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A b s t r a c t 

This paper reports on our initial results in using Ada as a Hardware Description Language. Ada 

provides abstraction mechanisms to support the development of large software systems. Separate 

compilation as well as nesting of packages, tasks, and subprograms allow the construction of 

modular systems communicating through well defined interfaces. The complexity of modern chips 

(e.g. those proposed in the VHSIC program) will require the use of those features that make Ada a 

good language for programming-in-the-large. 

The key to our approach is establishing a writ ing style appropriate to the objective of describing 

both the behavior and the structure of hardware components. We model a hardware system as an 

ensemble of typed objects, where each object is an instance of an abstract data type. The type 

definition and the associated operations are encapsulated by a corresponding package. In this paper 

we illustrate our approach through a series of examples, building up a hypothetical hierarchy of 

hardware components. We conclude by discussing ways to describe arbitrarily complex simulation 

models and synthesis styles. 

1 Introduction 

The work that lead to this report started in response to a DoD request for proposals to design a 

Hardware Description Language for the Very High Speed Integrated Circuit (VHSIC) program. After 

analyzing the requirements we found that Ada 1 [ANSI, 1983] could be a powerful, cost-effective 

hardware description language since it provides abstraction mechanisms to support the development 

of large software systems. Separate compilation as well as nesting of packages, tasks, and 

subprograms allow the construction of a modular system communicating through well defined 

interfaces. 

A desire for a hardware description language should not obscure the strong commonality of 

approaches and techniques between designers of complex hardware and software systems. While 

the full power of Ada may not seem appropriate for the design and specification of small components, 

the design of moder chips (e.g. those proposed in the VHSIC program) will require the use of 

advanced complexity management techniques. We argue that these techniques are directly 

supported by those features of Ada which make it a good language for programming-in-the-large. 

We hasten to add that what we are proposing is Ada, not an Ada-like language. We are not 

1Ada is a trademark of the US Goverment. Ada Joint Project office" 
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contemplating the writ ing of a special compiler; any off-the-shelf Ada compiler will do. We are not 

even proposing adapting or modifying some existing Ada support system; any validated Ada 

implementation will do 2 . 

1.1 Description of the Approach 

We model a hardware system as an ensemble of typed objects, where each object is an instance of 

an abstract data type. The type definition and the associated operations are encapsulated by a 

corresponding package. Thus, each package manages a particular kind of hardare component (e.g., 

wire, nand gate, multiplexor). The public operations of each package include object creation, object 

construct ion (from its component parts, interconnection of those parts, and association of these parts 

with the outer object's interface pins), and simulation. The semantics of these operations are 

explained in later sections. 

Central to our representation of hardware objects are the dual concepts of behavioral and structural 

views of a hardware descript ion. For example, a multiplexor may be described behaviorally as an 

object that selects among a list of inputs. Alternatively, it can be described as a collection of 

interconnected nand gates (in a multiplexor configuration, of course). A behavioral description is 

generally a more abstract view; it hides structural details which introduce implementation decisions. 

The structural description, includes only the information about an object's components and their 

interconnections. The behavior implied by a structural description is determined by the behavior of 

its components and by the way they are interconnected. Behavior is not intrinsically "h igher" than 

structure since, at the lowest level, some components are taken as primitives; their structure is 

hidden, and their description is purely behavioral. In fact, as we shall see in some of our examples, 

mixing structural and behavioral descriptions at the same " level " can be used to enhance the 

descriptive power of the notation, making the intentions of the designers more apparent. 

1.2 Elements of Style 

Discussions about programming styles often degenerate into theological arguments (witness the 

long standing arguments about indentation and capitalization of keywords and identifiers). We do not 

pretend to say that the style we have used in our examples is the best or that it should adopted by all 

users. As a matter of fact, the examples are contrived to display the features of the language, at the 

expense of having perhaps too many levels in the hierarchy of components. In a production 

environment we would expect say, latches and flip-flops, to be implemented as primitive components 

2 
Actually, we do not need the full language; a reasonable subset, containing the right features is sufficient. Talk about Ada 

subsets is, however, considered heresy in some circles and we will not raise this point again. 



3 

whose descriptions are carefully handcrafted for simulation efficiency, rather than to be implemented 

by building them up from inverters and nand gates. In addit ion, to save space, in this paper we have 

limited ourselves to illustrate our approach via simple examples, although we have explored other, 

more complex descriptions in [Maloney et al., 1985]. 

In construct ing the examples we have followed a few guidelines to emphasize readability and 

modularity and to define appropriate layers of abtractions. 

Readability.- The complexity of many hardware systems and their equivalent software 

representations requires that the code be easily understood. We. do rely on comments and the 

flexibility Ada provides for writ ing extended and legible identifiers. Appropriate selection of names for 

variables, types, and operations are also important. 

Ada permits the overloading of enumeration literals and subprogram names. We take advantage of 

this to reduce the names of distinct identifiers that must be learned by the user. The basic operations 

needed to create, construct, and simulate hardware components have the same identifier, 

independent of the component type. The language provides mechanisms to resolve the ambiguities. 

Modularity.- We define this as the ability to connect objects that are of different types through 

compatible interfaces. The strong typing in Ada prevents the kind of error in which a component of 

the wrong type is used by mistake (e.g. passing a nand gate to a D Latch simulation procedure). To 

permit the connect ion and transfer of signals between components, we use universal interface types 

(e.g. pins and buses). All components define their interface in terms of these types. 

Layers of abstraction.- We define this as the ability to have multiple levels of representation for the 

structure and behavior of hardware objects. In our approach we use packages to define libraries of 

abstract types, one per package. Each package is built upon types and operations defined in other 

packages, in a hierachical fashion. In addit ion, the separation of specifications and bodies for these 

packages, permits the use of multiple versions of bodies supporting the same specif ication. This has 

important advantages in that we can quickly "p lug- in" more efficient simulation models or synthesis 

algorithms or design rule checkers, etc. without ever having to alter a client package, or even 

recompile it. The switch happens at link time. 
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1.3 Overcoming Language Limitations 

Ada was not designed with hardware descriptions in mind, thus we have adopted some conventions 

to overcome two shortcomings in the language. 

Lack of Timing Primitives.- Ada has no primitives for expressing time and time-based relationships. 

Mapping a hardware description written in Ada to actual hardware requires either that the hardware 

be implemented using fully asynchronous circuitry, a practice not widely advocated, or that timing 

specif ications be introduced in the process of mapping to hardware. The direct-mapping approach is 

the object of current research at the University of Utah [Organick et al., 1984.] 

We overcome this deficiency by building into the packages operations that perform the synthesis of 

the abstract data type into hardware, incorporating the appropriate synchronization and timing 

information. Thus, rather than counting on a "smart" compiler to decipher the designer's intentions, 

we use "smart" programs and libraries, where these intentions are explicitly stated. 

Ada does not treat packages as first class objects. Ada packages may not directly model hardware 

components unless such packages are elaborated at compile time; they cannot be created 

dynamically as values that can be assigned to variables or passed as parameters. Ada tasks do have 

some of these desirable features, however they suffer from other limitations (e.g. a task specif ication 

cannot define and "export" data types, constants, or objects, only entries.) 

