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Abstract

This report outlines a methodology for validating a reliable muitiprocessor system. This validation
methodology is being used, in part, on the Fault Tolerant Mutfi-Processor (FTMP) at NASA/Langley's
AIRLAB facility. Specific experiments run on FTMP are discussed. These experiments were part of a
methodology designed to test and verify the fauit-free performance of the system at many levels, from
hardware through system software.

This report also discusses the analysis of several baseline experiments, that is, experiments that
give basic information about the system. Results of the baseline experiments are a prerequisite for
measuring FTMP performance in more complex experiments. From the baseliﬁe experiments it was
determined that the clock was constant and independent of workicad in the tested cases; that

“instruction execution times are virtually constant; that the R4 frame size is 40mS$ with some variation:
and that the frame stretching mechanism has some flaws in its impiementation that aillow the
possibiiity of an infinite stretching of frame duration.

Future measurements are planned. Some will broaden the results of these initial experiments.
Qthers will measure the systam more dynamicaily. The implementation of a synthetic workicad
generation mechanism for FTMP is planned to enhance the experimental environment of the system.



1. Introduction

An aircraft of the 1980's will have computer systems that must function correctly for the aircrait to
fly. Many studies have been performed on fauit tolerant avionics computers. One such study by
NASA, in its Aircraft Energy Efficiency (ACEE) program [9), requires that an aircraft computer failure
probability shouid be less than 1070 per hour. Systems have been built with this goal in mind (SIFT
and FTMP (9, 4, 3]). Techniques must be developed for measuring the performance and reliability of
these systems,

Camegie-Meilon University has been involved in developing methods of validating and measuring
multi-processors.  In addition, NASA has held several workshops to determine system validation
procedures. One workshop In particular [8] produced ‘a detailed list of validation tasks to verify a

‘system in an orderly manner.

This theory is being tested and extended on the Fauit Tolerant Multi-Processor (FTMP). These
experiments were performed at NASA-Langley Research Caenter. The computer systems are in a
laboratory called the Avionics Integrated Research Laboratory (AIRLAB). AIRLAB is a facility for
developing technologies and methodologies to evaluate and integrate avionics and control functions
of future aircraft and to estabiish a store of performance evaluation and refiability evaluation statistics.

Some background is required to understand the experiments that were performed and how they
relate to the overail goais of this research. Section 2 expiains FTMP and discusses the theoretical
environment and methodology for fault-free validation of FTMP. This section also describes the
present state of the environment and validation process. Section 3 explains the experiments to
measure some of the processor and operating system characteristics of FTMP. In Section 4, the
experimental results are presented and conclusions drawn. A summary and discussion of future work
is presented in Section 5.
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2. Background

This section first describes the Fault Tolerant Multi-Processor (FTMP). Next, it discusses the
theoretical basis for the experiment environment and the methodology for evaluating fauit tolerant
multi-processors. Then, the present working environment and state of FTMP validation is explained.

2.1 The Fault Tolerant Multi-Processor (FTMP)

The Fauit Tolerant Multi-Processor (FTMP) has been discussed in several papers and manuals
[3,4]. This section will oniy describe those details necessary for understanding the experimental
resuits. For more details the interested reader is referred to the literature. Figure 2-1 depicts FTMP at
the software level (as seen by the application programmers). There are up to three triads, each with
local memory. A triad consists of three processors that the programmer sees as a single processor.
A bus connects the triads to global or main memory, 1/0 devices, a real-time clock and several
latches needed for fault handling. The triads only execute independently when accessing local
memory. ‘

Work is performed by tasks. A task is a process that can be started indepehdent of other tasks.
Each triad will run tasks according to a’schedule. Each task is assigned a ime limit, If a task cannot
be completed within the time limit, the task is stopped and.the next task started.

