
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-CS-85-100

Automatic Verification of
Sequential Circuits

using Temporal Logic

M. Browne, E. Clarke, D. Dill, and B. Mishra

Department of Computer Science,
Carnegie-Mellon University,

Pittsburgh, Pennsylvania 15218.

December, 1984

This research was supported by NSP. Grant Number MCS-82-16706.

ABSTRACT. Verifying the correctness of sequential circuits has been an important
problem for a long time. But lack of any formal and efficient method of verification
has prevented the creation of practical design aids for this purpose. Since all the
known techniques of simulation and prototype testing are time-consuming and not
very reliable, there is an acute need for such tools. In this paper we describe
an automatic verification system for sequential circuits in which specifications are
expressed in a propositional temporal logic. In contrast to most other mechanical
verification systems, our system does not require any user assistance and is quite
fast—experimental results show that state machines with several hundred states
can be checked for correctness in a matter of seconds!

The verification system uses a simple and efficient algorithm, called a Model Checker.
The algorithm works in two steps: in the first step, it builds a labeled state-
transition graph; and in the second step, it determines the truth of a temporal
formula with respect to the state-transition graph. We discuss two different tech
niques that we have implemented for automatically generating the state-transition
graphs: The first involves extracting the state graph directly from the circuit by
simulation. The second obtains the state graph by compilation from an HDL spec
ification of the original circuit. Although these approaches are quite different, we
believe that there are situations in which each is useful.

1. Introduction

Verifying the correctness of sequential circuits has been an important problem for a long time.
But lack of any formal and efficient method of verification has prevented the creation of practical
design aids for this purpose. Since all the known techniques of simulation and prototype testing
are time-consuming and not very reliable, there is an acute need for such tools. In this paper
we describe an automatic verification system for sequential circuits in which specifications are
expressed in a propositioned temporal logic. In contrast to most other mechanical verification
systems, our system is fully automatic and does not require user assistance in the construction of
proofs. Also, it is quite fast; experimental results show that state machines with several hundred
states can be checked for correctness in a matter of seconds!

Propositional logic has long been accepted as an appropriate formalism for describing and
reasoning about combinational circuits. We believe that temporal logic may be equally useful
for sequential circuits. Bochmann [3] was probably the first to use temporal logic to describe
circuits. He verified an implementation of a self-timed arbiter using linear temporal logic and

"what he called "reachability analysis." Malachi and Owicki [11] identified additional temporal
operators required to express interesting properties of circuits and also gave specifications of a large
class of modules used in self-timed systems. Although these researchers contributed significantly
toward developing an adequate notation for expressing the correctness of circuits, the problem of
mechanically verifying a circuit using efficient algorithms still remained unsolved.

We show how a simple and efficient algorithm, called a model checker, can be used to verify
various temporal properties of a sequential circuit. Roughly speaking our method works by first
building a labeled state-transition graph for the circuit. This graph can be viewed as a finite
Kripke structure or model. By using the model checker we can determine the truth of a temporal
formula relative to the state graph. Our algorithm has time complexity linear in both the size of
the specification and the size of the state-transition graph. Moreover, if the formula is not true,
the model checker will provide a counterexample if possible.

Thus, if we have correctly translated the circuit specification into a state-transition graph,
we will know that a formula determined to be true by the model checker must also hold true
for the corresponding circuit. We discuss two different techniques that we have implemented
for automatically generating such graphs: The first involves extracting the state graph directly
from the circuit by simulation. The second obtains the state graph by compilation from an HDL
specification of the original circuit. Although these approaches are quite different, we believe that
there are situations in which each is useful.

In the first approach a mixed gate- and switch- level circuit simulator is used to extract a state
graph from a structural description of the sequential circuit. Usually, circuits are designed under
the assumptions that some input sequences and combinations will not occur. The program exploits
this to prevent a combinatorial explosion in the number of states that are generated, by allowing
the user to specify a set of conditions under which the inputs can change. The simulator uses a

1

unit-delay timing model in which the switching delays of all transistors and gates are assumed to

be equal.

The second approach involves extracting the Kripke structure from a high-level state machine
description language with a Pascal-like syntax (called SML). Since programs in the SML language
must ultimately compile into circuits, the major data type is boolean. Furthermore, boolean vari
ables may declared active high or active low, and use of mixed logic is encouraged. Programs are
composed using the standard control structures if, while, and loop/exit. A cobegin is provided
for simultaneous execution of statements, and there is a simple macro mechanism. The output
of the SML compiler can also be used to generate a PLA, PAL, or ROM-thus, permitting state
machines that have been verified by our techniques to be implemented as circuits.

The paper is organized as follows: Section 2 briefly describes the CTL specification language
and how the model checker works. Section 3 discusses the automatic procedure that we have
implemented for extracting a CTL model directly from a circuit and section 4 illustrates its use
in verifying an asynchronous circuit from Seitz's chapter in Mead and Conway [12]. In section
5 we outline the alternative approach of extracting a CTL model from a program in a high-level
state machine description language with a Pascal-like syntax and illustrate its use with examples.
The paper concludes in section 6 with a discussion of directions for future research including the
possibility of making our approach hierarchical.

