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Abstract

The 31} Mosaie system is a vision system that incrementatly reconstructs complex 31D scenes from multiple
images. The system cncompasses-several levels of the vision process, starting with images and ending with
symbolic scene descriptions.  This paper describes the various components of the system, including sterco
analysis, monocular analysis, and constructing and modifying the scene model. In addition, the representation
of the scenc model is described. This model is intended for tasks such as matching, display generation,
planning paths through the scene, and making other decisions about the scene environment. Examplcs

showing how the system is used to interpret complex acrial photographs of urban scenes are presented.

Each view of the scene, which may be cither a single image or a stereo pair, undergoes analysis which results
in a 3D wirc-frame description that represents portions of edges and vertices of objects. The model is a
surface-based description constructed from the wire frames. With cach successive view. the model is
incrementally updated and gradually becomes more accurate and complete. Task-specific knowledge,
involving block-shaped objects in an urban scene, is used to extract the wire frames and construct and update
the model.
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1. Introduction

Itis important for a general vision system to derive three-dimensional (31} information about a given scene
from hnages and store the information in a coherent manner so that it can be used for various matching,
planning, and display tasks. The 31) Mosaic system is a vision system that incrementally acquires a 3D
description (or model) of a complex scene from multiple images. This paper describes the system and presents

cxamples of how it is used 1o interpret complex acrial photographs of urban scencs.

‘The paper is organized as follows. First, we present the motivation for our approach of incrementaily
acquiring the scene model, together with an overview of the system. Then we discuss the two components
used to extract 31D information from the images: the stereo analysis and monocular analysis components. Next
we describe the representation of the scene model, and an example is presented that shows how the scene
model is acquired. Finally, we show how information from a new view is incrementally combined with a

current model.

2. The 3D MOSAIC System
The goal of the 3D Mesaic system is to obtain an understanding of the 3D configuration of surfaces and

objects in a scene. The significance of this goal may be demonstrated by the following tasks.

1. Model-based image interpretation. A known 3D scene model can provide significant aid in
interpreting arbitrary images of the scene [Barrow. Bolles, et al. 77, McKcown 83, Rubin 80]. The
3D Mosaic system performs the task of acquiring such a model of the scene.

2. 3D change detection. Change detection is a task that determines how the geometry and structure
of a scenc changes over time. The conventional approach to this task involves comparing and
detecting changes in images. However, because of different viewpoints and lighting conditions,
changes in the images do not necessarily correspond to changes in the geometry and structure of
the scene. If 3D scene descriptions were obtained from the images first, such descriptions couid
be compared in 3D to determine changes in the scene.

3. Simulating the appearance of the scene. If a 3D description of the scenc were o be obtained,
displays as scen from arbitrary viewpoints could be generated from it. This is useful for tasks such
as familiarizing personncl with a given arca, and flight planning by gencrating the scene
appcarance along hypothetical flight paths.

4. Robet navigation. Three-dimensional descriptions of complex environments may be used to make
decisions dealing with path planning or determining which parts of the envirunment to analyze in
more detail.

Note that to perform these tasks, a vision system must do more than classify images, segment them, or identify

objects in them; it must be able to gencrate a 3D description of the scene.,

The 3D Mosaic system deals with complex, real-world scenes (c.g., Fig. 4). That is, the scenes contain



many objects with a varicty of shapes, the object surfaces have a varicty of textures and reflectance
characterisics. and the scencs arc imaged under outdoor lighting conditions. Because of the complexity, there

are many difficultics in interpreting the images, including:

1. Any particular image contains only partial information about the scene because many surfaces are’
occluded.

2. Even portions of the scene that are visible are often difficult to recover. For cxample, surfaces
with dark shadows cast across them, or with highlights, may be difficult to interpret.  Highly
oblique surfaces may be difficult w analyze if their resulution in the image is poor. Such portions
of the scene, therefore, may be recovered with crrors and inconsistencics, or may not be recovered
at all,

Qur approach to the problems of complexity is to use multiple images obtained from muitiple viewpoints.
‘This approach aids interpretation in two ways. First, surfaces occluded in one image may become visible in
another. Sccond, features of surfaces that are difficult to analyze and interpret in onc image (such as scene
edges and texturc) may become more apparent in another image because of different viewpoint and/or

lighting conditions.

2.1. Incremental Approach

A large number of views will, in gencral, be rcquilled to obtain a fully accurate and complcte description of
a complex scene. Typically, all these views will not be simultancously available, while some may ncver
become available. Many of them will only be obtained gradually through interaction with the scene
environment. Our systern must therefore have the ability to utilize partial descriptions and incrementally
update them with new information whenever a new view happens to become available. As a practical
example, consider a robot (perhaps a moi:ilc ground robot or an automatically guided airplane) which is
attempting to navigate through an unknown environment. The robot would sequentially acquire images of
the environment as it moves about. Information derived from each new image would serve to update its
internal model, and this partial model would be used to decide where to go next, or wherc to analyze in more

detail,

We have adopted an approach in which the 3D scene model is incrementally acquired over the multiple
views. The views of the scene are sequentially acquired and processed. Partial 3D information is derived
from each view. The initial model is constructed from 3D information obtained from the first view, and
represents an initial approximation of the scene.  As cach successive view is processed, the model is

incrementally updated and gradually becomes more accurate and complete.

In our approach, the scenc model plays the role of a central representation with two primary functions.

First, it incrementally accumulates information about the scene. Second, at-any point along its development,

r
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it represents the current understanding of the scene.  As such, it may be used for tasks such as matching,
display generation, planning paths through the scene, and making other decisions “about the scene
environment. Two such tasks are important for the incremental acquisition process itseif: (1) 31 information
derived from a new view must be matched to the model so that updating can occur, (2) higher-level
components should be abie to use the model to determine which parts of the scenc to analyze in more detail,

and from which viewpoints to take the next images,

Most previous research efforts at acquiring 31 scene descriptions from multiple vicws have deait with
relatively simple scenes in controlled environments [Baker 77, Baumgart 74, Bourne, Milligan, and Wright
82, Martin and Aggarwal 83. Potmesil 83, Underwood 75]. 'this has led. in some cases, to only utilizing
occluding contours in the image to form the 31D description [Baker 77, Baumgart 74, Bourne, Milligan, and
Wright 82, Martin and Aggarwal 83). The work of Moravec [Moravec 80] deals with complex indoor and
outdoor scenes, but the 31) descriptions generated by his system consist of sparse scts of feature points. Qur

system, on the other hand. generates full, surface-based descriptions.

2.2. Overview

A flowchart for the 31 Mosaic system, showing the major modules and data structures, is displayed in Fig.
1. The input is a new view of the scene, which may be cither a stereo image pair or a single image. The stereo
pair undergoes stcreo analysis, while the single image undergoes monocular analysis. "The purpose of these
analyses is to obtain 3D scene features such as portions of surfaces, edges, and corners. The sterco analysis
component currently matches junctions extracted from the two imagces, and generates a sparse 3D wire-frame
description of the scene. The monocular analysis component currently extracts linear structures from the

image and converts these to 3D wire frames using task-specific assumptions.