Tasks are run within frames. Frames also act as a synchronization mechanism between triads. One
of the triads becomes the leader and starts a frame for that triad and signals all of the other triads to
start the frame. In the time allotted by the frame, the group of wdrking triads must execute all of ihe
tasks they are assigned. The tasks are in a global linked list with each pointing to the next task
{(except the last which has a null pointer). The individual triads access the global list to pick up a task.
If there is more than one triad, some tasks will be executed in parallel. When there are no more tasks
available for a triad to execute the triad becomes idle until the end of the frame. At that time, a triad
becomes leader and starts 3 new frame,

In FTMP there are actually three frame sizes, each having a different frequency of execution as seen
in Figure 2-2. Each triad has separate pointers to tasks for each rate group. The frame sizes are:

e R4, the basic frame size
¢ R3, equivalent to 2 R4 frames
¢ R1, equivalent to 4 R3 frames, the 'major’ frame

Task execution becomes more complicated with multipie frame sizes. One triad still signals the start
of the R4 frame, however, every second R4 frame it also starts an R3 frame and every eight R4 frames



Figure 2-1: FTMP System
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Figure 2-2: Frame Structure

it starts an R1 frame. The order in which a triad executes tasks for the different frame groups is fairly
simple. First. it executes all of the R4 tasks, then (still in the same R4 frame) it executes R3 tasks. If
the R3 tasks do not finish before the next R4 frame, execution of the R3 task is suspended and
another R4 frame is started. Again, when all of the R4 tasks are done; the RQ tasks are continued. If
the R3 tasks are finished, the R1 tasks are started. !f these tasks are not finished before the beginning
of the next R4 frame, they are suspended and started after the R4 tasks are done in the next frame. If
another R3 frame starts before the R1 tasks finish, the current R1 task is suspended in the triad until
time is available in a frame.

There is anather interesting item concerning frames. According to the documentation, if a task
needs more time in a frame, the frame can be stretched as illustrated in Figure 2.3. An R4 frame is
stretched by a specific amount and R3 and R1 frames are stretched by giving them more R4 frames
The third experiment uncovered some interesting properties of this stretching mechanism.

Time is kept using a global clock. The clock has a resolution of .25mS (that is, each clock tick is
25mS). The clock and 1/0 devices are accessed by using a function called HREAD. A
complimentary function is HWRITE. HREAD allows a program to transfer bytes between a device and
the local memory of a triad. Transfei's between local and global memory occur by invoking the
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Figure 2-3: Frame Stretch Mechanisms

functions RD and WRT. Knowing the amount of time that these transfers take and how the time can
vary are crucial to understanding the limits of system performanca.

Several computing systems are invoived in running the experiments. Programs for FTMP are written
in a language called AED and assembly language. The compiler, assembler and linker for thess
languages reside on an IBM 4331, Object files are transferred to a VAX/750. Special interface
programs on the VAX are used to load, read and write giobal memory locations in FTMP. Also, a
batch facility on the VAX allows experiments to be run unattended. An HP terminai displays the status
and other features of FTMP while it is running. Recently, it became possible to remotely access FTMP -
through the VAX so that experimenters do not have 10 be present at AIRLAB to conduct experiments.



2.2 Experiment Environment

This section will briefly outline the environment propased for the fault-free validation of FTMP. This
environment has been developed for the performance evaluation of Cm* at CMU.

Multiprocessor systems are enormously complex. In order to make them easier to comprehend, it is
necessary to divide the system into several levels. One can then proceed from the most primitive level
upwards to the highest conceptual level by introducing a series of abstractions. Each abstraction
contains only information important to its particular level, and suppresses unnecessary information
about lower leveis. The levels in a digital system frequently coincide with the system’s physical
boundaries since the concept of levels was utilized by the system’s designers to manage complexity.
Once details at one level are comprehended, only the functionality provided for the next higher level
need be considered. Figure 2-3 depicts one possible set of leveis of abstractions.

