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1. Introduction

The Mack-white pebble yame is played by placing pebbles on, aud removing thew from, the
vertices of a directed acyclic graph (henceforth called a dag). Pebbles are of two types, black and
while, and are placed according to the following rles.

1. A black pebble may be placed on a vertex iff all of its jmmediate predecessors have pebbles
{of cither color).

- A black pebble may be removed at any time.

[ %

- A white pebble may be placed on a vertex at any time.

a

. A white pebble may be removed iff all of its immediate predecessors have pebbies.

Note that rles 1 and 4 imply that a black pebble may always be placed on a vertex of indegree
0 and a white pebble may always be removed from such a vertex. The goal is to start with a
pebble-free dag and carry out a sequence of pebbling moves s.t, every vertox is pebbled at some
time and at the end there are no pebbles left on the dag. Such a sequence of moves is called a
black-white strategy for the dag. The black pebble game i3 the restriction of the black-white pebble
game in which there are no white pebbles (only rmiles 1 and 2 apply). A black strategy for a dag is a
black-white strategy in which no white pebble moves are made. The number of pebbles used by a
strategy is the maximmum number of pebbles on the dag at once when the moves of the strategy are
carried ont. When we are considering pebbling strategies for an infinite class of dags we require
that the indegrees of the vertices of the dags be uniformly bounded by some constant.

The black pebble game was introduced by Hewitt and Paterson [3]. It models the deterministic
evalnation of straight-line programs. Vertices of a dag correspond to variables of a straight-line
program and black pebbles correspond to registers containing deterministically computed results.
The minimum number of pebbles used by any black strategy for a dag equals the minimun number
of registers needed to deterministically evaluate the corresponding straight-line program.

The black-white pebble game was introduced by Cook and Sethi (2]. It models the nonde-
terministic evaluation of straight-linc programs. White pebbles correspond to registers containing
nondeterministic guesses which can be made at any time but which must be verified bofore they
can be overwritten.

The black and black-white pebble games have been studicd extensively; Pippenger [9] provides
a comprehcnsive survey. The principle question remaining has been whother there is a class of
dags of bounded indegree for which there arc black-white strategies that use asymptotically fewer
pebbles than the best black strategies. Meyer auf der Heide [8] proved that for pyramnid graphs
there are black-white strategies that use half as many pebbles as the optimal black strategies. He
also showed that any dag that has a black-white strategy using n pebbles has a black strategy
using O(n?) pebbles. Loui (7| and Meyer auf der Heide {8 independently proved that black-white
strategies for balanced trces require at least half as many pebbles as the optimal black strategics.
Lengauer and Tarjan (5] showed that this result applies to arbitrary trees. Klawe (4] proved a
more general result, showing that for a large class of dags that “spread out” sufficiently rapidly,
black-white strategies require at least half as many pcbbles as the best black strategies. These
“spreading graphs” include pyramid graphs and varions gencralizations of pyramid graphs.

The only previous result that shows any asymptotic difference between black and black-white
pebble strategies is a space-time trade-off due to Lenganer and Tarjan [6]. Their result applies
to a class of dags called bit reversal graphs. For black stratesios on bit reversal graphs with
N podes they showed that the munber of pebbles used, S, is related to the number of moves
required, T, by the equation T = ©(N2/S). For black-white strategies the space-time trade-off iy
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T = O{N?/5%) + B(N). So for a fixed time bound nondeterminism reduces the space required to
pebble bit reversal graphs by a square root. However, if no bound is placed on the time any bit
reversal graph has a black sirategy using just 3 pebbles.

Here we show that there is a family of dags with vertex indegrees bounded by 2 for which there
are black-white strategics that are better than the best black strategies by an arbitrarily large
factor. The pth dag in the class has a black-white strategy using O(p®) pebbles while any black
strategy requires w(p®) pebbles. Thus, nondeterministic cotupntations can produce an asytnptotic
space savings compared Lo deterministic compntations in the model of straight-line programns,

Throughout this paper we regard pebbling moves as being made at conseentive integer times.
A pebble is placed on vertex v ab time ¢ if # has no pebble at time ¢ — 1 and has a pebble at time
t. A pebble is removed from vertex v at time ¢ if v has a pebble at time ¢ = 1 and has no pebble
at time ¢.

