
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Parallelism in Production Systems:
The Sources and the Expected Speed-up

Anoop Gupta
Department of Computer Science

Carnegie-Mellon University
Pittsburgh, PA 15213

December 1984

Abstract

Production systems (or rule-based systems) are widely used in Artificial Intelligence for modeling intelligent

behavior and building expert systems. On the surface production systems appear to be capable of using large

amounts of parallelism—it is possible to perform match for each production in parallel. Initial measurements

and simulations, however, show that the speed-up available from such use of parallelism is quite small. The

limited speed-up available from the obvious sources has led us to explore other sources of parallelism. This

paper represents an initial attempt to identify the various sources of parallelism in production system

programs and to characterize them, that is, to determine the potential speed-up offered by each source and

the overheads associated with it. The paper also addresses some implementation issues related to using the

various sources of parallelism.

This research was sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA Order No.
3597, monitored by the Air Force Avionics Laboratory under Contract F33615-81-K-1539. ITie views and
conclusions contained in this document are those of the authors and should not be interpreted as representing
the official policies, either expressed or implied of the Defense Advanced Research Projects Agency or the
US Government

i

Table of Contents
1. Introduction
2. Production Systems

2.1. OPS5
2.2. SOAR

3. The Rcte Algorithm
4. Parallelism in Production Systems

4.1. Parallelism in Match
4.1.1. Production-level Parallelism
4.1.2. Node-level Parallelism
4.1.3. Action Parallelism

4.2. Parallelism in the Conflict-Resolution Phase
4.3. Parallelism in the Act Phase
4.4. Parallelism from the Run-time Addition of Productions
4.5. Application Parallelism in Production Systems

5. Detailed Results of Simulations
5.1. The Simulation Model
5.2. Production Systems Measured
5.3. Production-level Parallelism
5.4. Node-level Parallelism
5.5. Action Parallelism
5.6. Bottlenecks in Obtaining Speed-up from Parallelism
5.7. Comparison of the Sources of Parallelism
5.8. Limitations of the Simulation Results

6. Summary
7. Acknowledgments
References

1

1 . Introduction
Production systems form an important part of the basic research and applied research going on in Artificial

Intelligence. As a part of basic research they are being used in the study of learning systems and problem-

solving systems [13,14, 21,27]. As a part of applied research they arc being used to develop expert systems

spanning a large variety of applications in several areas including medicine, computer-aided design, and oil

exploration [1,2,11,12,17,23]. Production system programs, however, are very computation intensive and

run quite slowly. For example, production system programs written in the OPS5 language [3] run at a speed

of only 1-10 production firings per second on a VAX-11/780. Although sufficient for many interesting

applications, this slow speed of execution precludes the use of production systems in many domains requiring

high performance and real-time response. The limited performance also impacts the research that is done

with production systems, since researchers naturally avoid programming styles and applications which run too

slowly. For the above reasons a significant increase in the execution speed of production systems would be

very valuable to both the practitioners and the researchers.

There are several different methods for speeding up the execution of production systems: (1) die use of

faster technology, (2) the use of better algorithms and architecture, and (3) the use of parallelism. This paper

focuses on the third of the above three methods. It identifies the various sources of parallelism in production

systems and discusses the feasibility of exploiting them. The paper concentrates on the parallelism available

in OPS5 [3] and SOAR [15] production systems. OPS5 was chosen because' several large, diverse, and real

production system programs have been written in it. These programs form an excellent base for

measurements and analysis. SOAR was chosen because it represents an interesting new approach in the use

of production systems for problem solving. SOAR programs are also capable of improving their performance

by learning new productions at run-time. Since only OPS5 and SOAR programs are considered, the analysis

of parallelism presented in this paper is biased by the characteristics of these languages and may not be safely

generalized to programs written in languages with substantially different characteristics, for example, to

programs written in EMYCIN[19], EXPERT [28], or KAS[2]. Furthermore, the analysis is based on

programming styles currently prevalent, and as the styles evolve over time the results may have to be updated.

The paper consists of the following sections. Section 2 briefly describes the OPS5 and SOAR production

systems. Section 3 gives a detailed description of the Rete algorithm, which forms the basis for much of the

analysis presented later in the paper. Section 4 analyzes the sources of parallelism in production systems. For

each source it provides an estimate of the expected speed-up and the associated overheads. Section 5 presents

the simulation model and the detailed results of simulations that were done to evaluate parallelism in

production systems (some of these results are also presented in Section 4). It also presents an analysis of the

bottlenecks encountered in exploiting parallelism and the limitations of the simulations results. Section 6

2

presents a summary of the results.

2. Production Systems
This section describes the OPS5 and SOAR production systems. The basic structure of OPS5 programs is

introduced first and the distinguishing features of SOAR [13] are described next. The description of SOAR

focuses on those features that affect the amount of parallelism available in its programs.

2 .1 .0PS5

A production system is composed of a set of if-then rules called productions that make up the production

memory and a database of assertions called the working memory. The assertions in the working memory are

called working memory elements. Each production consists of a conjunction of condition elements

corresponding to the //part of the rule (also called the left-hand side of the production) and a set of actions

corresponding to the then part of the rule (also called the right-hand side of the production). The actions

associated with a production can add, remove, or modify working memory elements, or perform input-output

Figure 2-1 shows an OPS5 production named pi , which has three condition elements in its left-hand side and

one action in its right-hand side.

(p p i (CI t a t t r l <x> t a t t r 2 12)
(C2 t a t t r l 15 t a t t ; r 2 <x>)
(C3 t a t t r l <x>)

—>
(remove 2))

Figure 2-1: A Sample Production

The production system interpreter is the underlying mechanism that determines the set of satisfied

productions and controls the execution of the production system program. The interpreter executes a

production system program by performing the following cycle of operations:

• Match: In this first phase, the left-hand sides of all productions are matched against the contents
of the working memory. As a result we obtain a conflict set, which consists of instantiations of all
satisfied productions.

• Conflict Resolution: In this second phase, one of the production instantiations in the conflict set
is chosen for execution. If no productions are satisfied, the interpreter halts.

• Act: In this third phase, the actions of the production selected in the conflict resolution phase are
executed. These actions may change the contents of working memory. At the end of this phase,
the first phase is executed again.

A working memory element in OPS5 is a parenthesized list consisting of one or more attribute-value pairs.

The attributes arc symbols that are preceded by t . The values are symbolic or numeric constants. The

3

condition elements in the left-hand side of a production are parenthesized lists similar to working memory

elements. However, the condition elements arc less restricted than the working memory elements; while a

working memory element can contain only constant symbols and numbers, a condition clement can contain

variables1, predicate symbols, and a variety of other operators as well as constants.

A working memory element matches a condition element if the object types of the two match and if the

value of every attribute in the condition element matches the value of the corresponding attribute in the

working memory element. If the condition element value is a variable, it will match any value in the working

memory element However, if a variable occurs more than once in a left-hand side, all occurrences of the

variable must match identical values. Thus the working memory element

(CI t a t t r l 12 * a t t r 2 15)

will match the condition element CE1, but it will not match the condition element CE2 below.

CE1: (CI t a t t r l 12 t a t t r 2 <x>)
CE2: (CI t a t t r l <x> t a t t r 2 <x>)

A production is said to be satisfied when, for every condition element in the left-hand side of the production,

there exists a working memory element that matches i t

The right-hand side of a production consists of an unconditional sequence of actions which can cause

input-output, and which are responsible for changes to the working memory. Three kinds of actions are

provided to effect working memory changes. Make creates a new working memory clement and adds it to the

working memory. Modify changes one or more values of an existing working memory element Remove

deletes an element from the working memory.

2.2. SOAR

SOAR [13,16] is a new production system architecture developed at Carnegie-Mellon University to

perform research in problem solving and learning. The current version of SOAR is realized as a modified

OPS5 system. Thus, except for the features mentioned below, programs in SOAR behave like other OPS5

programs: (1) SOAR production system programs can improve their performance over time by learning new

productions at run-time. This feature of SOAR poses interesting problems for the implementor, since it is

necessary that the new productions be incorporated into existing data structures at run-time. (2) While OPS5

programs are restricted to firing only one production on each execution cycle, SOAR allows for multiple

firings on each execution cycle. Multiple firings result in an increased number of working memory changes

A variable is an identifier that begins with the character and ends with ">H—for example, <x> and <status> are variables.

