
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Automatic Planning of Fine Motions:
Correctness and Completeness

Matthew T. Mason

CMU-RI-TR-83-18

Computer Science Department
and Robotics Institute

Carnegie-Mellon University

Pit tsburgh, Pennsylvania 15213

14 December 1983

Copyright © 1983 Carnegie-Mellon University

To be presented at the IEEE Computer Society International Conference on Robotics,
March 13-15, 1984, Atlanta, Georgia. This research was supported by the Robotics Insti-
tute and the Computer Science Department, Carnegie-Mellon University.

Table of Contents

I. Introduction . . 1
A. Elements of the Approach 5
B. Discussion . . 8

II. Synthesis 10
A. FMP (Fine-Motion Planner) 10
B. Variations ' . . . • 16

III. Correctness and Bounded-Completeness of FMP 24
A. Correctness 24
B. Bounded-Completeness 24

11

List of Figures

1. Two fine-motion strategies 2
2. An example of planning a motion strategy 3
3. Convergence region types for the bottom of the hole, 4
4. Configuration spaces for peg insertions 7
5. A problem requiring an infinite number of steps 15
6. A problem requiring a finite, but unbounded, number of steps. • 16
7. Two subgoals for the peg in hole 17
8. The point-on-hill problem 18-20
9. A problem exposing the deficiency of the stateless predicate 21
10. Simple, but sufficient, subgoals. 22
11. A simple case illustrating the value of postponing termination 23

ABSTRACT

In this paper we explore a method for automatic planning of robot fine-
motion programs, first described in [Lozano-Perez, Mason, and Taylor 1983].
The primary result is a variation that is shown to be "bounded-complete" —
the method obtains a solution whenever a solution consisting of a bounded
number of motions exists.

By the clever use of task geometry and sensory information, a manipulator can often
perform tasks exceeding the nominal accuracy of the manipulator. Unfortunately, such
strategies can be difficult to discover and must be constructed anew for each task. In this
paper we explore an approach to automatic planning of such strategies, first described in
[Lozano-Perez, Mason, and Taylor 1983].

Figure 1 shows some simple fine-motion strategies used to insert a two-dimensional peg
in a hole. The motions shown in these examples do not rely on the positioning capability of
the controller, that is, they do not try to attain a particular location ba&ed on the position
encoders in the arm. Rather, they try to move in a general direction, using contact with
objects to guide the motion to specific goals. An important dividend of this approach is
that it is less vulnerable to control error and to variations in the task environment.

Automatic planning of fine-motions will require some ability to reason about contact
situations, and to reason about situations involving uncertainty and control error. In
section LA we will briefly describe techniques used for modeling and reasoning about
control, motion, contact, sensory error, and control error. In section II we provide a
detailed description of the procedure FMP, as well as some variations. In section III we
present a proof that FMP is correct and bounded-complete—that is, FMP obtains a solution
whenever a solution consisting of a bounded number of motions exists.

Example^
The planning process for moving a point into a hole in two dimensions is illustrated in

figure 2. The task is to move the point to goal G at the bottom of the hole. We represent
xmcertainty in the initial position of the point by saying only that it must be somewhere in
the set /. A good strategy must be successful no matter where in / the true position lies.
A direct motion towards the bottom of the hole will not work if the point's initial position
is near the left edge or the right edge of /. A better strategy is to use two motions: the
first motion deliberately strikes the surface to one side of the hole; and the second motion
slides back towards the hole, allowing the point to. fall in when it crosses the edge of the
hole. This is an instance of the biased search strategy illustrated in figure 1.

It is difficult to reason about a sequence of motions, so we will use an approach which
allows us to reason about a single motion at a time. The basic idea will be familiar to those
who are acquainted with dynamic programming, or with traditional artificial intelligence
planning techniques, where it is known as backward-chaining, without back-tracking. If
a sequence of N motion commands {s1} reliably moves the robot from / to G, then there
is a set R such that the first N — 1 motions will reliably move the robot from / to R}

and the last motion will reliably move the robot from R to G. Using this observation, a
sequence-planning problem can be reduced to N single-motion-planning problems.

Figure 1, Two fine-motion strategies, (a) illustrates the value of tilting a peg before
attempting to insert it in a hole. A comparable error causes failure without tilting, and
success with tilting, (b) illustrates the use of the biased search. The peg is deliberately
brought down to one side of the hole. This reduces or eliminates the chance of hitting the
hole directly, but improves the chance of sliding into the hole on the second motion, because
the direction to the hole is known.

There is one important difficulty in decomposing the sequence-planning problem this
way: since we cannot guess the correct final motion, we will have to consider all possible
final motions. We will use a type of motion which tends to move in a particular direction
0j but will slide along the surface of any object it strikes (see section LA for details). Thus,
the final motion can be any one of SQ, for 6 £ [0, 360). For each possible final motion
SQ, we define a convergence region RQ to include every position Cjn{t such that if motion
SQ is applied with the robot initially at czm^ the goal G will be attained. In general,

G = G1

Figure 2. Example of planning a motion strategy. Hypothesizing single motions allows
construction of subgoals. A chain of subgoals is constructed by iteration, which may ulti-
mately include the input set /. In this example, a final command motion s1 is hypothesized,
which will succeed from anywhere inside the convergence region Rl. li1 is then taken as the
subgoal (72, and command motion s2 is considered. The convergence region R2 contains the
entire plane. Since this includes the initial set /, the planner concludes that the program
consisting of a2 followed by s1 will attain the goal G from anywhere in L

there can be many different convergence regions for goal G and motion sg (see figure 8c,
for example), but in this example we will construct just one convergence region for each
motion considered.