This is an unfortunate but not unsurmountable difficulty. In our approach, we use packages to 

manage instances of (first class) record types which in turn model hardware components. 

2 Elements of the Description Language 

2.1 R e p r e s e n t i n g C o n n e c t i o n s 

Before we present the details of how hardware objects are represented, it is necessary to address 

the problem of intermodule connect ions. 

The relationship that exists between hardware ob jec ts 3 and interconnections is many-to-one; that 

is, many objects can be connected through one connect ion. A first representation of this relation 

could have each object reference the "w i re " to which it is connected. For example, if components A, 

B and C are all connected, we have the arrangement depicted in Figure 1. This representation is 

3 
Actually, here we are referring to an input or output of an object. For example, the output of a nand gate. 
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Figu re 1 : Three components connected by a simple wire 

adequate for most situations. Here we treat the wire itself as an object. For simulation purposes, the 

wire object can have a value attribute that could be set and read by the components that it " jo ins" . 

Information about how many components the wire is connecting can also be maintained in the wire 

object. 

The deficiency in this representation becomes apparent when we allow components to be 

connected in an arbitrary order. In that situation, we must be able to connect objects that are already 

connected by wires. Figure 2 illustrates this point. In connecting components A and C, we would like 

the resulting configuration to have one wire that is referenced by components A, B, C and D. To 

accomplish this requires that we change C and D to reference wire_1 or A and B to reference wi re_2 . 

Note that either of these operations assumes the capability to find all references to a wire. 

The desire for freedom in the order that connections are made motivates a slightly more complex 

representation of wire interconnections. The deficiency'or xhe previous simple strategy is that there is 

no way to reference all of the objects connected by a wire. An intermediate "p i n " data structure 

solves this problem in the following way. If a wire actually establishes connections between pins of 
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Figu re 2: Two components already connected by simple wires 

objects, it can reference, through a linked list of "p ins" , all of the '•pins" that are connected to it. This 

is illustrated by the three pins connected as shown in Figure 3. The task of connecting pins that are 

already connected thus involves trivial linked-list operations to reconfigure the interconnection and 

merge the pin connections to one wire. 

To support the abstractions or wires and pins, we have written a package, Pin_Mgr that declares 

wires and pins as data types and defines appropriate operations for manipulating objects of these 

types. The package is written so that most details about intermodule connections are placed in the 

body of the package and are therefore hidden from the users (the complete package listings appear 

in the Appendix). The public operations of this package are: 

• The procedure CONNECT, which connects two pins (i.e. links them in a 'wire' list.) 

• The procedure DISCONNECT, which breaks a connection (i.e. removes a pin from a 'wire' 
list.) 

• The procedure EQUATE, which associates an internal pin of an object with an external pin 
(i.e. brings cut an internal componentpin.) 

C 

Wi re*-2 

—7K 
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Figu re 3: Three components connected by a simple wire using pins. 

• The procedure UNEQUATE, which undoes an equate. 

• The procedure SET_VALUE, which sets the value on a wire. This procedure and the 
following function can be used for simulation. 

• The function VALUE_OF, returns the value of (i.e. level on) a wire. 

• The function FAN_OUT, returns the number of pins connected to a wire. 

The strategy, then, in building and connecting components is to provide each external input or 

output of an object (representing a component) with a " p i n " that can be used in connecting the 

object with other objects. Pins and wires are not limited to modeling the idealized connections in our 

sample package; physical attributes such as capacitance, delays, loads, distances, locations, etc. can 

be easily described as "attr ibutes" of (i.e. fields of the record types modeling) pins and wires. 
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2.2 Rep resen t i ng Buses 

A bus can be described as an array of pins, using conventions similar to those of a pin. A package 

supporting this abstraction is listed in the Appendix. The visible operations of the Bus__Mgr package 

are: 

• The procedure CONNECT, which connects two internal buses (provided the buses have 
the same width.) 

• The procedure UNCONNECT, which breaks a connect ion. 

• The procedure EQUATE, which associates an internal bus of an object with an external 
bus of the same width. 

• The procedure UNEQUATE, which undoes an Equate. 

• The procedure SETJ/ALUE, which sets the value on a set of wires, again as long as the 
width is the same. 

• The function VALUE_OF, which returns the value of a set of wires. 

The strategy, then, in building and connecting components is to provide each external input or 

output of an object with buses or pins that can be used in connecting the object with other objects. 

2 .3 Rep resen t i ng H a r d w a r e O b j e c t s 

We can identify three possible approaches to the problem of representating hardware objects as 

typed data objects. 

The first approach is to declare hardware objects as totally "pr ivate" (in the Ada sense). All 

operations on objects are defined by a set of procedures and functions that involve such objects, but 

nothing about the objects' structure is visible outside these procedures. Here problems arise when 

attempting to interconnect such objects, since we have no knowledge about an object's interface. 

The other extreme is to declare hardware objects as totally "publ ic" (again, in the Ada sense). 

However, this method exposes information about an object's structure that is irrelevant for 

connecting the object with another object. 

The third approach is a combination of the previous two: we represent hardware structures using 

data types that contain both public and private parts. The public part of an object contains its 

interface information only, while the private part contains implementation details. The example in 

Figure 4, shows the (public) specifications for D flip flops. 
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t y p e d__f f_components i s p r i v a t e ; 

t y p e d _ f 1 i p f l o p _ r e c o r d i s 
r e c o r d 

i n p u t s 
dbar : p i n ; - - I n p u t d a t a s i g n a l d ( i n v e r t e d ) . 
c l k b a r : p i n ; - - I n p u t c l o c k s i g n a l ( i n v e r t e d ) t o run s l a v e l a t c h , 
c l e a r : p i n ; - - I n p u t s i g n a l t o c l e a r t h e f l i p - f l o p , 
c l o c k : p i n ; - - C l o c k s i g n a l t o run m a s t e r l a t c h . 
— o u t p u t 
qba r : p i n ; - - O u t p u t d a t a s i g n a l q ( i n v e r t e d ) . 
- - p r i v a t e 
components : d _ f f ^ c o m p o n e n t s ; 
end r e c o r d ; 

Figu re 4: Structure of the D Flip-Flop 

In the example, the COMPONENTS field of the D Flip-Flop record is a component of a private type. 

Although it is visible as a record component outside its enclosing package, its structure is private. 

Alternatively, the publically visible fields of an object could be defined as the discriminants of an Ada 

private record type, with the hidden parts declared in the full type declaration, in the private part of the 

package specification. With this approach, not even the COMPONENTS field is visible outside the 

package. The drawback is that, in Ada, the values of discriminant fields cannot be modified except by 

a full record assignment. 

2.4 Ope ra t i ons on O b j e c t s 

Now we will describe how to use a hardware data object, that is to instantiate it, to establish its 

functionality, and to simulate it. To begin this process one must first create the object. The function 

CREATE allocates storage to hold values for a component's interface. 

