NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-CS-85-104

Ada as aHardware
Description Language:
An Initial Report

Mario R. Barbacci’,
Steve Grout 2,
Gary Lindstrom®,
Mike Maloney?,
Etliott Organick®,
Don Rudisill?

8 December 1984

1. Carnegie-Mellon University, 2. Martin Marietta Corporation, 3. University of Utah.

The work reparted in thig report was sponsored in part by Martin Marietta Corporation and in part by
the Defense Advanced Research Projecis Agency {(DOD), DARPA Order Mo, 3597, manitored by the
Air Force Avionics Laboratory under Contract F23615-31-K-1539, and DARPA Order 4205, monitorad
by the Office of Naval Reseaich, under Contract MDA 90G3-81-C-0411.

. The views and conclusions contained in this document are those of he authors and siould not be
interpreted as representing the official policies, cither expressed or implied, of their sponzors.

LAl . . P

P

(VA

e

Table of Contents

1 Introduction
1.1 Description of the Approach
1.2 Elements of Style
1.3 Overcoming Language Limitations
2 Elements of the Description Language
2.1 Representing Connections
2.2 Representing Buses
2.3 Representing Hardware Objects
2.4 Operations on Objects
3 Shift Register Example
4 Timing Models: An Example
5 Conclusions
6 Acknowledgements
7 References
|I. Package Listings

Abstract

This paper reports on our initial results in using Ada as a Mardware Description Language. Ada
provides abstraction mechanisms to Support the development of targe software systems. Separate
compilation as well as nesting of packages, tasks, and subprograms allow the construction of
modular systems communicating through well defined interfaces. The complexity of modern chips
(e.g. those proposed in the VHSIC program) will require the use of those features that make Ada a
good language for programming-in-the-large.

The Key to our approach is establishing a writing style appropriate to the objective of describing
both the behavior and the structure of hardware components. We model a hardware system as an
ensembie of typed objects, where each object is an instance of an abstract data type. The type
definition and the associated Operations are encapsulated by a correspanding package. in this paper
we illustrate our approach through a series of examples, building up a hypothetical hierarchy of
hardware components. We conclude by discu'ssing ways to describe arbitrarily complex simulation

models and synthesis styles.

1 Introduction

The wark that load to this report started in response to a DoD request for pronosaly to deéign a
Hardware Dascription Language for the Very High Speed integrated Circuit (VHSIC) program. After
anatyzing the requirements we found that Ada' [ANSI, 1983] could be a ﬁowerful, cost-effective
hardwure description.ianguage since it provides abstraction mechzanisms to support the development
of large software systems. Separate compilation as well as nesting of packages, tasks, and
suiprograms allow the construction of a modular system communicating through well defined

interfaces.

A desire for a hardware description language should not obscure the strong commonality of
approaches and techniques between designers of complex hardware and software systems. While
the full power of Ada may not seem appropriate for the design and specification of small components,
the design of moder chips (e.g. those proposed in the VHSIC program} will require the use of
advanced complexity management techniques. We argue that these technigues are directly

supported by those features of Ada which make it a good language for programming-in-the-large.

We hasten to add that what we are proposing is Ada, not an Ada-like language. We are not

1Ada is a tracdemark of the US Goverment. Ada Joint Project office”

contemplating the writing of a special compiler; any off-the-shelf Ada compiler will do. We are not
even proposing adapting or moditying some existing Ada support system; any validated Ada

implementation will do2.

1.1 Description of the Approach

We model a hardware system as an ensemble of typed objects, where each object is an instance of
an abstract data type. The type definition and the associated operations are encapsulated by a
corresponding package. Thus, each package manages a particular kind of hardare component (e.g.,
wire, nand gate, multipiexor). The public operations of each package include abject creation, object
construction (from its component parts, interconnection of those parts, and association of these parts
with the outer object's interface pins), and simulation. The semantics of these operations are
explained in [ater sections.

Central to our representation of hardware objects are the dual concepts of behavioral and structural
views of a hardware description. For example, a multiplexor may be described behavicrally as an
object that selects among a list of inputs. Alternatively, it can bé described as a collection of
interconnected nand gates (in a multiplexor configuration, of course}. A behavioral description is
. generally a more abstract view; it hides structural details which introduce implementation decisions.
The structural description, includes only the information about an object’'s components and their
mterconnectlons The behavior implied by a structural description is determined by the behavior of
its components and by the way they are interconnected. Behavior is not intrinsically "higher" than
structure since, at the lowest level, some components are taken as primitives; their structure is
hidden, and their description is purely behavioral. In fact, as we shali see in some of our examples,
mixing structural and behavioral descriptions at the same "level” can be used to anhance the
descriptive power of the notation, making the intentions of the designers more apparent.

1.2 Elements of Style

Discussions about programming styles often degenerate into theological arguments (witness the
long standing arguments about indentation and capitalization of keywords and identifiers). We do not
pretend to say that the style we have used in our examples is the best or that it should adopted by all
users. As a matter of fact, the examples are contrived to display the features of the language, at the
expense of having perhaps too many levels in the hierarchy of components. In a production
environment we would expect say, latiches and flip-flops, to be implemented as primitive components

2Actual|y, we do not need the full language: a reasonable subset, containing the right features is sutficient. Talk about Ada
subsets is, however, considered heresy in some circles and we will nat raise this point again.

whose descriptions are carefully handcrafted for simulation effictency, rather than to be implemented
by building them up from inverters and nand gates. In addition, to save space, in this paper we have
limited ourselves to illustrate our approach via simple examples, although we have explored other,

more complex descriptions in [Maloney et al., 1985].

in constructing the examples we have followed a few guidelines to emphasize readability and
modularity and to define appropriate layers of abtractions.

Readability,. The complexity of many hardware systems and their equivalent software
representations requires that the code be easily understood. We. do rely on comments and the
flexibility Ada provides for writing extended and legible identifiers. Appropriate selection of names for

variables, types, and operations are also important.

Ada permits the overloading of enumeration literals and subprogram names. We take advantage of
this to reduce the names of distinct identifiers that must be learned by the user. The basic operations
needed to create, construct, and simulate hardware components have the same identifier,

independent of the component type. The language provides mechanismas to resolve the ambiguities.

Modularity.. We define this as ihe ability to connect cbjects that are of different types through
compatible interfaces. The strong typing in Ada prevents the kind of error in which a component of
the wrong type is used by mistake (e.g. passing a nand gate to a D Latch simulation proéedure). To
permit the connection and transfer of signals between components, we use universal interface types

(e.g. pins and buses). All components define their interface in terms of these types.

Layers of abstraction.- We define this as the ability to have muitiple levels of representation for the
structure and behavior of hardware objects. In our approach we use packages to define libraries of
abstract types, one per package. Each package is built upon types and operations defined in other
packages, in a hierachical fashion. in addition, the separation of specifications and bodies for these '
packages, permits the use of multiple versions of bodies supporting the same spegification. This has
important advantages in that we can quickly "plug-in" more efficient simulation models or synthesis
algorithms or design rule checkers, etc. without ever having to alter a client package, or even

‘recompile it. The switch happens at link time.