Consider the peg-in-hole problem, and assume that the control error may give a di-
rectional error as great as 15 degrees, and that friction will cause the robot to stick on a
surface if its path is within 15 degrees of the surface normal (see section LA for justification
of this assumption). There are six types of convergence regions RQ, which are illustrated
in figure 3. If 0 6 [—15,195], then RQ is the goal G itself, where the index 0 indicates the
angle with respect to the horizontal. These motions would tend to move the robot away
from the hole, and will succeed only if the robot begins at the goal. (This assumes the
motion may be halted before it begins.)

Figure 3. Convergence region types for the bottom of the hole. Although there are
an infinite number of different convergence regions, each is a simple variation of one the
convergence regions illustrated here. Each sector of the circle includes values of 0, the
commanded motion direction, which would give rise to a convergence region of the type
illustrated.

If 9 G (195, 210], then RQ is a small wedge-shaped region lying at the bottom of the
hole, bounded above by a line making an angle of 9 — 15 degrees.

If 9 (E (210, 240), then RQ is a large wedge-shaped region including the hole and the
surface to the right of the hole* The reason such a region is so large is that if the robot
strikes the horizontal surface anywhere to the right of the hole, it will slide leftwards into
the hole. If it strikes the vertical wall of the hole, it will slide to the bottom of the hole.

If 9 G [240,300], then RQ includes the hole and an angular region above the hole.
These regions are much smaller than the wedge-shaped regions considered in the previous
paragraph. This is because if the robot were to strike the horizontal surface at such a large
angle, it would get stuck due to frictional forces (see section LA). The region is bounded
on the left by a line making an angle 0—15 degrees, and on the right by a line making an
angle 0 +15 degrees. These two lines intersect above the hole, giving RQ its angular shape.
If the controller were perfect, the region would be an infinite band.

The other two types of convergence regions, obtained for intervals (300,330) and
[330, 345), are left-handed versions of the two wedge shapes we have already considered.
We have thus analyzed all possible final motions.

In planning, a sequence of motions, we first determine whether the initial set I is a
subset of any convergence region RQ. If it is, then the single motion will suffice to solve
the problem. If a single motion is not sufficient, as in our example, then we must repeat
the above analysis for the next-to-final motion, with the goal of attaining one of the RQ'S
computed previously. This time there are motions whose convergence regions include / .
For example, the motion s in figure 2 will reliably carry / to the wedge-shaped region
R}. Thus we have derived a two-motion sequence which solves the planar point-in-hole
problem.

The example above illustrates the basic approach. We begin with a method which
computes convergence regions for single motions, and executes a motion if one of the
convergence regions is attained. Using this capability as the kernel, we obtain sequences
of motions by simple backward-chaining. However, details remain which are handled in
sections LA and II.

A. Elements of the approach.

The example above involved the motion of a point in a plane with simple obstacles.
In this section we will discuss models—the means by which the approach may address
real manipulation problems. The model uses five fundamental elements: configuration
space; guarded moves; generalized dampers; Coulomb friction; and uncertainty. These
elements, taken together, provide the combination of simplicity and fidelity that we need
for automatic planning.

Configuration space.
The point-in-hole problem is simple partly because the shape of the "robot" is simple.

Point robots do not occur in nature; it is necessary to reason about the motions of complex
linkages of solid objects. The best conceptual tool for addressing this problem is configura-
tion space. Define a, configuration of a system to be the parameters required to completely

determine tne position 01 every point, m tne system, ror a six aegree-oi-ireeaom rooot,
six parameters are required; in general, we will assume that n parameters are required.
Take the n-tuple of values specifying a configuration to be a point in n-dimensional space:
configuration space. The final step is to represent obstacles in configuration space. Again
this is conceptually simple: we represent an obstacle in configuration space by the set of
points (robot configurations) which would cause interference between the robot and the
obstacle.

A simple example of configuration-space is illustrated in figure 4. This shows the
configuration-space transformation for an upright peg insertion and for a tilted peg inser-
tion. The value of the peg-tilting strategy is readily apparent in configuration space—a
broad notch makes a much better target than a narrow slot.

The importance of this tool cannot be overstated: it transforms a seemingly impossible
problem—reasoning about the motion of a collection of three-dimensional volumes—to a
merely very difficult problem—reasoning about the motion of a (n-dimensional) point. For
the application of configuration space in motion planning and compliance, see [Lozano-
Perez 1981, Mason 1981, Lozano-Perez 1983, Brooks and Lozano-Perez 1983].