2
In addition to regular condition elements, a production may also contain negated condition elements, which are satisfied only when

there exists no working memory clement that matches them.

4

on each cycle, which in turn influences the amount of parallelism that is available to implement SOAR

production systems. (3) SOAR programs have the unifying feature that they all function by performing a

heuristic search in a problem space. It is possible to exploit this uniform structure of programs to obtain

increased parallelism; it is possible to evaluate many paths in the search space in parallel.

3. The Rete Algorithm
The most time consuming step in the execution of OPS-like production systems is the match step. Even

with specialized algorithms, it constitutes around 90% of the interpretation time. The match algorithm used

by uniprocessor implementations of OPS5 is called Rete [4]. The Rete algorithm is described below in some

detail, as it forms the basis for much of the analysis presented later in the paper.

The Rete algorithm exploits (1) the fact that only a small fraction of working memory changes every cycle

by storing results of match from previous cycles and using them in subsequent cycles, and (2) the similarity

between condition elements of productions by performing common tests only once. These two features

combined together make Rete a very efficient algorithm for match.

To perform match, the Rete algorithm uses an augmented discrimination network constructed from the

left-hand sides of productions. Figure 3-1 shows such a network for productions p i and p2 which appear in

the top part of the figure. The nodes in the network represent abstract operations to be performed during

match and are interpreted at run-time by the OPS5 interpreter. The objects that are passed between nodes in

the network are called tokens. Each token consists of a pointer to a list of working memory elements that

matches a subsequence of condition elements in a left-hand side. The network consists of four different kinds

of nodes. 3 These are:

1. Constant-test nodes: These nodes are used to test if the attributes in the condition element which
have a constant value are satisfied. These nodes appear in the top part of the Rete network. Note
that when two left-hand sides require identical nodes, the compiler shares part of the network
rather than building duplicate nodes.

2. Memory nodes: These nodes store the result of matching from previous cycles as state within
them. The state stored in a memory node consists of a list of the tokens that match a part of the
left-hand side of the associated production. For example, the right-most memory node in Figure
3-1 stores all tokens corresponding to working memory elements with "Class = C4".

3. Two-input nodes: These nodes test for joint satisfaction of condition elements in the left-hand side
of a production. Both inputs of a two-input node come from memory nodes. When a token
arrives on the left input of a two-input node, it is compared to each token stored in the memory
node connected to the right input. All token pairs that have consistent variable bindings are sent
to the successors of the two-input node. Similar action is taken when a token arrives on the right

For reasons of brevity, some nodes that occur only rarely have been ignored.

5

input of a two-input node.

4. Terminal nodes: There is one such node associated with each production in the program, as can be
seen at bottom of Figure 3-1. Whenever a token flows into a terminal node, die corresponding
production is either inserted into or deleted from the conflict set

(p p1 (C1 tattrl <x> tattr2 12)
(C2 tattrl 15 tattr2<x>)

- (C3 tattrl <x>)
-->

(remove 2))

constant-test)
nodes

(P P2

-->

root

(C2 tattrl 15 tattr2<y>)
(C4 tattrl <y>)

(modify 1 tattrl 12))

Class = C4

terminal-node

Figure 3-1: The Rete Network

From a global viewpoint, the input to the Rete network consists of changes to working memory. The

changes filter through the network, updating the state stored within the network. The output of the network

consists of changes to the conflict set. The OPS5 interpreter executes production systems at a rate of about 10

production firings per second.

In OPS5 [3] a significant loss in the speed is due to the interpretation overhead of nodes. In OPS83 [5] this

overhead has been eliminated by compiling the Rete network directly into the machine code for the

VAX-11/780. While it is possible to escape to the interpreter for complex operations during match or for

setting up the initial conditions for the match, the majority of the match is done without an intervening

interpretation level. This has led to a large speed-up and the OPS83 interpreter executes about 50 production

firings per second, which is 5 times faster than OPS5. The results of simulations reported in the subsequent

sections of this paper are based on the computational requirements of the OPS83 interpreter.

6

4. Parallelism in Production Systems
As described in Section 2.1, there are three steps that arc repeatedly performed to execute a production

system program: the match, the conflict-resolution, and the act. Figure 4-1 shows the flow of information

between the three stages of the interpreter. It is possible to use parallelism while performing each of these

three steps. It is further possible to overlap the processing in these three stages to achieve more speed-up.

The run-time addition of productions described in Section 2.2 affords still more parallelism, in that it is

possible to perform the task of compiling and updating the state of newly added productions in parallel with

the execution of the rest of the production system.

Figure 4-1: The Basic Interpreter Cycle

When studying the parallel implementation of an algorithm, it is necessary to address the following two

issues: (1) The decomposition of the algorithm into a set of parallel processes along with their communication

graph. Usually, die granularity (the size) of the processes can be traded off against the communication

required between the processes. (2) The mapping of the suggested decomposition onto a given

hardware/software architecture. The following discussion on parallelism addresses both these aspects. It also

presents estimates of the speed-up expected from the various sources of parallelism and the overheads

associated with exploiting those sources.

Note that the data presented in the following sections is based on the results of measurements and.

simulations performed on a number of production system programs. The results of measurements are

presented in [7] and the results of simulations are presented in detail in Section 5 (only a summary is

presented here). The set of production system programs that was used in the analysis is given in Section 5.2.

4 . 1 . Parallelism in Match
Current OPS interpreters spend almost 90% of their time in the match phase, and only 10% of their time in

the conflict-resolution and the act phases. For this reason it is most important to be able to speed up the

match phase as much as possible. The following discussion presents three important ways in which

7

parallelism may be used to speed up match. 4

4 . 1 . 1 . Production-level Parallelism

To use production-level parallelism, the productions in a program arc divided into several partitions and the

match for each of the partitions is performed in parallel. In the extreme case, the number of partitions equals

the number of productions in the program, so that the match for each production in the program is performed

in parallel. A graphical representation of use of production-level parallelism is shown in Figure 4-2. The

production system program is shown to be divided into A7 partitions, named PI PN. A major advantage

of using production-level parallelism is that no communication is required between the processes performing

the match.

' LLMH : 1

Figure 4-2: Production-level Parallelism in Production Systems

A natural question to ask of any parallelism scheme is: "How much speed-up can we expect from such a

scheme?" For example, if a production system is divided into 1000 partitions, there will be 1000 processes

performing the match in parallel. Do we expect a 1000-fold reduction in the total time required for match?

The answer to the previous question is "no," at least for all the OPS5 and SOAR production system programs

we have studied so far.

Consider the match for a production following a change to the working memory. The production is said to

A discussion on parallelism in match can also be found in our paper [6]. The discussion presented in the following paragraphs is more
detailed than that in our earlier paper and uses slightly different terminology. The following paragraphs also lay the groundwork for the
material presented in Section 5 of Uiis paper.

8

be affected by the change, if the new working memory clement satisfies at least one of its condition elements.

The significance being, that a production which is not affected requires negligible processing compared to a

production which is affected. It is now possible to state the reasons why we do not expect a 1000-fold

reduction in the time for match:

• Measurements [7] show that in both OPS5 and SOAR production system programs the average
size of the affect-set5 is quite small, about 32 productions. Furthermore, measurements indicate
that the average size of the affect-set is quite independent of the number of productions in the
program. Since most of the match time is taken by the productions in the affect-set, the maximum
speed-up that can be expected from production-level parallelism is about 32. This implies that if
there is a separate processor performing match for each production in the program, only 32
processors will be performing useful work and the rest will have no work to do. However, as
stated below, there are other reasons which make the speed-up even smaller.

