
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-CS-85-10J

Representation and Incremental Construction
of a Three-Dimensional Scene Model

Martin Herman

January 1985

Computer Science Department

Carnegie-Mellon University

Pittsburgh, PA 15213

This research was sponsored partly by the Defense Advanced Research Projects Agency (DOD), ARPA Order
No. 3597, monitored by the Air Force Avionics Laboratory under contract F33615-81-K-1539, and partly by
the Air Force Office of Scientific Research under contract F49620-83-C-0100.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency, die Air Force Office of Scientific Research, or the US government

1

Abstract

The representation, construction, and updating of the 3D scene model derived by the 3D Mosaic scene

understanding system is described. The scene model is a surface-based description of an urban scene, and is

incrementally acquired from a sequence of images obtained from multiple viewpoints. Each view of the scene

undergoes analysis which results in a 3D wire-frame description that represents portions of edges and vertices

of buildings. The initial model, constructed from the wire frames obtained from the first view, represents an

initial approximation of the scene. As each successive view is processed, the model is incrementally updated

and gradually becomes more accurate and complete. Task-specific knowledge is used to construct and update

the model from the wire frames. At any point along its development, the model represents the current

understanding of the scene and may be used for tasks such as matching, display generation, planning paths

through the scene, and making other decisions dealing with the scene environment.

The model is represented as a graph in terms of symbolic primitives such as faces, edges, vertices, and their

topology and geometry. This permits the representation of partially complete, planar-faced objects. Because

incremental modifications to the model must be easy to perform, the model contains mechanisms to (1) add

primitives in a manner such that constraints on geometry imposed by these additions are propagated

throughout the model, and (2) modify and delete primitives if discrepancies arise between newly derived and

current information. The model also contains mechanisms that permit the generation, addition, and deletion

of hypotheses for parts of the scene for which there is little data.

We describe an experiment in which the model is generated and updated from two views.

2

1. Introduction
The 3D Mosaic scene understanding system is a vision system that incrementally generates a three-

dimensional description (or model) of a complex scene from multiple images. It is an entire system in the

sense that it starts with images and ends with symbolic 3D descriptions. It therefore encompasses several

levels of the vision process and contains several components, including stereo analysis, monocular analysis,

and constructing and updating the scene model. This paper concentrates on the component that constructs

and updates the model. For a description of the stereo and monocular analysis components, see [Herman

83, Herman and Kanade 84, Herman, Kanade, and Kuroe 83, Herman, Kanade, and Kuroe 84].

This paper is organized as follows. First, the motivation for the approach of incrementally acquiring the

scene model is presented, together with an overview of the system. Then the representation, construction, and

updating of the scene model is described, along with the task-specific knowledge used here. Examples are

shown of how urban scenes are reconstructed from complex aerial photographs.

2. Description of System
The goal of die 3D Mosaic system is to obtain an understanding of the 3D configuration of surfaces and

objects in a scene. The significance of this goal may be demonstrated by the following tasks.

1. Model-based image interpretation. A known 3D scene model can provide significant aid in
interpreting arbitrary images of the scene [Barrow, Bolles, et al. 77, McKeown 83, Rubin 80]. The
3D Mosaic system performs the task of acquiring such a model of the scene.

2.3D change detection. Change detection is a task that determines how the geometry and structure
of a scene changes over time. The conventional approach to this task involves comparing and
detecting changes in images. However, because of different viewpoints and lighting conditions,
changes in the images do not necessarily correspond to changes in the geometry and structure of
the scene. If 3D scene descriptions were obtained from the images first, such descriptions could
be compared in 3D to determine changes in the scene.

3. Simulating the appearance of the scene. If a 3D description of the scene were to be obtained,
displays as seen from arbitrary viewpoints could be generated from i t This is useful for tasks such
as familiarizing personnel with a given area, and flight planning by generating the scene
appearance along hypothetical flight paths.

4. Robot navigation. Three-dimensional descriptions of complex environments may be used to make
decisions dealing with path planning or determining which parts of the environment to analyze in
more detail.

Note that to perform these tasks, a vision system must do more than classify images, segment them, or identify

objects in them; it must be able to generate a 3D description of the scene.

The 3D Mosaic system deals with complex, real-world scenes (e.g., Fig. 1 and Fig. 2). That is, the scenes

3

contain many objects with a variety of shapes, the object surfaces have a variety of textures and reflectance

characterises, and the scenes arc imaged under outdoor lighting conditions. Because of the complexity, there

are many difficulties in interpreting the images, including:

1. Any particular image contains only partial information about the scene because many surfaces are
occluded.

2. Even portions of the scene that are visible are often difficult to recover. For example, surfaces
with dark shadows cast across them, or with highlights, may be difficult to interpret. Highly
oblique surfaces may be difficult to analyze if their resolution in the image is poor. Such portions
of the scene, therefore, may be recovered with errors and inconsistencies, or may not be recovered
at all.

Our approach to the problems of complexity is to use multiple images obtained from multiple viewpoints.

This approach aids interpretation in two ways. First, surfaces occluded in one image may become visible in

another. Second, features of surfaces that are difficult to analyze and interpret in one image (such as scene

edges and texture) may become more apparent in another image because of different viewpoint and/or

lighting conditions.

2 . 1 . Incremental Approach

A large number of views will, in general, be required to obtain a fully accurate and complete description of

a complex scene. Typically, all these views will not be simultaneously available, while some may never

become available. Many of them will only be obtained gradually through interaction with the scene

environment. Our system must therefore have the ability to utilize partial descriptions and incrementally

update them with new information whenever a new view happens to become available. As a practical

example, consider a robot (perhaps a mobile ground robot or an automatically guided airplane) which is

attempting to navigate through an unknown environment. The robot would sequentially acquire images of

the environment as it moves about. Information derived from each new image would serve to update its

internal model, and this partial model would be used to decide where to go next, or where to analyze in more

detail.

We have adopted an approach in which the 3D scene model is incrementally acquired over the multiple

views. The views of the scene are sequentially acquired and processed. Partial 3D information is derived

from each view. The initial model is constructed from 3D information obtained from the first view, and

represents an initial approximation of the scene. As each successive view is processed, the model is

incrementally updated and gradually becomes more accurate and complete.

In our approach, the scene model plays the role of a central representation with two primary functions.

First, it incrementally accumulates information about the scene. Second, at any point along its development,

Figure 1: Gray scale stereo images of a region of Washington,

Figure 2: Aerial photograph showing part of Washington, D.C. This is a different view of
the same scene as in Fig. 1.

5

it represents the current understanding of the scene. As such, it may be used for tasks such as matching,

display generation, planning paths through the scene, and making other decisions about the scene

environment. Two such tasks are important for the incremental acquisition process itself: (1) 3D information

derived from a new view must be matched to the model so that updating can occur, (2) higher-level

components should be able to use the model to determine which parts of the scene to analyze in more detail,

and from which viewpoints to take the next images.

Most previous research efforts at acquiring 3D scene descriptions from multiple views have dealt with

relatively simple scenes in controlled environments [Baker 77, Baumgart 74, Bourne, Milligan, and Wright

82, Martin and Aggarwal 83, Potmesil 83, Underwood 75]. This has led, in some cases, to only utilizing

occluding contours in the image to form the 3D description [Baker 77, Baumgart 74, Bourne, Milligan, and

Wright 82, Martin and Aggarwal 83]. The work of Moravec [Moravec 80] deals with complex indoor and

outdoor scenes, but the 3D descriptions generated by his system consist of sparse sets of feature points. Our

system, on the other hand, generates full, surface-based descriptions.