The central scene model is a surface-based dcs_criplion which is constructed and modified from these
features. It is represcnted as a graph in terms of primitives such as faces, edges, vertices, and their topology
and geometry. It also has mechanisms to add and delete hypotheses for parts of the scene for which there are
partiat data. Before modifications to the scene model can occur, the 3D features from the new vicw must be
matched to the current model. The scene model may, at any point along its development, be used for tasks
such as image interpretation, planning, or display gencration. A new view may then be acquired which may
further modify the model. ' '

For cxample, when the sterco analysis component is applied to the images in Fig. 4, the result is the sot of
wire frames in Fig. 29. The scenc model constructed from these wire frames is shown in Fig. 31. When the
monocular analysis component is applicd to the image in Fig. 14, the result is the sct of wire frames in Fig. 25,
These, in turn, are converted into the scene model in Fig. 32, Finally, the result of modifying the model in



Fig. 31 with a new view is shown in Fig. 38,

3. Stereo Analysis _

Most sterco matching methods involve matching low-levet image features, such as image intensities [Baker
and Binford 81, Hannah 74, Lucas and Kanade 81, Ohta and Kanade 83] or image cdge points [Baker and
Binford 81, Grimson 80, Ohta and Kanade 83]. Points to be matched may also be chosen as "interesting
points”, ¢.g.. those with high variance in all directions [Barnard and Thompson 80, Moravee 80). Our method
involves matching structural features -- i.e., junctions -- extracted from the images. There are several reasons
for this.

First, feature-based matching results in more accurate 31 puositions for acclusion boundarics than gray scale
arca matching. Second, by extracting 31D information dealing with scene vertices and cdges emanating from
them, we obtain portions of boundaries of scene buildings, particularly building corners. These boundarics

are then uscd to construct 31 approximations of the buildings.

Finally, because of our wide-angle stereo images, there arc large disparity jumps and large portions of the
scene are visible in one image but not the other. Because most sterco systems do not distinguish these from
other regions of the image, they try to find matches for them and therefore have trouble [Raker and Binford

‘81, Barnard and Fischler 82, Barnard and 'l‘hompS('m 80, Grimson 80, Hannah 74, 1.ucas and Kanade 81].

In our approach, rather than attempting to find matches fot scene faces occluded in one of the imagces, we
match face boundaries visible in both images. We do this by explicitly taking into account the way junction
appearances change from one image to the other, using the knowlcdge that in urban scenes, roofs of buildings
tend to be parallel to the ground plane, while walls tend to be perpendicular to this plane. Edges in the scene
perpendicular to the ground will appear in each image to be directed towards the vertical vanishing point
[Kender 83].

Ifa féature in an image lics on a roof, its appearance in the other image as a function of position along the
epipolar line can be predicted if the normal to the ground plane is known.? To sec why, consider Fig. 2.
Suppose the junction }’31’1}’2 in imagel is given, and our goal is to pfcdict the junction Q301Q2 in image2,
where the point Q1 lies anywhere (inside the infinity point) on the epipolar line corresponding to P,. For the

position Q,, the 3-spacc position of V, can be computed as the intersection of the rays through P, and Q-

1For a different approach developed for the same domain, see [Hendersan, Miller, and Grosch 9.

2’In sterco images, it is known that for each point in one image, the corresponding point in the other image lics along a line, cailed the
epipolar line, which depends only on the camera model [Barnard and Tischler 82].
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Figure 1: 31> Mosaic flowchart, showing major modules (boxes) and data structures
(cllipses). The dashed lines represent components  that have not yet been implemented; the
solid lines represent components alrcady implemented.



This uniquely determines the position of the plane parailel to the ground that contains V;. The 3-space
pusitions of the points V, and V, can now be computed as the intersections of this plane with the rays
corresponding to the points 1’2 and P3. respectively. Finally, the points Q2 and Q_,. are uniquely determined as
central projections of the points V, and V,, rcspecti\.fcly.3 Aithough this analysis is independent of the camera
geometry rclative to the scene, vertical acrial photography is in gencral more uscful than oblique acrial
photography because of the greater probability that an arbitrary junction in the image lies on a roof or on the
ground. In oblique acrial ‘phutography, larger portions of horizontal surfaces would be occluded by vertical

walls.

~~ Epipolar line

Image1 Image2

Figure 2: For junction P,P P, its appearance in image2 can be predicted as a function of

position Q, along the epipolar line. The normal to plane V3V |V, must be known.

Therefore, when an L. junction is found in one image, it is initially assumed to arise from a corner of a roof,
and its appcarance in the other image can be predicted. When an ARROW or FORK junction is found, the
leg of the junction directed towards the vertical vanishing point is initially assumed to arisc from a scene edge
perpendicular to the ground, while the other two legs are initially assumed to arise from scene edges lying on

aroof or on the ground. Again its appcarance can be predicted.

3Not.e that this analysis is valid not only for featurcs lying on horizontal plancs in the scene, but for any family of parallel planes.



Structural relationships between scene vertices are also used to aid in the matching. If two junctions in an
image arise from scene vertices at the same height above the ground, the positions of the corresponding
Jjunctions in the other image, as a function of position along the epipolar line, can be predicted if the normal
to the ground plane is known. This can be shown using similar arguments as before. In Fig, 2, pretend that
the points Pi. Qi, and Vi correspond to positions of separate junctions and vertices, For example, if P1 and P3
are two scparate junctions in imagel, then for some point QQ j on the cpipula_r line corresponding to P , the
position of the junction QJ. corresponding to PJ. can be predicted if Vl and \/3 are assumed to lic at the same
height. We make the assumption that junctions close to one another in the image ofien correspond to vertices
lying on top of the samec building and therefore have approximately the same height. In this way, the

configurations within the neighborhoods around junctions in the two images are used in the maiching,

These matching techniques assume that the vector normal to the ground plane is known, To obtain this
vector, we form a vector from the focal point to the vertical vanishihg point. As shown in Fig. 3, this results in
a 3-space vector in the vertical dircction {Barnard 82). The vertical vanishing point is the central projection of
the "infinite” point of any vertical line. In other words, a line containing the focal point and vertical vanishing
point intersects any vertical line at "infinity.” Therefore they must be paraltel.® The focal tength and vertical
vanishing point are currently manually obtained.

7 projection

P of
vertical o~ infinite
vanishing . < point co

point ( /
vertical
¥ 1line in
Cf:cal space
point

image
plane

Figure 3: The vector from the focal point to the vertical vanishing point is a 3-space vector
in the vertical direction,

4This analysis, of course, holds for ail vanishing points, not only the vertical ane.



3.1. Steps in Stereo Analysis
We now provide an example showing how the sterco analysis is performed on the sterco pair of images in
Fig. 4.

