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Abstract We present two algorithms suitable for VLSI implementation of very fast log/V-time 
multipliers. The first one achieves provably optimal time (to within a constant factor) and* 
area-period2 lower bounds. The second multiplier, although theoretical area-time suboptimal, is 
faster than all previously published ones for practical size, 16x16 and over. It admits a reglular 
and compact program generated layout, and its area requirements are well within the possibilities 
of current technologies. Prototypes have been built by a standard 2/xm NMOS process, tested and 
are operational: multiplication of 32 bits can be performed in less than 200ns with a power 
consumption of about 1W. 

Keywords: area-time tradeoff, arithmetic building block, hierarchical design, integer 
multiplication, modular multiplier, optimal time parallel multiplier, program generated layout, 
VLSI algorithm, VLSI complexity 

1. Introduction 
Designing fast binary N-b\i integer multipliers has long been of great theoretical and practical interest for 

both electrical engineers and computer scientists. With the technological progress embedded in VLSI, the 

problem of finding good layouts for monolithic MOS multipliers has been gaining renewed attention. 

1.1. Practical multipliers 
Practitioners favor shift-and-add serial/parallel multipliers (see e.g. [13]) requiring minimal area 0{N) and 

N clock cycles per multiply, or the un-folded parallel/parallel version of the same algorithm, with area OiN2) 

and time O(N), executed within a single clock cycle, as described e.g. in [15].-
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Defense Advanced Research Projects Agency or the U.S. Government. 
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1.2. Area-time trade-offs for multiplication 
Theoreticians, on the other side, have been establishing relationships between the following measures of 

N-bit multipliers layout efficiency: 

• the area A of the layout (in nanoacres); 

• the time T(in nanoseconds) required for completing an operation; 

• the period P (in clock cycles) separating two successive pipelined multiplications through the 
circuit; it is inversely related to the throughput (i.e. bandwidth, data rate). 

Intrinsic combinatorial limits on the efficiency of multipliers have been discovered and expressed as 

trade-offs between A and T or P: for iV-bit multipliers, [3] shows that AP^N2 and [20] that 

A>mN+ w(N/P)2 where m is the size of the unit memory cell, and w the minimal wire width. 

These results are obtained under either the constant-delay [19] or the capacitive [16] models for the timing 

behavior of MOS circuits: 

• in the constant-delay model, the time delay in transmitting a signal from the output of a logic gate 
to the input of another gate through the wire connecting them is independent of the length of the 
wire; 

• in the capacitive model, the switching time of a gate is proportional to its output wire capacitance. 

For technologies such as magnetic bubbles, the speed of signal propagation along wires dominates 

switching times. A lower bound of T= Q(V"N") has been obtained by [6] for this case, with which the present 

paper is not concerned. 

1.3. Classes of optimal multipliers 

1.3.1. Area-time optimal multipliers 
Attempts have been made at bridging the gap between existing practical designs: A = 0(N), T= 0(N), or 

even A = OiN2), 7 = 0(N); and theoretical limits of area-time efficient multipliers: (1) A = 0(N), T= 0(VW), 

or (2) A = O(iV2//og2A0, T = 0(logN), or (3) A = C W , ? = 0(1). 

1.3.2. Optimal multipliers based on Fourier transform 
Theoretically efficient multipliers have been proposed: [18] constructs a class of AP^OiN2) optimal 

multipliers, where time 7 can be chosen in the range 0{logN)<T<0{\fW); another theoretically optimal 

design, with area A = 0{N) and time T= 0(yfW), is described in [17]. These multipliers, as well as another 

near-optimal one by [3] all use Fourier transform (see [10] for an introduction to the relevance of such 

transform in computing integer and polynomial products). 
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As a consequence, although they are asymptotically optimal, such multipliers do not seem competitive for 

medium size Ny say N= 16 or 32 bits. 

1.3.3. Recursive divide and conquer multipliers 

Another class of simpler, recursively defined multipliers has been proposed: [1] gives a theoretical 

construction achieving the optimal A^OiN2/!*2) bound with time T=0(logN). [11] independently proposes 

a complete VLSI layout for a fast (near-optimal) recursive parallel multiplier having time 7 = 0{logN) and 

area^=0(A/ 2/og 2iV). 