2. CTL and EMC

The logic that we use to specify circuits is a propositional temporal logic of branching time,
called CTL (Computation Tree Logic). This logic is essentially the same as that described in [1],
[6] and [9]. The syntax for CTL is as follows: Let P be the set of all the atomic propositions in the
language, £. Then

1. Every atomic proposition P in P is a formula in CTL.

2. If fx and / 2 are CTL formulae, then so are -i / i , fx A / 2 , AX / i , EX fu A[/i U / 2] and

E[/i U f 2) .
In this logic the propositional connectives -> and A have their usual meanings of negation and

conjunction. The temporal operator X is the nexttime operator. Hence the intuitive meaning
of AX fx (EX fx) is that fi holds in every, (in some) immediate successor state of the current
state. The temporal operator U is the strong until operator. The intuitive meaning of A[/i U / 2]
(E[/i U / 2]) is that for every computation path (for some computation path), there exists an initial
prefix of the path such that / 2 holds at the last state of the prefix and fx holds at all other states
along the prefix.

We also use the following syntactic abbreviations:

• fi V h = -*hfi A - « / 2) , fx h = ~"fi V / 2 , and fx h = {fx — h) A (/ 2 fx)

• AF fx = A [t rue U A] which means for every path, there exists a state on the path at
which fx holds.

• EF fx = E[t rue U fx] which means for some path, there exists a state on the path at
which fx holds.

• AG fx = ~> EF -i/i which means for every path, at every node on the path fx holds.

• EG fx = "»AF -ifx which means for some path, at every node on the path fx holds.

We also define the weak until operator, u; the 'universal form' of it can be defined as the
following syntactic abbreviation: A[/i u A] = -^E^A U (-1/1 A ^A)] which means that for every
computation path, fx is true in all states preceding the (first) state in which f2 is true. It is
different from the strong until operator in the sense that it is does not imply eventual occurrence
of its second argument.

The semantics of a CTL formula is defined with respect to a labelled state-transition graph.
A CTL structure is a triple M = (S, 72, 77) where

1. S is a Suite set of states.

2. R is a total binary relation on S (R C S x S) and denotes the possible transitions between
states.

3. 77 is an assignment of atomic proposition to states, i.e. II: S —• 2^ .

A path is an infinite sequence of states (so, si, 5 2 , . . .) such that Vt[(si, st-+i) E 72]. For any
structure M = (S, R, 77) and state SQ € S, there is an infinite computation tree with root labelled
50 such that s -»t is an arc in the tree iff (s, t) € R.

The truth in a structure is expressed by At, so f= / , meaning that the temporal formula / is
satisfied in the structure M at state 5o- The semantics of temporal formulae is defined inductively
as follows:

3 0 \=p iffPe 77(50).

so\=^fiffsQ^f.

f= fi A f2 iff so f= h and «o f= h-

so |= AX fx iff for all states t such that (50, t) E R,t f= fx.

SQ |= EX fx iff for some state t such that (so,t) €E R,t |= fx.

s0 f= A[/ i U f2] iff for all paths (5 0 , *i, s2,...), 3 t>0[5 t- f= f2 A V0<y<t[*y |= A]].

s 0 |= B[A U A] iff some path (5 0 , *i, 5 2 , . . .) , 3»>ol*i (= A A V0<j<i[*y (= A]].

There is a program called EMC ("Extended Model Checker") that verifies the truth of a formula

in a model using these definitions. It uses efficient graph-traversal algorithms to check a formula

in time linear in the size of the graph and in the length of the formula. (See [6] for details.)

There are two additional features of the model checker that turn out to be particularly useful
in practice. The first extension is the addition of fairness constraints. Occasionally, we are only
interested in the correctness of fair execution sequences. For example, we may wish to consider

3

only execution sequences in which some process that is continuously enabled will eventually fire.
This type of property cannot be expressed directly in CTL. In order to handle such properties we
must modify the semantics of CTL slightly. Initially, the model checker will prompt the user for a
series of fairness constraints. Each constraint can be an arbitrary formula of the logic. A path is
said to be fair with respect to a set of fairness constraints if each constraint holds infinitely often
along the path. The path quantifiers in CTL formulas are now restricted to fair paths. Examples
of fairness constraints can be found in sections 4 and 5. In [6] we show that handling fairness in
this manner does not change the linear time complexity of the model checker.

The second feature is a counterexample facility. When the model checker determines that a
formula is false, it will attempt to find a path in the graph which demonstrates that the negation
of the formula is true. For instance, if the formula has the form AG / , our system will produce a
path to a state in which - i / holds. This feature is quite useful for debugging. EMC is written in
C and runs on a VAX 11/780 under Unix.

_3. Extracting State Graphs from Circuits

Perhaps the most common approach to understanding a circuit is to trace its operation by
propagating sample values through one level of gates completely before proceeding with the next.
This is an application of a unit delay timing model: One assumes that the delay between input
signals and the corresponding output is exactly the same for all of the gates in the circuit. The
unit delay assumption is frequently used for simulation at the gate and switch level.

We use the unit-delay assumption when verifying sequential circuits. In essence, we have
automated the informal process of checking the circuit operation for all possible inputs. The unit-
delay assumption may not catch all errors in asynchronous circuits. A circuit may malfunction
only in the presence of unequal gate delays, in which case some other method must be used to
detect the possible error. However, we believe that verification under the unit-delay assumption is
a good way to debug many types of asynchronous circuits—perhaps as an initial step in a more
thorough (and expensive) verification process.

We describe below a program that converts a mixed gate- and switch-level description of a
circuit into a state graph (called the circuit processor from now on). The resulting state graph
and verification conditions (written in CTL) can then be fed to the model checker to do the actual
checking.

