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Abstract 
While certain guidelines for selecting search methods have emerged over the years, and while the 

success of certain methods has been well documented, there have been few, if any, studies of a 

variety of search methods as the difficulty of a particular problem changes. This study of a solitaire 

puzzle that can be incarnated in a variety of problem sizes and hence difficulties, attempts to fill this 

vacuum. We select four search paradigms: A*, Best-first with a simple evaluation function (BF1), 

Best-first with a complex evaluation function (BF2), and Depth-First with branch and bound and 

iterative deepening (DF), to represent the best of a variety of searching methods for non-adversary 

problems. All methods except BF2 use the same knowledge; i.e. a measure of the minimum number 

of moves that it would take to win the current situation. DF applies this measure only at maximum 

depth, while the other two use it for selecting which node to expand next. Each of these methods are 

tested with and without a constraint satisfaction procedure. 

As expected, the most informed search (BF2) does better than the less informed as the problems 

get progressively more difficult. One important and apparently general result is that constraint 

satisfaction provides the greatest gain when coupled with the most informed algorithm (BF2). We 

found it surprising that BF1, which uses the same evaluation function as A* but with a different 

coefficient, far outperformed A* in terms of work required at about a 5% reduction in the quality of the 

(otherwise) optimal solution. We conjecture that Best-first searches get their power from an 

adventurousness coefficient which we define in the text. Adventurousness can be thought of as a 

primitive form of planning. 
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Introduction 
Any state of a domain is either solvable or not solvable. We define the set of totally solvable 

domains to be those in which all states of the domain are either solved or solvable. In such domains 

any operator applied to any state preserves the solvability of the new state. Typically, for each 

operator there exists a reverse operator that can re-establish the previous state. This type of problem 

is represented by puzzles such as the Tower of Hanoi, and valid instances of the 8 and 15 puzzles and 

Rubik's cube. An alternate condition is that the permissible operations do not allow transformation to 

an unsolvable state. This type is represented by problems such as the travelling salesman problem in 

a plane (where there are arcs between any pair of cities and it is not permitted to traverse an arc more 

than once). 

Set against the class of totally solvable problems is the class of partially solvable problems in 

which not every state of the domain can be solved. Here the initial state may not be solvable or if 

solvable, a set of operations could exist which lead to a non-solvable state. For totally solvable 

problems the only thing of interest is the speed of the solution process and the quality of the solution. 

For partially solvable problems, each instance may have to be classified as solvable or unsolvable. It 

is interesting to note that the general bin-packing problem could be in either class depending on 

whether a solution into a pre-defined area is required (partially solvable), or just a best solution is 

desired. 

Both totally solvable and partially solvable problems can use heuristic knowledge in order to speed 

up the search for a solution. Typically, both the preference order for applying operators and the 

evaluation of new states can be affected by heuristic knowledge. However, totally solvable problems 

have no need for the process of identifying subtrees in which no solution can exist because, ipso 

facto, such sub-trees do not exist 

Constraint satisfaction is the term used for the set of algorithms that can be applied to identify with 

absolute certainty that a subtree cannot contain a solution. Probably the best known constraint 

satisfaction algorithm is the alpha-beta procedure [2]. We wanted to study the role of constraint 

satisfaction on a difficult, partially solvable problem as the difficulty of the problem increased. 

We also wanted to study the effect of increasing the difficulty of a problem on the effectiveness of 

standard search algorithms. Four search algorithms were selected as being the most useful 

exemplars of their class for solving non-adversary problems. These are described in a later section. 

The issues to be investigated were: the degree of degradation for each type of algorithm as the 

solution length increased, and the interaction of constraint satisfaction with each particular search 



method. We also wanted to examine the effect of hash table size on the effectiveness of each 

method. Hash tables are used in the various search methods to: 

1. Represent the tree 

2. Identify nodes that have already been examined elsewhere in the tree 

3. Find cycles in a branch (no progress) 

The various interactions and degradations with increasing difficulty form the substance of this paper. 