• The second factor that affects the speed-up obtainable from production-level parallelism is the
variance in the processing time required by the affected productions. The speed-up that can be
obtained is proportional to the ratio t ^ l f,^, where t^g is the average processing time taken by
an affected production to finish match and t m a x is the maximum time taken by any affected
production to finish match. The parallelism is inversely proportional to t m a x because the next
production execution cycle cannot begin until all productions have finished match. Taking this
factor into account, recent simulations for OPS5 and SOAR production system programs indicate
that the maximum speed-up that can be obtained from production-level parallelism is around 6, a
factor of 5 less than the average size of the affect-sets.

• The third factor that influences the speed-up is the loss of sharing in the Rete network when
production-level parallelism is used. 6 The loss of sharing happens because tests which would have
been performed only once for similar productions on a uniprocessor are now performed
independently for such productions. Recent measurements show that the processing cost
increases by a factor of around 1.4 due to loss of sharing.

Some implementation issues associated with using production-level parallelism are now discussed. The first

point that emerges from the previous discussion is that it is not advisable to allocate one processor per

production for performing match. If this is done most of the processors will be idle most of the time and the

hardware utilization will be poor [6, 8]. 7 If only a small number of processors are to be used, there are two

important alternative strategies. The first strategy is to divide the production system program into several

partitions so that the processing required by productions in each partition is almost the same, and then

allocate one processor for each partition. The second strategy is to have a task queue shared by all processors

e set of productions affected by a change to the working memory.

^Recall from Section 3 that the Rete algorithm saves processing time on uniprocessors by performing operations common to several
productions only once.

Low utilization is not justifiable here, even if hardware is inexpensive, for it indicates that some alternative design can be found that
can attain more performance at the same cost or the same performance at less cost

9

in which entries for all productions requiring processing arc placed. Whenever a processor finishes processing

one production, it gets the next production that needs processing from the task queue. Some advantages and

disadvantages of the two strategies arc given below.

The first strategy is suitable for both shared-memory multiprocessors and non-shared memory

multicomputer^ It is possible for each processor to work from its local memory and little or no

communication between processors is required. The main difficulty, however, is to find partitions of the

production system that require the same amount of processing. The task of partitioning is difficult because

good models are not available for estimating the processing required by any given production. Furthermore,

the processing required by a production varies over time, which makes the partitioning task even more

difficult [20].

The second strategy is suitable only for shared memory architectures, because it requires that each processor

have access to the code and state of all productions in the program. 8 This strategy has the advantage that no

load-distribution problems are present because the tasks are allocated dynamically to the processors. Another

advantage of this strategy is that it extends very well to lower granularities of parallelism. However, this

strategy encounters loss of performance due to synchronization, scheduling, and memory contention

overheads.

In conclusion, the maximum speed-up that can be obtained from production-level parallelism is equal to

the average number of productions affected per change to working memory. However, in practice, the

speed-up is expected to be much less. This is due to (1) the variance in the processing time required by

affected productions, (2) the loss of sharing in parallel decompositions, and (3) the overheads of mapping the

decompositions onto hardware architectures. Measurements [7] show that average size of the affect-set for

production system programs is around 32. Furthermore, the size of the affect-set appears to be independent

of the total number of productions present in the program, which means that bigger production systems do

not have more inherent parallelism. Deducting for the various factors reducing the maximum speed-up,

recent simulations predict that the actual speed-up will be around 6. The detailed results of the simulations

can be found in Section 5.

While it is possible to replicate the code (the Rete network) in the local memories of all the processors, it is not possible to do so for
the dynamically changing data.

10

4.1.2. Node-level Parallelism

When node-level parallelism is used, activations of different two-input nodes in the Rete network of a

production system are evaluated in parallel.9 It is important to note that node-level parallelism subsumes

production level parallelism, in that node-level parallelism has a finer grain than production-level parallelism.

Thus, using node-level parallelism, both activations of two-input nodes belonging to different productions

(corresponding to production-level parallelism), and activations of two-input nodes belonging to the same

production (resulting in the extra parallelism) are processed in parallel.

The main reason for going to this finer granularity of parallelism is to reduce tmax, the maximum time taken

by any affected production to finish match. The desirability of reducing this value was shown in the previous

section. This decreased granularity of parallelism, however, leads to increased communication requirements

between processes evaluating the nodes in parallel. In node-level parallelism a process must communicate the

results of a successful match to its successor two-input nodes. No communication is necessary if the match

fails. To evaluate the usefulness of exploiting node-level parallelism it is necessary to weigh the advantages of

reducing t m a x against the cost of increased communication and the associated limitations on feasible

architectures.

The extra speed-up available from node-level parallelism over that obtained from production-level

parallelism is bounded by the number of two-input nodes present in a production. (Note that the number of

two-input nodes in a production is one less than the number of condition elements present in that

production.) The reason for this is that the extra parallelism comes only from the parallel evaluation of nodes

belonging to the same production. Since the average number of condition elements in production systems is

around 4, the maximum extra speed-up expected from node-level parallelism is around 3 . 1 0 The results of

simulations for OPS5 and SOAR programs indicate that using node-level parallelism it is possible to get

speed-ups of about 8, which is 1.3 times more than the speed-up that could be obtained if production-level

parallelism alone was used.

The implementation considerations for node-level parallelism are very similar to those for production-level

parallelism described in Section 4.1.1. However, since the communication required between the parallel

processes is more, shared-memory architectures are preferable. The size of the tasks when node-level

parallelism is used is smaller than when production-level parallelism is used. Simulations indicate that the

9 A n activation of a two-input node corresponds to the processing required when a token flows into the left or right input of a
two-input node (see Section 3 for details).

1 0 This statement is not completely true. This is because of the t^x/t^g factor described in the previous section. It is possible in
some cases for the extra speed-up to be close to the number of two-input nodes in the largest production of the production system.

11

average task length is around 50-100 computer instructions. This number is significant in that it indicates the

amount of synchronization and scheduling overhead that may be tolerated in a shared-memory

implementation.

4.1.3. Action Parallelism

Usually, when a production fires, it makes several changes to the working memory. Measurements show

that the average number of changes made to the working memory per execution cycle is 5.3. Processing these

changes in parallel, instead of sequentially, can lead to increased speed-up from both production-level and

node-level parallelism.

The reasons for the increased speed-up from production-level parallelism when used with action parallelism

are the following. In Section 4.1.1, it was shown that the speed-up available from production-level parallelism

is proportional to the average number of affected productions. The set of productions which is affected as a

result of processing many changes simultaneously is the union of the affect-sets of the individual changes to

the working memory. Since this combined affect-set is larger than the individual affect-sets, more speed-up

can be obtained. For example, consider the case where a production firing results in two changes to working

memory, such that change-1 affects productions p i , p2, and p3, and change-2 affects productions p4, p5, and

p6. If change-1 and change-2 are to be processed sequentially, it is best to use three processors. Each change

takes one cycle and the total cost is two cycles. 1 1 However, if change-1 and change-2 are processed

concurrently, they can be processed in one instead of two cycles using six processors. Simulations indicate

that the use of action parallelism increases the speed-up obtainable from production-level parallelism alone

by a factor of about 1.3. The extra speed-up is less than the average number of working memory changes per

cycle, because the affect-sets of the changes are not distinct but have considerable overlap.

Analysis of production-system programs shows that often two successive changes to working memory affect

two distinct condition elements of the same production, as a result causing two distinct two-input node

activations. It is then possible, using node-level parallelism, to process these node activations in parallel, thus

increasing the available parallelism. For example, consider the case where both change-1 and change-2 affect

productions p i , p2, and p3. If the activations correspond to distinct two-input nodes, it is possible to process

both the changes in parallel, in one instead of two cycles. Simulations indicate that the use of action

parallelism increases the speed-up obtainable from node-level parallelism alone by a factor of around 1.7.

So far the cost of computing the affect-set for a change to the working memory has not been discussed.

When many changes are to be processed, it is possible to compute the affect-set for one change, while

Assuming that each affected production takes the same amount of processing time.

12

simultaneously processing productions affected by the previous change. Alternatively, the affect-sets of all

changes to working memory can be computed simultaneously. This overlapped computation is another

source of parallelism when processing many changes in parallel.