Guarded move3.
The guarded move [Will and Grossman 1975] is a very good tool for making the

robot adapt to variations in the task. The basic idea is to execute a motion while care-
fully monitoring the sensors. The motion is terminated when a pre-specified sensory event
occurs—usually when a collision is detected. The effect is an important one: the manipula-
tor may be positioned accurately, relative to some geometrical feature, even if the location
of the feature is uncertain. All the motions we will consider are guarded moves, and the
derivation of the terminating sensory event is discussed in detail in section II.A.

Generalized dampers.
The generalized damper [Whitney 1976] is a simple device for obtaining compliant

motion. The name derives from the similarity with a mechanical viscous damper, or
dashpot, which maintains a proportional relationship between velocity and force. The
generalized damper is defined by the equation:

f = B{v-s)

where / is a vector of external generalized forces, v is a vector of generalized velocities, s
is the nominal velocity, and B is an n-by-n matrix of damping factors. For a manipulator,
/ and v could be expressed in joint space or in "Cartesian space." For problems involving
the motion of a point in a plane, v refers simply to the two components of velocity and /
refers to the two components of force. The nominal velocity s is the control input. In the
absence of contact forces the actual velocity will agree with the nominal velocity. When

Figure 4. Configuration spaces for peg insertions, allowing translational motions only, (a)
shows an upright peg insertion; (b) a tilted peg insertion. The original problem appears on
the left, and the corresponding configuration-space surfaces are shown on the right.

external forces are applied, the velocity will depart from the nominal velocity in a linear
fashion.

Many damping matrices B are possible, and some produce interesting (and bizarre)
behavior. However, for our purposes we will assume the most mundane of damping matri-

To model the behavior of the generalized damper when contact occurs, a model of
frictional force is required. Fortunately, Coulomb friction is both simple and fairly realistic.
Let /i be the coefficient of friction, and let a be tan"1 /i. We will assume the static and
dynamic coefficients of friction are equal. For two- and three-dimensional translation, if
the nominal velocity s makes an angle of less than a with the surface normal, the robot will
stick when it hits the surface. If the angle is greater than a, the robot will slide along the
surface. The actual path of the robot will be the normal projection of the nominal path,
although the time dependence is a little more complicated. We could hardly ask for simpler
behavior—the robot follows a simple sequence of straight lines. [Erdmann 1983] obtains
similar results for problems involving rotations and moments. A more rigorous discussion of
sliding with Coulomb friction and generalized damping appears as an appendix in [Lozano-
Perez, Mason, and Taylor 1983].

B. Discussion.

Previous work.
The approach explored in this paper was first described in [Lozano-Perez, Mason, and

Taylor 1983]. That paper included a formal description of the stateless-predicate variation
and an informal, but more detailed, description of a variation using backtracking. Both
variations are explored in section ILB. For a discussion of other related work in fine motion,
compliance, and automatic planning, see [Lozano-Perez, Mason, and Taylor 1983],

Implications.
The main goal of this paper is a theoretical exploration of the scope of an approach to

automatic robot programming. This goal has led to two important results: (1) construction
of a formal description of the approach (FMP); (2) proofs of correctness and bounded-
completeness of FMP.

The pursuit of a formal description has clarified a number of difficulties with the
approach, and with general robotic manipulation. FMP provides precise answers to such
questions as "how much information should be saved during a motion program?" "how do
we interpret contact sensors?" "how do we combine information from models, controls, and
sensors?" and "how is uncertainty anticipated in the construction of subgoals?" Although
FMP necessarily addresses these questions in a limited context, the answers provide insights
into general manipulation problems.

The proofs of correctness and bounded-completeness validate the design of FMP, and
define the theoretical scope of the approach. In the process of designing and implementing
planning procedures, choices can be made with a full appreciation of how the scope will be
affected. If we can implement FMP, then we can be certain of the ability to obtain solutions
to an important class of manipulation problems. When compromises are necessary to

9

reduce the technique to practice, they can be made knowledgably. Ultimately, we may
have a number of approaches for manipulation and manipulation planning. The choice
of which to apply to a given manipulation problem could be guided by the theoretically-
determined scope of each approach.

One point that must be emphasized is that FMP has not been implemented. Despite
the fact that the description has the form of a procedure, we must resist calling it an
algorithm—it is not detailed enough to be considered an effective procedure. Some of the
sets which must be computed do not even have constructive definitions, much less a method
of representing and computing them. It is even possible that they are not computable.

The bounded-completeness of FMP shows that if a solution of the requisite form exists,
FMP will find it. It does not address the question of whether solutions exist—of whether
a bounded sequence of straight-line, generalized-damper, guarded motions can perform
useful manipulation. This is an important area for further work, both theoretical and
experimental.

This section presents detailed descriptions of the synthesis procedure FMP and four
variations. We will address the issue of completeness for each of the variations. Correctness
and bounded-completeness of FMP is taken up in section III. A summary of the results is
presented in table 1.

