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0. A b s t r a c t . 

In this paper we discuss the semantics of a simple block-structured programming 
language which allows sharing or aliasing. Sharing, which arises naturally in procedural 
languages which permit certain forms of parameter passing, has typically been regarded as 
problematical for the semantic t reatment of a language. Difficulties have been encountered 
in both denotational and axiomatic treatments of sharing in the literature. Nevertheless, 
we find tha t it is possible to define a clean and elegant formal semantics for sharing. The 
key to our success is the choice of semantic model; we show tha t conventional approaches 
based on locations are less than satisfactory for the purposes of reasoning about partial 
correctness, and tha t in a well defined sense locations are unnecessary in a formal t reatment 
of our programming language. In the first par t of the paper we describe a denotational 
semantics for an ALGOL-like language which allows sharing; the semantic model is not 
based on locations, but instead uses an abstract sharing relation on identifiers to represent 
the notion of aliasing, and uses an abstract state with a stack-like structure to capture 
the semantics of blocks. The semantics is shown to be fully abstract with respect to 
partial correctness properties, in contrast to conventional location-based models. This 
means tha t the semantics identifies terms if and only if they induce identical partial 
correctness behaviour in all program contexts. This property typically fails for location-
based semantics because in such models it is possible to distinguish between terms on the 
basis of their effect on individual locations, which has no bearing on partial correctness 
behaviour. 

In the second par t of the paper we demonstrate tha t our choice of semantic model 
enables us to design a Hoare-style proof system for our language, and to give relatively 
straightforward proofs of the soundness and completeness of this system. We claim tha t 
our proof rules are conceptually simpler to understand than other rules proposed in the 
literature, without losing any expressive power. Indeed, we are able to derive some of 
these proposed rules. We believe tha t semantically based methods such as ours may lead 
to improvements and clarifications in the axiomatic and denotational t reatment of other 
programming constructs. The methods by which we construct a proof system will lead 
us to some general principles which ought to be more widely applicable. We show, for 
example, tha t it is possible to define a "generic" inference rule for blocks which is uniformly 
applicable to blocks headed by different forms of declaration. The important point here 
is that , unlike the proof systems for these constructs in the literature, we do not have 
to design a separate rule for blocks for each possible form of declaration. This results in 
greater flexibility and adaptability in our proof system. In summary, we are advocating 
a generalization of Hoare logic to encompass the semantics of a wider range of syntactic 
categories, and we believe tha t axiomatic semantics should be based directly on, and even 
derivable from, a suitable choice of semantic model. 
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1. Introduct ion . 

The need for storage allocation to be explained in programming language semantics 
arises when we allow blocks to claim "new" storage at run-time. Some authors [11,12] 
have claimed tha t conventional denotational semantics based on complete partial orders is 
incapable of providing an adequate t reatment of storage allocation, specifically because of 
apparent problems in the modelling of storage overflow. The difficulties may appear even 
more worrying when the storage discipline underlying the programming language allows 
aliasing or sharing, and when storage de-allocation as well as allocation is intended. All 
of these issues arise in implementations of ALGOL-like languages, where a block entry 
causes allocation of some storage which (usually implicitly) becomes de-allocated on block 
exit. Storage overflow occurs when a program is executed in a store which does not 
contain enough room for the program's storage claims. A good semantics should be able to 
model this situation accurately. It has been claimed [11,12] tha t conventional denotational 
semantics, based on complete partial orders and continuous functions, cannot achieve 
these aims, because of an apparent "discontinuity" of storage allocation. Related technical 
difficulties were noted earlier by Milne and Strachey [15]. These difficulties have led to 
suggestions that more highly structured and complicated semantic structures be used, such 
as the so-called "store models" of [11,12]. However, it is too sweeping to conclude tha t 
the fault is inherent in the denotational approach to semantics, and tha t complete partial 
orders are insufficient. We feel t ha t it is possible to treat all of these supposedly problematic 
features adequately and elegantly, within the denotational framework, provided we choose 
an appropriate semantic model. 

To set the scene, here is a brief description of the current state of conventional 
denotational semantics as applied to imperative languages. Most of the published at tempts 
at describing a semantics for block-structured languages have involved fairly complicated 
semantic structures intended to capture the storage book-keeping which seems to be 
necessary when maintaining the proper sharing relationships. The reader is referred to 
[9,23] for example. Usually, a semantics for such a language treats as logically separate 
objects the environment and the store. The environment is most commonly thought of 
as a function from identifiers to locations; and the store specifies a contents function 
from locations to values, as well as an area function indicating the usage status of all 
locations. Conventionally, the locations represent an abstraction of the notion of addresses 
in memory, and the store gives the current contents and usage status of these locations. 
The environment provides the association of identifiers with locations, so tha t the value of 
an expression or the effect of a command will depend in general on both the environment 
and the store. The splitting of "state" into the two components environment and store has 
been the standard method of treating aliasing; two identifiers which share are then bound 
in the environment to the same location. 

Most commonly, the semantics of expressions is provided as a function from expres-
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sions to environments and stores and then to values; the domain of values typically contains 
integers and t ru th values. The semantics of a command, relative to an environment, is 
modelled as a store transformation. Within this type of semantic framework, t reatments of 
many ALGOL-like languages have been given [9,15,17,23]. The explicit separation of state 
into store and environment does indeed allow a proper t reatment to be given of storage 
allocation and sharing. However, by mentioning locations explicitly in the semantics, these 
treatments inevitably allow too many semantic distinctions between programs. Using this 
type of semantics it is possible to distinguish between programs which have identical effects 
on the values of all program identifiers but differ in their effects on the store. For instance, 
the declaration 

n e w x = 0; new y = 1 

is conventionally described as binding x to the "first" available [i.e. unused) location and 
y to the "next" one, and this means tha t we are able to distinguish between the effects 
of this declaration and those of the version in which the two bindings are performed in 
reverse order: 

new y = 1; new x = 0. 

Intuitively, the order of binding should have no effect on any subsequent evaluation, since 
the two declared identifiers get initialised to the same values in each case. When we are 
merely concerned with the partial correctness properties of programs, we need to know 
only how the execution of a program will affect the values of identifiers; in other words, 
we need to know the contents of the locations but not the identity of locations. In such 
a setting, the structure of the store and the a t tendant details of storage allocation should 
be kept invisible. In this well defined sense, locations are indeed "unnecessary" for our 
purposes [7]. 

At a suitably high level of abstraction, then, we do not want the storage mechanism 
or even the identities of individual locations to be accessible to the programmer. In 
other words, a reasonable semantics should be ignorant of the particular choice of storage 
model on which it might be based. T h a t is, informally, a reasonable semantics should be 
more abstract than a store-based semantics of the standard type. Of course, we would 
also want to be able to relate our abstract semantics to a more concrete implementation, 
perhaps intending to run our programs on a machine with a particular finite memory 
capacity and with a particular storage allocation algorithm. But any proof system for 
partial correctness should be kept ignorant of the details of storage allocation: the partial 
correctness of programs is independent of the precise characteristics of the machines on 
which the programs are to be executed. 

In this paper we will construct a semantics possessing these desirable properties. 
Technically, our semantics will be fully abstract with respect to partial correctness be­
haviour. Full abstraction [20,21] guarantees tha t two terms of the language are semanti-
cally identical if and only if they are interchangeable in every program context. For us, 



this concept of full abstraction coincides with the equivalence induced by considering par­
tial correctness assertions. This is not the case with the location-based semantics, where 
semantically distinct terms can nevertheless satisfy precisely the same partial correctness 
assertions. 

In addition, although this paper will not give details, it will be possible to define 
and prove a congruence condition [23] relating our semantics to an implementation at a 
lower level of abstraction; traditional location-based semantics fall into this category. This 
shows tha t any of these other proposed semantic models is consistent with ours. At lower 
levels of abstraction, of course, such as a location-based semantics, we will also be able to 
distinguish between programs which require different amounts of new storage during their 
executions, but which otherwise have identical effects on identifier values. 

Ever since Hoare's influential paper [13], which proposed an axiomatic basis for pro­
gramming languages, many at tempts have been made to extend Hoare's methods to more 
complicated languages. Hoare's paper gave an elegant syntax-directed proof system for an 
imperative language with (simple) assignment, sequential composition, conditionals, and 
loops, and introduced the notion of partial correctness assertion which has underlined the 
methods of axiomatic semantics [l]. The appeal and influence of Hoare's work owes much 
to the syntax-directed nature of his logic and the simplicity of his assertion language. 

Many authors have tried to extend Hoare's ideas to cover more complicated and 
powerful programming constructs [1,2,3,4,14,18]. As we observed earlier, existing proof 
rules for aliasing seem to be fairly complicated in form [1,2,3.18]. The complications are 
all the more evident in the case of proof rules for features such as array assignment and 
procedure calls (see [1,2] for example). We believe tha t many of the difficulties encountered 
when trying to find an adequate axiomatization for programming language constructs are 
caused not by any inherent complexity of the cons t ruc ts semantics but by an inappropriate 
choice of semantic model or by an inappropriate choice of assertion language. This 
is particularly true for imperative languages in which storage allocation and the block 
discipline have persuaded semanticists tha t the correct level of abstraction should retain 
some of the details of the storage mechanism. This tends to result in axiom systems in 
which explicit reasoning about the identity of locations needs to be carried out. And it 
often happens tha t some proof rules which appear to be obviously sound are still difficult 
to prove correct. Apt [l] gives some notable examples. By choosing the appropriate level 
of abstraction in our semantics we will find not only tha t it becomes easier to reason about 
the semantics of programs but tha t we can find a very simple and obviously sound Hoare-
style proof system for the language. The semantics will guide us to a choice of assertion 
language and proof rules. Locations will not be needed as part of the assertion language, 
and they will not be necessary in the semantics. 

Although we only consider a very simple programming language with a small number 
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of program constructs, we believe tha t our methods will extend (with suitable modifications 
in the choice of semantic model) to much more powerful languages including various 
other features, including loops, conditionals, procedures with various forms of parameter 
mechanisms, and concurrent or parallel composition. We feel, however, tha t to include 
extraneous features at this stage would merely confuse the issues. By focussing on a small 
number of features and their interactions we aim to clarify the central issues which arise in 
treatments of sharing, without having to keep extracting the crucial points from a larger 
setting. 