1.3 Overcoming Language Limitations

Ada was not designed with hardware descriptions in mind, thus we have adopted some conventions
to overcome two shortcomings in the language.

Lack of Timing Primitives.- Ada has no primitives for expressing time and time-based relationships.

Mapping a hardware description written in Ada to actual hardware requires either that the hardware
be implemented using fully asynchronous circuitry, a practice not widely advocated, or that timing
specifications be introduced in the process of mapping to hardware. The direct-mapping approach is
the object of current research at the University of Utah [Organick et al., 1984.]

We overcome this deficiency by building into the packages operations that perfarm ihe synthesis of
the abstract data type into hardware, incorporating the appropriate synchronization and timing
information. Thus, rather than counting on a "smart" compiler to decipher the designer’s intentions,

we use "smart" programs and libraries, where these intentions are explicitly stated.

Ada does not treat Daékaues as first class objects. Ada packages may not directly model hardware
components unless such packages are elaborated at compile time; ihey cannot be created
dynamically as values that can be assigned to variables or passed as parameters. Ada tusks do have
some of these desirable features, however they suffer from other limitations (e.g. a task specification
cannot define and "export" data types, constants, or objects, oniy entries.)

This is an unfortuhate but not unsurmountable difficuity. In our approach, we use packageé to
manage instances of (first class) record types which in turn madel hardware components.

2 Elements of the Description Language

2.1 Representing Connections
Before we present the details of how hardware objects are represented, it is necessary to address

the problem of intermodule connections. -

The relationship that exists between hardware (:\bjec:ts"3 and interconnections is many-to-one; that
is, many objects can be connected through one connection. A first representation of this relation
could have each object reference the "wire" to which it is connected. For example, if components A,
B and C are all connected, we have the arrangement depicted in Figure 1. This rep{‘esentation i5

3Aclua|ly. here we are referring to an input or output of an object. For example, the cutput of a nand gate.

A Wire B

Figure 1: Three components connected by a simple wire

adequate for most sitvations. Here we treat the wire itself as an object. For simulation purposes, the
wire object can have a value attribute that could be set and read by the compecnents that it "joins",
Information about how many companents the wire is connecting can alsc be maintained in the wire

cbiject.

The deficiency in this representation becomes apparent when we allow components to be
connected in an arbitrary order. In that situation, wae must be able to connect objects that are already
connected by wires. Figure 2 illustrates this point. In connecting compconents A and C, we would like
the resuiting configuration to have one wire that is referenced by components A, B8, C and D. To
accomplish this requires that we change C and D to reference wire__1 or A and B to reference wire_ 2.
Note that either of these operations assumes the capability tc find all references to a wire.

The desire for freedom in the order that connections are made motivates a slightly more complex
representation of wire interconnections. The deficien~y oI the previous simple strategy is that there is
no way to reference all of the objects connected by a wire. An intermediate "pin" data structure

solves this problem in the following way. If a wire actirally establishes connections between pins of

Wire«l Wire«2

Figure 2: Two components already connected by simnle wires

objects, it can reference, through a linked list of "pins", all of the "pins"” that are connected to it. This
is illustrated by the three pins connected as shown in Figure 3. The task of connecting pins that are
already connected thus invalves trivial linked-list operations to reconfigure the interconnection and
merge the pin connections to one wire.

To support the abstractioné or wires and pins, we have written a package, Pin_Mgr that declares
wires and pins as data types and defines appropriate operations for manipulating objects of these
types. The package is written so that most details about intermodule cannections are placed in the
body of the package and are therefore hidden from the users {the complete package listings appear
in the Appendix). The public operations of this package are;

¢ The procedure CONNECT, which connects two pins (i.e. links them in a ‘wire' list.)

¢ The procedure DISCONNECT, which breaks a connection {(i.e. removes a pin from a 'wire’
flist.)

» The procedure EQUATE, which associates an internal pin of an object with an external pin
(i.e. brings cut an internal component.pin.)

r——-=-=- MWire

P . B
A pin Lo : Pin
T ' <
H |
| |
| i
| |
| . |
Pin
Lo .- [S -
c

------------ reference from pin to connecting wire
_______ linked 1ist of pins

Figure 3: Three components connected by a simple wire using pins,

® The procedure UNEQUATE, which undoes an equate.

® The procedure SET_VALUE, which sets the value on a wire. This procedure and the
following function can be used for simulation.

¢ The function vaALUE_OF, returns the value of (i.e. level on) a wire,

¢ The function FAN_oUT, returns the number of pins connacted to a wire.

The strategy, then, in buiiding and connecting components is to provide each external input or
output of an object (representing a component) with a "pin" that can be used in connecting the
object with other objects. Pins and wires are not limited to modeling the idealized connections in gur
sample package; physical attributes such as capacitance, delays, loads, distances, locations, ete. can
be easily described as "attributes” of {i.e. fields of the record types modeling) pins and wires.

2.2 Representing Buses
A bus can be described as an array of pins, using conventions similar to those of a pin. A package
supparting this abstraction is listed in the Appendix. The visible operations of the Bus_ Mgr package

are:

¢ The procedure CONNECT, which connects two internal buses {provided the buses have
the same width.)

e The procedure UNCONNECT, which breaks a connection.

¢ The procedure EQUATE, which associates an internal bus of an object with an external
bus of the same width,

¢ The procedure UNEQUATE, which undoes an Equate.

* The procedure SET_VALUE, which sets the value on a set of wires, again as long as the
width is the same.

e The function VALUE_OF, which returns the value of a set of wires.

The strategy, then, in building and connecting companents is to provide each external input or
output of an object with buses or pins that can be used in connecting the objsct with other chjects.

2.3 Representing Hardware Cbjects

We can identify three possible approaches to the prablem of representatihg hardware objects as
typed data objects.

The first approach is to declare hardware objects as totally "private™ (in the Ada sense). All
operations on objects are defined by a set of procedures and functions that involve such objects, but
nothing about the objects’ structure is visible outside these procedures. Here problems arise when
attempting o interconnect sUch objects, since we have no knowledge about an object’s interface.

The other extreme is to declare hardware chjects as totally "public” (again, in the Ada sense).
However, this method exposes information about an object's structure that is irrelevant for

connecting the abject with another object.

The third approach is a combination of the previous two: we represent hardware structures using
data types that contain both public and private parts. The public part of an object contains its
interface information only, while the private part contains implementation details. The example in

Figure 4, shows the (public) specifications for D flip flops.

type d_ff_components is private;

type d_Fflip_flop_record is

record

-- inputs

dbar : pin; --Input data signal d (inverted).

clkbar : pin; --Input clock signal {inverted) to run slave Tatch.
clear : pin; --Input signal to clear the flip-flop.

clock : npin; --Clock signal to run master latch.

-- output

gbar : pin; -~Output data signal g (inverted).

-- private

components : d_ff_components;
end record;

Figure 4: Structure of the D Flip-Flop

In the example, the COMPONENTS field of the D Fiip-Flop record is a component of a private type.
Although it is visible as a record component outside its enclosing package, its structure is private.
Alternatively, the publically visibie fields of an object could be defined as the discriminants of an Ada
private record type, with the hidden parts declared in the full lype declaration, in the private part of the
- package specification. With this approach, not even the componenTs field ig visible outside the
package. The drawback is that, in Ada, the values of discriminant felds cannot be micdified except by .

a full record assignment.