The input to the circuit processor is a structural circuit description. It consists of a set of
node and component declarations. A node can be declared to be an input node in which case it is
assumed to be driven by an off-chip signal; otherwise, it is assumed to be in internal node serving as
a connection point. Internal nodes also have the ability to store signals capacitively if they are not
connected (directly or indirectly) to a power source. A component can be regarded as a box with
a set of "formal nodes," similar to formal parameters in procedures in conventional programming
languages. A component declaration consists of a component type and an association of its formal

nodes with the actual nodes in the circuit. Components can be resistors, transistors, or boolean
gates.

Once the circuit description has been read, the circuit processor builds a state graph. The heart
of the program is a mixed gate- and switch-level simulator. The states of the output state graph
are characterized by the signals at the circuit nodes: There is at most one state corresponding to
any set of node values and each state is labeled with the signals that have the value 1 in that state.

The construction of the state graph starts with a user-specified initial state and uses the
simulator to find the successors to every new state it generates. The circuit processor also decides
what values to use for the input nodes when finding the successors. A state can have more than
one successor if there are several possible input values.

The simulation algorithm is the same as the one used in MOSSIM II, a widely used switch-level
simulator. The algorithm and MOSSIM II are thoroughly explained elsewhere, so we summarize
it only briefly here. (See [5].) The algorithm uses three "logical" values: 0, 1 and X (meaning
"unknown"). 1

Basically, the simulation performs a set of steps, each step simulating one unit delay. There
are logical values assigned to the circuit nodes on entry to each step, either from the results of the
previous step or from user-specified initial conditions. A step consists of two phases. First, the
logical node values are used to determine whether the transistors are "on," "off," or "unknown."
The transistors are frozen in this state giving a resistor circuit. In the second phase the node values
and the resistor circuit are used to find new node values using an approximate model. This gives
the logical node values for the next step.

We have augmented the algorithm to allow simulation of arbitrary boolean gates. During the
first phase of a unit step a boolean result is computed from the logical values of the gate's input
nodes. If the gate has a boolean output of 1, the simulator adds a pullup resistor to the gate output
node in the resistor circuit used in phase 2. If the boolean result is 0, the simulator adds both a
pullup and an appropriate pulldown resistor to the output node.

Since circuits are only expected to work when they are properly used, the program need not
consider all inputs at all states. Instead, the user specifies a set of conditions under which the
inputs can change. The conditions are propositional formulas on the node values. The circuit
processor determines whether a state satisfies the change condition for each input signal, and uses
this information to decide whether that signal can change during the computation of the successor
states. Each signal that can change has two possible values: the current value and its logical
complement. Any combination of these values is a possible input. It is possible for the inputs to
remain unchanged in every state.

lrrhis presents no problem for the model checker. We have extended it to accept a state graph in which the states
have two sets of labels: one of nodes with 1 values and one of nodes with 0 values. A node with an X value appears
in neither set. A state graph of this form represents a family of state graphs of the previous type; each member of
the family is the result of substituting 0 or 1 for a node that has the value X in the original graph. A formula is

satisfied by a state iff it is satisfied by the corresponding state in every element of this family of graphs.

5

- - The procedure below uses a hasL table that maps node value assignments to states.
- - To construct the state macliine, call this procedure on a node value assignment for
- the initial state.

procedure BuildGraph(Node value assignment) return a state
begin

if there is state for the node values in the table
then

return the state;
else

Create a new state; x
Label the state with nodes that have 1 values;
Store the state and node values together in the hash table;
for each possible input assignment do

Combine current values for internal nodes and input assignment into
a new node value assignment;
Simulate one step to Snd a new node assignment;
Call BuildGraph recursively on new node assignment;
Add value returned by the previous line to the successors of the
current state;

end;
end;

end.

Figure 1: State Machine Construction Algorithm.

It is sometimes useful for an input condition to be able to test whether a state is "stable." (In
the unit delay model, a stable state is a state that is a successor of itself. The circuit can stay in
such a state for an arbitrarily long time.) Usually, for example, a clock signal in a synchronous
circuit should not change until the circuit is stable. We allow the atomic proposition stable to
be used in input change conditions. The preprocessor labels a state with stable if that state is a
successor of itself. This occurs when the circuit has settled; it will stay in a stable state until the
inputs change.

For example, the queue element we describe and verify below has an input signal named Init
to initialize it. The circuit should be verified under conditions in which Init is raised, stays high
until the circuit has stabilized (no other inputs may change during this time), then goes low and
stays low. We give Init the value 1 at the beginning of the state graph construction (the program
asks for this information). In the circuit description, the input change condition for Init is given
by Init A stable. This requires Init to stay high until the circuit stabilizes. It can then continue to
be high, or go low. Once it goes low, it cannot go high again because the change condition says
that it can only change when it is high.

A more detailed description of the program appears in Figure 1.

6

Data Part (registers)

Ackln

Init > 1(

Control Part

Reqln

OH
ReqOut^

Initi AckOut
Input Cell Inner Cell Output Cell

V

Figure 2: Queue (FIFO) Element.