Outline. 

The outline of the paper is as follows. We begin by introducing the syntax .of our 
programming language, together with a few relevant syntactic definitions. An informal 
description of the proposed semantics is given at this stage. Next we identify some general 
principles behind the semantic t reatment of an imperative language, and use them to 
decide on an appropriate semantic model. We then give a denotational semantics for the 
language and use it to deduce some useful properties. 

Next we define a fairly natural notion of program behaviour which captures precisely 
our intention to concentrate purely on partial correctness properties. Intuitively, two 
programs should have the same behaviour if they always satisfy the same set of partial 
correctness assertions. In making these ideas precise, we define the behaviour of a command 
in a program context. We define a behavioural equivalence relation on terms from our 
language, which identifies two terms if and only if they yield the same behaviour in all 
program contexts. We then show tha t our semantics induces precisely this relation, so 
tha t we have indeed a fully abstract semantics with respect to this notion of behaviour. 

We then develop a Hoare-style axiom system for our language, and prove its soundness 
with respect to our semantics. The proof system is also complete in the usual sense [6]. 
We give some examples to illustrate the use of the system. 

In the final section of the paper we draw some conclusions and make some suggestions 
for future research. 

We provide two Appendices. The first contains definitions and lemmas omitted from 
the first par t of the paper, and sketches proofs of some of the results mentioned there. 
The second appendix contains a proof of the completeness of the proof system described 
in the second part of the paper. 
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2. T h e P r o g r a m m i n g Language . 

As usual for an imperative language, we distinguish between the following syntactic 
categories: 

/ G Ide identifiers, 
E G E x p expressions, 
A G D e c declarations, 
T G C o m commands, 
II G P r o g programs. 

We assume tha t the syntax of identifiers and expressions is given; for concreteness, identifiers 
will be strings of lower-case italic letters. We assume also tha t it is possible syntactically 
to determine the identity of two identifiers; we write IQ = Ii when two identifiers are 
identical. The syntax of expressions will be ignored; some of our assumptions will become 
obvious in examples. For instance, an identifier is an expression, and so is a numeral. 
We assume the usual notions of free and bound occurrences of identifiers in an expression, 
and we write freeJjB]] for the set of identifiers which occur free in an expression E. An 
expression having no free identifier occurrences is said to be closed. 

For the syntax of declarations and commands we specify: 

A : : = null j new I = E \ alias J 0 = I\ | A 0 ; A i 
T : : = s k i p | I:=E | IV; Ti | begin A; T end. 

Informally, we may explain the semantics of these constructs as follows. 

Declarations. The purpose of a declaration is to introduce a new set of bindings: 

o The null declaration has no effect. 

• A simple declaration of the form 

n e w I — E 

introduces a new binding for / , with initial value the current (declaration time) value of 
the expression E. We refer to I as the declared identifier. 

• A sharing declaration of the form 

alias IQ = Ii 



introduces a new binding for IQ: the effect of the declaration is to make IQ share with 
Ii, so tha t any assignment to IQ within the scope of this declaration will also affect the 
value of Ii (and conversely, an assignment to Ii within this scope will also update I0). The 
declaration also initialises the value of IQ to the current value of I\. We refer to IQ as the 
declared identifier; note that Ji is not declared here (unless IQ = Ii). 

• A sequential composition of declarations 

accumulates effects from left to right; thus, the scope of Aq in this setting will include A i , 
but not vice versa. An identifier is declared by A 0 ; A i iff either it is declared by Aq or it 
is declared by A i . If a particular identifier is declared in both Aq and A i then the latter 
declaration has precedence. 

We adopt the usual notions of free and bound identifier occurrences in declarations, 
and our informal description above corresponds to the static scope rules familiar from 
ALGOL-like languages. We refer to 

dec[[A]], freelAfl, 

as the set of declared (or bound) identifiers and the set of free identifiers of A. A declaration 
without any free identifier occurrences will be called closed. For example, the declaration 

Ao : n e w x — 1; n e w y = x + 1 

is closed, and clearly its effect is to initialise the new copy of a; to 1 and then y to 2. We 
have dec |Aol = {x,y } and freejAoJ = 0. On the other hand, the declaration 

A i : n e w y = x + 1; n e w x = 1 

contains a free occurrence of x, and .the value it gives to y will depend on the current 
(declaration-time) value of this free identifier. Here we have dec[[Aij] — and 
f r e e j A j = { x } . 
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Commands. The purpose of a command is to alter the values of identifiers by com­

puting new values for them: 

• The skip command has no effect. 

• An assignment I:—E updates the value of I to the current (execution-time) value 
of the expression E. This also has the effect of altering the values of all identifiers which 
share with 7. 

• Sequential composition of commands is denoted by YQ) T\. The intention is first to 
perform To and then to perform T i , so tha t again effects accumulate from left to right. 

• Finally, a block 
begin A; T end 

allows the block body T to be executed within the scope of a declaration A. This means 
tha t the values computed within the block may be affected by the bindings introduced in 
the declaration; but the scope of the declaration does not extend outside the block, and 
these bindings are only used locally inside the block. Thus, the semantics of the block as 
a whole will not involve any changes in bindings, only changes in values as the result of 
assignments inside the block. 

Examples. 

1. The command x : = x + 1; y:=y + 1 first increases the value of all identifiers which 
share with x, and then increases the value of all identifiers which share with y; if x and y 
share, this of course will add 2 to the value of both x and y. 

2. The block command 
begin 

n e w y — 0; 
x : = x + 1; 
y:=y + 1 

end 
increments the value of identifiers which share with x; the assignment to the local identifier 
y has no effect outside of the block. 
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3. The block 
begin 

alias z = x; 
z:=z+l; 
y:=y +1 

end 
has the same effect as the command in Example 1, because the local identifier z shares 
with the external identifier x. I 

Again we use the usual syntactic notions of free and bound occurrences of identifiers in 
a command. We intend static scoping, as usual in an ALGOL-like language. In particular, 
for a block we specify 

freeflbegin A; T end]] = freeflA]] U (freeflrj - decflA]]). 

A complete definition of freeflrj for all T £ C o m appears in the Appendix. 

Programs. 

Now we give the syntax for a very simple form of program. A program has the 
following form: 

II : : = beg in A; T; resul t E end, 

where A is a closed declaration containing bindings for all of the free identifiers of V and E. 
In other words, a program contains no free identifier occurrences. This syntactic constraint 
is reasonable and is commonly imposed in practical programming languages; it will ensure 
tha t the effect of a program execution is uniquely determined. The semantics of a program 
will be represented by the value of the expression E after executing the declarations and 
command; in other words, we are interested in the result of executing a program. Since all 
of the free identifiers of E are bound in this context, we will see tha t there is no ambiguity 
about this value. 
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3. Semant ic s . 

Preliminaries. 

We can define a semantics for our language as follows. The value of an expression 
may depend on the values of its free identifiers. An association of values with identifiers 
can be represented as a valuation, which is simply a function 

a : Ide -* V, 

where V is the set of expression values; for concreteness, we assume tha t V contains (at 
least) the integers and t ru th values, although the precise structure of this set is not crucial 
to our development. 

The effect of a command will be to alter the values of some identifiers (and hence affect 
the values of expressions); this amounts to a change in the valuation function. Precisely 
which identifiers get altered will depend on the sharing relation, which should clearly be an 
equivalence relation p on identifiers. The sharing relation can be modified by the execution 
of a declaration. 

A sharing relation can be thought of as a function from identifiers to sets of identifiers: 

p : I d e -* />(Ide), 

satisfying the usual conditions for an equivalence relation: 

I 6 p(I), (reflexivity) 

h G p{h) =» IQ € p(Ii), ' (symmetry) 

h € p{h) & h € p(h) => h € p(Jo). (transitivity) 

But it must be the case tha t identifiers in the same sharing class have the same value. It 
is therefore more appropriate to think of (p, a) together, with the following consistency 
condition: 

h € P{IQ) = > °{h) = 0"Uo)- (consistency) 

We will refer to a combination (p, o) of this type, satisfying these conditions, as a frame. 
We let R be the set of all equivalence relations on I d e and E be the set of all valuations. 
We use F for the set of all frames, and let / range over F. For convenience, when we 
write / for a frame, it is implicit tha t p and o are the components, and similarly / ' has 
components p1 and of\ this convention also extends to subscripted terms /,*. 

In order to cope properly with the block structure of our programming language, we 
will need to be able to distinguish the "local" frame used inside a block from the "global" 
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frame in force outside of the block; this will allow us to t reat properly a "hole in scope" 
created for a local identifier whose scope is delimited by the block but for which there is 
a corresponding global identifier. When we enter a block, a new frame should be created 
to represent the effect of the declaration which is executed at the head of the block; this 
new frame is in a sense an extension of the previous frame, and an assignment to an 
identifier inside the block will in general have an effect on the external frame as well as 
the local frame. When the block is exited, the original frame structure should be restored, 
although of course some alterations may have been made in the valuation. As is well 
known for statically scoped languages such as ours, the block discipline can be modelled 
or implemented with stacks. In our case, we can cope by introducing a special abstract 
form of stack, built up from frames of the type we have already introduced. This informal 
discussion might suggest that the structure of a stack be: 

{(Pn,<7n),{Pn-l,<?n-l), • ",{pO,(7o)), (™ > 6). 

But we also need to maintain the links between the successive levels of a stack. We will 
therefore use as stacks structures of the form 

where each rt- is a function from identifiers into sets of identifiers. The intention is tha t 
for an identifier I, the set Tk(I) should be the set of identifiers in the (A; - l ) t h fr ame 
whose values (in tha t frame) are affected by an assignment to I in the k^1 frame. The r 
functions make explicit the links between identifiers declared at various block levels in a 
command. In addition to the consistency condition which we imposed on a single frame, 
we also require the following link consistency properties (for each k): 

V/' £ Pfc(I).(rfc(I) = r f c (J ')) , (link consistency) 

V/ ' € rk(I).(ak(I) = ak-iil9)). 

In fact, a link will map an identifier either to the empty set, indicating tha t the identifier 
does not correspond to any identifiers in the next frame, or to an entire sharing class of 
the next frame. The intuitions behind these constraints should be clear. 