2.4 Operations on Objects

Now we will describe how to use a hardware data object, that is to instantiate it, to establish its
functionality, and to simulate it. To begin this process one must first create the object. The function

CREATE allocates storage to hold values for a component's interface.

Once a data object has been instantiated we may perform other operations on it, such as
CONSTRUCT and SIMULATE. The CONSTRUCT procedure establishes a structural description of the

object by creating and connecting the object's subcomponents.

Once the function CREATE and optionally the procedure CONSTRUCT have been invoked, objects are
ready to be simulated. For each chject type that we define, we provide a SIMULATE procedure. This
procedure operates upon information that is placed on the input pins to produce the results on the
output pins. Objects at the lowest design level (primitive objects) are simuiated by executing their

behavioral description.

10

An object can either be simulated directly, by executing a SIMULATE procedure that implements its
behavior or indirectly, by executing a SIMULATE procedure that invokes the procedures that simulate
the subcomponents. Details of the algorithms used to simulate or construct objects are hidden, The

subprogram specifications only describe the types of the parameters and the results.

Using this approach, mixed-level simulation is easily implemented (A similar approach to mixed level
simulation using Simula 67 is described in [Lindstrom, 1983]). The order of simulation of components
should begin with the input pins and follow the flow of new data throughout the network of
components. Once all of the components have been simulated the appropriate output values will be
placed on the output pins.

3 Shift Register Example

This section presents a complete example of the specification of a composite hardware object (i.e.
an object that has subcomponents.)

Our specification of a shift register (National Semiconductar MM 74C168 [National, 1981]) is built
bottom-up. We begin by creating certain tow-level components, namely 2-'and 3-input nand gates and
inverters, described by packages named Twao_lnput_Mand__Gate__Mar, ‘
Three_Input_Nand__Gate_Mgr, and Inverter_Mgr, respactively. These packages define primitive
objects. Primitives have inputs and outputs and only a behavigral description; they are not
represented by inter-connected subcomponents,

The package supporting. the abstraction of an inverter declares two data types and two operatidns.
The data types describe an inverter as a record with twao fields, the input and output pins respectivaly.
Since inverters (as well as other gates) are easier to handle as Ada access (i.e. pointer) types, the
operations defined on inverters do not take an inverter record directly but rather they manipulate

pointers to inverter records.

The CREATE operation is used to instantiate an inverter. Since this is a primitive component, there is
no need to create and connect internal components, as we shall see in later examples. The SIMULATE
operation computes the value at the output pin, depending_ on the value at the input pin. Notice that

we are ignoring internal delays; these are idealized inverters.

The package supporting the abstraction of a nand gate is described as a generic package. This
permits the definition of nand gates of arbitrary number of inputs by simply instantiating the generic

package, with the right parameter (the number of input pins), without having to rewrite the type and

11

operation declarations. The input pins are modeled by a dynamic array of pins, whose dimension is

specified when the generic package is instantiated.

Using these component definitions, we can establish a structural description for a D Latch. (See
Figure 5.) The package D_Latch_Mgr package establishes the structural description of D latches by
creating and interconnecting an inverter and four nand gates whenever the CONSTRUCT procedure (in

the D Lateh package) is invoked.

: N
DBar » QBar
Clock /h_
Clear

Figure 5: Inside view of the D Latch,

In the definition of the D Latch record type, we are hiding from the users of the abstraction the
nature of the implementation of thq—: latch. That is, only the input and output pins are directly available,
The fact that there are components is revealed by the definition of the coMroNeNTS field; however,
since this field is declared to be of a private type (D_LATCH_COMPONENTS), no user of the package can
make assumptions about its structure.

In addition to tha CREATE and SIMULATE operations, the O Lztch package also provides a CONSTRUCT
operation. This operation must be invoked after a D Latch has been created and befere it can be
simulated. It builds the latch by instantiating the internal components, connecting them in the right

configuration, and equating some internal component ping to the input and output pins of the latch.

12

The construction of components continues for the D flip-flop, the next level up in this component

hierarchy. The package D__Flip_Flop_Mgr defines data objects that are composed of D latches (See

Figure 8.)
ClockBar Clock
o : 9
DBar o Delatch DeLatch o 0Bar
o]
ch

Figure 6: Inside view of the D Flip-Flop.

Notice the parsimonious nature of our approach. Every new component type is supported by a
package which exports a record type and an associated access type; this permits the manipulation of
the object by the support subprograms. In addition, the package exports procedures to create,
construct, and simulate the component. By hiding the internal structure of a component and the
implementation of the operations, the designer is free to correct or enhance the abstraction, without
having to worry about amending packages that import the abstraction (provided of course, that the
changes do not affect the visible part of the abstraction.) Any hardware systam built out of
components described in this fashion can in turn be used as a primitive component in later designs,

provided these simple rules of style are observed.

As with the D latch and the D flip-flop, the serial shift register (Figure 7) is constructed by
connecting components such as the inverter, nand?2, and D flip-flop together in the correct (graph)
structure. Once constructed, the shift register can be simulated by 'invoking the procedures that

simulate its components. ~

13

1
o
[2 [3
Clock

oo T I TS

o Y Y Y VY e

Qut

Figure 7: Inside View of the MM 74C168 Shift Register,

This hierarchical design is represented in the compilation dependency graph for the corrasponding
Ada packages, as shown in Figure 8.

4 Timing Models: An Example

In the preceding examples we have exhibited the power of the language to describe the structure
and interconnections of hardware Components. In this section we describe how it is possible to
implement, within the same framework, arbitrarily complex timing and synchronization models, as well

as synthesis algorithms.

By way of example, we have chosen to describe how the eiement of delay can be added to our
library. We will represent time after the CONLAN mode! of computation [Piloty et al. 1983]. CONLAN
uses the notion of a history of values to model digitai hardware. Computation step signals correspond
to transient values, due to the propagation of state changes in the system. The duration of a step is
neqligible and possible intermediate values in the carriers are invisible to the hardware designer
-- only the final value of a step signal has significance. Time signals are sequences of step gignals
along time: one step signal per unit of time. Time signais can be inspecied for past values (the last
value of the step signal associated with a given point in the past) as well as current values (the last

value of the current step signal).

14

Pin
Generic NAND
NAND 2 NAND 3 Inve rter
D Latch
D Flip Flop '1

Shift Register

Figure 8: ' Compilation Dependency Graph for the Shift Register

Using this two-layered model of time, we medify our simple pin package as shown in the Appendix
(under "Extended Pin Specification" and "Extended Pin Body".) Naotice that in addition to the
additional history carried by a wire, we have added an extra parameter {DELAY_VALUE) to the
VALUE_OF function. The function now returns a previous value of a signal. We can now use this
function to model a more realistic inverter gate, by rewri:ing the sIMULATE function, as shown in

Figure 9.