Once a data object has been instantiated we may perform other operations on it, such as 

CONSTRUCT and SIMULATE. The CONSTRUCT procedure establishes a structural description of the 

object by creating and connecting the object's subcomponents. 

Once the function CREATE and optionally the procedure CONSTRUCT have been invoked, objects are 

ready to be simulated. For each object type that we define, we provide a SIMULATE procedure. This 

procedure operates upon information that is placed on the input pins to produce the results on the 

output pins. Objects at the lowest design level (primitive objects) are simulated by executing their 

behavioral description. 
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An object can either be simulated directly, by executing a SIMULATE procedure that implements its 

behavior or indirectly, by executing a SIMULATE procedure that invokes the procedures that simulate 

the subcomponents. Details of the algorithms used to simulate or construct objects are hidden. The 

subprogram specifications only describe the types of the parameters and the results. 

Using this approach, mixed-level simulation is easily implemented (A similar approach to mixed level 

simulation using Simula 67 is described in [Lindstrom, 1983]). The order of simulation of components 

should begin with the input pins and follow the flow of new data throughout the network of 

components. Once all of the components have been simulated the appropriate output values will be 

placed on the output pins. 

3 Shift Register Example 

This section presents a complete example of the specification of a composite hardware object (i.e. 

an object that has subcomponents.) 

Our specification of a shift register (National Semiconductor MM 74C168 [National, 1981]) is built 

bottom-up. We begin by creating certain low-level components, namely 2- and 3-input nand gates and 

inverters, described by packages named Two_Jnput_Nand_Gate_Mgr, 

Three_Jnput_Nand_Gate_Mgr, and lnverter_Mgr, respectively. These packages define primitive 

objects. Primitives have inputs and outputs and only a behavioral description; they are not 

represented by inter-connected subcomponents. 

The package supporting, the abstraction of an inverter declares two data types and two operations. 

The data types describe an inverter as a record with two fields, the input and output pins respectively. 

Since inverters (as well as other gates) are easier to handle as Ada access (i.e. pointer) types, the 

operations defined on inverters do not take an inverter record directly but rather they manipulate 

pointers to inverter records. 

The CREATE operation is used to instantiate an inverter. Since this is a primitive component, there is 

no need to create and connect internal components, as we shall see in later examples. The SIMULATE 

operation computes the value at the output pin, dependingjan the value at the input pin. Notice that 

we are ignoring internal delays; these are idealized inverters. 

The package supporting the abstraction of a nand gate is described as a generic package. This 

permits the definition of nand gates of arbitrary number of inputs by simply instantiating the generic 

package, with the right parameter (the number of input pins), without having to rewrite the type and 
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operation declarations. The input pins are modeled by a dynamic array of pins, whose dimension is 

specified when the generic package is instantiated. 

Using these component definitions, we can establish a structural description for a D Latch. (See 

Figure 5.) The package D_Latch_Mgr package establishes the structural description of D latches by 

creating and interconnecting an inverter and four nand gates whenever the CONSTRUCT procedure (in 

the D Latch package) is invoked. 

Figu re 5: Inside view of the D Latch. 

In the definition of the D Latch record type, we are hiding from the users of the abstraction the 

nature of the implementation of the latch. That is, only the input and output pins are directly available. 

The fact that there are components is revealed by the definition of the COMPONENTS field; however, 

since this field is declared to be of a private type (D_LATCH_COMPONENTS), no user of the package can 

make assumptions about its structure. 

In addition to the CREATE and SIMULATE operations, the D Latch package also provides a CONSTRUCT 

operation. This operation must be invoked after a D Latch has been created and before it can be 

simulated. It builds the latch by instantiating the internal components, connecting them in the right 

configuration, and equating some internal component pins to the input and output pins of the latch. 
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The construction of components continues for the D flip-flop, the next level up in this component 

hierarchy. The package D_Fl ip_Flop_Mgr defines data objects that are composed of D latches (See 

Figure 6.) 

C l o c k B a r C l o c k 

? 9 

DBar D^Latch D<-Latch QBar 

6 
CD 

Figu re 6 : Inside view of the D Flip-Flop. 

Notice the parsimonious nature of our approach. Every new component type is supported by a 

package which exports a record type and an associated access type; this permits the manipulation of 

the object by the support subprograms. In addition, the package exports procedures to create, 

construct, and simulate the component. By hiding the internal structure of a component and the 

implementation of the operations, the designer is free to correct or enhance the abstraction, without 

having to worry about amending packages that import the abstraction (provided of course, that the 

changes do not affect the visible part of the abstraction.) Any hardware system built out of 

components described in this fashion can in turn be used as a primitive component in later designs, 

provided these simple rules of style are observed. 

As with the D latch and the D flip-flop, the serial shift register (Figure 7) is constructed by 

connecting components such as the inverter, nand2, and D flip-flop together n̂ the correct (graph) 

structure. Once constructed, the shift register can be simulated by invoking the procedures that 

simulate its components. 
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F igure 7 : Inside View of the MM 74C168 Shift Register. 

This hierarchical design is represented in the compilation dependency graph for the corresponding 
Ada packages, as shown in Figure 8. 

4 Timing Models: An Example 

In the preceding examples we have exhibited the power of the language to describe the structure 

and interconnections of hardware components. In this section we describe how it is possible to 

implement, within the same framework, arbitrarily complex timing and synchronization models, as well 

as synthesis algorithms. 

By way of example, we have chosen to describe how the element of delay can be added to our 

library. We will represent time after the CONLAN model of computation [Piloty et al. 1983]. CONLAN 

uses the notion of a history of values to model digital hardware. Computation step signals correspond 

to transient values, due to the propagation of state changes in the system. The duration of a step is 

negligible and possible intermediate values in the carriers are invisible to the hardware designer 

only the final value of a step signal has signif icance. Time signals are sequences of step signals 

along time: one step signal per unit of time. Time signals can be inspected for past values (the last 

value of the step signal associated with a given point in the past) as well as current values (the last 

value of the current step signal). 



14 

P i n 
7T\ 7K 7Ts 
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Figu re 8: Compilation Dependency Graph for the Shift Register 

Using this two-layered model of time, we modify our simple pin package as shown in the Appendix 

(under "Extended Pin Specif icat ion" and "Extended Pin Body".) Notice that in addition to the 

additional history carried by a wire, we have added an extra parameter (DELAY_VALUE) to the 

VALUE_OF function. The function now returns a previous value of a signal. We can now use this 

function to model a more realistic inverter gate, .by rewriting the SIMULATE function, as shown in 

Figure 9. 

Notice that the VALUE_OF function in the new pin package specifies a default for the DELAY_VALUE 
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procedure S i m u l a t e ( v : i n i n v e r t e r _ g a t e ) 

— F u n c t i o n : 
— Th is f u n c t i o n s i m u l a t e s the l o g i c of an I n v e r t e r by i n v e r t i n g 
— the va lue o f the I n p u t p in and p l a c i n g the v a l u e on the ou tpu t p i n . 
— The f u n c t i o n assumes a 1 0 - u n l t ga te d e l a y , 
1s 
begin 
case Value__of (v . I n p u t , 10) i s 

when low «> ~ I f I n p u t 1s low the output i s h i g h . 
S e t _ v a l u e ( v . o u t p u t . h i g h ) ; 
r e t u r n ; 

when high - > I f I n p u t 1s h igh the ou tpu t 1s low. 
S e t _ v a l u e ( v . o u t p u t . l o w ) ; 
r e t u r n ; 

when o t h e r s a > I f i n p u t i s u n d e f i n e d , no change 
nul 1 ; 

end case; 
end S i m u l a t e ; 

Figure 9: Inverter with Internal Delay 

parameter. If no delay is provided by the caller, the last value assigned to the pin is returned (i.e. no 

delay is assumed.) 

