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rigid links. Work on the "inverse dynamic formulation™ used in control can be found in references [22], [27),
[29]. 2] and in their bibliographies. References [30], [20], [33]. [32], [12]. and their bibliographies represent
work on the dynamic formulation for simulating rigid link arms. The cfficicncy of these formulations and
alternatives to their real time calculation is discussed in [26], [1] and the works referenced therein.

The limitation of these works is that rigid links arc assumed. With this assumption the techniques
become at some point self defeating, if their purpose is to improve performance. Maintaining rigidity of the
links inhibits improved performance but is necessary if the rigid link assumption is to be accurate.

Consideration of flexibility and control of the links in arm-type devices was reported in 1972 by
Mirro [24]. This carly work considered both the modeling and control of a single link device. Book [7]
considered the lincar dynamics of spatial flexibie arms represented as lumped mass and spring components
via 4x4 transformation matrices. ‘This was refined and later reported in [9]. Book and Whitney [3], [4] later
considered lincar distributed dynamics of planar arms via transfer matrices and the limitations flexibility
imposed on control system performance [8]. Maizza and Whitney [23], [4] used a planar nonlinear model with
modal representation of the flexibility and considered modal control as a technique for overcoming the
limitations of the flexibility. Whitney, Book, and l.ynch [34], [4] considered the ‘design implications of
flexibility. Distributed frequency domain analysis of nonplanar arms using transfer matrix techniques [5], [6]
has been used by Book, ct.al to verify the accuracy of truncated modal modcls of the nonlincar spatial
dynamics of flexible manipulators (the Remote Manipulator of the Space Shuttle). The nonlincar modal
model appecaring here was first presented by the author in 1982[10]. A :nore classical approach to
manipulator dynamics. both rigid {18} and flexible [19], has been undertaken by Huston and his coworkers.

The work in flexible spacecraft has spawned a line of rescarch pertaining to the interaction of articulated
structures. ‘T'his work has great relevance to the manipulator modeling problem. Entries into this litcrature
arc provided by the works of Likins [21] and Hughes [25]. This activity produced a spatial, nonlincar, flexible
manipulator model reported by Ho etal. [14] and corresponding computer code for simulation.  The
simulation required great amounts of computer time and was unsuitable for even off line simulation. Further
work for the purposes of simulating the Space Shuttle Remote Manipulator was performed by Hughes. His
linearized model is reported in [16] and a more general model is reported in [17]. The Hughes model ignores
the interaction between structural deformation and angular rate as might be appropriate for the Space Shuttle
arm. 'This work and associated work at SPAR Acrospace, 1.td. and the Charles Stark Draper Laboratory, Inc.
probably represent the most intensive work on the modeling, simulation and control of flexible arms,
Unfortunately, little of this work has been reported in the open literature.  Recent cxamination of
experimental results from the operation of the Shuttle arm in space has confirmed the validity of these
models. Morc recently, Singh and Likins [28] have reported an efficient flexible arm simulation program.

Yect another branch of rescarch that has found its way to the flexible manipulator dynamics problem is
the study of flexible mechanisms. Dubowsky and Gardner [13] and Winfrey [35] provide the recader with a
bibliography on this work. Sunada and Dubowsky [31] have developed modeling techniques applicable to
both spatial closed loop mechanisms and open loop chains such as manipulator arms. This work assumes a
known nominal motion over time about which the flexible arm cquations are lincarized. This falls short of a
truc simulation of the flexible, nonlincar cquations, but is an interesting compromise for the sake of
computational spced. This technique is oriented toward finite clement analysis to obtain modal



characteristics of the links which are then combined using a time varying compatibility matrix. It uses 4x4
matrices to represent the nominal kinematics and derivation of the compatibility matrix.

