
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS: 
The copyright law of the United States (title 17, U.S. Code) governs the making 
of photocopies or other reproductions of copyrighted material. Any copying of this 
document without permission of its author may be prohibited by law. 



Parallelism in Production Systems: 
The Sources and the Expected Speed-up 

Anoop Gupta 
Department of Computer Science 

Carnegie-Mellon University 
Pittsburgh, PA 15213 

December 1984 

Abstract 

Production systems (or rule-based systems) are widely used in Artificial Intelligence for modeling intelligent 

behavior and building expert systems. On the surface production systems appear to be capable of using large 

amounts of parallelism—it is possible to perform match for each production in parallel. Initial measurements 

and simulations, however, show that the speed-up available from such use of parallelism is quite small. The 

limited speed-up available from the obvious sources has led us to explore other sources of parallelism. This 

paper represents an initial attempt to identify the various sources of parallelism in production system 

programs and to characterize them, that is, to determine the potential speed-up offered by each source and 

the overheads associated with it. The paper also addresses some implementation issues related to using the 

various sources of parallelism. 
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1 . Introduction 
Production systems form an important part of the basic research and applied research going on in Artificial 

Intelligence. As a part of basic research they are being used in the study of learning systems and problem-

solving systems [13,14, 21,27]. As a part of applied research they arc being used to develop expert systems 

spanning a large variety of applications in several areas including medicine, computer-aided design, and oil 

exploration [1,2,11,12,17,23]. Production system programs, however, are very computation intensive and 

run quite slowly. For example, production system programs written in the OPS5 language [3] run at a speed 

of only 1-10 production firings per second on a VAX-11/780. Although sufficient for many interesting 

applications, this slow speed of execution precludes the use of production systems in many domains requiring 

high performance and real-time response. The limited performance also impacts the research that is done 

with production systems, since researchers naturally avoid programming styles and applications which run too 

slowly. For the above reasons a significant increase in the execution speed of production systems would be 

very valuable to both the practitioners and the researchers. 

There are several different methods for speeding up the execution of production systems: (1) die use of 

faster technology, (2) the use of better algorithms and architecture, and (3) the use of parallelism. This paper 

focuses on the third of the above three methods. It identifies the various sources of parallelism in production 

systems and discusses the feasibility of exploiting them. The paper concentrates on the parallelism available 

in OPS5 [3] and SOAR [15] production systems. OPS5 was chosen because' several large, diverse, and real 

production system programs have been written in it. These programs form an excellent base for 

measurements and analysis. SOAR was chosen because it represents an interesting new approach in the use 

of production systems for problem solving. SOAR programs are also capable of improving their performance 

by learning new productions at run-time. Since only OPS5 and SOAR programs are considered, the analysis 

of parallelism presented in this paper is biased by the characteristics of these languages and may not be safely 

generalized to programs written in languages with substantially different characteristics, for example, to 

programs written in EMYCIN[19], EXPERT [28], or KAS[2]. Furthermore, the analysis is based on 

programming styles currently prevalent, and as the styles evolve over time the results may have to be updated. 

The paper consists of the following sections. Section 2 briefly describes the OPS5 and SOAR production 

systems. Section 3 gives a detailed description of the Rete algorithm, which forms the basis for much of the 

analysis presented later in the paper. Section 4 analyzes the sources of parallelism in production systems. For 

each source it provides an estimate of the expected speed-up and the associated overheads. Section 5 presents 

the simulation model and the detailed results of simulations that were done to evaluate parallelism in 

production systems (some of these results are also presented in Section 4). It also presents an analysis of the 

bottlenecks encountered in exploiting parallelism and the limitations of the simulations results. Section 6 
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presents a summary of the results. 

2. Production Systems 
This section describes the OPS5 and SOAR production systems. The basic structure of OPS5 programs is 

introduced first and the distinguishing features of SOAR [13] are described next. The description of SOAR 

focuses on those features that affect the amount of parallelism available in its programs. 