The Domain 

The domain chosen for this study was Superpuzz, an extremely difficult solitaire puzzle developed 

by the first author. The rules of Superpuzz are as follows: 

Superpuzz is played with 24 cards, 6 in each of 4 suits. Individual cards of a suit are numbered 0 to 

5. To set up a problem deal out the cards in a raster of 6 wide by 4 deep. Then remove all the "0" 

denomination cards, leaving "holes". Legal moves consist of moving a card into a hole, thus creating 

a hole at its former location. The card that is moved into a hole must be of the same suit as the card to 

the left of the hole, and be one higher in denomination. Thus, if the card to the left of a hole has suit S 

and denomination D, the only card that can be moved to the hole is the one with suit S and 

denomination D +1. The card is moved directly from its location to the new location. 

No card can be moved to the right of a last card in a suit, nor to the right of a hole. If a hole is on the 

left edge, any 1 may be moved there, regardless of whether the 1 is already on the left edge in another 

row (1's can be shuffled up and down). In Figure 1A no card can be moved to Y5, D5 can be moved 

from W5 to W4, and any ace can be moved to XO. The game is won when all cards have been aligned 

suit by suit in the first 5 places of each row. There is no requirement to have particular suits in 

particular rows. The games is lost when there are no longer any legal moves. The above are the rules 

for 4x6 Superpuzz; it is also possible to play harder versions adjusting the rules for 4x7 and 4x8 

formats. 

0 1 2 3 4 S 0 1 2 3 4 S 

W 
X 
Y 
Z 

S3 H2 02 04 — 05 
— C4 H3 C5 C I — 
03 S I 01 S4 S5 
C2 C3 H4 HI S2 H5 

01 02 03 04 OS -
HI H2 H3 H4 HS -
C I C2 C3 C4 C5 -
S I S2 S3 S4 S5 -

W 
X 
Y 
Z 

(A ) (B ) 

Figure 1: An initial and terminal configuration 
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An initial position is shown in Figure 1A, and a terminal position in Figure 1B. A path from the initial 

position to the terminal one can be found at the end of this article just before the references, for the 

benefit of those that may wish to try to find a solution by themselves. Superpuzz can exist in a variety 

of widths; the simplest interesting version being the 4x6 configuration presented above. There are an 

average of 4 legal moves at any point in the play, and solutions may range in depth from about 22 for 

simple 4x6 examples to 60 or more for complicated 4x8 examples. There are approximately 102 1 

states in 4x6 Superpuzz, 10 2 6 for 4x7, and 10 3 2 for 4x8. This compares to approximately 10 2 0 states 

for checkers and backgammon, and 10 4 3 states for chess. Standard puzzles such as the 8-puzzle 

and 15-puzzle only have 105 and 10 1 3 states respectively. For many instances of Superpuzz very few 

solutions exist out of 10 1 0 or more potential solution paths. Because of the combinatorial nature of 

the game, even moderately good searching programs will outperform well practiced humans. This 

makes for an interesting domain, since it is no longer simply a matter of a programmer imparting 

heuristic knowledge to a program in order to get it to play better. 

Certain insights for playing Superpuzz well may be useful to the reader for understanding what 

follows. It is possible to win about 83% of the 4x6 puzzles, 78% of the 4x7 variety, and 75% of the 

4x8 ls. Typically good human players win on the order of 70%, 55% and 35% respectively. This is 

because of the combinatorial nature of the problem which frequently requires non-intuitive solutions 

that humans have a hard time finding. 

Each card denomination has a destination column. Typically, it is advantageous to have a card 

located to the right of its destination column; the best location being exactly one column to the right 

of the destination column. To see why this is so, consider that all cards are so placed. Then it is 

trivial to win the position by first moving all the aces to the left edge, then all 2's to their final 

destinations, etc. Cards that are located to the left of their destination column are badly placed, 

particularly if they are high denomination cards. Such cards are typically difficult to move back, and if 

they are in sequences it become even more difficult. 

A major part of the skill in playing Superpuzz comes from managing ace moving. Once a hole opens 

on the left edge, it is possible to move an ace there, either from some non left-edge position or 

possibly from the left edge. The real skill in playing Superpuzz comes from doing this well. Well 

planned moves of aces along the left edge will allow the moving of sequences of cards in an 

advantageous manner, while meaningless shuffling of aces would cause a program to waste time and 

prolong the solution or the discovery that there is no solution. 
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The Search Paradigms 
There are two obvious choices for search paradigms: 

1. A best-first search with a highly informed evaluation function that would encourage the 
development of good , ,positionaT formations that could hopefully be transformed into 
wins. This was named BF2. 