Level Sublevel Typical Components

Muitiprocessor Processor, memory,
o ’ switches

Program Application Scoftware Dispiay, navigation,
' ' flight control

Executive Software Message system, task
scheduler, memory
allocator

Instruction Set Memory state,
processor state,
effective address
calculation,
instruction execution

Hardware Logic Gates, flip-flops,
registers, sequential
machines

Figure 2-4: Levels of Abstraction in Multiprocessor Systems

Qur experience at CMU indicates multiprocessors go through a series of stages. A stage is defined
by the amount of functionality available to the user. This functionality, in tumn, determines the
complexity and sophistication of experiments that can be conducted.

There are several activities in the life of an experiment. First, the code has to be designed and
written. Next, it must be compiled, followed by loading, debugging, measurement, and analysis,



Another view of the stages of a system's life is the number of these activities that are directly

supported by the system for the user.

The following are three representative stages in the evolution of a typical muitiprocessor system.

2.2.1 Stage 1 - Standalone

The system is compieted through the instruction set level of abstraction. That is, the instruction set
has been defined and the hardware has been implemented. There is virtuaily no software to support
user appiications. The only software utility would be a loader whereby programs compited on another
machine can bé loaded into the system under test. Experiments are limited to simple, regular,
compute bound aigorithms. Oniy a limited number of parameters may be varied, and this variation
requires rewriting of the source code of the experiment. There are several attributes to Stage 1
experiments. The programmer must be a hardware expert since there is littie software to provide a
higher level virtual (abstract) machine. Hence the program is tied closely to the hardware. The user
.must specify where code is placed, define the memory map, and write code to initialize the memory,
create processes, manage resources, and callect data.

Typical experiments in Stage 1 include: -

o Hardware Saturation. Programs consist of two or three instruction loops with variation
in piacement of code and data. Thecapacatyofvanoussystemhardwanmourcesis
determined as well as the impact of contention for those resources.

e Speedup due to Algorithm/Data Variation. Experiments seek the impact of
synchronization for data, as well as variation due to data dependencies and size of data.

e Errors. Diagnostic programs can be continucusly run and monitored on the system.
Distribution of diagnostic detected errors can be studied.

2.2.2 Stage 2 - Operating System (0S)

The user is presented the abstraction provided by the executive software. This softvirare provides
basic functions such as resource management and scheduling. In programming experiments, the
user employs operating system primitives. Hence, the user needs a substantial operating system
expertise. Also, characteristic for this phase is the discrete incremental nature of the experimentation
process; each experiment represents che poi.nt in the design space.

The attributes of Stage 2 applications can be stated as follows:

e very regular, data bound with limited variation of parameters

¢ the general program organization has a Master process controiling a collection of Slave
processes doing the actual computation

e code is replicated
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e heavy use of OS mechanisms

Typical experiments are;

¢ Measurements of the cost-per-feature of the operating system’s functions.
Experiments exercise statically each OS function on a one by one basis. Exampiles
include: memory management, communication primitives, synchronization, scheduling
and exception handling.

¢ Measurements of different implementation of parailel algorithms. The impact of
using various strategies in parallel program organization, data structure and resource
allocation is studied.

2.2.3 Stage 3 - Integrated Instrume.ntation Environment

At this stage hardware and software have been provided for generating experimental stimulus,
dynamically observing hardware and software activities, and analyzing resuits(8]. With this
enhanced support, the user can experiment at the application level of abstraction with full variation of
parameters. A major characteristic of this stage is the provision of stimuius generation, monitoring,
data collection and analysis grouped under a unique user interface. Also the OS, the support
software and the user application are uniformly instrumented enabling improved behavior visibili'ty.
Only with this capability, the interaction between OS, suppart software and user application became
measurable with acceptabie effort. Hence, the programmer could be a relative system novice.
Experiments at this stage have the foilowing attributes: -

o Measurements of dynamic behavior of OS and applications.

 Measurements are continucus. Program could be monitored on-line and sometimes in
real-time,

« Studies of different virtual machines.

o Studies of ditferent logical intercommunication structures.

¢ Scaling application performance with respect to different virtual machines.

Examples of experiments at this stage include:

e Comparison of various CS policies as reflected by classes of applications.

¢ Tuning a virtual machine for a specific application.