In this example, we have made a radical change in the package supporting the abstraction of a pin, 

yet the only externally visible change is the addition of one extra parameter to the VALUE_OF function. 

In addition, by providing a default value corresponding to the previous, no-delay version, all we have 

to do is recompile, without changes, any existing library packages. That is, older, idealized (i.e. 

no-delay) components still work; new, more realistic components can now be described, and both 

kinds of components can be mixed in a design. 

To conclude this section, we point out that in our approach we are not limited to using pins and 

internal components as the fields of a record modeling some hardware component. We can just as 

easily declare fields whose values correspond to physical dimensions, power requirements, locations, 

etc. Since the process of constructing components is done by calls to operations defined in the 

library packages (CREATE and CONSTRUCT), it is rather easy to keep track of all instances of these 

components and to check that no design rules are being violated. The data structures needed for the 

bookkeeping provide an internal representation of the design; translating it into masks, wire-lists, or 

other manufacturing information gives us the path towards powerful and flexible design automation 

systems 4 . 

As powerful and flexible as the code we are willing to write, and we have all the power of Ada to do this.... Don't be 
surprised, the emperor in the fairy tale was nakedl 
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5 Conclusions 

In a conventional CAD environment, the separation between the user and the toolmaker is very 

sharp. Tools (translators, simulators, synthesis programs etc.) are written in different languages, by 

separate groups of individuals, who may in turn be distinct from those in charge of maintaining the 

ensemble. Users are bound by the imp lemen ted decisions (and mistakes) and are not usually in a 

position to do anything about them, short of waiting for upgrades or fixing the problems themselves. 

One of the most serious deficiencies with this conventional approach is that often an implementation 

will bind knowledge about a particular technology, synthesis style, or simulation models into the 

implementation in such a way that it is often not possible to change it to reflect new technologies or 

better design methods. 

The technique we are describing is certainly no panacea; errors can still be made. However, we are 

eliminating the middle men and exposing to the users (i.e. designers) the full implementation, 

technology dependent decisions, t iming models, and synthesis styles. Since the implementation 

language is the same language that is used in the day-to-day activities of the designers, they can 

understand the source of the problem, can propose solutions, and finally, can implement the solution 

themselves, without further ado. Good system management practices will probably impose some 

mechanisms to prevent chaos from arising; in particular, it is likely that only expert designers will be 

allowed to implement such changes. Ada provides powerful features to. support the development, 

maintenance, and graceful evolution of large software systems; these same features will be invaluable 

in CAD systems of the 80's and beyond. 

The advantages of using the same language for both the design of hardware and software are 

evident. The flexibility in delaying the binding of (hardware) implementation decisions discussed in 

this paper is easily extensible to a more basic decision, namely, whether a portion of a system is to be 

built in hardware or in software. The use of a single language together with a convention on style, 

permits a designer to write an abstract interface to a computing engine while retaining the freedom to 

implement this engine in either hardware or software. The flexibility continues throughout the life-

cycle of the engine; the decision can be reversed at a later time, if the trade-offs change, without 

affecting in any way the users of the abstraction. 

In addition to the obvious superiority of Ada as a programming language over existing special 

purpose hardware description languages, there are other reasons why Ada is an attractive hardware 

design tool. 
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Ada is a standard language that enjoys the support of the largest software user in the world, the U.S. 

Department of Defense. Thus, it is inevitable that rich programming environments will be built around 

Ada and that the community of users will be several orders of magnitude larger than that of any 

existing or proposed HDL. Not only are modern software development technologies easier to apply by 

the use of Ada but large user communities provide a continuous supply of tools, methods, training 

materials, etc. All of these contribute to a reduction of the life cycle costs of a project. 
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I. Package Listings 



Pin Specification 

package Pinjvfgr is 

Function: 
This package defines the value that a pin can have and the 
procedures to conned disconnect, equate* unequate, set values, 
and find values on pins. 

type wirejevelvalue is (low, high, undefined); 

type pin is private; 

nul lpin : constant pin; deferred constant 

procedure Connect ( p i n l . pin_2: in out p in) ; 

Function: 
This procedure will con nect two pins. 

procedure Disconnectpin_l, pin_2: in out p in) ; 

-- Function: 
This procedure will disconnect a pin from whatever it is 
connected to. 

procedure Equate ( p i n l , pin_2: in out p in) ; 

Function: 
Th is procedure will connect an external pin to the internal 
pin of a component 

procedure Unequate(pin_l, pin_2: in out p in) ; 

Function: 
77i/y procedure will disconnect an external pin from whatever it is 
infernal pin of a con.)oneni 

procedure Set_value(p : pin; v : wire_level_value); 

Function: 

This procedure will %i ve the specified pin the given value. 

function Value_of(p : pin) return wire_level_value; 

Function: 
This function returns the pin_level_yalue of a pin. 

function han_out(p : pin) return natural; 

Function: 
This function returns the total number of 
pins that are currently connected by the wire that 
this pin is connected to. 

private 
- - 7. pins are connected by adding them to the list of pins of 

a created wire. 
7-2. the global attributes of the connection are stored 

in the wire record 

- - When pins are connected a pin record and a wire record are created 
- - The wire record points to the first pin record in the list and that 
- - pin record points to the next until the last pin contains a null 
- - indicating the end of the list. Each pin record contains a pointer 
- - to the wire record so the head of the list can be found from any pin. 

type pinrecord; 

type pin is access pinrecord; 

type wire_record; 

type wire is access wire_record; 

nul lpin : constant pin := nu l l ; 

nullwire : constant wire := nu l l ; 

type pinrecord is 
record 

connccting_wire : wire := nullwire; 
nextpin : pin := null_pin; next pin in 

end record; 

type wire_record is 
record 

value : wire_level_value := undefined; 
lisl_of_pins : pin := null_pin; 
number_of_pins : natural : = 0; 

end record; 
end Pin_Mgr; 