1.3.4. Fast and time-optimal multipliers 

Various attempts have been made to speed up multiplication. Wallace tree [23] and Dadda counting [7, 5] 

schemes attain the O(logN) time lower bound for integer multiplication. The irregular interconnection makes 

Wallace tree infeasible for laying out single chip of arbitrary bit size. Furthermore, they are not modular in 

nature, so they can hardly be extended to form regular large multiplier arrays. 

Other methods such as the multiple shift (e.g. [14]) and the high-radix string recoding (e.g. [2]) try to 

increase the average shift and decrease the average number of additions per multiply. But they require 

additional hardware and can only improve the 0(N) multiply time by a constant factor, i.e. they are not 

asymptotically optimal and will not be competitive for reasonably large size multipliers, say >16 bits. 

To conclude, we see that while the theoretical aspects of designing time-optimal and/or area-time optimal 

monolithic multipliers of arbitrary bit size were fairly well understood by 1982, a wide gap still exists between 

theory and practice. 

1.4. Contribution 

1.4.1. Regular layout for optimal time integer multiplication 

In this work, we introduce two interesting classes of VLSI multipliers. Both operate in optimal 0(logN) 

time, and can be pipe-lined in a straight-forward manner to achieve period P-1, i.e. one multiplication per 

clock cycle. 

Our first multiplier, named 3M, has area A = O(A^), which is of theoretical interest since it achieves the 

optimal AP2 (or AFT2) measure. This is obtained by speeding up the schemes of [1,11] through systematic 

use of carry-save representation for intermediate results. 

Our second multiplier, named 2M, has asymptotic area OiWlogN), but it is faster than 3M. It is also 

smaller for reasonable values of N, say A r<1024. It implements an algorithm proposed by [21], and we 
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demonstrate here its practical interest 

1.4.2. Layout generation and performance 

Layouts of a very regular and fast version of 2M are completely generated by a program for arbitrary size 

parameter. The program takes into account all the idiosyncrasies of a given technology, and tailors the circuits 

to specific separable test strategies. 

Analysis and simulation indicate that 2M is faster than the existing monolithic multipliers (for size >16 

bits) in terms of the number of stages of carry-save adders: 

• The layout occupies an area slightly greater than that of a multiplier built from the straight­
forward unfolded carry-save adding scheme (e.g. [8]); it is already 2.5 times faster in its 16-bit 
version. 

• Further, 2M is twice faster than a 32-bit multiplier which uses the modified Booth's recoding as 
reported in [15], within less than twice the area. It is indeed competitive in speed with the known 
fast schemes of Wallace trees. 

1.4.3. Test results 
8,16, 32-bit experimental prototypes of 2M were fabricated and tested, all are functioning. Experimental, 

data confirms that the delay along our longest wires can be kept under control, thus maintaining roughly the 

/ogiV-time performance for medium size (16—32 bits) multipliers. Using a 3/xm NMOS process, speed for the 

8, 16, 32 (2/xm)-bit chips are respectively 120,160 and 220 ns with a power consumption of about 180, 720, 

1280 mW. 

Although electrical problems in the design of our basic cells prevent our current design to exactly match 

the theoretical speed, they have been corrected and a second version of our design is currently being 

fabricated. 

To conclude, our optimal and modular scheme proposes a feasible way to handle medium size to ultra 

large size integer multipliers, when absolute speed is the dominant design factor. 

1.5. Outline 
Section 2 presents various recursive VLSI algorithms for fast integer multiplication. Section 3 introduces 

various layout strategies for such recursive algorithms, together with their expressions in a specific geometric 

description language. Section 4 discusses performance evaluation, verification, simulation and test results. 
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2. The VLSI algorithms and complexity 
We present three simple recursive algorithms for computing integer products in logN time, within 

reasonably small silicon area. We call these respectively the 4-multiplication (4M) version, the 3-

multiplication (3M) version and the 2-multiplication (2M) version. 

2 . 1 . Reduction of multiplication to addition 

Multiplication is recursively divided into a number of multiplications of smaller size followed by additions 

combining the intermediate results. Thus multiplication is recursively reduced to a sequence of additions 

until arriving at the termination state of the recursion (e.g. a trivial one bit multiplication). 

Good adder choice is crucial in the design of such fast multipliers. In all cases, we keep intermediate 

results coded in carry-save form, so that additions of arbitrary length operands can be performed in constant 

time (independent of the length of such operands) by carry-save adders. See [21] for a more elaborate 

presentation of carry-save arithmetic. The final result in carry-save form can be converted back to ordinary 

binary representation via a fast carry-look ahead adder in logN time, such as the one proposed by [4, 22]. 

