
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS: 
The copyright law of the United States (title 17, U.S. Code) governs the making 
of photocopies or other reproductions of copyrighted material. Any copying of this 
document without permission of its author may be prohibited by law. 



CMU-CS-85-1'02 

Compiling Path Expressions 
into VLSI Circuits 

T. S. Anantharaman 
E. M. Clarke 
M. J. Fosterf 

B. Mishra 

Carnegie-Mellon University 
Pittsburgh, Pennsylvania 15213 

August 1984 

^Current address: Department of Computer Science, Columbia University, New York, New York 10027. 

This research was partially supported by NSF Grant MCS-82-16706, and the Defense Advanced Research 
Projects Agency (DOD), ARPA Order No. 3597, monitored by the Air Force Avionics Laboratory Under 
Contract F33615-81-K-1539. 



i 

Table of Contents 
1. Introduction 1 
2. The Semantics of Path Expressions 3 
3. Synchronizers for Multiple Path Expressions 5 
4. Implementing the Sequencer for a Simple Path Expression 10 
5. Implementation of the Arbiter 18 
6. Conclusion 24 



1 

Abstract: Path expressions were originally proposed by Campbell and Habcrmann [1] as a mechanism for 
process synchronization at the monitor level in software. Not unexpectedly, they also provide a useful 
notation for specifying the behavior of asynchronous circuits. Motivated by this potential application we 
investigate how to directly translate path expressions into hardware. 

Our implementation is complicated in the case of multiple path expressions by the need for synchronization 
on event names that are common to more than one path. Moreover, since events arc inherently asynchronous 
in our model, all of our circuits must be self-timed. 

Nevertheless, the circuits produced by our construction have area proportional to N • log(N) where N is the 
total length of the multiple path expression under consideration. This bound holds regardless of the number 
of individual paths or the degree of synchronization between paths. 

1 . Introduction 
As the boundary between software and hardware grows less and less distinct, it becomes increasingly 

important to investigate methods of directly implementing various programming language features in 

hardware. Since many of the problems in interfacing hardware devices involve some form of process 

synchronizadon, language features for synchronization deserve considerable attention in such investigations. 

In this paper we consider the problem of directly implementing path expressions as self-timed VLSI circuits. 

Path expressions were originally proposed by Campbell and Habermann [1] for restricting access by other 

processes to the procedures of a monitor. For example, the simple readers and writers problem with two 

reader processes and a single writer process is solved by the following multiple path expression: 

path R x + W end, 
path R 2 + W end. 

The first path expression prohibits a read operation by the first process from occurring at the same time as a 

write operation. The second path expression enforces a similar restriction on the behavior of the second 

reader process. In a computation under control of the multiple path expression, the two read operations may 

occur simultaneously, but a read and write operation cannot occur at the same time. 

Path expressions are useful for process synchronization for two reasons: First, the close relationship 

between path expressions and regular expressions simplifies the task of writing and reasoning about programs 

which use this synchronization mechanism. Secondly, the synchronization in many concurrent programs is 

finite state and thus, can be adequately described by regular expressions. For precisely the same reasons, path 

expressions are useful for controlling the behavior of complicated asynchronous circuits. The readers and 

writers example above could equally well describe a simple bus arbitration scheme. In fact, the finite-state 

assumption may be even more reasonable at the hardware level than at the monitor level. 



2 

Which brings us to the topic of this paper: What is the best way to translate path expressions into circuits? 

Laucr and Campbell have shown how to compile path expressions into Petri nets [6], and Patil has shown how 

to implement Petri nets as circuits by using a PLA-like device called an asynchronous logic array [11]. Thus, 

an obvious method for compiling path expressions into circuits would be to first translate the path expression 

into a Petri net and then to implement the Petri net as a circuit using an asynchrouous logic array. However, 

careful examination of Lauer and Campbell's scheme shows that a multiple path expression consisting of M 

paths each of length K can result in a Petri net with K M places. Thus, the naive approach will in general be 

infeasiblc if the number of individual paths in a multiple path expression is large. 

For the case of a path expression with a single path their scheme does result in Petri net which is 

comparable in size to the path expression. However, direct implementation of such a net using Patil's ideas 

may still result in a circuit with an unacceptably large area. An asynchronous logic array for a Petri net with P 

places and T transitions will have area proportional to P-T regardless of the number of arcs in the net Since 

the nets obtained from path expressions tend to have sparse edge sets, this quadratic behavior may waste 

-significant chip area. 

Perhaps, the work that is closest to ours is due to Li and Lauer [8] who do indeed implement path 

expressions in VLSI. However, their circuits differ significantly from ours; in particular, their circuits are 

synchronous, and synchronization with the external world (which is, of course, inherently asynchronous) is 

not considered. Furthermore, their circuits use PLA's that result in an area complexity of 0 (N 2 ) . Rem [13] 

has investigated the use of a hierarchically structured path expression-like language for specifying CMOS 

circuits. Although he does show how certain specifications can be translated into circuits, he does not 

describe how to handle synchronization or give a general layout algorithm that produces area efficient 

circuits. 

In contrast, the circuits produced by the construction described in this paper have area proportional to 

N -log(N) where N is the total length of the multiple path expression under consideration. Furthermore, this 

bound holds regardless of the number of individual paths or the degree of synchronization between paths. As 

in [3] and [4] the basic idea is to generate circuits for which the underlying graph structure has a constant 

separator theorem [7]. For path expressions with a single path the techniques used by [3] and [4] can be 

adapted without great difficulty. For multiple paths with common event names, however, the construction is 

not straightforward, because of the potential need for synchronization at many different points on each 

individual path. Moreover, the actual circuits that we use must be much more complicated than the 

synchrouous ones used in ([3], [4]). Since events are inherently asynchrouous in our model, all of our circuits 

must be self-timed. This requires the use of special circuit design techniques and significantly complicates the 

proof that this circuit correctly captures the semantics of path expressions. 



3 

The paper is organized as follows: A formal semantics for path expressions in terms of partially ordered 

multisets [12] is given in section 2. In sections 3, 4, and 5 we give a hierarchical description of our scheme for 

implementing path expressions as circuits. In section 3 we first describe how the complete circuit interfaces 

with the external world. We then show how to build a synchronizer that coordinates the behavior of the 

circuits for the individual path expressions in a multiple path expression. In section 4 we describe a circuit for 

implementing single path expressions which we call a sequencer. In section 5 we show how the arbiter circuit 

used in section 3 can be implemented. We also argue that these circuits are correct and can be laid out 

efficiendy. The paper concludes in section 6 with a discussion of issues such as fairness and of open problems 

such as the possibility of extending our construction to other synchronization mechanisms like the ones used 

inCCSandCSP. 

2 . The Semantics of Path Expressions 
In this section we give a simple but formal semantics for path expressions in terms of partially ordered 

multisets of events [12]. We also relate our semantics to the one in terms of Petri Nets given by Lauer and 

Campbell [6]. 

Definition 1: A partially ordered multiset (pomset) over 2 is a triple (Q, <, F) where (Q, <) is a partially 

ordered set and F is a function which maps Q into 2 . • 

An example of a pomset is shown in Figure 2-1. We use subscripts to distinguish different instances of the 

same element of 2 . Note that we could have alternatively defined a pomset as a directed acyclic graph in 

which each node is labeled with some element of 2 . 