2 .1 .0PS5 

A production system is composed of a set of if-then rules called productions that make up the production 

memory and a database of assertions called the working memory. The assertions in the working memory are 

called working memory elements. Each production consists of a conjunction of condition elements 

corresponding to the //part of the rule (also called the left-hand side of the production) and a set of actions 

corresponding to the then part of the rule (also called the right-hand side of the production). The actions 

associated with a production can add, remove, or modify working memory elements, or perform input-output 

Figure 2-1 shows an OPS5 production named pi , which has three condition elements in its left-hand side and 

one action in its right-hand side. 

(p p i (CI t a t t r l <x> t a t t r 2 12) 
(C2 t a t t r l 15 t a t t ; r 2 <x>) 
(C3 t a t t r l <x>) 

—> 
( remove 2 ) ) 

Figure 2-1: A Sample Production 

The production system interpreter is the underlying mechanism that determines the set of satisfied 

productions and controls the execution of the production system program. The interpreter executes a 

production system program by performing the following cycle of operations: 

• Match: In this first phase, the left-hand sides of all productions are matched against the contents 
of the working memory. As a result we obtain a conflict set, which consists of instantiations of all 
satisfied productions. 

• Conflict Resolution: In this second phase, one of the production instantiations in the conflict set 
is chosen for execution. If no productions are satisfied, the interpreter halts. 

• Act: In this third phase, the actions of the production selected in the conflict resolution phase are 
executed. These actions may change the contents of working memory. At the end of this phase, 
the first phase is executed again. 

A working memory element in OPS5 is a parenthesized list consisting of one or more attribute-value pairs. 

The attributes arc symbols that are preceded by t . The values are symbolic or numeric constants. The 
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condition elements in the left-hand side of a production are parenthesized lists similar to working memory 

elements. However, the condition elements arc less restricted than the working memory elements; while a 

working memory element can contain only constant symbols and numbers, a condition clement can contain 

variables1, predicate symbols, and a variety of other operators as well as constants. 

A working memory element matches a condition element if the object types of the two match and if the 

value of every attribute in the condition element matches the value of the corresponding attribute in the 

working memory element. If the condition element value is a variable, it will match any value in the working 

memory element However, if a variable occurs more than once in a left-hand side, all occurrences of the 

variable must match identical values. Thus the working memory element 

(CI t a t t r l 12 * a t t r 2 15) 

will match the condition element CE1, but it will not match the condition element CE2 below. 

CE1: (CI t a t t r l 12 t a t t r 2 <x>) 
CE2: (CI t a t t r l <x> t a t t r 2 <x>) 

A production is said to be satisfied when, for every condition element in the left-hand side of the production, 

there exists a working memory element that matches i t 

The right-hand side of a production consists of an unconditional sequence of actions which can cause 

input-output, and which are responsible for changes to the working memory. Three kinds of actions are 

provided to effect working memory changes. Make creates a new working memory clement and adds it to the 

working memory. Modify changes one or more values of an existing working memory element Remove 

deletes an element from the working memory. 

2.2. SOAR 

SOAR [13,16] is a new production system architecture developed at Carnegie-Mellon University to 

perform research in problem solving and learning. The current version of SOAR is realized as a modified 

OPS5 system. Thus, except for the features mentioned below, programs in SOAR behave like other OPS5 

programs: (1) SOAR production system programs can improve their performance over time by learning new 

productions at run-time. This feature of SOAR poses interesting problems for the implementor, since it is 

necessary that the new productions be incorporated into existing data structures at run-time. (2) While OPS5 

programs are restricted to firing only one production on each execution cycle, SOAR allows for multiple 

firings on each execution cycle. Multiple firings result in an increased number of working memory changes 

A variable is an identifier that begins with the character and ends with ">H—for example, <x> and <status> are variables. 

2 
In addition to regular condition elements, a production may also contain negated condition elements, which are satisfied only when 

there exists no working memory clement that matches them. 
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on each cycle, which in turn influences the amount of parallelism that is available to implement SOAR 

production systems. (3) SOAR programs have the unifying feature that they all function by performing a 

heuristic search in a problem space. It is possible to exploit this uniform structure of programs to obtain 

increased parallelism; it is possible to evaluate many paths in the search space in parallel. 