4. Example: A Self-Timed Queue Element

We apply this technique to a self-timed queue element. The circuit originally appeared in an
article by Seitz on self-timed systems [14]. This circuit has practical importance because it can
be used to connect pipelined computational units with variable processing time, maximizing the
utilization of the connected units. The use of asynchronous design results in a very fast and small
implementation of the queue. A diagram of the circuit is shown in Figure 2. The queue consists of
a control part and a data part. The data part is simply a shift register which has as many bits of
parallel data as necessary. The control part has three major components: an input cell, an output
cell, and any number of inner cells. The input and output cells convert two-cycle signals from the
external world into four-cycle signals for the inner cells. The inner cells keep track of which cells
of the shift register have data in them and handle the control signals to shift data through the
register.

There is one unconventional component in the circuit that should be explained: the "negative
resister" (labeled a—Rv in the diagram). This circuit is a chain of two inverters with a (relatively)
high-value resistor feeding back from the output of the second inverter to the input of the first.
This circuit stores its most recent input signal, and after two gate delays supplies the same signal
on the output.

The queue is a speed-independent element: It assumes no real-time restrictions on the behavior
of the circuits it is connected to. However, the internal design of the queue is not speed-independent.
It uses a more liberal assumption that no series of 3 gates is faster than any other series of 2 gates.
This is called the "3/2 rule".

7

We have applied our verification technique to the circuit in the case where there is a single
inner cell. The unit-delay assumption is a refinement of the 3/2 rule. Any circuit satisfying the
unit-delay rule certainly satisfies the 3/2 rule, but not the converse. If our verification finds a
problem, then it is definitely a violation of the circuit design rules. On the other hand, a successful
verification increases confidence in the circuit design but does not guarantee that the circuit is
correct.

4-1. Temporal Logic Specif ication of t h e Queue Element

In this subsection we give a variety of correctness conditions in CTL for the queue element.
This is not a complete specification—just a sample of some interesting properties. We categorize
the conditions as requiring safety or liveness properties. Informally, safety properties say that the
circuit does not do anything bad, while liveness properties say that it does do something good.

First, we specify the correct behavior of the two-cycle interfaces with the external world. The
following formulae apply to both the input and output cells. Reqln, ReqOut, Ackln, and AckOut
must be substituted for req and ack, as appropriate.

AG {->req A[-»rcg u ->ac£]) AG [req —> A[req u ack])
AG (-»acA; —• A[-»acfc u req]) AG (ack —» A[ack u ->reg])

The first condition requires that if the req signal is low it must stay low until ack goes low;
if ack is high because a previous request has not been acknowledged req is not allowed to change.
The second formula gives the corresponding requirement when req is high. The third and fourth
formulae require that ack not change unless req has the opposite value.

These previous four formulae are safety properties. For example, in the first formula it is not
required that -yack go low—only that req cannot go high before ack goes low. It is also reasonable
to give some liveness conditions for the two-cycle interfaces:

AG (req A -<ack —• AF ack) AG (~>req A ack —• AF -yack)

These formulae state that if every request must inevitably be acknowledged. We do not require req
to change after ack takes on the same value.

There is a problem in verifying these last two formulae. In a correct implementation of the
queue element, if the register cell is already full and another input request arrives, the acknowledge
for the new input must wait for the cell to become empty. This will only happen when the external
circuit on the output side raises AckOut to indicate that it has read the contents of the register
cell. We must require that this external circuit always respond to an output request in finite time.

The solution to this problem is to use the fairness constraint facility of the model checker.
We can require that a pending output request be acknowledged infinitely often by the fairness
constraint

ReqOut <-*• AckOut.

8

The model checker will then check the two conditions above only over the paths in which the
external circuit always responds to output requests, which solves the problem.

There are also correctness conditions relating the input and output cells. We give a few sample
formulae. First, an obvious safety condition is that if there is nothing in the inner cell {-^Fulll)
there will not be an output request until there is an input request,

AG {^Fulll -> A[{ReqOut *-> AckOut) u ^{Reqln «-> Ackln)])).

There are also a number of interesting liveness conditions. For example, if there is an unac
knowledged input request and if the inner cell is empty, then the signal to load the shift register
cell, A, will inevitably be raised,

AG (^{Reqln <-+ Ackln) A ^Fulll -+ AF A).

If the inner cell is full, there should always be an output request to make the data available,

AG {^Fulll -> AX{Fulll — AF ^{ReqOut AckOut))).

This formula is somewhat subtle. Essentially, the nexttime operator is used to check the first state
after a rising edge of Fulll. After this edge there must inevitably be an output request.

If the queue element is full and an output request is made and then acknowledged, the element
should eventually become empty. This is specified by

AG {Fulll A^{ReqOut <-+ Ackout) AX{{ReqOut <-> AckOut) AF ^Fulll)).

4.2. Verifying t h e Circuit

When our program is used to build a state graph from a circuit description, the resulting state
graph has 152 states. The input signal Init is set to 1 and the signals Reqln and AckOut are set to
0 for the starting conditions (all internal signals are automatically initialized to a value that means
"unknown"). We specify input change conditions requiring that the Init signal stay high until the
circuit stabilizes, and that none of the other inputs change until Init goes low. Thus, the resulting
state graph has a sequence of states at the beginning representing the initialization of the circuit,
after which the Init signal stays low and the other signals are free to change. There are also input
change conditions to require Reqln and AckOut to conform to the two-cycle signalling protocol.

The actual verification conditions are modified to account for the Init signal: Every condition
originally of the form AG (x) is transformed to AG (-i/ntY —• x), so uninitialized states are not
considered in checking the formulae.