If the ordering relation of a pomset P over 2 is a total order, then we can naturally associate a sequence of 

elements of 2 with P; we will use S(P) to denote this sequence. In fact, a pomset should be regarded as a 

natural generalization of a sequence in which certain elements are permitted to be concurrent; this is why the 

concept is useful in modeling systems where several events may occur simultaneously. 

Figure 2-1: An example pomset 



4 

Definition 2: If P = (Q, <, F) is a pomset over 2 and 2 X c 2, then the restriction of P to 2 X is the 

pomset p| 2 = ( Q r <v where Q x = {d € Q | F(d) € 2 X } and < x , F 1 are restrictions of <, F to Q r 

respectively. • 

If P is a totally ordered pomset over 2 and 2 X Q 2, then S (P | 2 ) is just the subsequence of S(P) obtained by 

deleting all of those elements of 2 which are not in 2 r 

A simple path expression is a regular expression with an outermost Kleene star. The only operators 

permitted in the regular expression are (in order of precedence) "*", and " + The "*" operator is the 

Kleene star, ";" is the sequencing operator, and " + " represents exclusive choice. Operands are event names 

from some set of events 2 that we will assume to be fixed in this paper. The outermost Kleene star is usually 

represented by the delimiting keyword path... end. Thus (a)* would be represented as path a end. 

A multiple path expression is a set of simple path expressions. As we will see shortly, each additional simple 

path expression further constrains the order in which events can occur. However, we cannot simply take as 

our semantics for multiple path expressions the intersection of the languages corresponding to the individual 

path expressions; two events whose order is not explicitly restricted by one of the simple path expressions may 

be concurrent For example, in the multiple path expression for the readers and writers problem discussed in 

the introduction the two read events R x and R 2 may occur simultaneously. Nevertheless, we will still have 

occasion to use ordinary regular expressions in giving the semantics for path expressions; if R is an ordinary 

regular expression over 2 , then 2 R Q 2 will be the set of symbols of 2 that actually appear in R and Lj^ e 2 R 

will be regular language which corresponds to R. 

Definition 3: Let 2 be a finite set of events; a trace over 2 is a finite pomset T = (Q, <, F) over 2 . We 

say that i € Q is an instance of an event e € 2 if F(i) = e. An instance i x of event e x precedes an instance ^ 

of event e 2 if ^ precedes i 2 in the partial order <. An instance ^ of event e x is concurrent with an instance 

^ of event e 2 , if it is not the case that ^ precedes i 2 or that i 2 precedes i r • 

In the example above A x precedes A 2 , but B 2 and C x are concurrent 

Definition 4: Let R be a simple path expression with event set 2 R . A trace T is consistent with R iff T| 2 

is totally ordered and S ( T | 2 ) is a prefix of some sequence in L R . If M is a multiple path expression, 



5 

then a trace T is consistent with M iff it is consistent with each simple path expression R in M. Tr v (M) is 

the set of all traces which arc consistent with M. • 

Consider, for example, the multiple path expression M: 

path A;B end, 
path A;C end. 

with 2 = {A, B, C } . It is easy to see that the trace in Figure 2-1 is consistent with each of the simple path 

expressions in M and hence is in Tr 2 (M). 

3 . Synchronizers for Multiple Path Expressions 
This section describes our implementation of synchronizers for multiple path expressions. Figure 

3-1 illustrates the interface between a synchronizer and the external world. Each event e is associated with a 

request line REQ^ and acknowledge line ACK G . The synchronizer cooperates with the external world to ensure 

that these request and acknowledge lines follow a 4-cycle protocol: 

1. The external world raises REQ^ to indicate that it would like to proceed with event e. 

2. The synchronizer raises ACK^ to allow the external world to proceed with event e. 

3. The external world lowers R E Q ^ signifying completion of event e. 

4. The synchronizer lowers ACK^, signifying the end of the cycle and permission to begin a new one. 

In this implementation, an event will occur during the period between cycles 2 and 3 in this protocol, where 

both REQ and ACK are high. Thus, multiple occurrences of any event e are non-overlapping in time, since any 

two occurrences are separated by the lowering of ACK and the raising of REQ. 

REQ I 

ACK | 

R E Q , 

ACK , 

REQ , 

ACK . 

• 
• 
• 

< 

Synchronizer 

Figure 3-1: A synchronizer 



6 

An overview of a synchronizer circuit is shown in Figure 3-2. We describe below some of the building 

blocks in the circuit 

SEQj 

DIS E TR E TA E 

ACKZ <~ 

ACKE <-

REQ 

REQ. 

Wired NOR gate forz 
NOR 

IN. 

CLR 

Wired NOR gate for e 
NOR 

1 _ : 

MullerCforz 
s 
R o r 

IN. 

MullerCfore 
s 

<1R Q 

CLR 

Figure 3-2: A synchronizer circuit 

The C gate in Figure 3-2 is a Muller C-element; the output of a C-element remains low until all inputs are 

high and thereafter remains high until all inputs are low again. Its behavior then cycles. For an 

implementation see [14], 

The arbiter in Figure 3-2 enforces pairwise mutual exclusion over the outputs corresponding to pairs of 

events which occur in the same path expression.In addition to enforcing mutual exclusion the arbiter tries to 

raise any output whose input is high. Most implementations of arbiters will have metastable states during 

which fewer signals than possible may be high at the output. Despite the metastable states, however, once an 

output signal has been raised, it remains high as long as the corresponding input remains high. The 

implementation of such an arbiter is discussed in detail in section 5. 



7 

Each sequencer block in Figure 3-2 ensures that the sequence of events satisfies one of the simple path 

expressions that comprise the multiple path expression. The synchronizer circuit contains one sequencer for 

each simple path expression, so that each simple path expression is satisfied by an execution event trace. For 

each event e that appears in a simple path, the corresponding sequencer has three connections: a request TR^, 

an acknowledge TA^, and a disable DlSe. Events are sequenced by executing a 4-cycle protocol over one pair 

of the T R / T A lines. The Dis outputs of the sequencer are only valid between these cycles (when all TR and TA 

are low), and indicate which events would violate the simple path. The synchronizer will not initiate a cycle 

for any event whose DIS line is high. The implementation of the sequencer is given in section 4. 

We now describe how the components of the circuit are interconnected. Refer to Figure 3-2. Let SEQe 

denote the set of sequencers for simple paths that contain event e. Every sequencer in SEQ^has its DlSe signal 

connected to a wired-NOR gate for e, its TA^ signal connected to a C gate for e, and its T R G signal connected to 

ACK^. The output of the latch at the end of the C gate for e, which is labeled CLR^, is connected to each of the 

NOR gates in front of the arbiter which corresponds to event e or to some event mutually exclusive to e. 

The following is an informal description of how the circuit works. The circuit behaves as shown in the 

timing diagram in Figure 3-3. When REQe is raised, event e is not allowed to proceed unless each sequencer in 

SEQe signals that at least one e type transition is enabled by negating Dis^. Once this happens IN^ is raised, 

provided no mutually exclusive event is executing the second half of its cycle (and hence has its CLR high). If 

the arbiter decides in favor of some other pending event mutually exclusive to e, the above process repeats 

until e again gets a chance at the arbiter. Otherwise ACK^ will be raised and latched by the NOR gate 

arrangement in front of the arbiter. At this point the external world may proceed with event e. 