A stack in which all of these conditions is satisfied (so tha t all of its frames and links 
are consistent) will be called a state, and we will use S to stand for the set of states, with 
typical member s. We use analogues of the usual stack operations push, unpush, pop: 

• push( / , r)s produces a stack with a new top and a corresponding new top link; 

• unpush(s) removes the top frame and its link; 

• pop(s) produces the top frame (without its link). 

12 



Standard properties of these operations will be assumed; for instance, 

unpush(push( / , r)(s)) = s. 

We define some useful operations on frames and stacks. First, if we wish to alter the 
value of an identifier, we must also alter the values of the identifiers in its sharing class. 
Accordingly, we introduce the notation 

( J + [ X H t ; ] 

to denote the valuation which agrees with a at all arguments except those in the set X , 
which it maps to the value v. Algebraic properties of this operation are fairly straightfor­
ward and will be used without proof. 

In order to explain the semantics of a declaration, we need an operation which 
introduces a new sharing class while maintaining the conditions for an equivalence relation. 
We therefore introduce the notation 

P+[X] 

to denote the relation p' given by: 

p'{x) = X , if x 6 X , 
= p(x) — X otherwise. 

It is easy to verify tha t if p is an equivalence relation then so is p + [X]. 

It is also convenient to combine these two operations, giving a function 

alter : P{Ide) XV-+[F->F] 

which alters the sharing relation and updates the frame accordingly to maintain consis­
tency. The definition is: 

a l te r (X,v)(p ,a) = (p + [X], a + [X i-> v]). 

It is straightforward to verify tha t if the frame (p, a) is consistent then so is al ter(X, v){p, a). 

We may also extend the updating operations to a stack, in the obvious way, so tha t 
the required consistency conditions are maintained and so tha t updates are propagated 
through the r links. If s is the stack 

3 = ({pni^n),rn}...iTi9(pQ}(To))f 

then we define update(J, v)s to be the stack arising from s by altering the valuations at 
all relevant levels, beginning at the top by setting the value of (the sharing class of) / to 
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v, and then updating in a similar way the values at the next level of all identifiers linked 
to / ; this operation applies at all levels of the stack which are accessible through the links 
from I. Thus, 

u p d a t e ( i » ( s ) = ({pn, <j'n), r n , . . . , r 1 ; (p0, a'0)), 

where for each i, 

(Tfi=a+ [X{ h-> v], 
with the sets X{ given by 

Xn = Pn(I), 

x i _ x = niXi) = \J{Ti{r)\rext}. 
Note tha t this stack updating operation does not affect the sharing classes or links of the 
stack. 

Let us write / ( / ) = {/>(!), cr(T)). We say tha t two frames / = (p, cr) and / ' = 
agree on an identifier I if / ( / ) = / ' ( J ) . This notion extends in the obvious way to agreement 
on a set X of identifiers. By definition, agreement requires tha t the two frames agree both 
on the sharing classes and the values of the selected identifiers. The notion of agreement 
also extends in the obvious way to a stack. Two stacks s and s1 agree on / if their top 
frames agree on / , their top links agree on J, and if the stacks unpush(s) and unpush(s ; ) 
agree on all identifiers linked to / . 

A sharing class will be called trivial if it consists of a single identifier. We will 
be particularly concerned with frames in which there are only finitely many non-trivial 
sharing classes, and in which all sharing classes are finite sets. This motivates the following 
definition. 

Definition. A frame / is finitary if it contains only finitely many non-trivial sharing 
classes and all of its sharing classes are finite. A stack s is finitary if all of its frames are 
finitary. | 
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A Denotational Semantics. 

We are now ready to give the semantics. As usual for a denotational presentation, 
the definitions follow the syntax of the language; there is one semantic clause for each 
construct, the meaning of a compound term being built up from the meanings of its parts . 

Identifiers. The meaning of identifiers is supplied explicitly by a frame, which gives 
the sharing class and the value of each identifier. In a frame / = (/?, a) , the sharing class 
of I is p(I)\ the value of / is o(I). 

Expressions. As we remarked earlier, the semantics of expressions is taken for 
granted; it is assumed tha t expressions do not cause side-effects, so tha t the only important 
semantic feature of an expression is its value. We assume tha t all expressions, once supplied 
with values for their free identifiers, denote elements of a set V. The semantic function 
will be denoted 

£ : E x p -+ [E -> V). 

For any expression E and any valuation a we refer to £[[2?]] a as the value of E in cr. The 
only clause of importance at this point is the one for identifiers. We assume tha t the value 
of an identifier is supplied by the valuation: 

Em* -

We also assume tha t the value denoted by an expression depends only on the values of its 
free identifiers. This is a standard property of statically scoped expression languages. To 
be precise, our development depends on: 

Assumption 1. If two valuations a and of agree on all free identifiers of an expression 
E} then 

£\E\CJ = £IEW. I 

Corollary. If an expression E is closed its value is independent of the valuation: for 
all a and cr7, 

£\E\cr = SlE\af. | 

The only important property of the set V on which our results will depend is tha t 
every element of this set is indeed the value of some expression in E x p . Thus: 

Assumption 2. For all v 6 V, there exists a (closed) expression Ev with value v: for 
all <j, 

£\EV\<J = v. i 
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It would be straightforward to adapt our arguments to a particular expression language, 
provided the semantics satisfies the Assumptions above. By isolating the important seman­
tic properties of expressions in this way, without being explicit about the syntax of expres­
sions, we are able to prove some general results which are applicable to a wide variety of 
expression languages. 

Declarations. A declaration produces a new frame, together with a linking function 
which shows the relationship between identifiers in the new (local) frame and the old 
(global) frame. We define a semantic function 

D : D e c - [F -> {F X T)]9 

where T = [Ide -> P(Ide)]. 
If / is an initial frame, then P | A J / will define a new frame and a link. In fact, it is 
convenient to factor this semantic function into components by first defining 

7 : D e c -+[F->F] 
with semantic clauses: 

J f l n e w / = £ ] ] / = alter({J},/ |JS?]lff)/ 
D a l l a s J 0 = hlf = a l t e r ( p ( i 1 ) u { I o } , < f [ [ / i E ^ / 

This semantic function describes the effect of a sharing relation on frames, showing how 
the new frame is built up from the old one. The definition of the linking semantics is 
straightforward. We define the semantic function T , of type 

T : D e c - [T -> r ] , 

as follows: 
Tflnullflr = r 

T J n e w I = E\r = r + [I t - * 0] 
7 { a l i a s J 0 = hlr = r + [J 0 h-> r ^ ) ] 

T | A 0 ; A j r = TjAi] l(7 | [Ao] |r) . 
This function builds the link between the old and new frames. The relationship between 
these semantic functions is simply: 

Thus, the old sharing relation p is to be used in defining the link; it is clear from the 
definition tha t an identifier declared by an alias form of declaration links with the sharing 
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class of the identifier on the right-hand side of the declaration, whereas a new declaration 
is strictly local in the sense that there is no link between the declared identifier and the 
old sharing relation. This is achieved by linking the identifier with the empty set. 

The following properties of declarations are deducible from the above definitions: tha t 
all declarations preserve the consistency and the finitary nature of frames. This shows tha t 
our semantic functions are well defined. The proofs are simple structural inductions. 

Lemma 1A. For all A and all finitary frames / , J | A | ] / is finitary. I 

Lemma IB. For all A and all consistent frames / , J | A | ] / is consistent. I 

Lemma 1C. For all frames / = (p, a) , T[[A|]/? is a consistent link between / and 

Proof. Show by structural induction tha t if r links / and / ' then T | A j r links J | A j ] / 
and / ' . Since p links (p, a) with itself trivially, the result then follows. I 

Note tha t a declaration has a purely declarative semantic aspect, the effect it has on 
the sharing relation; and an updating or imperative aspect, the effect it has on the value of 
the bound identifiers. Indeed, it will be convenient later to be able to separate these two 
semantic aspects of declarations. We therefore introduce the functions 

R : D e c [R R] 
S : D e c -> [E E] 

defined implicitly by 

?1±1(P,*) = (*|[A]| /»,S|[AH. 

It is easy to verify from the definition of 7 t ha t both Z and S are well defined, in the 
sense tha t the declarative effect of a declaration depends only on the sharing component 
of the state, and the imperative effect of a declaration depends only on the valuation. In 
fact, these two semantic functions could have been defined in the denotational style. The 
details are simple and appear in Appendix I. 

Now tha t we have a formal definition of the semantics of declarations, we are able 
to prove some interesting and intuitive properties. For instance, the bindings introduced 
by a closed declaration do not depend on the frame. This is actually a consequence of a 
more general theorem. If two frames agree on the free identifiers of A then the bindings 
introduced by A in these frames will be identical: 

Theorem 1. For all A, if / and / ' agree on free [{A]] then for all I £ dec [[A]], 
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Proof. See Appendix I. I 

Corollary. The bindings introduced by a closed declaration do not depend on the 
frame. If A is closed, then for all / and / ' , and all identifiers J £ decflA]], 

(P|[Aj|/)(J) = ( P | A ! / ' ) ( / ) • I 

It is also easy to prove tha t a declaration can only alter the value of its bound identifiers. 
This is even true for a sharing declaration. In addition, the link between an identifier which 
is not redeclared in the new frame and the identifiers in the old frame is simply determined 
by the sharing relation, as we might expect. The following theorem states these properties 
precisely. 

Theorem 2. For all A and all frames (p, a), if I $ dec {A]] then 

(S|Ajp)(I)-dec|[A]| = p(I) - decflA]] 
(S&Aj]a)(/) = a(I)} 

(T |[A]|,)(J) = />(/). 

Proof. By structural induction on A. a 

Next we examine the effect of a change in bound identifiers. Let^{y\x)A denote the 
result of replacing all bound occurrences of x in A by y. This syntactic operation can be 
defined formally, although we relegate the details to Appendix I. For instance, 

( y \ i ) n e w x = x + z — new y = x + z 

(y\x ) (new x = x + y; al ias z = x) = n e w y = x + y) al ias z — y 

(y\x ) (new x = x + y; n e w y — z) = new y = x + y; n e w y — z. 

