modelling t ime as a sequence of discrete clock steps, we represent t ime by the set
T of natural numbers. Each fi is intended to be a (partial) function from time into some
set V{ of values, so we have

f{ : Di = (T -> Vi).

We will use JLto represent an undefined value, so that for instance the totally undefined
function is denoted (Xt.JL) The set Vi will depend, of course, on the problem which the
sys tem is to solve; as will the <&t-. Each <I>t- is applied to a tuple of functions and produces
a function:

** :2>i X . . . X Dn-*Di.

For any set V, the set (T —• V) of partial functions is partially ordered by the relation

/ C g & (V* € N)(f(t) ^±=> g(t) = /(*)).

Using the symbol C here should give rise to no confusion, because this relation coincides
wi th the usual set-theoretical inclusion relation between the graphs of the functions. Under
this ordering, the total functions are maximal. It is easy to check that every chain of
functions fm C / m + i converges to a limit function defined by

/ = U
m = 0

The functional equations for the / t- are intended to be specifications for the output
functions computed by the nodes of the system. To be precise, we regard these equations

10

as defining these output functions to be the least defined functions which satisfy them. We
are now in a position to prove that such functions always exist.

We can define a sequence of partial functions / | m \ m > 0, for each i, beginning
in each case wi th the totally undefined function and at stage m + 1 substituting in the
right-hand side of the equation for fi to get /j™ 4* 1^. Intuitively, the mth function / [m ^
represents all the information about the function / t- that can be obtained by expanding its
definition m times. Thus, for each i we let

/ i 0) = xt.±
/S m + 1) - *< (/ i m \. .vfk m)) , rn>0.

If we know that the $ t- are monotone, i.e. ,

9i 2= • • •> 9n C hn => * i (f f i , . . . , f fn) C * t (/ i i , . . . , / i n) ,

so that replacing any argument of $ t- by a better-defined function produces a better-defined
result function, then for each % the functions in the sequence / | m ^ become better defined
as m gets larger:

In other words, each function in the sequence agrees wi th all later functions on arguments
at which it has a proper value, but later functions may be defined at more arguments.
Thus for each i the sequence forms a chain of partial functions and converges to a
limit function wi th definition

fi = U / i m) -

If we know that the operations $ t- are continuous (so that they preserve limits of chains),
we can show that the fi defined as above satisfy the desired equations. Moreover, these
are the least defined functions which have this property: each is only defined at those
values of t at which the equations explicitly require it.

Note that the above argument can be modified to deal wi th the case when the iterations
begin not wi th the totally undefined function but with a function representing the initial
conditions. If we want to specify that the output function fi agrees with a known function
(ki, say) for the first d t ime steps, v e simply replace the above definition of the first term in
the sequence of approximations by f\0) = \t.(t < d —> fci(t), J_J.Of course, it is necessary
to check that this agreement property is preserved by the operations <t>t-, so that each
approximation / | m ^ to the output function also agrees wi th A:t- for the first d t ime steps.
This will usually be a trivial condition to check.

The requirement that the be continuous (and monotone) is a natural one that is met
by any reasonable system in which the nodes are supposed to be performing computable

11

operations on their inputs. We are representing the inputs and outputs as values in a flat
domain obtained from a set V by adjoining a bot tom element J_. lt is a standard argument
that all computable functions on a flat domain are continuous. A n operation $ t ' (/ i> • • •> f n)
is, by definition, computable iff for all t in order to compute $ t (/ i > • • •> /n)(*) we need only
compute a finite number of well-determined arguments (the precise number depending in
general on t). More precisely, for all / 1 , . . / n and each t £ N9 we require for computabi l i ty
that the value of $ i (/ i , . . . , /»).(*) depends on some set of values fi(tf),..., fn{tf), for tf

ranging over some finite set A. Al though this does not look like the limit-preserving
property we have associated with continuity, it is easily shown to be equivalent. The
connection with continuity is possible because in the partially ordered set of functions
(T —• V) every function / is the union (limit) of the finite functions (those with finite
graph) included in it. If an operation is computable , it follows that for each t the value
$t(/i> • • •> /n)(*) can also be obtained by replacing the fi by finite functions. For more
details the reader is referred to [13,14,15].