Notice that the VALUE_OF function in the new pin package specifies a default for the DELAY_VALUE

15

procedure Simulate{v : in inverter_gate)
- == Function:
-- This function simulates the logic of an inverter by inverting
-- the value of the input pin and placing the value on the output pin.
== The function assumes a 10-unit gate delay.

is
begin |
case Valua_of(v.input,10) is
whan low => -- If dinput 1s low the output is high.
- Set_value(v.output,high);
return;
when high => == If 1nput.1s high the output is low.
Set_value(v.output,low);
return; .
when others => -- If 1nput is undefined, no change
null;
end case;

end Simulats;
Figure 9: Inverier with Internal Delay

parameter, If no delay is provided by the caller, the fast value assigned to the pin is returned f{i.e. no
delay is assumed,)

In this example, we have made a radical change in the package supporting the abstraction of a pin,
yet the only externally visible change is the addition of one extra parameter to the vALUE_OF function.
In addition, by providing a defauit value corresponding to the previous, no-delay version, all we have
to do is recompile, without changes, any existing library packages. That is, older, idealized (i.e.
no-delay) components still work; new, more realistic components can now be described, and both

kinds of components can be mixed in a design.

To conclude this section, we point out that in our approach we are not limited to using pins and
internal components as the fields of a record modeling some hardware component. We can just as
easily declare fields whose values correspond to physical dimensions, power requirements, locations,
etc. Since the process of constructing components is done by calls to operations defined in the
library packages (CREATE and CONSTRUCT), it is rather easy to keep track of all instances of these
components and to check that no design rules are being violated. The data structures needed for the
bookkeeping provide an internal representation of the design: translating it into masks, wire-lists, or
other manufacturing information gives us the path towards powerful and flexible design automation
systems®,

4As powerful and flexible as the code we are willing to write, and we have all the power of Ada to do this.... Don't be

surprised, the emperor in the fairy tale was naked!

16

5 Conclusions

In a conventional CAD environment, the separation between the user and the toolmaker is very
sharp. Tools (translators, simulators, synthesis programs etc.) are written in different languages, by
separate groups of individuals, who may in turn be distinct from those in charge of maintaining the
ensemble. Users are bound by the implementers' decisions (and mistakes) and are not usually in a
position to do anything about them, short of waiting for upgrades or fixing the praoblems themselves.
One of the most serious deficiencies with this conventionai approach is that often an implementation
will bind knowledge about a particular technology, synthesis style, or simulation models into the
implementation in such a way that it is often not possible to change it to reflect new technologies or
hetter design methods.

The technique we are describing is certainly no panacea; errors can stili be made. However, we are
eliminating the middle men and exposing to the users (i.e. designers) the full implementation,
technology dependent decisions, timing models, and synthesis styles. Since the implementation
language is the same language that is used in the day-to-day activities of the designers, they can
understand the source of the problem, can propose solutions, and finally, can implement the solution
themselves, without further ado. Good system management practices will probably impose some
mechanisms to prevent chaos from arising; in par:ticuiar. it is likely that oniy expert designers will be
allowed to implement such changes, Ada provides powerful features to.support the development,
maintenance, and graceful evoliution of large software systems; these same features will be invaluable
in CAD systems of the 80's and beyond.

The advantages of using the same language for both the design of hardware and software are
evident. The flexibility in delaying the binding of (hardware) imptementation decisions discussed in
this paper is easily extensible to a more basic decision, namely, whether a portion of a system is to be
buiit in hardware or in software. The use of a single language together with a convention on style,
permits a designer to write an abstract interface to a computing engine while retaining the freedom to
impiement this engine in either hardware or software. The flexibility continues throughout the life-
cycle of the engine; the decision can be reversed at a later time, if the trade-offs change, without

affecting in any way the users of the abstraction,

In addition to the obvious superiority of Ada as a programming language over existing special
purpose hardware description languages, there are othar reasons why Ada is ari attractive hardware

design tool,

Ada is a standard language that enjoys the support of the largest software user in the world, the 1.8,
Department of Defense. Thus, it is inevitable that rich programming environments will be built around
Ada and that the community of users will be several orders of magnitude larger than that of any
existing or proposed HDL. Not only are modern software devalopment technologies easier to apply by
the use of Ada but large user communities provide a continuous supply of tools, methods, training
materials, etc. All of these contribute to a reduction of the life cycle costs of a project.

6 Acknowledgements

We would iike to acknowledge the helpful input from David Barton, Peter Tinker, and Jay
Woodward, graduate students in the Department of Computer Science, University of Utah.

7 References

[ANSI, 1983] Reference Manual for_the Ada Programming Language, American National
Stanc_iards Institute, Inc., New York, ANSI/MIL-STD-1815A-1983.

[Lindstrom, 1983]) G. Lindstrom and P. Tinker, "VHDL Simulator Design®, Technical report,
Department of Computer Science, University qf Utah, 1983,

[Nationai, 1981] CMOS Databook, National Semiconductor Corp., 1981, p 1-68.

[Organick et al., 1984]
E. Organick, T.Carter, M. Maloney, A.Davis, A.Hayes, D. Klass, G. Lindstrom,
B. Nelson, and K. Smith, "Transforming an Ada Program Unit to Silicon and
Verifying its Behavior in an Ada Enviranment: A First Experiment”, IEEE Software,
Vol. 1, No. 1, January 1984, pp. 31-49,

{Piloty et al., 1983] R.Piloty, M. Barbacci, D. Borrione, D. Dietmeyer, F. Hill, and P. Skelly, CONLAN
Beport. Lecture Notes in Computer Sciences No. 151, Springer-Verlag, 1983.

[Maloney et al., 1985)
M. Maloney, M. Barbacci, E. Qrganick, J. Woodward, and D. Barton, "Examples of
Ada as a Hardware Description Language". Technical Report, Department of
Cemputer Science, University of Utah, 1985, Also Technical Report, Department
of Computer Science, Carnegie-Mellon University, 1985.

|. Package Lisiings

18

Pin Specification

pachkage Pin_Mgr is
- private

-~ Furction:

=~ This pazkage Jvjines the value that a pin can have and the

-~ procedures 1o conneet, disconnect, equale, unequale, sef values,
-~ ond find values on pins,

type wire_level value is (low, high, undefined);
type pin is private;
null_pin : constant pin; -- deferred constant

procedure Compect(pin_l, pin_2: in out pin);
-- Function:
-= This procedure will connect two pins.

procedure Disconnect{pin_1, pin_2: in out pin};
-- Funciion:

== This procedure will disconnect a pin from whatever it is
== connecied fo.,

procedure Equate{pin 1, pin_2: in out pin);

== Funcion: .

-- This procedure will connect an external pin 1o the internal
-- pinofacomponent.

procedure Urequate{pin_l, pin_2: in out pin);

-- Furction:

== Thisprocadure wil’ disconnect an external pin from whatever it is
- - internal pin of @ cor Jonent.

procedure Ser_value(p : pin; v @ wire_level_value);
-- Function: .
== This procedure wil! gwe the specified pin the given value,

funclion Value_of(p : pin} return wire_level value;
-~ Function:
-~ This function returns the pin_level value of a pin.

tunction Fer_out(p : pin) return namral;
-~ Function:

=~ This function returns the total aumber of

-~ pins that are currenily connecied by the wire that
-~ 1his pin is connected io.

