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0. Abstract.

We use the failures model of Commaunicating Sequential Processes to describe the
behaviour of a simple class of retworks of comruunicating processes. This model is well
suited to reasoning aboui the deadlock Lizhaviour of processes, and we demonstrate this fact
by proving sorme results which help in the analysis of deadlock in networks. In particular,
we formulate some simple theorems which characterise the states in which deadlock can
occur, und use them to prove seme theorems on the absence of glebai deadlock in certain
classes of systems. Some examples are given to show the utility of these results.

1. Introduction.

In [3,4,5] we described the failures model of communicaiing processes and used it to
describe some interesting parallel programming examples. We atated there that the model
was well suited, by its very construction, to reasoning about the potential or the absence
of deadlock in systems of processes. In this paper we elaborate this point in some detail,
developing some ideas which originated in Roscoe’s thesis [15]. We provide some simple yet
useful theorems which may be used to analyse networks for the potential of deadlock. We
demonstrate the utility of these results by examining some examples from the literature.
We compare our work briefly with earlier work by several other authors, and make some
suggestions for future research. '

The simplicity of the mathematical structure of the failures model lends itself to clean
formulation of deadlock properties and to formal manipulation of process behaviour. We
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assume familiarity with the material of either [3,4] or [5], where details were given of
the syntax for processes in a version of CSP and of the wnzthewatical construction of -
the failures model. We use P and ¢ to range over processes. A failure is a pair (s, X)
consisting of a trace s (a finite sequence of events) and a refusal set X (a set of events). If
{s,X) is a possible failurc of a process P, we interpret this as saying that the precess may
refuse all of the events in X after having perfoimed the sequence s; thus, if the process is
pleced in an environment which only wants to perform events from this set at that stage,
deadlock is possible. The iinproved-failures model of (5] also allows a treatment of the
phenomenon of divergence, which occurs when a process is able to perform an unbounded
number of internal actions without communicating with its environment. Processes were
described as pairs {F, D), with F' being a failure set and D a divergence set. We took in
(3] a pessimistic view of divergence, regarding the possibility of divergence as catastrophie.
In this view it is useless to try to prove absence of deadlock if there is a possibility of
divergence. We will therefore assume in this paper that all precesses are divergence-free
(have empty divergence set), so that o process iz fully described by its failure sct. We
use the notation FP] for the failure set of a process P. In [5] we also ailowed for the
possibility of infinite refusal sets when processes were able to use infinite alphabets. This
is important since it allows cleaner statements and easiar proofs for several resulits.

2. Networks of Communicating Processes,

Graphical representations of networks of processes have been used extensively in the
literature, notably by Milne and Miluer [13]. Almost every paper on deadlock analysis uses
a more or less formal notion of network. Gur notation will be as follows.

A network is a graph with nodes of the form (P, A;), consisting of a process F; and
alphabet A;, and with an arc (determined uniquely by the set of nodes) from {F;, 4;) to
(P;, A;) ff AiNAj 0 and ¢ 5% 5. Thus two processes are linked in the graph if and only
if their alphabets indicate that there is an event representing a possible communication
between them. Of course, this says nothing about whether or not such a communication
will ever take place dynamically, and the network structure is static. It may be convenient
to think of the arcs in a network as representing communication links. Since CSP treats
communication in a more or less symmetric fashion, we do not assign dircctions to the arcs.
Note that in the case of a system in which processes are defined by recursion, the netweork
can be thought of as potentially infinite; a recursive expansion of a process definition can
be viewed as replacing a node of the system by a new graph.

For a network V = {{P;,4;) | 1 € 7 < n} we define the parallel composition PAR(V)
to be
PAR(V) = |I7=; (i, 4:)-
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This is a mized parallel composition as in [5], with process P; using alphabet A;. Note that
for a network V = {{FP;, A;) | | < ¢ < n} the behaviour after the trace s will be that of
the netwerk V alter s defined by: )

Vafters = {(PalterslA; ; A) |1 << n},

because at this stage the process at node 7 has peiformed the sequence siA;, obtained by
including only the events in s which belong to the set A;.