Simultaneously each sequencer in SEQe will find T R E high and after some time raise TA^. When all 

sequencers in SEQe have raised T A E and the external world acknowledges completion of event e by lowering 

REQ^, CLRe will be raised. This causes A C K E to be lowered. Each sequencer in SEQe will find TR^ low and 

after some time lower TA^. When all such sequencers are done, C L R ^ is lowered, and the cycle is completed. 

To formally establish the correctness of our circuit, we must establish two things: First, we must show that 

the circuit allows only semantically correct event traces; second, that the circuit will allow any semantically 

correct event trace for some behavior of the external world. These properties of the circuit are often called 

safeness and liveness respectively. Our proof will make use of properties of the various circuit components 

shown in Figure 3-2. We list the most important of these properties as propositions, namely those relating to 

the sequencer, the arbiter, and the external world. Properties of other circuit components such as SR Flip-

Flops, NOR gates, etc., are assumed to be well known and are used without further discussion. The proof also 

makes certain assumptions about the delays of the components: 

1. The delay of the main NOR gate plus the 2-input NOR gate is less than that of the main Muller-C 



8 

REQ 

ACK 

DIS 

TA 

Sequencer 
Internal 
External 

Figure 3-3: Synchronizer timing 

element plus the SR Flip-Flop. 
2. The maximum variation in delay for the NOR gates in front of the arbiter is less than the 

minimum delay of the arbiter. 

We begin by introducing some notation that will be needed in the proof. Let the sequencers be denoted by 

S E Q 1 . . . S E Q P corresponding to the path expressions R l . . . Rp € M, and let 2 R 1 . . . 2 R p be the subsets of 2 that 

actually appear in R l . . . Rp respectively. Let I be a set of time intervals, which may include semi-infinite 

intervals extending from some finite instant to infinity. Each element in I is labelled by an element in 2 . 

Define T(I) to be the trace which has an element for each element in I and has the obvious partial order 

defined between elements whose time intervals are non-overlapping. Referring to Figure 3-3, let 

• Ext = set of time intervals labelled 'external', 
• Int = set of time intervals labelled 'internal*, 

• Seq(j) = set of time intervals labelled 'sequencer' for sequencer SEQ^. 

For every interval in Int with label e there are corresponding intervals with the same label in Ext and in every 

Seq(j) such that e € 2 R j , namely those which start at the same time. We assume that the starting points of 

intervals in Int lie within some finite time period of interest, and the intervals in Ext and Seq(j) are restricted 

to intervals corresponding to those in Int. 

With this notation in place we state some propositions, or axioms, that describe the properties of the circuit 

of Figure 3-2. These properties will be used to prove that the circuit is safe and live. The propositions that are 

not self-evident will be justified in later sections of this paper. 



9 

Proposition 5: (External world protocol): For all events e, 

1. REQ is raised only if ACK is low. 
E E 

2. R E Q E is lowered only if ACK^ is high. • 

Proposition 6: (Arbiter safety and liveness): 

1. For any events el,e2 that are mutually exclusive, A C K E 7 and A C K ^ are never high simultaneously. 
2. For any event e, ACK^ is raised only if lN e is raised. 
3. For any event e, ACK^ is lowered only if IN is low,and withing a of IN^ being lowered. 
4. Consider a set of events 2 ' Q 2, such that no two events in 2 ' are in the same path expression. 

Then if all IN^, e € 2', are raised, within a finite time all A C K G , e € 2 \ will be raised. • 

Proposition 7: (Sequencer protocol): For any sequencer SEQj, 

1. TAE is raised only if T R E is high. 
2. TA is lowered only if TR is low. 

E E 
3. Dis„ is stable while all TR 's and TA'S in TR are low. • 

E E 

Proposition 8: (Sequencer safety and liveness): For any sequencer SEQj, assume that at all times, 

• no two TR 's are high simultaneously, 
• TR is raised only if DIS and all TA'S are low, 

E J E 

• T R E is lowered only if T A G is high. 

Then the following hold: 

1. TA is raised within a finite time of TR„ being raised. 
E E 

2. TA£ is lowered within a finite time of T R £ being lowered. 
3. For any sequencer S E Q . whenever all TA'S and TR 's are low, exactly those events e will have DIS^ 

low, for which S(T(Seq(j))) can be extended by e to give a prefix of some sequence in 
LRJ- D 

Proposition 9: (Initialization) 

1. Sequencers are initialized with all TA'S low. 
2. The synchronizer circuit SR flip-flops are initialized to make all CLR 's high. • 

The following theorem states that a synchronizer satisfying Propositions 5 through 9 is provably safe. 

Theorem 10: (Synchronizer Safety) : T(Ext) € T r 2 ( M ) . 

proof: See the appendix. • 

As a converse to theorem 10 we would like to show that our circuit can produce any valid trace Ext, such 



10 

that T(Ext) € Tr 2 (M) for at least some behavior of the external world. However for some traces T € Tr 2 (M), 

there does not exist any Ext such that T(Ext)=T, so there is no way any circuit can produce the required trace 

Ext. This happens when T does not sufficiently constrain the order in which the elements may occur so that 

any actual set of time intervals will have fewer concurrent elements than T. Given such a T it is necessary to 

constrain its partial order relation further, by adding additional (consistent) precedence relationships. It is 

easy to show using definition 4 that this will never remove T from the set Tr^(M). We shall show that 

whenever T is sufficiently constrained so that it falls in a class of traces we call layered, then for some behavior 

of the external world T(Ext) for our circuit will equal this modified T. 

Definition 11: A trace P = (Q,<,L) is called layered, if Q can be subdivided into a sequence of subsets, 

such that for any //, 12 € Q, il precedes i2 iff the subset in which il lies precedes the subset in which i2 

lies. • 

The trace in Figure 2-1 is layered, since its elements can be subdivided into the sequence of subsets 

{(A 1),(B 1,C 1),(A 2),(B 2,C 2),(A 3),(B 3, C 3)} with the above property. If the size of each subset were one, then the 

trace would be totally ordered. 

In general, any trace P will have a corresponding layered trace T which preserves most of the parallelism of 

P. It is easy to show that for any trace P,there exists a layered trace T, which differs from P only in that the 

partial order relation of P is a restriction of that of T. 

Theorem 12: (Synchronizer Liveness): Given any layered trace P € Tr 2 (M), our circuit will produce an 

event trace Ext, such that T(Ext) = P for some behavior of the external world. • 

proof: See the appendix. • 

4 . Implementing the Sequencer for a Simple Path Expression 
This section shows how to construct a sequencer that meets the conditions set forth in Propositions 7 and 8. 

The sequencer circuit is constructed in a syntax-directed fashion based upon the structure of the simple path 

expression. We show that a compact layout for the sequencer exists, so that circuits of this type can be 

implemented economically in VLSI. 