2 . 2 . Overview of System

A flowchart for the 3D Mosaic system, showing the major modules and data structures, is displayed in Fig.

3. The input is a new view of the scene, which may be either a stereo image pair or a single image. The stereo

pair undergoes stereo analysis, while the single image undergoes monocular analysis. The purpose of these

analyses is to obtain 3D scene features such as portions of surfaces, edges, and corners. The stereo analysis

component currently matches junctions extracted from the two images, and generates a sparse 3D wire-frame

description of the scene. The monocular analysis component currently extracts linear structures from the

image and converts these to 3D wire frames using task-specific assumptions.

The central scene model is a surface-based description which is constructed and modified from these

features. It is represented as a graph in terms of primitives such as faces, edges, vertices, and their topology

and geometry. It also has mechanisms to add and delete hypotheses for parts of the scene for which there are

partial data. Before modifications to the scene model can occur, the 3D features from the new view must be

matched to the current model. The scene model may, at any point along its development, be used for tasks

such as image interpretation, planning, or display generation. A new view may then be acquired which may

further modify the model.

For example, when the stereo analysis component is applied to the images in Fig. 1, the result is the set of

wire frames in Fig. 12. The scene model constructed from these wire frames is shown in Fig. 19. When the

monocular analysis component is applied to the image in Fig. 2, the result is the set of wire frames in Fig. 20.

These, in turn, are converted into the scene model in Fig. 21. Finally, the result of modifying the model in

6

Figure 3: 3D Mosaic flowchart, showing major modules (boxes) and data structures
(ellipses). The dashed lines represent components that have not yet been implemented; the
solid lines represent components already implemented.

7

Fig. 19 with a new view is shown in Fig. 26.

3. Representing and Manipulating the 3D Scene Model
The representation we have developed for the 3D scene model draws on ideas from geometric modelling

used in computer-aided design systems [Baer, Eastman, and Hcnrion 79, Requicha 80]. In these systems,

however, the 3D models are usually derived through interaction with a user. Our case is different in that (1)

the 3D models are derived automatically from 2D images, and (2) many portions of the scene are unknown or

recovered with errors because of occlusions or unreliable analysis.

The following factors have determined how the scene model is represented and manipulated.

1. Partially complete, planar-faced objects must be efficiently described by the model. It is therefore
represented as a graph in terms of symbolic primitives such as faces, edges, vertices, and their
topology and geometry. Information is added and deleted by means of these primitives.

2. The model must be easy to use in matching.

3. Because scene approximations are often more useful if they contain reasonable hypotheses for
parts of the scene for which there are partial data, we introduce mechanisms that permit
hypotheses to be generated, added, and deleted.

4. Because incremental modifications to the model must be easy to perform, we introduce
mechanisms to (a) add primitives to the model in a manner such that constraints on geometry
imposed by these additions are propagated throughout the model, and (b) modify and delete
primitives if discrepancies arise between newly derived and current information.

3 . 1 . Representat ion of Model

The 3D structure in the scene is represented in the form of a graph, called the structure graph. The nodes

and links represent primitive topological and geometric constraints. The structure graph is incrementally

constructed through the addition and deletion of these constraints. As constraints are accumulated, their

effects are propagated to other parts of the graph so as to obtain globally consistent interpretations.

The current structure-graph representation models surfaces in the scene as polyhedra. The components of a

polyhedral surface are the face, edge, and vertex. We distinguish the topology of the polyhedral components

from their geometry [Baer, Eastman, and Henrion 79, Eastman and Preiss 82]. The geometry involves the

physical dimensions and location in 3-space of each component, while the topology involves connections

between the components.

8

3 .2 . Primitive Constraints

In the structure graph, nodes represent either primitive topological or primitive geometric elements. We

define five types of primitive topological elements: faces, edges, vertices, objects, and edge-groups. The first

three are components of the polyhedral surface. The last two are introduced in order to conveniently

represent connected groups of elements. The object is intended to represent a connected set of faces that

enclose a volume in 3-space. The edge-group is intended to represent a connected ring of edges that enclose

an area in 2-space on a face. Because of the partial nature of the structure graph, however, an object may

represent any set of faces, edge-groups, edges, and vertices that are potentially part of a single, closed,

connected unit Similarly, an edge-group may represent any set of edges and vertices that are potentially part

of a single edge ring on a face.

Face, edge, and vertex nodes are tagged as either confirmed or unconfirmed. Confirmed means that the

element represented by the node has been derived directly from images. Unconfirmed means that the

element has only been hypothesized.

We define three types of primitive geometric elements: planes, lines, and points. These serve to constrain

the 3-space locations of faces, edges, and vertices. Plane and line nodes contain plane and line equations,

respectively. Point nodes contain coordinate values.

Although an edge is ideally delimited by two vertices, edges derived from images are often incomplete and

may be delimited by one vertex and an end point which is not necessarily a vertex. Such a point is tagged as

an end point A point may also be tagged as confirmed or unconfirmed, depending on whether or not it has

been derived from images. This is useful when a confirmed edge is hypothesized to extend further in length.

The confirmed portion of the edge lies between confirmed points, while the unconfirmed portion may be

delimited on one side by an unconfirmed point

The structure graph contains two types of links: the par/-o/link, representing the part/whole relation

between two topological nodes, and the geometric constraint link, representing the constraint relation between

a geometric and topological node. For example, a vertex may be part of an edge, edge-group, face, or object

A point constrains the position of a vertex, edge, or face if it lies on the vertex, edge, or face, respectively.

Although several points may be constrained to lie on, say, a face, the points need not necessarily be

coplanar. The equations of planes for faces and lines for edges are currently obtained by a least squares fit to

all the points constraining the face or edge. In general, therefore, edges and vertices that are part of a face

need not lie on the plane of the face, and vertices of an edge need not lie on the line of the edge.

Figure 4: Simple example of a structure graph consisting of two objects, obi and ob2.
Double line arrows represent geometric constraint links, and single line arrows represent
part-oflinks.

10

Fig. 4 shows a simple example of a structure graph consisting of two objects, obi and ob2. Arrows with

single lines represent part-of links, and arrows with double lines represent geometric constraint links. The

object obi contains ten faces, fl ... flO. The faces fl and f2 each contains one edge-group, gl and g2,

respectively. Notice that flO contains two edge-groups. These might represent a bounding outer ring of edges

and an inner ring of edges that bounds a hole in the face. The edge-groups contain edges, each of which may

be part of more than one edge-group. The edges, in turn, contain vertices. The point pt constrains v/, el, and

fl. The plane pi constrains flO. The other object in the structure graph, obi, is highly incomplete. It contains

only three edges and two vertices.

4. Modifications to the 3D Scene Model
Modifications to the structure graph are made by adding or deleting nodes and links, or changing the

equations of line and plane nodes, or the coordinates of point nodes. All effects of modifications are

propagated to other parts of the graph.