¢ Designing application oriented architectures.

o Study of muitiprocessor intercommunication strategies.

¢ Validation of fault-free performance of an emulated system.

e Study of the architectural effectiveness and efficiency.

¢ The handling of faults represents additional load for the avionics system. The fault
capabilities represent another aspect of system functionality. Whereas a system without
faults may be abie to meet all of its deadlines, the addition of fauit handling workload may
cause schedule slippage and/or violations of reaitime constraints.

A key part of the Stage 3 methodology is the specification and generation of a controlled parailel

workload [81. Such a workload far avinnics annlicationa ia aqiven in 111 Tha warklnad ie ranracantart
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as a special purpose parallel data-flow graph. A run-time experimentation environment provides
capability of controiling, varying and measuring the workload without having to recompile or re-debug
the parallel program.

2.3 Proposed Methodology

NASA held several workshops to determine system validation procedures. One in particular [6]
produced a detailed list of validation tasks to verify a system in an orderly manner. The list was as
follows:

1. Initial Checkout and Diagnostics

2. Programmer's Manual Verification

3. Executive Routine Verification

4. Muitiprocessor Interconnect Verification

5. Muitiprocessor Executive Routine Verification

6. Application Program Verification and Performance Baseiine

7. Simulation of Inaccessible Physical Failures

8. Single Processor Fauit Insertion

9. Multiprocessor Fauit Insertion
10. Single Processor Executive Failure Response Charactenzaﬂon
11. Multiprocessor System Exscutive Fauit Handling Capabilities
12. Application Program Verification on Multiprocessor
13. Muitiple Application Program Verification on Muitiprocessor

The first six tasks verify functionaiity and the next seven verify fault handling performance. Several of
these tasks are in process or have been completed. This paper specifically deals with a set of
performance baseline experiments (Task 6) for FTMP. ‘

2.4 Present and Future Experiment Environment

A signifcant amount of work was required by AIRLAB personnei to bring the system environment up
to Stage 2. At present, each experiment generally requires some code compilation, followed by
linkage and dowmioading of the whole FTMP binary file. Experiments can be designed with
modifiable variables so that some variation can be made without having to go through the entire code
development cycle. The experiments described in this paper used the modifiable variable approach,

A more specialized workioad generation mechanism is being developed for use on reai-time
multiprocessor systems (FTMP in particuiar [1]). With this mechanism in place, experiments can be
run in an environment somewhere between Stage 2 and Stage 3. This model considers tasks of a
specific organization and deals with a simpie set of parameters. The system is assumed to be made
up of a bus with several processors {each with local memory), one giobal memory, and 1/Q.
Cperating system tasks are considered part of the system under measurement. Traffic on the bus is
stricted to [/0 and Inter-Process Communication (IPC), each of which access memory.
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In this real-time model, tasks are made up of five sections. These sections include read in /0 data,
read in 1PC data, perform some representative operatiori. write out /0 data and write out IPC data.
The amount of work performed in each section can be varied by parameters.

The workload structure was designed for simplicity so that variations in the workload parameters
and the resulting measurements couid be easily understood. The system parameters consist of total
I/Q, total IPC, and total instruction execution per second. Each system parameter is divided between
functions as a percentage of the total work each function performs. Each function is in turn made up
of tasks which divide the work of the function as evenly as possibie. Measurement of the throughput,
system utilization and interaction of the system is done by using the system clock to measure when a
task begins and ends.

2.5 Present State of Validation Process

At present the individual processors and operating system are assumed valid. The baseline
experiments are meant to.determine static properties such as the time to execute an operating system
call or the amount of time left in a frame upon completion of an avionics function. Several areas of
bé.seline experiments are poaaiﬂle:

o Instruction Level .
o Assembly and High-leve! language instruction times.
» Operating System

o OS primitive and overhead times
o interrupt procedure times

o Memory access time

o Bus access and contention delays
o Fault tolerance overheads

o System and Appiication

o Frame utilization characteristics (including OS overhead and bus contention delay
and fauit tolerance overhead)

The specific experiments that are reported upon in this paper are:

o Clock Read Delay. In order for subsequent experiments to be vaiid, the delay and
variation in reading the clock must be determined.

o Processor Performance for Simple Operations. This is a measure of the amount of time
required by the processor to perform simple AED instructions, for example 'A=1' or
'A=B+C'.