Of course, if x is not declared in A then it cannot occur bound in A, and (y\x)A is 

syntactically identical bo A in this case. When x does occur bound in A we have 

dec[[(y\a:)Aj = (decffAj - { x }) U { y } . 

If, in addition, y does not occur bound or free in A, then we expect the resulting declaration 
(y\x)A to have essentially the same effect on y as A has on x. 
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Examples. 

To show the necessity of the constraints on y above, tha t y should not occur free or 
bound in the declaration, consider the following two declarations. 

A q : new x = 0; alias y = z] al ias a = x, 
A i : new x = z; al ias a = y. 

1. Note tha t y is declared in A q . The effect of this declaration is to make a share 
with the local identifier x. The renamed version is: 

(y\x)Ao : new y = 0; alias y = z; alias a = y, 

and now the effect is different because a and z share. 

2. In A i the identifier y occurs free; in the renamed version the free occurrence 
becomes bound, 

(y \x)Ai : al ias y = z) al ias a = y, 

and now a fails to share with the external y. a 

In summary, then, we can see tha t every declaration affects the values of only a finite 
set of identifiers, those occurring on the left-hand side of a sub-declaration. Moreover, the 
values used in these bindings depend only on the free identifiers of the declaration (again, 
a finite set of identifiers). A renaming of bound identifiers has the expected effect. And 
any frame arising from an initial finitary and consistent frame by some combination of 
declarations is itself finitary and consistent. 

Commands. We are interested only in the effect a command has on the values denoted 
by identifiers. This effect will depend on the sharing relation. This would suggest tha t we 
define the semantics of commands as a function S of type 

S : C o m -+ [B [E —• E]]. 

However, during the execution of a command there may be block entrances and exits, 
which have the effect of modifying and restoring the local bindings of identifiers. This 
effect is modelled conveniently by an abstract stack. Of course, in general during an 
execution of a command the stack may contain more than one frame, the precise number 
being determined by the depth of the nested block structure of the command. In order to 
specify the effect of a command execution, it is therefore cleaner and simpler to specify a 
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semantic function 
C : C O M — [ S — 5 ] , 

which gives the effect of a command on an arbitrary stack. We will be able to verify tha t 
commands do not affect the sharing relations of a state, and we will be able to recover a 
semantic function S of the above type in a simple way. Given an initial state s, the result 
CJRJS will be a state with the same sharing structure as the original one, giving the final 
values of all identifiers after execution of the command. In the special case when the stack 
has a single frame (/?, cr), we will abuse notation and write Cflrflpcr for the result. This will 
be a frame (p, a1) in which a' reflects the changes made by assignments in T. This will 
enable us to give an implicit definition of S. 

Where convenient we will abuse notation and write <f for the value of E in the 
(valuation of the) top frame of s. A similar convention may be adopted for D. 

The semantic clauses are: 

C|skip]]s = s 
ClI:=Ep = update(7, <?[[£]] s)s 

C|beg in A ; REND] js = unpush(C|[R]J(push(/?([ALLA)«)). 

Note tha t in the clause for a block, we specify tha t the block body V is to be executed 
in the scope of the declaration A by first pushing the new frame and link created by this 
declaration onto the stack. By unpushing at the end of the block body's execution, we 
ensure tha t the original bindings of the identifiers declared in A are restored on exiting 
the block; this is because the scope of the new bindings introduced in A does not extend 
outside the block, and the local meanings of the declared identifiers inside the block are 
unrelated to their meanings outside the block. This corresponds to the usual notion of 
static scope. 

Examples. 

1. C |beg in A ; s k i p end]]* = unpush(push(P[[A]]s)(s)) = s. 

2. Cflx:=x + LJS = update(p(x), a(x) + where (p, a) = top(s). I 

It should be clear from the definitions tha t executing a command maintains consistency 

of the state, in the following sense. 

Lemma 2A. For all T, and all consistent states s, the state C[[R]]s is also consistent. 

Proof. By structural induction, using Lemmas 1A, IB and 1 C B 
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The following result establishes our claim tha t commands do not affect the sharing 
structure, by which we mean the local sharing relations in each frame of the state and the 
links between them. 

Lemma 2B. For all T, and all consistent states s, the states s and C[{r]]s have 
identical sharing structure. 

Proof. By structural induction on T. | 

As a consequence of this, we may indeed define a semantic function 

S : C o m -> [i? -> [E -> £]], 

with the implicit definition being simply: 

CmPa = ( p . S p l W ) . 

Properties of S may be proved by first establishing a corresponding property for C. Among 
the most interesting and useful results are the following. 

Firstly, a command can affect the values only of identifiers tha t share with its free 
identifiers. 

Theorem 8. Let / be a frame. Then for all commands T, if / ^/?(freejr]]) then the 
valuations a and Sflrfl/jcr agree on I. 

Proof. By structural induction on T, | 

Secondly, the semantics of a command depends only on its free identifiers. 

Theorem 4- If frames / and / ' agree on f r e e [ [ r j then the valuations S [ [ r ] ] / ) < 7 and 
S j r f l p V agree on f r ee|r ] ] . 

Proof. By structural induction, using Theorems 1 and 3. | 

Next we state a useful and intuitive property of blocks. This shows that the effect of 
a block on an identifier that is not redeclared at the head of the block can be calculated 
entirely in the local frame. 

Lemma 3. For all A, all T, and all frames (p, a), the valuations 

S I b e g i n A ; r e n d ] ] p < 7 a n d ' S^\{^£^p){Sl^\a) 

agree on all identifiers I ^dec[[A]]. l 
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If we perform a syntactic substitution on T, renaming all free occurrences of x to y, we 
obtain the command [y\x]I\ As usual, this operation incorporates appropriate renamings 
of bound identifiers to avoid captures. A full definition appears in Appendix I. For example, 
we have 

[y\x](x:=x + 1; z:=4) = ( y : = y + 1; z : = 4 ) 
[y\x](begin new a = x; a:—x + y end) = (begin new a = y; a : = y + y end). 

If y does not occur free in T, then [ y \ x ] r contains an assignment to y precisely where T 
has an assignment to x. Intuitively, then, the effect of executing [ y \ x ] r should be similar 
to tha t of T except tha t (the sharing class of) y is updated instead of (the sharing class of) 
x. In particular, if the initial s tate agrees on x and y, so tha t the two identifiers belong 
to the same sharing class and have the same initial value, and if y ^ f r e e j r j , we would 
also expect the final value of y after executing [ y \ x ] r to be the same as the final value of 
x after I \ 

It is also possible to prove that a (suitably constrained) change in bound identifiers has 
no effect on the semantics of a block. This is an intuitively obvious and desirable property 
of blocks, and will be useful later when we formulate proof rules for our programming 
language. The following is a formal statement of this "change of bound variables" property. 

Lemma 4. If x £ dec |A ] J , y ^ d e c | A j , y ^f reeJ lAj , and y ^ f r e e [ [ r | ] , then for all 
valuations a consistent with p, 

S [[begin A; T end]]/?(7 = S[{begin (y\x)A; [ y \ x j r endjjpa. 9 

Examples. 

To show the necessity of the constraints on y in Lemma 4 , consider the following 
examples. 

1. Let A q be the declaration heading the block 

begin 
al ias x = z; 
n e w y = 0; 

x : = x + 1 

end. 

This contains a declaration for y, although y does not occur free in either the declaration 
or command of the block. Clearly, the effect of the block is identical to tha t of the single 
assignment z:=z + 1. However, when we change the bound identifier from x to y, we get 
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the block 
begin 

alias y = z; 
new y = 0; 
y:=y + 1 

end, 
which is semantically identical to s k i p , because the assignment now affects only a local 
identifier of the block. I 

2. In this example, y occurs free in the declaration, but not bound in the declaration 
or free in the command: 

begin 
new x = 0; 
alias z = y; 
z:=z + 1 

end. 
This block is semantically equivalent to the single assignment y : = y + l . Again, the renamed 
version has no effect, fl 

3. In the block 
begin null; x\—y + 1 end 

y occurs free in the command. This single assignment will not always have the same effect 
as the renamed version, which is y:—y + 1. 

4. In each of the above examples, if we choose instead a fresh identifier w which does 
not occur free or bound in the block, the semantics is preserved by the change in bound 
identifier. For instance, the first example becomes 

begin 
alias w — z; 
new y — 0; 
w:=w + 1 

end, 

which is still semantically equivalent to the assignment z:=z + 
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Programs. For programs, we define the semantic function 

M : P r o g -> V, 

where V is the set of expression values. Recall tha t a program 

begin A; T; result E end 

consists of a closed declaration, followed by a command and an expression, whose free 
identifiers are all bound by the head declaration. We want the value of this expression to 
be the result of executing the program. Since A is closed, it binds the free identifiers of T 
and E to values independent of the initial state (Theorem 1). The execution of V affects 
only (a subset of) these identifiers, and the values used in updates depend only on the 
initial values of these identifiers, which are supplied by the declaration. Thus, the state 
produced by executing the program body specifies values for the free identifiers of E which 
are again independent of the initial state. We may, therefore, define unambiguously the 
semantics of a program to be: 

M [begin A; T; result E end]] = f jSl(C|[rl|(Push(/?[Al|5o)«o)), 

where SQ is defined to be the state with a single frame in which all sharing classes are 
trivial and in which all identifiers have some dummy value. 

For example, the program 

begin new x = 0; n e w y = x + 1; y:=y + 1; resul t y end 

has result 2. 

Note tha t the initial state SQ is finitary and consistent. Using Lemmas 1A, IB, 1C, 
2A and 2B it is easy to show tha t all states arising during a program execution are finitary 
and consistent. By definition, this means tha t at all times during an execution there are 
only finitely many non-trivial sharing classes, each of which is itself finite. And the state 
is always consistent, so tha t at each level p is always an equivalence relation and a always 
agrees on the value of each member of a sharing class; the links between the stack frames 
are always consistent with the valuations. 

From now on, we assume tha t all states are finitary and consistent. We have shown 
tha t no semantic details are lost by making this assumption, because the states occurring 
in any computation are guaranteed to have these properties. 
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4. Full A b s t r a c t i o n . 

Now tha t we have defined a semantics for our language, we can use it to define the 
usual semantic equivalence relations. Two commands are semantically equivalent iff they 
denote the same value: 

r 0 = rx * s t t r 0 ] ] = s t t r i l . 