4 . 1 . Propagation Due to Geometr ic Modif icat ions

Consider adding or deleting a geometric constraint link between a geometric and topological node. Any of

the three geometric nodes (points, lines, and planes) may constrain any of the diree topological nodes

(vertices, edges, and faces). Object and edge-group nodes may not be geometrically constrained directly. Fig.

5 shows how a constraint on one node may propagate to others. The arrows in the figure indicate the

direction of propagation. The tail of an arrow indicates the source constraint; the head indicates the

constraint implied by the source constraint

We see in Fig. 5 that point constraints propagate upward. That is, if a point constrains a vertex, it must also

constrain all edges and faces which contain that vertex. Similarly, a point that constrains an edge must also

constrain all faces containing that edge. Note that when a point constrains an edge, we assume that no

constraint is implied for arbitrary vertices that are part of that edge, since the point need not lie on any of

these vertices. In one sense, the point may be considered to constrain such vertices since they must lie on a

line going through the point This constraint, however, is not useful until another constraint on the line is

derived, such as another point that lies on the edge. In this case, our system generates the equation of the line

that constrains the edge and propagates the line constraint down to the vertex, as explained in the next

paragraph. A more direct and useful constraint is thus imposed on the vertex. Similarly, when a point

constrains a face, no useful constraint is implied for arbitrary edges or vertices that are part of the face.

As indicated in Fig. 5, line constraints propagate outward. A line that constrains an edge must also

constrain all faces containing the edge and all vertices that are part of the edge. Finally, plane constraints

11

Lint Plant

face
4 i

edge

4 i

< f

v e r t e x
f < f i

Figure 5: Rectangular boxes indicate geometric constraints on topological nodes. Arrows
indicate direction of propagation of constraints.

propagate downward. A plane that constrains a face must also constrain all edges and vertices that are part of

the face. Similarly, a plane that constrains an edge must also constrain all vertices that are part of the edge.

Whenever a geometric constraint link is added, propagation occurs as indicated in Fig. 5.

When a geometric constraint link is deleted, the rest of the structure graph must be made consistent with

this change. Our approach to this problem is based on the TMS system [Doyle 79], using the notion that

when an assertion is deleted, all assertions implying it and all assertions implied by it that have no other

support should also be deleted. To see this, consider Fig. 6. Let {xp x? ..., xm] be a set of assertions, each

of which independently implies the assertion y. The assertion (y A v y A v2 A . . .) , in turn, implies each

assertion in the set {zr z? . . . , zj*. Furthermore, for each /, z. is independently implied by each assertion in

the set {w^. Now suppose the assertion y is deleted, i.e., it is declared false. Then

1. Since each assertion z. depends on the truth of >>, z. is deleted unless it has other support w.j.

2. All assertions x. are made false. None of them can be true, for if one were, y must be true. Since
x. may consist of a conjunction of assertions, at least one of them is deleted to make x. false.

We obtain assertions that imply a given assertion by following backwards along the arrows in Fig. 5, and we

obtain assertions implied by a given assertion by following forward along the arrows.

Consider the simple example in Fig. 7a, which depicts three topological nodes (vertex v, edge ey face J)

constrained by one geometric node (point p). Suppose now that link 4 is deleted (Fig. 7b), that is, the

assertion "p constrains e" is deleted. All assertions which have implied this must now be deleted, for if one

were to hold, link 4 would also hold. To find these assertions, we locate the box in Fig. 5 that represents a

12

Figure 6: The assertion y is independently implied by each xf Each assertion z. is
independently implied by (y A v ; A v2 A . . .) and

point constraining an edge and follow backwards along the arrow. The result is the box that represents the

point constraining any vertex of the edge. In Fig. 7b, this corresponds to the assertion "p constrains v, and v is

part of e". This assertion must therefore be made false. To do so, we may delete either link 1, link 3, or both

from Fig. 7b. Our intuition tells us that part-of links (link 1) should dominate constraint links (link 3), and

thus link 3 is deleted. This seems to work well for our examples.

We now must determine the assertions implied by the one initially deleted. All these assertions must also be

deleted unless they have other support To do so, we follow forward along the arrow from the box in Fig.

5 that represents a point constraining an edge, and the result is the box that represents the point constraining

all faces containing the edge. In Fig. 7b, this corresponds to the assertion "p constrains/ ' , which is link 5.

This link should therefore be deleted since it has no other support. One possible source of other support is

external to the structure graph. Link 5 may have been derived, for example, directly from image data, rather

than through structure graph propagation. We rule out the possibility that links 4 and 5 are unrelated, and

thus delete link 5. The resulting structure graph is depicted in Fig. 7c.

4 . 2 . Propagation Due to Topological Modif icat ions

When a topological part-of link between two topological nodes is added or deleted, the effects are

propagated to other parts of the structure graph. In the following, we will consider both geometric and

topological effects.

13

(a) (b) (c)

v is part of e (link 1)
e\s part of/(link 2)
p constrains v (link 3)
p constrains e (link 4)
p constrains / (l ink 5)

Figure 7: (a) Initial structure graph, (b) Link 4 is deleted, (c) Resulting structure graph
after effects of deletion have been propagated.

4 . 2 . 1 . Geometr ic Effects

When a topological part-of link is added between two topological nodes, the geometric constraints on each

node must be propagated to the other node in accordance with the chart in Fig. 5. There are three main cases

to consider: (1) adding a part-of link between a vertex and edge node, (2) between an edge and face node, and

(3) between a vertex and face node. These three cases are explicidy covered in Fig. 5. The remaining cases

fall into two classes: (a) adding a part-of link between some topological node and an object node, and (b)

between some topological node and an edge-group node. Since object nodes cannot be geometrically

constrained directly, actions in class (a) have no geometric effects. Since geometric constraints can be

propagated through edge-group nodes, actions in class (b) do have geometric effects. These effects, however,

can be reduced to the three cases above, as explained in the next paragraph.

Consider the example of adding a part-of link between an edge node E and a face node F. From Fig. 5, we

see that all point and line constraints on E must be propagated to F, while all plane constraints on F must be

propagated to E. Plane constraints propagated to E are, in turn, propagated to vertices of E. As another

example, consider adding a part-of link between an edge-group node G and a face node F. This situation

14

results in the same geometric propagation as the following two cases: (1) add a part-of link from each edge of

G to F, and (2) from each vertex of G to F. Similar rules can be established for the other two situations

involving edge-group nodes (i.e., adding a link between a vertex and edge-group node, and between an edge

and edge-group node).

When a part-of link between two topological nodes is deleted, an attempt is made to nullify any geometric

propagation that occurred through the link. This is done by deleting, from the two nodes connected by the

link, all geometric constraints that have propagated through the link. The effects of deleting these geometric

constraint links are, in turn, propagated to the rest of the graph in the manner described in the previous

section.

As an example, consider deleting a part-of link between an edge node E and a face node F. As seen in Fig.

5, all point and line constraints on F that also constrain E were either (1) propagated up from E, (2)

propagated up from another edge or vertex of F, or (3) derived from an external source. We rule out the

possibility that the same constraints on E and F are unrelated, thus ruling out the external source. Therefore,

points and lines that constrain both F and E, but do not also constrain another edge or vertex of F, are deleted

from F since we just cut off the only path through which they could have propagated to F . The effects of

deleting the point and line constraints from F are, in turn, propagated to the rest of the graph. Similarly, all

plane constraints on E that also constrain F are deleted from E unless they also constrain another face that

contains E (which would be unusual). The effects of deleting plane constraints from E are then propagated.