2.2. 4-multiplication (4M) version 

Let X, Y be two N-bit integers and P be their product; XQ and Xl be respectively the least- and most-

significant halves of A" (similarly for Y)\ and P^Xt- Y} for /,/=0,1. 

The 4M version follows from the divide and conquer paradigm as given by the following equations. 

P=XY=(2™-Xl + XQ)i2™.Yl+ YJ=2»-Pll + 2»'HPl0 + PQl)+POQ 

A complete layout of this version can be found in [11] which occupies OiWlogN) area, and runs in 

CMJogN) time. The latter can be improved to being optimal time 0(logN) by using carry-save adders. A 

recursive floorplan illustrating how to map this algorithm onto silicon is shown in Figure 2-1. 

2.3. 3-multiplication (3M) version 

The second 3M version can be described by the following well known recurrence equations [10]. 

P=X- 7 = V-2"+(U- K - W)'2N/2+ W 
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INPUT X INPUT Y 

INPUT DISTRIBUTION NETWORK(N) 

XI Y l 

MUL(N/2) 

P l l 

XI YO 

MUL(N/2) 

PIO 

XO Yl 

MUL(N/2) 

POI 

XO YO 

MUL(N/2) 

POO 

ROUTING NETWORK(N) 

AODER(N) 

OUTPUT NETWORK(N) 

OUTPUT P T 
MUL(N) 

Figure 2-1: Recursive floorplan of 4M multiplier 

This version can be embedded onto silicon within an area 0(N*) and runs in CHJogN) time. It can be 

further pipelined at clock rate (period P-1). So this algorithm is indeed optimal in the sense of running time 

and AP- (or AP2P) measure. A recursively defined floorplan implementing this algorithm is shown in Figure 

2-2. 

INPUT X INPUT Y 

INPUT DISTRIBUTION NETWORK(N) 

X1+X0 
ADDER(N) Y1+Y0 

ROUTING NETWORK(N) 

XI Yl 
MUL(N/2) 

X I . Y l 

X1+X0 Y1+Y0 
MUL(N/2) 

(X1+X0).(Y1+Y0) 

XO YO 
MUL(N/2) 

XO.YO 

ROUTING NETWORK(N) 

ADDER(N) 

OUTPUT NETWORK(N) 

OUTPUT P 

MUL(N) 

Figure 2-2: Recursive floorplan of 3M multiplier 
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2.4. 2-multiplication (2M) version 

The 3M algorithm, although theoretically optimal, leads to less regular structures (routing and bit testing 

for performing subtraction). By trading a small factor of logN in the asymptotic area, the following algorithm 

gives a feasible and nicely regular silicon layout 

[21] proposes a 2-multiplication scheme to do fast multiplication. The algorithm simply recurses on one 

of the two operands (say A), as indicated below. Figure 2-3 shows how 2M performs the product of Y and 

X=X0 + 2Xl + 4X2 + ZXy 

P=X Y={2m-Xx + XQy y = 2 w 2 - r r Y+XQ- Y 

Y * XO 

Y • XI 

Y * X2 

Y • X3 

Y»(X0+2«X1) 

Y»(X2*2*X3) 

Y * X 

Figure 2-3: Product of Y and X=X0 + 2XX + 4X2 + 8X3 by algorithm 2M 

This version requires an area of 0(NMlogN) and time 0(logN), M being the length of Y. The area is a 

factor logN away from being AP1 optimal. 

2.5. Linear array of bit-convolvers (LABC) 
For layout purposes, we found convenient to use an orthogonal view: the 2M multiplier consists of 

identical columns of bit-convolver, forming a linear array. Column k receives as input the bit-wise products 

X- Yj for / + y = K together with a carry vector from column k-1. It sums up all these input bits, as well as the 

carry vector, to generate the carry vector for column k+1 and a pair of sum bits. The bit-summing algorithm 

used is described as: 
Algorithm BITADD: 

Input. N,S: integer (with S=N/2 - 1 ) ; A = . . . . ^ - J . Q = {̂ ito» • • • »ci,s-i}> 
C2={cXQ cxs^}: bit-sequence; 

Output, s^: bit; Z)1 = {rflt0. - - - ^ - iL D2 = {dl0,... bit-sequence; 

Comment A is a N-sequence of input bits. C\ and C2 are two 5-sequences of carry-in bits. 5X and 
$2 are a pair of sum bits. Dx and D2 are two iS-sequences of carry-out bits. All bits of A, Cl% C 2, sx 
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and Sj have the same weight; bits of Dx and D2 have twice that of the former. * The following 
invariant expresses that BIT ADD adds up A + Cx + C 2, to yield a sum (s^) and carries Dx, D2: 

SA + SCl + SC2^sl + s1 + 2(SDi + SDl) 

where SA = 2jl'o a* $cx

 = 2fJo cu a n c i similarly for C2, Dx and D2. 