Thus, two commands are identified by the semantics iff whenever executed from the same 
initial frame they produce the same final valuation: for all frames / , S Jrojpcr = Sflrifl/HT. 

Similarly, for the other syntactic categories we can define 

E0 = E1 * £ p?0D = £ IEX\, 

A 0 = Ax Z?lAol =-PjAi l -

Two expressions are equivalent iff they always evaluate to the same value: for all valuations 
a, £^Eol<r = £|Ei]]cr. And two declarations are equivalent iff they always introduce the 
same bindings: for all frames / , P J A q ] ] / = P j A i J / . Semantic equivalence of identifiers is 
trivial, coinciding with syntactic identity, so we do not bother to introduce a new notation 
for it. 

Finally, for programs we define 

1 1 0 = 1 1 ! <=• Mlllofl = Mill!]!. 

Two programs are equivalent iff their results are the same. 

Clearly, each of these relations is an equivalence relation. We would like to be sure 
tha t our semantics identifies pairs of terms if and only if they are interchangeable, without 
affecting the semantics, in all program contexts. In other words, we would like semantic 
equivalence to coincide with behavioural equivalence. 

There is, for each syntactic category, a set of program contexts suitable for filling 
by members of tha t category. For instance, the following are program contexts of type 
expression: 

begin n e w x = [ • ]; x:= 1; result 42 end, 

beg in n e w x = 0; n e w y = x + 1; y:=[ • ]; resul t y end 

beg in n e w x = 0; n e w y — x + 1; y:=y + 1; resul t [ • ] end. 

It is possible, but not particularly illuminating, to define rigorously a syntax for program 
contexts of these types. We omit the details; see [20] for example. We will use the notation 
II[-] for a program context, with the type being inferrable from the usage. We also use the 
notation II [r] for the result of filling the hole of a context with a term r of the appropriate 
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type. It should be understood tha t we will only consider this substitution to be defined 
when the result is indeed a syntactically correct program. 

Since we have defined our semantics in the denotational style, we know tha t semantic 
equivalence implies behavioural equivalence. In other words, for all A;, all E{, and all T{f 

A 0 = A x => v n i - j ^ A o i s n i A ! ] ) , 
E0 = EX =* vn[ • ].(n[£0] = NIET}), 

r 0 = r ! => vni-Hnprolsniri]). 

The converse relations, hov/ever, are not so obvious. Does behavioural equivalence guarantee 
semantic equivalence? It is precisely here tha t problems arise with location-based seman­
tics. If the semantics includes explicit mention of the locations used by a command, then 
the two commands 

beg in n e w x — 0; skip end, skip 

will fail to be semantically equivalent, unless the semantics provides explicitly for the 
releasing of locally claimed storage on exiting a block. Yet they induce the same behaviour 
in all program contexts, since neither of them alters the value of any identifier. Similarly, 
a location-based semantics will fail to identify the two declarations 

n e w x — 0; n e w y = 1, 
n e w y = 1; n e w x = 0, 

which obviously have the same behaviour in all contexts; this will even be true in the case 
of a deallocating semantics. 

Our semantics does identify these pairs of terms. In fact, our semantics is fully abstract: 
it identifies terms if and only if they produce identical results in all program contexts. 
Thus, semantic equivalence coincides with behavioural equivalence. 

The full abstraction result depends on a simple expressivity property of the expression 
language E x p (Assumption <?). For convenience, we restate this assumption here. 

Assumption 2. For every i r £ V there exists a closed expression Ev £ E x p such tha t 
for all frames / , £lEv}f — V. D 

Provided the expression language E x p satisfies this (very reasonable) condition, we 
can always define a program which, given a finite piece of information about a state, 
produces a state consistent with this information during a computation. If two terms have 
a different semantics in some state, then we can build a program context in which the two 
terms would induce different behaviours. The important property of terms is tha t they 
only depend on and affect the values of finitely many identifiers. This was established by 
Theorems 1, 2, 3, and 4. 
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Lemma 5. For any finitary frame / and any finite set of identifiers A, there is a 
declaration A 4 such tha t for all / ' 

Proof. Let / (A) = { / ( / ) | / G A} be the set of sharing classes and values determined by 
A and / . We use an induction on the size of this set. 

• If f(A) = 0 there is nothing to prove, since this can only happen if A is empty, and 
all pairs of frames agree trivially on the empty set; in this case, we put A^ = null. 

• For the inductive step, where-/(A) is non-empty, we have / (A) = { / ( / ) }U f{B), for 
some / G A, where f(B) has smaller size. Let / ( / ) = (X,v). Let the distinct elements of 
X be J i , . . the set is finite because / is finitary. By our hypothesis on the expression 
language, there is a (closed) expression Ev having value v. Define the declaration A^ to 

n e w I = Ev; al ias Ii = / ; . . . ; al ias Ik = /. 

Clearly, this declaration places the identifiers J i , . . . , I k into a new sharing class initialised 
to the value v. Thus, for all / ' , the states / and PdA^]]/' w ^ agree on / . By the inductive 
hypothesis, there is a declaration Af which produces agreement on B. We may put 

Actually, the order does not mat ter , and A^; A^ would have the same effect. 9 

A similar result for commands may be stated and proved in an analogous manner. 

Lemma 6. For any finitary frame / = (p, a), and any finite set A of identifiers, 
there is a command Tf such tha t for all a1 consistent with p 

IlAf^f and / agree on A. 

be: 

A ^ = A ^ ; A f . 

SlTflpa* J and a agree on A. 

These results may be used to prove the full abstraction theorem: 

Theorem 5. 
The semantic functions £, D} and 5 are fully abstract . 

Proof. 

* For £ J by assumption. 

• For P , we wish to show tha t for all declarations A q and A 

vn[ • ].(n[A 0] = n[A!]) => p | a 0 1 = P^il 
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Suppose tha t P[AoJ 7 ^ Z?[Ai]J. We will construct a program context to distinguish 
between these two declarations. We know by Theorems 1 and 2 tha t if two declarations 
Ao and Ai have different semantics then there is a finitary frame / and an identifier J 
such tha t 

Let P[A t -]] / = ({pi,0i),i"i) , for i = 0 , 1 , and let / t- = (pi9<Ti) stand for the two frames. 
We know tha t either the values (?i(I) differ, or the (local) sharing classes pi(I) differ, or 
else the links T{(I) differ. 

There are three cases to consider. Firstly, if the value of i" is different in /o and f\, let 
A = freejAoJ U f r e e j A i ] . Using Lemma 5, we can find a declaration A ^ as above. Then 
the program context 

b e g i n A ^ ; [ • ]; s k i p ; r e s u l t I e n d 

will distinguish between Ao and A i . 

Secondly, if the sharing class of / is different in /o and fx, we can choose an identifier 
V which shares with / in only one of the frames /o , f\. And we can choose an expression 
Ef to have a different value from the value of / in /o and / 1 . Let 

A = f ree[A 0 J U free[AiJ U free([J ,:=jB']|. 

By Lemma 5 there is a declaration A ^ as above. The program context 

b e g i n A ^ ; [ • ]; J , : = S ' ; r e s u l t / e n d 

will distinguish between Ao and A i . 

Finally, if the link differs, there must be an identifier (say, / ' ) linked to I in only one 
of the two cases. Wi th an appropriate choice of A, the context 

b e g i n A ^ ; b e g i n [ • ]; / :== / + 1 e n d ; r e s u l t I' e n d 

will distinguish between A q and A i . 

• For C a similar argument can be based on Lemmas 5 and 6. I 
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5. A x i o m a t i c Semant ic s . 

We have defined a denotational semantics for our programming language and proved 
full abstraction with respect to a notion of program behaviour. It should be clear tha t this 
notion is closely related to partial correctness. In other words we have built a fully abstract 
partial correctness semantics for our language. In this section we show how we can use the 
structure of the semantics to suggest assertion languages for expressing semantic properties 
of the terms of our programming language, and then build an axiomatic proof system for 
the language. The choice of assertion languages and the proof rules are suggested directly 
by the semantics, and this means tha t soundness and completeness of the proof system 
are easy to establish. Moreover, the fact tha t we have defined separate semantic functions 
for declarations and commands allows us to separate the axiomatic t reatment into two 
parts: an axiomatization of the purely declarative part of our programming language, and 
an axiomatization of the imperative part of the language. Since the semantic descriptions 
were denotational, i.e. syntax-directed, we will be able to build syntax-directed (Hoare-
style) proof systems. 

In our semantics for the programming language, declarations had effects on both 
the sharing relation (a declarative effect) and on the association of identifiers to values 
(an imperative effect), because of the initialisations tha t take place when a declaration is 
performed. Commands have an effect only on the values of identifiers, and do not alter the 
sharing relation. At all times during the execution of a program the sharing classes are 
all finite, and all but finitely many of them are trivial. Moreover, the constitution of each 
sharing class is syntactically determined: the set of declarations in whose scope a command 
is executing determines the sharing classes precisely. There is a reasonably obvious notion 
of when a declaration A specifies tha t the set X of identifiers is a sharing class. We may 
formalise this notion precisely. The important point tha t we are making is tha t we can 
choose a language of assertions about sharing and build a Hoare-style proof system for 
declarations. In fact, we will give a Hoare-style system which is sound and complete. Our 
choice of assertion language will be dictated by the semantics, which will guide us to an 
assertion language which is expressive in Cook's sense. Once we have axiomatized the 
declarative semantics, we will then be able to construct a Hoare-style proof system for the 
imperative effects of commands and declarations. 

Declarative Proof System. 

The purely declarative effect of a declaration is to alter the structure of the sharing 
classes, in the manner described by the semantic function R. Our approach is to choose 
a simple language of assertions about sharing classes. Specifically, an assertion will be a 
finite set X of identifiers, or more generally a finite conjunction (written as a list) of a 
disjoint collection of such sets. .The intention is tha t an assertion 

X\,.. .,Xn 
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lists all of the non-trivial sharing classes. Since we know tha t sharing relations enjoy the 
finitary property, it is certainly possible to find a finite description of a sharing relation as 
such a list. There is a simple "propositional" calculus of assertions, which we will largely 
take for granted. In particular, we use juxtaposition for conjunction and we write 

X i , . . . , X n => Yif...9Ym 

when each Yj is included as a member of the first sequence, so tha t for some i we have 
Yj = X{. We also allow this in the case when Yj is a singleton disjoint from all of the X,-. 
The interpretation of such an assertion is clear: the list of X{ contains all of the non-trivial 
sharing classes; Yj is "implied" by this list iff either Yj is non-trivial and appears in the 
list, or else Yj is trivial. Thus, the two lists describe precisely the same sharing relation; 
in this sense, "implication" is trivial for our class of assertions. 