It is now straightforward to check that , for instance, Z is a continuous operator. The
composit ion operator o on functions is also continuous. Continuous operations are closed
under composition, so whenever we have a system whose semantic equations have the form

/ . • = F i (/ i o r i

) . . .) / n o r »)
we need only to verify that F{ is continuous in order to conclude that the fixed point
methods are applicable. This is usually very straightforward.

Finite Impulse Response Example (revisited).

Let us now examine again the example of the previous section, this t ime in the context
of our semantic definitions. It is trivial to verify that the operators F{ used here are
continuous.

The semantic equations for the system are

/1 = Ft(x)

/ ^ ^ o r 1 , / ^) ¿ = 2 , 3 , 4 .
The approximations to the solutions are thus

/ f > = \t.± i = 1 , 2 , 3 , 4
^ m + i) = F i { x)

= Ft{x o Z*-1, ftl) i = - 2 , 3 , 4 .

Trivially, we have / ^ m ^ = Fi(x) for all m > 1, so that the limit /1 is indeed Fi(x).
Similarly, we see that

=F2{xoZ\f[m^1))^F2{xoZ\Fi{x))) for m > 2.

The analyses for /3 and /4 are as easy. Thus for each i the approximations converge (as
expected) to the functions derived earlier as closed forms for the / t-.

12

http://J_.lt

5. T r a n s f o r m a t i o n s .

Retimings.

N o w we will examine in our semantic framework the results obtained by Saxe and
Leiserson on retiming synchronous systems. We will see that their results, obtained for a
restricted class of system, generalise very easily and are provable by elementary arguments.

A retiming is a transformation on the communication graph of a system. Typically
retiming is employed in order to optimise a system. As has been suggested by Kung et
al., [7,9], it is particularly desirable to produce a system whose communication graph is
systolic: all delays on internal arcs must have delay at least one. Systems satisfying the
systolic condition exhibit the property that their clock cycle t ime need only be as long as
the time taken by an individual node in the system to perform its operation, since there is
no rippling through of inputs and outputs and each node requires at any time only inputs
which have already been produced by a previous clock cycle. Retimings can often be used
to achieve the systolic property. |

Two particular and natural classes of retiming are introduced in [12]. The first
type can be thought of as node-delaying and the second as slowing. In a node-delaying
transformation, as formulated in [12], we assign an integer lag d{ to each node of the system
and replace the edge weights in a uniform manner. A n edge (v t - ,wy , Vj) of the old system
becomes (vi,u>ij + dj— di,Vj). Intuitively, this transformation adds an extra lag delay to
each node and effectively delays the outputs of that node by an extra fixed amount. We
will see that this property can be formalised and proved very easily. The other type of
transformation, slowing, multiplies all edge weights by the same integer; if the integer
is A; the new system is said to be a slowed version of the old. Again intuitively, this
transformation has the effect of producing a system which outputs the same results as
the old one but wi th a delay of k between successive results. Again this can be proved
easily in our framework. Leiserson and Saxe discussed these forms of retiming in [12], and
established a graph-theoretic condition on a system which guarantees that an "equivalent"
systolic system can be found directly. Our methods will provide a rigorous basis for their
results.

(i) Node-delaying.

Begin wi th a system S = (V, E, F). Consider first a node-delaying transformation
characterised by a mapping d : V —• N. The intuitive idea behind such a transformation
is to introduce an additional lag d{ = d(v{) at each vertex i?t*. A n edge Vj) will be
replaced by (v t-,twy + dj — di,Vj). A typical functional equation for the system S, say

fi = Fiift o Z~«,..., fn o Z*-)

13

will correspond to the equation

g i = F i (g 1 o Z ^ , . . . , g n o Z ^)

in the new system, where we have renamed the function symbols of the new system to
distinguish them from the old ones, and where

U i j = Wij + dj — di.