4.2. Parallelism in the Conflict-Resolution Phase

Measurements [7] show that on each cycle of production system execution around 5 changes are made to

the conflict-set. Thus at best it would be possible to achieve a 5-fold speed-up in conflict-resolution from

parallelism. This speed-up appears to be sufficient, in the sense that conflict-resolution is not expected to

become a bottleneck in the near future. The reasons are:

• In current production-system interpreters conflict-resolution takes about 5% of the execution
time. Speeding it up by a factor of 5 implies that only 1% of the time will be devoted to it. This
will then not be a bottleneck until we speed up match by about 50-fold, and parallelism does not
seem to provide that much speed-up. Note that any speed-up in match due to better or faster
processors applies uniformly to match and conflict-resolution and thus does not change the
argument

• In both production-level and node-level parallelism discussed earlier, the match for the affected
productions finishes at different times because of the variance in the processing required by the
affected productions. Thus many changes to the conflict set are available to the conflict-resolution
process, while some productions are still performing match. Thus much of the conflict-resolution
time can be overlapped with the match time, reducing the chances of conflict-resolution becoming
a bottleneck.

• If the conflict-resolution ever becomes a bottleneck, there are simple strategies for avoiding i t
For example, to begin the next execution cycle, it is not necessary to perform conflict-resolution
for the current changes to completion. It is only necessary to compare each current change to the
highest priority production instantiation so far. Once the highest priority instantiation is selected
the next execution cycle can begin. The complete sorting of the production instantiations can be
overlapped with the match phase for the next cycle. Hardware priority queues provide another
strategy.

4.3. Parallelism in the Act Phase
The act step like the conflict-resolution step only takes about 5% of the total time for the current production

systems. When many productions are allowed to fire in parallel, as in SOAR, it is quite straight forward to

execute them in parallel. 1 2 Even when the right-hand side of only a single production is to be evaluated, it is

possible to overlap some of the input/output with the match for the next execution cycle. For the above

reasons the act step is not expected to be a bottleneck in speeding up the execution of production systems.

1 2 This assumes that the execution of one right-hand side docs not affect the result of executing another right-hand side, which is true
of SOAR.

13

4.4. Parallelism from the Run-time Addition of Productions

Section 2.2 described the SOAR production-system architecture in which productions arc added at run­

time. Addition of productions at run-time poses two new computational requirements: (1) the integration of

the new productions into the existing data structures for performing match, and (2) updating the state 1 3

associated with the new productions with respect to some subset of the contents of the working memory.

Note that this subset of working memory can be significantly larger than the average number of changes made

to the working memory per execution cycle.

An important characteristic of the newly added productions in SOAR programs is that the new productions

only enhance the performance. The final outcome of a program is not changed even if these productions are

not incorporated into the program. 1 4 However, the inclusion of the new productions greatly reduces the

number of execution cycles necessary to compute the final result This feature of SOAR programs permits

the update of the data structures and the state associated with new productions to be extended over several

match-execute cycles and can be done in parallel with the execution of the rest of the production system.

Currently, no data is available on the extra speed-up that is obtainable from this source of parallelism.

4.5. Application Parallelism in Production Systems

Lastly, there is substantial speed-up to be gained from application parallelism, where a number of

cooperating but loosely coupled production system tasks execute in parallel. The cooperating tasks could

arise in the context of search, where there are a number of paths to be explored and it is possible to explore

each of the paths in parallel (similar to OR parallelism in logic programs [26]). The cooperating tasks could

also arise in the context where there are a number of semi-independent tasks, all of which have to be

performed, and they can be performed in parallel (similar to AND parallelism in logic programs). The

maximum speed-up that can be obtained from application parallelism is equal to the number of cooperating

tasks, which can be significant. Unfortunately, most current production systems do not exploit such

parallelism, because (1) the production system programs were expected to run on a uniprocessor, where no

advantage is to be had from having several parallel tasks, and (2) current production system languages do not

provide the features to write multiple cooperating production tasks easily. Although not exploited currently,

the SOAR production system architecture provides a uniform problem-solving framework 1 5 that makes it

easy to exploit OR parallelism.

13
Recall that the Rete algorithm stored the result of match from previous cycles as state with the productions to avoid performing

match with the same working memory elements over and over.

is is because SOAR systems can fall back on more basic problem-solving mechanisms when specialized knowledge is not
available.

1 5A11 problem solving in SOAR systems is done as heuristic search within a problem space.

14

5. Detailed Results of Simulations
This section describes the detailed results of simulations performed to determine the speed-up available

from parallelism in the match step. It describes the simulation model, the programs that were measured, the

results of the simulations, and the limitations of the simulation results. This section may be skipped by those

readers who arc not interested in these details. Many of the important results have already been summarized

in the previous section.

5 .1 . The Simulation Model

Previous analysis of parallelism in production systems [7,8] was done using very simple models. Only

production-level parallelism was explored and even there the variation in the cost of processing the

production activations was not taken into account. The measurements were still important because they

provided some robust upper-bounds on the speed-up that could be obtained using production-level

parallelism. To explore the parallelism in more detail the current simulator was constructed. The goals were

the following: (1) To determine the amount of speed-up that could be achieved from each source of

parallelism individually, so that it is possible to trade off the extra speed-up from a source with the overheads

of using that source. (2) To study the botdenecks in obtaining speed up from parallelism. Once the

botdenecks are understood, it should then be possible to devise means to eliminate them. (3) To study the

effect of different cost models for node activations on the amount of speed-up that could be obtained from

parallelism. (4) To study the effect of architecture (shared memory versus non-shared memory) on the

speed-up. The conflict-resolution and the act steps were not considered, since they are not expected to

contribute significantly to the overall speed-up and because exploiting parallelism in those steps does not

appear to be as complex.

The simulator that has been constructed for determining the parallelism in production systems is event-

driven. The input to the simulator consists of: (1) a detailed trace of node activations in the Rete network

corresponding to a production-system run; (2) a cost model that can be used to determine the cost of any

given node activation; and (3) a specification of the parallel computational model on which the trace is to be

executed. The output of the simulator consists of statistics for the overall run and the individual cycles in the

run.

Figure 5-1 shows a small fragment of a trace that is fed to the simulator. The trace contains information

about the dependencies between the node activations, and the simulator understands which node activations

can be processed in parallel and which cannot be processed in parallel. The trace also contains other

information which is necessary to determine the cost of a given node activation.

The simulator uses a cost model to determine the processing cost of the node activations found in the trace.

15

(wme-change)

((prev 5) (cur 10007) (type and) (node-id 6) (prods (p1)) (side right) (flag new) (numl 2) (numr 2) (lev 2) (ntests 2) (tests (teqb 10002 1 teqb 1 2)) (nsent 1))

((prev 10007) (cur 10008) (type p) (node-id 7) (prods (p1)) (flag new) (lev 3))

(wme-change)

((prev 6) (cur 10009) (type and) (node-id 6) (prods <p1)) (side right) (flag new) (numl 2) (numr 3) (lev 2) (ntests 2) (tests (teqb 10002 1 teqb 1 2)) (nsent 1))

((prev 10009) (cur 10010) (type p) (node-id /) (prods (p1)) (flag new) (lev 3))

(wme-change)

((prev 7) (cur 10011) (type and) (node-id 3) (prods (p1)) (side right) (flag new) (numl 2) (numr 2) (lev 1) (ntests 0) (tests nit) (nsent 2))

((prev 10011) (cur 10012) (type and) (node-id 6) (prods (p1)) (side left) (flag new) (numl 2) (numr 3) (lev 2) (ntests 2) (tests (teqb 10002 1 teqb 1 2)) (nsent 1))

((prev 10011) (cur 10014) (type and) (node-id 6) (prods (p1)) (side left) (flag new) (numl 3) (numr 3) (lev 2) (ntests 2) (tests (teqb 10002 1 teqb 1 2)) (nsent 1))

((prev 10012) (cur 10013) (type p) (node-id 7) (prods (p1)) (flag new) (lev 3))

((prev 10014) (cur 10015) (type p) (node-id 7) (prods (p1)) (flag new) (lev 3))

Figure 5-1: A Sample Trace Fragment

The cost depends on the type of the node activation, the amount of state associated with the node, whether

the state is stored as a linear list or in a hash table, the number of tests that have to be performed to check if

two tokens are consistent, etc. For the majority of the simulations the cost model used is based on

measurements made on the OPS83 interpreter. 1 6 The model differs from the OPS83 interpreter in that the

interpreter uses linear memories to store the tokens associated with a node, while the model assumes that the

tokens are stored in a hash table.