2. A depth-first search using the branch and bound technique. A depth-first search must 
have a maximum depth else it may continue downward for a long time. For these puzzles, 
if one wishes to select an absolute limit, it could mean a depth of 15 to 20 greater than the 
depth at which the solution actually occurred. To avoid such problems a natural method 
is to use iterative deepening [4], which approaches a solution depth by iterating depth-
first searches to ever greater depths. Iterative deepening has recently been proved to 
dominate simple depth-first search when the depth of the solution is not known [1]. The 
above paradigm was named DF. The most effective constant of iteration for this domain 
was found empirically to be 2. Thus the first iteration was to the depth of the number of 
misplaced cards in a starting configuration, and future iterations were each to depths two 
greater than the previous. The bound for this search is the number of misplaced cards in 
the current configuration. This means that if N cards are misplaced and the search is at 
depth D, then it is impossible to reach a solution at less than depth D + N. This results in 
cut-offs of branches where insufficient progress is being made. 

In both these paradigms and in the others that will be added, a hash table that contains generated 

nodes plays a key role. In the best-first searches, it becomes the representation of the tree, since 

each node and its parent must be maintained. The hash encoding also detects identical states, so 

that identical subtrees in different parts of the tree will only be searched once. If two identical nodes 

occur in the same branch, a cycle has occurred. It is important to detect these if progress is to be 

made. In a depth-first search, the hash table only performs the two latter functions. 

As the result of giving this problem as a programming task in our graduate level Al course, two other 
meaningful candidate searches emerged: 

3. The A* search [3]. At first sight this would appear to be destined to do worse than a 
well-informed best-first search, because the measure of effort remaining to reach a 
solution must be relatively simple; i. e. the number of misplaced cards, which is not an 
excellent measure of the goodness of a state. However, it turned out experimentally that 
even though the A* search is not very smart, it does well by its thoroughness. In certain 
situations, it looks as if progress is being made, but it really isn't. In such cases, best-first 
searches keep trying their favorite sub-tree, while A* will spread out at the root to try any 
branches whose cost functions indicate that they have the best chance at a minimal 
solution. Further, it is cheap to compute the number of misplaced cards, which is an 
advantage. 

4. Even better than A*, turned out to be a best-first search that uses the A* evalution 
function. This algorithm (BF1) was tried by several students with superior results. Here, 
the evaluation function, instead of calculating a lower bound on the number of moves 
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required for a solution, attempts an accurate estimate of this. To do this, the cost of 
misplaced cards is multiplied by a constant since it is expected that rarely will it be the 
case that a misplaced card goes directly to its final destination in one move. The most 
successful constant for this domain was 1.8, so the cost function for BF1 is H = D + 
1.8N, where D = depth, and N = number of misplaced cards. 

These were the four search paradigms tried in our experiment. Two evaluation functions were 

required. These are 1) A misplaced card counter, and 2) A position goodness function. These are 

described below. 

The misplaced card counter uses the following two rules to determine if a card is in place: 

1. If the four aces are in the four left edge slots the position is said to be frozen; e.g. no more 
ace moves are possible and the final destination of all cards is known. In that case, a 
card is misplaced if it is not at its final destination. 

2. If the four aces are not yet all in place, a card is misplaced if it is not in its destination 
column, or if it is but does not constitute a part of the majority of properly placed cards in 
that row. The latter condition prevents cards of various suits all being counted as being 
in place in a single row. 

The position goodness function evolved over a number of months. It gives points as follows: 

1. One point for every non-misplaced card. 

2. For every card that is to the left of its destination column, subtract the number of points 
that is equal to the denomination of the card; e. g. if the three of hearts is in one of the 
first two columns, a penalty of 3 points is assessed. 

3. If a card is exactly one column behind its destination column a reward equal to the 
(denomination of the card)/2 is given. As explained earlier, this is the a priori best 
location for any card. 

4. A penalty of MIN(11, number of misplaced cards) is assessed for every hole to which no 
card can currently move. The reason for the MIN function is to smooth the transition to a 
final position near the end of a solution where the number of useless holes must increase 
willy-nilly. 

