
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

D e a d l o c k A n a l y s i s in N e t w o r k s o f C o m m u n i c a t i n g P r o c e s s e s

S. D . Brookes
Carnegie-Meilon University

Pi t tsburgh, Pa.
U S A

A. W . Roscoe
Programming Research Group

Oxford University
Oxford

England

To appear in: Proceedings of Advanced N A T O Study Institute on Logics and Models
for Verification and Specification of Concurrent Systems, La Colle-sur-Loup, October 1984,
Springer Verlag Lecture Notes in Computer Science (1985).

T h e research reported in this paper was supported in part by funds from the Computer
Science Department of Carnegie-Mellon University, and by the Defense Advanced Research
Projects Agency (DOD), A R P A Order N o . 3597, monitored by the Air Force Avionics
Laboratory under Contract F33615- 81-K-1539. The v iews and conclusions contained in it
are those of the authors and should not be interpreted as representing the official policies,
either expressed or implied, of the Defense Advanced Research Projects Agency or the US
Government.

1

D E A D L O C K ANALYSIS IN N E T W O R K S OF COMMUNICATING P R O C E S S E S

S. D. Brookes
Carnegie-Mellon University-

Pit tsburgh, Pa.
U S A

A. W. Roscoe
Programming Research Group

Oxford University
Oxford

England

0 . A b s t r a c t .

We use the failures model of Communicat ing Sequential Processes to describe the
behaviour of a simple class of networks of communicat ing processes. This model is well
suited to reasoning about the deadlock behaviour of processes, and wo demonstrate this fact
by proving some results which help in the analysis of deadlock in networks. In particular,
we formulate some simple theorems which characterise the states in which deadlock can
occur, and use them to prove some theorems on the absence of global deadlock in certain
classes of systems. Some examples are given to show the util ity of these results.

1. I n t r o d u c t i o n .

In [3,4,5] we described the failures model of communicat ing processes and used it to
describe some interesting parallel programming examples. We 3tated there tha t the model
was well suited, by its very construction, to reasoning about the potential or the absence
of deadlock in systems of processes. In this paper we elaborate this point in some detail,
developing some ideas which originated in Roscoe's thesis [15]. We provide some simple yet
useful theorems which m a y be used to analyse networks for the potential of deadlock. We
demonstrate the uti l ity of these results by examining some examples from the literature.
We compare our work briefly wi th earlier work by several other authors, and make some
suggestions for future research.

The simplicity of the mathemat ica l structure of the failures model lends itself to clean
formulation of deadlock properties and to formal manipulat ion of process behaviour. We

2

assume familiarity with the material of either [3.4] or [5], where details were given of
the syntax for processes in a version of CSP and of the mathematical construction of
the failures model . We use P and Q to range over processes. A failure is a pair (s,X)
consisting of a trace s (a finite sequence of events) and a refusal set X (a set of events). If
[sjX) is a possible failure of a process P, we interpret this as saying that the process may
refuse all of the events in A" after having performed the sequence s; thus, if the process is
placed in an environment which only wants to perform events from this set at that stage,
deadlock is possible. The impicved failures model of [5] also allows a treatment of the
phenomenon of divergence, which occurs when a process is able to perform an unbounded
number of internal actions wi thout communicat ing with its environment. Processes were
described as pairs (F}D)} w i th F being a failure set and D a divergence set. We took in
[5] a pessimistic view of divergence, regarding the possibility of divergence as catastrophic.
In this view it is useless to try to prove absence of deadlock if there is a possibility of
divergence. We will therefore assume in this paper that all processes are divergence-free
(have e m p t y divergence set) , so that a process is fully described by its failure set. We
use the notat ion J\P\ for the failure set of a process P . In [5] we also allowed for the
possibility of infinite refusal sets when processes were able to use infinite alphabets . This
is important since it allows cleaner s tatements and easier proofs for several results.

2 . N e t w o r k s o f C o m m u n i c a t i n g ; P r o c e s s e s .

Graphical representations of networks of processes have been used extensively in the
literature, notably by Milne and Milncr [13]. A lmos t every paper on deadlock analysis uses
a more or less formal not ion of network. Our notat ion will be as follows.

A network is a graph wi th nodes of the form (P 4 , A»), consisting of a process JPt- and
alphabet A{9 and wi th an arc (determined uniquely b y the set of nodes) from (P», A4) to
(PjjAj) iff A{ H Aj 0 and % 7^ j. Thus two processes are linked in the graph if and only
if their alphabets indicate that there is an event representing a possible communicat ion
between them. Of course, this says nothing about whether or not such a communicat ion
will ever take place dynamical ly , and the network structure is static . It may be convenient
to think of the arcs in a network as representing communicat ion links. Since C S P treats
communicat ion in a more or less symmetr ic fashion, we do not assign directions to the arcs.
N o t e tha t in the case of a sys tem in which processes are defined by recursion, the network
can be thought of as potential ly infinite; a recursive expansion of a process definition can
be v iewed as replacing a node of the sys tem by a new graph.