We claim that the following relations hold for each i :

g< o Zd< = fi9

i.e. , for all t imes t, gi(t) = / t (t — d{). In other words, the new system computes the same
values as the old system, but each node lags behind by the appropriate number of t ime
steps.

The proof is straightforward, relying only on the continuity of o and the following
property of the F{ : for all functions hi,..., hnt

Fi{hx,.. .hn) oZ = Fi{hi oZ,...hno Z).

This will certainly be the case when the F{ s imply apply their arguments to t ime and
combine the results, i.e. when there is an associated function <£t- such that for all t

Fi(hu .. , hn){t) = ^i{ht(t)9..M'))>

as is the case in our VLSI applications. This condition is therefore sufficient for the delay-
distributing property to hold, but it is not necessary.

It is possible to use fixed point induction rules (see [14,15] for example) to prove this
type of retiming property. However, to indicate how easily the arguments proceed in our
application we give a standard inductive proof. The proof is by induction on m that for
each pair of approximations and g \ m ^ we have

„(m) ^ 7«rf* A m)

The base case is simple, using elementary properties of functions:

o Zd< = {\t.±)o Zdi

= \t.(t < d{ - _LJJ
= \t.±

= / i o) .
14

For the inductive step, assume true for m and use the definitions:

g (m + l) = F . (f f (m) q zUil t } g(rn) Q Zuin}

Since F,- distributes over Z, we get

g j m + 1) o Zdi = i ^ " 0 ° ° Z W i l o Zd" o Zw~)

= i r i (/ i m) o Z w » o
_ y(m+l)

and the result holds for m + 1. T h a t completes the inductive proof. Since o is a continuous
operation we can deduce that the l imits /,• and g,- satisfy the desired relation

9i o Zdi = f{.

(ii) Slowing.

The fc-slowed version of a system G is obtained by multiplying all edge weights of G
by k. A n edge of the form (u, d,v) becomes [u, kd,v). Thus, an equation

fi=Fi(floZ^)...,fnoZ^)

corresponds to the equation

ff.=i?i(gioZfcw»,...,gno2rfc^),

where again we rename the functions in the new system. Intuitively, the behaviour of this
fc-slowed design is that of the original, except that it takes its inputs and computes its
results on every kth clock cycle. We claim, therefore, that

9i°k = fi,

where k — \t.kt is the obvious t ime-slowing function. In other words, for all t, gi(kt) =
fi(t). Again the proof is straightforward. It relies on the the identity

Fi[hu ..., / i n) o k = Fi{hi oH,...hno k),

which obviously holds when F{ s imply applies its arguments to t ime.

15

file:///t.kt

Example: Retiming in the FIR System.

To illustrate these retiming ideas, consider again the communicat ion graph for the
Finite Impulse Response problem:

Distinguishing the new output functions from the old by decorating them, this graph
has the following semantic description:

ft'^FiizoZW-V.fi-t'oZ) ¿ = 2 , 3 , 4 .

Either by explicitly solving, or by the retiming results above, we see that

fi'^fioZ*-1 t = l , 2 , 3 , 4 ,

corresponding wi th the lags introduced at the nodes.

16

Pipelining. It is also easy to justify a further operation on this retimed system:
pipelining the input x. Since this input is needed in several nodes of the system at
different t imes, we can achieve this by sending the inputs to these nodes in sequence,
wi th the appropriate inter-node delays. Formally, we produce a system with structure and
semantics:

0 * 1 2 xl 0 x2

XQ = X

fi = Fxixo)

Xi = Xi-ioZ2 ¿ = 1 , 2 , 3

A = ^ (X M , / M O ^ ¿ = 2 , 3 , 4 .

It is obvious that the xt- satisfy the equations X{ = xo Z2%. This is another systolic system
computing the Finite Impulse Response function.

Justification of pipelining.

In this example, we replaced an output function which was replicated on several arcs
by an "equivalent" set of output functions. To be specific, the effect on the semantic
description was to introduce extra function symbols X{ defined in terms of the old x. Since
the equations specifying the / t- in the two systems can be made identical by a simple
substitution, it is obvious that the set of functions defined in each case is identical: the /»•
computed by the two systems are the same.