Eramples.
Ezample 1. Dining Philosophers.

Tu this example due to Dijkstra, well known from the literature {9,12], there are five
philosophers, PHIL;, ( = 0...4), five forks FORK; (¢ = 0...4), and 2 hutler process
BUTLER. In our version the alphabets of these processes are:

A; = {li.picks.,iputs.i,i.eats,i.enters,i.leaves, i.picks.i+1,i.puts.i+1},
B; = {i.picks.i,i~1.picks.i, i.puts.i,i—1.puts.i }, (r=0,...,4),
C = {i.enters,ileaves | 0 < 7 < 4},

and the process definitions are:
PHIL; = (i.enters — i.picks.i — i.picks.i+1 —
i.eats — i.puts.i -» i.puts.i--1 — ileaves — PHIL;),
FORK; = (i.picks.i — i.puts.i -+ FORK;)J(i—1.picks.i — i—1.puts.i — FORK.),

fori=0,...,4, and

BUTLER
ADMIT

;= ADMIT,
D?.:o(i.enters — i.leaves — ADMIT).

f

In the definition of the butler process we have used the ¢nterleaving operation, as described
in [3,4,5]. Addition and subtraction of indices is understood to be modulo 5. The gystem
of butler, philosophers and forks corresponds to the following network:
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Dining Philosophers

Ezample 2. A chain of processes.

A simple chain of processes in which each one communicates solely with its immediate
predecessor and successor is represented as a particularly simple form of network. The
. graphical notion of a chain thus corresponds tv the use of the CSP chaining operation >, -
as defined in [5]. The following diagram illustrates a case when there are 3 processes:
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We will be particularly inierested in a class ol netwarks whose communication steue-

ture is especially simple.

Definition 1. A nelwork V is a iree iff each of its connecled components has cne
more vertex than arcs.

We are abusing notation slightly here, because it might be more conventional to term
such a network a forest. In our terminology, a tres network is a coilection of single trees.
Trees arise naturally as the communication granhs of networks built with the master-slave
operator [ || m:@Q]. In suck a combination P is the muaster process and it has a slave
referred to by the name m. More generally, we can form a comnbination

(P my:@y|i... || mn:Qal

in which P has n slaves. In the network graph correspunding to this systera the root
ncde is the overall master prucess, and its sons are its immediate slaves. In a tree, each
process communicates with its immediate predecessor (master) and with its immediate sons
(slaves); the root process also may communicate with its environment. A chain is a special
case ol a tree. Note also that when recursion is used to detine a process the corresponding
network may be infinite. -

In ail of our systems we are considering enly two-way communication, so that no
single communrication con invelve inore than two procosses. This condition corresponds to
a simple constraint on alphabets.

Definition 2. An indcxed set {A; | 1 < ¢ < n} of alphobets is triple-disjoint if
Ai N Aj N Ak is empty whenever 2, 7, k are distinct.

Definition 8. A network V = {(P;, A;) |1 < 7 < n} is normal if its alphabets are
triple-disjoint and the traces of each process are generated by the corresponding alphabet:

Vi. traces(F;) C A;.

Defination 4. A nelwork V = {{F;,A;) | 1 < ¢ £ n} is unidivectional if for all ¢
and s there is at most one j 7 ¢ such that
initials(P; after s) N A; # 9.

In a unidirectional system at all times each process is prepared to communicate with at
most one other process. Of course, the choice of communication partner may vary during
an execution of the system. Many interesting example systems are unidirectional.

Definttion 5. A property of networks is hereditary if whenever it holds of an entire
network it also holds of all non-empty subnetworks.

Note that the propertics introduced in Definitions 1, 3 and 4 are obviously hereditary.
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Deadlock.