2. Overview

The intuition as to why nondeterminisin should save space in the model of straight-line pro-
grams is as follows. Suppose that for some straight-line program we have a deterministic evaluation
strategy for which there is a time interval during which many intermediate values must be kept in
registers while some hard to compute variable, say z, is computed. During that interval, in addition
to the registers already in use, enough registers to compute z will have to be alloeated, resulting
in a pile-up of many registers in use at one time. A noandctermninistic evaluation strategy can avoid
this pile-ap by guessing the value of z when it is first nceded, continuing with the computation
while retaining the guessed value in a register, and then verifying the gucss {by computing the
value of z) when sufficient space has been freed. In other words, a nondeterministic strategy can
take out a loan when costs are high and pay it back when costs are low, thus reducing the worst
case cost.

The proof is divided into two parts. In the first part a family of dags of vertex indegree 2
is defined. These dags can be “casily” black-white pebbled. In order to show that pcbbles must
pile-up during any black strategy it is necessary to be able to talk about the behavior of whole
groups of pebbles at once. TFor this purpose a new type of pebble zame, played ou the cells of a
matrix, is defined. For cach dag in the family there is a corresponding matrix. Bach pebble on
the matrix represents many pebbles on the dag. In this way the matrix pebble gawe allows us to
concentrate on the overall motion of groups of pebbles in a black strategy for the dag and to ignore
unenlightening details of individual pebble moves.

Most of the first part of the proof consists of a number of leminas that show that a black
strategy for a dag can be translated into a matrix pcbbling strategy in such a way that lower
bounds on wmatrix pebbling strategies yicld lower bounds on black strategies for the dags. In the
second part of the proof a lower bound on matrix pcbbling is proved that is sufficient to show
that black strategies for the dags require asymptotically more pebbles than black-white strategies
require.

3. The Matrix Pebble Game

Let M bhe a p x (p + 1) matrix. The order p matrix pebble game is played on cells in the set
MP={M jl<i<pand 1< j<2 [1/2]}, ie., the cells on and below the main diagonal together
with the cell M;;,; when 7 is odd. A ccll M;; is above My iff My; e MP, § =1, and ¢ < k. The
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predecessor of M;; € M? is M;; if iis odd and 7 > | and iy Mijipnifitsevenand 7 <4, If
cither ¢ 38 odd and j = 1 or ¢ is even and j = ¢ then M;; has uo predecessor.,

The rules for the matrix pebble game are as follows.

1. A pebble may be placed on a cell m € MP iff all of the cells above m liave pebbles and the
predecessor of m (if it has onc) has a pebbie. If m has no predecessor we only require that
all of the cells above mn have pebbles.

2. A pebble may be removed at any time.

The goal is to carry out a sequence of legal moves starting from a matrix with ne peblbles on it
such that every cell in M? is pebbled at some time. Such a sequence of movey is called a rratriz
strategy. Lquivalently, a matrix strategy is a legal sequence of moves starting with a pebble-free
matrix that cventually places a pebble on M, i1 when pis odd and on M, , when pis even. It is
casy to sce that these cells can't be pebbled without first pebbling all other cells in MP. Figure 1.
shiows a configuration of the matrix pcbble game for p = 6 with x's in all positions that may be
pebbled on the next move.

The kth dingonal of MP is the set {M;; € MP|i — j +2 = k}. MP has p + | diagonals. For
1 £ k £ p+1 cach cell of diagonal k is assigned the weight wy = 1/k*. The weight of a configuration
of the matrix pebble gamne is the sum of the weights of all cells in M? with pebbles on them. The
weight of a matrix strategy is the maximum weight of any of the configurations produccd by the
strategy.

We construct a family of dags such that the pth dag has a black-white strategy using O(n)
pebbles, where n = 2(p + 1)2, and has a black strategy using q pebbles only if there is a matrix
strategy for MP with weight O(g/n). In the next section we show that a3 p increases the weight of
matrix strategied for M? can not be bounded by any constant. Thus ¢ = w(n).

The dag G, is constructed by connecting together a mumber of smaller dags called blocks. The
blocks of G, are B;;, for 1 <i < pand 1 <7 £ 2[i/2]. The rclations “above” and “predecessor”
are defined for blocks as they are for cells in MP. We say that two blocks are in the same row
[column] when their first [second] indices arc the same. The diagonals of G, arc defined as they are
for M?. Let n = 2(p+1)2. The height of block B;j in diagonal k = ¢ — 7+ 2 is defined to be no-wy].
Let & be the height of block B, let 2p be the height of its predecessor (0 if B has no predecessor),
and let h;,..., A, be the heights of the blocks above B, in order from lowest numberod row to
highest numbered row. Let m = Ry + -+:+ h,. The length, A, of B is defined to be h+ hp +m.
Block B with height A and length A has vertices vij, where ] <7< hand | < J £ A. The cdges
of B are {v;;,v;;.1), for 1 < i < h and 1 L7 <A and (¥ifs 96 mou h)+1,5+1)}, for 1 < ¢ < h and
A—~h+1<j< A Figure 2. shows block B>, for p = 3.