Method: Denote by subscripts 0 and 1 respectively the first and second halves of a sequence, and 
mid its middle element (assuming there are odd numbers of elements). BITADDiA.C^C^) 
recursively divides the bit summing according to: 

BITADD{A£xCd 

= BITADD(A0tClQ,Cw) + BITADD(AltCu,Cu) + 

= ( * ,0 + %j0 + + %a + <W + ^mid) + (A.O + + ( AjD + Au) 

The final results sx, ŝ , Z^, Z)2 are computed as follows: 

Dx:^{Dl0dhmidDu} 

D2-{DXQdXmidDxl} 

Here, is a 4-bit carry-save adder module which takes the 4 bits s 1 0 , s^, s u , as inputs, and 
outputs the 2 bits sx and Sj. cXtfnid and c^m i r f are the two carry-in bits, dXmid and dXmid are the two 
carry-out bits. An invariant of CSd l i s 

The recursion terminates at Af=4, a CSA4 carry-save addition. 

2.6. Area, time, period complexity and optimality 

A detailed analysis of the algorithms can be found in [12]. We summarize the complexity and optimality 

results on area, time and period in Table 2-1. 

version area time period AP2 Aft remark 
lowerbound N2 logN 1 N1 N2loiN -

4M N2IO£N logN 1 N2log2N N2logAN time-optimal 
3M N1 logN 1 N2 N2loiN time, AP2 and AP2!2 optimal 

2M, LABC MNlogN logN 1 MNlogN MNlogN time-optimal and regular layout 
Table 2-1: Area, time, period complexity and optimality 

All the above algorithms achieve the absolute speed (to within a constant factor) for integer multiplication. 
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The 3M version is indeed AP (or APT) optimal, and the others are only of logarithmic factors away from 

being AT- and AI* optimal. 

3. Layout strategies and compiling onto silicon 

3.1. Selection of algorithms 
Our design objective was to produce the fastest known multiplier, namely algorithm 2M. It also turns out 

to be more regular, and in fact smaller for practical values than both 4M and 3M. 

The 2M algorithm can be laid out recursively, following directly its definition. To form a AfxN 

multiplier, we sandwich a (M+AO-bit carry-save adder between two recursively constructed M by N/2 

multipliers, as shown in Figure 3-1, a recursively generated floorplan and global wiring diagram of its bit-slice 

version. 

4 bit-convolver column 

MUL(M,N/2) 

(MHO -adder 

MUL(M,N/2) 

MUL(M,N) 

Figure 3-1: Floorplan and global wiring diagram of a bit-slice 2M multiplier 

It proves equivalent and possibly more convenient to build such a MxN multiplier by a linear array of 

bit-convolvers (LABQ. Each bit convolver sums the N bits of each column and takes into account how the 

carries propagate across columns. A generic example is provided by the center column in Figure 3-1. A 

LABC with proper termination for the carries at the far ends becomes the fast 2M multiplier. 

Since the bit-convolver explicitly accounts for the carries propagation, it can be directly applied to generate 
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fast modular multipliers, the basic building block for very large size multiplier array (say 1000 by 1000 bits). 

Bearing this in mind for future extension, we have macro-generated prototypes multipliers of arbitrary size 

based on the LABC version. 

3.2. Functional partitioning 

3 .2 .1 . Linear array of binary trees 
The BIT ADD algorithm suggests that a binary tree is appropriate for summing up the bits in each column. 

Each leaf of the binary tree is a pair of AND gates producing the required bit-wise product for the two vectors 

X and Y, we call it MU2. The outputs from the leaf nodes (MU2) are directly in carry-save form ready as 

inputs to the carry-save adder CSA4, a 4-bit carry-save adder. All the non-leaf nodes of the binary tree are 

CSA4's. The carries just pass from one side of a binary tree column to the other side. A few columns of this 

binary tree array (bit-convolver array) are shown in Figure 3-2, decomposition into the basic cells CSA4 and 

MU2, and further into AND gates and carry-save adders CSA are also included. One can see the regular and 

nice interconnecting structure of such array. 