We will use X , Y} and Z to stand for finite sets of identifiers (sharing classes) and 
for conjunctions of these (sharing assertions). It is convenient to introduce the notation 

to mean tha t the sharing class of I , specified by </>, is Y. Thus, for instance, if <j> is 
( X i , . . .,Xn) and J belongs to X t-, then <f>(I) = X»; if J is not included in any of the listed 
classes, then (p(I) = {/}. 

We introduce the notation [ y \ 7 ] X for the result of replacing J by Y in X : 

[Y\I]X = (X-{I})UY i f / e x , 
= X otherwise. 

This notation extends in the obvious way to a sharing assertion, [Y\J]0. 

We now design a Hoare-style, syntax-directed proof system for declarations. The 
assertion 

is interpreted as saying that if q> describes the sharing relation before executing the 
declaration A then will describe the sharing relation afterwards. We use angled brackets 
instead of conventional set brackets merely to indicate tha t we are axiomatizing the 
properties of a different syntactic category from the usual one (commands). 
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We can build a very simple set of axioms and proof rules, as follows. We give one 
axiom or rule for each syntactic form of declaration. 

• An empty declaration, which we represent by null, does not alter any sharing classes: 

< * ) n u l l < * ) (AI) 

• A simple declaration produces a new sharing class containing a single identifier; 
it removes the newly declared identifier from its old sharing class, and all other sharing 
classes remain unchanged: 

(<f>)new I = E{[Q\I]<I>) (A2) 

Note tha t we have 
( [ 0 \ / j 0 ) ( j ) = { / > , 

( [ 0 \ W ) = m-in, nr^i. 

Thus, our axiom does indeed correspond to the intuitive explanation given above. 

• A sharing declaration has slightly more complicated properties. Specifically, the 
declared identifier is to be inserted in the sharing class of the identifier on the right-hand 
side of the declaration, while* being removed from its old sharing class. Thus, we specify 
the axiom: 

<0)alias J 0 = /!<[{ IQ, h } \ / i ] [ 0 Y W ) ( A 3 ) 

Note tha t when X ' = [ { I 0 , h [®Vo}X, we have 

h e x = > X ' = X u { i o } , 
h g X => X' = X - { I 0 } . 

Again this corresponds to the intuitive explanation. 

• Finally, consider a sequential composition. Since the second declaration is executed 
within the scope of the first, the effects should accumulate from left to right. The desired 
rule to capture this is analogous to the usual rule for sequential composition of commands: 

(<?)A 0{^) (<£')Ai(V>) 
(*)A 0 ; Ai<*) 1 j 

• The following rule allows us to "strengthen" pre-conditions and "weaken" post­
conditions: 
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For an example, let (} denote the assertion which states tha t there are no non-trivial 
sharing classes. Then we have 

( )new x = 0({ x }} 
({ x }}alias y = x({ x, y }) 
({ x, y })alias z = w{{ x,y},{z,w }) 
({ x }}alias y = x; al ias z = y{{ x, y, z }). 

It should be clear tha t these axioms correspond very closely with the semantic function 
Z. Indeed, it is easy to formalise the validity notion for our assertions: let us write 

to denote tha t the sharing relation p satisfies assertion <j>. Formally, this is defined in 
a manner corresponding to the informal interpretation given earlier: <j> lists all of the 
non-trivial sharing classes, so tha t 

p h (Xit.., Xn) <a V».(J e Xt P{I) = Xi) 
n 

ft \/I<?\JXi.(p(I) = {I}). 
1 = 1 

Similarly, we define validity of an assertion (cp}A('0) : 

H (̂ )A(V )̂ & Vp.(p h <F> implies ^ [ A j p h 

We claim tha t the proof system is sound and complete. The proof of soundness is a 
simple structural induction, and the Appendix contains a sketch of the completeness proof. 

Theorem 6. (Soundness) For all A and all <j>, 

h (^>A(^> implies h (^)A(^) . 

Theorem 7 . (Completeness) For all A and all <j>, ijj, 

H (^)A(^) implies h (^)A(^) . 

Note tha t none of the assertions gives any information about the values denoted by 
any of the sharing classes. We will see tha t this will not cause a problem; on the contrary, it 
is a distinct advantage when we come to formulate proof rules for commands. Essentially, 
we are separating entirely the purely binding effect of a declaration from the initialisation 
effect it causes. The latter is more properly regarded as a command-like feature, and we 
will build it into the proof system for commands. 
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Imperative Proof System. 

For commands, we use assertions of a more conventional style. Pre- and post-conditions 
are drawn from a simple logical language; examples of conditions are 

x = 3, x = y 8cy z. 

We use P and Q to range over conditions. Each condition represents a predicate on the 
(valuation part of) state. In conventional Hoare logics for simple sequential languages 
without sharing, assertions of the form {P}T{Q} are used and interpreted as follows: 
whenever T is executed from an initial state satisfying P then the final state will satisfy 
Q. For languages without sharing this is of course natural , since the effect of a command 
does not depend on any notion of sharing. However, our semantics for commands involved 
the sharing relation explicitly. We introduce a natural generalisation of Hoare assertions, 
incorporating a condition or assumption on the sharing relation. The assertion 

th{P}T{Q} 

states tha t whenever the command T is executed, with <f> specifying the sharing classes, 
from an initial valuation satisfying P, then the final valuation will satisfy Q. 

For declarations, we observed tha t the (local) imperative effect of a declaration was 
uniquely determined by the valuation, and does not depend on the sharing relation. This 
suggests tha t we use assertions of the form 

with the interpretation tha t when the declaration A is executed from an initial valuation 
satisfying P , the resulting valuation satisfies Q. 

We propose the following axioms and rules of inference for the imperative part of our 
language. As usual, we give a clause for- each command construct. However, in addition, 
we propose rules of inference for the imperative aspects of declarations. This will enable 
us to give a simple proof rule for blocks. Our prior axiomatization of declarative semantics 
will be used. 

• A s k i p command has no effect, regardless of the sharing relation: 

< £ h { P } s k i p { P } (Bl) 

• An assignment affects the values of all identifiers in the sharing class of the target 
identifier, and is thus akin to a simultaneous assignment to a set of distinct identifiers. 
We use the notation [E\Y]P for the simultaneous syntactic replacement in P of all free 
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occurrences of identifiers in Y by the expression E. This is a generalisation of the single 
substitution operation [E\I]Pj and coincides with the latter when 7 is a singleton set. 
The desired axiom is: 

*W-Y (B2) 
ihUE\Y\P}l:=E{P} 

• The rule for sequential composition is again simple. The two commands are to be 
executed with the same sharing relation, their effects accumulating from left to right. 

4Jh{P}Ti{Q} <f>\-[Q}T2{R} 

< * h { P } r i ; r 2 w 

• For a block beginning with a simple declaration we have to take into account both 
the declarative and imperative aspects of the declaration, which may affect the execution 
of the block body. The following rule takes all of these factors into account. It is sound 
provided none of the bound identifiers in A occurs free in P or R: 

{ p } a { q > W A ( y > ) y , h { Q } r w 
< £ h { P } b e g i n A ; r e n d { i ? } k ; 

• A null declaration has no effect: 

{ P } n u l l { P } (B5) 

• A simple declaration has an effect similar to tha t of an assignment, and it updates 
the value of the declared identifier: 

{[E\I]P}newI = E{P} (B6) 

© For a sharing declaration, the effect is similar: 

{ [ / ' \ / ] P }al ias J = / ' { P } (B7) 

• Sequential composition of declarations behaves simply: 

{ P } A q { Q } , {Q}AX{R} . . 

So far "we do not have any rule corresponding to "change of bound variable." The 
block rule above only allows us to use pre- and post-conditions which do not involve the 
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bound identifiers of the block. This is as it should be, since these identifiers are redeclared 
on entry to the block; the meanings of these identifiers inside the block are unrelated 
to their meaning outside the block (except through the link). We can suppress the need 
to reason explicitly about the links by changing bound identifiers to avoid hole-in-scope 
problems. We need, therefore, to be able to prove an arbitrary partial correctness formula 
for a block if we can first prove a version in which we have renamed some of the bound 
identifiers. The following is an adaptation of a standard rule from the literature. Let 
(y\x)A denote, as before, the result of replacing all bound occurrences of x in A by y. The 
rule is: 

cf> h { P }begin {y\x)A; [y\x]T e n d { Q } 
( £ h { P } b e g i n A ; r e n d { Q } 1 J 

provided y does not occur free in T or A, and y does not occur bound in A. The soundness 
of this rule, and the need for these syntactic constraints, are indicated by our earlier results 
(Lemmas 3 and 4). 

In addition to the above syntactically motivated rules, the following rule should be 
self-evident. It allows us to use the consistency property of states to conclude from an 
assertion about a single identifier I a corresponding assertion about all identifiers in its 
sharing class. Let us use the notation 

p? = A W)p 
i'ex 

when X is a finite set of identifiers. For example, we have 

(x = z + l)ix'y} = (x = z + l&y = z + 1). 
The rule we propose is simply: 

m=y (BIO) 

Finally, v/e include a version of the rule of consequence. Note tha t it is necessary to include 
the sharing assertion. The rule for commands is as follows, the one for declarations being 
similar. 

^ h ( P = > P ' ) <f>h{P'}T{Q'} <f>h(Q'^Q) . 
JFTpWq} (B11) 

( P ^ P Q {P'}A{Q>} {Q'^Q) 
{P)HQ) (B12) 
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Derived rules. 

The following specialised rules are derivable. These are special cases of our general 
rules in which we have chosen a specific form for the declaration at the head of a block. 
They are related to rules in the literature, especially those of [3]. 