17

6. A n o t h e r E x a m p l e : P a l i n d r o m e s .

In this section we appfy. the methods of the previous sections to a problem drawn
from the literature [12]. Ltèiserson and Saxe described a systolic array for recognizing
palindromes. The successive characters of a string are to be input to the array, one at each
clock step, and the o u t p u t of thè array at t ime t + 1 is to be a boolean value indicating
whether or not t h e characters input so far (up to t ime t) form a palindromic string.
We show how a design for such an array can be derived directly from the mathematical
specification of the problem, and as a consequence we are able to verify formally (and
straightforwardly) a variant of the solution published in [12].

First^óf^all, a string X Q X I . . . x n / i s a palindrome if and only if its first half is the reverse
of its second half. Let us mse the notat ion X[t- : j-j for the string x t - x t + i . . .xy, when i < j \
likewise we will write X [j : i j for the string x y x y _ i . . .x t-, when j > i. Then a string x of
length n + 1 is a pal indrome if and only if X[0 : m] = x[n:m+i]> where m = J. We want
to design a system with input x and output p satisfying

M*) = v ; < L j j . (* (* - 0 = «(*•))•

From this definition it is clear that a palindrome recogniser can be built from two
subsystems, one which inputs the sequence x and distributes the terms among outputs
a%, b{ so t h a t

ai(t) = x(t - i), bi(t) = x(i),

f ° r 2 ^ LéJ» o n e wfck output p which tests two sequences of inputs at* and b{ for
equality:

P (*) - V t < L | j . (a , (t) - M t)) .

To begin wi th the distribution of characters, observe that it is easy to implement the
ai by a simple pipeline. W e w a n t

Oi{t) = {t < 2% -> ±, x(t - t)),

and this will be the case if wc define:

CLQ = X

a i + 1 = \t.(t < 2i -+ ±, ai(t - 1)), % > 0.

Observe that the above specification for at- and bi does not define their values when t < 2i ,
.but that we require

bi{2%) = x(i) = a,(2z)

18

and b { (t + 1) = b i (t) for t > 2i. Thus we can transform the functional definition of 6t- :

bi{t) = (t < 2t - J_, x(t))

= (t < 2* -> J_, t = 2i -> aj(2t), 6t-(t - 1))

= (t < 2i -> J_, t = 2i -> a t-(t), frt(t - 1)).

The definition of b{ thus specifies that its output is undefined for 2i t ime steps and then
becomes initialised to the output of ax-. It is easy to see that we can implement this
behaviour by passing a signal to the node computing at- and b{ which tells it when to
do the initialisation. Thus, if we define

s t-(t) == (t < 2% —• J_, t = 2% —• true, false),

we can replace the above equations by:

a t-+i(t) = («,•(*) = JL, at-(* - 1)),

b i { t) = (at-(t) a t-(t), 6 < (* - l)) .

The signal st- is undefined until t ime 2i, then becomes true for one time step and thereafter
stays false. Clearly we can also implement this with a pipeline, setting:

s0 = \ i . (t — 0 true, false)

= S(o Z2 i > 0.

Thus we can input a sequence of truth values on SQ and pipeline them through the system
in the obvious way. A communication graph for the at-,frt- and Si can be described by the
following diagram:

19

For the remaining part of the system, which is to test two sequences of inputs for
termwise equality, we can clearly implement this as a sequence of connected single character
comparators, in which the truth values ripple through accumulating character comparisons
on the way. This diagram represents a single character comparator V{ wi th carry-in p*+i
and output pi : , 4 .

• f t V 4 1

W h e n this unit is activated, i.e. when both at- and 6» contain characters of the input
string, the output pt- should be

Pi(t) = (a<(t) = 6 1 - (t))& P i + i (t) .

We need a system in which there are always [|J active character comparators at t ime

t. Equivalently, the i^1 comparator must wait for 2i clock cycles before making any
comparisons. Again we can use the signal functions Si to implement this idling. It is
convenient to set the default output, of an inactive unit to "true." The following structure
then describes a system which tests at time t two strings, each of length [| J , for equality.