Since a simple path expression is a regular expression, the sequencer for a simple path expression is similar 

to a recognizer for the regular expression. Although schemes for recognition of regular languages have been 

proposed that avoid broadcast [3], we will use a scheme that requires broadcast of events throughout the 

sequencer [4,10]. Because our scheme for interconnecting sequencers requires broadcast, the broadcast 



11 

within an individual sequencer carries no additional penalty. A sequencer for a simple path expression is 

built up from primitive cells, each corresponding to one character in the path. The syntax of the path 

determines the interconnection of the cells in the sequencer. In this section, we first describe the behavior of 

a sequencer for a simple path expression, then give a syntax-directed construction method. 

As noted in Section 3, a synchronizer communicates with each of its sequencers using three lines: 

• TR^: a signal to the sequencer that event e is about to commence in the external world; 

• TA^: an acknowledgement from the sequencer that all actions started by T R E have completed; 

• Dis^: a status line indicating that action e would violate the path constraints so that TR^ should not 
be asserted. 

These communication lines interact in a complex way. For a single type of event, the signals TR^ and T A E 

follow the four-cycle signaling convention described in Section 3 for REQ and ACK. For different types of 

events, the synchronizer must guarantee the correct interaction of TR signals by ensuring that only one TR 

signal for an event satisfying the simple path expression is asserted at any time. The synchronizer can use the 

DIS status lines to determine which requests to send to the sequencer. 

The sequencer also has a part to play in ensuring the correct interaction of TR, TA and DIS. Besides 

generating a TA signal that follows the four cycle convention with TR, it must ensure that the signal DIS^ is 

correct as long as no TR or TA signal is asserted. This guarantee means that if no TA is asserted, R E Q ^ and 

R E Q ^ are both asserted, and neither DIS^ nor DIS^ is true, then the synchronizer may choose arbitrarily 

between el and e2, letting either of them through to the simple path sequencer. On receiving a T R G signal, 

then, the sequencer must assert TA^, adjust its internal state to reflect the occurrence of event e, assert the 

proper set of DIS lines, and await the negation of TR^ before negating TA G . 

Now that the behavior of a sequencer has been described, we show how to construct a sequencer for any 

path. A sequencer has two parts: a controller and a recognizer. The controller is connected directly to the rest 

of the synchronizer and generates both the TA signals and some control signals for the recognizer. The 

recognizer keeps track of which events in the path have been seen and generates the DIS signals. 

Figure 4-1 shows the controller for a simple path P. The controller accepts the signals T R G from the 

sequencer for each event e that appears in P. It generates the signals T A G along with Start p and End p. The 

meaning of TA^ is that all actions caused by T R G have been completed. In this realization, TA is just a delayed 

version of TR, where the delay is long enough to let the sequencer stabilize. An upper bound on this delay can 

be computed from the layout of the rest of the circuit. It is possible to use a self-timed version of this circuit in 



12 

which the delay is derived from the recognizer. It has been omitted in this version of the paper as it 

unnecessarily complicates an understanding of how the circuits work. Start p and End p are control signals that 

control the movement of data through the recognizer for P. Star t p is true whenever at least one TR is on and 

no TA is on, while End p is true whenever at least one TA is on and no TR is on. 

, Start End , 

— y 

r 

TR a TR b • « • TR z TA z • • • TA b TA a 

Figure 4-1: The controller for path P 

The recognizer for a path accepts the TRe signals and generates the Dis signals. It is made up of sub-circuits 

corresponding to subexpressions of the path. To construct the recognizer for a path, we parse the path using a 

context-free grammar. Productions that are used in parsing the path determine the interconnections of 

sub-circuits to form the recognizer. Non-terminals that are introduced in the parse correspond to primitive 

cells used in the circuit 

Recognizers are constructed using the following grammar for simple path expressions. 

S - f path Rend 

R -* R;R | (R + R) | (R)* | <event>. 

The terminal symbols in the grammar correspond to primitive cells; there is one type of cell for the 

symbol, one for the symbol, one for the ";" symbol, and one for each event. The non-terminals 

correspond to more complex circuits that are formed by interconnecting the primitive cells. Using the 

method described in [2], semantic rules attached to the productions of the grammar specify how the circuits 

on the right of each production are interconnected to form the circuit on the left 



13 

To keep track of which events in the path have occurred and which are legal, the sub-circuits of a recognizer 

communicate using the signals ENB (enable) and RES (result). The circuit for a subexpression accepts ENB and 

uses it to determine when the first event in the subexpression is legal. It generates RES when the last event has 

occurred. 

Figure 4-2 shows the cell for event e. Two latches, clocked by the signals Start p and End p, control the flow 

of ENB and RES signals. Because of the definitions of Start p and End p, the leftmost latch is loaded from E N B 

whenever at least one TR is on and no TA is on, while the rightmost latch is loaded to update RES whenever at 

least one TA is on and no TR is on. The two latches are never loaded at the same time; in fact, because TR and 

TA follow the four cycle signalling convention, there is a non-zero time between the end of the load signal for 

one latch and the start of the load signal for the other. Thus there is no combinational path through the cell. 

From other 
cells fore 

(Some TR (Some TA 
and no TA) and no TR) 

Figure 4-2: Cell for event e in path P 

The event cell in Figure 4-2 propagates a 1 from ENB to RES only if event e occurs. When this cell is used in 

a recognizer for a path expression, the ENB input will be true if and only if event e is permitted by the 

expression. Thus, if ENB is true it negates DIS^ for the path, as shown in the figure. When a request TR is 

made, the output of the A N D gate is loaded into the leftmost latch. If this request is TR^, this output is 1; 

otherwise it is 0. In either case the output of the A N D gate is propagated to RES through the latch when TR is 

lowered. 

Figures 4-3 and 4-4 show the cells for the ";" and operators. These are stricdy combinational circuits. 

The circuit for ";" feeds the RES signal from the circuit at its left into the ENB signal for the circuit to its right 



14 

The circuit f o r " + " broadcasts its ENB signal to its operands and combines the RES signals from its operands 

in an OR gate. 

ENB V RES 

T T 

t A 

Figure 4-3: Cell for";' 

ENB Y t RES 

y A y A 

Figure 4-4: Cell for 

Figure 4-5 shows the cell for the "*" operator. The cell enables its operand after receiving either a 1 on 

either its own ENB or its operand's RES. Every time the operand is enabled the "*" cell also puts out a 1 on its 

own RES. It therefore outputs 1 on RES after 0 or more repetitions of its operand's expression. The additional 

A N D gate sets the output to zero momentarily after each event, thereby preventing the formation of a latch 

when two or more "*" cells are used together or when the RES output is connected to the ENB input 

When larger circuits are made from these cells, the RES and ENB signals retain their meanings. Each event 

cell or sub-circuit formed from several cells accepts one input ENB and produces one output RES. We define 

ENB and RES to be correct if they meet the following conditions. 

• ENB is true for a sub-circuit if each sequence of events satisfying the expression for the sub-circuit 
may be the next sequence to occur. 



15 

V * 

A ^ A 
Endp ENB RES 

Figure 4-5: Cell for"*" 

• RES is true for a sub-circuit if some sequence of events satisfying the sub-circuit has just occurred, 
and ENB was true before the beginning of that sequence. 