1.1. Perspective on This Work
_ This report stresses an efficient, complete, and conceptually straightforward modeling approach‘using
the 4x4 transformation matrices that are familiar to workers in the field of robotics. It is unique in severd
respects. It uses 4x4 matrices to represent both the joint and deflection motion. The deflection
transformation is represented in terms of a summation of moda shapes. The computations resulting from the
|. agrangian formulation of the dynamics arc reduced to recursive form similar to that which has proven so
efficient in the rigid link case. The equations are free from assumptions of a nhominal motion, and do not
ignore the interaction of angular rates and deflections. They do assume smal deflections of the links which
can be described by a summation of the moda shapes and a linear model of easticity. Only rotational joints
arc adlowed. "The results are quite tractable for automated computer solution of arbitrary rotary joints.
Preliminary programs written to evaluate computational efficiency show that this method requires about 2.7
times as many computations as the most efficient rigid formulations with the same number of degrees of
freedom. The rigid model could incorporate 21 degrees of freedom compared to 12 degrees of freedom (6 of
which arc joints) for this flexible model. Thus, 15 degrees of freedom in the rigid model could be used to
approximate the flexibility that the 6 flexible degrees of freedom of the modd presented here approximate.
The relative accuracy of the two approximations has not been determined. These issues are discussed in more
detail in the Conclusions.

2. Flexible Arm Kinematics -

The previous works on rigid arm dynamics use the serid nature of manipulator arms which results in
multiplicative terms in the kinematics. The modal representation of flexible structure dynamics, on the other
hand, is a pardléel or additive representation of the system behavior. One of the contributions of this paper is
to resolve this difference in aconcise way. As with many of the previous works on rigid dynamics, die 4x4
matrices of Denavit and Hartenberg [11] arc used. Sunada and Dubowsky [31] used this representation for
their flexible arm simulations but did not produce a complete nonlinear dynamic simulation. Other workers
such as Hughes[17] relied on the more general formulation brovided by a vector-dyadic representation.
While Silver [27], Hollerbach [15], and others have pointed out the relaive inefficiency of the 4x4
formulation, the conceptual framework is most advantageous when tackling the complexity of the flexible
dynamics.

Define the position of a point in Cartesian coordinates by an augmented vector:

[1 x-component y-componcnt /-component]'l'. :
Define the coordinate system [x y /.]. on link i with origin Q. a the proximal end (nearest the base) oriented so
that the x axis is coincident with the neutral axis of the beam in its undeformed condition. The orientation of
the remaining axes will be done so asto alow efficient description of the joint motion. A point on the neutral
axis a x =7 when the beam is undeformed is located at 'h"ij) under a general condition of deformation, in
terms of system .

By a homogeneous transformation of coordinates the position of a point can be described in any other
coordinate system j if the transformation matr‘ix‘W.lis known. The form of this matrix is
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JWi = X; component of O, | ' (1)
Y; componentofCX | R
ZI component of O |

where

JRi = a 3x3 matrix of direction cosines
0 = a Ix3 vector of zeros.

Thus in terms of the fixed incrtial coordinates of the base the position of a point on link i is given as

)
h = eWvip! =
where die specia case of W, = W, Itis useful to separate the transformations due to the joint from the
transformation due to the flexible link as follows

W=WFA=WA ©)
J P 400 J J )
where _
A. = thejoint transformation matrix forjointj

= the link transformation matrix for link j-1 between jointsj-1 andj

WJ ; = the cumulative transformation from base coordinates to O , a the diga end of link j.

6. , isfixed to thelink j-1 and with no deflection [ Xy Z]. . isparalld to [x y Z]. , with x. , coincident with
ﬁJ J.- J" 1 J" | J"1
jl

To incorporate the deflection of the link, the approach of modal analysis is used which is vaid for small
deflection of the link.

0

1

W= | 0|+ 28| xm @
0 j=1 yu(n)
0 7(m)

where

X Yy Zr = the x; Y and z .displacement g:ompongnts of mode | of link Fs deflection, respectively.
5ij. = the time varying amplitude of modgj of link i . o
m, = the number of modes used to describe the deflection of link i.
The link transformation matrix must also incorporate the deflection of the link. Here the rotations as wdl as
the trandations of die deflection must be represented. If one consstently requires smdl rotations the
direction cosine matrix smplifies as noted in [9] and furthermore the small angles can be assumed to add

vectorally. Thisisbasic to the approach used here. The link transformation matrix can then be written as

m
Ri=[Hi+“Z1 8; M, ] )
J:



1 0 0 0
Hi = li 1 0 0 (6)
0 0 1 0
L 0 0 0 1
0 0o 0 0 |
Mij = X; 0 -OZij ﬂyij : )
Yi 05 0 by
L7y ‘oyij ﬁxij 0 .
and where
All variables in brackets arc evaluated at 1.
N 0 i 0, = the x,, v, and 7, rotation components of link i, respectively.
xij* " yij’ " zij i
I, = the length of link i.
T'o find the velocity of a point on link i, take the time derivative of the position:
_ . _ . i i. '
dh,=h =W"'h + W h. (8)

dt

Due to the serial nature of the kinematic chain. it is computationally efficient to relate the position of a point
and its derivatives to preceeding members in the chain. By differentiating 2 onc obtains:

° A ~ .