¢ R4 Frame Iteration Rate. The measurement of the R4 frame under nominal conditions as
well as when stressed by long tasks.
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3. The Exper_iments |

Most of the experiments were organized as in Figure 3-1.

Begin
EXEC = Read(CMU.EXEC):
If CMU.EXEC <= SomeCount Then
begin
RTCNUM = Read{CMU.RTCNUM);
Hold = Read(RT.CLOCX);
For X=1 to RTCNUM do
begin
SomelInstructions:
and:
Holdl = Read(RT.CLOCX):
Write(Hold,CMU.TIME(1))
Write(Ho1d1,CHMU.TIME(2)
EXEC = EXEC + 1;
Write(EXEC,CMU.EXEC);
end;
End.

)i

Figure 3-1: Basic Experiment Task Algorithm
When a task starts, a global variable called CMU.EXEC is read from global memory. If it is above a
certain vaiuve (which depends on the experiment) the task is terminated. If it is not, a second variable,
CMU.RTCNUM, is read from gicbal mémory. CMU.RTCNUM is the number of iterations that a loop
must execute. In most cases, the giobal time is read, an instruction is repeated a number of times
(defined by CMU.RTCNUM) and time is read again. These numbers are then stored in the giobal array
CMU.TIME. Finaily, CMU.EXEC is incremented.

The time limit for each experiment task niust be large encugh that the task can finish. Also, some of
the experiment tasks must finish before the 60% mark of the R4 frame has been reached. According
to the documentation, after that time an interrupt will occur. The interrupt would invalidate any time
measurements.

Using the VAX/FTMP interface program called CTA and a batch command script, the values in the
FTMP global memory can be read and stored in a file on the VAX. CTA can also set FTMP memory
locations. Therefore, a command script can set CMU.EXEC to 0, wait, read the global array and
repeat as many times as desired.

Itis important to note, that the experiments allow the number of iterations to be changed using CTA.
For exampie, if the number of iterations is found to be too smail to obtain useful resuits,
CMU.RTCNUM can be increased using CTA and the experiment can be run again. Changes can be
made without having to recompile, relink and reload FTMP. This saves a great deal of time.
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3.1 Clock Read Time Delay

In order for any subsequent experimental results to be considered valid, the characteristics of the
clock must be determined. The delay and variation in reading the clock must be determined, as weil
as the causes of any variations. If these variations cannot be ¢haractenzed or minimized, any further
experiments using the clock wouid be suspect. For example in Cm* multiprocessor system, there
was as much as 4.6% difference in clock frequency, and substantial variation of clock read delays [S].
An example of possible characteristics of clock read delay would be a constant offset that could be
subtracted from any future experiment results using the clock.

On FTMP the time is read with the instruction 'HREAD(RT.CLOCK,variable,2);". In the experiment
task, 16 iterations, each of 5 clock reads were made with the time before starting and the time of the
last read being stored in global memory. A second task was created that did exactly the same as the
first task except that it did not write to global memory. This second task was placed so that it wouid
start execution immediately after the measurement task. If two triads were in use, the second task
would execute in parallei with the first and add contention for the clock.

The experiment was repeated about 100 times for three situations

1. Triad 1 running alone,
2. Triad 2 running alone,
3 Triad 1 and 2 running simuitaneously (contention for the clock),

The first two runs determined single triad clock read time with no contention, and vaﬁaﬁon between
tiads. The third case determined how the clock contention effects the clock read time.