~~ L pinsare connecied by adding them fo the list of pins of
-= a created wire.

r— 2 the plobal atiributes of the connection are stored

-- in the wire record.

-- When pins are connected, a pin record and a wire record are created
=~ The wirc record points to the first pin record in the list und that

-~ pin record poinis to the next untif the last pin contains a null

-~ indicating the end of the list. Each pin record contains a pointer
-- o the wire record so the head of the list can be found from any pin.
type pin_record;

type pin is access pin_record;

type wire_record;

type wire is access wire_record;

null_pin : constani pin := null;

null_wire : constant wire := null;

type pin_record is

record
comnccting_wire : wire := null wire;

next_pin : pin := oull pin; ~- mextpin inlist

end record;

type wire_record is

recard
value : wire_level_value := undefined;
list_ of pins : pin := null_pin;
number_of_pins : namral ;= 0;

end record;

end Pin_Mpr;

Pin Body

package body Pin_Mpgr is

-~ Funcrion:

-~ Pinscllow value access to aff components, these values are stored in
-~ wire records, This package derermines how to connect pins with the
=~ procedures: connect, disconnect{for internal components) and equate,
-- unequate(for internal to external connection). Tke function Connected
-~ returns a boolcan value stating if the pin is connected or not. The

~=- function Value_of returns the value of the pin Function Fun returns
== the number of pins connected o a specific wire. Procedure Set_value
== sets the value of a wire record

function Connected(p : pia) return boolean
-- Function:
-~ Returns a boolean value true if pin is connected, and false if the
-~ pinisnot connected
is
begin’
if p = null_pin or else p.connecting wire = null wire then
return false;
alse
return (rue;
end if; .
end coanzcled;

proczdure Connect{pir:_I, pin_2 : in out pin)
is

== Funciion:

== pinsare connected by linking them into a list

-~ and creating a wire common 1o them both

first pin, last pin, locp pin : pin;

bagin

-~ first make sure that pin_records exist for each

-- pin

if pin_1-= null pin then -~ create a pin_record for pin_I
pin_l := new pin_record;

end if;

it pin_2 = null_nin then -- createa pin_record forpin_2 .
piz_2 := new pin_record;

end if;

it not Connecied{pin_1) and not Connected(pin_2) then
-- Case ! : neither pin s connected
== Ifneither pin is connected a new wire record js created and
-- both pins point to it. The pin_1 becomes the head pin and is
-- poinied to by the wire record The pin_2 becomes the next wire
== jorthe pin_I. Finally the number of pins pointing 1o the wire
== record is incremented by 2,
pin_1, connecting_wire := new wire_record;
pin_2.connecting_wire := pin_l.connecting_ wire;
pin_l. next_pin 1= pin_2;
pin_1.connecting_wire. list_of_pins := pin_1;
pin_1.connecting_wire. number_ol_pins :=

pin_1.connecting_wire. nusiber_of pins + 2;

elsif Connected(pin_l} and not Connecled(pin_2) then
-~ Case2: pin_1is connected and pin_2 isn’t
-- Ifpin_1is connected to a wire and pin_2 is not. Pin_2 wire record
-- becomes pin_1 wire record ,pin_ 2 is now the head of the pin list
-~ which is pointed to by wire record Pin_1 becomes the next pin for
== pin_2 and tke number of pins for the wire is incremented by 1,
pin_2.connecting wire := pin_l, connecting_wire;
pin_2.next_pin := pin_l.connecting_wire. list_of_pins;
pin_1.connecting_wire, list_of_pins := pin_2;
pin_l.connecling_wire. number_of pins :=

pin_1.connccling_wire. number_of_pins + 1;

elsif Connected{pin_2) and not Connected(pin_l) then
== Case3:pin_2isconnected and pin_I isn't
-= Ifpin_2is connected o a wire and pin_1 is not. Pin_I wire record
-~ becomes pin_2 wire record ,pin_1 is now the head of the pin list
~= which is pointed 10 by wire record Pin_2 becomes the next pin for
-- pin_I and the number of pins for the wire Is incremented by 1,
pin_l.connectling_wire := pin_2.conneciing_wire;
pin_l.next_pin := pin_2.connecling_wire. list_of pins;
pin_2.cennecting_wire._list_of_pins := pin_I;
pin_l.connecling_wire. number_of _pins :=

pin_l. connecting_wire. number_of_pins + 1;

else
-- Cased; both are connected
-- The two wire records will be merged and the head will be the
-- head of the pin_2 record list.
if pin_l.connecting_wire = pin_2.connecling wire then

return; -~ already connected to each other

end if;

pin_1.connccting_wire. number_of pins :=
pin_l.connecting_wire. number_of_pins +
pin_2.conneeting_wire. number_of_pins;

loop_pin := pin_2.connccting wire. list_of pias; -~ can't be null

first_pin := loop_pin;

while loop_pin /= null_pin

loop
loop_pin. connecting_wire := pin_l.connecting_wire;
last_pin := loop_pin;
loop_pin := loop_pin.rext_pin;

end loop;

~= Insert the (pin_1) list ar the tail of the list_of pins of the wire

last_pin.next_pin := pin_l.connecting_wire, list_of pins;

pin_l.connecting_wire. list_of_pins := fimst pin;

end if;
end Connect;

procedure Disconnect{pin_1, pin 2 : in out pin)
is

~= Funcrion:

-~ The functionality is not yet defined
begin

null;

Lin Body

procedure Cquate(pin_l, pin 2 : in out pin)
is
-~ Funetion:
=~ The connections are from internaf pins to externai pins.
bagia
coanect(pin_1,pie_2};
end;

procedure Unequale(pin_1, pin_2 : in out pin)
is
-- Function: .
=~ The conrections from internal pins to extcrnal pins is disconnected.
begin
Disconnect({pin_1,pin_2);
end;

procedure Set_value(p : pin; v : wire_level value)
is
~- Function:
== Assignsa value 1o a wire record
begin
if Connected{p) then
p.connecting_wire. value := v;
else
null; -- raise some exception
end if;
end;

function Value of(p : pin) return wire_level value
is

-~ Function:

-~ Determines the vaiue of @ pin and returrs that value.
begin

return p.connecting_wire. value;
end;

function Fan_oui{p : pin} return natyral

is
-- Funcrion:
-~ Determines the number of pins pointing to a wire record and returns
=~ that value

begin
return p.connecting_wirc. number_of pins;

end;

end Pin_Mar;

Bus Specification

with Pin_Mgr;
use Pin_ Mgr:

package Bus Mgr is

-~ Function:

-~ Busesare a defined as arrays of pins. and bus values as arrays

~- of levels This package provides procedures for connecting and

-~ disconnecting buses The function Value_of returns the bus value of
-~ abus The procedure Sct_value szts the value of a bus.

type bus_value is array (namral range <>) of wire_ievel vaiue;
type bus is array (natural range <>} of pin;

procedure Connect{bus_l, bus 2 : in out bus);

~- Function:
-~ (reatesa bus connecting a pair of (conformirg) pin arrays
-~ belonging to subcomponents of a given component

procedure Disconnect{bus_1, bus 2 : in out bus);