The ENB and RES signals thus indicate that a subcircuit may start recognizing events, or that it has finished. In 

addition, a sequencer has a signal INIT, not shown in the figures, which clears the ENB inputs to all internal 

cells and sets the ENB inputs for the cells corresponding to the first events in the path. 

The semantic actions for the productions of the grammar describe the interconnections of the cells in 

Figures 4-2,4-3 and 4-4. Attributes are attached to the symbols of the grammar to represent the sets of events 

that appear in the path. These sets determine which TR and TA signals are combined to produce Startp and 

Endp. 

S[A] —• path R[A] end 
Hook the RES output of R to its ENB input, and connect INIT. 

R[A U B] -> R[A];R[B] 
Connect the RES output for R[A] to the ENB input of R[B] 

R[A U B] -+ (R[A] + R[B]) 

Connect the R's to the operand ports of a + cell. 

R[A] -+ (R[A])* Connect R to the operand port of a * cell. 

R[{e}] —> event e Use a cell for e as the circuit for R 

Figure 4-6 shows a recognizer for the path path a;(a+b);c end constructed using this syntax-directed 

technique. 

All recognizers constructed by this procedure perform the correct function, as required by Propositions 

7 and 8. That is, if a recognizer is initialized and some sequence of TR signals is sent to it, the recognizer will 



16 

a b 

Figure 4-6: A recognizer for path a;(a+b);c end 

output 1 on D i s e for precisely those events e that are forbidden by the path. To prove this we show that the 

ENB input of an event cell in the recognizer is 1 if and only if the event corresponding to this cell is permitted 

by the path. As shown in Figure 4-2, DiS e is 1 if and only if none of the cells for event e is enabled. Therefore, 

^proving that an event cell has its ENB signal set if and only if the corresponding event is permitted in the path 

will show that the recognizer is functionally correct In other words, we wish to prove that all ENB signals for 

event cells are correct, according to the definition of ENB above. 

We shall prove the stronger statement that all ENB signals in the recognizer are correct This proof is based 

upon the structure of the recognizer. An ENB signal in a recognizer is set by one of four sources: 

• The operand port of a or cell; 

• The left operand port of a ";" cell; 

• The right operand port of a ";" cell; 

• The INIT signal and the final RES of the recognizer, 

In the first and second cases the signal is correct if and only if ENB for the operator cell is correct In the third 

case the signal comes from the RES port of a recognizer for an initial subexpression. Therefore it is correct if 

and only if the RES signal for the subexpression is correct (asserted only at the end of the subexpression). In 

the fourth case the signal is correct at the start of recognition, and is correct thereafter if and only if the final 

RES signal is asserted only at the end of the expression. Thus, to prove that the circuits are correct, we need 

only prove that if the E N B signal for a recognizer is correct then so is the RES signal. 

Once again, the proof of correctness is based upon the structure of a recognizer. In a correct recognizer the 

RES signal is true at time ^ if and only if the ENB signal is true at some preceding time /Q and the events 

between tQ and tx obey the path. A recognizer that is a single event cell is clearly correct A recognizer for 



17 

path a;b built by composition of correct subrccognizcrs for a and b is also correct, since if R E S B is true at time 

t2 then there must be some time tl when RES A was true, with all intervening events satisfying path b. But then 

there must have been a time tQ when ENBF L was true and all events between /Q and ^ must satisfy path a. By 

definition of composition, then, the events between /Q and / 2 satisfy a;b. A recognizer for path (a)* is correct 

if its subrecognizer is correct, since it outputs 1 and enables its operand if and only if ENB or RES A is true. 

Finally, a recognizer for path a + b is correct if both subrecognizers are correct, since if RES is true then one 

of RES„ or RES. must be true, and if one of E N B a or ENB . is true then ENB must be true. Since all methods of a b a o 

constructing recognizers have been shown to lead to correct circuits, recognizers constructed using this 

procedure are functionally correct 

Now that circuits have been designed and proved correct, we give compact layouts for them. The floorplan 

for a sequencer, shown in Figure 4-7 has the cells that make up the recognizer arranged in a line with the 

controller to one side. The TR signals flow parallel to the line of recognizer cells to enter the controller, and 

the Start and End signals emerge from the controller to flow parallel to the line of cells. The ENB and RES 

signals that are used for intercell communication also flow parallel to the line of cells. 

1—1 I - RES and 
ENB 

Cells 

TR's 

Start 

End 

Controller 

Figure 4-7: The floorplan for a sequencer 

The layout in Figure 4-7 is fairly small. If the sequencer for a path of length n that has k types of input 

events is laid out in this fashion, the area of the layout is no more than 0(n(log n + k)). This is due to the 

structure of the recognizer circuits. All recognizer circuits are trees, which can be laid out with all nodes on a 

line and edges running parallel to the line using no more than 0(log n) wiring tracks [7]. Thus the height of 

the circuit in Figure 4-7 is 0(log n + k) while its width is 0(n). 



18 

5. Implementation of the Arbiter 
In this section we briefly elaborate on the arbiter shown in Figure 3-2 to show that the conditions of 

Proposition 6 can be met The main function of the arbiter is to select a single event from a mutually 

exclusive set of requests. Furthermore, the arbiter must be fair — any request that remains asserted must 

eventually be selected. 

The following observation helps to simplify the arbiter: a pair of events occurring in any single path 

expression must be mutually exclusive. This is due to the role that each event plays in enforcing 

synchronization among a set of multiple path expressions that all contain the same named event The 

arbitration function can thus be represented by a conflict graph, in which each event is denoted by a vertex 

and the relation between a pair of mutually exclusive events denoted by an undirected edge. Our observation 

shows that the resulting conflict graph for a set of path expressions consists of a set of overlapping cliques, 

where a clique of k nodes, Av A 2 , A^, corresponds to a path expression R, with 

2 ^ = { Av A 2 , . . . , A^ }. The conflict graph represents the static structure of a set of path expressions. 

Figure 5-1 shows a multiple path expression with its conflict graph. 

path (A + B + D) end 
path (B;(C + D);E) end 
path (E + F + G) end 

Figure 5-1: The conflict graph of a path expression 

The dynamic behavior of the arbiter depends on the conflict graph together with the set of events that are 

enabled at any instant. The dynamic structure of the set of path expressions is represented by the subgraph of 

the conflict graph induced by the set of vertices corresponding to the events, enabled at that instant The 

function of the arbiter is to select an independent set (not necessarily maximal) of this subgraph, thus 

ensuring that only one of any pair of mutually exclusive events is enabled. 

Hence an arbiter is simply a transducer that takes a set of inputs and produces a set of outputs, subject to 

the constraints outlined earlier. Moreover, it is implicitly assumed that the arbiter is oblivious of any static or 

dynamic structure of the path expressions other than those represented by the conflict graph and the set of 

events enabled — in particular, it has no knowledge of the syntactic structure of the path expression, nor does 

it know the internal states of the individual sequencers. Clearly, one can build non-oblivious arbiters that may 

perform better, but this will be at the expense of conceptual simplicity and the area needed for additional 

logic and global wires. 



19 

To motivate our design we shall briefly discuss the problems with some simple schemes. In particular, we 

show that any deterministic oblivious arbiter gives rise to starvation of an event which is continually enabled. 