Wj = Wj_l AJ. + Wj_ 1 Aj 9)

. P A . ~ .

Wj = Wj_l Aj + 2Wj_l/\j + Wj-1 Aj (10)

where

Aj =Uq _ (11)
=U q + Uq (12)

UJ. = aAj/an.

— A2 2
UZj =9 /\j/aqj
q; = the joint variable of joint j.
Thus W, and W, can be computed recursively from \AV._I, its derivatives, and the partials with respect to
the variables of link j-1 and joint j. No mixed partials arc cxplicitly present. "This computati()nal approach is

similar to that proposed by Hollerbach [15] for rigid link arms. Here onc additionally nceds W and its
derivatives. These can be computed recursively from W, il and its derivatives:

Wj = Wj I',j (13)



W, = WK, + 2W, "+WjK] : (15)

m:

j : ' _
K,=£8jk|\/|jk (16)
- k=t
m,
¥, = E 5, Mji (17)
k=1

The lagt two equations illustrate how the deflection transformations enter even more smply into the
kinematics on a per variable basis than do the joint variables. This is due to the smal deflection assumption
and the form chosen for the transformation. The recursive nature of the velocity and acceleration is preserved
from the rigid case. For the smulation equations the terms involving second derivatives of the joint and
deflection variables will be separated from the above expressions and included in the inertia matrix to make
up the coefficient matrix of the derivatives of the state variables. The "inverse dynamics' solution that
proceeds directly from the Lagrangc formulation has little obvious utility.

3. System Kinetic Energy

In this section the expression for the system kinetic energy is developed for use in Lagrangc's equations.
Firg, the kinetic energy for a differential element is written. Then, integration of this differentid kinetic
energy over die link gives the link's total contribution. This produces terms that arc the equivalent of the
moment of inertia matrices of rigid link arms. Summation over dl the links provides the total kinetic energy.

‘ITic kinetic energy of a point on the i-th link is
dki=i_dmTr{ hin} (18)
2

where

dm is the differentia mass of the point and
Tr{.} isthe trace operator.

Hxpanding 18 and using the fact that T{A B} = Tr{B A*}> the expression for dk; becomes

ok, = Xdm Tr{ W.'h.V ViJ + 2 W], lti*' vig + W VR W\ } . (19)
1 1 1 | 1-1 1 1 1
where 2
= > §;L0x v 7 I _ (20)
j=1

By integrating over the link one can abtain the total link kinetic energy. In this report it is assumed that the
links arc slender beams because it makes the centra development clearer. Other mass distributions could be
used with a dight departure here in the development. For slender beams dm = /x di] and one can integrate
over ) from O to L. Only the terms in ’h. and its derivatives arc functions of i) for this link. Thus the
integration can be performed without knowledge of W. and its derivative. Summing over dl n links one finds



the system kinctic energy to be

Z / 1)

1—1 0
~ _ o , N

K = Z Te{ W, B, W'+ 2W B, W'+ w. B WI'} (22)
i=1

where |

i

B, = _L/ n iﬁi 'h‘1 dn. (23)

2 0

By interchanging the integration in 23 and the summations involved in the definition of‘ihi in 20 onc obtains

i P
= Z Z 85 8y Ciyg ’ (24)
j=1 k=1

where |
i
Cikj = 'l'-/ @ [O Xik Yik llk] [O X yu /u] da. 25
2 0
C has units of an inecrtia matrix and serves a similar function. While shown here as a 4x4 matrix it is
non/cro only in the 3x3 (lower right). 1t can also be shown that C,,. = C 1 By choosing the assumed mode

ikj “ijk° )
shapes in an appropriatc manner, it is possible to reduce the number of nonzero terms in 24, 'This matter is

discussed in light of computational speed in the conclusions.