Now we are ready to begin an analysis of the deadlock properlics of networks. We
say Lhat a process P can deadlock after s if (s,X) € FF; this means that the process
can refuse all evenls after performing the sequence 5. Conversely, we say that P is free
of deadlock if for all s € B* we have (s, &) & F{IP]. Note that this certainly requires that
the process be also free of divergence, since in this semantics divergence is regarded as
catastrophic {5}.

These definitions generalice in the obvious way to a network of processes.
Definition 6. A metwork V' is free of deadlock if PAR({V) is free of deadlock.

Definition 7. A network V is strongly free of deadlock if all nen-empty subnetworks
U C V are free of deadlock.

Of course, strong freedom from deadlock implies the weaker condition, but the con-
verse is not geaerally Lrue.

Definition o, In anetwork V = {(P;, A;) |1 < 7 < n}, a stete is a trace s of the
system together with an indexed sct (Xi,..., X5,) of refusal sets X such that for each ¢

(SFA,',X,') e ?ﬂP.;]]. |

The state is mazimai if each of the refusal sets is maximal. Note that the structure of
our modet guarantees that each state may be extended to a maximal state. A state is
simply a cross-section of the network giving the local information about what each process
in the system is refusing on the next step. We will define the communication graph of the
network in this state as the (directed) graph in which there is an outgoing arc from node ]
to node 7 iff (A4; — X;)NA; 7 0. The following result shows how to characterise the states -
in which deadlock occurs,

LEMMA 1. A network V == {{P;,A;) | 1 < 7 £ n} can deadlock after s iff there is a
mazimal state (s,{X1,..., Xn)) for which

n n
U A = U (A: N X5).
i=1 i=1
We will refer to such a (maximal) state as a deadlock state.

Definition 9. A request in a network V = { (B, A;) l 1 < i < n}isatriple of the
form
{(u, X, ), 1<y, v<n XCEL



satisfying the condition

(Au - X)N A, 3= G,
This corresponds to a state in which the process 7, at node u wants to participate in an
action from the alphabet of the process P, at node v; X represents a refusal set of Py,
so that A, — X contains the events P, may perform next; thus, it may also be possible
for the process to perform eveats requiring the parcticipation of processes other t,ha.n Py,
dcpemlm;_, on the set X. The request is sirong if

0 5 (4, — X) C A,

In this case, P, is limited to performing a communication with P, aleie oa the next step.

These notions gencralise to sequances of requests, having the form
{U'IIXT ey X2y 00y Xnoy, un)'

Here we require that each of {u,, X, ug}, (g, Xa, u3), .. ., {tn—1, X1, Un) be a request. A
sequence is proper if all of its nodes are distinct. A sequence is a cyele of requests when
Uy = uy; a proper cycle is onc in which (apart from u; and u,) the nodes are distinct.
The length of this cycle is n — 1, which for a proper c¢ycle is the number of distinet nodes
involved.

We may thus speak of 2 state containing a cycle of requests. A connection between
cveles of requests and deadlock is made by the foilowing result. Note that it gives a
simple charactevisation of the cominunication graph of a system in a deadlock state: if the
systemn satisfics the conditions of the theorem then deadlock corresponds to a cycle in the
comrunication graph inveiving at least three distinct nodes.

THEOREM 1. Let V == {(P;,A;) |1 € ¢ < n} be a normal unidirectional network of

. processes and let P = PAR(V) be their parallel composition. Suppese that the following
conditions hold:

(i) Each P; is free of deadlock;

(i) Each pair [P; 4, ||, Pj] is free of deadlock;

Then any deadlock state of P contains a proper cycle of strong requests of length at
least 8.

Proof.
Let (s,(Y1,...,Y,)) be a deadlock state of P. Then by Lemma 1,
vi. (sTA;, Vi) € 7~ ' (a)
U1 A; = dl(A nY:). (b)
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By assumption, the Y; are maxima! rcfusal scts in (a). Tor each ¢ let ©; == D after sTA;,

Hat

so that Pafters == ||, (@:,A:). We argue as {oilows.

e None of the ¥; can include A; as a subset, as /% is deadlock-free by assumption (i)
and the system is normal. From (b} we sec that for each 7,

a-(Ua) cr, FACT L
gt

so thab in this state of the system ecach process is refusing all cvents unique to its own
alphabet. Hence,

A=Y C A FACT 2
i

» By maximality of ¥; we know that Y; contains all of the tmpossible events from the
set Ay — initia.ls(Q,-):
A; — initials(Q;) C Y.

Hence,
A; = Y; C initials(Q:).

‘Dub there is at most vue 7 34 ¢ with
initials(Q;) N A; # 9,
cince the system is unidirectional., Hence there is at most one ;7 # 1 for which
(A =Y N A; 540 FACT 3
Putting these facts together, we see that there is a unique j (depending on z) such that
154 7 and
O£ A —7Y; C Ay

Consider § as a function of 7, mapping indices to indices. Note that j(z) 5% ¢, and it also
happens that j(j(¢)) 54 4, because if this were to happen we would have a pair of indices
t,7 = 7(3) with

' A-YiCA; AT CA
But by (b) and (3} we would then have

ANA; C YUY,
which would in turn imply that

A-YiCY;, A-YCY



Hence, we would get
(AT U(A; NY) =AU Ay,

P;] was free of dca.dloc.l‘c.

contradicting the agsumption (ii) that the pair [£; 4, |,

The sequence

1,5(1), 7%(1), ...
must contain a first repetition, say J”"’l) == 3Fk(1), since there are only finitely many
indices. Define n, = 777(1), for r = 1...k. Then (n;,Yn“ng, R ‘,nk) is a cycle of

sirong requests. 1

An intuitive icterpreiation of this theorem is that global deadlock (i.e. deadlock of
the entire system) can only be caused in a unidirectional normal system by local deadlock
or else by a cycle of at least three distinct nodes each demanding to communicate with its
successor and refusing to communicate with its predecessor, Some important consequences
“of the theorem are:

Corollary. If a trec network satisfies the conditions above, ithen it is strongly free
of deadlock.

Proof. A tree has no proper cycles, and ol of the hypotheses of the theorem are iu,l editary
prupurties ]

Corollary. In a unidirectional trec network, pairwise freedom of deadlock irplies
absence of global deadlock.

If a network has only a small number of cycles; it is often possible to prove abscnce of
deadlock by performing a case analysis. For instance, in a ring of processes there are only
two possible cycles to consider. To satisfy the preconditions of Theorem 3 we still need
to prove pairwise freedom from deadlock. This may often be possible by a simple case
analysis, and the amount of work involved in the analysis can often be reduced substantially
" by using the following lemma:

LEMMA 2. Ifc A, ¢ @B, and C =AU {c}, then [FPc|lsQ\¢ = [(P\chliBQ]-

If c is an event whose hiding in P does not cause any divergence, then P\c can deadlock
if and only if P can. Hence, if hiding ¢ does not cause divergence and if ¢ € 4 — B, we
see that [Py || @] is deadlock-free if and only if [(P\c)a ||p Q] is. This concealment
of “irrelevant” communication can substantially reduce the complexity of the deadlock
analysis. By hiding irrelevant communication we can reduce the amount of detail still
further.

Here is an example to illustrate this type of reasoning.
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Ezample 8. Privilege Rings (after Dijkstra {11]).

We consider a ring of n processes (n > 3) each of which wants to keep entering a
critical section; to maintain mutual exclusion, a process is only allowed to enter its critical
region when it has obtained a “privilege” token, which is passed around the ring. When a
process wants to begin its critical region it first requests the privilege {from its neighbour;
when it is granted the privilege, the process performs its critical action-and then releases
the privilege token. Using mutual recursion, we may define the individual processes P;
(¢ <m)by

P; = (i.get — i+1.ind — i.priv — Lerit — irel — @)
O (i.nd — i+1.find ~ i.priv — i-1.priv — F;}
Q:; = (i.get — i.crit — i.rel — @;)[](i.find — i~1.priv — F).

All arithmetic here is modulo n. P; represents a node without the privilege token and Q;
represents a node with the privilege. Thus, if P; wants to get the privilege it must put in a
request first to its successor, and wait for that process to find the token and pass it back;
if P; is asked to find the privilege it passes the request on to its neighbour. A @; process
with the token may either allow the critical action or pass the token on to its predecessor.

Let A; be the obvious alphabets for these processes. If we begin with the system
V = {(Qo, Ao), (P, A1), ..., (Pa—1,An—1) }, so that initially the 0 process has the token,
‘we would like to prove that PAR(V) is free of deadlock. Here is the network graph for the
gystem. .

It is easy to see that the system is normal and unidirectional. It remains to prove
pairwise freedom from deadlock. We must show that each of the pairs

(Qo, Ao) || (P1, A1),
(Pi, Ad) I} (Pirs Airr) (0 <i<n)
(Pa-1, An—1) {l (Qo, Ao)
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is deadlock-free. These analyses are suunplified by judicious use of Lemma 2, as follows.
We can hide (without introducing divergence) the set L; == {i.get,i.rel.i.{ind,i-1.priv} in
process P; or @, when the process appears on the left of || in this list; and the same holds
for the set B; = {i.crit,i.rel,i--1.find,i.priv} when on the right. Let P¥ = P\L; and
Q¥ == Q;\L;, with simiiar notation P and Qf* for the ollicr hiding operativn. Also, let
A;-r‘ = A; — L;, with similar notations for the £ versions. We have, by definision, and using
properties of the hiding operation,

Pl == i+16nd — i.priv — QF,
QF = (iLeit - QH 1 PE
QF = PR = (i.find — i-Lpriv — PP)[1(iget — PT).

'sing Lemma 2, now we have to prove freedom from deadlock in the pairs:

(@&, A5) || (PR, AR,
(PF, AN (PR AR,

(Pr-1 A%_1) IHQE, AR).

This may be done by a simple zase analysis. Therefore we can use the above theorem to
deduce the existence, in any deadlock state, of a eycle. Thus, deadlock iz possible ovly if
either each process is waiting for its succersor or each neocess is waiting for its predacessor.
We can easily formalise and prove the preperty that there is slways avnetly sne process
with the token: either process 0 still has it and no other process has been zranted it, or else
exactly one process has heen given the privilege but has not yet veleascd it. But process
¢ can only be waiting for process ¢+ + 1 if it does not have the token; and, similarly, a
process can only be waiting for its predecessor if it does not have the token. It foilows that
deadlock is irapossible.

A modification of this argument goes through whenever the system is started with
at least one token in the ring. Of course, in the case where no process initially has the
privilege, deadlock must occur.

Ezample 4. A deadlocked chain.

Define a chain of n 4 1 processes for any n > 1 as follows. The processes will be
Py, ..., P, with alphabets A; given by

Ao = {l.a },
A; = {ia,ib,i+1.a,i+1.b}, 1<71<n,
An={nb}.

The process Py wants to keep receiving message a from process P;, and P, wants to
keep receiving message b from P,_;. Each of the intermediate processes P, Pa_y
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can repeatedly transmit a from iis right to its left, and b from its left to its right. The
definitions are:

Py = (l.a — Pﬂ)

P, = (n.b - P,)

Bo=Ti{ITs (L <i<m)

T{ = (i+1.a - ia - TF),

T = (i.b — i+1.b - T?).

In the mixed parzllel composition corresponding to this system, no event is initially pos-
sible. The reason is easy to sec: although each of tha interior processes in the chain is
attemnpting to perform one of two actions, each of thoze actions is also in the alphabet of
a neighbour who is not willing to cooperate. And although the and processes are trying
to receive a message from their neighbours, their neighbouring processes arc not initially
able to send the message. The chain therefore deadlocks immediately. However, it is not
difficult to see that every non-empty proper subnetwork is deadlock-free! This example
" shows that there exist chains in which deadlock is a global property.

3. A more generai result.

The above theorem is only applicable when tie systerm is unidirectional. More general
results are needed Lo tackle some other iniecesting examples such as the Dining Philosophers.
A useful technique is based on the concept of competiiion (“cliques” in the terminology of

[15)).
Define a competition relation COMP on triples of nodes of V:

(i,5,k) CCOMP & £ 8] # k&kAq
& 3Js.(initials(P; after s) N A; 7% 0 & initials(P; after s) N Ae 5= 0)

Intuitively, (3,7, k) € COMP iff at some stage Pj and Py can find themselves in competition
for the attention of P;. We use the notation COMP(z,7) = { k| (4,7, k} € COMP }. Thus,
k © COMP{(z, 7) means thal P may coupete at soune titne with 2 for the attention of 1.

When i 54 j we define compy (%, 7) to be the smallest subset C of V containing 7 and
4, and closed under COMP:

k1€C & (k! m)eCOMP = meC.

Where V is obvious from the context we will omit the subseript. The set comp(z, ) is
an “upper bound” on the set of processes which might interfere or compete directly with
communications between P; and P, in that this set contains (at least) all of the processes
which may dynamically find themselves competing with a communication between P; and
P;. We will refer to comp(s, j) as the competition set of processes 7 and j, and to the
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members of this set other than ¢ and 7 as competiiors. Note that the delinition depends on
the processes as well as on the commuasication structure of the network, since it takes into
account the dynamic behaviour of the processes and not just the static communication
pattern of the alphabets. Of course, if k& € comp(7, 7) then there must be an arc between
FP; and Pk aid between Py and Fi. The converse is not true in general.

Ezamples.

1. In the dining philosophers system (£zample 1), two adjacent philosophers can find
themselves competing for the same fork, and auy two plilosuphers can compete for entry
into the room via the butler process. The only interesting competition sels ace

comp(PHIL;, FORK;) == corap(P{ilL;4,,FORK;) = {PHIL;, FORK;, PHIL;,; },
comp({PHIL;, BUTLER) = {PHIL,,..., PHIL,, BUTLER},

for 1 = 0...4. This is as expected: neighbouring philosophers can compete for the fork
situated between them, and all philosophers compete for the attention of the butler.

2. In the privilege ring example (Ezample-3), therc are no ron-trivial competition
sets.

3. In the deadlocized chain example (Ezample ), the oaly wholc system is a competi-
tion set, since any sdjacent pair P_.:_1 and Fj4) can compete for the process F; in between
them.

4. In gencral, the competition sets of a tree nctwork are particularly simple in
structure. There are no nontrivial competitors for any two non-adjacent nodes. If nodes
1 and j are adjacent then comp(¢, 7) forms a connected subtree of the network. Moreover,
any two of these nontrivial competition sets either coincide or else have at most a single
node in their intersection.

Of courée, these properties of trees do not hold of general networks. The following
simple property of competition sets, true in all nztworks, will be useful.

LEMMA 3. U C V ands,7 €U, then

compy (7,5) G compy(4, 7).

Other properties of competition sets may be established in a fairly simple manner,
and will be used without proof. Further details appear in [15]. Note in particular that

comp(z,j) = comp(s, 1),
k € comp(3,j) = comp(s, k) C comp(s, ),
AiNA; =0 = comp(z,7) = {+,5}.

14



The vse of competition sets in deadlock analysis is illustrated in the following result.

THEOREM 2. for any normat network V == {(P;, A;) 11 < i < n}, if every compelition
set U C V is strongly free of deadlock, then any deadlock state (5,(X;,...,Xy)) of V
must contain a cycle of requesis mot entirely contained in any single compehiion set, and

satisfies the additional condition:

Vi, 5[0 7% 5 = Tk € comp(i, ). (Ax —Xx) G (LA | & comp(s, 1) }]-

Proof. Similar to that of Theorem 1. 2

This theorem places a further constraint on the structure of a deadlocking cycle of
requests: that it must contain nodes from at least two distinct competition sets. This makes
it easier to analyse the network for possible deadlocks, since there are usually fewer cycles
satisfying this condition and consequently fewer cases to check. "The additional condition
also helps to rcduce the number of cycles to consider; it says that every pair of processes
has a competitor who wants to communicate only outside cf the competition set.