In similar vain, we show that a straight-forward extension of Scitz's scheme [14] for a two-input arbiter to a 

general conflict graph results in an unfair arbiter. Finally, we present a somewhat non-standard scheme 

implemented in CMOS which rectifies the problems with the other schemes. 

The difficulty of building a fair deterministic arbiter can be illustrated by an example. Let 

2 = { Av A 2 , . . . , } be a set of events. To try to build a fair arbiter for 2 we might assign a priority 

number from 0 through n - 1 to each event, where the priority corresponds to the number of times the event 

is blocked, £&, the number of times the event is enabled but not selected by the arbiter. At any instant the 

arbiter selects from the set of enabled events with the highest priority number. When an enabled event is 

selected its priority number is reinitialized to the lowest value. On the other hand, if the enabled event is not 

selected its priority number is incremented by one. It seems that since an event Az< can have at most n - 1 

neighbors in the conflict graph, and since each time it is blocked at least one of its neighbors is selected with a 

-Tesulting increment in its own priority, after the /2 t h attempt A i must have the highest priority among all the 

neighboring events and hence must be selected. However, an event may never be enabled even if its request 

is still pending because sequencing conditions imposed by the path expression may block the event. In order 

to make this observation concrete consider the following path expression: 

path (A;C) + B;(A + B) end. 

Assume that the external client always requests permission to perform all three events A, B and C. Let the 

priorities of all three be O's initially. As a result, initially A and B are enabled. Assume that B is selected, 

making B's priority 0 and A's priority 1. In the next instant, A and B will again be enabled. But now A has the 

higher priority and will be selected, so that A's priority becomes 0 and B's becomes 1. Continuing in this 

fashion, it is easy to see that the sequence chosen will be B A B A B A The trouble with this scheme is 

that C will never be enabled even if its request is pending. This example can be extended to the following 

lemma. 

Lemma 13: Let M be a deterministic finite-state transducer implementing an oblivious arbiter. Then 

there exists a path expression over 2 = { A, B, C } such that one event, j ay C, will be starved even 

though its request is continually pending. 

Proof: Let M be a deterministic finite-state transducer whose alphabet is 2 = { A, B, C }. Let the states 

of M be S = { sv 5 2, . . . , sm }. Let the conflict graph, G, for the path expression be the complete graph 

on the vertices A, B and C. We construct a path expression P with the conflict graph G such that M 



20 

causes the starvation of the event C. Notice that because of the nature of the conflict graph (7, if at any 

instant A and B are enabled then at most one of A and B may be selected by A/. 

Let s1 be an arbitrarily chosen state of M. We conduct an experiment on M by continuously providing A 

and B as the enabled inputs, starting with M in the state sy If we present a string of inputs 

{ A, B }, { A, B } , . . . , { A, B } of length m then we notice that at the 1 s t input { A, B }, the 

transducer deterministically goes from the state 5(1) = sl to a state 5(2) while outputting A or B. Let 5(1), 

5(2), . . . , s(m + 1) be the sequence of states and a € { A, B } m be the output string produced as a result 

of the experiment. As a consequence of the pigeon-hole principle, some two states in the sequence of 

states will be the same. Of all such pairs, let s(i) and s(j) be two such states closest to s .̂ Assume that i < j 

and let k be the smallest multiple of (J - /) such that k > /. Without loss of generality assume that M 

outputs B when in state 5(0 with the input { A, B }. 

Let P be the path expression 

path (A + B) H ; (A;C + B); (A + B ) w e n d 

It is easy to see that P has G as the conflict graph and if the requests for A, B and C are continuously 

pending then the sequence of outputs will be a string in { A, B } w and C will never be enabled. • 

Before proceeding further, let us consider the path expression path A + B end, where the conflict graph is G 

= (K, E) = ({ A, B }, {[A, B]}). Seitz [14] has shown how to build an arbiter for such a structure using an 

interlock-element, as shown in Figure 5-2. 

Figure 5-2: Seitz's Interlock Element 



21 

Circuit operation in Figure 5-2 is most easily visualized starting with neither client requesting, v1 and v 2 

both near 0 volts, and both outputs high. If any single input, say A. , is lowered then vx is driven high, 

resulting in A Q u t being lowered — B Q u t remains unaffected. Moreover, once A Q u t is lowered, and as long as 

A. n is kept low, the interlock element remains in this stable state irrespective of what happens to B^. If A^ is 

now raised high, then the element returns to its initial condition if B^ is still high; or B Q u t is lowered if B^ is 

lowered in the meantime. 

However, the interesting situation occurs when both A^ and B i n are both lowered concurrently or within a 

very short interval of time. In this case the cross-coupled NOR gates enter a metastable state, which is resolved 

after indeterminate period of time in favor of either A or B. Since this resolution depends on the thermal 

noise generated by the gates, it is inherently probabilistic. In this case the outputs of the NOR gates themselves 

cannot be used as the outputs. High threshold inverters between the NOR gates and the outputs prevent false 

outputs during the metastable condition. 

It would seem natural to extend Seitz's idea by generalizing it to the conflict graph for an arbitrary set of 

path expressions. Roughly speaking, we may construct a circuit by homomorphically transforming the 

conflict graph to a circuit by replacing each vertex with a NOR gate and each edge with a cross-coupling of 

NOR gates corresponding to the pair of vertices on which the edge is incident. However, such an 

implementation in NMOS has some severe problems, which will be clarified if we consider the circuit for the 

readers-writers path expression: 

path Rj + W end 
path R 2 + W end 

where the pair R 1 and W and the pair R 2 and W are mutually exclusive. The conflict graph and the circuit for 

this expression are shown in Figure 5-3. 

Consider the situation when the circuit is in the none-requesting condition and all three requests, R^ R 2 

and W, arrive concurrently. An infinitesimally short interval A/ after all three requests arrive, let us assume 

that the voltages at the outputs (of the NOR gates) have increased by an infinitesimally small value Av < v^. 

The pull-down MOS transistors may be assumed to be operating in their linear region. If all pull-ups are 

assumed to provide equal active resistance, the output of the NOR gate corresponding to W will grow less 

rapidly than those corresponding to R x or R r The cumulative effect of this imbalance will result in a low 

output for W's NOR gate and high outputs for R^s and R 2 's. Hence if Rv R 2 and W request continuously 

then the request for W will never go through, resulting in W's starvation. 



22 

W 

( a ) 

-o 

2 

Gnd 

( b ) 

Figure 5-3: (a) The Conflict Graph and (b) The Arbiter in NMOS. 

An easy fix to this problem may be to increase the ratio of pull-up to pull-down for W's NOR gate to twice 

that of R^s and R 2 's. But if this is done in a static manner then, when only R x and W are requesting, W will 

have an unfair advantage over R r Obviously, what is needed is some means of controlling the ratios such that 

depending on the set of requests the circuit configures itself dynamically in order to behave in a balanced 

fashion. 