3.2 Instruction Times

The times for the following AED instructions were measured:

1. 'Null’

2A=1; (integer assign)
3 AI=1; (real assign)

4 A2=1; (long assign)
5.A=B+C; (integer add)

6. A1=B1+C1; (real add)
7.A2=B2+C2; (fong add)
8 A=8*C; (integer muitiply)

Each of these instructions was executed in a loop 100 times along with the instruction 'A=1'. The

'A=1" instruction was added because the compiler wouid not accept a null statement for the first
instruction. The 'Null’ statement was included so that the overhead from clock reading and loop



14

control can be eliminated from the other instructions, leaving only the time for instruction execution.
This task was executed 208 times. ' '

3.3 Measuring R4 Frame Size

There were three parts to this experiment. The first part was to measure the nominal R4 size. Upon
starting, the first R4 task reads the real-time clock. If the global variable CMU.EXEC is set correctly,
this time will be stored. This will be done eight consecutive times, giving eight relative R4 frame sizes.
The experiment was run about 100 times each for one triad and two triads.

The second part of the experiment was to determine how the system behaved when an R4 frame

was stretched. Only one triad was used. The time limit for the task was set to a very large number (so

- that a task woulid not abort before it was finished). Finaily, RTC.NUM had to be set to several values

that wouid siretch the frame. These values were 2000, 3000 and 5000. Data was recorded about 100
times for each iteration value.

The last part of the experiment was to determine the effect on the system of an R4 frame with an
infinite number of tasks. One of the words of control information associated with a task was a pointer
to the next task. An infinite string of tasks could be generated by having a task point to itseif as the
next task. One R4 task was caused to execute over and over in this way. Another task was checked
to see it it ran once the R4 task started repeating.
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4. Results

4.1 Read Time Clock Delay

The clock read overhead was virtually constant for a single triad configuration. The data never
varied more than a clock tick (.25 mSec). For the two different triads the resuits were: '

.012 mSec / 18 itaerations!

For Triad 1 -- 14.0 _
: .00073 mSec / iteration

.874

I+1l+

For Triad 2 -- 14.0 + .0091 mSec / 18 itarations
.875 + .00057 mSec / iteration

Each iteration has § clock reads pius loop overhead. Loop overhead per iteration is 15.7uSeconds
(sge Experiment 2). This is subtracted from the iteration time, then the resuit is divided by 5.

Triad 1 874 + .73 uSec
' -16.7+.11

868.3 + .84 / 5 = 172 + .17 pSec

Triad 2 875 + .57 uSec

859.3 » .68 / 5 = 172 + .14 pSec
A read with no contention on the bus requires 172uSecofids. Although there is an indication of some
variation between triads, it is not significant and within the margin of error for a 95% confidence
interval,

In the second measurement, two triads were started, each executing roughiy the same code so that

contention for the bus is created.

For 2 Triads --
14.1 - + .023 mSec for 16 iterations,
173 = + .31uSeconds per read.

It is evident that the contention for the clock at this rate does not affect the delay in reading the clock
greatly (less than 1%). The Contention is large enough that the range of the 95% confidence intervais
for the single triad read time and double triad read time do not overlap. These resuits do not take into
account other contention for the bus like memory access or 1/0 device access.

The reason that this variation is so small is that the section of code in the read procedure that

1All intervals are 95% confidences intervals. Retfer to Ferrari [2] for a description of confidenca intervals and how they are
calculated.
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actually uses the bus is a small percentage of the whole clock read procedure. Since both
contending procedures are exactly the same when in the iteration section, they will tend to be
synchronized so that only one will actually request control of the bus at a time. The slight variation
from the single triad case could be due to slight variations in the execution rates of the different
processors so that occasionally the two triads do conflict. However, this would seem to be very
minor,

On the whole, the real-time clock on FTMP should serve as a reliable measurement device with
predictable delays that can be factored out of experiments. This is especially true in the single triad
case. However, this assumes that the experimenter has compiete controi of all of the tasks. If an
experimenter on the system with muitiple triads, lets one triad run uncontrolied, the clock results may
not be reliable. The range of system activities under which the clock times are repeatabie should be
explored further. |

4.2 Instruction Measurement

The resqlt of the instruction measurements were as follows:

: pS per instruction
AED .elock ticks |-===-eccccccccccccccca- seoesesscemcoo |

Instruction per 100 w/Null task w/0 predicted
instr(ave.) overhead overhead " by Rockwell
1) Nuil 12.3+.013 30.7 +.013 - ——
2) A=1;(Int Assn) 18.3+.013 45.7 +.013 15.0 + .028 8.3
3) Alal;(Real Assn) 18.4x.013 46.1 +.014 15.4 + .027 8.3
4) A2=1;{Long Assn) 19.6+.013 49.1 +,014 18.4 + ,027 12.3
§) AsB+C;(Int Add) 23.0+.013 57.7 +.004 27.0 + .017 22.3
6) A1=B1+C1;(Real Add)23.2+.013 58.0 +.011 27.3 + .024 22.3
7) A2382+C2;(Long Add)27.4+.013 63.6 +.014 37.9 + 027 3s.0
8) A=B*C;(Int Muit) 25.1+,013 62.9 +.010 32.2 + .023 27.4

Overhead in this case means loop and clock read overhead, plus the time to execute 'A=1'. The
range is for a 95% confidence interval.

The resuits showed little variance. The time per frame varied only by .25mSecond {one clock tick)
for each AED instruction. The instructions took longer than suggested by the times given by the
assembler and Draper Labs documents [7]. The predicted times according to the document are
actually the times under best conditions?. This makes the predicted times of marginal value in
real-time applications. In order to get a complete view of the instruction execution times, all of the
important AED instructions must be measured on the actual machine.

ZBest conditions are when the Instruction is in ROM and data is in the local cache memory.
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The overhead needed to measure the instruction (the iteration time and the two clock read times)
can be found by subtracting the Null instruction from the time for the instruction 'A=1'. If the
overhead is assumed to consist of only the loop instructions then the amount of overhead per
instruction iteration is 15.0 - + .039 pSeconds. This is derived by subtracting the time for 'A = 1’ fram
the 'Null' instruction time, giving the overhead per instruction iteration. The resulting confidence
interval is the sum of the 'Null’ and 'A = 1’ confidence intervals. Because the'A = 1’ interval is

This overhead ig usefut for calculations in other experiments.

Using 'A=B+C' as an average AED instruction, a rough order of magnitude of the number of
instructions that can be executed in an R4 frame and the rough high level throughput of a triad can be
calculated.

(40mS per R4 frame)/(27.0uS per instruction)
= 1500 instructions per R4 frame

1/(27.04S per instruction)
= 37KOPS High Level Throughput

The instruction 'A =B+ C;' actually used four assembiy inﬁtrucﬂons. Therefore, a rough assembly
level throughput would be 150KOPS.

4.3 Measuring R4 Frame Size

In the first part of the experiment the time that represented one R4 frame varied considerably. Since
time was measured at the beginning of the first R4 task of a frame, these variations are probably due
to variations in the execution time of the R4 dispatcher. There may be predictible variation caused by
the starting of R3 and R1 tasks. However, this could not be determined without a Iargé number of
consecutive R4 frame start times, which was not done.

The nominal R4 frame measures in the single and doubie triad cases are shown:

Single Triad
40.0 mSeconds average
.741 mSeconds Standard Deviation
37.75 -- 42.25 mSec. Range .

Double Triad
40.0 mSeconds average
.623 mSeconds Standard Deviation
37.75 -~ 42,25 mSec. Range

The distributions of frame sizes are shown in Figures 41 and 42. The distribution looks
approximately normal except that the frame sizes near the average occur less frequently than would
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in the second part of the experiment, the R4 frame was stretched. The results of the stretching
were: '

2000 iterations
80.8 mSec. Ave.
.480 mSec. Standard Deviation
80.5 -- 83 mSec. Range

3000 iterations
108 mSec. Ave.
.480 mSec. Standard Deviation
107.75 -- 110.5 mSec. Range

5000 iterations
163 mSec. Ave.
.481 mSec. Standard Deviation
162.25 -- 166 mSec. Range

In all of these runs at least 70% of the data points were in the two smailest frame sizes of the total
range. The rest of the data points were spread out over the rest of the range as seen in Figures
4-3,4-4 and 4-5. The task that is stretching the frame can be considered to take constant time since
the major portion is a loop of 'A = 1’ which has been shown to be very predictable (see experiment 2),
This would indicate that the variation might be due to some kernal procedures or the R4 dispatcher.
The large number of data points in the first two consecutive frame sizes might indicate a basic frame
size when no unusual situations occur. The other data might suggest exceptions that caused some
extra instructiohs to be executed. The range of data is about 25mSeconds. Using the
approximations from experiment 2, the amount of extra code that would be executed during these
unusual situations is on the order of 100 AED instructions or 400 assembly level instructions.

When the average times were plotted against the iteration rate, a linear relation emerged as
depicted in Figure 4-.8. The step function (also shown on the graph) was expected because the
documentation discusses a timer interrupt that, according to our interpretation, was supposed to
happen every 24mSeconds. In fact; after the first timer interrupt, 24mSeconds into the R4 frame, the
timer was not used until all of the R4 tasks finished. Therefore, the size of the frame would increass
linearly above 40mS,

The final part of the experiment was to determine the behavior of the FTMP system when it executed
an 'infinite’ number of R4 tasks. In the experiment, an R4 task pointed to itseif as the next task. If
there were no mechanism for aborting a frame, as wouid be expected from the previous section of the
experiment, the R4 frame would continue forever. This could be demonstrated by watching the
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FTMP system display, driven by an R1 task. When the system is running this display is updated
constantly (the time is updated every two seconds). When the 'infinite’ list of R4 tasks was set up and
started the display immediately stopped updating. When the recursive task pointer was nullified,
resulting in a finite list, the display began updating again. This shows that an 'infinite’ list of R4 tasks
will not be aborted. '

This last test points out a flaw in the scheduling software. Although tasks are regulated by giving
thern time limits, frames are not limited in this manner. A frame of any rate is simply stretched until ail
of the tasks within the frame can finish. This mechanism is not reliabie in at least two situations. The
first was described above, in which all other tasks were locked out by one task that pointed to itself.
Angther possibly hazardous situation wouild be a task with its time limit set toc high. If, in most cases,
the task takes much less time than the limit, this error may not be noticed. However, if some untested
section of code starts a long, virtuaily infinite loop, the system will hang (rat least at the frame size that
the task uses) until that task has stopped. In a real-time application this is equivalent to failing.
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5. Summary and Future Work

This paper described three experiments that are part of a methodology for fault-free validation of
reliable multiprocessors. These experiments were concerned with baseline measurements run on the

system. The major resuits of these experiments were:

1. The real-iime clock is a reiiable measurement device and was used in several
experiments. - '

2. The instruction execution times are constant and reproducible. The measured times are
stower than the documented best times.

3. The frames are nominally 40 milliseconds long. There is a variation of up to 2.5
milliseconds in the measurements. This is on the order of one hundred AED instructions.

4. The frame stretching mechanism allows linear increase in the size of the frame
depending on the number of instructions to be executed, not stepwise increase as
expected from the documentation.

. 5. Frame stretching continues until all tasks finish or abort. This is unreliable in some cases.

More work needs to be done to fully characterize the FTMP system. This is especially true of
instruction and procedure cail measurements. Major omissions from the present results were the
call/return times for different types of procedures and the system reaction to arithmetic fauits. Other
AED instructions shouid aiso be measured to get a more compiete evaluation of the system.

Enhancement of the experiment environment is planned. The goal of the enhancement is to have
the capability of running several different experiments on FTMP by changing cartain values in the
global memory. With this environment it is hoped that information can be collected on the time to run
various sizes and types of tasks in combinations. Information on scheduling and other operating
system overhead might aiso be obtained with this environment.
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