3. The Rete Algorithm 
The most time consuming step in the execution of OPS-like production systems is the match step. Even 

with specialized algorithms, it constitutes around 90% of the interpretation time. The match algorithm used 

by uniprocessor implementations of OPS5 is called Rete [4]. The Rete algorithm is described below in some 

detail, as it forms the basis for much of the analysis presented later in the paper. 

The Rete algorithm exploits (1) the fact that only a small fraction of working memory changes every cycle 

by storing results of match from previous cycles and using them in subsequent cycles, and (2) the similarity 

between condition elements of productions by performing common tests only once. These two features 

combined together make Rete a very efficient algorithm for match. 

To perform match, the Rete algorithm uses an augmented discrimination network constructed from the 

left-hand sides of productions. Figure 3-1 shows such a network for productions p i and p2 which appear in 

the top part of the figure. The nodes in the network represent abstract operations to be performed during 

match and are interpreted at run-time by the OPS5 interpreter. The objects that are passed between nodes in 

the network are called tokens. Each token consists of a pointer to a list of working memory elements that 

matches a subsequence of condition elements in a left-hand side. The network consists of four different kinds 

of nodes. 3 These are: 

1. Constant-test nodes: These nodes are used to test if the attributes in the condition element which 
have a constant value are satisfied. These nodes appear in the top part of the Rete network. Note 
that when two left-hand sides require identical nodes, the compiler shares part of the network 
rather than building duplicate nodes. 

2. Memory nodes: These nodes store the result of matching from previous cycles as state within 
them. The state stored in a memory node consists of a list of the tokens that match a part of the 
left-hand side of the associated production. For example, the right-most memory node in Figure 
3-1 stores all tokens corresponding to working memory elements with "Class = C4". 

3. Two-input nodes: These nodes test for joint satisfaction of condition elements in the left-hand side 
of a production. Both inputs of a two-input node come from memory nodes. When a token 
arrives on the left input of a two-input node, it is compared to each token stored in the memory 
node connected to the right input. All token pairs that have consistent variable bindings are sent 
to the successors of the two-input node. Similar action is taken when a token arrives on the right 

For reasons of brevity, some nodes that occur only rarely have been ignored. 
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input of a two-input node. 

4. Terminal nodes: There is one such node associated with each production in the program, as can be 
seen at bottom of Figure 3-1. Whenever a token flows into a terminal node, die corresponding 
production is either inserted into or deleted from the conflict set 

(p p1 (C1 tattrl <x> tattr2 12) 
(C2 tattrl 15 tattr2<x>) 

- (C3 tattrl <x>) 
--> 

(remove 2)) 

constant-test) 
nodes 

(P P2 

--> 

root 

(C2 tattrl 15 tattr2<y>) 
(C4 tattrl <y>) 

(modify 1 tattrl 12)) 

Class = C4 

terminal-node 

Figure 3-1: The Rete Network 

From a global viewpoint, the input to the Rete network consists of changes to working memory. The 

changes filter through the network, updating the state stored within the network. The output of the network 

consists of changes to the conflict set. The OPS5 interpreter executes production systems at a rate of about 10 

production firings per second. 

In OPS5 [3] a significant loss in the speed is due to the interpretation overhead of nodes. In OPS83 [5] this 

overhead has been eliminated by compiling the Rete network directly into the machine code for the 

VAX-11/780. While it is possible to escape to the interpreter for complex operations during match or for 

setting up the initial conditions for the match, the majority of the match is done without an intervening 

interpretation level. This has led to a large speed-up and the OPS83 interpreter executes about 50 production 

firings per second, which is 5 times faster than OPS5. The results of simulations reported in the subsequent 

sections of this paper are based on the computational requirements of the OPS83 interpreter. 
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4. Parallelism in Production Systems 
As described in Section 2.1, there are three steps that arc repeatedly performed to execute a production 

system program: the match, the conflict-resolution, and the act. Figure 4-1 shows the flow of information 

between the three stages of the interpreter. It is possible to use parallelism while performing each of these 

three steps. It is further possible to overlap the processing in these three stages to achieve more speed-up. 

The run-time addition of productions described in Section 2.2 affords still more parallelism, in that it is 

possible to perform the task of compiling and updating the state of newly added productions in parallel with 

the execution of the rest of the production system. 