A rule for a block beginning with a new declaration can be obtained from the block 
rules and the rules for new: 

( f l n e w z = E(i/>) # » ) = Z y , h { [E\Z]P}[z\x]T{ Q } 
<f>h{P }beg in new x = E; T end{ Q} 1 [ } 

where z is a fresh identifier chosen not to be free in any of the relevant terms. Specifically, 
we require tha t z should not occur free in P or Q or I \ In fact, even this version of the 
rule can be simplified further, using (A2), to get: 

[0\*fr h{[E\z]P}[z\x]T{Q} 
^ h { P } b e g i n n e w x = J E ; ; r e n d { Q } ' 1 ' 

again provided z does not occur free in P, Q, or T. 

A similar rule for a block headed by a sharing declaration is also obtainable: 

( f l a l i a s z ${z) = Z if> h { \y\Z]P }[z\x]T { Q } 
<f> h { P } b e g i n alias x = y;T end{Q} ' 1 ] 

where again z is a fresh identifier chosen not to be free in P, Q, or T. An important point 
to notice is the similarity in structure between these derived rules (Dl) and (D3) for the 
two types of declaration. 

Notice tha t if we only allowed purely declarative declarations which do not perform 
any initialisation, the rules can be simplified because we no longer need any assertions 
of the form {P}A{Q}. In any case, our rules and axioms are arguably cleaner than 
the alternatives proposed in the literature. Of course, in the absence of (non-trivial) 
sharing, these rules collapse down to standard rules, as we would expect. In particular, 
the assignment rule collapses to Hoare's original axiom [13]: 

{{E\I}F}I:=E{P}. 

36 



Examples. 

Example 1. Consider the following command, which we will denote T: 

begin 
new t — x] 
x : = y ; 
y : = t 

end. 
We claim that this command exchanges the value of x and y, regardless of the sharing 
relation. We can prove an instance of this very easily. Let <j> be a sharing assertion with 
<f>(x) = X and <f>(y) = Y. We will prove the assertion 

( ^ } h { 2 : = 0 & y = l } r { x = l & y = 0 } r 

The proof is simple. Firstly, we have 

0 h {x = 0 & y = 1 } n e w i = x{ x = 0 & y = 1 & t = 0 }. 

This follows because we have 
((/>) f - new t = x ( t / > ) , 

where i/>(x) = X — t, i/>(y) = Y — t, *0(i) = { t } . This shows tha t t does not share with x 
or y. Then we have 

^ f - { x = 0 & y = l & i = - 0 } x : = y { x = l & y = l & i = 0 } . 

Finally, we get 

V > h { x = l & y = l & t = 0 } y : = t { x = l & y = 0 & t = 0 } . 

The result follows by the block rule and the rule of consequence. 

Example 2. To illustrate reasoning about sharing, consider the command 

begin alias z = x; alias y = z; y : = x + 1 end. 

This should have the effect of increasing the value of all identifiers which share with x. We 
prove this as follows. Let <f> be a sharing assertion and let X — <t*{x). Let w be an identifier 
which does not belong to A , so tha t w does not share with x. The rules for declarations 
give 

h (</>)alias z = x; al ias y = z ^ ) . 

where t/;(x) = X U { y , ^ } . From this, the assignment rule and the consistency rule gives 

\- {x — w }z:=x + l{x — y = z = w + 1}, 
since w $X. From this, using the rule of consequence, and the block rule, we get 

(<f>) h { x = w }begin alias z = x; alias y = x; y:=z + 1 e n d { x = w + 1}. 

Tha t completes the proof. 
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Soundness and Completeness. 

We claim that our imperative proof system is sound and complete. We have already 
established this for the purely declarative proof system, which is used in building up the 
imperative system. Now we have to tackle the proof rules for imperative semantics of 
declarations and commands. 

To be precise, we say tha t an assertion 

<f>\-{P}T{Q} 

is satisfied in a frame / , written 

/ h ( ^ h { F } r { Q } ) , 

if when the initial valuation a of / satisfies P and the sharing relation p of / satisfies (j>, 
then the final valuation S|r]]p<7 satisfies Q: 

p h <j> & o h P implies S iT^pa h Q. 

Similarly, a valuation a satisfies an assertion {P}A{Q} if the analogous relationship 
holds: 

c\=P implies SjAjcr H Q. 

An assertion is valid, denoted 
h ( ^ h { P } r { Q » 

if it is satisfied in all frames. For declarations we require tha t the assertion be satisfied in 
all valuations. 

We need to show tha t all valid assertions are provable, and every provable assertion 
is valid. As usual, following Cook [6], we are assuming tha t we can use any true (valid) 
assertion of the form <j> h P or P as an assumption in a proof. Let T h be the set of valid 
conditions of this form: 

( < £ h P ) e T h & H ^ h P ) , 
P € T h h P . 

We want to prove tha t all valid assertions are provable relative to Th. 
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Soundness. 

The proofs of soundness are straightforward, relying on the Theorems stated earlier 
about our semantic functions. We prove tha t each axiom is valid, and that each inference 
rule preserves validity. It follows tha t every proof preserves validity, and tha t every 
provable assertion is valid. 

Theorem 8. For all A and all P and Q, 

T h h {P}A{Q} implies h { P } A { Q } a 

Theorem 9. For all T and all <£, P and Q, 

T h h {<j>h{P}T{Q}) implies h fa h { P }T{ Q }) | 

For example, the soundness of the block rules follow from Lemmas 3 and 4. 

Completeness. 

We already know tha t the declarative system is complete. For the imperative system, 
we can show tha t "weakest pre-conditions" can be expressed for each syntactic construct 
in our assertion language. In other words, our assertion language is expressive. Essentially, 
we define weakest pre-conditions with respect to a sharing relation. The Appendix contains 
proof sketches. 

Theorem 10. For all A and all P and Q, 

h {P}A{Q} implies T h h { P } A { Q } 1 

Theorem 1 1 . For all T and for all <£, P and Q, 

h ( 9 h { P } r { Q } ) implies T h h {<f>\~ {P}T{Q}) | 
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6. Conclus ions . 

We constructed a Hoare-style proof system for a simple block-structured language 
with sharing. The underlying semantic model with respect to which we proved soundness 
and completeness was location-free, and this fact enabled the proofs to go through with a 
minimum of complication. Our semantics was novel in tha t it involved an abstract model 
of stacks, which provided a clean and elegant way to cope with the scope rules and block 
structure of our language. Although it may be argued tha t stacks have an operational 
flavour, we would counter by pointing out tha t the same is true of location-based models. 
It is at least arguable that . the use of stacks is a fairly natural way of explaining the effects of 
block entry and exit, and tha t in our semantics we have made no operational commitment 
with regard to "implementation": although the semantics uses abstract stacks to describe 
the effect of programs, this will not force us to have to implement the language on a stack 
machine. Despite our decision to abstract away from the notion of location, it should be 
possible to relate our semantics to a more concrete location-based model for the language, 
although we do not discuss this in detail here. 

An important suggestion arising from our results and technique is that Hoare-style 
proof systems should be designed not only for imperative languages—as was the case in 
Hoare's original paper—but tha t it is advantageous to extend Hoare's principle to syntactic 
categories other than commands. We designed a Hoare-style proof system for declarations, 
and found tha t this helped immensely in the construction of a proof system for commands. 
Our methods suggest, we feel, a general basis for constructing Hoare-like semantics for 
even more complicated languages involving sharing, such as languages including array 
declarations and array assignments. We feel sure tha t our methods are applicable (with 
some modifications, of course, in the choice of semantic model and assertion language) to 
procedural languages involving various parameter mechanisms and even allowing the use 
of recursion; some steps in this direction have also been taken by Reynolds [22], whose 
specification logic conforms in spirit with our ideas and techniques; an approach to the 
semantics of block-structured languages based on category theory has been developed by 
Oles [19], and there appear to be connections between their abstract store models and 
ours. Olderog [18] also gives a semantic t reatment of aliasing based on sharing classes, 
but we feel tha t our t rea tment is somewhat cleaner, and gains in simplicity and clarity by 
explicitly focussing on the need to axiomatize separately the semantics of declarations and 
commands. Other related work includes the proof system of [10], based on "store-models"; 
in contrast to the approach used there, our underlying semantic model is arguably cleaner, 
and we believe tha t our proof rules are more*natural. Our proof system was also based 
on first order assertion languages, a property tha t is more in the spirit of Hoare logics, as 
outlined in [5]. 

In principle, it should be possible to build axiom systems for each syntactic category of 
a programming language, and combine them to get a Hoare-style proof-system for the whole 
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language, as we did here for our simple language. An advantage of this approach is tha t the 
hierarchical structure of a proof system built in this way will reflect the syntactic structure 
of the programming language: in the example language considered here, for instance, the 
declarative system is a subsystem used inside the imperative system, and this corresponds 
to the fact tha t declarations can appear as syntactic components of commands. Of course, 
for more complicated languages, we may need different choices of assertion language; and 
the axioms and rules may not be as clean as the ones we were able to use here. However, 
we are confident tha t the adoption of a more widely based notion of Hoare system will lead 
to significant improvements in the axiomatic t reatment of many programming language 
constructs. This will be the subject of a series of further investigations. 

The work reported in this paper is an a t tempt to design a clean and mathematically 
tractable semantics for a programming language, and to use the semantics directly in the 
design of an assertion language and proof system for reasoning about partial correctness 
of programs. We believe that many existing programming language features still lack 
elegant and tractable formal description, and tha t their axiomatization has been at tempted 
prematurely. We intend to tackle more complicated languages than the one considered in 
this paper, as we expect our ideas and techniques to be more generally applicable. 

Acknowledgements. The author is grateful to Joe Halpern, Albert Meyer and Boris 
Trakhtenbrot for helpful comments, and to Allen Stoughton for pointing out an error in 
an earlier definition of C. 
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7. A p p e n d i x I. 

This section lists some definitions whose details were omitted from the text of the 
paper, and contains some of the proofs and lemmas for some of the theorems of the first 
part of the paper. 

Denotational definitions. 

The declaration semantic functions have the following denotational descriptions. 