5. If there are no misplaced cards, the position is declared to be terminal and winning. 

The misplaced card function is used in all search paradigms in one way of another, while the 

goodness function is used only in the pure best-first search. 
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The Constraint Satisfaction Method 

The constraint satisfaction function that was developed for this problem is as follows: Once all the 

aces are in place, it is possible to determine what the final destination of every card must be. Any 

card that is not at its final destination will have to be moved if the puzzle is to be solved. Cards that 

are forward (to the left) of their destination are typically harder to move than other cards that are not 

forward. We examine only cards that are forward of their destination. If any such card cannot be 

moved, the problem instance represented by that node cannot be solved (i. e. it is deadlocked), and 

there is no point in searching its sub-tree. This is the basis of the procedure presented below which is 

able to reject about 50% of all configurations presented to it during a search as being non-solvable. 

We chose to apply constraint satisfaction only after the position is frozen (all aces in place). It is 

possible to try to identify deadlocked positions prior to this, but there is a great deal of computing 

required and the likelihood of finding an actual deadlock is very small. 

The constraint satisfaction procedure is a recursive transitive closure procedure, presented in 
stylized form in Figure 2. 

Procedure Deadlock(CardName,Hi s t o r y . T r a i n L e n g t h ) = 
Begin 

I f Denomination(CardName) * ACE then r e t u r n f a i l ; ! no moving aces 
I f Occurs In (H is to ry ,CardName) then r e t u r n f a i l ; ! card in h i s t a c y c l e 
NewHistory * I n c l u d e I n S e t ( H i s t o r y . C a r d N a m e ) ; t Form new h i s t 
I f BehindPredecessor(CardName) then ! behind p r e d : c a n ' t be moved 

r e t u r n D e a d l o c k ( P r e d e c e s s o r ( C a r d n a m e ) t N e w H i s t o r y t T r a i n l e n g t h + 1 ) ; 

! the next s e c t i o n checks to see i f a whole t r a i n can be moved i n t o 
! an a rea . Two c o n d i t i o n s are r e q u i r e d f o r each s l o t : e i t h e r i t 
1 a l ready has a hole there or the card there can be moved. 
I A f t e r i t i s found t h a t a s l o t can be vacated , the h i s t o r y i s peeled 
1 back to remove the card f o r which s l o t was being p repared . 

I f S p a c e F o r T r a i n ( L o c a t ( P r e d e c e s s o r ( C a r d N a m e ) ) . T r a i n L e n g t h ) then 
L I : Begin 

For I s 0 to T r a i n l e n g t h Do 
i f Locat (Predecessor (CardName)) + I = occupied then 

i f Deadlock(Name(Locat(Predecessor(CardName)) + 1 ) , 
P u r g e H i s t ( H i s t o r y , CardName + I ) , T r a i n L e n g t h - I ) 

» f a i l then leave L I ; 
Return Success 

End; t L I 
Return D e a d l o c k ( P r e d e c e s s o r ( C a r d n a m e ) , H i s t P t r + 1 , T r a i n 1 e n g t h + 1 ) ; 

end; I Deadlock 

Figu re 2: The Deadlock Detection Algorithm 

The intuition for the algorithm in Figure 2 is: any card that is too far forward could constitute a 
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serious block to solving the current state. The procedure Deadlock is called with the name of that 

card, a blank history, and a trainiength of 0. Deadlock then tries to see if the card can be moved, 

either immediately or as a result of clearing away other cards first, without creating a cycle; i. e. 

asking to move a card that is already in the history of cards that want to be moved. As each recursive 

call on Deadlock is made, the history is updated to include the card that most recently wanted to be 

moved. If a card cannot be moved, it attempts to move the predecessor cards and then move the card 

in question. Each time a card needs to have its predecessor moved, trainiength is increased by 1. If 

the predecessor is not being moved, the trainiength reverts to 0. 

If the transitive closure fails on any card that must be moved, then clearly the state is not solvable. 

When cards are not immediately moveable, sequences of predecessor cards (trains) that have to be 

moved first are accumulated. The need to move trains around is what makes Superpuzz both 

interesting and difficult. The critical observation for the deadlock detection algorithm was noting that 

the history must be adjusted backwards as the algorithm attempts to deal with moving a train, one 

card at a time. Working out the present algorithm was actually a far from trivial matter. It can 

probably still be improved upon, as there are a number of conditions that it does not at present catch, 

but they occur rarely enough and are so expensive to detect that it did not seem worth including them 

in a pragmatic program 1 . 