V5 IF

Pi{t) = («i(t) = _L - true, (o,-(t) = bi{t)) & Pi+i{t)), i > 0.

In fact, given the definitions of the S i , we have

Pi{t) = (t < 2i -> true, (ai{t) = bi{t))&pi+1{t)).

20

Note that the two subsystems are compatible, in the sense that the first system defined
the outputs at-, b{ and st-, while the second system inputs these and uses them to define the
Pi. This means that we may superimpose the two systems, forming a new system as above
whose defining equations are simply obtained by combining those of the separate systems.
If we combine the two parts of our system we produce the following design:

As it stands, this design is not systolic; the computat ion to be performed at t ime t
by the leftmost node must wait until the result of the rightmost node at that same t ime
step has filtered or rippled through. This corresponds to a path of total delay zero. It
is not possible to find a simple node-delaying systolic retiming for this design, because
the communicat ion graph contains cycles of length 2 but with total delay only 1. In any
node-delaying operation on the graph the total delay on a cycle is preserved, so that in this
case we cannot produce delays of at least 1 on the arcs of such cycles. We can, however,
transform to get a systolic version if we first slow the entire system by a factor of 2. The
slowed version is:

21

Now, if we introduce lags — i at node if we produce a systolic design:

The semantic definitions to go with this design are obtainable from those of the earlier
design by applying the two retiming operations in the same way. The correctness of the
final design is guaranteed because of the rather more obvious correctness of the initial
design, based as it was on the mathematical description of the problem.

22

7. C o n c l u s i o n s .

We have described a mathematical semantics for synchronous VLSI systems, based
on fixpoint equations. We showed how this semantics allows easy manipulation of VLSI
systems and facilitates a variety of activities such as hierarchical decomposit ion (as also
argued in [2] and [3]), modular analysis and synthesis of VLSI designs, and verification of
correctness properties. The framework we have described supports extremely easy proofs
of results on retiming of systems, and delineates precisely the conditions under which such
transformations are valid. We made no assumptions in our proofs about the particular d{
chosen in a node-delaying operation or about the slowing factor k . Likewise we did not
have to assume any structural properties of the communicat ion graph. Contrast this with
the results as given in [12], where the authors assumed that the communicat ion graph
had non-negative weights on all edges and that there were no cycles in the graph whose
total weight was zero; in addition they assumed that the d{ in a node-delaying operation
were chosen so that the new weights W{j + dj — d{ are also non-negative. Of course, these
restrictions are arguably natural ones to impose on a system; but the proofs go through
in a more general setting, and are arguably more elegant than the proofs in [12].

The authors of [9] assumed a condition ("well-definedness") of their systems of equa
tions which we find is unnecessary. Their condition amounts to saying that at each
sufficiently late time t the outputs / t (t) are completely determined by the (global) inputs
x (0) , . . . , x(t) and outputs / , - (0) , . . f i (t — 1), Because this definition refers to the global
inputs to the system in which the individual outputs are being computed, it does not
seem well suited to constructing larger systems from smaller ones by standard methods
such as feeding outputs from one system into inputs of another. The problem is that one
cannot check for well-definedness at a node by examining its immediate neighbors, since
the definition involves the distinguished global input nodes. It seems that in any case the
task of verifying that a system is well-defined requires us to find an explicit solution (in
a particular form) to the functional equations; this may in general be very difficult. In
contrast, we have shown that solutions do exist, but that it is not really necessary to find
closed forms for the solutions in order to reason about a system. It is also evident that this
notion of well-definedness is a special case of continuity, since it states that the outputs
at any t ime can be computed from a particular (t ime-dependent) finite set of arguments.
This is the sense in which we feel that our techniques provide a more uniform approach
to the problem of reasoning about sys tems.