THEOREM 3. For any normal tree V., if every competition set U C V is sirongly free of
deadlock then V 13 strongly free of deudlock.

Proof. By the previous tlieorem, deadlock is possible for V after a trace s only if there
are (maximal refusal) sets Xy,..., X satisfying the conditions:

(3fA1'er') € F[Al, . (1)
U4 = J®nx), @)
§=1 i=l1 .

Vi, 7.[i % 7 = 3k € comp(, 7). (Ax — Xi) € U{A,. | r & comp(s, 5) }], (3)

and such that this state (s,{Xi,..., X)) includes a cycle of requests which does not lie
- wholly inside a single competition set. The indices of this cycle, say 14,..., 1%, satisfy the
conditions:

(A’;'r ""Xl'r) nA'l'rﬂ. 7é )

for each  (counting modulo k). We claim that any such sequence must lie entirely within
a single competition set; in particular, we will show that

{ih Ty ik } g comp("‘:l; ""2) : (4)

This will provide us with a contradiction, and therefore allow us to conclude that deadlock
is impossible, given the preconditions of the theorem.
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The result (4) is proved by induction on the size of the ecycle, k. If & = 2 there is
nothing to prove. Assume truc for all cycles of requests of ienygth less than k. There are
two cases: either 1) is repeated later in the sequence 1g, ..., 2k, or else there is no tepetition.

e In the latter case, when 2; is not repeated, we can see from the tree structure
that 2, = 17k, so that (ig,X,-z,...,ik..l,X;,‘_l,ik) is a cycle of requests for the processes
{i2,...,tx}. Thus, by inductive hypothesis we have

{1:2, kg ik } g Comp(?:f_)_, i3)'

Let Q; = P; after siA;. By construction we have

initials(Q;,) N Ay, 74 9,
initials(Qy,) N A;, 7% 9,

_ because 79 = 1. We also know that
(A!'s —X,',) N Ai, 75 9, (Au _Xi'.u) N A, 7é @,

and
{Ai; — Xi,) C initials{Qy,), (Ai, — X)) C initials(Q;, ).

This latter is by maximality of the X as in the proof of Theorem 1. Hence, (49,1,13) € 7,
‘aud 23 € corap{iy,+2). It follows thai

{1’:1, oy ‘ik } g comp(il, 22)

e In the other case, when 7, is repeated, we have for some 1 < r < k, ¢, == 4;. Clearly
there are two cycles of requests:

(7:1; Xi;r ‘e i"""llxir—l ’ ‘l,-)
("’:T!Xirr ey ik)XS'].J ":l)v
By the inductive hypothesis, |
{1:1! - } g comp(it, '22)
{ir,. 00} C comp(ty, I 41) = comp(iy, T4 1)

However, by construction,

initials(@;,) N A;, £ @ and initia.ls(Q.-l) M A4,+1 # 0,

as before, so that 1,11 € eomp(iy,2). Thus, comp(sy,%,4+1) C comp(iy, ), from which

the result follows. Having cstablished the truth of (4), that completes the proof of this
theorem. g
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Ezample: Absence of deadlock tn lhe dining philosophers system.

We argue along the {ollowing lines, aithough we will omit details. Suppose that
deadlock is possible, and consider the cornmaunication graph of the system in o deadlock
state. We will reach a contradiction.

o If there is an edge from PHIL; to FORK; then FORK; must have a unique outgoing
edge, to PHIL,; _(; if PliL,_; has an cdze lcading to FORK; then there is a unique sutgoing
edge, to PHIL;.