Exracting lines. The first step in the stereo analysis is to extract linear features. A 3x3 Sobel operator is used

to extract edge points, as shown in Fig. 5. Then the cdges are thinned using a modified Nevatia and Babu
algorithm [Nevatia and Babu 80], as shown in Fig. 6. The resulting cdge points are linked and approximated
by piccewisc lincar scgments. The method used to fit lincar segments to a sct of linked points is based on
iterative end-point fitting [IDuda and Hart 73]. However, since this method determines a line using only two
end points, the line equation Afor the sct of points is recalculated using Icast squares. Finally, short lincs are

discarded. The resulting line images are shown in Fig. 7.

Extracting junctions, The next step is to extract junctions from the linc images. A junction is a group of line
segments (/egs) in the image that meet at a point, and often arises from a vertex in the scenc. We consider the
following four junction types: [, ARROW, FORK, and T. To find junctions, a 5x5 window around each ¢nd
point of cach line is scarched for ends of other lines. Lines in the window that are close and nearly parallel are
combined into a single line. Then, if the window contains the ends of three lines. the lines are classificd as an
ARROW, FORK, or T junction depending on the’ angles between the lincs. ‘The position of the junction
point is the middle of the three end poinis. [f the window contains the ends of iwo lines, they are classified as
an L junction: the intersection of the two lines determines the position of the junction. If the window
contains more than three lines, each set of two lines is assumed to form a distinct L junction. Junctions that
have been found in this manner are labeled in Fig. 8. Notice that many of the junctions correspond to

building corners.

Finding potential junction matches. We now want to match the junctions found in one image with those in
the other. l.ct us consider how L junctions are mawched. Each L junction is initially assumed to lic on a
horizontat scene plane. The shape and orientation of its corresponding junction in the other image, as a
function of position along the epipolar linc, can therefore be predicted. Fach L junction in the first image
may therefore usually be matched with several junctions in the sccond image that have, within tolerance, the
predicted shape and oricntation. However, we do not try to match only with junctions in the sccond image
that have been previously found. Rather, for every point on the epipolar linc (on the appropriate side of the
infinity point), a search is made within a pre-specified window for lincs that might correspond to the
predicted junction. The requirements, however, for two lines to form a junction is more retaxed than the
requirements during initial junction scarch. We therefore improve feature detection in cach image by using
the features found in one image to predict features in the other image. The matching is performed in two

directions, from the first image to the sccond, and vice versa.



Figure 4:  Gray scale sterco images of a region of Washington, D, C.
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Figure 5: Edges resulting from a Sobel operator applied to the images in Fig. 4.
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To match ARROW. IFORK, and 1" junctions, each pair of lincs forming the junction is treated as if it were

an L junction and matched in the manner described above.

carching for unique junction matches. At this point, cach junction in one image is associated with a set of
potentially matching junctions in the other image. The next step is to find the best of the putential matches,

resulting in a single match for each junction. Two criteria are used in determining the best matches:

1. If the image intensities inside two putentially matching junctions are similar, the likelihood that
they really match is increased. This is because the two junctions will often have similar intensities
if they arise from the same face corner. 'Fo measure the degree of similarity, we compute the
average intensitics of regions along the two legs of the L. junction in each image. As depicted in
Fig. 9. let A and B be the average intensities of these regions in one image. and let A’ and 3 be the
average intensities of corresponding regions in the other image. Then the degree of similarity,
called the focal cost, is defined as

ClmlzfA—-A‘l +|B-D] .
Similar intensities in the two junctions result in small local cost, while diverse intensities result in
large local cost.

e

. As described previously, if two junctions in an image arise from scene vertices that are at the same
height. the relative positions of the corresponding junctions in the other image, as a function of
pusition along the epipolar line. can be predicted. We use this to determine whether two sets of
junction matches are consistent with ong another. Suppose. in Fig. 10. that the junctions .ll and J
in imagel arisc from scenc vertices that are at the samc height. Suppose also that the Junctlon
matches (J J ) and “2~ J.,) have been hypothesized. 'To measure the degree of consistency
hetween thesc two sets of matches, we predict the pusition of the junction in image2 lhat
corresponds to {say) J,. Let us refer to the predicted position as J ", If the vector from J' to 1",

(""1' b ) and the vector from _l‘l wlF 2 is (a, bz) then the degree of consistency bctween the two
seLs of matches, called the global cosi, is dcﬁncd as

Coiovar = 12, = a1 + 16, - 8,1,
Two sets of junction matches whose relative positions are near the prediction resuit in small global
cost, while positions far from the prediction result in large global cost.

To arrive at a uniquc set of junction matches, the space of potential matches is scarched using a beam search
[Rubin 80}, which is guided by the above two criteria. The search space is represented by a network whose
nodes are the possible pairs of junction matches. This is depicted in Fig. 11, where cach junction in (say)
imagel (i.e. J, K, L., ...} is paired with cach of its poiential matches in image2 (i.c., J K . ..}. The
junctions in imagel arc ordered so that the junction in column k is within an MxM wmdow oFLhc 3unction in
column k -/. M is chosen so that there is a good probability that junctions within the window arisc from

vertices on top of the same building,

In Fig. 11, each junction and its candidates lic in a single column, and cach candidate is represented by a
node in the network. Any path through the network that visits a single node at cach column represents a set of

unique junction matches. Associated with cach such path is a cost obtained by adding all the local costs of the
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Figure 9: Intensitics of corresponding regions of I. junctions in the two images arc used to
compute the local matching cost.
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Figure 10: Positional vectors of predicted and actual positions of two junction matches are
used to compute the global matching cost.

nodes visited by the path and all the global costs between cach successive pair of nodes in the path. “The goal
of the search is to find the minimum cost path. With beam scarch, only a limited number of paths are

explored.

The scarch starts at column 1 (Fig. 11) and proceeds successively to cach column. At each column % , the
best N partial paths from column 1 to # arc extended to column k + / as follows. Suppose that each node in
column & has a cost corresponding to the minimum cost path from column 1 to the node. Then for each of the
N lowest cost nodes I’ in column &, compute the cost of the path when ¢xtended from T to céch node K, in
column & -+ /. This cost is the sum of the cost of the partial path to node J‘i . the global cost between nodes J‘i
and K., and the local cost of node K',. Then add a link in the network between nodes J’i and K’i .
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At the end of this set of steps, there will be a link from each of the best N nodes in column % to each node
K’i in column k +/, and each node K'; will now have several costs associated with it, one for each link into
the node. Suppose the link from node ', has the lowest cost to K' . A backpointer from K’ to .l'i is added,
and the associated cost is stored. Al other links and costs associated with node K'. are discarded. Fach of the
best N nodes in column &k + 7 are lhén cxtended to column k + 2. Notice that this search is not guaranteed to
result in the lowest cost path in the network. A path discarded at column & because it is not among the best N

may have been part of the best path at column & +if it were extended that far.

Column
Humber 1 2 3 . e .

Junction
in Imagel J K L -

Candidate
junctions
in Image?2

Figure 11: Each column contains a junction from imagel and its candidate matches from
image2. The candidates form the nodes of a network which is scarched by a beam search.

The matching procedure is applied from the first image to the sccond and vice versa. The results are then
merged by retaining all pairs of junction matches except those in which one of the Junctions appears in more
than onc junction pair. The results are displayed in Fig. 12, which shows junctions in onc image that have

matches in the other image.