For a network V = { (P» , A{) | 1 < i < n } we define the parallel composit ion P A R (V)

to be

P A R (V) = | | " = 1 (Pi,Ai).

3

This is a mixed'parallel composition as in [5], with process P; using alphabet A{. Note that
for a network V = { (P , - , / i i) j I < i < n } the behaviour after the trace s will be that of
the network V after s defined by:

F after s = { (R a f t e r s\Ai}Ai) \ t < i < n } ,

because at this stage the process at node i has performed the sequence .sfAt-, obtained by
including only the events in s which belong to the set A{.

Examples.

Example 1. Dining Philosophers.

In this example due to Dijkstra, well known from the literature [9,12], there are five
philosophers, PHIL,-, (t — 0 . . .4), five forks FORK* (i = 0 . . .4), and a butler process
B U T L E R . In our version the alphabets of these processes are:

and the process definitions are:

PHIL,- = (i.enters —> i.picks.i —• i.picks.i-f-1 —•

i.eats —• i.puts.i —> i .puts .H-l —> i.leaves ~> PHIL*),

FORK,- = (i.picks.i - * i .puts.i F O K K t -) D (i - l . p i c k s . i -> i - l . p u t s . i ~> FORK.-),

for i — 0 , . . . , 4 , and

In the definition of the butler process we have used the interleaving operation, as described
in [3,4,5]. Addit ion and subtraction of indices is understood to be modulo 5. The system
of butler, philosophers and forks corresponds to the following network:

A{
Bi
C

{ i .picks . i , i .puts.i, i .eats, i .enters, i.leaves, i.

{ i .p icks . i , i—I.picks.i, i .puts.i , i—I .put s . i } ,

{ i . enters , i.leaves | 0 < i < 4 } ,

p i c k s . i + l , i . p u t s . i + l } ,

(* = 0 , . . , 4) ,

B U T L E R = 1 1 A D M I T ,

A D M I T = C j = 0 (i . e n t e r s -> i.leaves -> A D M I T) .

Dining Philosophers

Example 2. A chain of processes.

A simple chain of processes in which each one communicates solely wi th its immediate
predecessor and successor is represented as a particularly simple form of network. The
graphical not ion of a chain thus corresponds to the use of the C S P chaining operation 3>,
as defined in [5]. T h e following diagram illustrates a case when there are 3 processes:

We will be particularly interested in a class of networks whose communicat ion struc
ture is especially simple.

Definition 1. A network V is a tree iff each of its connected components has one
more vertex than arcs.

We are abusing notat ion slightly here, because it might be more conventional to term
such a network a forest. In our terminology, a tree network is a collection of single trees.
Trees arise naturally as the communicat ion graphs of networks built wi th the master-slave
operator [P || m:Q], In such a combination P is the master process and it has a slave
referred to by the name m. More generally, we can form a combination

[P | | n i l : Q i | | . . . | | m n : Q n]

in which P has n slaves. In the network graph corresponding to this system the root
node is the overall master process, and its sons are its immediate slaves. In a tree, each
process communicates wi th its immediate predecessor (master) and with its immediate sons
(slaves); the root process also m a y communicate with its environment. A chain is a special
case of a tree. Note also tha t when recursion is used to define a process the corresponding
netv/ork may be infinite.

In all of our systems wc are considering only two-way communicat ion, so that no
single communicat ion can involve more than two processes. This condition corresponds to
a simple constraint on alphabets .

Definition S. A n indexed set {A{ \ 1 < i < n } of alphabets is triple-disjoint if
Ai fl Aj n Ak is empty whenever i, j , k are distinct.

Definition S. A network V — {{Pi, Ai) | 1 < t < n} is normal if its alphabets are
triple-disjoint and the traces of each process are generated by the corresponding alphabet:

Vi. traces(P t) C A\.

Definition 4* A network V — {(P t - ,A^) \ 1 < % < n } is unidirectional if for all i
and s there is at most one j ^ i such that

initials(P{ alter s) fl Aj 7^ 0.

In a unidirectional sys tem at all t imes each process is prepared to communicate wi th at
most one other process. Of course, the choice of communicat ion partner may vary during
an execution of the sys tem. Many interesting example systems are unidirectional.

Definition 5. A property of networks is hereditary if whenever it holds of an entire
network it also holds of all non-empty subnetworks.