R : D e c [R -+ R] 
SJnullJp = p 

Sflnew I = E\p = p +[{/}] 
£|[alias Jo = h\p = P + [p{h) U { h }] 

S : D e c -+ [S -*• E] 
SJnull]]a = c 

S | n e w 1 = £fl<r = a + [/ v-+ £ fE^a] 
S[{alias IQ = = <r + [ I 0 i - > <r{Ii)] 

S I I A o j A J o - = 5 [ [ A 1 J ( 5 5 A o l < 7 ) 

T : D e c —• [T T] 
T[[null|]r = r 

Tflnew J = Ejr = r + [7 t-> 0] 
TJalias J 0 = J j r = r + [I 0 r f t ) ] 

T I A q j A J t = T l A i K T l A o l r ) . 

Syntactic definitions. 

The definitions of (fee and free for declarations are: 

dec : 
dec [[null]] = 

decjjnew i — - L y j j * -

dec [{alias IQ = 7i|] = 
decffAojAiD = 

D e c -»• P(lde) 
= 0 

- w 
= decjAoB U decf lAj 



free : D e c -> P(Ide) 
free ([null J = 0 

f r e e d n e w / = £fl = f r e e ^ J 
free |Ialiaa 70 = 7x1 = {h} 

f r ee |A 0 ; A j = f r e e | A 0 l U ( f r e e l A j - decflAo]]). 

Semantic Properties. 

With these definitions in mind, it is now possible to prove Theorem 1. Actually, it is 
easier to establish the following more powerful result, from which Theorem 1 follows as a 
special case. 

Theorem 1.1. For all A, if A is a set of identifiers such tha t free[[A]] C A, then 
for all frames / , / ' , if / and / ' agree on A then 27[[A]]/ and P j A j ] / ' agree on A and on 
dec|lA]|. 

Proof. By structural induction on A. 

• When A is null the result is trivial. 

p When A is new J = E} we have: 

JZlAjp = p +[{/}], 
ZlAlp' = p' + [{I}}. 

Since p and pf agree on A, it follows tha t / > + [ { / } ] and pf + [{ /} ] agree on A and on i", as 
required. The argument is similar for S and T, except tha t Assumption 1 is used in the 
argument for S; this is where the inclusion of free [|A]] in A is used. 

• For an alias declaration the proof is similar. 

• When A is a sequential composition A q ; A i we have: 

7lAlf = 7 | A t ] ] ( / | A 0 l ] / ) , 

T[Alp = TjAiKTlAolIp). 

Since freelA] = free |A 0 | ] U freeHAiJ, we have free({Ao]] C A. Thus, by the inductive 
hypothesis, P[[AoI]/ and P[{Ao]j/' agree on A and on dec |Ai] j . Then, replacing A by 
A U d e c j A o J , we can use the inductive hypothesis to deduce the desired result. 9 
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The corresponding result for commands (Theorem 4 ) is established in a similar man­
ner. The relevant definition of free for commands is: 

free : Com />(Ide) 
free [[skip]] = 0 

freefl/:=£]] = freep?]j U { 1 } 
f r e e | r 0 ; r i l = freeflr0J U free[T J 

f ree |begin A; T end]] = free|A]] U (free|r]| - dec|[Al). 

It should be clear from the definitions of JZ and T that a sharing class (£|A]]p)(J) 
arises from the corresponding link class (T[[A]]p)(J) by removing and deleting identifiers 
which are declared in A. This is the reason for the following lemma, useful in proving part 
of Theorem 2 and Lemma 3. 

Lemma 1.2. For all A and all V $ dec [[A]], and for all J, 

/'e^RAflpXl) * 7'e(T[[Ajp)(7). 

Properties of Substitutions. 

We assume given the syntactic operation [y\x] on expressions. The substitution 
[y\x]A, intended to replace all free occurrences of x by y, is defined: 

[y\x]null = nu l l 
[y\x](new I = E) = (new J = [y\x]E) 

[y\x] (alias IQ = i"i) = (al ias IQ = IX) if I± ^ x 
= (a l ias IQ = y) if J i = x 

[ y \ x ] ( A 0 ; A i ) = [y\x]A- 0; [y\x]AX. 

The syntactic substitution (y \x)A, which replaces all bound occurrences of x by y, is 
defined: 

(y \x)nul l = nu l l 
(y \x)(new I = E) = (new I = E) if I 7^ x 

= (new y — E) if J = x 
(y\x)(al ias 7 0 = 7|) = (al ias 7 0 = / ! ) if Jo 7 ^ ^ 

= (al ias y = I\) if 7 = x 

(y \x ) (A 0 ; A x ) = « t / \ * ) A 0 ) ; ({y\x)[y\x]Ai). 
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Using these definitions it is possible to prove the following results. First, note tha t (as 
we would expect), the following properties are provable. In each case a simple structural 
induction suffices. 

Lemma 1.8. For all A and all x, y £ Ide, 

freefl(y\x)Ai = freeflAfl 
decJ[t/\x]Afl = decjAl 
dec|[(y \ i)Al = (dec|A]] - { * } ) U { y } , if x e decJAJ 

= dec |Al otherwise 
free|I[y\s]Al = (free|A]] - { * } ) U { y } if x e freejjAB 

= free |[A]| otherwise. 

The following theorem states a semantic property of this substitution operation. 
Corresponding results for Z and S may be formulated in a similar manner. 

Theorem I.4. If x € decgAB, y ^ d e c j A j and y ^freeflAj then 

71<y\x)AB/> = (T|[Al|p) + [y -* (T|AB/>)(*)] + [x h + p{x)\. 

The definition of [y\x]r is straightforward, except for the renaming of bound identifiers 
in a block in order to avoid capture of y. 

[y \xjskip = sk ip 

[y\x]{I:=E) = I:=[y\x]E if I ^ x 
= y:=[y\x]E otherwise 

[y \x](ro;rO = [y \x ]r 0 ; [y \x]r! 
[y \x]begin A; T e n d = beg in [y\x]A; [y\x]r e n d , if y $dec|A]J 

= [y \xjbegin (z\y)A; [z\y]T e n d if y £ d e c | A j , 
where z ^ d e c | A ] , free|A]], freejr]]. 
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8. A p p e n d i x II: A C o m p l e t e n e s s Proof . 

This section contains a short sketch of a proof of completeness for the proof system 
of the paper. 

We define first a syntactic "strongest post-condition" for declarations and assertions 
about the sharing relation. If A is a declaration and <j> is an assertion, we define 

by induction on the structure of the declaration: 

s p | n e w / = £]](<£) = [0\J]0 
sp|alias Jo = h\{<f>) = [{ Jo, Ji }\hW\h\<i>) 

s p j A o j A j ^ ) = spdAiKspllAoDM) 

Recall the notation [Y"\J]0 for the result of replacing I by Y in <f>. Formally, this is defined 
by induction on the structure of <j>. When <f> is a single set X of identifiers, we simply put 

[Y\I}X = {X-{I})UY if iex 
= X otherwise 

For a conjunction, we put 

[y\J](Xi, . . .,Xn) = {[Y\I\XU..., [Y\I]Xn). 

The intention is tha t sp[[Aj]((£) is a strongest post-condition in the usual sense, so tha t for 
all p, <f> and A, 

p\=<t> iff ^ | A ] | p h 8 p | I A ] | ( 0 ) . 

The full property is expressed by the following lemma. 

Lemma ILL For all A, and all </> and ij), 

h (*)A(tf) iff h (spiAE(^) 4>). 

Proof. By structural induction on A. 1 

The usefulness of these strongest post-conditions is summarized as follows. The proof 
is as usual by structural induction. 

Lemma II.2. For all A, and all <f>, 

h (*)A(8p |[Alfo)). I 
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Next, we define weakest pre-conditions for the imperative constructs. The following 
syntactic construction will suffice for commands, assuming we can define wp|A|](Q). 

wpJskipKQ) = Q 

Wp^IbeginA;ren<ifl(Q) = wp|Al](wp s p ( [ A l w [ lr] ] (Q)) , 

provided decjAj does not contain any free identifiers of Q. In a case where this constraint 
is violated, we may simply rename bound variables, obtaining a more generally applicable 
but slightly less attractive definition 

wp^beginAjrendKQ) = wpflA'Kwp^r'KQ)), 

where A ' jT ' is a renaming of the block body to avoid binding the free identifiers of Q, and 
t/» is spflA']]^). 

For declarations we define 

wpInull]|(Q) = Q 
w p [ n e w / = E\{Q) = [E\I)Q 

wpjlalias Jo = = / ! ! ( « ) = [h\I0}Q 
wpffAo; A J ( Q ) = wp|A 0 l(wp|[Ai]j(Q)). 

The following lemmas show tha t this syntactic characterisation does indeed define 
weakest pre-conditions. Again they are proved by structural induction. 

Lemma U.S. For all T, and all </>, P and Qf 

h (<t>h {P}T{Q}) iff h (<t>h (p=* w P 4ri(Q))) . . 

Lemma II.4. For all A, and all P and Q} 

h {P}A{Q) ^ H (P=> wplAKQ)). 

Next, we show tha t weakest pre-conditions can be used in proofs to establish com­
pleteness. 

Lemma II.5. For all T, and all <f>} P and Q, 

T h h (<^h { w P 4 r i ( Q ) } r { Q } . 
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Lemma II. 6. For all A, and all P and Q, 

T h h { w p | A l ( Q ) } A { Q } . 

The completeness theorems follow immediately. We state the version for commands; 
the corresponding result for declarations (Theorem 10) is similar, and may be proved in 
exactly the same way. 

Theorem 11. For all T, and all <j>} P and Q, 

h (<f>h {P}T{Q}) implies T h h [<t> h { P }T{ Q }). 

Proof. Suppose tha t the assertion [<f> h { P }T{ Q }) is valid. Then we know tha t 

H ( * h ( p = * w p , | [ r ] | ( Q ) j ) . 

This assertion belongs to the set T h , so t ha t trivially we have 

T h h ( * h (P w p ^ r K Q ) ) ) ( l) 

We also have 

T h h ( < £ f - { w P 4 r B ( Q ) } r { Q } ) (2) 

by Lemma II.5. By the rule of consequence (B l l ) , from (1) and (2) we get 

T h h ( 0 h {P}T{Q}), 

where T h is the set of valid conditions. T h a t completes the proof. 
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