An arbiter that can configure itself dynamically for the problem with two readers and one writer is shown in 

Figure 5-4. To see how this scheme remedies the problem discussed earlier, consider the situation when the 

circuit is in non-requesting condition and all three requests, R r R 2 and W, arrive concurrently. An 

infinitesimally short interval A/ after all three requests arrive, the voltages at the outputs will have increased 

by an infinitesimally small value Av < v^. The pull-down MOS transistors are in their linear region. 

However, since active resistances of the pull-up transistors depend on the neighboring events that are enabled, 



23 

Gnd 

(WR1R2) 

( R r W ) W Ri R 2 w 
% > V 

, ( R 2 W) 

Figure 5-4: The Arbiter for l-Writer-2-Readers Problem in CMOS, 

the pull-up resistance of the gate associated with W is exactly half of that associated with R x or R 2 . This 

provides a balance among pull-up resistances and results in almost equal rate of growth of voltages at the 

outputs. Hence the interlock elements enter their metastable states more or less simultaneously; and the 

metastable condition is resolved either in favour of R x and R 2 or in favour of W, the choice governed by 

statistical thermal phenomena. 

A similar analysis shows that the circuit behaves correctly when only two out of three requests arrive 

concurrently. However, if only one request, say W, arrives while all its neighbours remain in their non-

requesting condition the circuit behaves somewhat differently. In this case the pull-up transistor with input 

(W- Rx • / y will turn on, thus allowing the output of the gate to go high. It is important to observe that the 

pull-up transistors are controlled dynamically by the requests for the neighbouring events — if there is a 

request for the neighbouring event then only the pull-up corresponding to the event turns on; and if there is 

no request for the neighbouring events then only the pull-up corresponding to the event itself turns on. For 

this to be implemented correctly it is essential that the pull-up corresponding to the event itself be turned on 

only after a delay necessary for the requests for the neighbouring events to propagate to the gate of the 

pull-up. 

The complex statistical nature of thermal noise in the circuit in conjunction with the complexity of the 

structure of the conflict graph makes it hard to analyze the circuit electrically. For instance, the time constants 

associated with each arbiter output could possibly differ significantly. Under the assumption that these second 

order effects are small, every enabled event will have a positive non-zero probability of being selected. Thus, 

for a reasonable class of path expressions, the circuit ensures that a continuously requesting event is 

eventually selected. This class includes the path expressions for which the other two arbiters can not provide a 



24 

good solution. 

6. Conclusion 

So far we have not discussed fairness. Intuitively, the implementation of a path expression is fair if any 

continuously requesting event will be eventually selected, provided it is possible to do so without violating the 

semantics of the path expression. As pointed out in the previous section, our implementation is fair for a 

reasonable class of path expressions. As an example of a path expression for which our implementation is not 

fair consider the following: 

path (A + B);Cend, 
pathD;(A + E)end 

Suppose that each event takes the same amount of time to execute externally and that new requests for each 

event are forthcoming as soon as allowed by the protocol. Then simultaneous execution of D and B will 

alternate with simultaneous execution of C and E without the arbiter ever having to block any event Yet, 

event A will never execute even if it remains continually ready. If, however, the first request for event B is 

delayed by the time it takes to execute an event then initial execution of event D may be followed by 

alternate executions of A and (D,C). Since neither the duration of external events nor the occurrence of 

external requests is under the control of the circuit it is not easy to ensure fairness for such path expressions. 

It remains an open question whether a practical solution to this problem exists. 

Since our circuits have the constant separator property, a more compact O(N) layout is be possible using the 

techniques of [4]. However, while it is definitely possible to automatically generate the 0(N-log(N)) layout 

that we propose, it is much more difficult in practice to generate the O(N) layout of [4]. Furthermore, the 

O(N) layout will occupy less area only for very large N. We suspect that ease of generating the layout will win 

over asymptotic compactness in this case. 

Finally, we plan to investigate extensions of our construction to appropriate finite state subsets of CSP [5] 

and CCS [9]. In the case of CSP the subset will only permit boolean valued variables and messages which are 

signals. If the number of message types is fixed, we conjecture that area bounds comparable to those in 

section 4 can be obtained. Arrays of processes in which the connectivity of the communication graph is low 

can be treated specially for a more compact layout Such a finite-state subset of CSP may even be more useful 

than the path expression language discussed in the paper for high level description of various asynchronous 

circuits. 



25 

References 

1. Campbell, R. H. and A. N. Habermann. The Specification of Process Synchronization by Path 
Expressions. In Lecture Notes in Computer Science, Volume 16, G. Goos and J. Hartmanis, Ed.,Springer-
Verlag, 1974, pp. 89-102. 

2. Foster, M. J. Specialized Silicon Compilers for Language Recognition. Ph.D. Th., CMU, July 1984. 

3. Foster, M. J. and Kung, H. T. "Recognize Regular Languages with Programmable Building-Blocks." 
Journal of Digital Systems VI4 (Winter 1982), 323-332. 

4. Floyd, R. W. and Ullman, J. D. "The Compilation of Regular Expressions into Integrated Circuits." 
Journal of the Association for Computing Machinery 29, 3 (July 1982), 603-622. 

5. Hoare, C. A. R. "Communicating Sequential Processes." Comm. ACM 21,8 (1978). 

6. Lauer, P. E. and Campbell, R. H. "Formal Semantics of a Class of High-Level Primitives for Coordinating 
Concurrent Processes." Acta Informatica 5 (June 5 1974), 297-332. 

7. Leiserson, C.E. Area-Efficient VLSI Computation. Ph.D. Th., Carnegie-Mellon University, 1981. 

8. Li, W. and P. E. Lauer. A VLSI Implementation of Cosy. Tech. RepL ASM/121, Computing Laboratory, 
-The University of Newcastle Upon Tyne, January, 1984. 

9. Milner, Robin. A Calculus of Communicating Systems. Volume 92: Lecture Notes in Computer Science, 
Springer-Verlag, Berlin Heidelberg NY, 1980. 

10. Mukhopadhyay, A. "Hardware Algorithms for Nonnumeric Computation." IEEE Transactions on 
Computers C-28,6 (June 1979), 384-394. 

11. Patil, Suhas S. An Asynchronous Logic Array. MAC TECHNICAL MEMORANDUM 62, 
Massachusetts Institute of Technology, May, 1975. 

12. Pratt, V. R. On the Composition of Processes. Symposium on Principles of Programming Languages, 
ACM, January, 1982. 

13. Rem, Martin. Partially ordered computations, with applications to VLSI design. Eindhoven University of 
Technology, 1983. 

14. Seitz,C.L. "Ideas About Arbiters." LAMBDA First Quarter (1980), 10-14. 

Appendix: Proof details 

Refer to section 3: 

Lemma 14: If the same assumptions as in proposition 8 are satisfied, then T(Seq(j)) is consistent with R.. 

Proof: From proposition 8 it follows that SeqG) consists of non concurrent time intervals. The result is 

therefore easy to prove by induction on the number intervals in Seq(j), using the same proposition. • 

Lemma 15: For each element / in Int with label e, the corresponding elements in Ext and Seq(j) are 
subintervals of L 



26 

Proof: (requires proof based on the properties of the circuit in fig 3-2). • 

Lemma 16: For any Rj € M, T(Int)| 2 is a totally ordered multiset 

Proof: It is easy to show that T(Int)L = T(IntL ) . But Int L consists of 'internal events' of the 
'^Rj , 2 < R j ^ R j 

path expression Rj, during each of which the corresponding ACK is high. Hence by proposition 6, no two 
such events overlap, and therefore T(Int) v is a totally ordered multiset • 

*Rj 

Lemma 17: For any Rj € M,T(In t ) | 2 = T(Ext ) | 2 . 