N o t e that the properties introduced in Definitions 1, 3 and 4 are obviously hereditary.

6

Deadlock.

Now we are ready to begin an analysis of the deadlock properties of networks. We
say that a process P can deadlock after s if (s , E) G / p i ; this means tl iat the process
can refuse all events alter performing the sequence a. Conversely, we say that P is free
of deadlock if for all s £ S* we have (s , E) $ / N o t e that this certainly requires that
the process be also free of divergence, since in this semantics divergence is regarded as
catastrophic [5].

These definitions generalise in the obvious way to a network of processes.

Definition 6\ A network V is free of deadlock if P A R (K) is free of deadlock.

Definition 7. A network V is strongly free of deadlock if all non-empty subnetworks
U C V are free of deadlock.

Of course, strong freedom from deadlock implies the weaker condit ion, but the con
verse is not generally true.

Definition P. In a network V — { (P ^ A *) | 1 < i' < n}f a statu is a trace s of the
system together with an indexed set (X i , . . .?Xn) of refusal sets X{ such that for each i

The state is maximal if each of the refusal sets is maximal . N o t e that the structure of
our model guarantees that each state may be extended to a maximal state . A state is
simply a cross-section of the network giving the local information about w h a t each process
in the sys tem is refusing on the next s tep. We will define the communication graph of the
network in this s tate as the (directed) graph in which there is an outgoing arc from node i
to node j iff (Ai — Xi)r\Aj 7̂ 0. T h e following result shows how to characterise the states
in which deadlock occurs.

LEMMA 1. A network V = {(PitAi) | 1 < i < n} can deadlock after s iff there is a
maximal state (s , {Xif.. -,Xn)) for which

We will refer to such a (maximal) s tate as a deadlock state.

Definition 9. A request in a network Y = { (P i , A,-) | 1 < i < n} is a triple of the

form

(u,X,v), l < u , « < n , I C S ,

7

satisfying the condition
(A . u - - X) n A v ^ 0 .

This corresponds to a state in which the process Pu at node u wants to participate in an
action from the alphabet of the process Pv at node v\ X represents a refusal set of P u ,
so that Au — X contains the events Pu may perform next; thus, it may also be possible
for the process to perform events requiring the participation of processes other than PVi

depending on the set X . The request is strong if

In this case, Pu is l imited to performing a communicat ion with Pv alone on the next s tep.

These notions generalise to sequences of requests, having the form

{ui,X\, u s , X < 2 , . . . , X n _ i , u n) .

Here we reqtiire that each of \U], X i , Uq), (us , A~2, ^ 3) , . . (u n _] , X H _ i , u n) be a request. A
sequence is proper if all of its nodes are distinct. A sequence is a cycle of requests when
utl — u\; a proper cycle is one in which (apart from ui and u n) the nodes are distinct.
The length of this cycle is n — 1, which for a proper cycle is the number of distinct nodes
involved.

We may thus speak of a state containing a cycle of requests. A connection between
cycles of requests and deadlock is made by the following result. Note that it gives a
simple characterisation of the communicat ion graph of a system in a deadlock state: if the
sys tem satisfies the conditions of the theorem then deadlock corresponds to a cycle in the
communicat ion graph involving a t least three dist inct nodes.

THEOREM 1. Let V = { (P ^ A ,) | 1 < i < n} be a normal unidirectional network of
processes and let P — PAR(V) be their parallel composition. Suppose that the following
conditions hold:

(i) Each Pi is free of deadlock;

(ii) Each pair [Pj a,- \\aj Pj] *5 free °f deadlock;

Then any deadlock state of P contains a proper cycle of strong requests of length at
least 3.

Proof.

Let (s , (Y i , . . Y n)) be a deadlock state of P. T h e n by L e m m a 1,

Vi.{8tA4,Yi)e?lPil (a)
n n

\ J A < I M n i U (b)
»•=1 t = l

8

By assumption, the Yi are maximal refusal sets in (a). For each i let Qi — 1\ after s\A:}

so that P after s = jj]l

=-_i (Qi,Ai). We argue as follows.

• None of the Yi can include Ai as a subset , as Pi is deadlock-free by assumption (i)
and the system is normal. From (b) we see that for each it

Ai-{\jAj) c y ì , F A C T 1

so that in this state of the system each process is refusing all events unique to its own
alphabet . Hence,

Ai - Yi C | J Aj. F A C T 2

• B y maximai i ty of Yi we know that Yi contains all of the impossible events from the

set Ai — initials(Qi'):
Ai — ini t ia ls (Q t) C Yi.

Hence,

Ai — Yi C initials(Qj-).

But there is at most one j i w i th

initials(Qi) n Aj 0,

since the system is unidirectional. Hence there is at most one j y& i for which

{Ai - Yi) n Aj 0, FACT 3

P u t t i n g these facts together, we see tha t there is a unique j (depending on i) such that

% j£ j and

Consider j as a function of if mapping indices to indices. N o t e tha t y£ i} and it also
happens that]{]{%)) 7^ i} because if this were to happen we would have a pair of indices

A+ Yi C Aj, Aj — Yj C Ai*

But by (b) and (3) we would then have

AiDAj CYiUYj,

which would in turn imply that

Ai-Yi CYj, Aj-Yj CYi.

Hence, we would get

[Ai n Y{) u {Ai O Yj) = A< U A i f

contradicting the assumption (ii) that the pair [PiA{ \\A, Pj] was free of deadlock.

The sequence

i,y(i),i2(i),...
must contain a first repetition, say — i m + / c (') , since there arc only finitely many
indices. Define nr — ; m + r (l) , for r = 1 . . .k. Then (n i , y n i , n 2 , . . ' Y n h _ x , nk) is a cycle of
strong requests. g

A n intuitive interpretation of thii3 theorem is that global deadlock (t.e. deadlock of
the entire system) can only be caused in a unidirectional normal system by local deadlock
or else by a cycle of at least three dist inct nodes each demanding to communicate wi th its
successor and refusing to communicate wi th its predecessor. Some important consequences
of the theorem are:

Corollary. If a tree network satisfies the conditions above, then it is strongly free
of deadlock.

Proof. A tree has no proper cycles, and all of the hypotheses of the theorem arc hereditary
properties. 1

Corollary. In a unidirectional tree network, pairwise freedom of deadlock implies
absence of global deadlock.

If a network has only a small number of cycles, it is often possible to prove absence of
deadlock by performing a case analysis. For instance, in a ring of processes there are only
two possible cycles to consider. To satisfy the preconditions of Theorem 3 we still need
to prove pairwise freedom from deadlock. This may often be possible by a simple case
analysis, and the amount of work involved in the analysis can often be reduced substantial ly
by using the following lemma:

LExMMA 2. If eg A, c #B, andC = A\j{c}, then [PC\\BQ]\Z — [{P\C\L\\BQ\-

If c is an event whose hiding in P does not cause any divergence, then P\c can deadlock
if and only if P can. Hence, if hiding c does not cause divergence and if c £ A — B9 we
see t h a t [PA \\B Q] is deadlock-free if and only if [(P\c)a \\B Q] is. This concealment
of "irrelevant" communicat ion can substantial ly reduce the complexity of the deadlock
analysis . B y hiding irrelevant communicat ion we can reduce the amount of detail still
further.

Here is an example to illustrate this type of reasoning.

10

Example 3. Privilege Rings (after Dijkstra [11]).

We consider a ring of n processes (n > 3) each of which wants to keep entering a
critical section; to maintain mutual exclusion, a process is only allowed to enter its critical
region when it has obtained a "privilege" token, which is passed around the ring. W h e n a
process wants to begin its critical region it first requests the privilege from its neighbour;
when it is granted the privilege, the process performs its critical act ion-and then releases
the privilege token. Using mutual recursion, we may define the individual processes Pi
(i < n) by

Pi = (i .get —• i + l . f i n d —• i.priv —• i.crit —* i.rel —* Qi)

D (i.find —• i + l . f i n d —• i.priv —• i - l .pr iv —• Pi)

Qi — (i .get —• Lcrit —• i.rel Qi) 0 (i.find —• i - l . p r i v —• Pi).

All ari thmetic here is modulo n . Pi represents a node wi thout the privilege token and Qi
represents a node wi th the privilege. Thus , if Pi wants to get the privilege it must put in a
request first to its successor, and wait for that process to find the token and pass it back;
if Pi is asked to find the privilege it passes the request on to its neighbour. A Qi process
wi th the token m a y either allow the critical action or pass the token on to its predecessor.

Let Ai be the obvious alphabets for these processes. If we begin wi th the sys tem
V ass {{QQ,Ao)f(Pi,Ax)f ...,(P n_i,An_i)}, so that initially the 0 process has the token,
we would like to prove that PAR(V) is free of deadlock. Here is the network graph for the
sys tem.

It is easy to see that the sys tem is normal and unidirectional. It remains to prove
pairwise freedom from deadlock. We must show that each of the pairs

(Qo,A0)\\(Pi,Al),

(P ^ A O I K P . + i . A + i) (0 < i < n) ,

(P w - i , i 4 « - i J I U Q o , A o)

11

is deadlock-free. These analyses are simplified by judicious use of Lemma 2, as follows.
We can hide (without introducing divergence) the set L{ — { i .ge t , i.rel. i.find, i - l .pr iv } in
process P{ or Qi when the process appears on the left of || in this list; and the same holds
for the set Ri — {i.erit, i.rel, i+1.f ind, i.priv } when on the right. Let Pf — Pi\U and
Q\ — Qi\Li} with similar notat ion P f and for the other hiding operation. Also, let
A\ — Ai—Li, w i th similar notat ions for the R versions. .We have, by definition, and using
properties of the hiding operation,

Pf =^ i+1.f ind - * i.priv ~v Qf,

Qf - (i.erit - Qf) n Pf,

Q* ^ P f ^ (i.find ^ i - I . p r i v ^ P f) D (i . g e t ^ P f) .

Using Lemma 2, now we have to prove freedom from deadlock in the pairs:

(P f , A f) | | (F f + 1 , ^ + i) .

This may be done by a simple case analysis. Therefore we can use the above theorem to
deduce the existence, in any deadlock state , of a cycle. Thus , deadlock i3 possible o i l y if
either each process is wait ing for its successor or each process is waitmg foi Its predecessor.
We can easily formalise and prove the property that there is pLvoys «vact!y one process
wi th the token: either process 0 still has it and no other process has been granted it, or else
exactly one process has been given the privilege but has not yet released it. But process
i can only be wait ing for process i + 1 if it does not have the token; and, similarly, a
process can only be wait ing for its predecessor if it does not have the token. It follows that
deadlock is impossible.

A modification of this argument goes through whenever the sys tem is started wi th
at least one token in the ring. Of course, in the case where no process initially has the
privilege, deadlock must occur.

Example 4* A deadlocked chain.

Define a chain of n + 1 processes for any n > 1 as follows. The processes will be
Pol • • M Pn, w i th alphabets A{ given by

A 0 = { l . a } ,

Ai = { i . a , i . b , i + l . a , i + l . b } , 1 < i < n ,
An = { n . b } .

The process Po wants to keep receiving message a from process Pi, and P n wants to
keep receiving message b from P n _ i . Each of the intermediate processes P i , . . . , P n - i

12

can repeatedly transmit a from its right to its loft, and b from its left to its right. The
definitions are:

P0 = (i . a - P 0)

Pn = (n.b - P n)

P, = T? H I T j , (l < t < n) ,

T? = (i - r l . a - > i . a - + T ?) ,

T^ = (i.b ~> i + l . b ~-> T{) .
In the mixed parallel composit ion corresponding to this system, no event is initially pos-
sible. The reason is easy to sec: a l though each of tha interior processes in the chain is
a t tempt ing to perform one of tv/o actions, each of those actions is also in the alphabet of
a neighbour who is not willing to cooperate. And although the end processes are trying
to receive a message from their neighbours, their neighbouring processes are not initially
able to send the message. The chain therefore deadlocks immediate ly . However, it is not
difficult to see that every non-empty proper subnetwork is dead lock-free! This example
shows that there exist chains in which deadlock is a global property.

3 . A m o r e g e n e r a l r e s u l t .

The above theorem is only applicable when the system is unidirectional. More geueral
results are needed to tackle some other interesting examples such as the Dining Philosophers.
A useful technique is based on the concept of competition ("cliques" in the terminology of
[15]).

Define a competi t ion relation C O M P on triples of nodes of V:

(i,j, k) £ C O M P i^j&jy^k&k^i
& 3s.(initials(P< after s) f) Aj ^ 0 & initials(P t- after s) f| Ak ^ 0)

Intuitively, (i, j , k) €: C O M P iff at some stage Pj and Pk can find themselves in compet i t ion
for the attent ion of P . . We use the notat ion C O M P (i , j) = { k | k) £ C O M P } . Thus ,
k £ COMP(z , j) means that P^ may compete at some t ime wi th Pj for the attent ion of P t-.

W h e n i 7^ j we define c o m p y (i , y) to be the smallest subset C of V containing i and

j , and closed under C O M P :

k,lGC & (f c , J , m) € C O M P =» meC.

Where V is obvious from the context we will omit the subscript. T h e set comp(i , j) is
an "upper bound" on the set of processes which might interfere or compete directly w i th
communicat ions between Pt- and Pj, in tha t this set contains (at least) all of the processes
which may dynamical ly find themselves compet ing wi th a communicat ion between P« and
Pj. We will refer to c o m p (i , j) as the competition set of processes i and j , and to the

13

members of this set other than i and j as competitors. Note that the definition depends on
the processes as v e i l as on the communicat ion structure of the network, since it takes into
account the dynamic behaviour of the processes and not just the static communicat ion
pattern of the alphabets . Of course, if k £ corhp(?,j) then there must be an arc between
Pi and Pk and between Pj and P*. The converse is not true in general.