3.2.2. Layout for binary trees 

There are a number of ways to layout a binary tree, namely a V-tree (Figure 3-3), a L-tree (Figure 3-2), a 

H'tree (Figure 3-4) and a 3D-tree. Their layout generators are: 

vtree: = X N. if N= 1 then leaf else (JY root[N] (JX (vtree [N/2]) (vtree [N/2]))) 
Itree: = X N if N= 1 then leaf else (JY (Itree [N/2]) root[N] (Itree [N/2])) 
htree: = X N. if Af = 1 then leaf else (JY (ROT+ (htree [N/2])) root[N] (ROT- (htree [N/2]))) 
3dtree: = X N. if JV = 1 then leaf else (JZ root[N] (JY (3dtree [N/2]) (3dtree [N/2]))) 

where JX, JY, JZ, ROT+, ROT— are geometric operators; their semantics can be found in Section 3.4. Two 

basic cells leaf and root are sufficient to generate an arbitrary size layout. The parameter N in the root cell is 

used to parameterize the necessary changes such as transistor dimension and driver size, or required by other 

routines when doing the recursion. 

Although it occupies minimum area O(N), the H-version do not seem useful since the I/O's are not located 

on the boundary of the layout We cannot use the 3-D version because of the planar constraint in the present 

day technology; it nevertheless proves a convenient conceptual tool, since we can automatically transform 3-D 

layout into either V or L-trees [21]. 

Both the V or L-versions are relevant to our design. For small or medium size layouts where the 

propagation delay of a signal through long wires may be considered as a constant the L-version is a better 

choice for it takes an area N(a+ b-logN), where b is a small constant (of the order of a few X's), being much 

smaller than a, the tree width. When the capacitive effect becomes dominating, signal amplification scheme as 



Figure 3-2: Linear array of bit-convolver and layout of L-binary tree 
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b t r e e . 1 

c s a 4 

b t r e e . 0 . 1 b t r e e . 2 . 1 

c s a 4 c s a 4 

fa». 0.0.1 btree.0.2.1 Wrtti.0.1 Kfa 2.2.1 

csa4 csa4 csa4 csa4 

kill felli Mi Ml kill mi W Ml 

11? s2 a? ri 
i 

»? 11? 

Figure 3-3: Layout of V-binary tree 

2«i 2«i 

E HI 
0trt«.0.2.2 11»« Dtr««.0.0.0 

«u2 «u2 

an* 
toll toll 

Dtrt« 2.0.2 csa4 Dtret 2.2.0 
«u2 mu2 

Figure 3-4: Layout of H-binary tree 
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proposed by [22] in their adder design might be helpful to maintain the logN-time performance. V-tree seem 

to be a reasonable candidate since it provides proportionally larger space for the cells that need to drive longer 

wires. However, the V-version requires much more actual area than the L-version. 

Electrical simulation shows that under the present 3/xm n-MOS technology, distributed RC and capacitive 

effect is negligible (< Ins) for wires shorter than lOOjum. The equivalent delay along the longest path (about 

lcm) in our design is about 7ns and 70ns for falling and rising logic transitions. It is unacceptable for rising 

edge delay. However, by using precharge techniques, the worst case wire delay can be kept within 7ns which 

is comparable with the delay in a CSA4 cell. 

Based on this analysis, we decided to implement the L-layout, much smaller in area than its V counterpart, 

without affecting significantly the overall speed performance. 

3.3. Logic and circuit descriptions of basic cells 

Only two basic cells, namely CSA4 and MU2 are needed to implement the algorithms. We now go down 

the design hierarchy, from high level functional description to the logical and circuit specifications. Designing 

MU2 is straight-forward, but CSA4 requires more attention. Electrical and switch level simulations have been 

extensively used to make critical design decision and verify circuit correctness. 