~- Function:
== Usdoes the Connect aperation.

procedure Equate(bus 1, bus 2 : in out bus);

== Function:

-~ Creates a bus connecting a pair of (conforming) pin arrays,

== onearray belongs 1o a component and the other {o a subcomponent,

procedure Unequate(bus_1, bus_2 : in out bus);
-~ Furction:
-~ Undoes an Fquate.

procedure Set_value(b : bus; v : bus vaiue);
-~ Function:
== Assigns a bus value to a specified bus.

function Value_of{b : bus) return bus_value;
~— Funetion:
-~ Returns the bus value of a specified bus

bus_mismatch : exception;
~~ Raised when operarions are attempted on nonconforming buses.
end Bus_Mgr;

Bus Body .

with Pin_Mgr;

procedure Eguate(bus_l,bus 2 : in out bus)
use Pin_Mer; -

-- Function:
package body Bus Mgr is == Creates a bus connecting a pair of, (confurming) pin arrays,
-- == onearray belongs 1o a component and the other lo a subcomponent,
-= Function: is
-~ This package provides implementutions of procedures for connecting begin
-~ anddisconnecting buses. The furction Value_of returns the bus value Cennect(bus_1, bus 2};
—= ofabus The procedure Set_value sets the value of o bus, end;

function Nonconforming_buses(bus_1, bus 2: bus} return Boolean
is
begin
it bus_1"length /= bus_2'length then
return true;
else
return false;
end if;
end Nonconforming_buses;

function Nonconforming_bus_and_value(b: bus; v: bus_value) return Boolean
is
begin
if b'length /= v'length then
return true;
else
return false;
end if;
end Nonconforming_bus_and value;

procedure Connect(bus 1, bus 2 : in out bus)

is
== Function:
=~ Creates a bus connecting a pair of (conforming) pin arrays
== belonging o subcomponents of a given component,

begin

it Nonconformiog_buses(bus_1, bus_2) then
raise bus_mismatch:
end if;

== Cornect the buses by connecting their respective pins.
for i in bus_l'range
loop
Cornect{bus_1(i}, bus_2(i));
end looy;
end Connect;

procedure Disconnect{bus_1, bus 2 : in out bus)
is
-- Function:
=~ The functionality is not yet defined
begin
nuii;
and;

procedure Unequate(bus 1, bus_ 2 : in out bus)
=~ Function:
-- Undoesan Equate

is

begin
Disconneci(bus_|, bus_2);

end Unequate;

procedure Sct_value(b : bus; v : bus value)

~- Function:

== dssigns a bus value to a specified bus.
is
begin

if Nonconforming_bus_and_value(b, v) then
raise bus_mismaich;

end if;

for i in b'range
loop

Set_value {b(i}, v(i});
end loop;
end Sel_value;

function Value_of(b : bus) return bus value

-- Funciion:
== Returns the value of a bus b
is
temp_val :bus_value (b'range);
begin
for i in b'range
ioop
temp_val(i) := Value of(b{i});
end loop;
return temp val;
end;
end Bus_Mgr;

Inverter Specification

with Pin_Mgr; use Pin Megr;

package Inverier_Mgr is
-= Function:
-= This package specifies the external pin connections of an inverter
== and a function to create a specified inverser. The procedures to
-~ construct and simulate nverter execution are also described,

type inverter_record is

record
input : pin;
oukput : pin;
end record;

type inverter_pale is access inverler_record;

function Create return inverter_gate;
-~ Function:
-~ Space is alfocated for the inverter and all pins are set to a
-~ disconnected state

procedure Simulale(v: in inverter_gate};
-~ Function:
-~ The procedure Simulaie will read input values and generate the
-~ proper output signal for the inverter_gate.
end Invener Mgr;

Inverter Body

with Pin_Mgr; use Pin_Mgr;
package body Inverter_mgr is

=~ Function:
-~ This package body contains procedure and function details to
-- implemert a nend gate, namely Create and Simulate

function Creatc retusn Iuvener Gate
-~ Funciion:
-~ Creates 3 new insiance of a inverter.
is
begin
telurn new Inverter_record;
end Creale;

procedure Simulate(v: in invenar_gate)
-~ Function:
== This function simulates the logic of an inverter by inverting
== the value of the input pin and placing the value on the ousput pin.
18
begin
casa Value_of(v.input) is
when low => -~ Ifinput is 'ow the output is high
Set_value{v. output,high);
return;
when high => -- Ifinput is high the ouiput is low.
Set_value(v.oulput,low) :
return;
when others =>
null;
end case;
end Simulate;
end Inverter_Magr;

-— Ifinput is undefined no change

Generic Nand Specification

with Pin Mgr; use Pin Mgr;
generic

N : in integer; =~ Number of inputs for nand gare.
package N_Input_Nand Mgr is

== Function:
== Package creates a nand gate with an input array of length N.

type nand_input amay is array(l..N) of pin;

type nand_record is

record
input ngnd_iupul_anay; == Army of input pins for nand gate
output : pin;

end record;

type nand_gate is azcess nand_record;

function Create retyrn nand_gate;
-=Function: N
-~ Creates a new instance of the nand gate

procedure Simu[ate_(gate: in nand gate);
-- Fungrion:
=~ Simulates the nand_gure by reading input values and determining
- appropriafe oulput.
end N_Input Nand_Mer;

Generic Nand Body

with Pin_Mgr; use Pin_Mer:

package body N_Input_Nand_Mpr is
-~ Function:
=- This package body contains procedure and function details to
~= implement a nand gete, namely Create and Simulate.

function Create return nand_gate
-~ Function:
-~ Creates a new instcnce of a nand_gate. Space is allocated for a
== nand_record and alf pins are initialized 1o NULL
is
begin
return new nand_record;
end Create;

procedure Simulate{gate : in pand_gate)

-~ Function:
== This function simulates the logic of @ nand_pate from the input
-- pins and sets the value of the oufput pin.

is
begin
for p in 1..N
loop
it Value of(gate_input(p)) = low then --Ifallinputsare low
Set_value(gate. output, high) ; --output pin is high
return;
end if;
end loop;
Set_Value{gate.output,low); --Ortherwise ouiput pin is
return; --low.

end Simulate;
end N_Input_Nand Mgr;

Two-Input Nand Gate Three-Input Nand Gate

with N_Input_Nand_Megr; with N_Input_Nand_Mgr;
package Three_Input_Nand Mgr is

package Two_Input_Nand_Mgr is new N_luput Nand Mgr(n => 3);

new N_Ioput Nand_Mgr(n => 2);

-= Instantiation of generic N_Inpus_Nand_Mgr package creating a 2 o ‘1 ;;L“;’:é";‘;":a?{ generic N_Inpus_Nand Mgr package creating a 3

~- Iinput nand gate : -

D Latch Specification .

with Pin_Mgr, Inverter Mgr, Two_lnput_Nand Mgr, Three_lnput Nand Mgr;
private

use Pin_Mpr, Invener Mgr, Two_Inpul_Nand_Mgr, Three Input Nand Mgr; " type nand2_array is array(1..3) of wwo_inpui_nand mgr.nand gate;
package D Laich Mgr is type d_latch_components is