Searching for third legs of junctions, The next step tries to find lines in the imagges that might be the third
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leg of matched junctions and that might represent scene edges perpendicular to the ground plane. 'The
method used finds lines near the junctions in both images that are dirccted toward the vertical vanishing

point,

Generating 3D wire frames. Finally, 31 coordinates of vertices and cquations of edges are derived using
triangulation. Fig. 13 shows a perspective view of the 3D vertices and cdges that result. We call this a

wire-frame description of the scene.

4. Monocular Analysis

Although stereo is a major source of 31 information, some views of the scene will be only single images.
We can also extract 31) information from these images by exploiting task-specific knowledge. We assume that
the objects in the scene are trihedral polyhedra containing only vertical and horizontal faces, ic., faces
perpendicular and parallel, respectively, to the ground plane. Our monocular analysis extracts linear
structurcs in the image that represent boundaries of buildings, and then converts these structures into 30 wire

frames.

4.1. Steps in Monocular Analysis
This section provides an example showing how the monocular analysis is performed on the image in Fig. 14,

This is a different view of the same scene shown in the carlier sterco pair (Fig. 4).

Exracting lines und junctions. The first step in the monocular ahalysis is to extract lincar segments and
junctions from the image. The method used here is the same as that used during sterco analysis (as previously
described). The thinned edge points arc shown in Fig. 15, and the result of extracting lines and junctions is
shown in Fig, 16.

Locating 2D structures. Next we form linear connected structures in the image by hypothesizing new lines
to conncct the previously extracted junctions., These connected structurcs are meant to represent building
boundarics and the hypothesized lines are meant to correspond o building edges.  The process of
hypothesizing connecting lines consists of two steps. First, two junctions may be connected oaly if a leg of one
points at the other, that is, the extended leg meets the other junction. For each pair of junctions that passes

this test, a line showing the connection between the two junctions is drawn in Fig. 17,

The sccond siep involves determining which connections shown in Fig. 17 appear as connections in the line
image (Fig. 16). For cach pair of connected junctions J; and J (Fig. 18), we find all scgments in the line
image that arc contained within a thin rectangular window connecting ./, and Ji and project these scgments

onto the line connecting the two junctions. Then we consider how much of this line is covered by projected
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Figure 12: Matches that have been found for the junctions in Fig. 8. Actually, not all
matches are correct. For example, although the junction matches (J1,J2) and (13,J4) are
correct, the match (J5,J6) is incorrect.

Figure 13; Perspective view of 31D wire-frame description (i.c.. 31D vertices and edges)
derived from matches shown in Fig. 12. The numbers represent unique identifiers for the
end points of the edges.



20

Figure 14:  Acrial photograph showing part of Washington, D.C. This is a different view of
the same scenc as in Fig. 4,
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Figure 15 Result of thinning the edges obtained b

y applying a Sobel operator to the image
of Fig. 14,
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Figure 17:  Each line represents a possible connection between the junctions at its two end
points. Each end point corresponds to a junction in Fig, 16.
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segments. The connection between J; and J; is retained only if the percentage of coverage exceeds a threshold,
The result of this pruning step is shown in Fig. 19. Note that it does a good job in climinating unwanted
connections. These two steps illustrate how useful a hypothesize-and-test method can be for low-level image
processing, In the first step, candidate connections arc hypothesized on rather preliminary evidence. In the

second step, the candidates that do not pass a rigid test are eliminated.

line segments

— = _"f::f ______ — =

line A

Figure 18: All line segments within the thin rectangular window connecting junctions J;
and J, are projected onto line A4 to determine the amount of coverage.

‘The junction legs originally extracted in the juﬁction finding step are then added o the results of Fig. 19,

and cxtraneous legs are deleted. The final connected structures are displayed in Fig, 20.

Obtaining 312 wire frames. The next step is to convert the 21D structures into 31D wire frames. In order to do
su. we assume that all lines that form the 2D structures arise from cither vertical or horizontal scene edges.
Furthermore, we use several features that aid us in relating an image to the 3D scene depicted in the image,
including vanishing points, the ground plane constraint, propagation of 3D constraints, and colinearity (i.e.,

alignment of lines).

First, the lines that form the 2D structures are labeled as either "vertical” or "horizontal” depending on
whether or not they are directed toward the vertical vanishing point [Kender 83]. Next, we use the position of
the vertical vanishing point to calculate the vector in the vertical direction, as described in section 3. Let us
now consider how to recover the 31D configuration of the junction Pp.pyp, in Fig. 210 Suppose that line p,p,
has been labeled "vertical” and lines p,p, and p,p, have been labeled “horizontal”. Let u be the unit vector in
the vertical dircction. This vector is normal o all horizontal planes. First we would like to determine the
3-space position of v, corresponding to the junction point Py Since it is impossible to determine the actual
position of this point from a single image without special information, the position is determined as some
arbitrary point lying on the ray through p,, i.c., the depth a of v, is arbitrarily chosen. The horizontal plane
¥ ¥¥; can now be cstablished, since it contains v, and its normal vector is & The 3-space pbsitions of the
poinis v; and v, can then be computed as the intersections of this plane with the rays through p, and p,

respectively. Finally, the 3-space position of the point v, is computed as the interscction of the ray through Dy
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Figure 19: Result of pruning the junction connections in Fig. 17 by dctermining whether
segments in Fig. 16 adequately cover the area between cach pair of connected junctions.
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with the line through v, along the vector &

Vi

horizontal

vertical

image plane

focal
point

Figure 21: The 3D configuration of the junction pp,p.p, can be recovered under
assumptions explained in the text.

Although this technique permits us to recover the 3D configuration of any junction relative to some
arbitrary depth, it is not useful to apply it dircctly to the junctions in the original line image (Fig. 16) because
the relative heights above r.hc; ground plane of the corresponding vertices cannot be determined; the height of
cach vertex is arbitrarily chosen without relation to the heights of other vertices. It is more uscful, however, to
apply the technique to the 20 structures in Fig. 20, since the heights of the vertices within cach structure can
be related. To see how this is done, consider the example in Fig. 22, which shows a 2D structure. The solid
lines are part of the extracted structure (while the dashed lines are for the reader’s convenicnee to make the
3D shape more apparent). Suppose lines PP, and pyp, have been labeled "vertical”, while the other solid lines

have been labeled "horizontal”. Applying our technique to (say) point p,, the 3-spacc positions of the vertices
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corresponding o points py, p,, and p, can be determined relative to some arbitrary depth a for p,. If the
technique is applied next to point p,, the 3-space position of point p, can be determined as a function of the
depth a. 'This precedure continucs with points p,, p,, and so on, until the 31D configuration of the whole

structure has been determined, relative to some arbitrary depth,
P

4 B P,5
"vertical” '
P\\"'h |
3 I
P7 I o
6
direction /
to vertical / "vertical®
vanishing / ‘\___a”
point
P
P2 1

Figure 22: The solid lines represent a connected 21D structure. The dashed lines  are for the
rcader’s convenience to make the 31D shape more apparent.