To further enhance the power of deadlock detection, two additional methods are invoked: 

1. Once a position passes the deadlock detection, the search first attempts to make all 
forced moves in a cannonical order. A forced move is one that moves a card to a position 
behind a card that is already in its final position when the moving card is either at the right 
edge or has its successor already behind it (so that moving its successor cannot be 
affected by moving it). Intuitively, there is no motive to delay moving such a card. The 
moves are made in a cannonical order as the move generator always works in the same 
way, and the First forced move that is encountered is always selected. This "single-
threading" of positions that are likely solvable, results in somewhat reduced effort for the 
search in those cases that are, in fact, solvable. It results in reduced effort and reduced 
utilization of hash table space in those cases that are not solvable. Making the moves in 
cannonical order tends to produce the same positions over and over again, even if they 
were approached through different deadlock tests. This collision of previously tested 
positions when checking the hash table produces notable savings in the search. 

2. When the deadlock detection pronounces a position as not solvable just after moving the 
last ace into place, some efficiencies are possible. Clearly, if moving that ace resulted in 

Since this was written and the experiments described herein performed, an improved version of the Deadlock algorithm has 
been developed. This algorithm additionally requires that a card not be moved if another card is supposed to be moved behind 
it until that card has, in fact, been moved in the deadlock testing. Also, if a card is hypothesized to move to a certain location, 
that location is reserved for that card until the transaction has been made. These two new facets of deadlock detection have 
improved the ability of the algorithm to the point where it is able to reject about 88% of all non-solvable positions 
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a not solvable position then moving any non-ace prior to making the ace move will not 
change the solvability unless the space behind the ace can be utilized to move the 2 of 
that suit there. In cases where this is not possible, we prune all non-ace moves because 
of the following additional reasoning. If the position is solvable, it must be by moving one 
of the aces along the left edge before moving the last ace not on the left edge. This may 
just as well be done immediately, since it will then permit trying the deadlock detection 
algorithm on a new grouping of aces along the left edge. The earlier such groupings are 
tested in the search the better, since the early rejection of unsolvable configurations 
materially .speeds up the solution. Clearly, if such a configuration passed the deadlock 
detection, nothing has been lost. 

Results 

The experimental design involved testing each of the four search algorithms with and without 

deadlock detection. Each of these eight algorithms were tested on the same 100 randomly generated 

instances of 4x6, 4x7 and 4x8 puzzles. This made a total of 8 program types, each tested on 300 

puzzle instances making a total of 2400 data points. For each program a 64K hash table was used. 

Experiments showed that, as expected, the size of the hash table significantly affects the problem 

solving power of the program. Unsolvable cases frequently required over 32K nodes to exhaust the 

space of nodes that needed to be tried to prove unsolvability. For the relatively uninformed 

algorithms: A*, BF1, and DF, deep solutions usually meant visiting many nodes. A 16K or 32K hash 

table would have meant quite a lot fewer solutions for these algorithms because of their exhaustive 

search nature. Therefore, a 64K hash table seemed the appropriate size to use. 

All programs were implemented in a single piece of code with compile time switches that allowed 

compiling the 24 different programs required! Techniques such as incremental updating of data 

structures were used to make the code efficient, and the shared code tended to make the programs 

directly comparable in efficiency. The outputs required were: A statement of whether the problem 

instance was or was not solvable, and a satisficing (not necessarily optimal) solution. A maximum of 

10 CPU minutes was allowed per problem, and all programs except the depth-first search had to halt 

when the hash table was full (because without hash table space no further representation of the tree 

would be possible). Most unsolvable problems were designated as such by all the programs. A 

problem that was not solved by any program was considered to be unsolvable, although it is possible 

that a very small percentage of these were solvable. If a program failed to solve a solvable problem, it 

received a default time of 10 minutes, a default number of nodes of 128K, and a default depth of 60 for 

4x6,90 for 4x7, and 120 for 4x8. All test runs were made on VAX-11 /780*s. 