Row ¢ of I} is the set {vi;11 < 7 < A}, and column 7 is the set {v;;|1 <¢ < A}. The first hp
columns of B are called the start section of B, the next m columns arc the middle section, and the
last h columns are the end section. The vertices in column 1 are called the input vertices of B.
The vertices in column X are called the output vertices of B, and for convenience we denote the
ith output vertex, v;;, by o;. For 1 <i<m+1, column Ap +1 is called the ith level of B. When
t < m level 1 is the ith column of the middle section, and level m + 1 is the first column of the end
section.

When blocks are connected together to form G, any edge that leaves a block leaves an output
verteX, and all edges that enter a block enter one of the vertices in the start or middle scctions. A
vertex u in G, which is not in B is connected to column J of B if for each » in column 7 the cdge
(u,v) is in Gp. We say in that case that u is a pre-vertez of 3. The cdges entering cach block B are
as follows. If B has a predecessor, each of the Ap output vertices of the prodecessor is connectod to

3



a distinet cohunn in the start section of B. Let By, Ba, ..., By be the blocks above 3, in order from
lowest munbered row to highest aumbered row. Each of the Ay output vertices of B is connected
to a distinet column of B among the first Ay levels of B. Each of the Az output vertices of g is
connected to a distinet column of B amonyg the next ha lovels of I, and so on, ending with each
of the hy outpuat vertices of B, being connected to distinet columns among the last i, levels of
B's middle section. The blocks and the edges connecting them make up G, Every vertex has
indegree 2 or less. Figure 3. shows a schematic representation of s, where hlocks are represented
by rectangles and the arrows within the rectangles point from lower numbercd columny to higher
numbered columns {the *direction of black pebbling”). The numbers within the rectangles are the
Leights of the blocks. Each edge in the figure leaving a block B; of height k) and cutering a block
Ba represents the collection of Ay connections from output vertices of By to consccutive columns
in the start or middle section of Ba. An edge entering the side of a block represents a colleetion of
connections to columns in the start sectiou of the block. Edges entering the top of a block represent
collections of connections to columns in the middle section of the block, and arc shown entering
the block in the order that the connections are made to the columns.

LEMMA 1: There is a black-white strategy for G, that uses O(n) pchbles.

PROOF: Note that the sum of the heights of all blocks within a single colutnn of Gy is less than
Tl nw] <p+1+ ToHin/i® < nn?/6 + Vn/2 < 3a. Also note that a block of height A with
pebbles on all of its pre-vertices can be pebbled using either A + 2 black pehbles or h + 2 white
pebbles. The idea is to pebble G, one column at a time, pebbling in the “forward™ direction on odd
rows of blocks with black pcbbles and in the “reverse” direction on even rows with white pebbles.

Columns of blocks are pebbled in sequence, from 1 to 2[p/2]. The invariant maintained is
that before any blocks in column j are pebbled, 7 > 1, the output vertices of ail blocks in column
4 — 1 have pebbles (black pebbles on even row blocks, white pebbles on odd row blocks). Column
7 is pebbled as follows.

1. White pebbles are placed on the output vertices of each even row block in column 3.

2. If j > 1, all white pebbles in column j - 1 are removed by pebbling their respective
blocks in order from highest numbecred row to lowest numbered row. When white pebbles
are removed in this order each even row block in column j -1 has pebbles on all of its
pre-vertices during the time it is pebbled.

3. The blocks in odd rows of column j are pebbled with black pebbles, in order from lowest
numbered row to highest, leaving black pebbles on each output vertex of each odd row
block. At each step the block being pebbled has all of its pre-vertices pebbled.

4. If j > 1 all black pebbles in column 7 — 1 are removed.
After these steps have becn carricd out the invariant for column j + 1 is achieved, and there
are no pebbles in columns less than j. After pebbles have been placed on the output vertices of

the last column steps 2 and 4 are used to first remove the white pcbbles in the column and then
the black pebbles. It is easy to verify that the procedure uses no more than 6n + 2 pebbles. O

We now describe how to translate black strategics for Gp into matrix strategies for MP.

DEFINITION: A block B of height £ is loaded if there are A vertex-disjoint paths each starting at
a distinct input vertex of B and ending at a distinct vertex of B with a pchble on it.

DEFINITION: A block B of height & is full if there arc A vertex-disjoint paths cach starting at a
distinet inpnt vertex of B and ending at a distinct vertex with a pebble on it in the middle or end
section of D.




DEFINITION: A block is supported if it and all the blocks above it are full.