Pin Body 

package body PinMgr is 

- Function: 
- - Pins allow value access to all components, these values are stored in 
- - wire records. Tliis package determines how to connect pins with the 
- procedures: connect,disconnect(for internal components) and, equate, 
- unequateffor internal to external connection). The Junction Connected 
- - returns a boolean value stating if the pin is connected or not The 
- - Junction Value_of returns the value of the pin.Function Fan returns 
- - the number of pins connected to a specific wire. Procedure Setjtalue 
- - sets the value of a wire record 

function Connected(p : pin) return boolean 

Function: 
- - R eturns a boolean value true ifpin is connected, andfalse if the 
- - pin is not connected 

is 
begin 

if p = null_pin or else p.connecling_wire = null_wire then 
return false; 

else 
return true; 

end if; . 
end connected; 

procedure Connect(pin_i, pin_2 : in out pin) 
is 

Function: 
- - pins are connected by linking them into a list 
- - and creating a wire common to them both 
firstjpin, Jast_pin, loop_pin : pin; 

begin 
- - first make sure tltat pinjrecords exist for each 

pin 
if p i n l = null_pin then create a pin_recordforpin_l 

p i n l := new pin_record; 
end if; 
if pin_2 = nul lpin then - - create a pinjrecordfor pin_2 • 

pin_2 := new pin_record; 
end if; 

if not Connected ( p i n l ) 3 n d not Connected(pin_2) then 
- - Case 1: neither pin is connected 
- - If neither pin is connected a new wire record is crea ted and 
- - both pins point to it The pin_l becomes the head pin and is 
- - pointed to by the wire record The pin_2 becomes the next wire 
- for the pin_l. Finally the number of pins pointing to the wire 
- - record is incremented by 2. 
pin_l, connecting_wire := new wire_record; 
pin_2.connecting_wire := pin_l.connecting_wire; 
p in_l . next_pin := pin_2; 
pinl.connectingwire.list_of_pins : = p in_l ; 
p in_l . connecting_wire. number_of_pins : = 

pin_l.conr.ecting_wire.number_of_pins + 2; 

elsif Connected(pinl) and not Connected (pin_2) then 
- - Case 2: pin_l is connected andpin_2 isn 7 
- - If pin_l is connected to a wire andpin_2 is not. Pin_2 wire record 
- - becomes pinl wire record, pin_2 is now the head of the pin list 
- - which is pointed to by wire record Pinl becomes the next pin for 
- - pin_2 and the number of pins for the wire is incremented by 1. 
pin_2.connecting_wire := pin_l.connecting_wire; 
pin_2.next_pin : = pinl.connectingwire.list_of_pins; 
pin_l.connectingwire.list_ofjpins := pin_2; 
pin_l.connectingwire.number_of_pins : = 

pin_l . connectingwire. number_of_pins + 1; 

elsif Connected(pin_2) and not Connected(pin_l) then 
- - Case 3: pin_2 is connected and pin_l isn 7 
- lfpin_2 is connected to a wire and pinl is not. Pinl wire record 
- - becomes pin_2 wire record,pinl is now the head of the pin list 
- - which is pointed to by wire record Pin_2 becomes the next pin for 
- - pinl and the number ofpins for the wire is incremented by 1. 
pin_l . connecting_wire := pin_2. connecting_wire; 
pin_l.next_pin : = pin_2.connectingwire.list_of_pins; 
pin_2.connecting_wire.list_of_pins := p in_l ; 
pin_l.connectingwire.number_of_pins : = 

pin_l. connectingwire. number_of_pins + 1; 

else 
- - Case 4: both are connected 
- The two wire records will be merged and the head will be the 
- head of the pin_2 record list 
if p i n l . connecting_wire = pin_2. connecting wire then 

return; — already connected to each other 
end if; 

pin_l.connectingv/ire.number_of_pins : = 
pin_l . connecting_wire. number_of_pins + 
pin_2. connecungwire. number_of_pins; 

loop_pin := pin_2.connecting_wire.list_of_pins; can't be null 
firstpin := loop_pin; 
while loop_pin /= nul lp in 
loop 

loop_pin.connect!ng_wire : = pinl.connecting_wire; 
last__pin := loop_pin; 
loop_pin := loop_pin. next_pin; 

end loop; 
- - Insert the (pinl) list at the tail of the list_of_pins of the wire 
last_pin.nextpin : = pin_l.connectingwire.list_of_pins; 
pin_l.connecting_wire.list_of_pins := flrst_pin; 

end if; 
end Connect; 

procedure Disconnect( p i n l , pin_2 : in out pin) 
is 

Function: 
- - The functionality is not yet defined 

begin 
null; 



Pin Body 

procedure I2quate(pin_l, pin_2 : in out pin) 
is 

Function: 
- - The connections are from internal pins to external pins, 

begn 
connect(pin_l, pin_2); 

end; 

procedure Unequate(pin__l, pin_2 : in out pin) 
is 

Function: 
- - The connections from internal pins to external pins is disconnected 

begin 
Disconnect pin_l , pin_2); 

end; 

procedure Set_value(p ; pin; v : wirejevel_value) 
is 

- Function: 
- - Assigns a value to a wire record 

begin 
if Connected(p) then 

p. connecting_wire. value ;= v; 
else 

null; raise some exception 
end if; 

end; 

function Value_of(p : pin) return wire_Jevel_value 
is 

Function: 
- - Determines the value of a pin and returns that value. 

begin 
re tu rn p. connecting_wire. value; 

end; 

function Fan_out(p : pin) return natural 
is 

Function: 
- - Determines the number of pins pointing to a wire record and returns 
- - that value. 

begin 
re t u r n p. connecting_wire. number_of_pins; 

end; 
end Pin_Mgr; 



Bus Specification 

with P inMgr; 
use P inMgr; 

package Bus_Mgr is 

— Function: 
— Buses are a defined as arrays of pins and bus values as arrays 
— of levels. This package provides procedures for connecting and 
— disconnecting buses The function Value_of returns the bus value of 
— - a bus The procedure Set_value sets the value of a bus. 

type bus_value is array (natural range <>) of wire_level_value; 

type bus is array (natural range <>) of pin; 

procedure Connect(bus_l, bus_2 : in out bus); 

Function: 
Creates a bus connecting a pair of (conforming) pin arrays 
belonging to subcomponents of a given component 

procedure Disconnectbus_JL, bus_2 : in out bus); 

— Function: 

Undoes the Connect operation. 

procedure Equate(bus_l, bus_2 : in out bus); 

— Function: 
Creates a bus connecting a pair of (conforming) pin arrays, 

one array belongs to a component and the other to a subcomponent 

procedure Unequate(bus__lf bus_2 : in out bus); 

— Function: 

Undoes an Equate. 

procedure Set_value(b : bus; v : bus_value); 

— Function: 

Assigns a bus value to a specified bus. 

function Value_of(b : bus) return bus_value; 

— Function: 
R e turns the bus value of a specified bus. 

bus_mismatch : exception; 
— Raised when operations are attempted on nonconforming buses. 

end Bus_Mgr; 



Bus Body 

v/ith PinMgr; 
use PinMgr; 

package body BusMgr is 

Function: 
This package provides implementations ofprocedures for connecting 

— and disconnecting buses. The function Valuej)f returns the bus value 
- - of a bus. The procedure Set_yalue sets the value of a bus 

function Nonconfonning__buses(bus_l, bus_2: bus) return Boolean 
is 
begin 
if bus 1'length /= bus_2* length then 

return true; 
else 

return false; 
end if; 

end Nonconforming_buses; 

function Nonconfonning_bus_and_value(b: bus; v: bus_value) return Boolean 
is 
begin 
if b'length /= v'length then 

return true; 
else 

return false; 
end if; 

end Nonconfonning_bus_and_value; 

procedure Connect(bus_l, bus_2 : in out bus) 
is 

— Function: 
Creates a bus connecting a pair of (conforming) pin arrays 
belonging to subcomponents of a given component 

begin 
if NonconformiDg_buses(bus_l, bus_2) then 

raise bus_mismatch; 
end if; 