3 .3 .1 . Carry-save adder CSA4 

The CSA4 takes 4 input bits and a pair of carry-in bits, generates a pair of sum bits and a pair of carry-out 

bits as pointed out in the BIT ADD algorithm. It is made up by interconnecting two standard carry-save adder 

cells (see Figure 3-2). Each of these cells is basically that (precharged version) proposed in [15] which has 

» 1 5 n s delay within reasonable area. Its logical description (C,5): = CSA(a,b,c) is: 

(CS): = if odd(a+b) then (c,-«c) else (ax) 

where a, b, c are the 3 inputs, and S and C are respectively the sum and carry outputs. Its MOS circuit 

diagram is shown in Figure 3-5. 

Alternative implementations of a carry-save adder (C,S): = CSA(a,b,c) with a+ 6 + c = 2 C + S have been 

considered: 

• Using two level NOR gates is fast ( ^ 10ns) but uses much area: 

S=NOR(NOR(a,bx)^OR(a^b^c),NOR(^a,b^ 

C=NOR(NOR(a,b),NOR(b,c)tNOR(c,a)) 

• The following version is small, but slow (delays = 20~50ns, delayc = 20~35ns): 
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(C, S) - i f odd(a+b) then ( c , - c ) e lse ( a . c) 

Figure 3-5: CSA MOS circuit diagram 

5 = c(a- 6 + - i Q + ( a + 6> -»C 

C=a-b+c<(a+b) 

3.3.2. Termination cell MU2 

In order to terminate the recursion, the outputs of the leaf cells MU2 should be ready in carry-save form 

to feed their parent node CSA4 in the binary tree. The logic function of MU2 at position (/,;) of the array is 

given by [Pl,P7k=[AND(XpY),AND(XM,YjmJ\9 where Px and P2 are the output bits and Xfi JTi+1, F^and 

are the input bits at the corresponding positions in the array. MU2 is made up of two precharged AND gates 

(see Figure 3-2). 

3.4. Layout generation 

Rather than just producing the layout of one prototype multiplier, we.wrote a program multiplier(M N) 

which generates the layout of a MxN multiplier, given the parameters M and N. The mask description target 

language LUCIFER is an extension of LISP developed as part of the design aids at INRIA. The language 

permits hierarchical and recursive specification of a complete circuit; and also provides a homogeneous 

medium (LISP S-expressions) for handling both the mask descriptions (data) and the programs that 

manipulate them. 

LUCIFER specifies mask descriptions as a structured collection of elementary rectangles, assembled by 

geometric operators. A simplified BNF for the language is: 
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circuit ::= node 

node :: = (OP nodei node2... node,) 

node ::= rectangle 

rectangle ::= (colorxy xdimydim) 

color : := ND | NP | NC | NM | N11 NB | NG 

x,y € Z, xd'miydim € IN 

Sample geometric operators OP are: 

• .AY juxtaposes a list of nodes along the x direction; 

• JY juxtaposes a list of nodes along die y direction; 

• JZ juxtaposes a list of nodes along the z direction (3-dimcnsional view); 

• ARRA Y N produces iV juxtaposed copies of a node; 

• ROT+ rotates clockwise by 90 degrees, (ROT- by - 9 0 degrees); 

• UN superposes a list of nodes. 

In LUCIFKR, our multiplier generator has the following structure: 
BIT-CONVOLVER := lambda [N] 

I f N » 2 
t h e n (BASIC-CELL MU2) 
e l s e (JY (BIT-CONVOLVER ( d j v N 2 ) ) 

(BASIC-CELL CSA4 N) 
(BIT-CONVOLVER ( d i v N 2 ) ) ) 

BIT-CONVOLVER-ARRAY := lambda [M N] 
(ARRAY M (BIT-CONVOLVER N)) 

The basic cells CSA4 and MLJ2 arc laid out with the help of a graphic editor. Further CSA4 is then 

parameterized to handle size change and cell alignment required by the recursion. Due to the regular 

structure of the binary tree, the interconnection (routing) between cells is generated by simple recursive 

programs. Routing is done based on an 'error-free* design rule. Details about die complete layout generator 

can be found in [12]. A complete program generated layout of 16x16 bit-convolver is shown in Figure 3-6. 

Some general remarks about the program generated layout arc: 

• The circuits arc parameterized so that necessary features arc customized according to the input 
size; e.g. the VDD and GROUND lines widths arc adjusted automatically so as to avoid metal 
migration problems, no matter what input sizes M and N are. 
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• It is easy to accommodate such a geometry generator to a (non-trivial) scaling down of feature 
sizes; the increase in wiring area turns out to provide just enough room for the input and output 
pads, which become relatively bigger in scaled technologies. 