For cach move of a black strategy for G, we carry ont 0 or more pebbling moves on MP,
according to the following rules. :

L. For cach M;; € MP s.t. M;; docs not already have a pebble and By; is supported, place a
puebble on My, proceeding in order fromm the lowest uunbered row to the highest.

2. If M;; € MP has a pebble and B;; is not full and its successor is not loaded then remove
the pebble from M;;. IF M,; has no successor retnove its pebble if By is not full,

We must show that if Gp and MP? are initially pebble-free then the above rules will translate
black strategies for G using q pebbles into matrix strategios for MP of weight O(g/n). This is done
in the remainder of this section. The next throe lenunas establish some needed technical propertics
of black strategics for Gp. The reader may find it convenicnt at first to skip Lemma 2 and read
only the statcments of Lemmas 3 and 4. Wo assutne that all pebbling stratesies for Gp are black
strategicy in the rest of this section.

LEMMA 2: Let B be a block with height h and m columns in its middle section. Let T = [t,,¢,]
be a time interval. Let there be times t1y...,tn € T s.t. at time ¢; there is a pebble on the ith
ontput vertex of B, o;. Let tpmin = min 1<i<a ti- Then one of the followiug is true.

1. B is full throughout the interval [£5, tmin], OF

2. There cxist times TheenyTmey €T withrp < o2 < ry | st B is full throughout the
interval {ry, Tm. | and at time 7; a pebble is placed on a vertex in the ith level of B,

PRrooOF: Suppose (1) does not hold. Then at some time tg € [t,, tmin] there is a row with no
pebbles on it within the middle or end sections, say row 7. Call an output vertex covered if every
path to that vertex from a vertex in level 1 contains a vertex with a pebble. At time ¢, vertex 0; is
not covered, whereas at time tj > tg vertex oy is covered. Let ty be the latest time in the intervai
[ta, 5] at which 05 is not covered. Let 7, = ¢, + 1. At time ty there is a pebble-free path = ending
at o; and starting at some vertex u in level 1. Let k be the index of the row that contains u, and
let y be the vertex in level m + 1 and row k. Path 7 from u to o; must include y, Let #' be the
part of 7 that begins at y and ends at o;. Path 7' is pebble-free at time ¢ but not at time ty 30
there must be a first time 7., ; in the interval [r1.¢;] when y is pebbled. Vertex u must be pebbled
at time 7y, otherwise 7 would still be pebble-free at ry. At time 71 row k cannot have any pebbles
in levels 2 through m + 1. Thus, since y is pebbled at time Tm+1 there must be times 7 < .. < Tm
8.t. 13 < 72, Tm < Tm41, and the vertex in row & and level ¢ is pebbled at time Ti.

We show that block B is full throughout the time interval T, Tme1]. Let t & {71y Fm+t]. Path
7' is pebble-free at time ¢ (except there might be a pebble on y). Let set $ be the last & — 1
vertices of m'. Each vertex in § has indegree 2, and no vertex in S has a pebble at time t. We may
construct & — 1 vertex-disjoint patha, T, ... , Th_,, from distinct vertices in level m + 1 other than
y to the vertices in S. This is done as follows. For v € §, one of the edges cutering v is not on ',
Extend a path backwards straight along the direction of this cdge to a vertex in level m + |, (See
Figure 4.) This is the same argument used by Cook [1]. Each path 7; starting from a vortex e; in
level m+ 1, ¢; # y, can be extended backwards along the row containing ¢; to an input vertex, and
can be extended forwards along v to 04, to yield a path =, from an input vertoex to oj. Let mp = .
At time ¢ vertex 05 18 covered, so there must be a pebble in the middle or end section on cach of
the paths =;, for 1 < ¢ Sh Forl<i<h,letp bea portion of m; starting at an imput vertex and
ending at a vertex of w; in the middle or end section with a pebble. For | <t < ¢ < hpaths m;
and 7, terminate at vertex o; € § and the vertices they have in colmmon are contained in 8, all of
whose vertices are pebble-free. So the py’s must be disjoint, and, thercfore, block 3 is full. O
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LEMMA 3: Lot the first € blocks of a cohimnn of Gy be By, ..., By, in order from lowest mubered
row to highest. Let DBy have height h and output vertices oy,..., 04, Let T = {t,,t.] be a time
interval, and for 1 € i < h let t; € T be a time at which there is a pebble on 0;. Let tpin =
min;. ¢-z4 &. Then one of the following is true.