An example of a link with more than one source of support is shown in Fig. 8a. Suppose the part-of link

between el a n d / link 4, is deleted (Fig. 8b). According to the chart in Fig. 5, link 8 is a candidate for deletion

since the point node p constrains both el and / However, since p also constrains the edge e2, which is part of

/ link 8 is still valid.

4 . 2 . 2 . Topological Effects

A topological modification sometimes implies topological changes elsewhere in the structure graph. This is

best illustrated through an example. Fig. 9a shows the graph representing the situation in Fig. 9b. The edge e

has two vertices, v/ and v2, and vl is known to be part of the face / Now suppose a part-of link is added

between v2 and / (l ink 4 in Fig. 9c). Since both vertices of e are now part of / e must also be part of / as

shown in Fig. 9d. Therefore link 5 in Fig. 9c is added.

Another kind of topological effect results from the desire to eliminate redundant part-of links. Part-of links

serve as paths in the structure graph along which effects of geometric changes are propagated. In order to

simplify this process, the number of paths between each pair of topological nodes is minimized using the

15

(a) (b)

Figure 8: Example of a link with more than one source of support, (a) Initial structure
graph, (b) Link 4 is deleted, but link 8 remains because of support from links 3 and 7.

following rule: Two topological nodes may not be directly connected (i.e., by means of a part-of link) if they

are also connected through one or more intermediate topological nodes. For example, suppose a part-of link

is added between the edge node e and the face node / i n Fig. 10a. To avoid redundancy, all links connecting

vertex nodes of e and the node /(l ink 1 in Fig. 10a) and vertex nodes of e and object nodes containing/(link

2) are deleted. In addition, if there were any links between e and object nodes containing / they would also

be deleted. The final configuration is shown in Fig. 10b. In the example of Fig. 9, the graph in (c) has

redundant links. Links 1 and 4 are therefore deleted, resulting in the graph of Fig. 9e.

Although adding a part-of link can result in topological changes elsewhere in the graph, deleting a part-of

link does not change the topology anywhere else. No attempt is made to recover previous states of topological

connections. Fig. l i b shows the result of deleting link 1 from the graph in Fig. 11a. This technique seems to

work well in our experiments.

5. Constructing and Updating the 3D Scene Model
Each view of the scene (which may be either a single image or a stereo pair) undergoes analysis which

results in a 3D wire-frame description representing 3D vertices and edges corresponding to portions of

boundaries of objects in the scene. The goal of the updating process is to merge the wire-frame description

Figure 9: Topological propagation, .(a) and (b) Initial situation, (c) and (d) Link 4 is added,
resulting in addition of link 5. (e) Redundant links are eliminated.

17

Figure 11: (a) Initial configuration, (b) Final result after link 1 is deleted.

18

with the current model. In general, this process will result in a partial 3D model which may consist of surfaces

at some places but only portions of boundaries at other places. This partial 3D model must then be converted

into a full surface-based description by hypothesizing new vertices, edges, and faces. Our current techniques

for making such hypotheses exploit task-specific knowledge that falls into two categories: (1) knowledge of

planar-faced objects, and (2) knowledge of urban scenes. These categories will be explored in detail in the

next two sections.

Both the wire frames and scene models arc represented by structure graphs. The wire-frame description

extracted from the first view forms the initial state of the scene model, and all of its edges, vertices, and points

are tagged as confirmed. This wire-frame model is then converted into a full surface-based model using

task-specific knowledge. All elements of the model that were not present in the initial state are hypothesized

and tagged as unconfirmed.

When a wire-frame description is extracted from a new view, all of its edges, vertices, and points aretagged

as confirmed. This description is then matched to the current model (in order to find corresponding elements

in the two and the coordinate transformation from one to the other) and merged with the current model. In

the merging process, confirmed elements in the wire-frames and model that match are "averaged" together,

resulting in new confirmed elements. Parts of the wire-frames that have no match in the model are then added

to the model. Hypothesized elements in the model that are no longer consistent with confirmed parts are

deleted. At this point, task-specific knowledge is again used to fill out the model and to form a full surface-

based description.

6. Knowledge of Planar-Faced Objects
Since the structure graph has been designed for scenes that can be modelled as collections of planar-faced

objects, knowledge of such objects is inherent in the representation and propagation rules, as described

previously. In this section, we discuss how knowledge of such objects is used to construct a scene model from

wire frames.

When new wire-frame information (derived either from the first or a subsequent view) is added to the

model, many object descriptions will be incomplete. A goal of the model construction process, of course, is to

complete these object descriptions using task-specific knowledge. The notion of an object description being

complete is best expressed in the context of the structure graph. An object node in the structure graph is

considered complete if it meets certain requirements, which may be expressed in terms of complete nodes

contained by the object node. Each type of node in the graph, therefore, must meet certain requirements to be

considered complete. Even though these requirements are only implicitly followed during the model

construction process, it is useful to state them explicidy.

19

1. An object node is complete if it is closed, i.e., each edge node of the object is part of two face
nodes, both of which are complete.

2. A face node is complete if it is constrained by a plane node and contains one or more complete
edge-group nodes. One of these edge-group nodes must represent a bounding ring of edges on the
face. The other, optional edge-group nodes represent inner edge rings, which would be holes in
the face. In addition, each edge node of the face must be part of an edge-group of the face.

3. An edge-group node is complete if it contains a single, connected, closed ring of complete edges
on a face.

4. An edge node is complete if it is constrained by a line node and contains two complete vertex
nodes.

5. A vertex node is complete if it is constrained by a point node.

In the following, we discuss heuristics applicable to planar-faced objects which are used in constructing the

model.

6 . 1 . Combining Edges

If there are two confirmed edges in the model that are nearly parallel, very close to each other, and overlap

significantly, they are merged into a single edge, which is also labeled as confirmed. The test to determine

parallelism and closeness involves checking whether all the points on one edge are within a threshold distance

from the line constraining the other edge, and vice versa. The test for overlap involves projecting one edge

onto the line of the other and measuring the amount of overlap.

In determining how to merge two such edges, we have thus far considered only one situation, depicted in

Fig. 13a. Edges el and e3 satisfy the merging condition, and each has a single confirmed vertex (v/ on el and

v2 on e2). Furthermore, the confirmed vertices are on opposite ends of each other. This situation is handled

by merging the two edges into a single edge whose two end points are the two confirmed vertices, as shown in

Fig. 13b. This situation occurs only once in Fig. 12, for the two edges labeled E l and E2.

6 . 2 . Generat ing W e b Faces

Each vertex in the model is assumed to correspond to a corner of an object Therefore each adjacent pair of

legs ordered around the vertex corresponds to the corner of a planar face. Thus far in our experiments, we

have dealt only with trihedral vertices. In this case, every pair of legs of each vertex corresponds to the corner

of a separate face. A partial face, called a web face, is generated for each pair.

Fig. 14a shows three web faces generated from a trihedral vertex. A web face may lie on either side of a

vertex corner. In Fig. 14b, the web face is on the "inside", while in (c) it is on the "outside", of the vertex

20

F4 70

incur?