In order to obtain a coherent scene description, the depths of the different structures in the scenc must be
related. We use two methods to do this. The first method involves finding structures that lie on the ground
plane. Supposc a junction point p of such a structure is hypothesized to arise from a vertex lying on the
ground. Then the 3-space position of the vertex may be obtained as the intersection of the ground plane with
the ray through p. The normal vector u to the ground plane is known, but the distance 4 from the focal point
to the ground plane is arbitrarily chosen. Since the 3-space position of all junctions arising from ground
points can be calculated in this manner, the depths of all structures containing such points can be related to

one another through the parameter 4,

To hypothesize junctions that arise from vertices lying on the ground plane, we use the obscrvation that if a
line labeled "vertical” connccts two junctions (c.g., line pyp, in Fig. 22), the linc is dirccted toward the vertical
vanishing point with respect to one junction, but away from this vanishing point with respect to the other
junction. The latter junction is assumed to represent a vertex lying on the ground plane. Points p, and p, in
Fig. 22 are examples of such junctions. The 3-space positions of these junctions are then calculated, and their
values are propagated throughout their structures as described previously. Fig. 23 depicts a perspective view

of the 3D wire frames obtained in this manner.,

There are many structures in Fig. 20 that do not contain points lying on the ground plane, cither because

such points arc occluded in the scene or because they have not been properly extracted from the image.
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Figure 23: Perspective view of 31D wire frames generated from Fig. 20 using the method of
finding junctions arising from vertices lying on the ground plane.

Neverthless, the heights of some of these structures can be determined using the rule that if two lines are
aligned in the image, they are ofien aligned in 3-space. This rule hés been used in other systems [l.owe and
Binford 81] and in fact is a restricted version of the parallet line rule [Kanadc 81] which states that paraile]
tines in the image often arise from parallel lines in 3-space. To sec how this rule is used, consider Fig. 24.
Suppose that points p, through p, have already been assigned 31D coordinates, and we want to obtain the
3-space position of the 2D structure pgpypopy;. Since the lines pgp, and pgp,, are aligned in the image and both
are labeled "horizontal”, they are assumed to be aligned in the scene and 1o lic in the same horizontal plane.
The 3-space position of (say) point pq is therefore determined as the intersection of this plane with the ray
through p;. The 3D coordinates of this point may then be propagated to points p,. P and p;, as described
previously. Note that all 3D positions arc functions of the paramecter «, which is arbitrarily chosen for the

cquation of the ground plane.

Fig. 25 depicts a perspective view of the final 3D wire frames obtained using both the methods of

hypothesizing points on the ground planc and applying the alignment rule.
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Figure 24: If the 3D configuration of the structure on the left has been  determined, the
relative 312 position of the structure on the right may also be determined because lines Py
and pyp,, are aligned.
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Figure 25: Perspective view of final set of 3D wire frames generated from Fig. 20.
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5. Representing and Manipulating the 3D Scene Model

The representation we have developed for the 31) scene model draws on ideas from geometric modelling
used in computer-aided design systems [Baer, Fastman, and Henrion 79. Requicha 80]. In these systems,
however, the 3D models are usually derived through interaction with a user. Qur casc is different in that (1)
the 31D models are derived automatically from 213 images, and (2) many portions of the scene are unknown or

recovered with errors because of ocelusions or unreliable analysis.

The following factors have determined how the scene model is represented and maniputated.

1. Partially complete, planar-faced objects must be cfficiently described by the model. It is therefore
represented as a graph in terms of symbolic primitives such as faces. edges, vertices, and their
topology and geometry. Information is added and deleted by means of these primitives,

2. The model must be casy to use in matching.

3. Because scenc approximations are often more useful if they contain reasonable hypotheses for
parts of the scene for which there are partial data, we introduce mechanisms that permit
hypaotheses (o be generated, added, and deleted.

4. Because incremental modifications 0 the model must be casy to perform, we introduce
mechanisms to (a) add primitives to the model in a manner such that constraints on geometry
imposed by these additions are propagated throughout the model, and (b) muodify and delete
primitives if discrepancies arise between newly derived and current information.

5.1. Representation of Model

The 3D structure in the scene is represented in the form of a graph, called the structure graph. The nodes
and links represent primitive topological and geometric constraints. The structure graph is incrementally
constructed through the addition of these constraints. As constraints are accumulated, their effects are

propagated to other parts of the graph so as to obtain globally consistent interpretations.

The current structure-graph representation models surfaces in the scene as polyhedra. The components of a
polyhedral surface are the face, edge, and vertex. We distinguish the topology of the polyhedral components
from their geometry [Bacer, Eastman, and Henrion 79. Eastman and Preiss 82]. The geometry involves the
physical dimensions and location in J-spacc of cach component, while the topology involves connections

between the components.

Nodes in the structure graph represent either primitive topological clements (i.c., faces, edges, vertices,
objects, and edge-groups (which are rings of edges on faces)) or primitive gecometric clements (ic., planes,
lines, and points). Face, edge, and vertex nodes are tagged as cither confirmed or unconfirmed, Confirmed

means that the clement represented by the node has been derived directly from images. Unconfirmed ineans
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that the clement has only been hypothesized.

‘The primitive geometric clements serve to constrain the 3-space locations of faces, edges, and vertices,
Plane and lin¢ nodes contain plane and line cquations, respectively. Point nodes contain coordinate valucs.,
The structure graph contains two types of links: the part-ofTink, representing the part/ whole relation between
two topelogical nodes, and the geometric constraint link, representing the constraint refation between a

geometric and topological node.

Fig. 26 shows a simple example of a structure graph consisting of two objects, obf and 0b2. Arrows with
single lincs represent part-of links, and arrows with double lines represent geometric constraint links, The
faces are represented as ;- the edge-groups as g, , the edges as ¢, and the vertices as v, . the graph shows one

point node pf and onc plane node pl.

5.2. Modifications to Model
Madifications to the structure graph arc made by adding or deleting nodes and links, or changing the
cquations of linc and plane nodes, or the coordinates of point nodes.  All effects of modifications are

propagated to other parts of the graph.

As an example, consider adding or deleting a geometric constraint link between a geometric and topological
node. Any of the three geometric nodes (points, lines, and plancs} may constrain any of the three topotogical
nodes (vertices, edges, and faces). Fig. 27 shows how a constraint on onc node may propagate to others. The
arrows in the figure indicate the direction of propagation. Point constraints propagate upward. That is, if a
point constrains a vertex, it must also constrain all edges and faces which contain that vertex. Simitarly, a
point that constrains an cdge also constrains all faces containing that edge. Line constraints propagate
outward, and plane constraints propagate downward. Whenever a geomctric constraint link is added,

propagation occurs as indicated in Fig. 27.

When a geometric constraint link is deleted, the rest of the structure graph must be madce consistent with
this change. Our approach 1o this problem is based on the TMS systemn [Doyle 79], using the notion that
when an assertion is deleted, all assertions implying it and all assertions implied by it that have no other
support should also be deleted. We obtain assertions that imply a éiven asscrtion by following backwards
along the arrows in Fig. 27, and we obtain asscrtions implicd by a given asscrtion by following forward along

the arrows.