The computation model input to the simulator specifies how the trace is to be executed. It specifies:

© The kinds of parallelism that may be used while executing the trace (some combination of
production-level, node-level, and action parallelism). For example, when only production-level
parallelism is allowed, the simulator docs not allow activations of nodes belonging to the same
production to be evaluated in parallel. It further disallows sharing of Rete nodes between
different productions.

• Whether the processors have shared memory or not. The main implication of not having shared
memory is that productions must be statically assigned (at the beginning of the run) to specific
processors, and node activations corresponding to a given production can only be processed on
the associated processor. The restriction of processing a node activation on a specific processor
exists because the state associated with the given node is present in the local memory of a specific
processor and its communication to another processor is very expensive. This restriction is not
present in shared-memory architectures, where a node activation can be processed on any
available free processor. Presence of shared memory, however, entails overheads associated with
memory contention and synchronization. The affects of memory contention and synchronization
are not modeled in the current simulator. This results in better performance for shared memory
architectures than will be actually observed. Despite this limitation, the simulation results have
brought to light a number of facts about the parallel execution of production systems.

The OPS83 interpreter was chosen as the basis for the cost model because it represents a state of the art software implementation of
the Rete algorithm. The measurements on the OPS83 interpreter were made by Charles Forgy.

16

• The number of processors that are available. This obviously determines the maximum number of
node activations that can be evaluated in parallel.

• Whether scheduler optimizations arc present, that is, if it is allowed to reorder the evaluation of
node activations to optimize overall performance.

The statistics output by the simulator consist of both per-cycle information and overall-run information.

The statistics that are output for each match-execute cycle of the production system are:

i'tmax-h w h e r c smax-iis * e maximum speed-up that can be achieved in the i m

cycle irrespective of the number of processors used, kt is the number of tasks 1 7 in the ith cycle,
tavg-i is the average cost for tasks in the ith cycle, and imax-i *s t ^ e maximum cost of any task in
the ith cycle as determined by the simulator. Note that 'avg-/ represents the cost of executing
the ith cycle on a uniprocessor.

• Sact-i = kj-tayg-i/tcyc-j, where S f l c r - / is the actual speed-up that is achieved in the ith cycle using
the number of processors specified in the computational model, and / c v c . / is the cost of the ith

cycle as computed by the simulator. Note that it follows from the definition of z ^ . / and ^ c - /
t h a t / ^ - / ^ tmax-h

• PUf = Sact-i/NumProcessors% where PUt is the processor utilization in the ith cycle and
NumProcessors is the number of processors specified ia the computation model.

The same set of statistics can also be computed at the level of the complete run. The overall statistics are:

• Smax = ^ / ' ^ - i ^ / I i lmax-i* where is the maximum speed-up that can be achieved
over the complete program run irrespective of the number of processors used.

• S a c t = 2 f l i ki'tavg-i/*2i f l i *o*-'» w h e r e Sactis * e actual speed-up over the complete run using
the number of processors specified in the computation model.

• PU = Sact/'NumProcessors, where PU is the processor utilization over the complete run.

The following sections mainly refer to the overall statistics. The following equations show the relationship

between the overall statistics and the per-cycle statistics:
N

The above equations state that the overall speed-up is not a simple average of the per-cycle speed-ups but a

A task here corresponds to an independently schedutable piece of work that can be executed in parallel. Thus when using
production-level parallelism, a task corresponds to all node activations belonging to a production. When using node-level parallelism a
task becomes more complex, corresponding approximately to a sequence of dependent-node activations, i.e., a set of node activations no
two of which could have been processed in parallel.

N

17

weighted average of the per-cycle speed-ups. rYhc weight for the ith cycle is / m f l J f - / / 2 (max m toe first

equation and / c > . c - / / 2 t c y c in the second equation. Thus the per-cycle statistic is weighted by its fraction of

the total cost in the parallel implementation (not the total cost in the uniprocessor implementation). As a

result, a few long cycles with low speed-ups can destroy the overall speed-up for a run.

5.2. Production Systems Measured

Traces from eight different production system programs were used to analyze the parallelism in the match

phase. These production systems are : 1 8

• XSEL [18], a program acting as a sales assistant for VAX computer systems. It is written in OPS5
and consists of 1443 productions. For the XSEL system two traces have been included in the
analysis. These are referred to as xsel-trl and xsel-tr2 in the subsequent sections. The second
trace of XSEL is included because it involves interaction with an external database (working
memory changes are fetched from outside), and such working memory changes were found to
have much larger affect-sets than the normal changes.

• PTRANS [9], a program for factory management. It is written in OPS5 and consists of 1016
productions.

• MUD [10], an OPS5 program which does analysis of mud used in oil drilling. It consists of 872
productions.

• DAA [12], an OPS5 program which automatically designs computers from a high level '
specification of the system. It consists of 314 productions.

• Rl-SOAR [22], a program for configuring VAX computer systems. It is written in the SOAR
language and implements only a small part of the functionality of the corresponding OPS5
program. It consists of 235 productions.

• R1LRN-SOAR, is the same as Rl-SOAR except that it consists of nine new productions
automatically learned by the program. It consists of 244 productions.

• EIGHT-SOAR [16], a SOAR program which solves the eight puzzle. It consists of 108
productions.

• ELRN-SOAR, is the same as EIGHT-SOAR except that it includes fifteen new learned
productions. It consists of 123 productions.

The above programs represent a variety of applications and programming styles. For example, XSEL and

PTRANS programs are knowledge-intensive expert systems and are currently being used in the industry.

Both are forward-chaining systems and are primarily data driven. The MUD system is a backward-chaining

Note many of the production systems mentioned below are still growing. The number of productions listed with the programs
correspond to the number actually present in the programs when the traces were obtained.

18

production system (though still written in OPS5) and is primarily goal driven. The DAA program represents

a computation-intensive task compared to the knowledge-intensive tasks performed by XSEL, FFRANS, and

MUD programs. The last four programs represent programming styles in SOAR, both when the productions

are totally written by humans and when some fraction are automatically learned by the program.

5.3. Production-level Parallelism

As described in Section 4.1.1, when using production-level parallelism it is possible to process node

activations corresponding to different productions in parallel. Whether they are all actually processed in

parallel depends on the number of processors available, whether the processors have shared memory or not,

etc. Figures 5-2 and 5-3 show the speed-ups (for overall runs) that can be obtained by using production-level

parallelism over a uniprocessor implementation. Figure 5-2 shows the speed-up for a multiprocessor with

shared memory and Figure 5-3 shows the speed-up for a multicomputer that does not have shared memory.

O 8 16 24 32 40 48 56 64 72
Number of Processors

Production-level Parallelism (Shared Memory)
Figure 5-2:

Figures 5-2 and 5-3 show that the speed-up available from production-level parallelism tapers off quite

sharply. To explain the nature of the graphs it is convenient to divide the curves into two regions. The first

region, the active region, of the curve is where the overall speed-up is increasing significantly with an increase

in the number of processors. The second region, the saturated region, corresponds to the portion where the

19

curve is almost flat19

48 56 64 72
Number of Processors

Production-level Parallelism (Non-Shared Memory)

Figure 5-3:

The saturation speed-up, or the maximum speed-up, available from production-level parallelism is

primarily determined by two factors. (1) It is limited by the number of affected productions, that is, the

number of productions whose state changes as a result of a working memory change. For the traces under

consideration the average size of the affect-set is 32. For the xsel-tr2 and mudw traces, which show a large

saturation speed-up, the average affect-set size is 50 and 39 respectively. (2) The saturation speed-up is

proportional to the ratio / f l V g/Wx- F ° r toe curves shown in the figures the average saturation speed-up is 6,

which is much smaller than the average affect-set size of 32. Thus a large factor of almost 5 is lost due to the

variance in the costs of the different production activations. Consequently one of the main objectives of our

research has been to develop a computational model to reduce this variance, a model where the cost of

Note that since the scales for the x-axis and the y-axis are different, the line representing linear speed-up (with a slope of 1) will have
an angle much more than 45 degrees in the graphs.