-- ’ record

=~ Function: nand?_gates : nand?_ array:

-~ This package specifics the external pin connections of'a d_latch and ‘nand3 : three_input nand_mgr.nand_gate;

-= afunciion to create an instance of a d_latch. The procedures to inverter : inverter_pate;

-= consiruct and simulate its execution are also described. Note that the end record;

== d_lateh specified in this package is somewhat specialized in pin-out for end D_Laich_Mer;

== uselinconstructing National Semiconductor's 74164 components.
type d_latch_components is private;

type d_tawch_record is
record
-=input pins
clock : pin;
dbar pin;
Clear pin;
~-oulput pins
gbar pin;
-~ private part
comporents : d_latch_components;
end reccrd;

type d_lawch is access d latch record;

function Create return d_latch;
~- Function:
-~ Createsad_latwch instance.

procedure Consiruct{dlt : in d_latch);
-~ Function:
== Thespecified d_latch is constructed by first creating then
~= connecting all internal components.

procedure Simulate{dit : in d_latch);
-- Function:

== Thespecified d_latch components are simulated in the exact order
-= asa real chip would operate,

D Latch Body

with Pin_Mgr, Inverier Mgr, Two_laput_Nand Mgr, Three Input_Nand_Mar;
use Pin Mgr, Inverter_Mgr, Two_lnput Nand _Mgr, Three Input Nand Megr;

package body D latch_Mgr is

-- Function:

- This package describes the functions and procedures to produce
== aspecified d_latch, to construct it from its components, and

== {osimulare an actual electrically-static case of reading input

== valuesand returning output values.

function Create return d_latch
== Function:
-- This function creates an instancse of a d_lateh,
is
begin
return new d_latch_record;
end Create;

procedure Construct{dit:in d_latch}

- == Function:
== . This procedure builds the components of ad_latch and
== Interconnects them
is .
begin
for iin 1..3
loop
dlt. components, nand?_pates(i) := Create;
end loop;
dlt. components. inverter := Create;
dit. components. nand3 := Create; -- Thiscreatesa
-~ three input nand_gate
-~ Egquates Section
Equate(dit. dbar , dit. componeats, inverter. input) ;
Equate(dit. dbar , dli. components . pand?_gales(2) . input{2));
Equate(dh.clock , dit.components.nand2 gates{1).input(2));
Equate(dit. clock dit. components. nand2_gates(2) .input{1));
Equate(dlt.clear , dlt.components. sand3. input(3)};
Equate(dit. components. nand3. cuiput , dh.qgbar);

Equate(dit. components. nand3. input (2} , dit.qbar);

-- Connects Section
Connect(dlt . components. inverter. output ,

dlt. components. nand?_gates{1}.irput(1));
Connect(dlt . components. nand2_gates(1} . output ,

dlt. components. nand2_gates{3) .iaput(1}});
Connect(dlt. componeats. nand2_gates(2) . output ,

dli. components. nand3. input(2) j ;
Connect{ dlt. components. nand2_gatas{ 3} output ,

dli. components. nand3. iaput(1)) ;

end Construct;

v

procedure Simulate(dit:in d_latch)
-- Function:
== Each comporent of the d_laich is simulated by reading input values
-= and generating its output in the order that the circuit would
-- normally be executed
is
begin
Simulate(dit. components. inverter) ;
Simulate(dlt. components. nand2_gates{ 1} };
Simulate(dlt. components. nand2_pates(2) };

- - Fecdback loog exists between nand gates two and three.
Simulate(dit. components. nand2_gates(3));
Simulate(dit. components .. nand3) ;

~-When a feedback loop exists then the first gate involved
- - is execufed again.
Simulate({ dlt. compenents. nand2 gates{3));
end Simulate;
end D_Lawch_Megr;

D Flip-Flop Specification

with Pin_Mgr, D Latch Mgr;
use Pin_Mgr, D_Laich Mgr;

package D_Flip Flop_Mgr is
~= Function;
-~ This package specifies the input and output pins to a D_Flip Flop
== provides operaiions fo create and simulate instances of this component.
type d_{f components is private;

type d_flip_flop_record is

record
-~ inputs
dbar : pin; ~= Input data signal d {inverted).
clkbar : pin; -~ Input clock signal {inverted).
clear @ pin; == Input signal 1o clear the flip_flop.
cock : jin; -~ Clock signal to run master laich
-=- output
gbar : pm; ~~Qutput data signal q {inverted).
== prival
componen - : d_ff_components;

end recarg,

type &_flip_flop is access d_flip_flop_record;

function Create retyrn d flip_flop:

-- Function:
== Createsad flip flop.

procedure Coostrua(dif: d_flip flop);
-- Function:
== Createsand inggreonnects components of a d_flip_flop.

procedure Simulate‘ dff: d_flip_flop);

-~ Funcrion:
~= Thespecifiedd flip_flop components are simulated in order,
-~ according to the pattern of signal flow from inpurs to outpus.

private .
type d_lach_amay is array (1..2) of d_laich;

type d_ff components is
record
d_latches : d_latch array;
end record; .
end D_Flip Flop_Megr;

D Flip-Flop Body

with Pin_Mgr, D Laich Mgr;
use Pin_Mpgr, D_Latch_Mgr;

package body D_Rip_Flop_Mygr is

--Function:
-- This package coniains the procedure and function details required
-- o executc the specifications giver in the package D_Flip Flop Mgr.

function Create return d_{flip _flop
--Function:
== Createsad Jlip flop.
is
begin
return new d_fip_fop_record;
end Creale;

procedure Construct{dff:in d_tlip_flop)

-- Function:
==~ Creates and interconnects componenis of ad_flip_flop.
is
begin .
-- Creates iwo instances of e d_latch
dff . componenis. d_tatches{1} := Create;
diT. components. d_fatches(2} := Create;

-~ Egtates Sectior

Equate(dff. dbar , dff.componcnts, d_latches{1) . dbar);

Equate(dff_clock, dff.components.d_latches(1).clock);

Equate{dfi.clkbar, dff.components.d latches{2).clock);
Equate(dff. components. d_latches(2) .gbar , dfT. gbar);

~= Connects Section
Connect(dff. components. d_Latches(1} . qbar,
dff. components. d_laiches{2) . dbar) ;
end Construct;

procedure Simulale (dff:in d_fip_flcp)

--Function: -
-- This procedure simulotes the operation of the d_flip flop
~- by simulating its componcals, ie, by execuring the
-~ functional behavior of its componenis,

is

begin
Simulate{ dff, components. d_liches(1));
Simulate{ dif. components. d_Litches{2));

end Simulate;

end D_Flip_Flop Mgr;

Shift Register Specification

with Pin_Mgr, Inverter_Mgr, Two_Input_Nand_Mgr, D_Flip Flop Mgr;
use Pin_Mgr, Inverier_Mgr, Two_Input_Nand_Mgr, D_Flip Flop Mgr;

package Eight Bit Pamllel Shift Register Mgr is
-- Function:
== This package specifies an 8-bit serial-in paralleFout shift register.
-= TheCreate function, and the procedures Construct, and Simulate are
== provided for this register.
type output_index is {a,b.c,d,e.f,g,k);
type pin_amay is array(output index) of pin;
type shifter_components is private;

type shifier_record is

record
--input pins
clock : pin;
serial a : pin;
serizl_ b : pin;
clear : pin;
==outgut pins
outpul : pin_armay;
—-private pari
components : shifier components;
end record;

type shifter is access shifer record;

function Create return shifter;
-~ Funciion:
== Cremes an instance of a shifter (shift register)

proéedure Construct{sr: in out shifter) ;