All the conditions check, except for the safety condition

AG (-iFulll A[{ReqOut <-> AckOut) u ^(Reqln Ackln)]).

9

The model checker provides a counter-example path in which there are two output requests in
response to a single input request. This occurs because of a timing error in the circuit. The
transistor in the output cell connected to ReqOut is on (because D = 1) when AckOut goes high
in response to ReqOut The data path that eventually causes B to go low is four gates long, so B
is still high when the change in AckOut propagates through the three inverters to E. This causes
ReqOut to go low, creating a spurious request on the output.

It is not clear whether this phenomenon would cause a real circuit to fail—that depends on
how accurately the 3/2 design rules model real circuits. However, the circuit definitely has a bug
under those rules. This bug can be fixed by adding two more inverters between AckOut and E. All
of the above conditions check out for the corrected circuit; however, we still cannot be sure that
the resulting circuit is bug-free because the specification is incomplete and because we have not
checked it under the less forgiving 3/2 timing model.

5. Verifying High Level Descriptions of Circuits

In practice, many circuits are designed as finite state machines before they are implemented
in hardware. For circuits designed in this manner, exhaustive simulation that constructs a finite
state machine, as in the previous section, is unnecessary since the original finite state machine is
already available. Therefore, we can verify the design before it is implemented in hardware. If
a VLSI design tool that correctly implements finite state machines is used to layout the verified
design, we can be sure that the resulting circuit is correct.

In order to assist with the design and verification of finite state machines, we have designed
a language named SML (state machine language). In addition to being useful for verification,
SML also provides a succinct notation for describing complicated finite state machines. A program
written in SML is compiled into a finite state machine, which can then be verified using the model
checker or implemented in hardware. At CMU, we have implemented an SML compiler that runs
on a VAX 11/780. We also have access to design tools that can implement a finite state machine
produced by the compiler as either a ROM, a PLA, or a PAL.

5.1 . T h e Descr ipt ion Language and its Semant i c s

An SML program represents a synchronous circuit that implements a Moore machine. At a
clock transition, the program examines its input signals and changes its internal state and output
signals accordingly. Since we are dealing with digital circuits where wires are either high or low, the
major data type is boolean. Each boolean variable may be declared to be either an input changed
only by the external world but visible to the program, an output changed only by the program but
visible to the external world, or an internal changed and seen only by the program. The hardware
implementation of boolean variables may also be declared to be either active high or active low.
The use of mixed logic in SML is permitted. Internal integer variables are also provided.

10

SML programs are similar in appearance to many imperative programming languages. SML
statements include if, while, and loop/exi t . A cobegin is provided to allow several statements
to execute concurrently in lockstep. There is also a simple macro facility.

The semantics of SML programs are different from most programming languages, since we are
not only interested in what a statement does, but how much time it takes to do it. In this respect,
SML was influenced by the semantics of ESTEREL [2], The complete semantics for SML will not
be given here, but they will appear in a forthcoming paper [4]. A program state is an ordered pair,
(5, s), consisting of a statement S and a function 5 that gives values to all of the identifiers. The
semantics consist of a set of rewrite rules that describe how a program state can be transformed
into new program state. Each rewrite rule also specifies whether it takes a clock cycle to make the
transformation or not. For example, two typical rewrite rules are:

(raise(/);S,*>-Ms,s') (1)
where s1 = s [I *-+ true]

E = false , ,
0 — 7 — (2)

(if E then Sx endif; S 2 , s) (S 2 , s)

The first rule states that a raise statement followed by an arbitrary statement S can be
rewritten in one clock cycle to statement S while simultaneously changing s so that sf(I) = true.
The second rule states that an if statement followed by an arbitrary statement £2 can be rewritten
in no time to statement S2 if the condition is false.

Given any program state, we can repeatedly apply the rewrite rules to find a new state that
can be reached in one clock cycle. This new state is a successor of the original state in the finite
state machine. So starting from the initial program state (which consists of the entire program
and a function which assigns 0 to all integers and false to all booleans), we can repeatedly find
successor states until we have built the entire finite state machine.

5.2. Example : A Traffic Control ler

The best way to illustrate the use of SML is by an example. We will use SML to design a
traffic controller that is stationed at the intersection of a two-way highway going north and south
and a one-way road going east. For the sake of simplicity, no turns are permitted. At the north,
south, and east of this intersection, there is a sensor that goes high for at least one clock cycle when
a car arrives. When the intersection is clear of cross traffic, the controller should raise a signal
indicating that the car is permitted to cross the intersection. Once the car has crossed, the sensor
that indicated the arrival of the car will go low.

Let the names of the sensors be N (north), S (south), and E (east). Furthermore, let N-Go,
S-6?o, and E-Go be the names of the output signals for each end of the intersection.

11

Now that the problem is defined, we can express the correctness conditions of the controller in
CTL.

AG ^(E-Go A [N-Go V S-Go))

This formula is a safety property that is true if the controller does not permit collisions to occur.
There are also several interesting liveness properties:

AG (-.JV-Go A N AF N-Go)
AG (-.S-Go A S -> AF S-Go)
AG (^E-Go A E -> AF £-Go)

These formulas state that every request to enter the intersection is eventually answered, so the
controller is starvation-free. If all three of these formulas are true, the controller is deadlock-free
as well.

EF [N-GoAS-Go)

Since we want to maximize the amount of traffic, this formula insures that the controller allows
-north and south traffic to cross the intersection simultaneously.