Variation

FMP

Backtracking

Stateless predicate

Subgoals per motion

Look-ahead predicate

Complete?

yes

no

?

yes

yes

Performance

best worst-case

worse than FMP

same as FMP

better than FMP

Table 1

The table indicates whether each variation is bounded-complete. The table also lists
the performance of the motion programs constructed by each approach, compared against
the solutions found by FMP, The backtracking variation, which was investigated because
it offers advantages in implementation, is not complete. There are problems which this
variation cannot solve, even though bounded solutions exist. The stateless predicate vari-
ation is an early formulation of FMP described in [Lozano-Perez, Mason, and Taylor 1983].
We do not know if it is complete, but we do know that its solutions are sometimes infe-
rior to those constructed by FMP. The subgoals per motion variation offers advantages in
implementation, and is conceptually simpler than FMP. In fact, the description in section I
corresponds to the subgoals-per-motion variation. The solutions found by this variation
are identical to those found by FMP. Finally, the look-ahead predicate variation is a simple
variation whose solutions are never worse, and sometimes better, than those constructed
by FMP. Detailed descriptions of these variations, and derivation of the results summarized
in table 1, follow the description of FMP.

A. FMP (Fine-Motion Planner).

Before the formal description of FMP is presented, it is necessary to consider in more
detail the termination predicate, which terminates a motion when it detects that a goal or
subgoal has been achieved, and the construction of subgoals, which is fundamental to the
entire approach.

Notation
First, it is necessary to survey some of the notation required. We use 5 to indicate a

and velocity, respectively, and ct-m-$ to refer to the configuration at the beginning of a
motion.

When it is necessary to distinguish between different motions in a sequence, we use a
superscript indicating the reverse order of the motions. Thus s1 refers to the final nominal
velocity, i?1 refers to the corresponding convergence region, G refers to the corresponding
goal, etc.

We assume position and velocity sensors—force measurements can be transformed to
velocity measurements using the damping equation, and velocity is easier to work with.
Our model of error associates a tolerance with each sensory and control variable: eCj ev,
and es refer to tolerances associated with position sensing, velocity sensing, and control,
respectively. We use an asterisk to refer to measured or commanded, rather than actual,
values. Thus c* is the position sensor value, v* the velocity sensor value, and s* is the
commanded nominal velocity. B(x) is the set of all values within € of x; thus, for example,
B(c*) is the set of all configurations c consistent with the sensor value c*.

Termination predicate.
The termination predicate continuously monitors the sensors during a motion, and

terminates the motion as soon as it detects that a subgoal has been attained. Although the
last motion need worry only about a single goal, the other motions will have a multitude of
subgoals to consider—one for each convergence region constructed by the previous planning
stage. The termination predicate must watch for the attainment of any subgoal, and then
must return the identity of the subgoal attained. We can imagine that the termination
predicate is given a large directory of subgoals, with one subgoal on each page of the
directory. The job of the termination predicate is to wait until it is certain that one of the
subgoals has been achieved, whereupon it rips the corresponding page from the subgoal
directory and returns it.

How can the termination predicate decide that a subgoal has been achieved? The
success of the approach depends on the ability of the termination predicate to detect
a subgoal as soon as possible. The information available to the termination predicate
includes: (1) i?, the set of all possible locations of the robot at the beginning of this
motion; (2) s*, the commanded nominal velocity; (3) c* and v*, the position sensor data
and velocity sensor data, respectively, which are functions of time; and (4) t, the time.
It also has access to the geometrical model of the environment. When the termination
predicate is first constructed, a directory of trajectories is compiled, which includes an
entry for every robot trajectory consistent with R and s*. Given the initial position c t m j ,
the actual nominal velocity s, and the geometrical model, the trajectory is completely
determined, so the trajectory directory includes an entry for every pair (ct-m-$, 5) with
cinit e R and 5 G B{a*).

every time £, the predicate examines every page of the trajectory directory. On each page
is a trajectory which represents a prediction of (c,t>), the position and velocity of the
robot. If this prediction is consistent with the current sensor values (c*,v*), i.e. if c is
in B(c*) and v is in B(v*), then all is well, and the next page is examined. However, if
the trajectory is not consistent with the sensory data, then the prediction is invalid; in
this case, the termination predicate rips out and discards the page. As this operation is
applied to each page of the trajectory directory, the validity of the trajectory directory
is preserved. When the procedure is complete the trajectory directory comprises exactly
those trajectories which are consistent with model, control, and sensory data, both present
and past.

After the task of updating the trajectory directory is complete, the termination pred-
icate constructs a set Q including the current position of every trajectory in the trajectory
directory. This gives the set of all possible locations, i.e. all locations consistent with
model, control, and sensory data. It is a simple matter to leaf through the subgoal direc-
tory, looking for Q. If it does appear in the subgoal directory, the termination predicate
halts the motion and returns Q. This set will eventually be passed to the termination
predicate of the next motion as the set R.

It may seem strange that the predicate looks for a subgoal equal to the set of all
possible positions Q, rather than for a subgoal including Q. In the next section we will
define the set of subgoals to include every set from which a single motion will be able to
attain the subgoal, even sets which are subsets of other subgoal sets. It should be obvious,
then, that if Ga is a subgoal, every subset of Ga is also a subgoal. Thus if Q is a subset
of some subgoal, it will appear in the directory as a subgoal in its own right.