• Using a 3jmm process, we can integrate into a 7mm by 7mm substrate an 8 by 16 bit-convolver 
array. Little attention has been paid to cells area optimization, and we estimate that a 50% gain 
could be achieved. For a 1/im process, actual figures indicate that we can integrate, into the same 
area, a 64-bit LABC 

• A program generating arbitrary size circuits has proved extremely valuable for testing. We 
actually process various experimental prototypes. A small 2x4 array with all external connections 
present to maximize probing facilities, for testing the correct logic behavior of gates CSA4 and 
MU2, and their interconnections. A small 3x32 strip, with all inputs tied to logic 0; it provides for 
a simple test of the actual worst-case speed of 32-bit multiplication. Finally, are the 8,16, 32-bit 
LABC's. All these circuits are generated by the same program: the mode of execution (logic test, 
speed test, multiplier) is passed as parameter (together with the sizes of X and Y) to select 
boundary connections for each case. 

4. Performance evaluation, verification and testing 
We pay special attention to the time and area performance of our design. It is evaluated analytically with 

other known fast multipliers. During the various stages of the design, extensive simulations and verifications 

have been performed. Prototype chips were fabricated and tested to be successfully operational. 

4 . 1 . Performance evaluation 

4 . 1 . 1 . Timing analysis 

The overall multiply time T^iMN) depends on M, N, Z)MU2, (the delay of MU2, CSA4) and the 

time spent in charging long wires. Note that Z)Csa4^2Z)csa, where is the delay of a standard carry-save 

adder, and DMm=Avnd> * e delay of an AND gate: 

7^A/JV) = T^N/2) + Dcsu + DJLN) 

where DJiN) is the worst-case delay along the longest wire of a N-bit multiplier. It is a function of N, and 

simulation results show that the dominant term in this function grows linearly with N: 

Dw(N)=a+bN+o(N). We can reduce this delay to a constant D^t by increasing the width of the gate to 

amplify the signals in proportion to the output loads. This leads to 

TUM.N) = (D^ + D^log(N/2) + DMm + DJ?) 

As pointed out earlier, the V-tree is a suitable layout for this scheme. A rough upper bound on the speed of 

our L-tree layout is given by: 

DJLN)<DJLNmJ 
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For our target technology using a 3/xm process: longest wire = 1cm, N„^=16, Asm = 2Asa=25ns, 

DMm=5/is, A(2) < 1 « ; A( î«x) < 7** So 

r / w < //iV)<32tog(iV/2)+5 us 

7 ^ 1 6 ) < 101/25 <w/ 7 ^ 3 2 ) < 133a* 

4.1.2. Comparison with other fast multipliers 

We compare the time performance and area required of our layout with the unfold sequential multiplier, 

Booth's encoding multiplier [15] and Wallace tree in terms of carry-save adder parameters. Results are given 

in Table 4-1. 

Consider MxN multipliers, A^M^N) denote the multiplier area which is a multiple of the area required 

by a basic carry-save adder. Let Aooth be the delay of the encoding logic used in a Booth's multiplier (note 

Aoora > Avnd) and Dw= DJiN^. 

multiplier T^fMM AmdiWM 
bit-convolver IO&N/IXIDQ^+Z>J+Dj^ (M+ a logN)(N-2) 
Wallace tree IJ/c^Asa+AJ+^and MNIogN 
Booth's encoding (N/2-1)0^+^bqoth M{N/2-l) 
unfold sequential ( N ~ 1 ) D C S A + D K N D M(N-1) 

Table 4-1: Area, time performance of fast multipliers 

Some simplified figures in terms of the number of carry-save adder stages are shown in Table 4-2. 

multiplier T(8) T(16) T(32) T(64) T(128) 
bit-convolver 4 6 oo 10 12 
Wallace tree 4 6 8 10 11 

Booth's encoding 3 7 15 31 63 
unfold sequential 7 15 31 63 127 

Table 4-2: Time performance in terms of Asa 

We conclude that the recursive LABC implementation is faster than other known multipliers, except 

Wallace trees which have a slightly smaller time constant. However, Wallace trees are poorly suited to silicon 

implementation, and not modular in nature. 
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4.2. Multi-level simulation and verification 

Detail experimental and theoretical results of this work can be found in [12], we summarize briefly the key 

• Unify structure: We use a unify tree data structure to handle the descriptions at different 
abstraction levels (functional, net-list, floorplan, logic, circuit, mask descriptions). Such structure 
is macro-generated inside CEYX[9] (a programming environment for generating, editing and 
manipulating hierarchical structures). 