Table 1 shows the average solution length, average number of nodes per solution, average time to 

complete, and number intractable for the eight programs for each of the three problem widths. As 

expected, effort in all categories goes up with problem difficulty. It should be noted that the A*, BF1, 
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S i z e • 6 S i z e « • 7 S i z e = 8 
S o l v a b l e U n s o l v . S o l v a b l e U n s o l v . S o l v a b l e U n s o l v . 

BF1 ( d e a d l o c k ) 
Av . S o l . Len. 23 — 32 — 47 — 
Av. Nodes 2800 8170 9624 41407 22611 82139 
Av. Time 9.6 23.8 29.9 186.8 80.5 373.1 
No. I n t r a c t . 1 0 3 3 9 9 

A* (dead lock ) 
Av. S o l . Len. 22 — 33 — 62 — 
Av. Nodes 5489 8167 24187 41407 59162 82134 
Av. Time 13.3 22.7 70.9 186.3 222.0 372.8 
No. I n t r a c t . 1 0 7 3 26 9 

DF (dead lock ) 
Av. S o l . Len. 22 — 31 — 50 — 
Av. Nodes 4618 9299 21906 41331 50638 81275 
Av. Time 9.4 24.8 64.0 185.8 176.9 370.7 
No. I n t r a c t . 0 0 6 1 19 5 

BF2 (dead lock ) 
Av . S o l . Len. 26 — 36 — 48 --
Av. Nodes 1775 8320 6600 41450 10770 82135 
Av. Time 3.4 25.6 20.6 188.1 29.6 373.4 
No. I n t r a c t . 0 0 2 3 2 9 

BF1 
Av. S o l . Len . 23 — 32 — 48 — 
Av. Nodes 2896 15760 10140 42121 24603 85665 
Av. Time 9.4 56.9 28.4 189.5 84.9 390.7 
No. I n t r a c t . 1 1 3 3 10 9 

A* 
Av. S o l . Len . 22 34 mm mm 65 
Av. Nodes 5711 15760 25923 42121 62705 85665 
Av. Time 12.6 53.0 72.7 189.0 231.9 387.0 
No. I n t r a c t . 1 1 8 3 29 9 

DF 
Av. S o l . Len. 22 — 33 -- 54 — 
Av. Nodes 4834 15760 24476 42121 54647 85665 
Av. Time 7.9 46.2 62.6 185.9 178.3 376.0 
No. I n t r a c t . 0 1 6 3 18 9 

BF2 
Av . S o l . Len. 26 — 37 — 50 --Av. Nodes 2912 15760 8376 42121 15145 85665 
Av. Time 9.7 57.0 26.6 189.6 47.6 384.0 
No. I n t r a c t . 1 1 3 3 5 9 

Table 1: Performance Statistics 

and DF algorithms all use the same knowledge. A* and DF use this knowledge for bounding 
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purposes; i. e. to determine that a solution cannot be completed in a given number of ply. BF1 

however, uses this knowledge as a simple measure of goodness. In view of the above, it is startling to 

observe the overwhelming domination of the BF1 algorithm over A* and DF. Because of our method 

of punishing programs that don't solve solvable problems, the average solution length is a good 

indicator of quality of solutions on a given problem set. Here one can see that while the average 

solution length is approximately the same for all three algorithms on the 4x6 and 4x7 sets, the 

resources required (nodes and time) are considerably less for BF1. In the 4x6 set, the solving 

performance differed by at most one problem among the various methods, so the 5% degradation of 

solution quality for BF1 is real. However, this is a transitory effect, and by the time the 4x8 problem 

set is reached, BF1 clearly outperforms the other two algorithms in quality of solution (because our 

performance criterion also includes performance on the problems that an algorithm fails to solve). In 

general, the most knowledgable search (BF2) outperforms the others by all four criteria; the degree 

increasing as the width of the problem size increases. The performance on unsolvable problem 

instances shows relatively little difference among the algorithms, although it can be seen that DF has 

fewer intractable unsolvable problems in the 4x7 and 4x8 categories, thus reflecting the fact that 

depth-first searching is considerably more time-efficient than any other method. 