Figure 4-1: The Basic Interpreter Cycle 

When studying the parallel implementation of an algorithm, it is necessary to address the following two 

issues: (1) The decomposition of the algorithm into a set of parallel processes along with their communication 

graph. Usually, die granularity (the size) of the processes can be traded off against the communication 

required between the processes. (2) The mapping of the suggested decomposition onto a given 

hardware/software architecture. The following discussion on parallelism addresses both these aspects. It also 

presents estimates of the speed-up expected from the various sources of parallelism and the overheads 

associated with exploiting those sources. 

Note that the data presented in the following sections is based on the results of measurements and. 

simulations performed on a number of production system programs. The results of measurements are 

presented in [7] and the results of simulations are presented in detail in Section 5 (only a summary is 

presented here). The set of production system programs that was used in the analysis is given in Section 5.2. 

4 . 1 . Parallelism in Match 
Current OPS interpreters spend almost 90% of their time in the match phase, and only 10% of their time in 

the conflict-resolution and the act phases. For this reason it is most important to be able to speed up the 

match phase as much as possible. The following discussion presents three important ways in which 
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parallelism may be used to speed up match. 4 

4 . 1 . 1 . Production-level Parallelism 

To use production-level parallelism, the productions in a program arc divided into several partitions and the 

match for each of the partitions is performed in parallel. In the extreme case, the number of partitions equals 

the number of productions in the program, so that the match for each production in the program is performed 

in parallel. A graphical representation of use of production-level parallelism is shown in Figure 4-2. The 

production system program is shown to be divided into A7 partitions, named PI PN. A major advantage 

of using production-level parallelism is that no communication is required between the processes performing 

the match. 

' LLMH : 1 

Figure 4-2: Production-level Parallelism in Production Systems 

A natural question to ask of any parallelism scheme is: "How much speed-up can we expect from such a 

scheme?" For example, if a production system is divided into 1000 partitions, there will be 1000 processes 

performing the match in parallel. Do we expect a 1000-fold reduction in the total time required for match? 

The answer to the previous question is "no," at least for all the OPS5 and SOAR production system programs 

we have studied so far. 

Consider the match for a production following a change to the working memory. The production is said to 

A discussion on parallelism in match can also be found in our paper [6]. The discussion presented in the following paragraphs is more 
detailed than that in our earlier paper and uses slightly different terminology. The following paragraphs also lay the groundwork for the 
material presented in Section 5 of Uiis paper. 
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be affected by the change, if the new working memory clement satisfies at least one of its condition elements. 

The significance being, that a production which is not affected requires negligible processing compared to a 

production which is affected. It is now possible to state the reasons why we do not expect a 1000-fold 

reduction in the time for match: 

• Measurements [7] show that in both OPS5 and SOAR production system programs the average 
size of the affect-set5 is quite small, about 32 productions. Furthermore, measurements indicate 
that the average size of the affect-set is quite independent of the number of productions in the 
program. Since most of the match time is taken by the productions in the affect-set, the maximum 
speed-up that can be expected from production-level parallelism is about 32. This implies that if 
there is a separate processor performing match for each production in the program, only 32 
processors will be performing useful work and the rest will have no work to do. However, as 
stated below, there are other reasons which make the speed-up even smaller. 

• The second factor that affects the speed-up obtainable from production-level parallelism is the 
variance in the processing time required by the affected productions. The speed-up that can be 
obtained is proportional to the ratio t ^ l f,^, where t^g is the average processing time taken by 
an affected production to finish match and t m a x is the maximum time taken by any affected 
production to finish match. The parallelism is inversely proportional to t m a x because the next 
production execution cycle cannot begin until all productions have finished match. Taking this 
factor into account, recent simulations for OPS5 and SOAR production system programs indicate 
that the maximum speed-up that can be obtained from production-level parallelism is around 6, a 
factor of 5 less than the average size of the affect-sets. 

• The third factor that influences the speed-up is the loss of sharing in the Rete network when 
production-level parallelism is used. 6 The loss of sharing happens because tests which would have 
been performed only once for similar productions on a uniprocessor are now performed 
independently for such productions. Recent measurements show that the processing cost 
increases by a factor of around 1.4 due to loss of sharing. 