P3'
no

-efr

Figure 12: Perspective view of 3D vertices and edges extracted from stereo pair in Fig. 1.

corner. The latter situation results when the vertex is part of a hole in the face. In general, the side on which

the web face lies is not known at creation time.

After all web faces have been created, those that represent corners of a single face are merged, as explained

next

6 .3 . Merging Part ial Faces

A face is partial if it is not complete, i.e., all of its edge-groups do not form closed edge rings. One way to

complete a partial face is to merge it with nearby partial faces which represent different portions of the same

face. The procedure that merges two nearby partial faces distinguishes two situations: (1) two faces that are

touching, i.e., they share an edge (e.g., F l and F2 in Fig. 12), or (2) two faces that are not touching (e.g., F3

and F4 in Fig 12).

Two partial faces that touch each other are merged if they satisfy the following conditions:

1. They must share exactly one edge (by definition of touching). Fig 15a depicts two partial faces, fl
and f2, that share the edge e2.

2. The shared edge must serve as a boundary of both faces, but cannot partition them. This condition
is satisfied if none of the vertices shared by the two faces lie on two edges of each face. In Fig. 15b,

21

nw edge

1 v2
v1 1 v2
v1

\ u

(a) (6)

Figure 13: Combining edges, (a) Edges el and e3 are very close to each other, and each has
a confirmed vertex. These vertices are on opposite ends of each other, (b) The new edge is
shown as the result of merging el and e3.

f a c e

f a c e

(b) (c)

Figure 14: (a) Three web faces generated from a trihedral vertex. A web face may either be
on the inside (b) or the outside (c) of a vertex corner.

(f a) (c)

Figure 15: Situations for merging touching partial faces, (a) fl and ft share one edge, (b)
e3 partitions fl and ft rather than serving as a boundary for them. (c)fl and ft share an
edge that bounds them, but they are not parallel

22

the partial faces fl and f2 share the edge e3. These faces should not be merged because they share
the vertex v which lies on two edges of each face (on e2 and e3 of fl, and on el and e3 of f2).
Notice how e3 serves to partition the faces, while in Fig. 15a, the edge e2 serves as a boundary of
the faces it joins.

3. The planes of the faces must be nearly parallel and very close to each other. This condition is
tested by checking whether all the points lying on one face are within a threshold distance from
the plane of the other face. In Fig. 15c, suppose e4 is perpendicular to both el and e3, and e2 is
parallel to e3. The partial faces fl and f3 meet both conditions (1) and (2) above, but they do not
meet the current condition.

The procedure for merging two touching faces F l and F2 involves (1) finding the two edge-groups G l of

F l and G2 of F2 that contain the shared edge, (2) subtracting edges and vertices from G l (i.e., deleting

part-of links in the structure graph) and adding them to G2, (3) subtracting edge-groups, edges, vertices, lines,

and points from F l and adding them to F2, and (4) recalculating the plane equation of F2 as a least squares fit

to all the points now constraining F2.

Two partial faces that do not touch each other are merged if they satisfy the following conditions:

1. Each face must have an edge-group containing two non-vertex end points. In Fig. 16a, face fl has
a single edge-group (consisting of edges el and el) that has the two non-vertex end points pi and
p2. Similarly, face f2 has a single edge-group with the non-vertex end points p3 and p4.

2. Each of the two end points of the edge-group of one face must be uniquely matched with those of
the other face. That is, each end point must be a distance of less than a threshold from exactly one
of the two end points of the other face. In Fig. 16a, pi and p3 are uniquely matched because their
distance is less than the threshold and the distance from pi to p4 is greater than the threshold.
Similarly, p2 and p4 are uniquely matched.

3. The planes of the two faces must be nearly parallel and within a small threshold distance of one
another.

The procedure for merging two non-touching faces is similar to the one for merging touching faces, in that

elements are subtracted from one face and added to the other face, and the plane equation of the resulting

face is recalculated. An additional step, however, involves finding the point of intersection of each pair of

edges on which the matching pairs of end points lie. The points are then converted into new hypothesized

vertices on the edges. The result of merging fl and J2 in Fig. 16a is shown in (b), where two new vertices* v/

and v2, have been hypothesized. Notice that the edge el has been shortened in the process, while the other

edges have been extended.

Up till now, we have only discussed the merging of partial faces. However, if the confirmed parts of two

faces, each of which may be partial or complete,, satisfy the three conditions outlined above for merging

non-touching faces, then the faces may be merged. For example, suppose the face fl in Fig. 16c contains the

Figure 16: Merging of non-touching faces, (a) fl and f2 satisfy the conditions for merging,
(b) Result of merging fl and f2. (c) and (d) The complete face fl is merged with the partial
face J2. (e) The complete face fl, which contains a hole, is merged with the partial face J2.

24

confirmed edges el and e2 and the hypothesized edges e3 and e4. Now suppose that the web face f2 in (d) is

new information that becomes available, say, from a new view. The confirmed parts of fl may then be

merged with f2 if they satisfy the conditions for merging. In the process, hypothesized parts of fl must be

deleted. The mechanisms for doing this will be discussed later.

Another interesting example is depicted in Fig. 16e, whose situation is similar to that in (d) except that the

web face f2 is merged with confirmed parts of the face fl% which has a hole in it. Notice that the condition

that the confirmed parts of each face must have two end points which are uniquely matched to those of the

other face is satisfied by pi and p3, and by p2 and p4. As a result of merging, f2 aids in completing the

boundary of the hole in fl.

After all mergers have been performed, many faces may still be incomplete. As will be explained later,

knowledge of urban scenes is used to hypothesize the shapes of such faces, and they are completed by

generating the appropriate edges and vertices.

6 .4 . Finding and Construct ing Holes in Faces

The procedure for finding and constructing holes in faces occurs after all faces have been completed. The

face F l is assumed to represent a hole in the face F2 if the following conditions are satisfied:

1. The planes of the two faces are nearly parallel and within a small threshold distance of one
another.

2. The bounding ring of vertices of Fl , when projected onto the plane of F2, falls inside the
boundary ofF2.

If these conditions are satisfied, the edge-group that contains the bounding edges of F l is subtracted from

F l and added to F2. It now serves as an inner edge-group (an inner ring of edges) of F2. F l is then deleted

from the structure graph.

7. Knowledge of Urban Scenes
Because the wire-frame data extracted from images represent a partial and sparse description of the scene,

knowledge of planar-faced objects by itself is generally not adequate for completing many of the objects in

the model. As will be described next, knowledge of urban scenes that contain block-shaped objects has been

useful for this task.

25

7 . 1 . Completing Shapes of Faces

Faces in the model may be incomplete because they contain one or more incomplete edge-groups, i.e.,

edge-groups without closed rings of edges. In these cases, the shape of each incomplete edge-group is

hypothesized, and it is completed by generating the appropriate edges and vertices. The following rules are

used here:

1. If the partial edge-group represents a single corner, i.e., it contains only two connected edges (the
solid lines of face / i n Fig. 17a), the shape is completed as a parallelogram. Two new edges are
hypodiesized to complete the shape and are added to the edge-group (dashed lines in the figure).

2. If the partial edge-group consists of three or more edges connected as a single chain (the solid
lines of face fin Fig. 17b), the shape is completed by connecting the two end points of the chain
with a new, hypothesized edge (dashed line in the figure), and adding it to the edge-group.