Nodes Times 

Search 
Technique 

S i z e Change 
6:7 7:8 6:8 

S i z e Change 
6:7 7:8 6:8 

Deadlock BF1 
A* 
DF 
BF2 

3.44 
4.41 
4.74 
3.72 

2.36 
2.45 
2.31 
1.63 

8.08 
10.80 
10.95 
6.06 

3.11 
5.33 
6.81 
6.06 

2.69 
3.13 
2.76 
1.44 

8.37 
16.68 
18.80 
8.73 

No (Deadlock BF1 
A* 
DF 
BF2 

3.50 
4.54 
5.06 
2.88 

2.43 
2.42 
2.23 
1.81 

8.51 
10.99 
11.28 

5.21 

3.02 
5.77 
7.92 
2.74 

2.99 
3.19 
2.85 
1.79 

9.03 
18.41 
22.57 

4.90 
Table 2: Performance Ratios 

Table 2 shows the ratio of increase in number of nodes and time to solution for each algorithm type 

as the width of the problem increases from 6 to 7, and from 7 to 8, and overall from 6 to 8. These data 

show that, in general, the more informed the algorithm is, the less the degradation in performance as 

the problem gets more difficult. This is an expected result; the trees grown by the most informed 

algorithm grow at a lower exponential rate than those grown by the less informed, more brute-force­

like algorithms. The BF2 search has the most information. BF1 has had its coefficient tuned so it is 

more responsive with its sole performance measure (misplaced cards) than either of the remaining 



12 

algorithms. Thus it is next most informed. The A* and DF have the least information. Although BF2 is 

only slightly superior among the 4x6 algorithms, it has achieved an overwhelming dominance by the 

time the 4x8 puzzles are considered. 

Nodes Times 

Search S i z e S i z e 
Technique 6 7 8 6 7 8 

BF1 0.97 0.95 0.92 1.02 1.05 0.95 
A* 0.96 0.93 0.94 1.06 0.98 0.96 
DF 0.96 0.89 0.93 1.19 1.02 0.99 
BF2 0.61 0.79 0.71 0.35 0.77 0.62 

Table 3: Ratio of Effort with and without Deadlock Detection 

Table 3 shows the performance ratio of a search method with deadlock detection, to the same 

method without deadlock detection. If the ratio is less than 1.0, then improvement resulted; otherwise 

the cost of the additional work was not beneficial. As expected the deadlock detection improves 

performance on the nodes measure in all categories. For several categories however, doing the 

deadlock detection resulted in enough additional time costs to produce greater over-all effort when 

deadlock detection is invoked. Table 3 shows a rather surprising and interesting result BF2 makes 

best use of the constraint satisfaction process. We believe this to be a general result of considerable 

importance, and discuss it in the next section. 

Discussion and Conclusions 
Superpuzz is a very difficult game; much more difficult than standard puzzles. Further, the difficulty 

of the game goes up as the width of the puzzle is increased. In this study we examine the 4x6, 4x7 

and 4x8 games. Although the branching factor in each of these remains the same, the solution depth 

increases significantly with increases of width and the percent of unsolvable problem instances 

increases also. 

The solution process can be thought of as occuring in two phases. In phase one, the combinatoric 

power of search attempts to see whether it is possible to obtain a position where all four aces are in 

place. When this has occurred, the deadlock detection algorithm is invoked, which is powerful 

enough to reject about one-half of all positions it encounters. When a position passes the deadlock 

algorithm, phase two is invoked. Here by relatively small searches, the solution is either found or 

rejected for the sub-tree defined by moving the fourth ace into its final position. In case no solution is 

found in the sub-tree, phase one again obtains control; 
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Given that the combination of deadlock detection and very small searches in phase two is very 

efficient, certain ideas emerge. If the position is solvable, then it is advantageous to reach phase two 

as quickly as possible. The BF2 search does this most effectively. It is not at all unusual to have the 

first configuration discovered by the BF2 search be solvable, whereupon the solution proceeds 

immediately. In those cases where this does not happen, the first dozen or so attempts do usually 

yield a solvable phase two. Only in cases where the solution is very contrived, or where there is no 

solution, is the BF2 procedure outperformed by others. In the case where there is no solution, ail 

phase two positions must be explored and the procedure that reaches these with the minimum 

amount of effort is the most effective. From this it can be seen that some knowledge of what 

percentage of problems is solvable is instrumental in deciding on a search paradigm. In this 

research, the BF2 evaluation function is expensive to compute, and traversing up and down the tree is 

expensive also. But, while the BF2 search is only marginally superior in the width 6 puzzle, it 

becomes completely dominant by the time the width is increased to 8. 