In addition to specifying the desired behavior of the controller, we must also specify the behavior
of the cars. In particular, we don't want a car to enter the intersection and stay there forever.
Since the model checker allows the specification of fairness constraints that must be true infinitely
often, we must rephrase this condition to be that the cars must be out of the intersection infinitely
often. Since a car from the north is in the intersection if N-Go is true, and it stays there while iVis
true, the fairness constraint for cars from the north is -y(N-Go A iV). There are similar constraints
for traffic from the south and east.

5.3. A n implementat ion of t h e Traffic Controller in S M L

One approach to this problem is to provide two locks: NS-Lock, which is true when north-south
traffic is in the intersection, and EW-Lock, which is true when east-west traffic is in the intersection.
Traffic from one direction is forbidden to enter the intersection if the lock in the other direction
is true. Figure 3 shows a program that uses this idea. The numbers at the beginning of each line
were added for easy reference and are not part of the language.

A few comments are necessary to explain the operation of this program.

Line 5: In addition to declaring the two locks, N-Req, S-Req, and E-Req are also declared to
be internal. N-Req will go high when a car arrives at the intersection from the north and go low
when the car has crossed the intersection. S-Req and E-Req are similar.

Lines 7-9: Wait is a macro definition that delays until its parameter becomes true.

Line 12: If a car is not at the north end of the intersection (!N-Req), and the sensor at the
north goes high (N), there is now a car at the north end of the intersection, so assert N-Req.

Lines 14 and 16: These statements do the same as line 12 for cars from the south and east.

12

I program Intersect;
2
3 Input N, S, E;
4 output N-Go, S-Go, E-Go;
5 Internal NS-Lock. EW-Lock, N-Req, S-Req, E-Req;
6
7 procedure wait (expr)
8 while l(expr) do nop endwhlle
9 endproc
10
II cobegln
12 loop 1f !N-Req & N then raise (N-Req) endlf endloop
13 II
14 loop 1f !S-Req & S then raise (S-Req) endlf endloop
16 II
16 loop 1f lE-Req & E then raise (E-Req) endlf endloop
17 II
18 loop
19 1f N-Req then
20 raise (NS-Lock);
21 wait (IEW-Lock);
22 raise (N-Go);
23 wait (IN);
24 cobegln
25 1f iS-Go & IS-Req | S-Go & (S then lower (NS-Lock) endlf
2« II
27 lower (N-Go) || lower (N-Req)
28 end;
29 wait (!E-Req)
30 endlf
31 endloop
32 II
33 loop
34 1f S-Req then
35 1f INS-Lock & IN-Req then raise (NS-Lock) else delay 1 endlf;
36 wait (tEW-Lock);
37 raise (S-Go);
38 wait (IS);
39 cobegln
40 1f tN-Go & IN-Req then lower (NS-Lock) endlf
41 II
42 lower (S-Go) || lower (S-Req)
43 end;
44 wait (!E-Req)
45 endlf
46 endloop
4 7 II
48 loop
49 if E-Req then
60 wait (INS-Lock);
61 cobegln raise (EW-Lock) || raise (E-Go) end;
52 wait (IE);
53 cobegln lower (EW-Lock) || lower (E-Go) || lower (E-Req) end
54 endlf
55 endloop
66 end
67 endprog

Figure 3: A First Attempt at Writing a Traffic Controller in SML.

Lines 18-31: This statement controls traffic from the north. The procedure is to lock the
intersection (line 20), wait until the cross traffic releases the intersection (line 21), and then go
(line 22). After the car has crossed (line 23), release the intersection if there is no south traffic
about to enter the intersection (! S-Go & ! S-Req) or if there is south traffic simultaneously leaving
the intersection (S-Go k !S) (line 25). Do not accept another request from the north until any
east traffic finishes crossing (line 29).

Lines 33-46: This statement controls traffic from the south. The algorithm is the same as for
north traffic, except that north traffic changes NS-Lock if both north traffic and south traffic want

13

to change it simultaneously. On line 35, south traffic sets NS-Lock only if north traffic isn't about
to enter the intersection and set it. On line 40, north traffic will release NS-Lock if it is leaving the
intersection simultaneously, so it is not necessary to test (N-Go & !N).

Lines 48-55: This statement controls traffic from the east. Once there is no north-south traffic
(line 50), the intersection is locked and the car is allowed to go (line 51). After the car leaves (line
52), the intersection is released.

This program was compiled into a 72 state machine in approximately 10 seconds of CPU time
on a VAX. However, the transitions of this state machine are dependent on the state of the input.
In order to remove this dependency, each state had to be replaced with 8 states, one for each
possible combination of inputs. An additional 35 seconds of CPU time was required to convert
this state machine into a 576 state machine that the model checker can handle. We have already
developed a new model checker algorithm that circumvents this problem and we hope to implement
it in the near future.

5.4. Verifying t h e Traffic Control ler w i t h the M o d e l Checker

Figure 4 shows a transcript of the model checker running on the program in figure 3. The
numbers in parentheses are the total user cpu time and "system time", in l/60ths of a second. As
the transcript shows, the program allows simultaneous north and south traffic and is collision-free,
but it is not deadlock-free. The model checker provides a counter example that can be used to
diagnose the problem. In state 390, cars from the north and the south are in the intersection, and
there is a car waiting from the east. Furthermore, the car from the north is leaving the intersection
(JVis false), so the controller will not allow another car from the north to cross until the car from
the east has crossed. In state 417, another car arrives from the north, so N-Req is raised in state
432. In state 432, the car from the south leaves the intersection (S is false). But since N-Req is
high, the controller does not lower NS-Lock in state 523! So state 523 is a deadlock, where the car
from the east is waiting for the north-south traffic to unlock the intersection, and the north-south
traffic is waiting for the car from the east to cross the intersection.