L. By is full throughout the interval (L, tmin), oF
2. There is a time t € T at which By is supported.

PROOF: (By induction on £) Assume the lemma is true for all positive # < £ If B, is full
throughout the interval [6y, tmis) then we are done. Otherwise. let m be the munber of columns in
the widdle section of B,. For cach positive ¢ < € let h; be the height of B;. Let wg = 1 and, for
2<i<t, lot ug = u.g + h_y, 8o that u; is the lowest index of those levels of By which an output
vertex of B; is connccted to. By Lemina 2 there are times 71, ., Tmii1 e T, wherer) <+ < Tty
s.t. at time 7; a pebble is placed on a vertex in level ¢ of By, and By is full throughont the interval
[71, Tm+-1)- Let k be the largest positive integer less than £ s.t. there is a time in the interval 7y, Ty, ]
when By, is not full. (If there is no such k& we are done — blocks By,..., By arc all full at time
7y.) At the times 7y, ..., Ty, -1 pebbles are placed on the levels of By to which the outputs of Dy
are connected. So cach output vertex of By must have a pebble on it at some tizne in the interval
[Tues Tua +1-1]' By the inductive hypothesis, using the substitutions ¢, — 7y, te — Ty, -1, and
t; = Tu,+i—1, thereisa t € {71, Tuy,, —1] at which By is supported, i.c., By, ..., Be arc all full. Since
t € [ry,Tu,), for k < i < ¢, we have that B4y, .- , Be_; are also full at time ¢. Finally, t € [r1, Tme1]
so D, is full at time ¢&. I

LEMMA 4: Let B be a block of G, with predecessor C. Let Gy have no pebbles at time 0. If at
time t, > 0 block D is full then there is a time ¢, € {1,t.] at which C is supported and s.t. for all
timmes in the interval [t,, t,] either C is full or B is loaded.

PROOF: Let the height of B be h, and let s be the number of columns in its start section. At
time ¢, there are vertex-disjoint paths T, 74 lcading from input vertices of B to vertices with
pebbles in the middle or end section of 8. Let uf‘ be the last vertex of rr‘-l. Let ¢y =t,. Fori>1
we define £; and, for 1 € j £ h, we define ug- and rrj,-, as follows. Time t; is the latest time in the
interval [1,¢_ 1] for which there is a k s.t. vertex u‘,fl is not pebbled. There must be such a time
becanse there arc no pebbles on G, at time 0. If u} ! has no predecessor in B let 1o = ¢ and leave

t, undcfined for r > ty and u} and 77 undefined for r > ig. Otherwise, for 7 # k vertex ul = uh!

. ; . , . 7 )
and path 7} = w;.'l, vertex u} equals the predecessor of u}~! on path 7i!, and 7} equals ay ! with

vertex u}"‘l

removed. (Since for 1 £ j < h one of the w}’s decrecases in length cach timne 7 increases,
there must be a fnite value for ip.) At time t; + 1 a pebble is placed on ui‘l so if 1 < ig then at
time ¢; there must be a pebble on its predecessor, u}. Thus for L €1 < 10 there are throughout
the interval [t;.1 + 1,£;] disjoint paths 7i,..., 7} starting at input vertices and ending at vertices
with pebbles, u'i,. .. ,u};, respectively. So B is loaded throughout the interval T = [ty + 1, 81]-

Let u}:':‘l be the vertex pebbled at time t;, + 1. It has no predecessors in B so it is an input
vertex. Successive vertices of path w{_o are pebbled during the interval T'. starting with u‘,;‘j,'l in
the first column of B and ending with uio in the middle or end scction of B. Thus there are times
Ti,...,Ts € T s.t. at time 7; the vertex of fr,lcu in column i of B is pebbled. At these times the various
output vertices of C must have pebbles. Let ¢ be the latest time in the interval [0, £,] s.t. C is not
full. There is sich a time since € is not full at time 0. By Lemma 3 there is a time ¢, € [ta, £1] 8.t
C is supported. If t, < t;, then by definition of &y block € is full throughout the interval {£,, &, ]
Block B is loaded throughout [t + 1, L], so cither C is full or B is loaded throughout (¢, ¢.]. O
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We can now casily prove that the previously given rules trauslate black strategies for (7, into
matrix strategies for M? in the desired way.

LEMMA 5: If G, and M™ arc juitially pebble-free then any legal sequence of black pebbling moves
for Gy, is translated into a legal sequence of pebbling moves for MP by rules 1 and 2.