The other teyms in equation 22 can similarly be found:

B, =L/ p'h'hl dn | (26)
2 0

Bzi=28C+ Z Z%‘SC

j=1 k=1 j=1 ' 2n

C.=1 f pllqo0]"[0 x; ¥y 7] . (28)
2 0 :

Finally, by a simil;’n' approach:
i

- i iy T
By = —1—/ wh; 'y dn

By=C+ 5 8IC, +Ch+ Z }: 8 85 Cig (9)
i=1 k=1 j=1



G =4J /illijOOJ11ijO0Jdij. )
2 0
Thisfina term contains the rigid body inertia terms.

It should be noted that these terms are eadly smplified if one link in the system is to be considered
rigid, in which m = 0. Should alink consist of a flexible member with rigid appendages the above derivation
is readily extended to modify the matrices C.x , C,k, and C.l with no further modifications to the succeeding
development. In fact, these matrices could be obtained by finite clement analysis should the link shape be
irregular as is often the case. Furthermore, the expression for B, contains a term of order 52 which is by
definition smdl and a candidate for later elimination. Finally, much of the complexity of the integration of
the modal shape products can be done offline, once, for agiven link structure, )

3.1. Derivatives of Kinetic Energy
For construction of | .agrange's equations one needs

3K/3
Y
First consider 3K / 3q This will involve the partials of al the terms in 22, some of which arc zero. In
fact, only \V forj <i < n provides nonzero partials with respect to q The time derivative of die partia is
then taken. In this respect the following equivalences should be noted:

d : d :
3K/38, ( 3K/33), and-( 3K/3§,)

dXy./dg 3Wi/30; (31)
Jl(aw. /aq ) Maw /aq 02
at

3\\/1./35jf: an./38jf (33
jdt(svvilss'jf):svvilsajf. (34)

Also helpful in simplifying the result is that, Tr{A} = Tr{A'} for any square matrix A and that By is
symmetric. Considerable cancellation and combination results when the terms in Lagrange's equation
involving the kinetic energy are combined. The result of this combination is

d, .
a& 3K/3q,)-3K/3q, =

n - 7 ﬁ% T ‘nh ; < o
2 Z e{— ~[[c+ 5 (Cu+ Gt 2 8, MW,
1=]

odj k=1 1=1

[ | | | 1w}

k=1 1=1 k=1 1=1 (35)
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assumption that the deflections arc small. Noting the recurrance of certain terms above, it is convenient to
define the following:

m
1
D, =C + Z 8, C ’
1=1 (36)

m,
1
. . . T
G=C+ 2, 8, (¢ +C)
k=1 @7
When these definitions are substituted into equation 35 one obtains:
g(a|</a£1)-ax</aq‘=
dt j J
n m, m,
oy AW, - i . i v
2 3 1 2 Lo Wi+ 3 8, p, W2 3 5,0, W},
i=j ] =1 =1 (38)

The partials of K, with respect to 8, and ‘éjr are considerably more complex due to the fact that B, B,
and By, are functions of the deflection variables. The techniques of simplification are similar. An additional
simplification ariscs duc to the fact that if A were any antisymmetric matrix, and if W were a matrix
compatible for multiplication, then I'r{ W A w! } = 0. An antisymmetric matrix occurs from the difference
of a matrix and its transpose. '

-d—(aK/ai; )-9K /38, =
dt ir i

n

2 Z Tr {

i=j+1

m. m.
W, i , i
r r I

8; [Gi Wi+ Z 8y Dy Wi +2 Z 8y Dy W, } +
j k=1 . k=1

0
0

m. m.
rr{2[ W n,+2W, ) 8 Cot W, ) 8, Cre IWS .
k=1 k=1 (39)

4. System Potential Energy

The potential encrgy of the system arises from two sources:  clastic deformation and gravity. In both
cascs they are included by first writing the potential energy contribution of a diffcrential element, integrating
over the length of the link, and then summing over all links.

4.1. Elastic Potential Energy

Consider a point on the i-th link undergoing small deflections.  First restrict the link of the slender
beam type. ‘The clastic potential is accounted for to a good approximation by bending about the transverse Y
and 7z axes and twisting about the longitudinal x; axis. Compression is not initially included since it is
generally much smaller. Along an incremental length dy the clastic potential is



dvs = 2d,{ K[ (A + 1,(-2)%] &+ G I, (£2+.9) (40)

where

&, # ,j and #;; arc the rotations of the neutral axis of the beam a the point i) in the x,, y, and z,
di rectlons, respectively. Since deflections arc small, these directions arc essentialy paralle or
perpendicular to 'ghe neutral axis of the beam.

H = Young's modulus of eladticity of the materia

G = The shear modulus of the materia

. = The polar area moment of inertia of the link cross section about the neutral axis.

l,, | = the areamoment of inertia of the link cross section about the y. and z, axes, respectively.

¥

With a truncated modal approximetion for the beam deformation the angles #;, $ o and 6, are
represented assummatlons of modal coefficients times the deflection variables. The x rotation, for example is

Z 80k - _ S
=l

where 0" is the angle about the x; axis corresponding to the k-th mode of link i at the point it). When dvg is
integrated over the link the integration can be taken inside the modal summations of equation 41 and its
corresponding y and z components. The following definitions then prove useful:

Kt = K + Ky + Ky (42)
where L
a8
K. =J —il ik gy (43)
xik! an an
§
a¢ .30 .
Ky = f E1 (“)_
0
>
-~ N I\a
Kzikl = f H17(T323— "drj ' (45)

0
Note that K = Kix and that for certain specia cases the orthorgonality of the modal functions can

eliminate many of the terms in equatlons43 44, and 45. The clastic potentia for the total system, V. can then
ho writton ‘is
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3V,
=0. (47)
8q .

For deflection variables

m.
sk, a
k=1

The form of cquation 48 is much more genceral than the initial assumptions made regarding the contributions
to the clastic potential encrgy would allow. Compression strain energy, and link forms other than becams can
be represented in this form. The values of the cocfficients K. e €an be determined analytically or numcncally,
cg. by finite clement methods.

4.2. Gravity Potential Energy
For a differential element on the i-th link of length dn the gravity potential is

dv, = p g' W 'h dn, (49)

where the gravity vector g has the form

g =[0g g ¢l
When integrated over the length of the beam and summed over all beams, the gravity potential becomes

n
_ . T
v, = Z W (50)
where
i
n=Mr, o+ Zl Sy &y D
k._

M. = the tola] mass of link i

r,=[1 ry 0 O] a vector to the center of gravity
ﬁom )omt i (undcformcd)

1.

1
&k = / pIO X vy 7 I'dg. (52)
0

Note that e, ” is found in the top row of(, It is the distance from the undeformed center of gravity to the
center of gravity when all § arc zero cxccpt 8 , which is onc. "The total distance to the center of gravity from

Ol (joint i) is multiplicd by the mass to give r.

Upon taking the partial derivatives required by Lagrange’s cquations we find for the joint variables



K Y
For the deflection variables, for 1 <j < n-I
3V, - A L3N

-2 W 59
Forj=n
av
__Las =-g'W e (59)

5. Lagrange's Equations in Simulation Form

At thisjuncture the components of the complete equations of motion in Lagrangc's formulation, except
for the external forcing terms, have been evaluated in equations 38, 47, and 53 for the joint equations; and in
equations 39, 48, 54 and 55 for deflection equations. The external forcing terms arc the generalized forces
corresponding to the generalized coordinates: the joint and deflection variables in this case. The generalized
force corresponding to joint variable dg-is the joint torque F.. For the deflection variables the corresponding
generalized force will be zero if the corresponding moda deflections or rotations have no displacement at
those locations where external forces arc applied. Thus it is assumed for the present development that the
modal functions arc selected so that is the case. This is convenient for using the results as well. All motion at
the joint is described in terms of the joint variable.” (This is not tmc in the approach taken by Sunada and
Dubowski [31].) The form of Lagrange's equations will then be:

. o0 |
d . oV oV
- (3K/3q') - 3K'/3(3| +—f+—=F.
dt doy 30, J (56)
The deflection equation j.f
3V 3V
(,3K/3ST? 3K/38 + —*e + ——*- =0 .
X ¥ T35y 35 o)

These equations are in the "inverse dynamic” form. To convert them to the ssimulation form one must extract
the coefficients of the second derivatives of the generalized coordinates to compose an inertia matrix for the
system. "The second and firg derivatives together make up the derivative of the state vector, which can be
used in one of the available integration schemes, eg. Runga-Kutta, to solve for the state as a function of time
for given initid conditions and inputs Fi.