-~ Funcrion:
=~ Constructs the shifter’s internal components and
== interconnects them.

procedure Simulate(sr: in shifter);
==~ Function:
== The specified shifter’s components are simulated in order,
-~ according lo the pattern of signal flow from inputs to outputs
-~ ofthe shifter.

private
type misc_inverters_array is array(1..4) of inverter gate;

type oulpul_inverter_array is array(outpul_index) of inverier gate;
type d_flip_fop_array is array(output_index) of d_flip flop;

type shifler_components is

record
nand : : nand_gale;
misc_inverters : misc_inveriers_array;
output_inverlers : output_inverter_array;
d_flip_flops : d_flip_flop_array;
end record;

end Eight_Bit_Parallel Shift Register Mgr;

Shift Register Body

with Pin_Megr, Inverter_Mgr, Two_Input_Nand_Mgr, D_Flip_Flop_Megr;
use Pin_Mgr, Inverter Mgr, Two_Input_Nand Mgr, D_Fip_ Flop Mgr;

package body Eight Bit_Parallel_Shift_Register Mgr is

-- Function:

-~ This package body specifies an 8-bit serial-in parallel-out shift
== register whose internal structure conforms with the National

-~ Semiconductor 74164,

== The Create function, and the procedures Construct, and Simulate
== are provided for this register. ’

function Create return shifter
-~ Function:
-~ Creates an instance of a shifter.
is
begin
return new shifler_record;
end Create;

procedure Construct{sr: in out shifier)
-~ Function: .
== Constructs the s 1ifter’s internal components and
=~ intercommects th m.
is
begin
-~ Create all the components.
for m in output_index
loop
-~ Create the flip flops
sr.components.d_flip_flops(m) := Create;
=~ Create the output inverters.
§7.components. oulput_inverters{m) := Create;
end loop:
=~ Create (4) misc_inverters.
for.i in 1. .4
loop
SF. compoenents. misc_inverters(i) := Create;
end loop;
-~ Createa nand_gate,
7. components. pand ;= Create;

== Eguaes Section
for m in cutput_index
loop
Equate(sr. components. output_inverters{m) . output , sr. output(m) };
end loop;
Equate(sr.clear, sr.components. misc_inverters(4} .input) ;
Equate(sr.scrial_a, sr.components. nand. input{1});
Eguate(sr.serial b , ST.components. nand . input{2}} ;
Equate (sr.clock, sr.components. misc inverters(1). input);

-- Connects Section

loop
Connect(sr. components. misc_inverters(1}, culput ,
sr.components. d_flip_flops(m} . clkbar) ;
Connect (sr. components. misc_inverters{ 3} . output ,
sr. components. d_{flip_flops{m) .clock) ;
Connect(sr. components. misc_inveriers(4) . output ,
sr.components. d_flip_flops{m) .clear) ;
Connect(sr.components. d_flip_flops{m) . gbar ,
S components. oulpul_inverters{m) .input) ;
end loop;
-- also
Connect(sr. components. misc_inveriers(2) . cutput ,
Sr. components. misc_inverters{3}. input) ;
Connect{sr. components. nand . output,
sr, components. d_flip_flops(a).dbur);
-- and also chain the flip flops
for i in output_index’{a).. output_index'{g)
loop
Connect(sr. components. d_flip flops(i).ybar ,
sr.components. d_flip_flops{ cutput_index 'succ{i}). dbar);
end loop;
end Canstruct;

procedure Simulale{sr:in shifier)
-~ Function:
== The specified shifter's components are simulated in order,
== according 10 the pateern of signal flow from inputs 1o outputs’
-~ gf the shifter,

is

begin
Simulate(sr. componenis. mis¢_inverters(2))
Simulate(sr. componenis. misc_inverters(3)) ;
Simulate(sr. components . misc_inverters{1}};
Simulate(sr. components. misc_inverters(4});
Simulate(sr. components. nand) ;

4

- These components can be simulated in a loop since all their inputs
=~ will have been generated dynamically,
for m in output_index
loop
Simulate(sr. components. d_flip_flops{m});
Simulate{sr. components. cutpul_inverters{m)) ;
end loop;
end Simulate;
end Eight_Bit_Parallel Shift_Repister Mgr;

Extended Pin Specification

package Pin_Mgr is
== This s an abridged version of the pin manager package. It shows only
-- those declarations that are new or different from the original version

function Value_of{
p @ pin;
delay_value: natural := 0)
return wire level_value;

type time_signal record;
type lime sigral is access time_signal record:
type step_signal record;
type stcpﬁs‘;ignal is access slep_signal record;

type step_siznal_record is
record
step_salue ¢ wire_level value := undefined;
prev_step_value : slep_signal;
end record;

type time_signal record is
record
lime value : step_signal;
prov_time_value @ time signal;
end record;

type wire_record is
record
value : lime_signal;
iist_of_pins : pin := null_pin;
number_of_pins, @ natural ;= 0;
end record;
end Pin_Mzr;

Extended Pin Body

package body Pin_Mgr is : tl: time_signal;
-~ This is an abridged version of the pin manager packege. It sfiows only -- Function:
-~ those declarations thar are new or different from the original version. -~ Detcrmines the value of a time_signal and returns that value.
-- begin
T e e th o= t;
for i in natural
procedure Set_value(s : in out step_signal; v : wire_level_value) ioop
is if t1 = null
51 : step_signal; then return undefined;
-- else
== Funciion: *if 1 = delay_value
-- Adds g value ro a step_signal history. then return Value_of{1l.time_value);
begin : - else tl := tl.prev_time_value;
sl := new step_signal_record; end if;
sh.step_value := v;) end if;
sl.prev_step_value := s; end loop;
s := si; end;

end Set value;
function Value_of{p: pin; delay value: natural := 0} return wire level value

pracedure Set_value(t : in out time signal; v : wire level_value) is

is --
-- -~ Function:
-~ Function: ~= Determines the vafue of a pin and returns that value.
-- Addsavalue 1o a time_signal history 2gin

begin return Value of(p.connecting_wire. value, delay value);
if t = pult then t := new tme signal record; end if; end;
Ser_value(t. time_value, v);

end Set_value; T et

procedure Set_value(p : pin; v : wire_level value) end Pin_Mgr:

is
-- Function:

=~ Assigns a value to a wire record,
begin
if Connected(p) then
Set_value(p.connecting_ wire. value, v);
clse
null; -- raise some exception
end if;
enc;

functicn Value of{s : step signal) return wire level value
is
-~ Furcilor:
-~ Determines the value of a siep _signal and returns that value.
begin
if § = nuil
then return undefined;
else return s.swep value;
end if;
and;

function Value_of(1: time signal; delay value: natural) return wire lavel value

-~