PROOF: Pebbles can be removed at any time in the matrix pebble game, so we nmst show
that all moves placing pebbles are legal. Rule 1 is the only rule that causes pebbles to be placed.
Suppose a pebble placed at time ¢, of the seguence of oves for G, causes a pebble to be placed on
cell M;; in the matrix pebble game. Rule | ensures that all colls in MP above M;; have pebbles at
the time M;; is pebbled, beeanse if a block is supported adl the blocks above it are supported. We
mmst show that the predecessor of M;; (if there is oue) also has a pebble at this time. Suppose M,
has a predecessor. At time ¢, block By; is full since it is supported. Let C be the predecessor of
B;;. By Lemma 4 there is a time ¢, < ¢, s.t. C iy supported at time ¢, and throughout the interval
[ts, t.] either C is full or DBy, 13 loaded. By mile L a pebble is placed on the predecessor of M;; at
time ¢, (if there wasn’t one there already). By rule 2 this pebble can only be removed if C is not
full and By; is not loaded, a condition which doesn’t oceur in the interval (5, te]- So at time ¢, the
predecessor of M;; has a pcbble. (O

LEMMA 6: Any black strategy for Gy is trauslated by rules I and 2 into a matrix stratogy for
MP.

PROOF: Lemma 5 shows that the matrix pebbling moves are legal, so it suffices to show that
the most difficult cell to pebble of the matrix pebble gaine is pebbled. Let m = My or My,
according to whether p is odd or even, and let B = Bpy+1 or By be the corresponding block of
Gp. Let ¢y be the time of the inal move of the black strategy for Gp. Then for each output vertex
of B there is a time in T = {0,£;] when that vertex has a pebble. Since B is not full at time 0 we
conclude by Lemma 3 that there is a time ¢ € T when B is supported. At this time a pebble is
placed on m by rule 1. O

LEMMA 7: If a black stratesy for Gp uses q pebbles then it is translated by rules I and 2 into a
matrix strategy for MP of weight no more than S5q/n.

PROOF: Lemma 6 shows that a black strategy for Gp is translated into a matrix strategy for
MP; we must show that the bound on the weight holds. By rule 2 a pebble is on M;; only if cither
Bij or its successor (if it has one) is loaded. (When a block is full it is also loaded.) When a
block of height 4 iy loaded it has at least A pebbles on its vertices. The weight of M;; on diagonal
k =17—j+2is wy, the height of By is at lcast nwy, and the Leight of its successor is at least i-nwk.
Thus the pebble on M;; which contributes a weight of w; can be associated with the at least i-nwk
pebbles on B;; or its successor. For any i and J the pebbles on B;; are associated with at most
two pebbles on M? — one on M;; and one on M;;'s predecessor. Also, if they are associated with
two pebbles only one can contribute a weight of 4w;_;.2, the other contributes only w;i_ji12. So
allowing for this double counting when a configuration of pchbies on M has weight w there are at
least 3nw pebbles on G,. The claim follows. (J

4. A Lower Bound for the Matrix Pebble Game

In this section we prove that as p increases the weight of optimal matrix strategies for MP must
grow withont bound. Roughly, we will show that there must be some time during any strategy for
MP at which there are a large nmunber of pebbles on a single diagonal.
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DEVFINITION: The channel of MP is the set {M;; € MP|j > 1 or (i odd and j =7 — 1)}. Figure 5.
shows M?® and its channel.

LEMMA 8: If at some time there are no pebbles in the channel of MP between row 1y and row
ia > 1y then before a pebble can be placed on a cell of the channel int row i3 pebbles must be placed
on every cell of the chaunel in rows 1) through 13 ~ 1.

PROOF: This follows immediatcly from the mles for the matrix pebble game. [

LEMMA 9: For any positive integer a, there iy an integer py s.t. for all p 2 pa the nunimun weight
strategy for MP lLas weight greater than a.

PROOF: Let g be a positive integer. We shall assume that for all p there is a strategy for M? of
weight no greater than a and show that this leads to a contradiction. The outline of the proof is
aa follows. First, we usc a to obtain, for each diagonal, a rough upper bound on how many pebbles
may be on that diagonal during any strategy of weight a for any size wmatrix. We then tighten the
bounds to make them as small as possible (the first three diagonals are treated specially). Finally,
we show that there is a sufficiently large matrix for which there is no strategy that satisfies the
tight bounds.

For i > 1 let b; = a/w;. Call a strategy for M?P a b-strateyy if at no time are there mere than b;
pebbles on diagonal ¢, for 1 < ¢ < p+ L. By the assnmption there is a b-strategy for M?P, for all p.
For otherwise there would be an p' s.t. for any strategy for M ¥ there is some diagonal j which at
some time has more than a/w, pebbles, each contributing a weight of w;, yielding a total greater
than a.