Proof: For any element / of T(Int), that is also in T(Int)| 2 , the corresponding element of T(Ext) will be 

in T(Ext) v (definition 2) since they must map to the same alphabet e € 2 D . . Hence these traces have 
'^Rj Rj 

the same number of elements. Also from lemma 15 it follows that if // and i2 are two elements of 

T(Int)L satisfying one or none of"// precedes /2" and "i2 precedes //", the corresponding elements of 

T(Ext)L will satisfy at least the same relationships. In other words the partial order of T(Int)is a 

restriction of that of T(Ext). But by lemma 16 T(In t ) | 2 is a totally ordered multiset. Hence from the 

above T(Ext) v will have the same partial order relationship and, therefore, be the same totally ordered 

multiset • 

Lemma 18: For any Rj € M, T(Seq(j)) = T(Int)| ~ . 
Rj 

Proof: Follows from lemma 15 and 16 in the same way as in the proof of lemma 17. The only difference 

is thatT(Seq(j)) | 2 R =T(Seq0). • 

Lemma 19: For any sequencer SEQ^ , no two TR ' s are high simultaneously. 

Proof: The two TR ' s would be two ACK ' s of events in the same path expression Rj, which cannot be high 

simultaneously by proposition 6. • 

Lemma 20: For any sequencer SEQ ,̂ TR^ is raised only if Dis e is low and all TA'S are low. 

Proof: By induction on the number of rising transitions of TR 's: 

1. (First transition): Let the corresponding event be e. By proposition 9 initially all TA'S are low, and 
all CLR 's are high, hence all TR 's are low initially. By proposition 7 all TA'S will remain low until 
the first rising transition of TR G . By the same proposition DiS g will not change until the first rising 
transition of TR^. If Dis^ were not low, iNg would remain low (see Figure 3-2). Hence by 
proposition 6, TRe would remain low, a contradiction. 

2. (For a succeeding transition): Let the corresponding event be p and that of the previous transition 
q. While TR is high no TA or TR other than TA^ or TR^ can be high (proposition 6 and lemma 19). 
Until CLR goes high, TR must remain high (see Figure 3-2). Once CLR^ goes high, all IN^, with a 
€ 2 R j , wilf be low after a short delay (see Figure 3-2). Assuming the variation in this delay for 
different a's is less than the delay of the arbiter in lowering TR^, all TR F L with a* q will continue to 



27 

remain low until CLR^ is lowered (sec Figure 3-2). All TA F L, with a * q, also continue to remain low 
(proposition 7). But CLR remains high at least until TA is lowered (see Figure 7). Hence by the 
time TR is raised all TA'S will be low. Also TR coulci not have been raised if IN were low 

p p P (proposition 6). But if D i s ^ was high when TA^ was last lowered then IN^ would now be low (see 
Figure 3-2), assuming the main NOR gate plus the 2-input NOR gate have a lesser delay than the 
Muller-C element plus the SR Flip-Hop. Moreover, DIS^ cannot change before TR^ is raised 
(proposition 7). Hence DIS must be low when TR is raised. 

p p 

• 

Lemma 21: For any sequencer S E Q . , TR is lowered only if TA is high. 

Proof: The NOR gate arrangement in front of the arbiter insures that once TKe is high it remains high 

until CLR^ is raised, and this can occur only if TAe is high (see Figure 3-2). Moreover once TAe is high it 

will remain high until TR G is lowered (proposition 7). • 

Theorem 10 

Proof: Lemmas 19,20,21 satisfy the preconditions of proposition 8. Hence T(Seq(j)) is consistent with Rj 

for any Rj € M. By lemma 18 and definition 4, T(Int) is consistent with Rj for any Rj € M. By lemma 

17 and definition 4, T(Ext) is consistent with Rj for any Rj € M. Hence by definition 4, T(Ext) € Tr 2 (M). 

• 

Lemma 22: If T € Tr 2 (M) is layered, then each subset (cf definition 11) of T has the property that no two 

elements in it are instances of events in for any Rj € M. 

Proof: Any two elements z7,i2 (corresponding to events el,e2) in the same subset of T must be concurrent 

(definitions 3,11). Suppose el,e2 € 2 R j with Rj € M. Then T| 2 will include UJ2 which will be 

concurrent (definition 2). Hence TL cannot be a total order and therefore T c Tr^(M) (definition 4) 
^Rj * 

- leading to a contradiction. Hence the result • 

Theorem 12 

Proof: The behavior we require of the external world is that it simultaneously raise REQ for all events in 

the first subset of T, wait until all corresponding ACK are high, then simultaneously lower all REQ, wait 

until all ACK are low, then repeat this cycle for the next subset of T, and so on. We need to show that 

under these conditions the circuit responds within a finite amount of time in each cycle. The result then 

follows directly. 

As shown in the proof of lemma 20, all ACK ' s are initially low. Hence they are low at the beginning of 



28 

each of the cycles mentioned in the previous paragraph. At the beginning of each such cycle, Extjnt and 

every Scq(j) with Rj € M, get redefined. Let Tp denote T restricted to subsets before the current cycle. It 

is easy to show by induction on the number of cycles and definition 4 that at the beginning of each cycle 

T(Ext) = Tp and Tp € Tr v (M). Hence for any Rj € M, S(Tp v ) is a prefix of some element in L D . . If 

the next subset contains an instance // of event el, then for each Rj € M such that el € 2 R j , S ( T p | 2 ) 

can be extended by il to give a prefix of some sequence in L R j ; in fact this extension gives the next value 

of T p | 2 (see lemma 22). But by lemmas 18,17, for any Rj € M, T(Scq(j)) = T(Ext) | 2 = T p | 2 . 
Rj Rj Rj 

Hence for each Rj € M, such that e l € 2 R ^, T(Seq(j)) can be extended by il to give a prefix of some 

sequence in L^. Thus by proposition 8, the corresponding sequencers SEQ^, with el € 2 R j , will have DIS^ 

low. This applies to any el in the next subset of T. 

Therefore at the beginning of any cycle, when R E Q E / for any event el in the next subset of T is raised, all 

DiSgI inputs to the NOR gate for event el (see Figure 3-2), will be low. Also within a finite amount of 

time all relevant T A ^ ' S must go low by proposition 8, since the corresponding T R ^ ' S are already low. 

Hence C L R ^ will go low, and iN e / will go high for each el in the next subset of T. It follows from 

proposition 6 and lemma 22 that all ACK ' s corresponding to events in the next subset of T will be raised 

within a finite amount of time. 

The proof for the second half of the cycle is more straightforward. By lemma 8 once all REQ 's are 

lowered, within a finite time all relevant TA'S will be raised, causing the corresponding CLR 's to go high. 

As a result all relevant IN'S go low (see figure 3-2) and hence by proposition 6 all ACK'S go low within a 

finite time, completing the cycle. • 