5.1. Kinematics Revisited

The purpose of this section will be to extend the kinematics to separate the second derivatives of the
joint variables and deflection variables from the expressions for W and \V Other occurrences of these
derivatives arc aready explicit in the formulation as it exists.

First consider the product of transformations which make up W, and two alternative ways of expressing



Wi =A El A, EZ o Ay Eh Ai F‘i
_ A h —
= Wh_] AW, (58)
— + hyy
=W, E "W (59)
Carrying through the derivatives one obtains

i m

~ h — we ; h A .. 'A.
2 (W U " Wa + 30 WM MWL)+ W (60)
h=1 k=1

For the corresponding expression for Wi write

W= A E A K LA E LA,

h™'h -1
= W h{X ,
=W, AW, | (61)
— > h
=W, K "W (62)
W, = Z W, U "W + }: Z WM "WE W (63)
h=1 h=1 k=1

The value of W ;and W can be calculated rcc,ulswcly as shown in equations 15 and 10, respectively, for W
and W by only chmmatmg terms involving q and 8 The result is

W,=W, A +2WA + W Uyg (64)
W, =W E +2WE. . (65)

5.2. Inertia Coefficients ‘

To obtain the inertia cocfficients that multiply the sccond derivatives, substitute equations 63 and
60 into the relevant parts of the equations of motion, cquations 38 and 39, respectively. Collecting the terms
and arranging them for efficient computation requires the steps outlined in this section.

5.2.1. Inertia Coefficients of Joint Variables in the Joint Equations
All occurances ()qu in cquation 38 arc in the expression for Wil. When these terms arc isolated, a
double summa[ion over the indiccs i and h exists. Interchange the order of the summation as follows:

=j h=1 i=max(h,]j)
The rcsultmg cocfﬁcxcnt for joint variable aQy in the joint ecquation j is



where
n
W= > WG"W ' (67)
i=max(h, j) '

Note that if one exchanges j and h and transposcs inside the trace opceration an identical cxpression is
obtained. This indicates the symmetry of the incrtia matrix which is used to reduce the number of
compultations required. The expression for Jl' can be computed recursively; this will be described later to
further improve the efficiency of calculation.

5.2.2. Inertia Coefficients of the Deflection Variables in the Joint Equations
The deflection variables appear both in the expression for V\" and cxplicitly in cquation 38. After
substituting Wl mm cquation 38, collect terms in 8]f and cxchdngc the order of summations as fol]ows

n n-1 n
> Z > 2
i=j h=1 h=1 i=max(h+1,j)

The resulting cocfficient ()f8hk in joint cquation j is thk' The terms to be included depend on the relative
values of j and h. The following hold for 1 <k < m,.
Forh=n,j=1..n

e =210 LW, U YW D, W (68)
forh=j..n-1,j=1..n-1:

] k=2'l’r{(\"i'j_lUj)[Jb ml+iW. n Jwl} (69)
forh=1.j1lj=2..n

Yoo = 2T { (W, U, ) I, MW ) (70)
whercforh=1..n-1,j=1..n

n
¥, = > WG hwl (71)

i=max(h+1,j)

It can be shown that the inertia cocfficient for the deflection variable §,, in the joint cquation j is the
same as the cocfficient for the joint variable q. in the deflection cquation h,k. This further cxtends the
symmectry of the inertia matrix and rcduces the necessary computation:

5.2.3. Inertia Coefficients of the Deflection Variables in the Deflection Equation

In a manncr similar to the previous two types of cocfficients, the inertia cocfficients of the deflection
variables in the deflection cquations are cvaluated. Symmetry of the coefficients can be shown such that the
cocfficient of variable hk in cquation j,f is the same as the cocfficient of variable j,f in cquation hk.
Substituting cquation 63 into equation 39, isolating the second derivatives of the deflection variables, and
interchanging the order of summations cnables the inertia coefficients to be identified. Further simplification



T{A1)C} = Tr{CA B} =Tr{B CA}.
Furthennore the rotation matrices in the transformation matrices arc orthogonal so that R, RT =1, a3x3

identity matrix. This coupled with the zero first row and column of CJ ¢ results in an espeually simple form

for two of the four cases. The following hold for 1 <k <mpand 1 < f< m,.