Consider the simple example in Fig. 28a, which depicts three topological nodes (vertex v, edge e, face f)

constrained by one geometric node (point p). Supposc now that link 4 is dcleted (Fig. 28b), that is, the



Figure 26: Simple example of a structure graph consisting of two objects, ob! and ob2.
Double line arrows represent geometric constraint links, and single line arrows represent
part-of links.

-
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asscrtion "p constrains " is deleted. All assertions which have implied this must now be deleted, for if one
were to hoid, link 4 would alse hold. To Nind these assertions, we locate the box in Fig. 27 that represents a
point constraining an cdge and follow backwards along the arrow, The result is the box that represents the
puint constraining any vertex of the edge. In Fig. 28b, this corresponds to the assertion "p constraing v, and v
is part of ¢". This assertion must therefore be made false. 'To do su, we may delete either link 1, link 3, or
both from Fig. 28b. Our intuition tells us that part-of links (link 1) should dominate constraint links (link 3),

and thus link 3 is delcted. 'Vhis scems o work well for our examples,

We now must determine the assertions implicd by the onc initially deleted. All these assertions must also be
deleted unless they have other support. To do so, we foltow forward along the arrow from the box in Fig.
27 that represents a point constraining an edge, and the result is the box that represents the point constraining
all faces containing the cdge. In Fig. 28b, this corresponds to the assertion " p constrains f*, which is link 5.
This link should therefore be deleted since it has no other support. ‘The resulting structure graph is depicted
in Fig. 28c.

6. Generating the 3D Scene Model

The result of image analysis is a 312 wire-frame description that represents 31 vertices and edges which
correspoend 1o portions of boundaries of objects in the scene. We construct a surface-bascd description -- the
31) scene moded -- from these boundaries by hypothesizing new vertices, edges, and faces. Both the wire-

frame and surfacc-based descriptions are represented by structure graphs.

Our current techniques for hypothesizing the scene model will be shown next using an example that starts
with the output of the sterco analysis component depicted in Fig. 29. These techniques provide a method for
hypothesizing parts of the scene for which there are only partial data by exploiting task-specific knowledge.

The various thresholds used throughout this example have been manually chosen.

Combine cdges. First, if two wire-frame cdges are nearly parallel and very close to each other, they are

merged into a single cdge. This occurs only once in Fig. 29, for the two edges labeled El and E2.

Generate weh Taces. Next, cach vertex is assumed te correspond to a corner of an abjcct. Therefore each

adjacent pair of legs ordered around the vertex corresponds to the corner of a planar face, ‘Thus far in our
experiments, we have dealt only with trihedral vertices. In this case, every pair of legs of each vertex
corresponds to the corner of a separate face. A partial face, called a web face, is generated fur cach such pair
(Fig. 30a).

Merge partial faces. After all web faces have been created, those that represent portions of a single face are
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Figure 27: Rectangular boxes indicate geometric constraints on topological nodes. Arrows
indicate direction of propagation of constraints,
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pconstrains e (link 4)
pconstrains f(link 5)

Figure 28: (a) Inidal structure graph. (b} Link 4 is deleted. {c) Resulting structure graph
after cffects of deletion have been propagated.



Figure 29: Perspective view of 313 vertices and cdges extracted from sterco pair in Fig. 4.
This version is different from the one shown in Fig. 13.
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Figure 30:  Obtaining a surface-based description from wire frames.
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merged. Two partial faces that touch each other (e.g.. Fig. 30b, and F1 and F2 in Fig. 29) should be merged if
(1) they share cxactly one edge, (2) the edge scrves as a boundary of both faces, but does not partition them,

and (3) the plancs of the faces are nearly parallel and very close to each other.

Two partial faces that do not touch cach other (e.g., Fig. 30c, and F3 and F4 in Fig. 29) should be merged if
(1) cach face has a single chain of edges that is not closed, (2) cach of the two end points of the edge chain of
onc face is uniquely matched with those of the other face, where unique maliching is determined by the
disumee between the two phinL-; being less than a threshold, and (3) the planes of the fuces are nearly parallel
and very close to cach other. When merging the two non-contacting faces, the two cdges on which each
matching pair of end points lic are extended in space and intersected. ‘The intersection puoints form two new

vertices on the resulting face.

because they do not have closed boundaries. In these cases, task-specific knowledge is used to hypothesize
the shape of each face, and it is completed by gencrating the appropriate edges and vertices. The rules used

here are:

1. If the partial face consists of a single corner, i.c.. it contains only two connected edges (Fig. 30d).
the shape is completed as a paraliclogram.”

2. If the partial face contains three or more edges connected as a single chain (Fig. 30c), the shape is
complcted by connecting the two end points of the chain with a new cdge.

Find holes in the faces. Afier all faces have been completed, one face is assumed to represent a hole in

another face if (1) the planes of the faces are nearly parallel and close to each other, and (2) the boundary of
the first face, when projected onto the plane of the second face, falls inside the boundary of that face (Fig.
30f). When these conditions are met, the bounding cdges of the first face are converted into an inncr ring of

cdges of the second face.

Generate yertical faces for incomplete objects. At this point, many objects will be only partially compiete

because they are not closed. Since we are dealing with urban scencs, faces that tic high cnough above the
ground arc assumed to represent roofs of buildings. A hypothesized vertical wall is dropped towards the
ground from cach cdge of such faces, unless the edge is alrcady part of another face (Fig. 30g). Fach wall is
dropped cither to the ground or to the first face it intersccts on the way down. The cquation of the ground
planc is currently interactively obtained. The procedure for dropping vertical faces from a face F is as follows.
First, an edge is dropped from cach vertex of F cither to the ground plane or to the first face it intersects.
Next, web faces are created for each new cdge pair at cach vertex. Newly created faces are then merged and

complcted in the ways described above,
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Fig. 31 shows several perspective views of the resulting scene model. Notice that onc of the buildings has a
hole in it, through the roof. The planar patches at the "front” of the scene are part of the ground. Because
they were not high cnough above the ground plane, they were not {reated as building reofs. Fig. 32 shows the
scene model generated when these techniques are applied w0 the wire-frame description obtained using
monocular analysis (Fig. 25). Note that all vertices, edges, and faces which have been hypothesized by the
procedurcs described above are marked as such, and will be-replaced by more correct versions as more

information becomes available from new views,

6.1. Comparison with Depth Map

There are sceveral interesting points about the model generated from the stereo output. First, notice that it is
a higher level description than a depth map. The product of many stereo analysis systems is a depth map
[Baker and Binford 81. Grimson 80, Ohta and Kanade 83] which, like an image, is an array of numbers that
will have to be converted into a higher level description. Our appméch, on the other hand, has been to extract
a set of 3D features using sterco analysis (as shown in Fig. 29) and to usc task-specific knowledge to go
directly to a higher level 3D description. This description is symbolic and much more compact than one
based on surface points, and allows relative sizes and positions of scene objects or their parts to be casily
available. This facilicates matching and updating the modcl with 3D information derived from subscquent
views. matching the mode! with other modcls, generating and deleting hypotheses for parts of the model, and

computing structural featurcs of the model.