As the counter example illustrates, the problem with the program in figure 3 is that a car from
the south will not lower NS-Lock when it leaves the intersection if N-Req is high, since it expects
a car from the north to enter the intersection. However, the car from the north might be waiting
for a car from the east to cross (line 29), so it will not enter, and a deadlock will result. A simple
solution is to replace the wait at fine 29 with a loop that will lower NS-Lock if south traffic leaves
the intersection while east and north traffic is waiting. The wait at line 44 must also be replaced
by a similar loop. The result of these changes is the program shown in figure 5. This program
compiles into 69 states (552 states for the model checker). The correctness of this program is shown
by the transcript in figure 6.

14

X /b1n/t1me emc -c Interl.emc
CTL MODEL CHECKER (C vtrilon 2.6)

Taking input from Interl.emc...
Fairness constraint: -(N-Go & N) .
Fairness constraint: -(S-Go & S).
Fairness constraint: -(E-Go & E).
Fairness constraint: .

time: (1284 141)

|- EF (N-Go & S-Go).
The equation 1s TRUE.

time: (1305 149)

|- AG -(E-Go & (N-Go | S-Go)).
The equation 1s TRUE.

time: (1326 158)

|" AG (N & -N-Go -> AF N-Go).
The equation 1s FALSE.

EF -(N & -N-Go -> AF N-Go)
1s true 1n state 1 because of the path:

State 1: XCMP1 E S N
State 16: E-Req S-Req N-Req XCMP2
"State 104: E-Req S-Req N-Req E-Go EW-Lock NS-Lock XCMP67
State 484: E S-Req N-Req NS-Lock XCMP32
State 390: S E-Req S-Req N-Req NS-Lock S-Go N-Go XCMP30
State 417: E S N E-Req S-Req NS-Lock S-Go XCMP19

N & -N-Go -> AF N-Go
1s false 1n state 417 1f:
1) -r(N & -N-Go)

1s false 1n state 417, AND
2) AF N-Go

1s false 1n state 417.

-(N & -N-Go)
1s false 1n state 417 because the following propositions are true:

N -N-Go

AF N-Go
1s false in state 417 because

EG -N-Go
1s true 1n state 417.

An example of such a path 1s:
E S N E-Req S-Req NS-Lock S-Go XCMP19
E-Req S-Req N-Req NS-Lock S-Go XCMP17
E N E-Req N-Req NS-Lock XCMP69
E N E-Req N-Req NS-Lock XCMP69

State 417
State 432
State 523
State 523

time: (1428 184)

I- •
End of Session.

1:59.0 real 23.8 user 3.2 sys

Figure 4: Verifying the First Traffic Controller Program.

6. Conclusion

The approaches presented here are practical for small- and medium-size sequential circuits.
Verification is usually viewed as a way to guarantee correctness, and these techniques are no

15

loop 1f 1E-Req & E then raise (E-Req) endlf endloop

I program Intersect;
2
3 Input N, S. E;
4 output N-Go, S-Go, E-Go:
5 Internal NS-Lock, E-Lock, N-Req, S-Req, E-Req:
6
7 procedure wait (expr)
8 while t(expr) do nop endwttlle
9 endproc
10
II cobegln
12 loop 1f IN-Req & N then raise (N-Req) endlf endloop
13 ||
14 loop 1f IS-Req & S then raise (S-Req) endlf endloop
15
16
17 ||
18 loop
19 1f N-Req then
20 raise (NS-Lock);
21 wait (IE-Lock);
22 raise (N-Go);
23 wait (IN);
24 cobegln
25 1f S-Go Si IS I IS-Go & IS-Req then lower (NS-Lock) endlf
26 II
27 lower (N-Go) || lower (N-Req)
28 end;
29 while E-Req do
30 1f S-Go St IS & N-Req then lower (NS-Lock) endlf
31 endwhlle
32 endlf
33 endloop
34 ||
35 loop
36 1f S-Req then
37 1f (NS-Lock Si IN-Req then raise (NS-Lock) else delay 1 endlf;
38 wait (IE-Lock);
39 raise (S-Go);
40 wait (IS);
41 cobegln
42 1f tN-Go & IN-Req then lower (NS-Lock) endlf
43 ||
44 lower (S-Go) || lower (S-Req)
46 end;
46 while E-Req do
47 1f N-Go & IN ft S-Req then lower (NS-Lock) endlf
48 endwhlle
49 endlf
50 endloop
51 II
62 loop
53 1f E-Req then
64 wait (INS-Lock);
66 cobegln raise (E-Lock) || raise (E-Go) end;
66 wait (IE);
57 cobegln lower (E-Lock) || lower (E-Go) || lower (E-Req) end
56 endlf
69 endloop
60 end
61 endprog

Figure 5: The Corrected Traffic Controller Program.

exception. However, we believe that these methods hold even more promise as debugging aids.
Tools like those described in this paper could expedite the design process by localizing bugs quickly.
They could also allow designers to improve designs more aggressively, freeing them from the natural
reluctance to modify a design that is already known to work.