¢ DBy looking at the paralle! composition of PHIL; and FORK;, we see that: whenever
FORK; has a unique outgring edge leanding to PHITL;, then PHIL; has a unique outgoing
edge leading to FORK;,|. Similarly, whenever FORK;, has a unique outgoing edge to
PHIL,, ther PHIL; has a unique outgeing edge to FORK;.

e By Theorem 2, there must be an edge leading out from the compctition set
{ PHILy,. .., PIIIL,,BUTLER }. By the previous two properties this means that there must
be a cycle of requests linking all of the philosophers and forks. Moreover, the adges of this .
cycle must be the only edges leading from these processes, so that the butler process ic not
involvad.

@ Use the definition of the butler process to demonstrate that this situation can
aever arise, by a simple counting argument: the butler is designed to ensure that no more
than four philusophers can ever be scated simultaneously. In any trace of the system the
number of enter events cannot exceed the number of leuve events by more thau 4.

4, Comparison with other work.

Many authors have worked on deadlock analysis in networks of processes, notably
[6,7,8]. Our model has the advantage of providing a succinct and mathematically tractable
representation of deadlock. We have been able to use the model in proofs of some
interesting results on the analysis of deadlock in networks, and then to prove absence of
deadlock in some well known examples such as the Dining Philosophers. The theorcms of
this paper are only a sample of a large class of general results which we will be able to derive
for analysing the deadlock properties of networks. We have focussed here mainly on results
pertaining to unidirectional systeras and trees of processes. Dijkstra [8] proved some similar
theorems on the abscnce of deadlock in unidirectional networks for the speccial case in
which the patterns of communication were cyclic: each process rotated its communication
requests in cyclic order through its immediate neighbours. Dijkstra stated that his results
were applicable in a more general setting, and we have demonstrated that this is indeed
the case. We also hope that we may be able to represent some of the results obtained by
Chandy and Misra [6] in our setting. Other results related to ours are contained in [14],
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where Reisig considers a Petri net model and gives a characterization of deadlock states.
The work of Apt et al. [1,2] on reasoning about partial correctness of C8P programs also
contains some metheds for analysing deadlock, using global invariants. IEssentially, this
work is based on a rather different approach from ours: iypically, a CSP program is first
transformed syntactically into a program in a guarded commend language {10] which no
longer involves cominunication, and matching pairs of communications from the original
program are transformed (synchronized) into assignment statements. Then one reasons
about the absence of deadlock by finding a global invariant which guarantees that no
deadlock state can be reached, because it 1s false in deadleck states.

5. TFuture work.

As we stated carlier, the deadlock analysis theorems of this paper exemplify a class
of general results on deadlock in networks of parallel processes. Theorem 1 concerns
unidirectional networks, and Theorem 3 is applicable to tree networks. We hope to prove
more results along these lines in the future and to use them to analyse the properties of
a larger number of classes of networks. For instance, our definition of competition set
provided a fairly crude bound on the set of processes which could ke involved in causing a
local deadlock; a wore careful analysis may lead to sharper results. It would be espccially
useful to be able to refine the results on comupetition scts so as to minimise the amount
cf local checking that iz roquired in order to estaeblish freedem from deadlock. All the
same, the competition set analysis deseribed in this paper does seem to be fairly useful.
Sharper resuits, although less generally applicable, may te obtained by focussing instead
un a nolion of conflict with respect to a set of events. Roughly speaking, two processes
can conflict over a set C of events if they can reach a state in which they can only perform
events in C' next, each is requesting the other process to do something, but they cannot
agree on any communication. Although we do not elaborate here, this notion can be
used to modify the statement of Theorem 3 and its corollaries, so that slightly different
hypotheses are used in deadlock analysis. This material will be developed further in future
work and will appear in an extended version of this pagper.

Another important topic for future work is the proof of absence of proper cycles of
requests in networks. This will be vital if we are to apply these techniques to networks
with large numbers of possible cycles. It secias likcly that in many cases this will involve
the discovery of global invariants and associated properties of the underlying graphs, and
again we see the possibility of some connections with the ideas of [1,2]. '
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