Let s be the smallest integer s.t. for all p there is a b-strategy for MP which never has more
than s pebbles at a time on diagonals 1, 2, and 3 combined. Under the assumption, s must exist
and is in fact no greater than by + b + b3. Call a b-strategy which never has more than s pebbies
at a time on diagonals 1, 2, and 3 combined an s-strategy. There must be a pg s.t. any b-strategy
for MP® requires s pebbles on diagonals 1, 2, and 3 combined at some time, for atherwise s could
be made smaller. If p > pp then any b-strategy for MP that uses less than s pchbles in diagonals
1, 2, and 3 combined yields a b-strategy for M™ that uses less than s pebbles in those diagonals,
because MP® is the subset of MP consisting of its first pp rows. So for all p > pg, any s-strategy
for MP must have a time when diagonals 1, 2, and 3 contain a total of s pebbles.

For i > 4 we define ¢; in terms of the by’s, 3, and ¢; for j < 1, as follows. The intecger ¢; is
the smallest integer s.t. for all p there is an s-strategy for M? which uses no more than ¢; pebbles
on diagonal j at a time, for 4 < j < i. Each c¢; exists and is in fact no greater than b;. A c¢-
strategy for MP is an s-strategy which never has more than ¢; pebbles at a time on diagonal ¢, for
4 < i < p+ 1. By construction, for all p there is a c-strategy for MP. For cach £ 2 4 there is a p}
s.t. any c-strategy for MP! requires ¢; pebbles on diagonal ¢ at some time, for otherwise ¢; could
have been made smaller. By the argument of the previous paragraph, for all p > p; any c-strategy
for MP requires ¢; pebbles at some time on diagonal i. For 1 2 4, let p; = max(pg, MaxX4<j<i p’,—).
Then for all p > p; any c-strategy for M? has a time at which s pchbles are on diagonals 1, 2, and
3 combined and, for each 4 < 7 < 4, a time at which ¢; pebbles are on diagonal 7.

We need the following parameters.

m; = max(4,2[pe/2]) a2 = max(my + 1.2 |pm,+1/2] +1)
J=cq4+ "+ Cmaei m3=2+m1+(ﬁ+l)(ml+mg+3)
Note that m; and mj3 are cven and mg is odd. We have argued that for all p, MP has a c-strategy,
so in particular M™? has a c-strategy. We shall show that this is immpossible, yielding the desired
contradiction.




Refer to Fignre 6. for the remainder of this proof. Let A be the sct of colls of M™ in columns
mg — my + 1| through m3. A is cquivalent to M™'. Consider a c-stratogy for M™. Let ¢ be
the first time at which cell ey = Min, m,y m, is pebbled. At time ¢ the predecessor of e, cell
€2 = Mm;ny my 1, must have a pebble. Lot 2 be the latest time before ¢ at which a pebble iy
placed on e3. Let £g be the latest time before ¢2 at which A contains ne pebbles, so that A contains
at least oue pebble throughout the interval [ty + 1,¢4]. Cell €3 is the most ditficult cell in A to
pebble, so during the interval {ty, £2] the strategy for M™3 must include a strategy for A. Because
my 2 po, there is a time t4 € [ty + 1, ta] at which there are s pebbles in A on diagonals 1, 2, and 3
combined. At time £y there are at most g pebbles on the first mg + 1 diagonals in rows 1 through
mg — my = 2. Thus, if we consider the row intervals [f{my + ma + 3} + 1, (i + U)(my + ma + 3},
for 0 < ¢ < B, all of which are included in rows | through mg — my — 2. there must be at
least onc interval, say the igth, which has no pebbles in the first my + | diagonals. Let & =
to(my + m2 + 3) + 1 be the first row in this interval. Let B = {M;; € M™i < k +m; and j > k}
and let C = (M;; e M™|i<k+my+ma+1land j > k+my+2}. Then B is cquivalent to
M™+1 and C is cquivalent to M™? and since both are contained in rows & through k + m; + mgq
and diagonals 1 through ma + 1 they are pcbble-free at time ¢ 4.