Let us consider why one search paradigm is better than another. A * and DF are really quite similar. 

They probe to new depths in a breadth-first style that takes advantage of certain efficiencies. A* 

knows about effort remaining and builds a permanent copy of the tree, which it continues to expand 

at the best leaf nodes. DF also knows about effort remaining and gets its power from great efficiency 

in space and time. However, neither is able to venture very far on a probe down a branch unless it is 

continuously having success (reducing the number of misplaced cards). Any failure to improve this 

measure would immediately force the A* search to try another branch. Because the DF search has 

an iteration constant of 2, two non-successful moves are allowed in an expansion before returning. 

Since the criterion for success is rather simplistic and it is very likely that any solution will require a 

number of non-constructive or backward-appearing steps, it is unlikely that either search will be able 

to make significant forward progress through such territory. Instead they plow steadily forward until 

the treacherous territory is overcome by all highly evaluated branches, and then pursue one to 

successful conclusion. 

Now consider the BF1 search paradigm. We had originally hypothesized that the coefficient 1.8 that 

multiplies the number of misplaced cards in the BF1 algorithm represents an estimate of the number 

of times a misplaced card must be moved before it reaches its final destination. In pursuit of this 

notion, we then sought to improve performance based on the consideration that a misplaced card is 

less likely to require more than one move to reach its final destination when almost all cards are 

already in place, than it is when very few cards are in place. However, we were not able to produce 

any meaningful improvement by making the constant 1.8 into a variable. 
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We now believe the meaning of the 1.8 is that it is an adventurousness coefficient. In BF1 the 

value of a descendant node either decreases by .8 units in case the number of misplaced cards is 

reduced, or is increased by 1.0 in case this does not happen. This allows the descendant node to put 

some distance between it and its competitors when it is able to take a few constructive steps 

intermixed with some that do not appear so constructive. The essential point is that it does not have 

to produce "progress" on every move. The degree of such adventurousness is what the constant 1.8 

controls, and for the given domain and evaluation function it appears to be best. 

It appears to us that this is an important idea with potentially wide applicability in searching. It is 

possible to think of the adventurousness coefficient and the evaluation function as forming a primitive 

planning unit. The plan permits all actions, but the evalution function selects those that appear to be 

"good". The adventurousness coefficient terminates (at least temporarily) those plans that are not 

proving out 

The BF2 search is even more adventurous since it can gain numerous points in heuristic value by 

placing a card into what is considered an advantageous location. This allows it to penetrate deeply in 

certain branches that it "likes" while leaving others behind. Clearly, it lives or dies by the goodness of 

its evaluation function. In some cases the evaluation function will lead the search up a blind alley 

which would normally have to be explored extensively before it was found to be blind. Here is where 

the constraint satisfaction helps the most: it can disenchant the search when it is in a blind alley 

causing it to look elsewhere. This also happens for the other searches, but is not nearly as effective 

because these searches are not as adventuresome. In general, the number of backward steps taken 

upon discovering a deadlock would be proportional to the degree of adventurousness of the 

algorithm. 

It is true for every search paradigm that once a node is known to be deadlocked, its successors will 

never be expanded. However, these savings can only be realized once such a sub-tree is reached. 

This is where adventurousness is important. If situations where constraint satisfaction procedures 

can be applied occur only after almost all important branches have been pushed to the same depth, 

then the savings will not be very great in the case where a solution is possible. When no solution is 

possible, the savings will be the same for all algorithms. However, when a solution exists, the most 

adventurous search has a big advantage, as long as it has some way of recovering when its optimism 

is misplaced. This is what constraint satisfaction brings to the best-first search and why the BF2 

search improves the most when benefitted by constraint satisfaction (see Table 3). Adventurousness 

enhances the effect of constraint satisfaction, by using its decisions to move forward rapidly (if 

favorable) and retreat rapidly (if not). 
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A minimal solution to Figure 1A is: (read left to right; names of moving cards only, except for aces 

where the row is also given). 

C2 S1(Z) D4 D3 D4 C1(Y) C2 D1(X) C3 S2 H2 S4 C4 D2 S5 C5 H4 S3 D1(W) H1(X) S4 D2 H2 S5 D3 

D4 D5 H5 
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