Figure 17: Completing shapes of faces, (a) The face / is completed in the shape of a
parallelogram, (b) The face / i s completed by closing the shape.

7 .2 . Hypothesizing Vert ical Faces for Incomplete Ob jec ts

Objects in the model may be incomplete because they do not consist of a completely closed, connected set

of faces. Since we are dealing with urban scenes, faces that lie high enough above the ground plane are

assumed to represent roofs of buildings. A hypothesized vertical wall is dropped toward the ground from

each edge of such faces, unless the edge is already part of another face.

The test to determine whether the face is high enough above the ground involves checking whether all the

points on the face exceed a threshold distance from the ground. This test rules out faces that intersect the

ground (such as building walls) or faces that lie on the ground (such as ground patches). The equation of the

ground plane is currently interactively obtained.

A vertical wall is dropped either to the ground plane or to the first face it intersects on the way down. For

example, in Fig. 18a, face f2 is above ft, and the distance of each from the ground plane exceeds the

threshold. The result after dropping vertical faces is shown in (b), which indicates that faces have been

dropped from fl to the ground, and from f2 to fl.

26

(c)

Figure 18: Dropping vertical walls from faces, (a) The face f2 is above fl, (b) Faces are
dropped from fl to the ground plane, and from fl to fl. (c) A vertical edge-frame is
dropped from the face F.

The procedure for dropping vertical faces from a face F is as follows. For each vertex of F that has fewer

than three legs, an edge is dropped either to the ground plane or to the first face it intersects. This results in a

vertical edge-frame that supports F (the dotted lines in Fig. 18c). The edge-frame is then "filled in" by first

creating web faces for each new edge pair at each vertex of F, then merging those that touch each other, and

finally completing the resulting partial faces in the ways described earlier.

When the techniques described above are applied to the output of the stereo analysis component depicted

in Fig. 12, we obtain the scene model shown in Fig. 19. Notice that one of the buildings has a hole in it,

through the roof. The planar patches at the "front" of the scene are part of the ground. Because they were not

high enough above the ground plane, they were not treated as building roofs. When these techniques are

27

applied to the output of the monocular analysis component (Fig. 20), wc obtain the scene model shown in

Fig. 21. Note that all vertices, edges, and faces which have been hypothesized by the procedures described

above are marked as such, and will be replaced by more correct versions as more information becomes

available from new views.

8. Combining New Views with Current Model
The process of incorporating a 3D wire-frame description extracted from a new view into the current scene

model can be divided into three main steps:

1. The wire-frame data must first be matched to the current model. This process provides (a) the
scale transformation and coordinate transformation from the wire-frame data to the model, and
(b) corresponding elements (i.e., vertices and edges) in the two.

2. The new wire-frame data is then merged with the current model. This process includes (a)
merging pairs of corresponding elements, and (b) adding to the model wire-frame elements for
which no correspondences were found. The latter procedure is aided by knowledge of the scale
and coordinate transformations. During the merging process, hypothesized parts of the model
that are inconsistent with the new wire-frame data are deleted.

3. At this point, many objects in the model may be incomplete because (a) new wire-frame data has
been added, and/or (b) some hypothesized elements have been deleted. These objects are
completed using the techniques described in the previous sections.

To see how these steps are carried out, consider the example of incorporating the information from a second

view into the scene model of Fig. 19. This scene model was constructed from the set of wire frames (Fig. 12)

automatically extracted from a "front" view of the scene (Fig. 1). The second set of wire frames, shown in

Fig. 22, was manually generated to simulate information available from an opposing point of view (viewing

the scene from the "back"). The viewpoint for the perspective drawing of Fig. 22 is chosen to be similar to

that of Fig. 12 to allow easier comparison by the reader. Notice that the information in Fig. 12 emphasizes

edges and vertices facing the front of the scene, while those facing the back of the scene are emphasized in

Fig. 22.

8 . 1 . Matching

We assume in this example that the scale and coordinate transformations from the new wire-frame data to

the current model is known; the data and model may therefore be described in the same coordinate system.

We have not yet implemented a general matcher that provides these transformations betweeil the two.

The next step is to determine corresponding edges and vertices in the data and model. First we label each

connected group of edges in the wire-frame data as a distinct wire-frame object. Next, wire-frame objects are

matched with model objects. Two objects are said to match if they have confirmed parts that match. Matches

Figure 19: Perspective views of buildings reconstructed from wire-frame data in Fig. 12.
These buildings correspond to the cluster of buildings at the upper middle parts in the
images of Fig. 1.

29

Figure 20: Perspective view of 3D vertices and edges extracted from image in Fig. 2.

are sought only for edges and vertices, since these constitute the only confirmed parts of a wire-frame object.

The requirements for two confirmed vertices, one from each object, to match are: (1) they must be very close

to each other, or (2) they must be part of matching edges whose other two vertices match. The requirements

for two confirmed edges, one from each object, to match are: (1) the two confirmed vertices of one edge must

match the two of the other, or (2) one confirmed vertex on one edge matches one on the other, and the two

edges are close together and overlap In their lengths. These rules are used in a relaxation algorithm to obtain

matching vertices and edges.

As an example, consider Fig. 24. Suppose the object in (a) is part of the model. The edges represented by

the solid lines el, e2f e3, e4 and el2, are confirmed. The edges represented by the dashed lines are

hypothesized. Vertices v/, v2 and v3 are confirmed, while the others are hypothesized. (Note that there are

also edges and vertices in this object hidden from our viewpoint; these will not be considered here.) Suppose

the wire-frame object in Fig. 24b has been derived from a new view, and it has been transformed to register

with the model object. The following algorithm is used to match the two.

1. Find pairs of confirmed vertices that match by determining which ones lie within a threshold
distance of one another. The vertices v2 and vlOO are found to match, but let us suppose the
distance between v3 and vlOl exceeds the threshold.

2. Find pairs of confirmed matching edges that contain previously found matching vertices. The

Figure 21: Perspective views of buildings reconstructed from wire-frame data in Fig.

31

Figure 22: Perspective view of manually generated vertices and edges which simulate
information available from images showing an opposite point of view from that shown in
Fig. 1. The viewpoint for this drawing is chosen to be similar to Fig. 12. Points PI, P2, and
P3, for example, correspond to points PI, P2, and P3 in Fig. 12.

edges el9 e3 and elOO, elOl contain matching vertices and are therefore compared. In order to
match, two edges must be very close together and must overlap in their lengths. The distance
threshold for this test, however, is greater than the one for determining matching vertices. This is
permitted because the possible matching edges are also constrained by the requirement that they
contain matching vertices. Therefore, even though v3 and vlOl failed to match in step (1) above,
the edges e3 and el 01 are found to match, as are el and el00.

3. For each new matching pair of edges found, if they contain a single pair of matching vertices,
match their other vertices (if they exist and are confirmed). The vertices v3 and vlOl match
because e3 and el 01 match. No new matching vertices result from the matching edges el and
elOO, since elOO has only one vertex.

4. Proceed by repeating step (2) above, i.e„ find new pairs of confirmed matching edges that contain
previously found matching vertices. The edges e4 and ell are compared with elOl and el04.
Using the distance and overlap tests, e4 and el01, as well as ell and el04, are found to match.