Note that this procedure satisfies the specified criterion of returning the identity of
the subgoal as soon as possible. If the termination predicate has not halted the motion, it
is because for every subgoal there are locations of the robot which are consistent with all
available information but which are not in the subgoal.

Construction of subgoals.
The proper definition of subgoals (convergence regions) presents the greatest difficulty

in the definition of FMP. Let {Ga} be the set of goals, and let {Rp} be the set of all subgoals,
which is to be constructed and passed to a recursive call. A set should be included in {Ra}
if? and only if, attaining that set will allow the planner to attain one of the {Ga} in a single
motion. To define subgoals in more detail, imagine that the recursive call has returned one
of the subgoals R, which is now guaranteed to include the true location of the robot. Let
^{c\niV ^ {(*<*}) ^e the set of all command nominal velocities s* such that the termination
predicate, constructed as described above, is certain to terminate. Now, let Pft({Ga}) be
the set of initial locations ct-m^, such that for all possible c£m-j, S(c^nit}R} {Ga}) is certain

initial location czn^ is in Pit{{Ga})> R is the set of all possible czmi, so there is good
nominal velocity if and only if R C P]{{{Ga}). Let us refine the definition of PJI slightly
and state it formally:

PjtdGa}) = {cinit 6 R | Vc*n-t e B(cinit), S(c*nit, R, {Ga}) jL 0}.

We do not include points outside R, simply because it would be silly to worry about them—
such a point would be a good place for the robot to be, provided that it is someplace else.
With this refinement, we can restate the criterion for suitable subgoals: R is a suitable
subgoal if and only If R satisfies the equation R = Pft({Ga}). As noted above, if R is a
suitable subgoal, so is every subset of R.

The difficulty is that Pji{{Ga}) depends on R, as indicated by the subscript. The
equation R = Pft({Ga}) tells us, in principle, how to test for suitable subgoals, but it
does not suggest a means of constructing suitable subgoals. In section II.B, we will see
some improvement, but this remains the biggest impediment to further elaboration of the
approach.

Formal description: nomenclature.

c configuration.
cinit configuration at beginning of a motion.

v velocity.

s nominal velocity,

c* observed configuration.
cinit observed configuration at beginning of a motion.

t;* observed velocity.

5* commanded nominal velocity.

• t time.

C configuration-space, i.e., the set of all configurations.

B(c) the "uncertainty ball" of configurations; i.e., the set of all con-
figurations whose distance from c is within the tolerance of the
position sensor.

B(v) the "uncertainty ball" of velocities.

B(s) the "uncertainty ball" of nominal velocities.

{Ga} current goal set. We wish to move the robot to one of the goals
and return the identity of the goal.

p(c*,v*,t) the termination predicate.

, {Ga}) is the set {.s* | p terminates}. By construction of the pre
cates, guaranteed termination implies guaranteed attainnu
of a goal. So for a given observed initial configuration and ;
complished subgoal R, this gives the set of all winning stra
gies, where a strategy comprises a command nominal veloc
and a termination predicate.

PR{{GO}) is the pre-image {c G R | V c\nit <= B{c),S{c*nit!R, {Ga})
0}.

The sets of configurations R such that the pre-image Pft({GL

includes all of i?, i.e., Pft({Ga}) = R* This is the subgoal set
attaining an element of this set by a recursive call will all
us to satisfy the current goal set.

R the subgoal attained by recursive call to the planner, hei
the set of all possible robot locations at the beginning of t
motion.

MotorCommandC^*) execution of this program statement transmits the command
nominal velocity to the controller, causing the manipulator
execute the planned generalized damper strategy.

Formal description: procedure.

Procedure FMP(/,{(?«})

Compute

If I is in

Then R <- I

Else R <- FMP (/,

s* <- choose (S{c*init,R,{Ga}))
Compile p

t <- 0

MotorCommand(s*)

L If p(c*,v*,t) signals termination Then Return(Ga)

Increment t

Go L

End FMP

Figure 5. A problem requiring an infinite number of steps (assuming a large enough
coefficient of friction). Assuming constant velocity and zero motion switching delay, the
robot can reach the end of this infinite staircase in finite time.

Examples; discussion
There are a number of aspects of FMP which merit discussion. First, we refer to FMP as

a planner, but it also executes the plan. The recursive back-chaining is the planning stage.
If the backward-chaining terminates, i.e. if / 6 {R$} f°r some N} then we say that the
planner has converged, and we can think of the chain of subgoals as a plan. Execution of
the plan occurs as the recursion unwinds. This structure implies one obvious restriction on
the form of the plans that can be found: there must be a bound on the number of motions
required to achieve the goal. Figures 5 and 6 are examples of manipulation problems which
have solutions, but which do not have solutions of bounded-length.

Figure 7 shows two subgoals i?*, constructed for the peg-in-hole. These sets do not
conform to any of the types described in the introductory example (figure 3), and require
some explanation. Figure 7a contains the familiar cone and portions of the large wedges. If
it is given that the robot is in the union of these three components, the question is whether
a the planner can attain the goal in a single motion. The answer is yes; to plan the single
motion, we first examine the position sensor. Since the three elements are never closer than
2eC) the sensor value can be within ec of just one of them. Thus we can determine which
of the three components actually contains the robot, and plan the motion accordingly.