- - Connect the buses by connecting their respective pins. 
for i in b u s i ' range 
loop 

Conneet(bus_l(i), bus__2(i)); 
end loop; 

end Connect; 

procedure Disconnectbus_l, bus_2 : in out bus) 
is 

Function: 
-- The functionality is not yet defined 

begin 
nul l ; 

end; 

procedure Equate(bus_l,bus_2 : in out bus) 

Function: 
Creates a bus connecting a pair of (conform ing) pin arrays, 
one array belongs to a component and the other to a subcomponent 

is 
begin 

Connect(bus_l, bus_2); 
end; 

procedure Unequate(bus_l, bus_2 : in out bus) 

Function: 
Undoes an Equate. 

is 
begin 

Disconnect (bus J , bus_2); 
end Unequate; 

procedure Set_value(b : bus; v : bus_value) 
Function: 

Assigns a bus value to a specified bus 
is 
begin 

if Nonconforming_bus_and_value(b, v) then 
raise busmismatch; 

end if; 
for i in b* range 

loop 
Set_value ( b ( i ) , v ( i ) ) ; 

end loop; 
end Setvalue; 

function VaJue_of(b : bus) return bus_value 

Function: 
- - Returns the value of abusb 

is 
tempval :bus_value ( b f range); 

begin 
for i in b'range 
loop 

tcmpval(i) := Value_of(b(i)); 
end loop; 
return tempval; 

end; 
end Bus_Mgr; 



Inverter Specification 

with Pin_Mgr; use Pin_Mgr; 

package InverlcrMgr is 

— Function: 
- - This package specifies the external pin connections of an inverter 
- - and a function to create a specified inverter. The procedures to 
— construct and simulate inverter execution are also described 

type inverter_record is 
record 

input : pin; 
output : pin; 

end record; 

type invertergate is access inverterrecord; 

function Create return inverter_gate; 

— Function: 
- - Space is allocatedfor the inverter and all pins are set to a 
— disconnected state. 

procedure Simulate(v: in invertergate); 

— Function: 
- - The procedure Simulate will read input values and generate the 
- - proper output signal for the inverterjgate. 

end InverterMgr; 

Inverter Body 

with Pin__Mgr; use Pin_Mgr; 

package body Invertcrmgr is 

Function: 
- - This package body contains procedure and Junction details to 

implement a nand gate, namely Create and Simulate. 

function Create return Iuvener_Gate 

- - Function: 
- - Creates a new instance of a inverter. 

is 
begin 

return new lnverter_record; 
end Create; 

procedure Simulate(v: in invertergate) 

Function: 
- - This function simulates the logic of an inverter by inverting 

the value of the input pin and placing the value on the output pin. 
is 
begin 

case Value_of(v.input) is 
when low => If input is low the output is high 

Set_value( v. output. high); 
return; 

when high => - - If input is high the output is low. 
Set_value( v. output, low); 
return; 

when others s > — If input is undefined, no change 
null; 

end case; 
end Simulate; 

end Invertcr__Mgr; 



Generic Nand Specification 

with Pin_Mgr; use Pin_Mgr; 

generic 

N : in integer; —Number of inputs for nand gate. 

package N_Input_Nand_Mgr is 

— Function: 
Package creates a nand gate with an input array of length N. 

type nandinputarray is a r r a y ( L . N ) off pin; 

type nandrecord is 
record 

input : nand_input__array; —Array of input pins for nand gate, 
output : pin; 

end record; 

type nand_gate is access nandrecord; 

function Create return nandgate; 

—Function: 

- - Creates a new instance of the nand gate. 

procedure Simulate (gate: in nand_gate); 

— Function: 
Simulates the nandjgate by reading input values and determining 
appropriate output 

end N_Input__Nand__Mgr; 

Generic Nand Body 

with PinMgr; use PinMgr; 

package body N Input_Nand_Mgr is 

— Function: 
- - This package body contains procedure and function details to 

implement a nand gate, namely Create and Simulate. 

function Create return nandjgate 

Function: 
- Creates a new instance of a nandjgate. Space is allocated for a 
- - nand_ record and all pins are initialized to NULL 

is 
begin 

return new nandrecord; 
end Create; 
procedure Simulate(gate : in nandjgate) 

- Function: 
- - This function simulates the logic of a nandjgate from the input 
- - pins and sets the value of the output pin. 

is 
begin 

for p in 1. . N 
loop 

if VaIue_of(gate.input(p)) s low then —If all inputs are low 
Selvalue (gate. output, high); — output pin is high 
return; 

end if; 
end loop; 
Set_ Value (gate. output, low); - - Otherwise output pin is 
return; —low. 

end Simulate; 
end NJnput_Nand_Mgr; 



Two-Input Nand Gate 

with N_Input_Nand_Mgr; 

package Two_Input_Nand_Mgr is 
new NJnput_Nand_Mgr(n »> 2 ) ; 

- - Instantiation of generic N_Input_Nand_Mgr package creating a 2 
— input nand gate. 

Three-Input Nand Gate 

with N_Input__Nand_Mgr; 

package lliree_Input_Nand_Mgr is 
new N_Input_Nand_Mgr(n => 3 ) ; 

— Instantiation of generic NJnputJNandJMgr package creating a 
— input nand gate, 



D Latch Specification 

with PinMgr. InverterMgr, Two_Input__Nand Mgr. Three_Input_Nand_Mgr; 

use P inMgr, InverterMgr, Two_Input_Nand_Mgr, Three_Input_Nand_Mgr; 

package DLa tchMgr is 

- Function: 
- - This package specifies the external pin connections of a djatch and 
- - a Junction to create an instance ofa djatch. The procedures to 
- - construct and simulate its execution are also described. Note that the 
- - djatch specified in this package is somewhat specialized in pin-out for 

use in constructing National Semiconductors 74164 components 

type d_latch_components is private; 

type d_latch_record is 
record 

- - input pins 
clock : pin; 
dbar : pin; 
clear : pin; 
--output pins 
qbar : pin; 
- -privatepart 
components : djatchcomponents; 

end record; 

type d_latch is access d_latch_record; 

function Create return d jatch; 

Function: 

Creates a djatch instance. 

procedure Construct(dlt : in d ja tch) ; 

— Function: 
The specified djatch is constructed by first creating then 
connecting all internal components 

p-rccedure Simulate(dlt : in d ja tch) ; 

Function: 
T7ie specified djatch components are simulated in the exact order 
as a real chip would operate. 

private 
type nand2_array is array(1. .3) of two_input_nand_mgr.nand_gate; 

type dJatch_components is 
record 

nand2_gates : nand2_array; 
nand3 : threeJnput_nand_mgr. nand_gate; 
inverter : inverter_gate; 

end record; 
end D_Latch_Mgr; 



D Latch Body 

with P inMgr, Inverter_Mgr, Two_Input_Nand_Mgr, Three__Input_Nand_Mgr; 
use PinMgr, InverterMgr, TwoJnput_Nand_Mgr, Three_Input_Nand_Mgr; 

package body D_Latch_Mgr is 

— Function: 
This package describes the Junctions and procedures to produce 
a specified djatch to construct it from its components, and 
to simulate an actual electrically static case of reading input 
values and returning output values 

function Create return djatch 

— Function: 
This function creates an instancse ofa djatch 

is 
begin 

return new d_latch_record; 
end Create; 

procedure Constmct(cUt:in djatch) 

— Function: 
— . This procedure builds the components of a djatch and 

interconnects them. 
is 
begin 

for i in 1. .3 
loop 

dlt. components. nand2_gates(i) : = Create; 
end loop; 

dlt.components.inverter : - Create; 
dlt. components. nand3 := Create; — This creates a 

-- three input nandj^ate. 
— Equates Section 

Equate (dlt. dbar , dlt. components. inverter. input); 
Equate(dlt.dbar , dlt.components.nand2_gates(2),input(2)); 
Equate( dlt. clock , dlt.components.nand2_jgates( 1) ; input(2)) ; 
Equate (dlt. clock , dlt. components. nand2_jgates( 2 ) . input( 1 ) ) ; 
Equate (dlt. clear , dlt. components. nand3. input( 3 ) ) ; 
Equate (dlt. components. nand3. output , dlt. qbar); 
Equate (dlt.components.nand3.input(2) , dlt.qbar); 

Connects Section 

Connect( dlt. components. inverter. output , 
dlt. components. nand2_gates( 1 ) . input( I ) ) ; 

Connect( dlt. components. nand2_gates( 1 ) . output , 
dlt. components. nand2_gates( 3 ) . input( 1 ) ) ; 

Connect( dlt. components. nand2__gates( 2 ) . output , 
dlt. components. nand3. input( 2 ) ) ; 

Connect( dlt. components. nand2_ gates ( 3 ) . output , 
dlt. components. nand3. input( 1 ) ) ; 

end Construct; 

procedure Simuiate(dlt:in djatch) 

Function: 
Each component of the djatch is simulated by reading input values 
and generating its output in the order t/iat the circuit would 
normally be executed 

is 
begin 

Simulate(dlt. components, inverter); 
Simulate^dlt. components. nand2_gates( 1 ) ) ; 
Simulated dlt. components. nand2_gates( 2 ) ) ; 

--Feedback loop exists between nand gates two and three. 
Simulate (dlt. components. nand2_gates( 3 ) ) ; 
Simulated dlt. components. nand3); 

- - When a feedback loop exists then the first gate involved 
—is executed again. 
Simulate (dlt. components. nand2j>ates( 3 ) ) ; 

end Simulate; 
end D_Latch_Mgr; 



D Flip-Flop Specification 

with Pin_Mgr. D_Utch_Mgr; 
use Pin_Mgr, D_Latch_Mgr; 

package D_Flip_Flop__Mgr is 

— Function; 
— - This package specifies the input and output pins to a D_Flip__Fhp 
— provides operations to create and simulate instances of this component 

type d_ff_componerits is private; 

type d_flip_flop_record is 
record "~ 

-- inputs 
dbar : pin; — Input data signal d (inverted). 
clkbar : pin; — Input clock signal (inverted). 
clear : pin; — Input signal to clear the flipJlop. 
clock : pjn; — Clock signal to run master latch 
— output 
qbar : pin; —Outputdata signalq (inverted). 
— privati 
componen 7 : d_rT_components; 

end recorq, 

type d_flip_flop is access d_flip_flop_record; 

function Create return d j l ip j lop; 

— Function: 

— Creates adJlip Jlop 

procedure Constructdff: d j l ip j lop ) ; 

— Function: 

— - Creates and interconnects components of adJlipJlop 

procedure Simulate^dff: d j l ip j lop ) ; 

Function: 
— The specified djlipJlop components are simulated in order, 
— according to the pattern ofsignalflow from inputs to outputs. 

private 
type d_latch_array is array ( 1 . . 2 ) of djatch; 
type d_fF_components is 

record 
d latches : d latch_array; 

end record; 
end DJ?lipJFlop_Mgr; 

D Flip-Flop Body 

with Pin_Mgr, D_Latch_Mgr; 
use P inMgr , D_Latch_Mgr; 

package body D_Flip_Rop_Mgr is 

—Function: 
This package contains the procedure andJunction details required 
to execute the specifications given in the package DJtlipJFlopJdgr. 

function Create return d j l i p j l o p 

- - Function: 
Creates adJlipjlop. 

is 
begin 

return new d_flip_flop_record; 
end Create; 

procedure Construct(dff:in d j l i p j l o p ) 

Function: 
- - Creates and interconnects components of a dJlipJlop 

is 
begin . 

- - Creates two instances of a djatch 
dfT. components. d_ latches ( I ) : = Create; 
dlf.components.djatches(2) : - Create; 

Equates Section 

Equate(dff. dbar , dff. components. d_latches( 1 ) . dbar); 
Equate (dff. clock. dff. components. d_latches( i ) . clock); 
Equate (dff. clkbar, dff. components. d_latches( 2 ) . clock); 
Equate (dff. components. djatches( 2 ) . qbar , dfT. qbar); 

Connects Section 

Connect( dff. components. djatches( 1). qbar, 
dfT. components. dJatchcs( 2 ) . dbar); 

end Construct; 

procedure Simulate (dff: in d j l i p j l o p ) 

- - Function: 
- - This procedure simulates the operation of the dJlipJlop 

by simulating its components, L a, by executing the 
- - functional beliavior of its components. 

is 
begin 

Simulate( dff. components. d_latches( 1 ) ) ; 
Simulate^dff.components. d_htches(2)); 

end Simulate; 
end D_FlipJFlop_Mgr; 



Shift Register Specification 

with Pin_Mgr, Inverter_Mgr, Two_Input__Nand_Mgr, D_Flip__Flop_Mgr; 
use PinMgr, InverterJVfgr, Two_Input_Nand_M&r, D_Flip_Flop_Mgr; 

package Eight_Bit_Parallel_Shift__Register_Mgr is 

Function: 
— This package specifies an 8-bit seriaHn parallebout shift register. 
- - The Create function, and the procedures Construct, and Simulate are 

provided for this register. 

type output_index is (a ,b ,c ,d ,e , f ,g ,h) ; 

type pin_array is array(outpuMndex) of pin; 

type ' shifter_components is private; 

type shifter_record is 
record 

—input pins 
clock : pin; 
serial_a : pin; 
serial_b : pin; 
clear : pin; 
—output pins 
output : pin_array; 
--private part 
components : shifter_components; 

end record; 

type shifter is access shifterjrecord; 

function Create return shifter; 

— Function: 

Creates an instance of a shifter (shift register). 

procedure Constructor: in out shifter) ; 