In addition to the use to which we have put our methods in this paper, we believe
that they are just as readily applicable to more complicated problems in the literature,
where so far very few correctness proofs have been produced. We are thinking in particular
of systems in which the propagation delays may be highly dependent on the data flowing
through the system. Such is the case, for example, with the polynomial GCD systolic array
of Kung and Brent [1]. This particular algorithm seems at first sight to be complicated

23

by the dependence of the delays on the coefficients of the two polynomials . However,
we believe it will be possible to derive a correct G C D algorithm from a mathematica l
description of the problem, in much the same way as was done here for the palindrome
problem. This and other more complicated examples will be the subject of future work.
Our semantic model and our techniques are also of use in establishing the correctness
of pipelining operations, and can be used to prove the correctness of the so-called "Cut
Theorem" of [8], showing that it may be interesting to adapt fixed point semantics in a
wider sett ing than that discussed here. The application of our methods to analysing fault
tolerance behavior of systems is an interesting possibility for further research.

24

8. R e f e r e n c e s .

[I] R. P . Brent and H. T . Kung, Systol ic VLSI Arrays for Polynomial G C D Computat ion ,
CMU Technical Report CMU-CS-82-118 (March 1982).

[2] M. C. Chen, Doctoral Dissertation, Computer Science Department , California
Institute of Technology (1983).

[3] M. C. Chen and C. A . Mead, A Hierarchical Simulator Based on Formal Semantics ,
Proc. Third Caltech Conference on VLSI, pp 207-223, Computer Science Press (March
1983).

[4] D . Cohen, Mathemat ica l Approach to Computat ional Networks, Technical Report
ISI /RR-78-73 , University of Southern California, Information Sciences Institute (November
1978).

[5] M. J. C. Gordon, A Very Simple Model of Sequential Behaviour of n MOS, Dept of
Computer Science Internal Report, University of Cambridge.

[6] M. J. C. Gordon, A Model of Register Transfer Sys tems wi th Appl icat ions to
Microcode and VLSI Correctness, Department of Computer Science Internal Report CSR-
82-81, University of Edinburgh (1981).

[7] H. T . Kung, Let's Design Algori thms for VLSI Systems, Proc. Conference on VLSI:
Architecture, Design, Fabrication. California Institute of Technology, pp 65-90 (January
1979).

[8] H. T . Kung and M. Lam, Fault-Tolerance and Two-Level Pipelining in VLSI Systolic
Arrays, Proc. Conference on Advanced Research in VLSI,MIT, January 1984.

[9] H. T . Kung and W . L. Lin, A n Algebra for Systolic Computat ion , in: Elliptical
Problem Solvers II, ed. Birkhoff, G., and Schoenstadt , A, pp 141-160, Academic Press
(1984).

[10] H. T . Kung and C. E . Leiserson, Systolic Arrays (for VLSI), in: Duff, I.S., and
Stewart, G.W., (eds), Sparse Matrix Proceedings 1978, Society of Industrial and Applied
Mathemat ics (1979).

[II] M. Lam and J. Mostow, A Transformational Model of VLSI Systolic Design, in:
Uehara, T. , and Barbacci, M. (eds), Procedings of the 6 t h International Sympos ium on
Computer Hardware Description Languages and their Appl icat ions , pp 65-77, IFIP (May
1983).

25

[12] C. E. Leiserson and J. B. Saxe, Optimizing Synchronous Systems, Proc. 22nd

Annual IEEE Sympos ium on Foundations of Computer Science, pp 23-36, IEEE Computer
Society (October 1981); final version in: Journal of VLSI and Computer Systems, Vol. 1
no. 1, (1983).

[13] D . S. Scott , Some Ordered Sets in Computer Science, Proc. N A T O Advanced
Study Institute (September 1981).

[14] D . S. Scott , Note s on a Mathemat ica l Theory of Computat ion , Oxford University,
Programming Research Group, Technical Report .

[15] J. E. Stoy, Denotat ional Semantics: The Scott -Strachey Approach to Programming
Language Semantics , MIT Press .

[16] U. Weiser and A. Davis , A Wavefront Notat ional Tool for VLSI Array Design, in:
Kung , H.T. , Sproull, R .F . , and Steele, G.L.,Jr. ,(eds), VLSI Sys tems and Computat ions , pp
226-234, Computer Science Press (October 1981).

26