Figure 7b is similar. Given that the robot is in the shaded region, we plan a motion

1O

Figure 8. A problem requiring a finite, but unbounded, number of steps; ec = oo, ev =
e9 = 0, / = C. The robot has no position feedback, and has no idea whether to search
to the left or the right for the hole. In order to find the hole, the robot must sweep back
and forth, in an ever-enlarging search. Such a plan must succeed eventually, but there is
no upper bound on the number of motions.

as follows: if the position sensor value is right of center, use a left-and-downward motion,
else use a right-and-downward motion. Since a single motion attaining the goal can be
determined, the shaded region does constitute a valid subgoal The important property
in this case is that the two wedge components are separated by 2ec- If the robot is in the
middle region, it does not matter whether the left or right motion is applied.

Although these subgoals are more complicated (and confusing) than the subgoals illus-
trated in figure 3, there is no need for anguish. In the next section, "Subgoals per motion,"
a variation on FMP is described which has performance equivalent to FMP, but which uses
the simpler subgoals of figure 3.

B. Variations.

The form of FMP reflects the goal of formally exploring the capabilities of the approach.
Other goals, implementation in particular, have led to other formulations, whose capabil-
ities we can now judge against the standard set by FMP.

Backtracking.
At each level, FMP constructs all suitable subgoals, and passes all of them to the next

level. We have not yet devised means for representing and computing the set of all suitable
subgoals. In the interest of demonstrating an actual implementation of the approach, we

Figure 7. Two* subgoals for the peg in hole. These subgoals may seem too big, but the
planner can consult the sensors to further refine its idea of the robot's location.

if the planner chooses an unattainable subgoal, subsequent planning stages would fail,
requiring that the planner backtrack, choose a different subgoal, and try again. The
resulting procedure would have to search through the tree of subgoals.

The performance of this approach will obviously depend on the efficiency with which
it can search the subgoal tree. However, no matter how efficient the search, there are
certain problems which this approach cannot solve. Figure 8 is a problem (the point-on-
hill problem) for which there is a simple two-motion solution, but which the backtracking
planner cannot solve. The backtracking approach fails because it only allows the planner
to consider one subgoal at a time. The planner is unable to use strategies of the form, "I
don't know whether I'll attain G& or Gg, but I'll know when I get there."

Stateless predicate*
The formal procedure FM described in [Lozano-Perez, Mason, and Taylor 1983] differs

from FMP in a seemingly innocuous way: the predicate only uses the current values of the
sensors when deciding whether to terminate the motion. It doesn't rip the pages out of
the trajectory directory permanently, it starts fresh for every iteration. Figure 9 shows
a problem which takes FMP one motion, but which requires two motions by FM. With the
downward nominal velocity, and assuming zero control error, there are two trajectories
possible. At some intermediate time, the trajectories are separated by a distance greater
than 2ec> so it is possible to determine which is the true trajectory. Unfortunately, by the
time the robot is approaching the goal, the distance between the trajectories has closed,
and FM cannot remember which of the two trajectories is the correct one. Without memory,
the termination predicate must resort to a different approach using two motions. Thus, FM
sacrifices some performance. I don't know yet whether it sacrifices boimded-completeness.

\

Figure 8a. The point-on-hill problem; ec = oo, ev = e8 = 0, / = C. Since the robot has
no position feedback, it must rely on contact with the hill. A simple strategy is to proceed
downwards until contact. If the robot tends to the left at termination, it can move up to
the right to attain the goal. Otherwise it should move up to the left. The backtracking
variation cannot solve this problem; since it considers only one subgoal at a time, it cannot
derive an either-or strategy. The best subgoal chain that the backtracking variation can
construct is shown through three levels, after which no improvement is possible, (a) shows
typical convergence regions at the first level. The best single subgoal is R^iO) which is passed
to the second level.

Subgoais per motion.
There is one important variation which, surprisingly, does not sacrifice bounded-

completeness. It seems clear that we would like our subgoais to be as large as possible, to
make the job of the recursive call as easy as possible. It would seem that the complicated,
maximal, subgoais illustrated in figure 7 would be good ones. Fortunately, constructing
such complicated subgoais is unnecessary. The simpler subgoais shown in figure 10 are
sufRcient to obtain bounded-completeness and to obtain the performance of FMP.

\

Figure 8b. The point-on-hill problem continued, showing the inability of the backtracking
variation to solve the problem, (b) shows convergence regions constructed at the second
level. The best is R^iO) which is passed to the third level.

This result can best be explained by considering the use of the complex subgoal of
figure 7. Let us suppose that the subgoal of figure 7b has been attained, and it is our job
to plan the next motion. If the robot position c is in leftmost region, we require a right-and-
downward motion: if c is in the rightmost region, we require a left-and-downward motion.
There is no motion which works for both regions. In order to decide which motion to
apply, we consult the position sensor. If c* lies to the right of center, we know that c is
either in the center region or the rightmost region, and the left-and-downward motion can
be used. Otherwise the right-and-downward motion is applied. This complex set is indeed
a proper subgoal—attainment of this set is sufficient to attain the goal in a single motion.
Note, however, that all the information available when planning the next motion was also

R?