20

processing activations of different productions takes approximately the same t ime. z u

The speed-up in the active region of the curves, in addition to being limited by and affected by the factors

affecting the saturation speed-up, is dependent on the following factors. (1) ITic speed-up is obviously

bounded by the number of processors in the system. (2) The speed-up is reduced by the loss of sharing in the

nodes of the Rete network. 2 1 The effect of lost sharing is quite significant and results in a loss of a factor of

around 1.4. For example, in the trace corresponding to the DAA program when 8 processors are present,

although the processor utilization for the 8 processors is 80% (resulting in a virtual speed-up of 6.4), the actual

speed-up is only 4.1, due to the loss of sharing. (3) The speed-up is also reduced by the variance in the size of

the affect-sets. The variance results in a loss of processor utilization because within the same run for some

cycles there are too many processors (the excess processors remaining idle) and for some cycles there are too

few processors (some processors have to process more than one production activation, while other processors

arc waiting for these to finish). This is the reason why even if the average affect-set size is the same as the

number of processors and all activations cost exactly the same, 100% processor utilization is not achieved. (4)

In the case of non-shared memory multicomputers, the speed-up is greatly dependent on the quality of the

partitioning, that is, the uniformity with which the work is distributed amongst the various processors. The

round-robin 2 2 partitioning strategy was used to obtain the results shown in Figure 5-3.

In summary, it is observed from the graphs that the speed-up that may be obtained from production-level

parallelism is limited to 4-8 fold. This is significantly below our initial expectations and the expectations of

other researchers [7,8,24,25]. The major blow comes from the limited number of affected productions

(limiting the number of independent tasks) and the large variance in the processing requirements of these

productions. To obtain more speed-up it is essential to either increase the number of independent tasks, or to

decrease the variance, or to do both.

This is the reason why the cost model for the simulations is derived from OPS83 with hash table based node memories. If node
memories based on linked lists are used the variance increases significantly and simulations show that the saturation speed-up drops by a
factor of almost L3.

21
Recall that in a uniprocessor implementation similarities between the left hand sides of productions are exploited to share tests and

operations. In order to gain the independence of being able to perform the tests and operations in parallel for various productions
activations, the sharing has to be given up.

2 2 I n this strategy the kth production in the source file is allocated to the (k mod NumProcessors)th processor. This strategy works
reasonably well for production system programs written by humans, where textually close productions usually respond to the same
working memory elements.

21

5.4. Node-level Parallelism

One way to increase the number of independent tasks and to decrease the variance in their processing

requirements is to decompose die larger tasks into smaller tasks each of which can be processed in parallel.

This is cxactiy what node-level parallelism attempts to do. When using node-level parallelism, in addition to

processing the activations of different productions in parallel, multiple node activations corresponding to the

same production are processed in parallel. Of course, it is not always possible to process all node activations

corresponding to a production in parallel because of dependencies between them (one node activation

causing another node activation). Furthermore, when using simple node-level parallelism, several activations

of the same node in the Rete network are not allowed to be processed in parallel because of the excessive

synchronization required by several processes working on the same data. Figure 5-4 shows the speed-up that

can be obtained using node-level parallelism.

Figure 5-4:

An advantage of exploiting node-level parallelism over production-level parallelism is that it is possible to

share nodes in the Rete network, as is done in the uniprocessor implementations. Node sharing is not

possible when using production-level parallelism because each production is processed separately and

consequendy a separate Rete network is required for each production. 2 3 Because of the finer granularity of

23
Network sharing is possible when using production-level parallelism only at the intra-prpduction level, that is, within the network

for a single production.

22

node-level parallelism, it is no longer necessary to keep the separate identity of productions, and whenever

two productions have similar condition elements it is possible to share the corresponding two-input nodes.

Computing the extra speed-up from node-level parallelism over production-level parallelism, it is seen that

for the case of 8 processors we gain a factor of 1.38; for 16 processors a factor of 1.36; for 32 processors a

factor of 1.33; and for 64 processors a factor of 1.31. 2 4 This factor although significant is not very large. The

reason for the small gain is that the parallelism is still being restricted by small affect-sets, long chains of

dependent node activations, and multiple activations of the same node which have to be processed

sequentially. These bottlenecks are discussed in detail in Section 5.6.

5.5. Action Parallelism
A production firing usually results in several changes to the working memory. For example, each cycle of

an OPS5 program results in 2.4 changes to the working memory, and the corresponding number for SOAR is

8.8 changes. 2 5 This subsection discusses the results of processing these changes in parallel. Figures 5-5 and

5-6 show the results of using combinations of production and action parallelism, and node and action

parallelism respectively.

As discussed in Section 4.1.3, the primary effect of using action parallelism is that it increases the number of

independent tasks that may be processed in parallel. The result of using action parallelism with production-

level parallelism enhances the maximum obtainable speed-up by a factor of 1.27, and using it with node-level

parallelism enhances the maximum obtainable speed-up by a factor of 1.72. There are two reasons why the

increase in speed-up is much less than 5.3 (the average number of changes processed in parallel): (1) The

changes processed in parallel have overlapping affect-sets, that is, the multiple changes affect the same

productions or they result in multiple activations of the same nodes which have to be processed sequentially.

The simulations show that while on average 5.3 changes are processed in parallel, the average size of the

affect-set increases only by a factor of 2. In one extreme case (xsel-tr2), there was one production firing that

resulted in 109 changes to the working memory. However, the affect-sets of all the changes were exactly die

same, so no speed-up was gained from processing them in parallel. (2) When the affect-sets of several

working memory changes are combined together, the value of / f l V g does not increase, but the value of

increases. This makes the value of / f l v e / / m f l J C small and decreases the obtainable speed-up.

2 4 T h e reason for the decreasing gain as the number of processors increases is that the extra gain from the sharing of nodes in the
network decreases as the number of processors increases.

^ T h e number for SOAR corresponds to the combined number of changes made to the working memory by the productions firing in
parallel.

23

48 56 64 72
Number of Processors

Production-level and Action Parallelism

Figure 5-5:

Note in Figure 5-6 that the performance of rllrn-soar is much worse than the performance of rl-soar even

though the production systems are almost identical. This is a consequence of the fact that the productions

which are learned by rl-soar have many more condition elements (one of the learned productions has more

than 100 condition elements) than the number of condition elements in productions written by humans. The

large number of condition elements leads to long chains of dependent node activations for rllrn-soar, which

greatly decreases the factor t^/tn^, correspondingly decreases the speed-up.

Figure 5-7 shows the maximum speed-up obtainable from the various sources of parallelism (shown in the

corners) and the multiplicative increase when an additional source of parallelism is exploited (shown in the

middle of the connecting line). An observation that requires some explanation is that the enhancement of

speed-up is more when action parallelism is used with node-level parallelism (factor of 1.72) than when it is

used with production-level parallelism (factor of 1.27). The reason is that, when action parallelism is used

with production-level parallelism, if two changes affect the same production they have to be processed

sequentially, and no extra speed-up is gained. When action parallelism is used with node-level parallelism,

then even if the two changes affect the same production, it is often the case that they affect two different

nodes belonging to that production. Since the two node activations can be processed in parallel extra

speed-up is obtained.

24

48 56 64 72
Number of Processors

Node-level and Action Parallelism

Figure 5-6:

node
parallelism 1.72

1.30

prod,
parallelism

1.27

node and action
parallelism

1.76

prod, and action
parallelism

Figure 5-7: Maximum Speed-up Obtainable from Various Sources

In summary, it is essential to use action parallelism if large speed-up is to be obtained from parallelism.