• Functional verification: The complete circuit is functionally verified before detailing into logic 
design. The verification is carried out using symbolic (formal) approach, by manipulating the 
CEYX structure based on the functional and net-list descriptions. 

• Electrical simulation: It is extensively used to confirm physical functioning and make critical 
design decisions (speed optimization, dynamic leakage, timing race, critical path delay, power 
consumption,...). 

• DRC and logic simulation: By the deadline for the design, hierarchical versions of the DRC and 
logic simulator were not available. So the above structure is valuable in the sense that: individual 
cells are verified by simple local DRC and logic simulator, uniformity of the multi-level 
descriptions guarantees the global correctness. 

• Circuit extraction: Cell layout correctness is verified by circuit extraction followed by logic 
simulation. 

We summarize by giving the approximate amount of time spent in each part of the design (Table 4-3). 

4.3. Test results 
NMOS prototypes generated from the same program have been built simultaneously in Grenoble, France 

and in the USA (DARPA MOSIS). 8, 16 and 32-bit test chips of the LABC were fabricated using a 3/im 

process (2/xm for the 32-bit chips). At the time of publication, only the MOSIS chips had been returned for 

testing, all function accordingly and test results are encouraging. 

issues here. 

algorithm 
global structuring 
functional verification 
circuit design 
electrical simulation 
layout (programming + graphic) 
DRC + logic simulation 
circuit extraction 
testing 
miscellaneous 

20% 
5% 
5% 
5% 

20% 
20% 
10% 
5% 
5% 
5% 

Table 4-3: Design time distribution 
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4 . 3 . 1 . Testing for speed 
We have implemented combinational circuits for the LABC for speed testing. The multiply time is 

measured as the time elapse between the end of the précharge cycle and the instant at which all the root nodes 

in the LABC complete their logic transitions. Detection for the completion of logic transitions is straight­

forward in precharged circuitry in which complementary logic states are available. 

The delay of a bit-convolver depends on its input patterns. The binary tree consists of a precharged chain 

of CSA4's and a MU2 at the far end. The worst case propagation happens to be the case when all the CSA4's 

and MU2 have a 1 to 0 transition. This occurs when all the inputs being a logic 0. 

The slowest multiply time of the 8, 16 and 32-bit prototypes are found to be respectively 120, 160 and 

220ns. The experimental data confirms that the delay along the longest wire can be kept under control, thus 

roughly achieving the logN-time performance for medium size (16-32 bits) multipliers. 

It should be pointed out that the basic cell design used in the smaller L-version may not be sufficient to 

provide enough driving power for all the long wires in the entire operand range (16-64 bits), this becomes 

increasingly critical for the case of 32 bits or higher. Thus preventing our current design to exactly match the 

predicted speed, they have been corrected and a second version of our design is currently being fabricated. 

4.3.2. Testing for functional correctness 

The chips are connected via parallel peripheral interface to a 68000 based tester to test for functional 

correctness. For the 8 and 16-bits chips, exhaustive test pattern are used and they function correctly. In the 

32-bit case, special test patterns are used, and the chips also work accordingly. 

4.3.3. Power consumption 

The power consumption of the prototype chips are measured. The converted power consumption for the 

8x8,16x16 and 32x32 LABC's are respectively 180,720 and 1280mW. 

5. Conclusion 
We present VLSI algorithms and practical layouts for optimal time parallel multipliers, which are also 

optimal and near optimal with respect to the previously established lower bounds on AP2 (or AFT1) tradeoffs. 

We show how to map such algorithms into recursively defined regular silicon structures. Layouts can be 

automatically generated by parameterized programs, which take into account all the idiosyncrasies of a given 

technology, and tailor the circuits to specific test strategies. It is easier to run different tests on different 

circuits than to accommodate all on a single prototype. 
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Timing evaluation indicates that our design are faster than previously published ones for input size N>\d, 

and as fast as Wallace trees for medium size (16-64 bits). Although electrical problems in the basic cell 

prevent our current design to exacdy match the predicted speed of about 100ns for 16-bit and 130ns for 

32-bit, they have been corrected and a faster second version is currently being fabricated. Beyond this size, 

our bit-convolver can also be converted into modular may to generate ultra-largo logN-timc multipliers. 
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