Examples.

1. In the dining philosophers sys tem (Example 1), two adjacent philosophers can find
themselves competing for the same fork, and any two philosophers can compete for entry
into the room via the butler process. T h e only interesting competi t ion sots are

c o m p (P H I L i , F O R K 1) = c o m p (P E I L i + i l FORK*) = { PHIL*, FORK; , P H I L ^ i } ,

comp(PHIL t - ,BUTLER) = { P H I L 0 , . . . , P I I I L 4 , B U T L E R } ,

for i — 0 . . .4. This is as expected: neighbouring philosophers can compete for the fork
s i tuated between them, and all philosophers compete for the attent ion of the butler.

2. In the privilege riug example (Example 3), there are no non-trivial compet i t ion
sets .

3. In the deadlocked chain example (Example 4)> the only whole system is a competi
tion set, since any adjacent pair P j _ i and P t-+i can compete for the process P{ in between
them.

4. In general, the competi t ion sets of a tree network are particularly simple in
structure. There are no nontrivial competitors for any two non-adjacent nodes. If nodes
i and j are adjacent then comp(i , j) forms a connected subtree of the network. Moreover,
any two of these nontrivial compet i t ion sets either coincide or else have at most a single
node in their intersection.

Of course, these properties of trees do not hold of general networks. The following
simple property of compet i t ion sets , true in all networks, will be useful.

LEMMA 3. IfUCV and i,j e U, then

compel, j) C compv(ifj).

Other properties of compet i t ion sets may be established in a fairly simple manner,
and will be used wi thout proof. Further details appear in [15]. Note in particular that

comp(z , j) = c o m p (j , i) ,

k 6 comp(i , j) => comp(i , k) C comp(z, j)9

AiC\Aj = Q c o m p l y) = { t , y } .

11

T h e use of compet i t ion sets in deadlock analysis is il lustrated in the following result.

THEOREM 2. For any normal network V — { (P : - , / l t) j 1 < i < n } ; if every competition
set U C V is strongly free of deadlock, then any deadlock state (s , \ X \ , . . . , X W)) of V
must contain a cycle of requests not entirely contained in any single competition set, and
satisfies the additional condition:

W , y . [t 7^ j => 3k £ comp{i,j). (Ak~Xk) C \J{Ar J r#comp(i,j)}].

Proof. Similar to that of Theorem 1. 1

This theorem places a further constraint on the structure of a deadlocking cycle of
requests: that it must contain nodes from at least two dist inct compet i t ion sets . This makes
it easier to analyse the network for possible deadlocks, since there are usually fewer cycles
satisfying this condit ion and consequently fewer cases to check. The additional condit ion
also helps to reduce the number of cycles to consider; it says that every pair of processes
has a competitor who wants to communicate only outside cf the compet i t ion set.

THEOREM 3 . For any normal tree V, if every competition set U C V is strongly free of
deadlock then V is strongly free of deadlock.

Proof. By the previous theorem, deadlock is possible for V after a trace s only if there
are (maximal refusal) sets Xi,.. .,Xn satisfying the conditions:

{8LA4,Xi)e7lPil (1)

U A , = {jiAtDXi), (2)

V», j 3k € comp(i , j). {Ak - Xk) C | J { Ar \ r ^ c o m p (i , j)}], (3)

and such that this state (s , (X\,.. . , X n)) includes a cycle of requests which docs not lie
whol ly inside a single compet i t ion set. T h e indices of this cycle, say i \ } . . .>ik, satisfy the
conditions:

for each r (counting modulo k). We claim that any such sequence must lie entirely wi th in
a single compet i t ion set; in particular, we will show tha t

{ t ' l , . C c o m p e l , t 2) . (4)

This will provide us wi th a contradiction, and therefore allow us to conclude that deadlock
is impossible, given the precondit ions of the theorem.

15

The result (4) is proved by induction on the size of the cycle, k. If A; = . 2 there is
nothing to prove. Assume true for all cycles of requests of Jength less than fc. There are
two cases: either i\ is repeated later in the sequence z 2 , . . or else there is no repetition.

• In the latter case, when i\ is not repeated, we can see from the tree structure
that %2 = iky so that (2 * 2 , X l 2 , . . .}ik^\9Xik_i) ik) is a cycle of requests for the processes
{ ¿ 2 , . . i f c) . Thus , by inductive hypothesis we have

{ t 2 > . . % k } Q c o m p (t 2 , ¿3).