Figure 8c. The point-on-hill problem continued, showing the inability of the backtrack-
ing variation to solve the problem. Convergence regions constructed at the third level are
shown here. These regions correspond to motions which use elapsed time to terminate. For
example, given that the robot is in R^, the planner can calculate the maximum possible
distance to Gl10. For a motion of known velocity in the appropriate direction, this gives a
maximum time ti to arrival in GllQ. Termination of the motion consists simply of waiting
the calculated time before terminating. Although the convergence regions can be made ar-
bitrarily large by considering arbitrarily large waiting times, no convergence region includes
the entire plane. Thus, if the initial set / consists of the entire plane, the backtracking
variation cannot find a solution.

available when the previous motion terminated. Thus, if we can figure out that c is either
in the center region or the rightmost region, the termination predicate could have figured
it out, too. In this case, passing the complex subgoal offers no advantage over passing the
components independently.

I
I
4

Figure 9. A problem exposing the deficiency of the stateless predicate; ec is shown, ev =
ea a= 0, / = Ii (Ĵ 2> G = G\ \J (?2« Solution of this problem with a single motion requires
a decision to terminate based on sensory information obtained earlier in the motion. The
memoryless predicate requires two motions in the worst case.

In general, similar reasoning shows that we can construct subgoals on a per-motion
basis. We can use a modified form of the definition of suitable subgoals: Let {Ro)a} be the
set of all sets R satisfying R = ^i}({G a}) for some 0, where we define PQR as:

PoMG*}) = icinit I v c\nit e B(cinit) s0 e s(c*nit, R, {Ga})}

Thus, we can construct a much smaller set of conceptually simpler subgoals without af-
fecting the performance of the approach.

Look-ahead predicate.
As observed in section ILA, to avoid any lost opportunities the termination predicate

ought to terminate as soon as it can verify presence in a goal. Hence, the termination
predicate constructed for FMP terminates the inption the instant that all possible trajec-
tories are included in a common goal. It is interesting to note that this constraint can

Figure 10. Simple, but sufficient, subgoals. These subgoals arc not the largest subgoals
satisfying R = PR{{Ga})t but their use results in no performance compromise.

sometimes profitably be relaxed. We might allow the predicate to postpone termination if
two conditions are satisfied:

1) Later opportunities to terminate are assured,

2) Termination in a "better" subgoal is possible.

Although implementation is not a primary concern of this paper, it should be noted
that the mechanisms used for constructing subgoals could probably be applied here as well.
We can imagine that the termination predicate would first make sure that it is not exiting
the convergence region, and then consider whether any of the trajectories in the trajectory
directory intersect a better subgoal.

An example is shown in figure 11. This is the usual peg in hole problem, shown as the
first motion is in progresSo The robot's location is constrained to lie within the uncertainty
ball B(c*), which tells us that the robot is in the subgoal G2, hence FMP's termination
predicate would terminate and FMP would proceed with the second motion. However, it

! _ "Li.

23

Figure 11. A simple case illustrating the value of postponing termination. The subgoal G2

has been attained, but the ultimate goal will be attained directly if termination is postponed.

The question which naturally arises is just how much does this new predicate affect
the performance of the planner. In section III we will see that FMP provides optimal worst-
case performance. We have seen an example of a problem which preserves the worst-case
performance but can give improved performance when the worst-case does not occur; thus
FMP is not optimal in performance. Nor is the look-ahead predicate variation optimal.
Improved performance could be obtained by making the choice of 5 from S(c* • t,R, {Ga})
so as to improve the chances of skipping later steps. However, our models do not have
enough structure to develop such strategies. If we really wanted to pursue this problem, we

1 J 1_ _1 1 1 _ _ _ ; • j . _ l__r M'J. J * J. '1 i.1 ___!i it . j_ _ • J. •

cinu

A. Correctness.

Theorem: If FMP converges, i.e. if at some level a subgoal equal to the initial set / is
found, then the resulting motion program will attain the goah

Proof: We will use induction on the number of motions in the final strategy.

Basis: Let / and G be initial and goal sets for which the planning procedure converges
with just one step. Then I 6 {Up}) i-e. / is a suitable subgoal. By definition, / satisfies
the equation / = Pj({G}). By definition of P this implies that for any c2m^ £ I, and any
cinit ^ B{cinit)> S{c*nit,I} i^}) ls n o t empty. Thus the algorithm may choose a command
nominal velocity 5* from S{c^n^}If{G}). By definition of S, this implies that termination
will occur. We can show that the goal G is attained if we can show that the termination
predicate is correct.

The correctness of the termination predicate is almost self-evident. It constructs and
maintains a list of all possible robot trajectories, i.e. every trajectory consistent with control
and sensory information. It only terminates if the present configuration of every possible
trajectory lies within the goal G> Guaranteed termination implies a guarantee of attaining
one of the immediate goals.