This kind of parallelism is especially important in systems where a large number of changes are made to the

working memory on every cycle. The large number of changes could result from (1) interaction with the

external environment or database (as in XSEL), (2) parallel firing of productions (as in SOAR systems), or (3)

use of application parallelism, where multiple threads of computation are being followed simultaneously. Of

course, a large number of changes by itself is not sufficient to ensure large speed-ups. It is essential that these

changes have differing affect-sets, so that the resulting node activations can be processed in parallel.

25

5.6. Bottlenecks in Obtaining Speed-up from Parallelism

As stated in previous subsections, the two primary factors limiting speed-up arc the small number of

affected productions and the small value of tavg/tmax. Since the number of productions that are affected on

each cycle is not controlled by the implcmcntor of production system interpreter (it is governed mainly by the

author of the program and the nature of the problem), this subsection concentrates on what can be done to

increase the value of tavg/tmax. Looking at the execution of the traces in the simulator, two major causes for

the large value of l m a x were found. The first cause is the cross-product effect and the second cause is the

long-chain effect. These causes are pictorially depicted in Figure 5-8. 2 6

CE1 CE2 CE1 CE2

(a) (b)
Figure 5-8: Bottlenecks

In the cross-product effect shown in Figure 5-8-a, a token arriving at a two-input node finds a large number

of tokens with consistent bindings in the opposite memory. As a result a large number of new tokens are sent

to its successor nodes. The successor nodes are now subject to this large number of activations, which have to

be processed sequentially, 2 7 causing a large value of t m a x and resulting in low speed-up. If the multiple

activations of the same node are processed in parallel, simulations show that the maximum speed-up

obtainable from node-level and action parallelism goes up from 13.95 to 24.06, thus providing an extra factor

o f l .72 . 2 8

During the simulations it was often observed that the large value of t m a x resulted from a long chain of

e arrows represent the flow of tokens in the Rete network, while the thick lines represent the network for the production.

27
The reasons for processing multiple activations of the same node sequentially are similar to the reasons for locking a shared-stack

data structure in a multiprocessor.
28

As a result of recent research, we now have a solution to the problem of processing multiple activations of the same node in parallel
without significant overhead.

26

dependent node activations (see Figure 5-8-b), that is, one node activation causing an activation in a successor

node, which in turn caused an activation in its successor node, and so on. These long chains occur in

productions having a very large number of condition elements. We arc currently working on methods for

reducing these long sequences of node activations. While the sequences of dependent node activations cannot

be totally eliminated, we believe that they can be shortened significantly. Simulations show that in the

hypothetical case where the dependent chains are eliminated totally an extra factor of 2 in speed up is

obtained.

5.7. Comparison of the Sources of Parallelism

So far the sources of parallelism have been considered in relative isolation. To enable the comparison of

speed-up from the various sources, Figure 5-9 shows the speed-up from combinations of various sources

averaged over all the traces. As expected the combination of node-level and action parallelism does much

better than any of the other combinations. Node-level parallelism comes second and the combination of

production and action parallelism a close third. The rest are all clustered below.

Figure 5-9:

The Rete network compiler constructs a linear network for productions, that is, the two-input nodes for the production are strung in
a linear chain. It has been empirically observed in uniprocessor implementations that this reduces the amount of state that has to be
stored in the network.

27

5.8. Limitations of the Simulation Results

An important fact that was mentioned in Section 5.1, but omitted in the subsequent discussion is that most

curves shown in graphs so far are results of a simulation model that does not take scheduling, synchronization,

and memory contention overheads into account. 3 0 Several observations can be made:

• All the curves corresponding to shared-memory multiprocessors in Figure 5-9 will be pushed
down, while the curves corresponding to non-shared memory multicomputer will retain their
positions, as they do not encounter the above overheads. In fact, one might speculate as to what
the curves will look like if the overheads are taken into account. One possible outcome is shown
in Figure 5-10. It is expected that the systems which will offer the best cost-performance in the
small speed-up range will be non-shared memory or shared-memory architectures using simple
sources of parallelism (p-par, pa-par), since the associated overheads are small. However, if a very
high performance system is desired, then it will be necessary to exploit all the possible sources of
parallelism (na-par) even if it means high overheads [6].

• For small number of processors (10-20) the memory contention and synchronization overheads
are not expected to be very significant. The two main reasons are: (1) because of the constraints
imposed on the processing model (for example, no two activations of the same node are to be
processed in parallel) most processors will be working on different data, resulting in very few
conflicts; and (2) there is a large amount of read-only data which can either be cached or be
replicated in the local memories of the processors to reduce contention.

• The predicted speed-ups without taking memory contention and synchronization overheads into
account represent upper-bounds 3 1 on the speed-ups diat can actually be achieved. While the
analysis presented in [7] gave some upper-bounds on the basis of the size of the affect-sets, the
upper bounds determined in this paper are much tighter.

As stated in Section 5.2, the simulation results presented in this paper are based on traces derived from eight

programs written in OPS5 and SOAR. There are some issues related to the representativeness of the traces

and thus the results. The production systems considered in the simulations are limited in two ways: (1) they

are limited in that they represent only a fraction of all existing OPS5 and SOAR programs, and (2) they are

limited in that they say little about the characteristics of production systems several years hence. The

following observations can be made:

• Although the production system programs included in the simulations form only a fraction of the
programs written using OPS5 and SOAR, they include some of the largest programs written in
these languages [9,10,18,22]. Also, many programs not included in the simulations but studied
in other papers [7,20] show characteristics similar to the programs included in the simulations.
Since the characteristics are similar, there is good reason to believe that the speed-up obtainable
from parallelism will be similar.

We are currently working on models that will take such overheads into account

The notion of upper-bound is used in a loose sense here and refers to the speed-up obtainable within the specified model of
parallelism. It is quite possible that if the style of programming production systems changes in the future or with the discovery of new
parallel algorithms the predicted speed-up is exceeded.

28

best cost-performance curve
individual cost-performance curves

p-par : prod, parallelism
pa-par: prod, and action parallelism
na-par: node and action parallelism

I •
number of processors

Figure 5-10: Cost-Performance Tradeoffs

• An important factor determining the speed-up available from parallelism in production systems is
the number of productions affected by a change to working memory. This number has been
observed to be quite small and of similar magnitude in all the programs studied (irrespective of
the total number of productions in the programs). An intuitive explanation for this observation is
that programmers recursively divide problems into subproblems when writing the programs.
Then, at any given time, the program execution corresponds to solving only one of these
subproblems. The size of the subproblems (which is correlated to the number of productions
associated with the subproblems) is independent of the size of the original problem and primarily
depends on the complexity of the subproblem and the complexity that that the programmer can
deal with at the same time. Thus, if the above explanation is true, then many programs written by
programmers in the future will exhibit small affect-sets, and consequently will have only limited
benefits from parallelism. 3 2

A few words on the dependence of the results presented in this paper on the use of the Rete algorithm as

the base for the parallel implementation. Although the exact numbers about the speed-up available from

paralellism have certainly been influenced by the use of the Rete algorithm, we believe that the overall nature

of the results has not been influenced greatly. For example, we do not think that the use of a different

algorithm will increase the speed-up obtainable from parallelism (of course, compared to the best

uniprocessor implementation of production systems) to a 100-fold instead of the 10-fold to 20-fold that we

have found. The reasons are:

• The Rete algorithm embodies two general principles that do not restrict the use of parallelism.
The first principle is that of precompiling the productions into a form so as to gain run-time

Die above discussion only addresses the case where application parallelism (see Section 4.5) is not exploited. In case application
parallelism is used, it is possible for a program io be working on several subproblems simultaneously, thus having a large set of affected
productions.

29

efficiency. ITiis is not incompatible with the use of parallelism. J J The second principle is that of
storing die results of match from previous cycles as state, so that only incremental processing has
to be done on each cycle. Although it is possible to keep a large number processors busy if no
state is stored, our experience has been that this does not result in an increased absolute speed of
program execution [8].