6.2. Mapping Gray Scaie onto Faces

In order to render morc realistic displays, gray scale is added to them [Devich and Weinhaus 80). This is
usecful for realistically simulating the appearance of the scenc from arbitrary viewpoints. We associate with
each face in the model a normalized intensity image patch of the face. These patches arc currently extracted
from a single image of the scene, but may cventually be cxtracted from muitiple images. For faces that are
partially occluded in the image, the intensity patch is associated with the unoccluded portions. Geometric
normalization, which climinates the effects of perspective projection, is performed on the patches. We also
hope to perform photometric normalization to climinate the cffects of varying itlumination conditions. Figs.
33 and 34 show the results of adding gray scale to the faces of the models in Figs. 31 and 32, respectively. On
a color display. faces and parts of faces that are occluded in the original image are displayed in red. This can
be used in a task such as planning flight paths to obtain more images of the scene. The optimal path might be
one in which the maximum amount of red portions can be vicwed. An interesting future problem involves
incrementally updating the intensity patch of a face as information is acquired from successive images. Note
that the gray scalc displays might also be uscful in performing a 2D match betwecen the projected image of the

model and an image of the real scene.



Figure 31: Perspective views of buildings reconstructed from wire-frame data in Fig. 29.
These buildings correspond to the cluster of buildings at the upper middle parts in the
images of Fig. 4.

8t



39

Figure 32: Perspective views of buildings reconstructed from wire-frame data in Fig, 25.



Figure 33:  Reconstructed buildings of Fig. 31 with gray scale, derived from the left image

in Fig. 4, mapped onto faces. On a color display, faces and portions of faces occluded in the
original image are colored red.

Figure 34: Reconstructed buildings of Fig. 32 with gray scale, derived from Fig. 14,
mapped onto faces.
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7. Combining New Views with Current Model
The process of incorporating a 3D wire-frame description extracted from a new view into the current scene
model can be divided into three main steps:
1. The wirc-frame data must first be matched to the current model. ‘This process provides (a) the

scale transformation and coordinate transformation from the wire-frame data to the model, and
(b) corresponding clements (i.c.. vertices and edges) in the two.

2. The new wire-frame data is then merged with the current model. This process inctudes (a)
merging pairs of corresponding clements, and (b) adding to the model wire-frame clensents for
which no correspondences were found. ‘The latter procedure is aided by knowledge of the scale
and coordinate transformations. During the merging process, hypothesized parts of the modcl
that arc inconsistent with the new wire-frame data are deleted.

3. At this point, many objects in the model may be incomplete because {(a) new wire-frame data has
been added. and/or (b) some hypothesized elements have been deleted.  ‘These abjects are
completed using the technigues described in section 6.

To see how these steps are carried out, consider the example of incorporating the information from a second
view into the scene model of Fig, 31. This scene model was constructed from the set of wire frames (Fig. 29)
automatically extracted from a "front” view of the scene (Fig. 4). The second set of wire frames, shown in
Fig. 35, was manually gencrated to simulate information availabie from an opposing point of view (viewing
the scene from the "back™). 'The viewpoint for the perspective drawing of Fig.' 35 is chosen to be similar to
that of Fig. 29 to allow casier comparison by the reader. Notice that the information in Fig. 29 emphasizes
edges and vertices facing the front of the scene, while those facing the back of the scene are emphasized in
Fig. 35.

7.1. Matching
We assume in this cxample that the scale and coordinate transformations from the new wire-frame data to
the current model is known; the data and model may therefore be described in the same coordinate system.

We have not yet implemented a general matcher that provides these transformations between the two.

The next step is to detenmine corresponding edges and vertices in the data and model. First we label cach
connected group of edges in the wire-frame data as a distinct wire-frame object. Next, wire-frame objects are
matched with modecl objects. T'wo objects are said to match if they have confirmed parts that match, Matches
are sought only for edges and vertices, since these constitute the only confirmed parts of a wirc-frame object.
The requirements for two confirmed vertices, one from cach object, to match are: (1) they must be very close
to each other, or (2) they must be part of matching edges whose other two vertices match. ‘The requirements
for two confirmed cdges, one from cach object, to match arc: (1) the two confirmed vertices of one edge must
match the two of the other, or (2) one confirmed vertex on one cdge matches onc on the other, and the two

s



42

Figure 35: Perspective view of manually generated vertices and cdges which simulate
_information available from images showing an oppuosite puint of view from that shown in
Fig. 4. 'The viewpoint for this drawing is chosen to be similar to Fig. 29. Points P1, P2, and
P3, for example. correspond to points P1. P2, and P3 in Fig. 29.

edges are close wgether and overlap in their lengths. These rules are used in a relaxation algorithm to obtain
matching vertices and edges.

7.2. Discrepancies

We must now merge the new wire-frame data into the model. An important issue here is how to handle
discrepancies between the two, We consider the following two types of discrepancies:
1. After the coordinate system of the wire-frame data has becn transformed to that of the modcl and

scale adjustments have been made. corresponding pairs of confirmed vertices and edges may not

register perfectly in 3-space. In order to merge them into single clements, we perform a "weighted
averaging” of their positions.

2. Hypothesized clements in the model may be inconsistent with newly obtained elements, We
handle this by deleting such hypothesized clements,

To determine whether or not hypotheses are still valid when confirmed clements in the model are modified
or deleted, we consider the clements which gave risc to the hypotheses. A hypothesis is dependent on all
clements whose existence dircctly resulted in the creation of the hypothesis. If onc of these clements is
modified or deleted, the hypothesis must also be muodified or deleted since the conditions under which it was

created arc no longer valid, The dependency relationships for hypothesized clements are explicitly recorded
at the time of their creation using dependency pointers [Doyle 81].



43

The following examples show how some of these relationships are recorded:

1. When two non-touching partial faces arc merged, (Fig. 36a) each face has two cdges which are
intersected with their counterparts in the other face. The intersection points form two new
hypothesized vertices, cach of which is dependent on the two edges whose intersection gave rise to
it. In Fig. 36a, the arrows indicate the dependencics. Vertex v/ is dependent on cdges ef and e3,
and vertex v2 is dependent on edges 2 and e4. 1f one of the edges were to be modified (e.g., if its
position were to be displaced), the vertex that depends on that edge would no longer be a valid
hypothesis, and would thercfore be deleted. A new vertex might then be hypothesized.

2. When a face is completed by connecting its two end points (Fig. 36b). two new vertices and one
new cdge are hypothesized. The new edge o4 is dependent on both ef and e3, while the new
vertices v/ and v2 are dependent on the edges on which they lie.