5. Next, step (3) is repeated. New matching vertices are sought that lie on newly found matching
pairs of edges. The matching edges found in step (4) contain no new matching vertices, since v4
and v6 are unconfirmed. The algorithm therefore halts at this point; it would have continued with
step (2) if new matching vertices had been found. The following pairs of matches are returned:
(vl vlOO), (v39 vlOl), (el el00)9 (e3, elOl)9 (e4t elOl), (ell9 e!04).

32

8 . 2 . Discrepancies

We must now merge the new wire-frame data into the model. An important issue here is how to handle

discrepancies between the two. We consider the following two types of discrepancies:

1. After the coordinate system of the wire-frame data has been transformed to that of the model and
scale adjustments have been made, corresponding pairs of confirmed vertices and edges may not
register perfectly in 3-space. In order to merge them into single elements, we perform a "weighted
averaging" of their positions.

2. Hypothesized elements in the model may be inconsistent with newly obtained elements. We
handle this by deleting such hypothesized elements.

To determine whether or not hypotheses are still valid when confirmed elements in the model are modified

or deleted, we consider the elements which gave rise to the hypotheses. A hypothesis is dependent on all

elements whose existence directly resulted in the creation of the hypothesis. If one of these elements is

modified or deleted, the hypothesis must also be modified or deleted since the conditions under which it was

created are no longer valid. The dependency relationships for hypothesized elements are explicidy recorded

at the time of their creation using dependency pointers [Doyle 81].

We currendy record these relationships for the following situations:

1. When two non-touching partial faces are merged (Fig. 23a), each face has two partial edges which
are intersected with their counterparts in the other face. The intersection points form two new
hypothesized vertices, each of which is dependent on the two edges whose intersection gave rise to
it. In Fig. 23a, the arrows indicate the dependencies. Vertex v/ is dependent on edges el and e39

and vertex v2 is dependent on edges e2 and e4. If one of the edges were to be modified (e.g., if its
position were to be displaced), the vertex that dependsj:>n that edge would no longer be a valid
hypothesis, and would therefore be deleted. A new vertex might then be hypothesized.

2. When an incomplete edge-group is completed in the shape of a parallelogram (Fig. 23b), two new
edges and three new vertices are hypothesized. Each of the new edges e3 and e4 is dependent on
both of the old edges el and e2. The edge e3, for example, is dependent on el in the sense that its
end point is constrained by the end point of el. It is dependent on e2 in the sense that it is
constrained to be parallel to e2. The new vertex v3 is dependent on the two hypothesized edges e3
and e4y while the new vertices vl and v2 are dependent on the confirmed edges on which they lie.

3. When a face is completed by connecting its two end points (Fig. 23c), two new vertices and one
new edge are hypothesized. The new edge e4 is dependent on both el and ei , while the new
vertices vl and v2 are dependent on the edges on which they lie.

4. When a vertical wall is dropped from a face, the first step is to drop hypothesized edges from
vertices of the face. Such edges are dependent on the vertices from which they are dropped. In
Fig. 23d, the new edges el and e2 are dropped from, and are dependent on, the vertices vl and v2,
respectively. A dropped edge is constrained to be perpendicular to the ground plane, and would
therefore no longer be a valid hypothesis if the vertex it depends on, which is one of its end points,
were to be displaced. After edges are dropped from all vertices of the face, the resulting edge-

33

id)
ic)

Figure 23: Generating dependencies for hypothesized edges and vertices. The dependence
of an element on another is depicted as an arrow from the former to the latter, (a) Two
non-touching partial faces are merged, (b) A face is completed in the shape of a
parallelogram, (c) A face is completed by connecting its two end points, (d) Vertical edges
are dropped from a floating face.

34

3. If the two edges share one vertex and the other end points are not confirmed vertices (Fig. 25c),

frame is filled in with faces, as described previously. This results in more hypothesized edges and
vertices. The situations under which these are created fall under categories (2) and (3) above.

When a confirmed edge or vertex in the model is modified or deleted, the set of all hypothesized elements

that depend on it are deleted. Recursively, elements depending on deleted ones are also deleted. When

hypothesized vertices and edges are deleted in this manner, it is possible for hypothesized faces to lose

minimal support, i.e., they may no longer be constrained by at least three non-colinear points. Such faces are

also deleted.

8 .3 . Merging

The procedure that merges corresponding wire-frame and model objects takes into account the fact that the

3-space positions of end points of edges that are confirmed vertices are generally much more accurate than the

positions of non-vertex end points. Therefore, confirmed vertices are given more weight during merging. As

an example, consider again Fig. 24, where the wire-frame object in (b) is to be merged with the model object

in (a).

The merging procedure starts by merging corresponding vertices in the two objects. This involves the

following:

1. The model vertex of each corresponding pair of vertices ((v2, vlOO) and (\>3, vlOl) in Fig. 24) is
assigned new coordinates - those of the midpoint of the line connecting the two initial vertices.

2. If the distance between the initial and resulting points of the model vertex exceeds a threshold, all
hypothesized edges and vertices in the model that recursively depend on this vertex are deleted.
Hypothesized faces that have lost minimal support are also deleted.

3. The vertex in the wire-frame object is deleted and replaced by the model vertex.

At this point, all corresponding pairs of edges will share at least one vertex. The corresponding edges are

merged next as follows:

1. If the two edges share both their vertices (Fig. 25a), merging involves recalculating the line
equation of the model edge and deleting the wire-frame edge. In Fig. 24 this situation occurs
between edges e3 and elOl.

2. If the two edges share one vertex but only one of them contains another confirmed vertex (Fig.
25b), the edge with one confirmed vertex is deleted, leaving the edge with two vertices as the
result In Fig. 25b, the result of merging el and e2 is el. Notice that the non-vertex end point in
this case is given zero weight If the resulting edge is from the wire-frame object, it is subtracted
from this object and added to the model object In Fig. 24, this situation occurs between edges e2
and el00, and edges e4 and el02.

35

07

zi

v2

z6
/

/
zi

/ h5

(' x
z3

MODEL OBJECT
(a)

v100

Zi 00

ZlOl
z103

z\0l

v102 v101

WIRE-FRAME OBJECT
(b)

/
/

/
/

(/
I /
I /
V

(c)

Figure 24: The wire-frame object in (b) is to be merged with the model object in (a). The
confirmed edges of the model object (indicated by solid lines) are el, e2, e3, e4, and el2; the
confirmed vertices (indicated by circles) are vl, v2, and v5. Dashed lines represent
hypothesized edges, (c) The result after merging.

36

the line equation of the new edge is obtained by a least squares fit to all the points on the two
initial edges (see Fig. 25d, where the dotted lines are die initial edges, and the solid line is the new
edge). The non-vertex end point of the new edge is the projection of die non-vertex end point of
the longest initial edge onto the line constraining the new edge. This new end point is labeled as
confirmed. The edge is then added to the model object and the two initial edges are deleted.
Note that the vertex end point of this edge need not lie on the line constraining the edge. In Fig.
24, this situation occurs between edges ell and el04.

v/1 e l v;2 v U 21 .t>2

t 1 t
, , (b)
(a)

I
e l

vf. — e2

(0
id)

Figure 25: Merging edges. Two edges to be merged may either (a) share both their vertices,
or (b) and (c) share one vertex, (d) Result of merging edges in situation (c).