We distinguish four more cells of M™,

3 = Mmé-—m;—-l.m;;-m. eq = Mk+ml+m-;+l,k+m1+m1+2
ey = Mk'i-ﬂu +2,k+my+2 €g = Mk+m|,k+m|+l

At time ¢4 cell e; does not have a pebble because it is on diagonal 1 and all pebbles on the first
three diagonals are in A at time 4. At time ¢ cell e; must have a pebble because it is above e
and a pebble is placed on ¢; at time ¢;. So lct {3 be the earliest time in [ta+1,¢; - 1] that a pebble
is placed on e3. At time 4 the channel of M™ between rows & + my + ma + 1 and mg~-my — 1
is pebble-free, because all pebbles in the first three diagonals are in A. So by Lemuna 8 there is
a time t4 € [t4,¢3) at which a pcbble is placed on e4. Since C is pcbble-free at time t4 and e4 is
the most difficult cell of C to pebble, the pebbling strategy for M™? must include a strategy for
C during the interval [t 4,¢4]. The first cell of C to be pebbled must be ey, so let ¢5 be the earlicst
time in [t4,¢4] at which e is pebbled. (Thus the pebbling strategy for C occurs during [¢s, t4].)
The channel of M™? between rows k+ m; and k+m; + 2 is pebble-free at time t4 so by Letnma
8 there is a time tg € [t4,¢5 — 1] at which a pebble is placed on eg. Cull eg is the most difficult cell
of B to pebble so since B is pebble-free at time ¢4 the pebbling strategy for M™ must include a
strategy for B during the interval [t 4, tg).

Because m; +1 > pyg, there is a time tp € [ta,te] when all 5 pebbles on the first three diagonals
are in B. For a3 long as there are no pcbbles in the chaunel of A no pebbles can be placed in A,
because every cell not in the channel has a channel cell above it. No pebbles can bhe placed in the
channel of A until e; is pebbled, so throughout the interval [¢g, t3] no pebbles can be placed in A,
and there are no pebbles in the first three diagonals of A. Although some pebbles in A may be
removed during this interval they can not all be removed because {tp,t3] C [to+ 1, ¢], and there is
at least one pebble in A throughout the latter interval. Thus therc is at least one pebble in A on
a diagonal j € [4,m; + 1] which remains in place throughout the interval [tB,t3]. The strategy for
M™? includes a strategy for C during the interval [ts,ts], which is contained in [t5,t3]. Because
M2 2 Pm, 1 there is a time in [t5, ¢4) at which there are ¢; pebbles on diagonal j in C. Togother
with the fixed pebble on diagonal j in A this gives ¢; + 1 pchbles on diagonal 7 of M™2 at that
time. This contradicts the claim that we are pebbling M™? with a c-strategy.

The assumption that for all p there is a strategy for MP with weight no greater than a leads
to a contradiction, so there is a p, s.t. all pebble stratesies for M™ have weight greater than a. IF
P > pa then MP+ is contained in M?P so MP does not have a strategy of weight «. O
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THEOREM 1:  For p 2 1 there is a black-white strategy for (G, which uses O(n) pebbles, where
n = 2(p + 1)%, whereas all black strategics for Gy require w(n) pebbles.

I’rROOF:  The first part of the statcinent is Lemma 1, and the second part follows from Leminas
7Tand 9, O

5. Remarks

We have shown that the ratio of the minimum number of pebbles needed by any black strategy
for GGy to the minimum number of pebbles needed by auy black-white strategy for G, must grow
without bound as p increases. The proof does not give any hint as to how rapidly this ratio
incrcases. This is because the critical step of setting the ¢;'s and 7;'s in Lemuma 9 is nonconstructive,
In particular, it seems difficult to get an npper bound on the p;'s in tertns of the parameter a.

One can show, using a divide and concuer argument, that M? has a matrix strategy of weight
O(logp). This strategy is easily translated into an O(nlog =) black strategy for G, (where as usual
n = 2(p + 1)?). The matrix pebble game can be generalized in an obvious way to p X q matrices,
with the wecight of cell M;; set to some nonnegative value w;; in such a way that the sum of the
weights in any column is bounded by a counstant, for all p and q. (The lower triangular matrices
used in this paper can be fit into this scheme by sctting the weights of cells not in M? to 0.) For
a fixed p and ¢, call column j € [2,9 — 1] an inflection column if there is some row 7 s.t. cither
Wi g1 > Wiy and wy; < wi 4y Or wi ;) < wiy and wy; > w; ;1. Let ¥ be the number of inflection
columns in the p X q matrix. The divide and conquer argument is easily extended to show that the
p x g matrix has a strategy of weight O(log~y). In particular, since 4 < ¢, there is a matrix strategy
of weight O(log q). Thus if there is to be any chance of extending the method of this paper to show
a large gap between optimal black-white and black pebble strategics, say an n versus n!*¢ gap,
then very long matrices, with g large compared to n, must he used.

Acknowledgment. 1 thank Merrick Furst for checking the proof and improving the presentation.
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Figure 1. A configuration of M%. Legal moves are marked with "x"
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Figure 3.

Schematic representation of G,.
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Figure 4.

Construction of TT},
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Figure 5. M® with its channel shaded.
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Figqure 8. M®": at time ta. Shaded areas are pebble-frae.
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