3. When a vertical wall is dropped from a face, the first step is to drop hypothesized edges from
vertices of the face. Such edges are dependent on the vertices from which they are dropped. In
Fig. 36¢, the new edges ef and e2 are dropped from, and arc dependent on, the vertices v/ and v2,
respectively. A dropped edge is constrained to be perpendicular to the ground piane, and would
therefore no longer be a valid hypothesis if the vertex it depends on, which is onc of its end points,
were 10 be displaced.

el ¢3

(a) ' (b) tc)

Figure 36: Generating dependencics for hypothesized edges and vertices. The dependence
of an element on another is depicted as an arrow from the former to the latter, (a) Two
non-touching partial races arc merged. (b) A face is completed. {¢) Vertical cdges are
dropped from a floating face.

When a confirmed edge or vertex in the model is modified or deleted, the set of all hypothesized etements
that depend on it are deleted.  Recursively, clements depending on deleted onces are aiso deleted. When
hypothesized vertices and edges are deleted in this manner, it is possible for hypothesized faces to lose
minimal support, i.c., they may no longer be constrained by at least three non-colinear points. Such faces are

also deleted.



7.3. Merging

The procedure that merges corresponding wire-frame and model objects takes into account the fact that the
3-space positions of end points of edges that are confirmed vertices arc gencerally much more accurate than the
positions of non-vertex end points, Therefore, confirmed vertices are given more weight during merging. As
an example, consider Fig. 37. Suppose the wire-frame object in (b) is to be merged with the model object in
{a). and the corresponding edges and vertices are as follows:  (v2, vI00), (v3, v101). (e, el00), (e3, el0f)
(ed.c102). (el2, el04). We assume the wire-frame object has been transformed to register with the model
object. The solid lines in the model represent confirmed cdges: the dashed lines represent hypothesized

edgces.

The merging procedure starts by merging corresponding vertices. Pairs of vertices ((v2, v100) and (v3, vi01)
in Fig. 37} arc combined into single vertices with coordinates of the midpoint between them. [f the distance
between an initial pair of vertices exceeds g threshoid, all hypothesized elements that recursively depend on
the initial model vertex are deleted. At this point, all corresponding pairs of edges will share at least one

vertex. The corresponding edges arce merged next as follows:

L. If the two edges share both their vertices ((e3. e/01) in Fig. 37), the new cdge connects the two
new vertices already generated.

2. If one edge has two confirmed vertices but the other does not ((e2, e/00) and (e4, €102} in Fig. 37),
the new cdge is the same as the former. Notice that the non-vertex end point in this case is given
zero weight.

3. If the two cdges share one vertex and the other end points are not confirmed ((el2, €/04) in Fig.
37), the new edge is the "average” of the two edges.

If a model edge to be merged contains only one confirmed vertex (e.g., e4 and e/2 in Fig. 37), then all
hypothesized clements that recursively depend on this edge are deleted. For example, the hypothesized
clements that recursively depend on e in Fig. 37 arc the vertices v¢ and v7, and the cdges e5, ef0, €9, and e/ ],
If a model edge to be merged contains wo confirmed vertices (c.g., ¢2 and e7 in Fig. 37), no hypothesized

elements need be deleted since all necessary deletions were done when the vertices of the cdge were merged.

After all corresponding clements of the two objects have been merged, the cdges and vertices remaining in
the wire-frame object that were not merged (e/03 in Fig. 37) are added to the model object. The final
configuration after merging is shown in Fig. 37c. This object is incomplete and must be completed using the

technigues described in section 6.
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Figure 37: The wirc-frame object in (b) is to be merged with the model object in (a). The
confirmed cdges of the model object (indicated by solid lines) arc e/, e2, e3, o4, and e/ 2; the
confirmed vertices (indicated by circles) are v/, v2, and V3. Dashed lincs represent

hypothesized edges. (¢) The result after merging.
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7.4. Results of Merging

When these procedures are applied to the wire-frame data in Fig. 35 and the scene model in tig. 31, we
obtain the updated scene mode! shown in Fig. 38. The updated version has two important improvements over
the initial version. First, the updated model contains more buildings since new wire-frame data, some of
which represent new buildings, have been incorporated into the initial model. Sccond, for many buildings
described in both versions of the model, the positions of vertices and edges are more accurate in the updated
version. This is because many hypothesized vertices and edges are replaced b‘y accurate ones obtained from
the new data, and many confirmed vertices and cdges are merged with corresponding ones in the data by

"averaging” their positions, generally decreasing the amount of error.,

The shape of the large hole in the roof of one of the buildings has changed from a rectangle in the initial
maodel to an almost triangular quadrilateral in the updated version. When compared with the source images
in Fig. 4. the rectangular shape would seem more accurate. However, the positions of the cdges and vertices
that form the hole are more accurate in the updated model in the sense that they are more faithful to the

wire-frame descriptions derived from the images.

This experiment demonstrates how information provided by each additional view ailows the model to be

incrementally made more complete and accurate.

8. Summary

The 3D Mosaic system acquires an understanding of the 3D cdnﬁguration of surfaces and objects in a
scene. The system cncompasses scveral levels of the vision process, starting with images and ending with
symbolic scenc descriptions. Because the scenes considered are highly complex, we use multiple views so that
more information can be extracted than from a single view. This has led to an incremental approach for

acquiring the scene model. As a result, the following capabilitics are required:

1. Image analysis must extract as much scene information as possible from input images.
2. Partial scene descriptions must be represented and manipulated.
3. Incrementat modifications and updates to the scene model must be easy to perform.

4. Mcchanisins for generating, manipulating, and deleting hypotheses from the madel must be
introduced.

A view of the scene may be cither a single image or a sterco pair. Two scparate system components for
extracting 3D information from images have been described: stereo analysis and monocular analysis. Both of
these components extract sparse 3D wire-frame descriptions from the images. A component that converts

these wire frames into a surface-based description has also been described.,
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v

Figure 38: Perspective views of buildings derived by incorporating  the wire-frame data in
Fig. 35 into the model in Fig. 3L
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We have demonstrated that task-specific knowledge is very useful for interpreting complex images.
Knowledge of block-shaped objects in an urban scene is used for stereo analysis, monocular analysis, and
reconstructing shapes from the wire frames. Our techniques have been demonstrated on complex aerial

photographs of urban scenes.

There are several extensions and improvements to the system that we will pursuc in the future:

1. Incorporating depth map data. Currently, our stereo analysis extracts a sparse sct of wire frames
from Lhe images. We would also like w include a sterco algorithm that extracts depth maps [Baker
and Binford 81, Grimson 80, Ohta and Kanade 83}. ‘the depth map from a new view would have
to be segmented into surfaces, edges, and vertices, and merged into the current model.

2. Improving the 3D matching. The algorithm that matches new 3D information with the current
model should be improved so that it can provide the scale and coordinate transformations
between the two. In addition, the current algorithm, which considers only cdges and vertices when
performing the matching, will have to be cxtended to include faces that may be dircetly obtained
from a depth map.

3. Using the current model to interpret a new view. Currently, 313 information is extracted from a
new view without using any information availabic in the model generated from previous views,
Making use of the current model may aid in scgmenting a depth map, or cxtracting 3D
information from a single image.

4. Improving the monocular analysis by using other monocular cues, such as shadows [Shafer and
Kanade 82] and texture.
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