• Any attempt to explore parallelism in production systems must begin with some base algorithm.
After considering many alternative algorithms, we have not found any algorithm, significantly
different from Rete, that is more suitable for a parallel implementation (at least for the production
systems resembling the ones considered in this paper). It appears that the data-flow like
representation used by the Rete algorithm captures most of the inherent parallelism present in
production system programs. Finally, it is important to note that the Rete algorithm is being used
only as the starting point and where necessary it will be and has been modified to suit the needs of
a parallel implementation.

6. Summary
This paper describes the various sources of parallelism that can be used to speed up the execution of

production systems. The sources of parallelism considered are: (1) production-level parallelism, (2) node-

level parallelism, (3) action parallelism, (4) parallelism in conflict-resolution, (5) parallelism in act, (6)

parallelism from the run-time addition of productions, and (7) application parallelism. Out of these seven

sources, the first three are examined in greater detail than the others. Results of simulations show that it is

possible to speed up the match phase by up to 6-fold using production-level parallelism, up to 8-fold using

node-level parallelism, and up to 14-fold using a combination of node-level and action parallelism. While the

speed-ups obtained from parallelism are significant, they are much below our initial expectations (order of

100-1000 fold). The main reasons for the limited speed-up are (1) the small number of affected productions

for each change to the working memory, (2) the large variance in the processing requirements of the

production activations, and (3) the fact that successive changes to working memory affect almost the same set

of productions. While the first and the third bottlenecks listed above are beyond the direct control of the

person implementing the production system interpreter, it is possible to do something about the second

bottleneck. Our recent efforts to reduce the variance in the cost of production activations show that it may

now be possible to achieve as much as 24-fold speed-up over state of art uniprocessor implementations.

Finally, the following assumptions of the analysis should be kept in mind. The analysis is based on

measurements and simulations performed on programs in OPS5 and SOAR. The analysis is dependent on

In actuality the situation is not as simple as this point makes it out to be. Since the traces for the simulations are obtained from a
particular uniprocessor implementation of Rete, in some instances specific choices made in the implementation have influenced the
results. For example, the existing Rete compiler compiles productions into linear networks (linear list of two-input nodes). Although it
would be interesting to evaluate the performance when the productions are compiled into binary networks, it was not possible to do it
from the existing traces corresponding to the linear networks. However, for most OPS5 systems analyzed in this paper, the average
number of condition elements per production is so small that binary networks would cause only minor changes in the results.

30

prevailing programming styles and will lose some of its validity as programming styles evolve. The simulation

results presented do not include the scheduling, synchronization, and memory contention overheads that will

be experienced in a shared-memory multiprocessor, and to that extent the results represent an upper-bound

on the amount of speed-up that is obtainable. Our current research on multiprocessor architectures for

production systems, however, shows that it is possible to use custom hardware to significantly reduce some of

the above overheads.

7. Acknowledgments
I wish to thank Charles Forgy, John McDermott, and Allen Newell for many insightful comments and

suggestions. I also wish to thank H.T. Kung for his enthusiastic support of the research reported in this paper.

References

[1] B.G. Buchanan and E.A. Feigenbaum.
DENDRAL and Meta-DENDRAL: their applications dimensions.
Artificial Intelligence 11(1,2), 1978.

[2] R.O. Duda, J.G. Gaschnig, and P.E. Har t
Model Design in die PROSPECTOR Consultant System for Mineral Exploration.
In D. Michie (editor), Expert Systems in the Micro-Electronic Age. Edinburgh University Press,

Edinburgh, 1979.

[3] Charles L. Forgy.
OPS5 User's Manual.
Technical Report CMU-CS-81-135, Carnegie-Mellon University, Pittsburgh, 1981.

[4] Charles L. Forgy.
Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern Match Problem.
Artificial Intelligence 19, September, 1982.

[5] Charles L. Forgy.
The OPS83 Report.
Technical Report CMU-CS-84-133, Carnegie-Mellon University, Pittsburgh, May, 1984.

[6] Charles Forgy, Anoop Gupta, Allen Newell, and Robert Wedig.
Initial Assessment of Architectures for Production Systems.
In National Conference for Artificial Intelligence. AAAM984.

[7] Anoop Gupta and Charles L. Forgy.
Measurements on Production Systems.
Technical Report CMU-CS-83-167, Carnegie-Mellon University, Pittsburgh, 1983.

[8] Anoop Gupta.
Implementing OPS5 Production Systems on DADO.
In International Conference on Parallel Processing. IEEE, 1984.

31

P. Haley, J. Kowalski, J. McDermott, and R. McWhorter.
PTRANS: A Rule-Based Management Assistant.
Technical Report, Carnegie-Mellon University, Pittsburgh, 1983, (in preparation).

Gary Kahn and John McDermott.
The MUD System.
In The First Conference on Artificial Intelligence Applications. IEEE Computer Society and AAAI,

December, 1984.

Jin Kim, John McDermott, and Daniel Sicwiorek.
TALIB: A Knowledge-Based System for IC Layout Design.
In National Conference on Artificial Intelligence. AAAI-1983.

Ted Kowalski and Don Thomas.
The VLSI Design Automation Assistant: Prototype System.
In 20th Design Automation Conference. ACM and IEEE, June, 1983.

John E. Laird.
Universal Subgoaling.
PhD thesis, Carnegie-Mellon University, Pittsburgh, December, 1983.

John E. Laird and Allen Newell.
A Universal Weak Method: Summary of Results.
In International Joint Conference on Artificial Intelligence. 1983.

John E. Laird and Allen Newell.
A Universal Weak Method.
Technical Report CMU-CS-83-141, Carnegie-Mellon University, Pittsburgh, June, 1983.

John E. Laird, Paul S. Rosenbloom, and Allen Newell.
Towards Chunking as a General Learning Mechanism.
In National Conference on Artificial Intelligence. AAAM984.

John McDermott.
RI: A Rule-based Configurer of Computer Systems.

Technical Report CMU-CS-80-119, Carnegie-Mellon University, Pittsburgh, April, 1980.

John McDermott.
XSEL:-A Computer Salesperson's Assistant.
In J.E. Hayes, D. Michie, and Y.H. Pao (editor), Machine Intelligence. Horwood, 1982.
W. Van Melle, A.C. Scott, J.S. Bennett, and M. Peairs.
The Emycin Manual.

Technical Report STAN-CS-81-885, Stanford University, October, 1981.

Kemal Oflazer.
Parallel Execution of Production Systems.

In International Conference on Parallel Processing. IEEE, August, 1984.

Paul S. Rosenbloom.
The Chunking of Goal Hierarchies: A Model of Stimulus-Response Compatibility.
PhD thesis, Carnegie-Mellon University, Pittsburgh, August, 1983.

32

Paul S. Rosenbloom, John E. Laird, John McDcrmott, and Allen Newell.
Rl-Soar: An Experiment in Knowledge-Intensive Programming in a Problem-Solving Architecture.
In IEEE Workshop on Principles of Knowledge Based Systems. 1984.

E. H. Shortliffe.
Computer-Based Medical Consultations: MYCIN.
North-Holland, 1976.

Salvatore J. Stolfo and David E. Shaw,
DADO: A Tree-Structured Machine Architecture for Production Systems.
In National Conference on Artificial Intelligence. AAAI-1982.

Salvatore J. Stolfo, Daniel Miranker, and David E. Shaw.
Architecture and Applications of DADO: A Large-Scale Parallel Computer for Artificial Intelligence.
In International Joint Conference on Artificial Intelligence. 1983.

Shinji Umeyama and Koichiro Tamura.
A Parallel Execution Model of Logic Programs.
In The 10th Annual International Symposium on Computer Architecture. IEEE and ACM, June, 1983.

D.A. Waterman and Frederick Hayes-Roth.
Pattern-Directed Inference Systems.
Academic Press, 1978.

S.M. Weiss and C.A. Kulikowski.
EXPERT: A System for Developing Consultation Models.
In International Joint Conference on Artificial Intelligence. 1979.