Forj = h = n:

Lok = 2TH € } | (72)
Korj = h =1 ... n-1:

boe = 2Te{ MM § €} (73)

Forh=n;j = 1..n-1:
Lo, =27r{ WM v D[ W} (74)

jink

Forj=1..n-1;h=j+1..n-1:
Ij(hk=2Tr{MjrCJ4»h+M 1+%y,! >hJWj ,|} .

(75)
Termsin the above defined forj = 1 ..n-1; h=1 .. n-1 arc:
n :
o, = S HVjGA WA, (76)
i = max(j-f I,h-hl)

5.2.4. Recursions in the Calculation of the Inertia Coefficients
Since the inertia matrix is a square matrix it requires the calculation of n”* terms where n is the total
number of varlables

n.-n+ Z

Tic fact that the matrlx is symmetrical reduces the number of distinct terms to ni(n_+1)/2, which gill has a
second power dependence. Thus while the inverse dynamics computation complexity can be made linear in
n, simulation requires the inertia matrix with complexity dependent on n*.  Since n, can be quite large for
practical arms it is important to reduce the coefficient of die squared term as much as possible. Due to their
short or even zero length, it is possible for some links to be essentially rigid. Anthropomorphic arms, for
example, have two links which arc much longer than the others and tend to dominate the compliance. Many
of the terms derived above may not be needed for these links, four of the sx links in the anthropomorphic
example. Any recursive scheme for caculating the terms in the equations should not require these

calculations as a means to get to needed terms.

Consider the calculation of equations 67/71, and 76. Several recursive schemes could be arranged for
the efficient calculation of these quantities. Hquation 71 is only needed if the link corresponding to the
variable, link h, is flexible. That is, if my, > 0. [liquation 76 is only needed if both the link of the variable and
the link of the equation, link j, is dso flexible. Thus we propose the following recursive scheme for
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Initializgtion:

"y = Go. | )
Forj>h<n:

B, = E AR (7%)
Forj = h:
If m, > Ocalcul_ate:

ij: jﬁn’;:' (80)
Ifm, > 0and m, > O cdculate:

o, = A, JF, . (81)

5.3. Assembly of Final Simulation Equations

The complete simulation equations have now been derived. It remains to assemble them in fina form
and to point out some remaining recursion relations that can be used to reduce the number of caculations.
The second derivatives of the joint and deflection variables arc desired on the "left hand side" of the equation
as unknowns and the remaining dynamic effects and the inputs arc desired on the "right hand side." To carry
out tiiis process completely one would take the inverse of the inertia matrix J and prcmultipty the vector of
other dynamic effects. This inverse can only be evaluated numerically because of its complexity. Thus for the
present purposes die equations will be considered complete in die following form:

Jz =R, (82
where

J = Inertia matrix consisting of coefficients previoudy defined in die order for multiplication
appropriate for z

z = die vector of generalized coordinates -
= [q, 50 512 ... 5|rm'i%%...:S,,m....Cﬁh«ﬁm...aihk...w.....%l
n

gn = thejoint variable of the h-th joint
5nk = die deflection variable (amplitude) of die k-thmodc of link h

R = vector of remaining dynamics and externa forcing terms

- T
= [Ry Ry R1o _ o4 RoRyq Rom, . R Ry o Rj[‘ ijj w R ]

n
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R. = dynamics from the joint equation j (cquation 56) cxcluding second derivatives of the
genceralized coordinates

ij = dynamics from the deflection equation jf (cquation 57) excluding sccond derivatives of the
generalized coordinates

The clements of J have just been formulated and can be arranged to form the proper cquations in the order
described above. ‘This order has been sclected because it results in the symmetrical appearance of J. "The
clements of R have not been cxplicitly given with the second derivatives removed. 'These are given below
with some recursions to facilitate their computation.