Let Qi — Pi after si A*. By construct ion we have

initials(Q,- 3) f) A i 3 ^ 0 ,

i n i t i a ^ Q i J n A * , 7^0,

because ¿2 = x'fc. We also know t h a t

and

(Ai2 -Xi2) C init iais((5i 2) , (Aik ~ Xik) C in i t ia l s (Q i i k) .
This latter is by mnximality of the X{ as in the proof of Theorem 1. Hence, (¿0. ¿.1,1*3) 6 r,
and ¿3 € c o m p (i i , ¿ 2) . It follows that

{ t ' l , . . i k } C c o m p (t i f t 2) .

• In the other case, when ¿1 is repeated, we have for some 1 < r < k, i r = i\. Clearly
there are two cycles of requests:

(ii,Xili...}ir-i,Xir_1}ir)
(ir,Xir9...,ik,Xik,ii).

By the inductive hypothesis ,

{ t ' i , . . . , * r } Q c o m p (t i , t a)
{ t ' r f - f t f c } Q c o m p (i r , i r . H i) = c o m p (n , t r + i) .

However, by construction,

i n i t i a l s ^ J n Ai2 7̂ 0 and i n i t i a l s (Q t l) n A , r + X 7̂ 0,

as before, so tha t i r + i G c o m p e l , ¿2). Thus , c o m p (i i , i r + i) C c o m p e l , ¿ 2) , from which
the result follows. Having established the truth of (4), that completes the proof of this
theorem. |

16

Example: Absence of deadlock in the dining philosophers system.

We argue along the following lines, although we will omit details. Suppose that
deadlock is possible, and consider the communicat ion graph of the system in a deadlock
state . We will reach a contradiction.

• If there is an edge from PHIL,- to FORK t- then FORK* must have a unique outgoing
edge, to P H I L i - i ; if PHlL t '_ i has an edge leading to FORK,- then there is a unique outgoing
edge, to PHIL,-.

• By looking at the parallel composit ion of PHIL,- and FORK*, wc see that: whenever
FORK.; has a unique outgoing edge lending to PHIL,-, then PHIL, has a unique outgoing
edge leading to FORK,*+i. Similarly, whenever F O R K , + t has a unique outgoing edge to
PHIL, , then PHIL,- has a unique outgoing edge to FORK*.

• By Theorem 2, there m u s t be an edge leading out from the compet i t ion set
{ P H I L o , . . P H I L 4 , B U T L E R } . B y the previous two properties this means that there must
be a cycle of requests linking all of the philosophers and forks. Moreover, the edges of this
cycle must be the only edges leading from these processes, so tha t the butler process is no t
involved.

• Use the definition of the butler process to demonstrate that this s i tuation can
never arise, by a simple counting argument: the butler i3 designed to ensure t h a t no more
than four philosophers can ever be seated s imultaneously. In any trace of the sys tem the
number of enter events cannot exceed the number of leave events by more than 4.

4 . C o m p a r i s o n w i t h o t h e r w o r k .

Many authors have worked on deadlock analysis in networks of processes, notably
[6,7,8]. Our model has the advantage of providing a succinct and mathemat ica l ly tractable
representation of deadlock. Wc have been able to use the model in proofs of some
interesting results on the analysis of deadlock in networks, and then to prove absence of
deadlock in some well known examples such as the Dining Philosophers. The theorems of
this paper are only a sample of a large class of general results which we will be able to derive
for analysing the deadlock properties of networks. We have focussed here mainly on results
pertaining to unidirectional systems and trees of processes. Dijkstra [8] proved some similar
theorems on the absence of deadlock in unidirectional networks for the special case in
which the patterns of communicat ion were cyclic: each process rotated its communicat ion
requests in cyclic order through its immediate neighbours. Dijkstra s tated that his results
were applicable in a more general sett ing, and we have demonstrated that this is indeed
the case. We also hope tha t we may be able to represent some of the results obtained by
Chandy and Misra [6] in our sett ing. Other results related to ours are contained in [14],

17

where Reisig considers a Petri net model and gives a characterization of deadlock states .
The work of A p t et al. [1,2] on reasoning about partial correctness of CSP programs also
contains some methods for analysing deadlock, using global invariants. Essentially, this
work is based on a rather different approach from ours: typically, a C S P program is first
transformed syntactical ly into a program in a guarded command language [10] which no
longer involves communicat ion, and matching pairs of communicat ions from the original
program are transformed (synchronized) into assignment s tatements . Then one reasons
about the absence of deadlock by finding a global invariant which guarantees that no
deadlock state can be reached, because it is false in deadlock states .

5. F u t u r e w o r k .

A s we s tated earlier, the deadlock analysis theorems of this paper exemplify a class
of general results on deadlock in networks of parallel processes. Theorem 1 concerns
unidirectional networks, and Theorem 3 is applicable to tree networks. We hope to prove
more results along these lines in the future and to use t h e m to analyse the properties of
a larger number of classes of networks. For instance, our definition of compet i t ion set
provided a fairly crude bound on the set of processes which could be involved in causing a
local deadlock; a more careful analysis may lead to sharper results. It would be especially
useful to be able to refine the results on compet i t ion sets so as to minimise the amount
cf local checking that is required in order to establish freedom from deadlock. All the
same, the compet i t ion set analysis described in this paper does seem to be fairly useful.
Sharper results, a l though less generally applicable, may be obtained by focussing instead
on a not ion of conflict w i t h respect to a set of events. Roughly speaking, two processes
can conflict over a set C of events if they can reach a 3tate in which they can only perform
events in C next , each is requesting the other process to do something, but they cannot
agree on any communicat ion . Al though we do not elaborate here, this not ion can be
used t o modify the s ta tement of Theorem 3 and its corollaries, so tha t slightly different
hypotheses are used in deadlock analysis. This material will be developed further in future
work and will appear in an extended version of this paper.

Another important topic for future work is the proof of absence of proper cycles of
requests in networks. This will be vital if we are to apply these techniques to networks
w i th large numbers of possible cycles. It seems likely tha t in many cases this will involve
the discovery of global invariants and associated properties of the underlying graphs, and
again we see the possibil ity of some connections w i th the ideas of [1,2].

18

Acknowledgements.

T h e authors would like to thank C. A. R. Hoare for his m a n y helpful suggest ions
and discussions, and for bis encouragement and guidance during the development of this
work. Discussions w i t h Krzysztof Apt , Jay Misra, Ernst-Rudiger Olderog, David Reed and
Wolfgang Reisig have been very useful.

8 , R e f e r e n c e s .

[1] Apt , K. R., A Stat ic Analys is of C S P Programs, in: Logics of Programs, Proceedings, .
Springer Verlag L N C S vol. 164, pp. 1-17 (1983).

[2] Apt , K. R., Francez, N . , and de Rocver, W . P , A proof sys tem for communicat ing
sequential processes, T O P L A S vol. 2 no . 3 , pp . 359-385 (1980).

[3] Brookes, S. D . , Hoare, C. A . R., and Roscoe , A . W. , A Theory of Communicat ing
Sequential Processes , Oxford University Comput ing Laboratory, Programming Research
Group, Technical Report P R C - 1 6 .

[4] Brookes. S. D . , Hoare, C. A . R., and Roscoe , A . W. , A T h e o r y of Communicat ing
Sequential Processes, J A C M July 1984.

[5] Brookes , S. D , , and Roscoe, A . W . , A n Improved Failures Model for Communicat ing
Processes , Proc . N S F - S E R C Seminar on Concurrency, Springer Verlag L N C S (to appear,
1985).

[6] Chandy, K. M., and Misra, J., Deadlock Absence Proofs for Networks of Communicat ing
Processes , Information Process ing Letters , Vol. 9, no . 4, N o v . 1979.

[7] Chandy, K. M. , Misra, J., and Haas, L. M., Distr ibuted Deadlock Detect ion , A C M
T O P L A S Vol. 1 no . 2, pp 144-156 (1983) .

[8] Dijkstra, E . W . , A Class of S imple Communicat ion Patterns , E W D 6 4 3 , in: Selected
Writings on Comput ing , Springer Verlag (1982).

[9] Dijkstra, E . W. , Hierarchical Ordering of Sequential Processes , A c t a Informatica

1, pp 115-138 (1971).

[10] Dijkstra, E . W . , Guarded C o m m a n d s , Nondeterminacy and Formal Derivation of

Programs, CACM, Vol. 18 N o . 8, A u g u s t 1975.

[11] Dijkstra, E . W . , Invariance and non-determinacy, in: Mathemat ica l Logic and
Programming Languages , C. A . R. Hoare and J. C Shepherdson, eds. , Prentice-Hall
International Series in Computer Science (1985).

19

[12] Иоаге, С. A . R., Communicat ing Sequential Processes, CAGM 1978.

[13] Milne, С , and Millier, R., Concurrent Processes and their Syntax, JACM vol 26
no. 2, pp 302-321 (1979) .

[14] Reisig, W., Determinist ic Buffer Synchronizat ion of Sequential Processes, A c t a
Informatica 18, 117-134 (1982) .

[15] Roscoe, A . W . , A Mathemat ica l Theory of Communicat ing Processes, Ph. D.
thesis , Oxford University (1982).

20