Induction: Assume that whenever the procedure converges in JV —1 steps the resulting
plan is correct. We must show thai if it converges in N steps then the plan is correct.
First we consider the first motion s to be executed by the robot. Using reasoning similar
to the proof of the basis step, we can show that the robot will reliably attain one of the
goals GN = RN~l. Now the remaining N — l steps are equivalent to the plan produced
for a new manipulation problem with /' = 12 "•"- and Gf — G. By assumption such a
plan is correct, i.e. the remaining N — 1 steps will reliably take the robot from GiY to the
goal G. Thus the original iV-step plan reliably attains G from /. §

B. Bounded-Completeness.

Theorem: Let G be the desired goal, and consider a solution to be a program which
reliably attains G with a bounded number of straight, guarded, generalized-damper, mo-
tions. If a solution exists, then the synthesis procedure also attains the goal.

Proof: We will prove a stronger result: if the synthesis procedure does not converge
with N motions, then no solution of length N or less exists, This means that if the
procedure fails to converge in a finite number of steps, no bounded solution exists, but it
also means that the synthesis procedure achieves the best worst-case performance in terms
of number of motions. The proof is by induction. First we prove the result for N = 1.

25

Basis: N = 1. Assume that the synthesis procedure does not converge on the first
motion, and consider an arbitrary motion program making only one motion. Because the
synthesis procedure did not converge, we know that the set of suitable subgoals does not
include all of the initial set/ , i.e.. I £ {Rp}, which means that there is no command velocity
for which our termination predicate would be guaranteed to terminate, i.e. for some c*nit,
S{cjnjt,I9 G) = 0. Of course, we are considering an arbitrary program, which is not
constrained to use the termination predicate we would have constructed. However, we can
show that if our termination predicate can't terminate, then no termination predicate can
terminate correctly. Assuming c*m^ is chosen so that 5(c*mi,J, G) = 0, our termination
predicate terminates as soon as all trajectories consistent with control and sensory data
are included in G. If our termination predicate might never terminate, it is because there
is a sensor trajectory consistent with a set of trajectories which are at no time included in
G. Thus there is an initial observed position c?m^ and a sensor trajectory such that when
the motion program terminates there are feasible robot trajectories not in the goal. We
conclude that the program cannot reliably attain G.

Induction step. Assume that, if the synthesis procedure does not converge in N — 1
steps, then no solution of length N — 1 or less exists. We will show that this holds for N
as well.

Consider an arbitrary motion program of length Ar. Assume the synthesis procedure
does not converge in N steps; then the initial set I is not in the last set of subgoals
computed, i.e. I fc {Rg}- Using the same reasoning as in the proof of the base step,
we can show that the first motion sN cannot reliably attain any of the goals {G&}- Let
Q be the set of all possible robot positions after termination of the first motion. Since
Q $L {Rg1}, the synthesis procedure does not converge in N — 1 steps given initial set
Q. By hypothesis, no motion program of length N —• 1 or less could attain G from initial
set Q. We conclude that the original iV-step program cannot reliably attain G from /. Q

References

Brooks, R. A. and T. Lozano-Perez, "A Subdivision Algorithm in Configuration Space
for Findpath with Rotation," Artificial Intelligence Laboratory, Massachusetts Institute of
Technology, AI Memo 684, December, 1982 (also IJCAI-83 Proceedings).

Erdmann, M., "On a Representation of Friction in Configuration Space," Artificial
Intelligence Laboratory, Massachusetts Institute of Technology, unpublished report, Jan-
uary, 1983.

Inoue, H., "Force feedback in precise assembly tasks," Artificial Intelligence Labora-
tory, Massachusetts Institute of Technology, AIM-308, August, 1974 (Reprinted in Win-
ston, P. H. and R. H. Brown (eds), Artificial Intelligence: An MIT Perspective, MIT Press,
1979).

Lozano-Perez, T., "Automatic planning of manipulator transfer movements," IEEE
Trans. Systems, Man, Cybernetics, vol. SMC-11, no. 10, 1981 (Reprinted in Brady, M.
et. al. (eds), Robot Motion, MIT Press, 1983).

Lozano-Perez, T., "Spatial planning: a configuration space approach," IEEE Trans.
Computers, vol. C-32, no. 2, February, 1983.

Lozano-Perez, T., M. Mason, and R. Taylor, "Automatic Synthesis of Fine-Motion
Strategies for Robots," proceedings, International Symposium of Robotics Research, Bret-
ton Woods, New Hampshire, August 1983.

Mason, M., "Compliance and force control for computer controlled manipulators,"
IEEE Trans. Systems, Man and Cybernetics, vol. SMC-11, no. 6, 1981 (Reprinted in
Brady, M. et. al. (eds), Robot Motion, MIT Press, 1983.)

Mason, M., "Compliant Motion," in Brady. M. et al. (eds), Robot Motion, MIT Press,
1983.

Nevins, J. L., and D. E. Whitney, "The Force Vector Assembler Concept," Proceed-
ings, First IFToMM Symposium on Theory and Practice of Robots and Manipulators,
1974.

Will, P.M., and D.D. Grossman, "An experimental system for computer controlled
mechanical assembly," IEEE Trans. Computers, vol. C-24, no. 9, 1975.