Some implementation issues associated with using production-level parallelism are now discussed. The first 

point that emerges from the previous discussion is that it is not advisable to allocate one processor per 

production for performing match. If this is done most of the processors will be idle most of the time and the 

hardware utilization will be poor [6, 8]. 7 If only a small number of processors are to be used, there are two 

important alternative strategies. The first strategy is to divide the production system program into several 

partitions so that the processing required by productions in each partition is almost the same, and then 

allocate one processor for each partition. The second strategy is to have a task queue shared by all processors 

e set of productions affected by a change to the working memory. 

^Recall from Section 3 that the Rete algorithm saves processing time on uniprocessors by performing operations common to several 
productions only once. 

Low utilization is not justifiable here, even if hardware is inexpensive, for it indicates that some alternative design can be found that 
can attain more performance at the same cost or the same performance at less cost 
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in which entries for all productions requiring processing arc placed. Whenever a processor finishes processing 

one production, it gets the next production that needs processing from the task queue. Some advantages and 

disadvantages of the two strategies arc given below. 

The first strategy is suitable for both shared-memory multiprocessors and non-shared memory 

multicomputer^ It is possible for each processor to work from its local memory and little or no 

communication between processors is required. The main difficulty, however, is to find partitions of the 

production system that require the same amount of processing. The task of partitioning is difficult because 

good models are not available for estimating the processing required by any given production. Furthermore, 

the processing required by a production varies over time, which makes the partitioning task even more 

difficult [20]. 

The second strategy is suitable only for shared memory architectures, because it requires that each processor 

have access to the code and state of all productions in the program. 8 This strategy has the advantage that no 

load-distribution problems are present because the tasks are allocated dynamically to the processors. Another 

advantage of this strategy is that it extends very well to lower granularities of parallelism. However, this 

strategy encounters loss of performance due to synchronization, scheduling, and memory contention 

overheads. 

In conclusion, the maximum speed-up that can be obtained from production-level parallelism is equal to 

the average number of productions affected per change to working memory. However, in practice, the 

speed-up is expected to be much less. This is due to (1) the variance in the processing time required by 

affected productions, (2) the loss of sharing in parallel decompositions, and (3) the overheads of mapping the 

decompositions onto hardware architectures. Measurements [7] show that average size of the affect-set for 

production system programs is around 32. Furthermore, the size of the affect-set appears to be independent 

of the total number of productions present in the program, which means that bigger production systems do 

not have more inherent parallelism. Deducting for the various factors reducing the maximum speed-up, 

recent simulations predict that the actual speed-up will be around 6. The detailed results of the simulations 

can be found in Section 5. 

While it is possible to replicate the code (the Rete network) in the local memories of all the processors, it is not possible to do so for 
the dynamically changing data. 
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4.1.2. Node-level Parallelism 

When node-level parallelism is used, activations of different two-input nodes in the Rete network of a 

production system are evaluated in parallel.9 It is important to note that node-level parallelism subsumes 

production level parallelism, in that node-level parallelism has a finer grain than production-level parallelism. 

Thus, using node-level parallelism, both activations of two-input nodes belonging to different productions 

(corresponding to production-level parallelism), and activations of two-input nodes belonging to the same 

production (resulting in the extra parallelism) are processed in parallel. 

The main reason for going to this finer granularity of parallelism is to reduce tmax, the maximum time taken 

by any affected production to finish match. The desirability of reducing this value was shown in the previous 

section. This decreased granularity of parallelism, however, leads to increased communication requirements 

between processes evaluating the nodes in parallel. In node-level parallelism a process must communicate the 

results of a successful match to its successor two-input nodes. No communication is necessary if the match 

fails. To evaluate the usefulness of exploiting node-level parallelism it is necessary to weigh the advantages of 

reducing t m a x against the cost of increased communication and the associated limitations on feasible 

architectures. 