Function: 
— - Constructs the shifters internal components and 

• — interconnects them. 
procedure Simulate(sr: in shifter); 

— Function: 
— The specified shifters components are simulated in order, 
— - according to the pattern of signalflow from inputs to outputs 

of the shifter. 

private 

type misc_inverters_array is array(1. .4) of invertergate; 

type output_inverter_array is array (output index) of invertergate; 

type d_flip_flop_array is array(outputindex) of d_flip_flop; 
type shii\er_components is 

record 
nand : nand_gate; 
rnisc_inverters : misc_inverters_array; 
output_inverters : output_inverter_array; 
d_flip_flops : d_flip_flop_array; 

end record; 
end Eight_Bit_Parallel_Shift__Register_Mgr; 



Shift Register Body 

with P inMgr, InverterMgr, TwoJnput NanoJMgr, D_Flip_Rop_Mgr; 
use PinMgr, InverterMgr, Two_Input_Nand_Mgr, D_Ftip_Flop_Mgr; 

package body Eight_Bit_Parallel_Shift_Register._Mgr is 

— Function: 
— - This package body specifies an 8-bit serial-in parallel-out shift 
— register whose internal structure conforms with the National 
— Semiconductor 74164. 

The Create function, and the procedures Construct, and Simulate 

— - are providedfor this register. 

function Create return shifter 

Function: 
Creates an instance of a shifter. 

is 
begin 

return new shifter_record; 
end Create; 
procedure Construct, (sr: in out shifter) 

Function: 
- - Constructs the s lifters internal components and 

interconnects th.'m. 
is 
begin 

Create all the components 
for m in output_index 
loop 

-- Create the flip flops 
sr.components.d_flip_flops(m) : = Create; 
- - Create the output inverters. 
sr.components.output_inverters(m) := Create; 

end loop; 
Create (4) miscjnverters. 

f o r i in 1. .4 
loop 

sr.components.misc_inverters(i) := Create; 
end loop; 

Create a nand_gate> 
sr.components.nand : = Create; 

— Equates Section 

for m in outputindex 
loop 

Equate (sr. components. outputinverters ( m ) . output , sr. output( m ) ) ; 
end loop; 
Equate(sr. clear, sr. components. miscjnverters(4). input); 
Equate (sr. serial_a, sr. components. nand. input ( 1 ) ) ; 
Equate (sr. serialJ> , sr. components. nand. input( 2 ) ) ; 
Equate (sr. clock, sr. components. miscjnverters ( 1 ) . input); 

— Connects Section 

loop 
Connectsr. components. miscjnverters(1). output , 

sr. components. d_flip_flops( m ) . clkbar); 
Connect( sr. components. miscjnverters(3). output , 

sr. components. d_flip_flops( m ) . clock); 
Connect( sr. components. miscjnverters(4). output , 

sr. components. d_flip_flops( m ) . clear); 
Connect( sr. components. d f l i p _flops( m ) . qbar , 

sr. components. outputJnverters ( m ) . input); 
end loop; 

also 
Connect( sr. components. m iscin verters ( 2 ) . output , 

sr. components. misc_inverters( 3 ) . input); 
Connect( sr. components. nand. output, 

sr. components. d_flip_(lops( a ) . dbar); 
- - and also chain the flip flops 
for i in output index'(a). . outputjndex• (g) 
loop 

Connect( sr. components. d_flip_flops( i ) . qbar , 
sr.components.dflip flops(outputindex'succfi)) .dbar) 

end loop; 
end Construct; 

procedure Simulate(sr:in shifter) 
Function: 

The specified shifter s components are simulated in order, 
- - according to the pattern of signal flow from inputs to outputs 
- - of the shifter. 

is 
begin 

Simulatc( sr. components. misc_inverters( 2 ) ) ; 
Simulate(sr.components, miscjnverters ( 3 ) ) ; 
Simulate^ sr. components. misc_inverters( 1 ) ) ; 
Simulate^ sr. components. miscin verters ( 4 ) ) ; 
Simulate(sr. components. nand); 

- - These components can be simulated in a loop since all their inputs 
- - will have been generated dynamically. 
for m in outputjndex 
loop 

Simulate(sr. components. d_flip_flops( m ) ) ; 
Simulate^ sr. components. output_inverters( m ) ) ; 

end loop; 
end Simulate; 

end Eight_Bit_Parallel_Shift_Register_Mgr; 



Extended Pin Specification 

package PinMgr is 

- - This is an abridged version of the pin manager package. It shows only 
- - those declarations that are new or different from the original version. 

function Value_of( 
P : pin; 
de!ay_value: natural := 0) 
return wirelevelvalue; 

private 

type timc_signal_record; 

type timesignal is access time_signal_record; 

type stepsignalrecord; 

type stcpsignal is access step_signal_record; 

type stcpsignalrecord is 
record 

stepvalue : wire_levcl_value := undefined; 
prev_stcp_value : step_signal; 
end record; 

type timesignalrecord is 
record 

iimc_value : step_signal; 
pro\ _t:nic_value : time_signal; 
end record; 

type wirerecord is 
record 

value : time_signal; 
l is tofp ins : pin := null_pin; 
number_of_pins. : natural := 0; 

end record; 
end Pin Mgr; 



Extended Pin Body 

package body PinMgr is 

- - This is an abridged version of the pin manager package. It shows only 
- - those declarations riiat are new or different from the original version. 

procedure Set_value(s : in out step_signal; v : wire_level_value) 
is 
si : stcp_signal; 

Function: 
Adds a value to a step_signal history. 

begin 
si := new step_signal_record; 
s i . step_value := v; 
s i . prev_step_value := s; 
s := s i ; 

end Set_value; 

procedure Set_value(t : in out time_signal; v : wire_level_value) 
is 

- - Function: 
Adds a value to a tirnejsignal history 

begin 
if t = null then t := new timejsignaljrecord; end if; 
Set_value(t. time_value, v ) ; 

end Set_value; 

procedure Set_value(p : pin; v : wire__level_\alue) 
is 

Function: 
- - Assigns a value to a wire record. 

begin 
if Connected(p) then 

Set_value(p. connecting_wire. value, v ) ; 
else 

null; raise some exception 
end if; 

end; 

function Vaiue_of(s : step_signal) return wirejevel__value 
is 

-- Function: 
- - Determines the value of a step_signal and returns that value. 

begin 
if s = null 

then return undefined; 
else return s.stepvalue; 
end if; 

end; 

function Value_of(t: time_signal; delay_value: natural) return wire_level_value 

t l : time_signal; 

Function: 
- - Determines the value ofa timesignal and returns that value. 

begin 
t l := t; 
for i in natural 
ioop 

if t l = null 
then return undefined; 
else 

* if i = delayvalue 
then retu rn Value_of( t l . timevalue); 
else t l := tl.prev_time_value; 
end if; 

end if; 
end loop; 

end; 

function Value_of(p: pin; delay_value: natural := 0) return wirejevelvalue 
is 

Function: 
Determines the value of a pin and returns that value. 

begin 
retu rn Value_of( p. connecting_wire. value, delay value); 

end; 

end Pin_Mgr; 