Further research is needed in a number of areas. Timing is an important issue when verifying
asynchronous sequential circuits. The unit-delay model used in sections 3 and 4 is easy to im-

16

X /b1n/t1me emc -c Inter2.emc
CTL MODEL CHECKER (C version 2.5)

Taking Input from 1nter2.emc...
Fairness constraint: ~(N-Go & N).
Fairness constraint: -(S-Go & S) .
Fairness constraint: -(E-Go & E).
Fairness constraint: .

time: (1371 386)

|- AG -(E-Go & (N-Go | S-Go)).
The equation 1s TRUE.

time: (1391 371)

|» AG (N & -N-Go -> AF N-Go).
The equation 1s TRUE.

time: (1466 377)

|- AG (S & -S-Go -> AF S-Go).
The equation 1s TRUE.

time: (1543 383)

|- AG (E & -E-Go -> AF E-Go).
The equation 1s TRUE.

time: (1609 391)

I- •
End of Session.

4:51.0 real 26.8 user 6.7 sys
X

Figure 6: Verifying the Corrected Traffic Controller Program.

plement, but unrealistic. A more commonly used model in asynchronous circuit design assumes
arbitrary delays in wires and/or gates. We have a technique for verifying circuits under an arbi
trary gate delay model, which we have successful applied to an asynchronous arbiter [8]. There are
a variety of timing assumptions that are less conservative than arbitrary delay models, but more
realistic than the unit-delay assumption. Obviously, the 3/2 model used in the design of the queue
element example is one of these. Another assumes minimum and maximum delays for the circuit
components. It would be useful to be able to verify circuits under these assumptions.

It is probably not practical to use these methods on large circuits, because of the corresponding
size of the state graphs. Circuit designers cope with the complexity of large circuits by designing
them hierarchically. It seems reasonable that the same circuits could be verified hierarchically by
verifying small subcircuits in detail, then using simplified models of them as components in larger
circuits. This process can be automated to some extent. If one uses a subset of CTL, small* circuits
can be simplified by "hiding" some of their internal nodes (more precisely, making it illegal to
use them in CTL formulae) and merging groups of states that become indistinguishable into single
states (this is called restriction) [7].

17

We verified the self-timed queue element in the specific case in which there was only one inner
cell. In fact, there is a family of queues, each member having a different number of repeated inner
cells. There are many families of circuits designed in this way, for example, systolic arrays in
which the number of cells is a parameter. It would be useful to be able to verify entire families of
circuits at one time, using a more general technique than the ones in this paper. We conjecture
that inductive techniques could be applied to this problem.

REFERENCES

[I] M.BEN-ARI, Z.MANNA AND A.PNUELI, "The Logic of Nexttime," Eighth ACM Sym
posium on Principle of Programming Languages, Williamsburg, VA, January 1981.

[2] G.BERRY AND L.COSSERAT, "The ESTEREL Synchronous Programming Language and
its Mathematical Semantics," Ecole Nationale Superieune des Mines de Paris (ENSMP),
Cetnre de Mathematiques Appliquees, Sophia-Antipolis, 06565 Valbonne, France, 1984.

- [3] G. V. BOCHMANN, "Hardware Specification with Temporal Logic: An Example," IEEE
Transactions on Computers, Vol C-31, No. 3, March 1982.

[4] M.C.BROWNE AND E.M.CLARKE, Unpublished Manuscript, December 1984.

[5] R.E.BRYANT, "A Switch-Level Model and Simulator for MOS Digital Systems," IEEE
Transactions on Computers, Vol C-33, No. 2, February 1984.

[6] E.M.CLARKE, E.A.EMERSON AND A.P.SISTLA, "Automatic Verification of Finite-
State Concurrent Systems using Temporal Logic Specifications: A Practical Approach,"
Tenth ACM Symposium on Principles of Programming Languages, Austin, Texas, January
1983.

[7] E.CLARKE AND B.MlSHRA, "Automatic Verification of Asynchronous Circuits," in Pro
ceedings of C-M.U. Workshop on Logics of Programs (ed. E. Clarke and D.Kozen), Pitts
burgh, PA, 1983 (Springer Lecture Notes in Computer Science).

[8] D.DlLL, Unpublished Manuscript, December 1984.

[9] E.A.EMERSON AND E.M.CLARKE, "Characterizing Properties of Parallel Programs as
Fixpoints," Proceedings of the Seventh International Colloquium on Automata, Languages
and Programming, Lecture Notes in Computer Science No. 85, Springer Verlag, 1981.

[10] J.HALPERN, Z.MANNA AND B.MOSZKOWSKI, A Hardware Semantics based on Tem
poral Intervals, Report No. STAN-CS-83-963, Department of Computer Science, Stanford
University, Stanford University, Stanford, CA 94305, March 1983.

[II] Y.MALACHI AND S.S.OWICKI, "Temporal Specifications of Self-Timed Systems," in
VLSI Systems and Computations (Ed. H.T.Kung, Bob Sproull, and G.Steele), Computer
Science Press, 1981.

18

C . A . M E A D AND L.A .CONWAY, Introduction to VLSI Systems, Reading, MA, Addison-
Wesley, 1980.

R .MlLNER, A Calculus of Communicating Systems, University of Edinburgh, June 1980.

C .SEITZ, "System Timing," in Inroduction to VLSI Systems (C.Mead and L.Conway),
Reading, MA, Addison-Wesley, 1980.

19