The extra speed-up available from node-level parallelism over that obtained from production-level 

parallelism is bounded by the number of two-input nodes present in a production. (Note that the number of 

two-input nodes in a production is one less than the number of condition elements present in that 

production.) The reason for this is that the extra parallelism comes only from the parallel evaluation of nodes 

belonging to the same production. Since the average number of condition elements in production systems is 

around 4, the maximum extra speed-up expected from node-level parallelism is around 3 . 1 0 The results of 

simulations for OPS5 and SOAR programs indicate that using node-level parallelism it is possible to get 

speed-ups of about 8, which is 1.3 times more than the speed-up that could be obtained if production-level 

parallelism alone was used. 

The implementation considerations for node-level parallelism are very similar to those for production-level 

parallelism described in Section 4.1.1. However, since the communication required between the parallel 

processes is more, shared-memory architectures are preferable. The size of the tasks when node-level 

parallelism is used is smaller than when production-level parallelism is used. Simulations indicate that the 

9 A n activation of a two-input node corresponds to the processing required when a token flows into the left or right input of a 
two-input node (see Section 3 for details). 

1 0 This statement is not completely true. This is because of the t^x/t^g factor described in the previous section. It is possible in 
some cases for the extra speed-up to be close to the number of two-input nodes in the largest production of the production system. 
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average task length is around 50-100 computer instructions. This number is significant in that it indicates the 

amount of synchronization and scheduling overhead that may be tolerated in a shared-memory 

implementation. 

4.1.3. Action Parallelism 

Usually, when a production fires, it makes several changes to the working memory. Measurements show 

that the average number of changes made to the working memory per execution cycle is 5.3. Processing these 

changes in parallel, instead of sequentially, can lead to increased speed-up from both production-level and 

node-level parallelism. 

The reasons for the increased speed-up from production-level parallelism when used with action parallelism 

are the following. In Section 4.1.1, it was shown that the speed-up available from production-level parallelism 

is proportional to the average number of affected productions. The set of productions which is affected as a 

result of processing many changes simultaneously is the union of the affect-sets of the individual changes to 

the working memory. Since this combined affect-set is larger than the individual affect-sets, more speed-up 

can be obtained. For example, consider the case where a production firing results in two changes to working 

memory, such that change-1 affects productions p i , p2, and p3, and change-2 affects productions p4, p5, and 

p6. If change-1 and change-2 are to be processed sequentially, it is best to use three processors. Each change 

takes one cycle and the total cost is two cycles. 1 1 However, if change-1 and change-2 are processed 

concurrently, they can be processed in one instead of two cycles using six processors. Simulations indicate 

that the use of action parallelism increases the speed-up obtainable from production-level parallelism alone 

by a factor of about 1.3. The extra speed-up is less than the average number of working memory changes per 

cycle, because the affect-sets of the changes are not distinct but have considerable overlap. 

Analysis of production-system programs shows that often two successive changes to working memory affect 

two distinct condition elements of the same production, as a result causing two distinct two-input node 

activations. It is then possible, using node-level parallelism, to process these node activations in parallel, thus 

increasing the available parallelism. For example, consider the case where both change-1 and change-2 affect 

productions p i , p2, and p3. If the activations correspond to distinct two-input nodes, it is possible to process 

both the changes in parallel, in one instead of two cycles. Simulations indicate that the use of action 

parallelism increases the speed-up obtainable from node-level parallelism alone by a factor of around 1.7. 

So far the cost of computing the affect-set for a change to the working memory has not been discussed. 

When many changes are to be processed, it is possible to compute the affect-set for one change, while 

Assuming that each affected production takes the same amount of processing time. 
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simultaneously processing productions affected by the previous change. Alternatively, the affect-sets of all 

changes to working memory can be computed simultaneously. This overlapped computation is another 

source of parallelism when processing many changes in parallel. 