Before merging, a model edge may contain either one confirmed vertex or two confirmed vertices. If it

contains one confirmed vertex, then all hypothesized edges and vertices in the model that recursively depend

on this edge are deleted. Hypothesized faces that have lost minimal support are also deleted. In Fig. 24, this

occurs for the edges e4 and ell. The hypothesized elements in the figure that recursively depend on, say, e4

are the vertices v4 and v7, and the edges e5, elO, e9 and ell. If a model edge to be merged contains two

confirmed vertices (e.g., el and e3 in Fig. 24), no hypothesized elements need be deleted since all necessary

deletions were made when the vertices of the edge were merged.

After all corresponding elements of the two objects have been merged, the edges and vertices remaining in

the wire-frame object that were not merged are added to the model object, and the wire-frame object is

deleted. In Fig. 24, this step involves adding the edge e!03 to the model.

Finally, the plane equation is recalculated for each face in the model object which had edges and vertices

that were modified or deleted. Fig. 24c shows the final configuration of the object after the merging process.

37

This object is incomplete and must be completed using the techniques described in previous sections.

8.4 . Results of Merging

When these procedures are applied to the wire-frame data in Fig. 22 and the scene model in Fig. 19, we

obtain the updated scene model shown in Fig. 26. The updated version has two important improvements over

the initial version. First, the updated model contains more buildings since new wire-frame data, some of

which represent new buildings, have been incorporated into the initial model. Second, for many buildings

described in both versions of the model, the positions of vertices and edges are more accurate in the updated

version. This is because many hypothesized vertices and edges are replaced by accurate ones obtained from

the new data, and many confirmed vertices and edges are merged with corresponding ones in the data by

"averaging" their positions, generally decreasing the amount of error.

The shape of the large hole in the roof of one of the buildings has changed from a rectangle in the initial

model to an almost triangular quadrilateral in the updated version. When compared with the source images

in Fig. 1, the rectangular shape would seem more accurate. However, the positions of the edges and vertices

that form the hole are more accurate in the updated model in the sense that they are more faithful to the

wire-frame descriptions derived from the images.

This experiment demonstrates how information provided by each additional view allows the model to be

incrementally made more complete and accurate.

9, Summary
The 3D Mosaic system is a vision system that incrementally acquires a 3D model of a complex scene from

multiple images. This paper has focused on the representation, construction, and updating of the model. Each

view of the scene undergoes either monocular or stereo analysis. This results in a 3D wire-frame description

that represents portions of edges and vertices of objects in the scene. The model is incrementally constructed

and updated from the wire frames using task-specific knowledge. This process involves generating, adding,

and deleting hypotheses about the structure of the scene. At any point along its development, the model

represents the current understanding of the scene and may be used for tasks such as matching, display

generation, planning paths through the scene, and making other decisions dealing with the scene

environment. Examples have been presented showing how the system interprets complex aerial photographs

of the Washington, D.C. area.

Acknowledgement

Takeo Kanade, Fumi Komura, Shigeru Kuroe, and Duane Williams have worked with me on this project

and have provided much support and encouragement

39

References

[Baer, Eastman, and Hcnrion 79]
Baer, A., Eastman, C , and Henrion, M.
Geometric Modelling: a Survey.
Computer-Aided Design il:253-272, September. 1979.

[Baker 77] Baker, H.H.
Three-Dimensional Modelling.
Proc. IJCAI-77:649-655, August, 1977.

[Barrow, Bolles, et al. 77]
Barrow, H. G., Bolles, R. C , Garvey, T. D., Kremers,J. H., Tenenbaum, J.M., and Wolf,
H.C.
Experiments in Map-guided Photo Interpretation.
Proc. IJCAI-77:696, August, 1977.

[Baumgart 74] Baumgart, B. G.
Geometric Modeling for Computer Vision.
Technical Report ST AN-CS-74-463, Department of Computer Science, Stanford -

University, Stanford, CA, October, 1974.

[Bourne, Milligan, and Wright 82]
Bourne, D. A., Milligan, R., Wright, P. K.
Fault Detection in Manufacturing Cells Based on Three Dimensional Visual Information.
Proc. SPIE, May, 1982.

Doyle, J.
A Truth Maintenance System.
Artificial Intelligence 12 :231-272,1979.

Doyle, J.
Three Short Essays on Decisions, Reasons, and Logics.
Technical Report STAN-CS-81-864, Department of Computer Science, Stanford

University, Stanford, CA, May, 1981.

[Eastman and Preiss 82]
Eastman, C. M., and Preiss, K.
A Unified View of Shape Representation and Geometric Modeling.
Israel Conference on CAD, January, 1982.

[Herman 83] Herman, M.
Monocular Reconstruction of a Complex Urban Scene in the 3D MOSAIC System.
Proc. ARPA Image Understanding Workshop :318-326, June, 1983.

[Herman and Kanade 84]
Herman, M., and Kanade, T.
The 3D MOSAIC Scene Understanding System: Incremental Reconstruction of 3D Scenes

from Complex Images.
Technical Report CMU-CS-84-102, Department of Computer Science, Carnegie-Mellon

University, Pittsburgh, PA, February, 1984.

Poy le 79]

[Doyle 81]

40

[Herman, Kanade, and Kuroe 83]
Herman, M., Kanade, T., and Kuroe, S.
The 3D MOSAIC Scene Understanding System.
Proc. Eighth International Joint Conference on Artificial Intelligence : 1108-1112, August,

1983.

[Herman, Kanade, and Kuroe 84]
Herman, M., Kanade, T., and Kuroe, S.
Incremental Acquisition of a Three-Dimensional Scene Model from Images.
IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-6(3):331-340, May,

1984.

[Martin and Aggarwal 83]
Martin, W. N. and Aggarwal, J. K.
Volumetric Descriptions of Objects from Multiple Views.
IEEE Trans, on Pattern Analysis and Machine Intelligence PAMI-5(2): 150-158, March,

1983.

[McKeown 83] McKeown, D. M.
MAPS: The Organization of a Spatial Database System Using Imagery, Terrain, and Map

Data.
Technical Report CMU-CS-83-136, Department of Computer Science, Carnegie-Mellon

University, Pittsburgh, PA, July, 1983.

[Moravec 80] Moravec, H P .
Obstacle Avoidance and Navigation in the Real World by a Seeing Robot Rover.
Technical Report CMU-RI-TR-3, The Robotics Institute, Carnegie-Mellon University,

Pittsburgh, PA, September, 1980.

[Potmesil 83] Potmesil, M.
Generating Models of Solid Objects by Matching 3D Surface Segments.
Proc. IJCAI-83 .1089-1093, August, 1983.

[Requicha 80] Requicha, A. A. G.
Representations for Rigid Solids: Theory, Methods, and Systems.
ComputingSurveysl2(4):437'464, December, 1980.

[Rubin 80] Rubin, S.
Natural Scene Recognition Using Locus Search.
Computer Graphics and Image Processing 13:298-333,1980.

[Underwood 75] Underwood, S. A. and Coates, C. L.
Visual Learning from Multiple Views.
IEEE Transactions on Computers (6):651-661, June, 1975.