R =-21r{U Q }+g"UP +F (83)

Ri=-21r{W_ UQ} + g"'v“v, U P+ | (84)

=21 {[W, D +2W Z 8, Cor JW!}- 2 8§, K yte' W e, (85)
k=1 k=1

Re=-21r{WM A Q, [W, D +2W 2 8, Cre JW!' }
=1

m,
T
- 2 8 K)kf+g WM /\J+l i1t 8 Wjejf
k=1 (86)
where
my
Q, =G, Wl +2( Z §, D JWI (87)
k=1
T T n
Q=G Wy +2( Z‘ 8, Dy W+ EA Q. (88)
_ m
P=Mr+ S8 e (89)
k=1" ,

P= M + 2 St + E AL P (90)
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6. Conclusions

T'he above model is successful in terms of its accuracy and its speed. The two qualitics are somewhat
related in that accuracy of the flexible representation can be improved by increasing the number of modes
uscd to represent the link deflection at the expense of calculation time. The issuc is further complicated by
the choice of mode shapes, range of motion considered. and the arm configuration. Furthermore, limited
information is available in the litcrature for comparison. A simple comparison has been used in the past and
can be performed for calculation complexity. Hollerbach [15] compares several approaches to the inverse
dynamics problem of rigid arms by different authors. Walker [33] gives a similar count for four approaches to
the simulation problem. Sunada [31] has given computation times for a given manipulator, trajectory, and
computer for his flexible simulation. Comparison to the calculation counts of rigid models arc given for a
rough comparison of speeds in this section. No attempt at a quantitative comparison of the accuracy is made.

To determine the number of calculations from the cquations, a choice must be made on how some
matrix products are implemented. Hollerbach chose to use the most straightforward implementation of the
cquations. 'The approach here is quite different. Obvious simplifications in the multiplication of matrices
with known constant rows, the top row of a transformation matrix for example, arc assumed in these
computations. The 4x4 matrix transformation was chosen for its conceptual convenience and the calculation
count will not be intentionally penalized for that choice. Furthermore, certain products appear in multiple
cquations and are assumed to be saved when nceded later.  Special purpose multiply routines are used
whenever they can capitalize on the special structure of a given matrix. Finally, in the simulation form the
calculations neceded to invert the inertia matrix are not included, and no consideration is givcnm the
calculations of the integration routine. ‘The general form of the modal parameters are used however. 'This
results in all combinations of modes h and k in the matrix (, ni 10 be computed and used and hence introduces
a squared dependence on the number of modes on each mcmal cocfficient of the deflection variables. With
these assumptions the number of calculations is approximate:

Number of multiplications:

6n2m? + 175n.m? + 118n2m+ 74nn.m +

137.5n,m + 84 n*> + 86 nn, + 279 n+ 126 n - 57



Number of additions.

65 r‘|F~m2 + 19nim? + 1155 nj:m+ 68 nn; m+

123 nm + & n? + 80 nn+ 329 n+ 111 ng-91

where. n = total number of joints
n; = number of flexible links
m = number of modes describing each flexible link

The above approximation assumes an "average” joint complexity over two common types of rotary joints, the
same number of modes on eech flexible link, a rigid lagt link and a flexible firgt link.

If assumed mode shapes arc restricted so that the shape functions in the X, y, and z directions are
orthogonal, only C.. will be non-zero. This is a stronger requirement than the orthogonality of the set of
complete mode shapes, but would often be redized with simple mode shapes. It has not been determined if
this would improve the combination of speed and accuracy.

This calculation count can be roughly compared to rigid link results available in the literature
mentioned above. For a 12 degree of freedom rigid problem die inverse 3x3 transformation matrix
formulation requires 2.66 times as many multiplies as the Newton-Kulcr formulation. Walker's method 3 (his
best) for simulation requires 4,491 multiplies. For 6 joints, and two flexible links with 3 modes each the
method of this paper requires approximately 12,009 multiplies. The ratio of these smulation methods is 2.67,
amost exactly the same as for the inverse dynamic methods with the same number of degrees of freedom. A
modal representation of flexibility would be much more accurate than adding 6 imaginary joints to represent
compliance, but one could expect to use 15 imaginary joints and 6 red joints with Walker's method with
fewer multiplies than with the method of this paper.

Thus it seems that in order to be competitive with possible Newton-Ruler, non-transfer matrix
approaches, the simplification of the assumed mode shapes will have to be made. It is not clear that the
conceptual convenience of the transformation matrix approach can be judtified relative to vector dyadic
approaches of Hughes[17] and Liking[28]. Unfortunately, computation counts are not available for that
work.
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