4.2. Parallelism in the Conflict-Resolution Phase 

Measurements [7] show that on each cycle of production system execution around 5 changes are made to 

the conflict-set. Thus at best it would be possible to achieve a 5-fold speed-up in conflict-resolution from 

parallelism. This speed-up appears to be sufficient, in the sense that conflict-resolution is not expected to 

become a bottleneck in the near future. The reasons are: 

• In current production-system interpreters conflict-resolution takes about 5% of the execution 
time. Speeding it up by a factor of 5 implies that only 1% of the time will be devoted to it. This 
will then not be a bottleneck until we speed up match by about 50-fold, and parallelism does not 
seem to provide that much speed-up. Note that any speed-up in match due to better or faster 
processors applies uniformly to match and conflict-resolution and thus does not change the 
argument 

• In both production-level and node-level parallelism discussed earlier, the match for the affected 
productions finishes at different times because of the variance in the processing required by the 
affected productions. Thus many changes to the conflict set are available to the conflict-resolution 
process, while some productions are still performing match. Thus much of the conflict-resolution 
time can be overlapped with the match time, reducing the chances of conflict-resolution becoming 
a bottleneck. 

• If the conflict-resolution ever becomes a bottleneck, there are simple strategies for avoiding i t 
For example, to begin the next execution cycle, it is not necessary to perform conflict-resolution 
for the current changes to completion. It is only necessary to compare each current change to the 
highest priority production instantiation so far. Once the highest priority instantiation is selected 
the next execution cycle can begin. The complete sorting of the production instantiations can be 
overlapped with the match phase for the next cycle. Hardware priority queues provide another 
strategy. 

4.3. Parallelism in the Act Phase 
The act step like the conflict-resolution step only takes about 5% of the total time for the current production 

systems. When many productions are allowed to fire in parallel, as in SOAR, it is quite straight forward to 

execute them in parallel. 1 2 Even when the right-hand side of only a single production is to be evaluated, it is 

possible to overlap some of the input/output with the match for the next execution cycle. For the above 

reasons the act step is not expected to be a bottleneck in speeding up the execution of production systems. 

1 2 This assumes that the execution of one right-hand side docs not affect the result of executing another right-hand side, which is true 
of SOAR. 
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4.4. Parallelism from the Run-time Addition of Productions 

Section 2.2 described the SOAR production-system architecture in which productions arc added at run­

time. Addition of productions at run-time poses two new computational requirements: (1) the integration of 

the new productions into the existing data structures for performing match, and (2) updating the state 1 3 

associated with the new productions with respect to some subset of the contents of the working memory. 

Note that this subset of working memory can be significantly larger than the average number of changes made 

to the working memory per execution cycle. 

An important characteristic of the newly added productions in SOAR programs is that the new productions 

only enhance the performance. The final outcome of a program is not changed even if these productions are 

not incorporated into the program. 1 4 However, the inclusion of the new productions greatly reduces the 

number of execution cycles necessary to compute the final result This feature of SOAR programs permits 

the update of the data structures and the state associated with new productions to be extended over several 

match-execute cycles and can be done in parallel with the execution of the rest of the production system. 

Currently, no data is available on the extra speed-up that is obtainable from this source of parallelism. 

4.5. Application Parallelism in Production Systems 

Lastly, there is substantial speed-up to be gained from application parallelism, where a number of 

cooperating but loosely coupled production system tasks execute in parallel. The cooperating tasks could 

arise in the context of search, where there are a number of paths to be explored and it is possible to explore 

each of the paths in parallel (similar to OR parallelism in logic programs [26]). The cooperating tasks could 

also arise in the context where there are a number of semi-independent tasks, all of which have to be 

performed, and they can be performed in parallel (similar to AND parallelism in logic programs). The 

maximum speed-up that can be obtained from application parallelism is equal to the number of cooperating 

tasks, which can be significant. Unfortunately, most current production systems do not exploit such 

parallelism, because (1) the production system programs were expected to run on a uniprocessor, where no 

advantage is to be had from having several parallel tasks, and (2) current production system languages do not 

provide the features to write multiple cooperating production tasks easily. Although not exploited currently, 

the SOAR production system architecture provides a uniform problem-solving framework 1 5 that makes it 

easy to exploit OR parallelism. 

13 
Recall that the Rete algorithm stored the result of match from previous cycles as state with the productions to avoid performing 

match with the same working memory elements over and over. 

is is because SOAR systems can fall back on more basic problem-solving mechanisms when specialized knowledge is not 
available. 

1 5A11 problem solving in SOAR systems is done as heuristic search within a problem space. 
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5. