
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-CS -85 -108

Atomic i ty vs. Avai labi l i ty :
Concurrency Control for Replicated Data

Maurice Herlihy
Computer Science Department

Carnegie-Mellon University
Pit tsburgh, PA 15213

5 February 1985

Abstract

Data managed by a distr ibuted program may be subject to consistency and availability requirements
that must be satisfied in the presence of concurrency, site crashes, and network partit ions. This
paper proposes two integrated methods for implementing concurrency control and replication for
data of abstract type. Both methods use quorum consensus. The Consensus Locking method
minimizes constraints on availability, and the Consensus Schedul ing method minimizes constraints
on concurrency. These methods systematically exploit type-specif ic propert ies of the data to provide
better availability and concurrency than methods based on the convent ional read/wr i te classif ication
of operat ions. Necessary and suff icient constraints on correct implementations are derived directly
from the data type specif icat ion. These constraints reveal that an object cannot be replicated in a
way that simultaneously minimizes constraints on both availability and concurrency.

C o p y r i g h t © 1985 Maurice Herlihy i'

This research was sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA
Order No. 3597, monitored by the Air Force Avionics Laboratory Under Contract F33615-81-K-1539

The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency or the US Government.

1

1 . Introduction
A distributed system consists of multiple computers (called sites) that communicate through a

network. A distributed program is one whose modules reside and execute at multiple sites in a

distr ibuted system. The components of a distr ibuted system can fail independently: sites can crash,

and communicat ion links can be interrupted. Distributed programs should be designed to tolerate

such failures. Atomicity and availability are two kinds of fault-tolerance useful to distr ibuted

programs. Atomicity ensures that the data managed by distr ibuted programs are not rendered

inconsistent by failures, while Availability ensures that the data remain accessible in the presence of a

certain number of failures. In this paper, we propose new methods for implementing atomicity and

availability. We show that availability and atomicity are not independent, and we provide a precise

characterizat ion of their interrelation.

The data managed by a distr ibuted program may be subject to consistency constraints that must be

preserved in the presence of failures and concurrency. These constraints apply not only to individual

pieces of data, but also to distr ibuted sets of data. For example, a distr ibuted banking system might

be subject to the constraint that the books balance: money is neither created nor destroyed, only

transferred from one ledger to another. A widely-accepted approach to ensuring consistency is to

make the activities that manage the data atomic. Atomicity encompasses two properties: indivisibility

and recoverabil ity. Indivisibility means that the execution of one activity never appears to overlap (or

contain) the execution of another, while recoverability means that the overall effect of an activity is

al l -or-nothing: it either succeeds completely, or it has no effect. An unsatisfactory way to ensure

indivisibility is to constrain activities to execute one at a t ime. Instead, activities are typically al lowed

to execute concurrent ly as long as they remain serializable: their overall effect is as if they had

executed in a serial order.

The data managed by a distr ibuted program may also be subject to availability requirements: the data

should be accessible with high probability. Availability in the presence of failures can be enhanced by

storing the data redundantly at multiple sites, a technique called replication. For example, the

availability of a bank account might be enhanced by keeping addit ional copies of the records at

multiple sites. If one set of records becomes temporari ly or permanently inaccessible, activities might

be able to progress using a different set. Care must be taken that the replicated records are managed

properly; enhanced availability is of little use if activities erroneously observe obsolete or inconsistent

data. Consequently, we require that replication be transparent: the only observable effect of

replication is to make the data more available.

This paper proposes two new methods for implementing availability and atomicity. Both methods

2

systematically exploit type-specif ic properties of the data to impose fewer constraints on availability

and concurrency than convent ional methods that treat all operations as reads or writes. In both

methods, availability is achieved by quorum consensus: associated with each operation of the data

type is a set of quorums, which are col lect ions of sites whose cooperat ion suffices to execute the

operat ion. Constraints on quorum assignment (and hence on realizable availability properties) are

derived directly from the data type specif icat ion.

We first propose Consensus Locking, a method in which schedul ing decisions use predefined

operation confl icts. This method favors availability; it minimizes constraints on quorum assignment,

and it minimizes message traffic, but it supports a suboptimal level of concurrency. We then propose

Consensus Scheduling, a more complex method in which schedul ing decisions may use state

information. This method favors concurrency; it minimizes constraints on interleaving of activities,

but it requires addit ional message traffic, and it places addit ional constraints on quorum assignment.

Each method is optimal for the information it uses; no quorum-consensus method can impose strictly

fewer constraints on both quorum assignment and concurrency. The interdependence between

availability and atomicity is fully characterized by the notion of an atomic dependency relation. Our

analysis shows that an object cannot be replicated in a way that simultaneously optimizes constraints

on concurrency and availability. A minimal set of constraints on availability requires a suboptimal

level of concurrency, and vice-versa.

Section 2 presents a brief overview of related work, and Section 3 presents our model of computat ion.

Consensus Locking is descr ibed in Section 4, and Consensus Schedul ing in Section 5. We conclude

with a discussion in Section 6. Correctness proofs are given in the appendix.

2. Related Work
Most mechanisms for implementing atomicity in distr ibuted systems fall into three broad categories:

two-phase locking schemes (e.g. [1 1 , 2 1 , 29]), t imestamping schemes (e.g. [28, 27, 26]), and hybrid

schemes employing both locking and t imestamps (e.g. [8, 9, 2, 3]). Our model for atomic objects is

essentially that of Weihl [32 ,33] .

Early file replication methods did not attempt to preserve serializability; the value read from a file is

not necessarily the value most recently written [1 , 19, 31]. Non-serializable replication methods for

directories have also been proposed [25, 6 ,12] .

In the available copies replication method [14], failed sites are dynamically detected and conf igured

out of the system, and recovered sites are detected and conf igured back in. Activities may read from

3

any available copy, and must write to all available copies. Systems based on variants of this method

include SDD-1 [15] and ISIS [5]. Unlike the methods proposed in this paper, the available copies

method does not preserve serializability in the presence of communicat ion link failures such as

partit ions.

In the true-copy token scheme [24], a replicated file is represented by a col lect ion of copies. Copies

that reflect the file's current state are called true copies, and are marked by true-copy tokens. True

copies can be moved to permit activities to operate on local data. This method preserves

serializability in the presence of crashes and partit ions, but the availability of a replicated file is limited

by the availability of the sites containing its true copies.

A formal model for concurrency control in replicated databases proposed by Bernstein and Goodman

can be used to show the correctness of several replication methods [4]. The model makes two

assumptions that do not apply to the replication methods proposed in this paper: that a replicated

object is implemented by multiple copies, and that all information about operations is captured by a

simple read/wr i te classif ication. We will see that these assumptions unnecessarily restrict availability

and concurrency.

The earliest use of quorum consensus is a file replication method due to Gifford [13]. A quorum-

consensus repl ication method for directories has been proposed by Bloch, Daniels, and Spec to r [7] .

These methods can be viewed as specially optimized instances of General Quorum Consensus, a

repl ication method for arbitrary data types [16 ,17] . Like the methods proposed in this paper, General

Quorum Consensus systematically exploits type-specif ic properties to enhance availability. Unlike the

methods proposed here, it relies on a concurrency control mechanism provided by a lower level of the

system. General Quorum Consensus includes a reconfigurat ion technique that can readily be

extended to the replication methods proposed in this paper.

Extensions to quorum consensus that further enhance availability in the presence of partit ions have

been proposed for files by Eager and Sevcik [10] and for arbitrary data types by the author [16].

3. Assumptions and Terminology
We admit two kinds of faults: sites may crash and communicat ion links may be interrupted. When a

site crashes, its resident data becomes temporari ly or permanently inaccessible. Communicat ion link

failures result in lost messages; garbled and out-of-order messages can be detected (with high

probability) and discarded. Transient communicat ion failures may be hidden by lower level protocols,

but longer-l ived failures can cause partitions, in which funct ioning sites are unable to communicate.

4

A failure is detected when a site that has sent a message fails to receive a response after a certain

durat ion. The absence of a response may indicate that the original message was lost, that the reply

was lost, that the recipient has crashed, or simply that the recipient is slow to respond.

The basic units of synchronizat ion and recovery are atomic activities called actions, or transactions.

An action is a sequential process. An action that completes all its changes successfully commits;

otherwise it aborts, and any changes it has made are undone. We assume that failures that prevent

an action from committ ing are turned into aborts using a distr ibuted commit protocol [11 , 30].

The basic containers for data are called objects. Each object has a type, which defines a set of

possible states and a set of primitive operations that provide the (only) means to create and

manipulate objects of that type. For example, a bank account might be represented by an object of

type Account whose state is given by a non-negative dollar amount, initially zero. The Account data

type provides two operations: Credit and Debit. The Credit operat ion increments the account

balance:

Credit = Operat ion(sum: Dollar).

The Debit operat ion attempts to decrement the balance:

Debit = Operat ion(sum: Dollar) Signals (Overdrawn).

A debit is successful only if the balance of the account exceeds the amount to be debited. Otherwise

the operation returns with an exception [23], leaving the account balance unchanged.

Following [32,33] , an object 's behavior is characterized by two specif ications: its serial specif icat ion

characterizes its behavior in the absence of failures and concurrency, and its behavioral specif icat ion

characterizes the level of concurrency it supports. For both serial and behavioral specif ications,

computat ions are modeled as sequences of operation execut ions. Al though computat ions in a

distr ibuted system can be viewed as partially ordered sets of events, an unambiguous total order on

events can be imposed by a system of logical c locks [22]. A disadvantage of logical c locks is that the

logical ordering of events may differ markedly from their physical order ing, a problem that can be

alleviated by techniques for approximate synchronizat ion [22].

In the absence of failures and concurrency, an object 's state is given by a serial history. A serial

history is a sequence of events, where an event is a paired operation invocation and response. For

example,

Credit($20);Ok()
Debit($15);Ok()
Debit($10);Overdrawn()

5

is a serial history in which an account, initially empty, is credited $20, debited $15, and an attempt to

debit $10 returns with an except ion. A serial specification for an object is a set of legal serial histories

for that object. For example, the serial specif icat ion for the Account data type includes only serial

histories in which the account balance never becomes negative. We assume that serial specif ications

are prefix-closed: any prefix of a legal serial history is legal.

In the presence of failure and concurrency, an object 's state is given by a behavioral history. A

behavioral history is a sequence of operation executions and Commit and Abort events. To keep

track of interleaving, each event is associated with an act ion. For example the fol lowing is a

behavioral history involving two actions, A and B:

Credit($5);Ok() A
Credit($5);Ok() B
Commit A
Debit($10);Ok()B
Commit B

Here, act ion A begins and credits $5 to the account, B begins and also credits $5, A commits, B

debits $10 from the account, and commits. The ordering of operation executions in a behavioral

history reflects the order in which the responses are returned, not necessarily the order in which the

invocations occurred. A behavioral specification for an object is a set of legal behavioral histories for

that object. We assume that all behavioral specif icat ions are prefix-closed and on-line: the result of

appending a Commit event for an active action to a legal behavioral history yields a legal behavioral

history.

The serial and behavioral specif icat ions for the objects considered in this paper are related by the

notion of atomicity. Let 3> denote a total order on committed and active actions, and let H be a

behavioral history. The serialization of H with respect to 2> is the serial history h constructed as

fol lows:

• Discard all events associated with aborted actions.

• Reorder the events so that if B 3> A then the subsequence of events associated with A
precedes the subsequence of events associated with B, for all act ions A and B.

• Discard all Commit events, and all action identifiers.

H is serializable with respect to 3> if h is a legal serial history (i.e. is included in the object 's serial

specif icat ion). H is serializable if it is serializable with respect to some ordering S>. H is atomic if the

subhistory associated with commit ted events is serializable. An object is atomic if every history in its

behavioral specif icat ion is atomic. All objects considered in this paper are atomic.

6

4. Consensus Locking
We are now ready to descr ibe Consensus Locking, the first of the two novel concurrency

contro l / rep l icat ion methods proposed in this paper. Consensus Locking provides a systematic

method for transforming a single-site serial implementation of a data type into a replicated atomic

implementat ion. By taking advantage of type-specif ic properties, Consensus Locking provides better

concurrency and availability than replication methods based on the conventional read/wr i te

classif ication of operations.

4 . 1 . O v e r v i e w

A replicated object is an object whose state is stored redundantly at multiple sites to enhance

availability. Replicated objects are implemented by two kinds of modules: repositories and

front-ends. Repositories provide long-term storage for the object 's state, while front-ends carry out

operations for clients. In database terminology, front-ends correspond roughly to transaction

managers and repositories correspond roughly to data managers [3].

To apply an operation to a replicated object, a client sends an invocation to a front-end for the object.

The front-end reads data from some col lect ion of repositories, carries out a local computat ion, sends

updates to some col lect ion of repositories, and returns a response to the client. The client must first

locate an available front-end for the object, and the front-end must in turn locate enough available

repositories to carry out the operat ion. Front-ends can be replicated to an arbitrary extent, perhaps

placing one at each cl ient 's site, implying that the availability of the replicated object is dominated by

the availability of its repositories.

A quorum for an operat ion is any set of repositories whose cooperat ion suff ices to execute that

operat ion. It is convenient to divide a quorum into two parts: a front-end executing an operation

reads from an initial quorum and writes to a final quorum. (Either the initial or final quorum may be

empty.) A quorum for an operation is any set of repositories that includes both an initial and a final

quorum.

A leg is a data structure representing a behavioral history. A log consists of a sequence of entries,

each consist ing of a t imestamp, an event, and an action identifier. For example, the fol lowing is a log

for an account:

1:00 Credit($5);Ok() A
1:15Credit($5);Ok()B
1:30 Commit A
1:45 Debit($10);Ok()B
2:00 Commit B

7

A replicated object is represented by a log whose entries are partially replicated among a set of

repositories. For example, the following is a schematic representation of an Account repl icated

among three repositories. For readability, a "miss ing" entry at a repository is shown as a blank

space.

B l R2 R3

1:00 Credit($1);Ok() A 1:00 Credit($ 1);Ok() A

1:15 Credit($2);Ok() B 1:15 Credit($2);Ok() B
1:30 Credit($3),Ok() C 1:30 Credit($3);Ok() C
1:45 Commit A 1:45 Commit A

2:00 Abort B 2:00 Abort B

This account has been credited three times by three actions, but no single repository has an entry for

all three credits.

It should be emphasized that logs are intended to serve as a conceptual model for the replicated data,

not as a literal design for an implementation. More compact representations can be achieved by

discarding unneeded entries, and by merging adjacent entries. Some techniques are straightforward,

such as discarding entries for aborted actions. Other techniques are type-dependent, such as

replacing a prefix of the committed entries in an account 's log with a single tirnestamped balance. A

compact ion technique for replicated directories is given in [7], and techniques for other data types

are given in [16 ,17] . We do not address compact ion techniques in this paper because we wish to

focus directly on availability and concurrency issues.

Each invocation permitted by the data type has an initial lock at each repository, and each event has a

final lock. An action is granted an initial lock when the repository agrees to co-operate with an

invocation, and a final lock when the repository agrees to accept an entry for a new event.

Schedul ing decisions are based on predefined confl icts between certain initial and final locks. All

locks are strict two-phase: an action holds its locks until it commits or aborts.

An operation is executed in the fol lowing steps:

• The client sends the invocation and action identifier to a front-end, which forwards them
to an initial quorum of repositories.

• Each repository in the initial quorum grants the action an initial lock for the invocation if
no other action holds a confl ict ing final lock. Otherwise, the action is delayed until the
conf l ict ing locks are released. Once the initial lock has been granted, the repository
sends its log to the front-end.

• The front-end constructs a log by merging the responses from an initial quorum for the
invocation. The view is the serialization of the front-end's log in which committed actions

8

are ordered by the timestamp order of their Commit entries, and the cl ient 's action is
ordered last. Entries for all other actions are discarded. A single-site serial
implementation of the data type chooses a response using the view. The front-end
generates a new t imestamp, creates an entry to record the new event, appends the new
entry to its log, and sends the log to a final quorum of repositories.

• Each repository in the final quorum grants the action a final lock for the new event if no
other uncommitted action holds a conf l ict ing initial lock. Otherwise the action is delayed
until the conf l ict ing locks are released. Once the final lock has been granted, the
repository merges the front-end's updated log with its resident log and returns an
acknowledgment to the front-end.

• As soon as a final quorum of repositories has acknowledged the update, the front-end
returns the response to the client.

As part of an act ion's commit protocol [11 , 30], it reads the clocks at each repository whose contents

it has read or wri t ten, generates a later t imestamp, and inserts a Commit entry in the log at each

visited repository. If an action aborts, Abort entries will eventually appear at all repositories visited by

To illustrate this method, let us trace how action C might debit four dollars from the the replicated

Account shown above. The front-end forwards the request to R1 and R2. Both repositories grant an

initial Debit lock, and respond with their logs. The result of merging these logs yields:

1:00 Credit($1);Ok() A
1:15Credit($2);Ok() B
1:30Credit($3);Ok()C
1:45 Commit A
2:00 Abort B

which the front-end serializes as:

Credit($1);Ok()
Credit($3);Ok()

The view indicates that the account balance exactly covers the debit, so the front-end appends an

entry for a successful debit to its log, which it sends to R2 and R3. These repositories grant final

locks, and merge the updated log with their resident logs. The account 's final state is:

E l R2 R3
1:00 Credit($1);Ok() A 1:00 Credit($1);Ok() A 1:00 Credit($1);Ok() A

that act ion.

1:30 Credit($3);Ok() C

1:45 Commit A

1:15Credit($2);Ok() B

1:30 Credit($3);Ok() C

1:45 Commit A

1:15Credit($2);Ok() B

1:30 Credit($3);Ok() C

1:45 Commit A

2:00 Abort B
2:15Debi t ($4);Ok()C

2:00 Abort B
2:15Debi t ($4);Ok()C

C holds initial Debit locks at R1 and R2, and final locks at R2 and R3.

9

4 . 2 . Se r i a l D e p e n d e n c y

Consensus locking is correct only if quorum assignments and lock confl icts are chosen properly.

There are two essential requirements: (i) an invocation's view must contain enough information to

choose a "co r rec t " response, and (ii) the lock confl icts arising in the course of an operation

execut ion must ensure serializability. We now describe a systematic method for deriving a correct

and optimal set of constraints on quorum intersection and lock confl ict directly from the data type's

serial specif icat ion. By correct, we mean that any implementation consistent with the constraints is

correct, and by optimal, we mean that no weaker set of constraints yields only correct

implementations.

Let >- be a relation between invocations and events. Informally, a subhistory g of h is closed with

respect to >- if whenever g contains an event e of hM also contains every earlier event e' of h such

that e.inv >- e'. (Here, e.inv denotes the invocation part of the event e.) More precisely, let INV be the

set of invocations for an object, RES the set of responses, and EVENT = INV X RES the set of events. A

serial history of length n can be modeled as a map h: {1 ,...,n} —> EVENT.

D e f i n i t i o n 1 : A history g of length m is a closed subhistory of h with respect to >- if there
exists an injective order-preserving map s: {1 ,...,m} —• {1 ,...,n} such that g(i) = Ai(s(i)), and
if e.inv >- e \ / > /', /?(/) = e, /?(/') = e', and s(j) = /, then there exists/ ' such that s(/') =

We omit mention of >- when it is clear from context.

The correctness condi t ion for Consensus Schedul ing is based on the notion of a serial dependency

relation between invocations and events. Let h • [inv;res] denote the result of appending the event

[inv;res] to the serial history h.

D e f i n i t i o n 2 : Given a serial specif ication T, a relation >- between invocations and events
is a serial dependency relation for T if for all invocations inv, all responses res, all legal
serial histories h, and all closed subhistories g containing all events e of h such that inv >-
e:

g • [inv;res] is legal => h • [inv;res] is legal.

Informally, this definit ion states that a correct response to an invocation can be chosen by observing

any closed legal subhistory that contains all the events on which the invocation depends.

A replicated object 's quorum intersection relation consists of all pairs of invocations and events such

that each initial quorum for the invocation has a non-empty intersection with each final quorum for

the event. An object 's lock conflict relation consists of all pairs of invocations and events such that

initial locks for the invocation confl ict with final locks for the event. A replicated atomic object

implemented by Consensus Locking satisfies the serial specif ication T if and only if:

10

The quorum intersection relation and the lock confl ict relation satisfy a common serial
dependency relation for T.

This claim is proved in the appendix. A serial dependency relation is minimal if no smaller relation is a

serial dependency relation. Minimal relations correspond to minimal sets of constraints. As shown in

[16 ,17] , a data type may have several dist inct minimal serial dependency relations.

The Account data type has a unique minimal serial dependency relation. Because the response to a

Debit invocation depends on the account balance, Debit invocations depend on Credit events and on

successful Debit events, but not on Debit events that signaled Overdrawn. Because the response to a

Credit is always Ok, Credit invocations need not depend on any events. This relation implies that

initial locks for Debit must confl ict with final locks for both Credit and successful Debit, but initial and

final Credit locks need not confl ict, permitt ing Credit operations to execute concurrent ly.

Similarly, each initial quorum for Debit must intersect each final quorum for both Credit and

successful Debit, but initial and final Credit quorums need not intersect. An Account replicated

among five identical sites permits the fol lowing quorum assignments for Credit and successful Debit

events:

Credit (0,1) (0,2) (0,3)
Debit (5,1) (4,2) (3,3)

Here, an entry of the form (/,/) indicates that any / repositories consti tute an initial quorum, any f

repositories consti tute a final quorum, and hence any max(ij) repositories consti tute a quorum for the

event. Each column represents a dist inct quorum assignment. For example, the column on the left

represents a quorum assignment where all five sites consti tute a quorum for a successful Debit event,

and any site constitutes a quorum for a Credit event. Each of these assignments is minimal: no other

correct quorum assignment permits a strictly larger set of quorums. (For example, al though the

quorum assignment Credit = (0,4) and Debit = (2,4) is correct, it is not minimal, because each of its

quorums is also permitted by the assignment Credit = (0,2) and Debit = (4,2), but not vice-versa.)

Given n sites, there are T n / 2 1 distinct minimal quorum choices for Credit and Debit.

4 . 3 . D i s c u s s i o n

A data type's serial dependency relations govern both the concurrency and the availability realizable

by Consensus Locking. Concurrency is determined by lock confl icts. Availability is determined by

quorum assignments; the l ikelihood an invocation will succeed is the l ikelihood an appropriate

quorum will be available (neglecting issues such as synchronizat ion confl icts or resource

exhaustion). If each quorum for one operation is required to intersect each quorum for another, then

their levels of availability are inversely related, because if one operat ion's quorums are made smaller

11

(rendering it more available) then the other 's quorums must be made correspondingly larger

(rendering it less available).

The range of availability properties realizable by Consensus Locking compares favorably to that of

replication methods based on the conventional read/wr i te classif ication of operations. If both Credit

and Debit were classified as writes, then under quorum consensus, initial and final Credit quorums

would be required to intersect, reducing the range of quorum assignments from T n / 2 1 to one.

Although the Consensus Locking and Available Copies schemes cannot be compared directly

because of their different fault models, it is worth mentioning that the latter would require Credit and

Debit to update all available copies, producing more message traffic in the absence of failures.

Elsewhere [16, 17], we have shown that if act ions are physically serialized (or, equivalents, serialized

by a lower-level mechanism such as two-phase read/wr i te locks) then the quorum intersection

relation must be a serial dependency relation. Clearly, enhancing concurrency cannot reduce the

constraints on quorum intersection, simply because any quorum choice that works in the presence of

concurrency must also work if actions happen to execute serially. Serial dependency is thus the

weakest constraint on quorum intersection that can be imposed by any integrated concurrency

contro l / rep l icat ion method.

Like most two-phase locking protocols, Consensus Locking is subject to deadlocks, which can be

handled by standard techniques, such as t imeouts or deadlock detect ion [20]. Consensus Locking

supports more concurrency than several comparable protocols, even in the absence of replication.

Two-phase read/wr i te locks [11] can be viewed as a degenerate form of Consensus Locking in which

every initial (read) lock confl icts with every final (write) lock, and pairs of final (write) locks also

confl ict. Korth [21] and Bernstein et al. [2] have proposed type-specif ic two-phase locking protocols

for single-site objects whose operations are total and deterministic. In both protocols, operations

whose invocations do not commute have conf l ict ing locks. Informally, two invocations commute if

applying them in either order yields the same results and the same final state. It can be shown that

the relation inv >- e if and only if inv and e.inv do not commute is a serial dependency relation, but not

necessarily a minimal relation. Consequently, Consensus locking can realize any level of

concurrency permitted by these commutativi ty-based locking schemes, but not vice-versa. For

example, Enq invocations for the FIFO queue data type do not commute, but Consensus Locking

permits concurrent Enq executions. The addit ional power of Consensus Locking is due to the use of

t imestamps to provide a globally known serialization ordering. Weihl [33] has proposed a type-

specif ic two-phase locking protocol for single-site objects that supports a level of concurrency

incomparable to that of Consensus Locking.

12

Consensus Locking is an example of hybrid atomicity [32 ,33] ; act ions are serializable in the

t imestamp order of their Commit entries. Hybrid atomicity is a local atomicity property] if every object

in a system is hybrid atomic, the system as a whole will be atomic. Hybrid atomicity encompasses

two-phase locking schemes [1 1 , 21 , 29] and schemes combining locking and t imestamps [9, 8, 2, 3] .

The principal l imitation of Consensus Locking is that it cannot realize all the concurrency permitted

by hybrid atomicity. For example, although Consensus Locking always prevents Debit and Credit

operations from execut ing concurrent ly, this restrict ion is not always necessary. Consider the

fol lowing scenario, where committed action A has deposited $15 in three separate invocations, and

uncommitted action B has deposited $5,

E l R2 R3

An attempt by C to debit $15 wil l be delayed by confl icts with B's final Credit locks. Note, however,

that it is not really necessary to delay C, because the account balance covers the debit regardless of

the order in which B and C commit. If C had attempted to debit $20, however, then it would indeed

have to be delayed until B commits or aborts, because B's outcome will determine whether the

account balance covers the debit . Consensus Locking cannot dist inguish between these scenarios,

and therefore C must be delayed in both instances.

An inability to take full advantage of state information for schedul ing is a characterist ic of any

concurrency control scheme in which schedul ing decisions are made at repositories. In the example

above, no repository has enough information to recognize that the account balance established by

the committed action covers the attempted debit. In general, no information about the account

balance can be ascertained f rom the entries residing at any single repository, because there may be

an arbitrary number of unobserved Credit and Debit entries recorded elsewhere.

A similar problem arises with partial operations, which are operations that cannot be executed in

certain states. For example, a replicated FIFO queue might provide a partial Deq operation that is

undefined when applied to an empty queue. It is desirable to delay a Deq applied to an empty queue

until an item has been enqueued and commit ted. Unfortunately, such schedul ing decisions cannot

be made at the repositories, because no individual repository can determine whether a queue is

empty.

1:00 Credit($5);Ok() A

1:15 Credit($5);Ok() A

1:30 Credit($5);Ok() A

1:45 Commit A

1:00 Credit($5);Ok() A

1:15 Credit($5);Ok() A

1:30 Credit($5);Ok() A

1:45 Commit A 1:45 Commit A

2:00 Credit($5);Ok() B 2:00 Credit($5);Ok() B

13

Static atomicity [32, 33] is an alternative to hybrid atomicity. Each action executes a Begin event

before accessing any delta; act ions must be serializable in the t imestamp order of their Begin entries.

Static atomicity encompasses multiversion t imestamp schemes [28, 26]. A Consensus Locking

method satisfying static atomicity is proposed in [16]. In many respects, the static atomic Consensus

Locking method resembles the hybrid atomic method proposed in this paper. Both methods require

that the Jock confl ict and quorum intersection relations satisfy a common serial dependency relation,

both methods make schedul ing decisions exclusively on the basis of predefined operation confl icts,

and both methods take advantage of type-specific properties to provide more concurrency than

comparable methods that classify operations simply as reads and writes. Unlike the hybrid atomic

method, the static atomic method is not subject to deadlock, but act ions may be forced to restart.

The hybrid and static atomic Consensus Locking methods support incomparable levels of

concurrency: each permits interleavings not permitted by the other.

5. Consensus Scheduling
This section introduces Consensus Scheduling, ihe second of the two concurrency

cont ro l / rep l icat ion methods proposed in this paper. Consensus Schedul ing provides a systematic

way of transforming a single-site atomic implementation of an object into a replicated implementation

satisfying the same behavioral specif icat ion. Consensus Schedul ing supports more' concurrency

than Consensus Locking because schedul ing decisions are not restricted to the information residing

at a single repository. Instead, schedul ing decisions are made at front-ends using information

col lected from multiple repositories. Although Consensus Schedul ing supports more concurrency

than Consensus Locking, it may place addit ional constraints on quorum assignment, and it may

require addit ional message traffic.

As before, repositories provide long-term storage for the object state, and front-ends execute

operations for cl ients. As in the Consensus Locking method, each repository manages a log. Unlike

Consensus Locking, each front-end encapsulates a single-site atomic implementation of the data type

satisfying a behavioral specif ication S. We assume that S is on-line and prefix-closed.

An operat ion is executed in the fol lowing steps.

• The client sends the invocation and action identifier to a front-end, which forwards them
to an initial quorum of repositories.

• Each repository in the initial quorum responds by with its log.

• The front-end merges the logs in t imestamp order to construct a view. A single-site
atomic implementation of the data type uses the view to choose a response. If the

14

front-end cannot choose a response, perhaps because it must await the outcome of
another act ion, it waits for the object 's state to change, and restarts the protocol .

• The front-end generates a new timestamp, appends the new entry to the view, and sends
the updated view to a final quorum of repositories. Each repository in the final quorum
merges the view with its resident log and returns an acknowledgment to the front-end.

As soon as the front-end receives acknowledgments from a final quorum, the response is
returned to the client.

Just as for Consensus Locking, an act ion's Commit or Abort entries are inserted in the log of each

repository it has visited.

Some form of short-term synchronizat ion is needed to ensure that front-ends do not interfere with one

another. For example, two act ions should not simultaneously withdraw the last $10 in an account.

One solution is to place at each repository a short-term mutual exclusion lock that must be acquired

by the front-end before reading or updating the log. Alternatively, more concurrency would be

permitted by placing short-term initial and final locks at each repository, using the quorum

intersection relation (characterized below) as the lock confl ict relation. We emphasize that short-term

locks serialize individual operation invocations, not act ions. Unlike two-phase locks, short-term locks

are released as soon as a response has been recorded at a final quorum, or as soon as the front-end

has decided that no response is currently possible. Short-term locks may be subject to deadlock. If a

repository breaks a short-term lock, the front-end must restart the interrupted operat ion, but not

necessarily the entire act ion.

To il lustrate this method, let us trace how action C might debit five dol lars from the the replicated

Account shown below.

Under Consensus Locking, C would be unable to acquire initial Debit locks until B releases its final

Credit locks. Under Consensus Schedul ing, however, when R1 and R2 receive the request, they

grant short-term locks to the front-end, and respond with their logs. The result of merging these logs

yields:

1:00 Credit($10);Ok() A
1:15 Commit A
1:30 Credit($5);Ok() B

The view indicates, that the ten dol lars deposited by A will cover the debit regardless of B's outcome,

R1 R2
1:00 Credit($10);Ok() A

1:15 Commit A
1:30 Credit($5);Ok() B

R3
1:00 Credit($10);Ok() A

1:15 Commit A

1:30 Credit($5);Ok() B

15

so the front-end appends the new Debit entry to its view, which it sends to R2 and R3. When the

front-end conf i rms that the view has been merged with the repositories' logs, it releases all its short-

term locks. The account 's final state is:

R l R2 R3

1:00 Credit($10);Ok() A 1:00 Credit($10);Ok() A

1:15 Commit A 1:15 Commit A
1:30 Credit($5);Ok() B 1:30 Credit($5);Ok() B 1:30 Credit($5);Ok() B

1:45 Debit($5);Ok() C 1:45 Debit($5);Ok() C

If C had attempted to debit fifteen dollars, however, the front-end, unable to choose a response,

would have released its short-term locks and waited for B to commit or abort.

5 . 1 . A t o m i c D e p e n d e n c y

Consensus Schedul ing is correct only if quorums are chosen properly. The essential requirement is

that the view for an invocation must contain enough information not only to choose a "cor rec t "

response, but also to make schedul ing decisions. This section describes a systematic method for

deriving a correct and optimal set of constraints on quorum intersection directly from the data type's

behavioral specif icat ion.

The definit ion of c losure is slightly different for behavioral histories than for serial histories, because it

is convenient to avoid constraining aborted actions. A subhistory G of H is a closed subhistory with

respect to a relation >- if whenever G contains an event /act ion pair [e A] of H where A has not

aborted, it also contains every earlier pair [e' A'] of H such that e.inv >- e', and A' has not aborted.

Constraints on quorum assignment are governed by an atomic dependency relation between

invocations and events.

D e f i n i t i o n 3 : Given a behavioral specif ication S, a relation >~ between invocations and
events is an atomic dependency relation for S if for all invocations inv, all responses res, all
legal histories H, and all closed subhistories G containing all events e of H such that inv >-
e:

G»[inv;res A] is legal => H»[inv;res A] is legal.

Informally, this definit ion states that a correct response to an invocation can be chosen by observing

any closed legal subhistory that includes the events on which the invocation depends.

A replicated atomic object implemented by Consensus Schedul ing satisfies the behavioral

specif icat ion S if and only if:

The quorum intersection relation is an atomic dependency relation for S.

16

This claim is proved in the appendix. The similarity between serial and atomic dependency belies

some interesting dif ferences that are discussed in the next sect ion.

5 . 2 . D i s c u s s i o n

We show in the appendix that if T is a serial specif icat ion with a minimal serial dependency relation

>- , and if CL is the set of behavioral histories permitted by a Consensus Locking implementation of T

using >- as the lock conf l i c t /quorum intersection relation, then >- is a minimal atomic dependency

relation for CL. Consensus Locking can thus be viewed as a specially optimized instance of

Consensus Schedul ing in which message traffic has been reduced by moving schedul ing decisions

from the front-ends to the repositories.

Let "hybr id dependency" denote a minimal atomic dependency relation for the full set of behavioral

histories permitted by hybrid atomicity. Since any serial history is hybrid atomic, every hybrid

dependency relation is a serial dependency relation. The converse, however, is false. For example,

the minimal serial dependency relation for the Account data type is not a hybrid dependency relation.

Consider the fol lowing hybrid atomic behavioral history, in which C has unsuccessful ly attempted to

withdraw $20, and B has deposited $10:

Debit($20);Overdrawn() C
Credit($10);Ok()B

Now suppose A* attempts to credit $10 to the account . Recall that under the minimal serial

dependency relation for the Account data type, Credit invocations do not depend on Credit events.

The unsuccessful Debit event is thus a closed subhistory containing all events on which the Credit

invocation depends. The result of appending the Credit event to the subhistory is hybrid atomic:

Debit($20);Overdrawn() C
Credit($10);Ok() A

But the result of appending the Credit to the entire history is not:

Debit($20);Overdrawn() C
Credit($10);Ok()B
Credit($10);Ok() A

because an illegal serialization results if the act ions commit in the order A, B, and C.

This example illustrates that the enhanced concurrency provided by Consensus Schedul ing may

come at the cost of increased constraints on availability. For an Account replicated among n identical

sites, Consensus Locking permits Vn/21 dist inct minimal quorum assignments, while a Consensus

Schedul ing implementation capable of realizing all hybrid atomic histories permits exactly one

minimal quorum assignment: both Credit and Debit require a majority. A similar argument shows that

17

a Consensus Schedul ing implementation capable of realizing all static atomic histories also permits

only a single quorum assignment. Curiously, it can be shown that any quorum assignment that

supports full static atomicity also supports full hybrid atomicity, but not vice-versa [18].

Consensus Schedul ing may require more message traffic than Consensus Locking. Addit ional

messages are needed to manage short-term locks, and to retry operations that could not be executed.

The front-end may unable to execute an operation because the operation is partial (e.g. applying a

partial Deq to an empty queue), or because the response depends on the outcome of a concurrent

action (e.g. attempting to read a file that has been written by an uncommitted action). In either case,

the front-end must release its short-term locks, wait for some durat ion, and try again. Message traffic

can be reduced if repositories notify wait ing front-ends when actions commit or abort.

6. Conclusion
This paper has introduced two new methods for managing highly concurrent replicated data in the

presence of crashes and partit ions. These methods are effective, general, and systematic. They are

effective because they exploit type-specific properties of the data to provide better concurrency and

more flexible availability than conventional methods that classify operations as reads or writes. They

are general because they are appl icable to objects of arbitrary type, and they are systematic because

necessary and suff icient constraints on correct implementations are derived directly from the data

type specif icat ion.

Consensus Locking is a simple and efficient replication method in which schedul ing is based on

predefined lock confl icts. Consensus Locking minimizes constraints on availability: no method can

impose weaker constraints on quorum assignment. Consensus Locking combines two-phase locking

and t imestamping to provide better concurrency than other two-phase locking methods, even in the

absence of repl ication. Nevertheless, because schedul ing decisions are based exclusively on

predefined conf l icts between pairs of operations, Consensus Locking supports a suboptimal level of

concurrency, and provides poor support for partial operations.

Consensus Scheduling is a more general method in which schedul ing decisions may take the object 's

state into account. Consensus Schedul ing can realize any level of concurrency realizable by a

single-site implementat ion. It supports more concurrency than Consensus Locking, but at the

potential cost of increased message traffic and addit ional constraints on quorum assignment.

Consensus Locking can be viewed as an optimized special case of Consensus Schedul ing.

analysis of Consensus Schedul ing reveals a basic interdependence between the constraints

18

governing the availability and concurrency realizable by quorum consensus replication methods.

This interdependence is fully characterized by the notion of atomic dependency: a Consensus

Schedul ing implementation will realize a behavioral specif ication S if and only if the quorum

intersection relation is an atomic dependency relation for S. It is an unfortunate consequence of this

result that availability and concurrency typically cannot be optimized within a single implementat ion:

the more interleaving permitted by S, the more restrictive the associated atomic dependency relation.

We have seen that the conventional read/wr i te classification of operations places unnecessary

restrictions on both concurrency and availability. The contr ibut ion of this paper has been to show

that integrated, type-specif ic methods can enhance both availability and concurrency, and to

i l luminate the interdependencies between these important properties.

Acknowledgements
I would like to thank Joshua Bloch, Daniel Duchamp, Barbara Liskov, and William Weihl for their

comments on an earlier draft of this paper.

I. Forma! Definitions and Proofs
This appendix presents formal definit ions and proofs of the replication methods proposed in this

paper. In the first sect ion, we model Consensus Schedul ing as a non-deterministic automaton that

accepts certain behavioral histories. In the second sect ion, we show that a Consensus Schedul ing

automaton accepts histories in S if and only if the quorum intersection relation is an atomic

dependency relation for S. In the last sect ion, we show that Consensus Locking can be treated as an

optimized special case of Consensus Schedul ing.

1.1. Consensus Scheduling
An automaton is a tuple <Q, q 0 , S, S>, where Q is a set of states, qQ is the initial state, S is a set of input

symbols, and S C Q X S X Q i s a transition relation. The transit ion relation can be extended to sets

of states:

8 (0 , sQ) = 0

8 (X ,s 0) = U q € x 5 (q , s 0)

and to sequence of input symbols:

S(X, A) = X

5(X, s'sQ) = 8(8(X, s), s Q)

Here A denotes the empty str ing. A str ing s is accepted by an automaton if 8(qQ, s) * 0 .

19

A log L is a map from a finite set of t imestamps to event /act ion pairs.

L: TIMESTAMP —> EVENT X ACTION

A log M is a sublog of L if M(t) = L(t) for every timestamp for which M is def ined. Two logs L and M

are coherent if they agree at every t imestamp for which they are both def ined. The merge operation

U is defined on pairs of coherent logs by:

(L U M)(t) = if L(t) is defined then L(t)
else M(t).

Because the merge operation is defined only for coherent logs, it is commutative and associative.

Every log corresponds to a behavioral history in the obvious way. For brevity, we will sometimes refer

to a log L when we really intend to refer to its corresponding behavioral history, e.g. " i is an element

of the behavioral specif ication S." The exact meaning should be clear from context.

If x and Y are domains, (x —» Y) denotes the set of partial maps from x to Y. Let REPOS be the domain

of repositories. A consensus scheduling automaton is an automaton whose set of states is the

Cartesian product of the fol lowing component sets:

Log: REPOS -+(TIMESTAMP - > EVENT X ACTION)

Visited: ACTION - > 2 R E P 0 S

Clock: TIMESTAMP

Committed: 2 A C T , 0 N

Aborted: 2 A C T , O N

The Log component associates a log (initially empty) with each repository. The Visited component

associates with each act ion the set of repositories whose logs have been observed or updated by that

action (initially none). The Clock component models a system of logical c locks, establishing an

unambiguous ordering for events. The c lock may have an arbitrary initial value. The sets Committed

and Aborted keep track of the actions that have committed and aborted; each is initially empty.

The automaton's input symbols are event /act ion pairs. The automaton's transit ions are governed by

a quorum assignment: <lnitialtFinal>. Let QUORUM be the domain of sets of repositories.

QUORUM = 2 R E P 0 S

Initial is a function that associates each invocation with its initial quorums:

Initial: INV - > 2 Q U 0 R U M

and Final associates each event with its final quorums:

20

Final: EVENT ~> 2 Q U O n u M .

The transit ion relation is def ined for three kinds of events: operation execut ions, commits, and

aborts. An operation execut ion [e A] is accepted only in states satisfying the fol lowing properties.

First, the action must not have commit ted:

A € Committed

Entries for aborted actions are always accepted and ignored. Henceforth, we assume A has not

aborted. Second, there must exist a view constructed by merging the logs from an initial quorum IQ €

/n/f/a/(e.inv):

V = U R € I Q L ° 9 (R >

such that the result of appending the new entry to V is legal:

V • [e A] € S.

If the event is accepted, the c lock is advanced:

Clock1 > Clock.

The new entry is appended to the view, and the updated view is merged with the log at each

repository in a final quorum FQ € Final(e).

Log'(R)(t) = If R <£ FQ then Log(R)(t)
elseif t = Clock' then [e A]

else (Log(R)UV)(t)

Each repository in the quorum is added to the act ion's set of visited sites.

Visited'(A) = Visited(A) U IQ U FQ

A Commit event for A is accepted only if the action has not already committed or aborted. When an

act ion commits, the c lock is advanced, a Commit entry is appended to the log at each repository

visited by the act ion, and the action is added to the set of committed actions.

Clock' > Clock,

Log'(R)(t) = if R € Visited(A) and t = Clock' then [Commit A]
else Log(R)(t)

Committed' = Committed U { A }

Similarly, an Abort event for A is accepted only if the action has not already commit ted. When an

act ion aborts, the c lock is advanced, abort entries are appended to the log at each repository visited

by A, and the act ion is added to the set of aborted act ions.

21

1.2. Correctness Arguments
Let >~ denote the quorum intersection relation. We use the following technical lemmas.

Lemma 4 : If inv >- e then all earlier entries for e appear in any view constructed for inv.

Lemma 5 : The result of merging logs representing closed subhistories is a log
representing a closed subhistory.

Lemma 6 : If G is a closed subhistory of H, then it is a closed subhistory of H # [e A].

Note that the history accepted by an automaton is not necessarily the history reconstructed by

merging the logs at ail repositories, because events with empty final quorums appear at no

repositories.

We now identify some invariant properties of consensus schedul ing automata. Invariance is shown

by induct ion on the length of the accepted'history. Each property clearly holds in the initial state, and

each property is clearly preserved when Commit or Abort events are accepted. Our arguments focus

on showing that each property is preserved when an operation execution [e A] is accepted.

The first step is to show that the view for each invocation is a closed subhistory of the accepted

history.

Lemma 7 : The result of merging logs from any set of repositories is closed.

Proof: It suff ices to show the property holds for any single repository; the more general
result fol lows from Lemma 5. If a repository R is outside the final quorum for e, then
Log '(R) = Log(R), which remains closed (Lemma 6). Otherwise,

Log '(R) = (Log(R) U V) • [e A]

The view V is:

V = U j € | Q L o g (l)

Each Log(l) is closed (induction hypothesis), hence V is closed (Lemma 5). V • [e A] is
closed (Lemma 4), and Log(R) is closed (induction hypothesis), therefore Log '(R) is closed
(Lemma 5).

Because the view for an invocation is the result of merging the logs from the repositories in an initial

quorum:

Corol lary 8 : Each invocation's view is a closed subhistory of the accepted history.

The next step is to show that the view for each invocation is legal.

Lemma 9 : If the quorum intersection relation is an atomic dependency relation for S, then
the result of merging logs from any col lect ion of repositories is legal.

Proof: Let U be an arbitrary set of repositories, and let Log{U) and Log '(U) be the results
of merging the logs from the repositories in U respectively before and after a new event is

22

accepted. We show that if Log(U) is legal, so is Log '(U). If U does not intersect the final
quorum for the new event e, then Log(U) = Log'(U), and the result is immediate.
Otherwise,

Log'(U) = (Log(U)U V) - [e A]

where V is the view for e. Both V and (V U Log(U)) are closed (Corollary 8) and legal
(induction hypothesis). V is a closed subhistory of (Log(U) U V) that contains all events
on which e.inv depends (Lemma 4). Because >~ is an atomic dependency relation for S,
and V*[e A] is legal by construct ion, (Log(U) U V)*[e A] is legal.

This theorem reveals a fail-safety property of Consensus Schedul ing: even if a catastrophic failure

makes it permanently impossible to assemble a quorum for certain operations, the result of merging

the surviving logs yields a legal subhistory of the true (lost) history.

Corollary 1 0 : If the quorum intersection relation is an atomic dependency relation for S,
then each invocation's view is legal.

We are now ready to present the basic correctness result-

Theorem 1 1 : If the quorum intersection relation is an atomic dependency relation for S,

then every history accepted by a Consensus Schedul ing automaton is legal.

Proof: Let V be the view for e, and let H be the accepted history. V corresponds to a
closed subhistory of H (Theorem 7), V is legal (Theorem 10), and it contains every event e'
such that e.inv > - e' (Lemma 4). Because >- is an atomic dependency relation for S, and
t/»[e A] is legal, H*[e A] is also legal.

We now show that no set of constraints on quorum intersection weaker than atomic dependency

guarantees that all behavioral histories accepted by a Consensus Schedul ing automaton satisfy S.

Theorem 1 2 : If the quorum intersection relation is not an atomic dependency relation,
then the automaton will accept an illegal history.

Proof: Given a relation >~ that does not satisfy Definit ion 3, we construct a Consensus
Schedul ing automaton whose quorum intersection relation satisfies and display a
scenario in which it accepts an illegal history. If >~ is not an atomic dependency relation
for S, there exists an invocation inv, a response res, a legal history H having a closed
subhistory G containing all events on which inv depends, such that:

G ' [e A] is legal but H«[e A] is not.

We construct a consensus schedul ing automaton that accepts the illegal history H # [e A]
by first accept ing the legal history H, and then choosing G as the view for inv. The
automaton uses two repositories: R1 and R2. The automaton accepts the history H,
choosing the fol lowing quorums for each event. For events in G, it chooses an initial
quorum of R1 and a final quorum of both R1 and R2. For events in H but not in G, it
chooses an initial quorum of R1 and R2 and a final quorum of R2. The view for each event
in G thus contains all and only the prior events in G, and the view for every other event
contains all prior events.

23

The intersection relation for these quorums must satisfy because all initial and final
quorums intersect except the initial quorums for events in G and the final quorums for
events not in G. If any of these quorums were required to intersect, then G would not be
closed, contradict ing the assumption. R1 is a valid initial quorum for inv because it
intersects the final quorums for every event in G. Once the automaton has accepted H, it
will then accept [e A] , choosing G as its view. By assumption, G*[e A] is legal but H*[e A]
is not.

1.3. Consensus Locking
In this section we show that Consensus Locking can be treated as a special case of Consensus

Schedul ing. We first characterize the set of behavioral histories permitted by Consensus Locking.

We then apply two "opt imizat ions" to transform a Consensus Schedul ing automaton that accepts

those histories into an equivalent automaton whose structure models Consensus Locking. We first

show that initial and final locks can be used for schedul ing, and then that front-ends can use serial

histories instead of behavioral histories.

Let T be a serial specif ication for a data type, and let >- be a minimal serial dependency relation for

T. If H is a behavioral history for T, event /act ion pairs [e A] and [e' A'] are said to be concurrent if A

and A ' are active and dist inct. Let CL be the largest prefix-closed behavioral specif ication containing

only hybrid atomic histories in wh ich concurrent events are unrelated by Informally, CL is the set

of behavioral specif icat ions realizable by a Consensus Locking implementation of T having >- as its

quorum intersect ion/ lock conf l ict relation. CL is clearly on-l ine.

Theorem 1 3 : >- is a minimal atomic dependency relation for CL.

Proof: Let e be an event, and G and H be histories in CL, such that G is a closed
subhistory of H containing all events e' such that e.inv > - e'. We first show that >- is an
atomic dependency relation for CL by showing that if G # [e A] is in CL, so is H*[e A] . Let
/?1 • e • h2 be any serialization of H[e A] in Commit t imestamp order, and let g 1 • e • g 2 be
the corresponding serialization of G*[e A]. Because G»[e A] is in S, g 1 • e • g 2 and hence
g 1 • e are legal. Because >- is a serial dependency relation, the legality of g • e implies
the legality of rt1 • e. Because h2 contains no events that depend on e, ^ • e • h2 is legal.
If any smaller relation were an atomic dependency relation for CL, it would also be a serial
dependency relation smaller than which we have assumed is minimal.

Initial and final locks are modeled by adding new components to the automaton's state.

I-Lock: REPOS ->(INV - > 2 A C T , O N)

F-Lock: REPOS ->(EVENT - > 2 A C T r 0 N)

For example, /-Loc/c(R)(inv) is the set of actions that hold initial locks for inv at R. Initially, no locks

have been granted. When an operation execution [e A] is accepted, the action is granted an initial

24

lock for the invocation at each repository in the initial quorum, and a final lock for the event in each

repository in the final quorum:

l-Lock'(R)(e.inv) = if R € 10 then l-Lock(R)(e.inv) U { A }
else l-Lock(R)(e.inv)

F-Lock'(R)(e) = if R £ FQ then F-Lock(R)(e) U { A }

else F-Lock(R)(e)

An act ion's locks are released when it commits or aborts.

l-Lock'(R)(inv) = l- lock(R)(inv)-{A}

F-Lock'(R)(e) = F-lock(R)(e)-{A}

Note that the locks do not affect the histories accepted by the automaton; they simply track the

automaton's state.

Theorem 1 4 : If [e A] can be accepted, then no repository the initial quorum has granted a
conf l ict ing final lock, and no repository in the final quotum has granted a conf l ict ing initial
lock.

Proof: Otherwise there exists a concurrent event related to e by >- .

This theorem implies that the set of histories accepted by an automaton is unaffected if initial and final

locks are used for schedul ing.

Theorem 1 5 : An action B is committed relative to action A if B is commit ted, or if it is the
same action as A. Let H be a behavioral history in CL, let G be the subhistory of events
committed relative to A, and let g be the hybrid atomic serialization of G. H*[e A] is in CL if
and only if (i) there is no concurrent event related to e by and (ii) g°e is in T.

Proof: The "only if" part is immediate from the definit ion of CI and because CI is on line. If
gme is in T, G»[e A] is in CL. But G is a closed subhistory of H containing the events on
which e.inv depends, therefore if G*[e A] is in CL so is H # [e A] .

This theorem implies that if initial and final locks are used for schedul ing, then the set of histories

accepted by the automaton is unaffected if front-ends choose responses using serial histories instead

of behavioral histories.

25

References

Alsberg, P. A., and Day, J. D.
A principle for resilient sharing of distr ibuted resources.
In Proceedings, 2nd Annual Conference on Software Engineering. October, 1976.

Bernstein, P., Goodman N., and Lai, M.-Y.
Two-part proof schema for database concurrency control .
In Proc. Fifth Berkeley Workshop on Distributed Data Management and Computer networks.

February, 1981.

Bernstein, P. A., and Goodman, N.
A survey of techniques for synchronizat ion and recovery in decentral ized computer systems.
ACM Computing Surveys 13(2):185-222, June, 1981.

Bernstein, P. A., and Goodman, N.
The failure and recovery problem for replicated databases.
In Proceedings, 2nd Annual Symposium on Principles of Distributed Computing. August,

1983.

Birman, K. P., Josepth, T. A., Raeuchle, T., and Abbadi A. E.
Implementing fault-tolerant distr ibuted objects.
In Proc. 4th Symposium on Reliability in Distributed Software and Database Systems.

October, 1984.

Birrel, A. D., Levin, R., Needham, R., and Schroeder, M.
Grapevine: an exercise in distr ibuted comput ing.
Communications of the ACM 25(14):260-274, Apri l , 1982.

Bloch, J. J. , Daniels, D. S., and Spector, A. Z.
Weighted voting for directories: a comprehensive study.
Technical Report CMU-CS-84-114, Carnegie-MeHon University, Apri l , 1984.

Chan, A., Fox, S., Lin, W. T., Nori, A., and Ries, D.
The implementation of an integrated concurrency control and recovery scheme.
In Proceedings of the 1982 SIGMOD Conference. ACM SIGMOD, 1982.

Dubourdieu D. J .
Implementation of distr ibuted transactions.
In Proceedings 1982 Berkeley Workshop on Distributed Data Management and Computer

Networks, pages 81-94. 1982.

Eager, D., L., and Sevcik, K. C.
Achieving robustness in distr ibuted database systems.
ACM Transactions on Database Systems 8(3):354-381, September, 1983.

Eswaran, K.P, Gray, J.N, Lorie, R.A., and Traiger, I.L.
The notion of consistency and predicate locks in a database system.
Communications ACM 19(11):624-633, November, 1976.

Fischer, M., and Michael, A.
Sacrif icing serializability to attain high availability of data in an unreliable network.
In Proceedings, ACM SIGACT-SIGMOD Symp. on Principles of Database Systems. March,

1982.

26

Gifford, D. K.
Weighted voting for replicated data.
In Proceedings of the Seventh Symposium on Operating Systems Principles. ACM SIGOPS,

December, 1979.

Goodman, N., Skeen, D., Chan, A., Dayal, U., Fox, S, and Ries, D.
A recovery algori thm for a distr ibuted database system.
In Proceedings, 2nd ACM SIGACT-SIGMOD Symp. on Principles of Database Systems. March,

1983.

Hammer, M. M., and Shipman D. W.
Reliability mechanisms in SDD-1, a system for distr ibuted databases.
ACM Transactions on Database Systems 5(4):43l-466, December, 1980.

Herlihy, M. P.
Replication methods for abstract data types.
Technical Report MIT /LCS/TR-319, Massachusetts Institute of Technology Laboratory for

Computer Science, May, 1984.
Ph.D. Thesis.

Herlihy, M. P.
General quorum consensus: a replication method for abstract data types.
Technical Report CMU-CS-84-164, Carnegie-Mellon University, December, 1984.
Submitted for publ icat ion.

Herlihy, M. P.
Comparing how atomicity mechanisms support repl icat ion.
1985.
Submitted for publ icat ion.

Johnson, P. R., and Thomas, R. H.
The maintenance of duplicate databases.

Technical Report RFC 677 NIC 31507, Network Working Group, January, 1975.

Kohler, W. H.
A survey of techniques for synchronizat ion and recovery in decentral ized computer systems.
ACM Computing Surveys 13(2):149-185, June, 1981.
Korth, H. F.
Locking primitives in a database system.
Journal of the ACM 30(1), January, 1983.

Lamport, L.
Time, c locks, and the ordering of events in a distr ibuted system.
Communications of the ACM 21 (7):558-565, July, 1978.

Liskov, B., and Snyder, A.
Exception handl ing in CLU.

IEEE Transactions on Software Engineering 5(6):546-558, November, 1979.

Minoura, T., and Wiederhold, G.
Resilient extended true-copy token scheme for a distr ibuted database system.
IEEE Transactions on Software Engineering 8(3): 173-188, May, 1982.

27

Oppen, D., Dalai, Y. K.
The clearinghouse: a decentralized agent for locating named objects in a distributed

environment.
Technical Report OPD-T8103, Xerox Corporat ion, October, 1981.

Papadimitr iou, C.H., and Kanellakis, P.
On concurrency control by mult iple versions.
ACM transactions on database systems 9(1):89-99, March, 1984.

Reed, D. P., and Svobodova, L.
SWALLOW: a distr ibuted data storage system for a local network.
In Proceedings of the international Workshop on Local Networks. August, 1980.

Reed, D.
Implementing atomic act ions on decentral ized data.
ACM Transactions on Computer Systems 1(1):3-23, February, 1983.

Schwarz, P. and Spector. A.
Synchroniz ing shared abstract types.

ACM Transactions on Computer Systems 2(3):223-250, August, 1984.

Skeen, M. D.
Crash recovery in a distributed database system.
PhD thesis, University of California, Berkeley, May, 1982.

Thomas, R. H.
A solut ion to the concurrency control problem for multiple copy databases.
In Proc. 16th IEEE Comput. Soc. Int. Conf. (COMPCON). Spring, 1978.

Weihl , W.
Data-dependent concurrency control and recovery.

In Proc. 2nd Annual Symposium on Principles of Distributed Computing. August, 1983.

Weihl , W.
Specification and implementation of atomic data types.
Technical Report TR-314, Massachusetts Institute of Technology Laboratory for Computer

Science, March, 1984.

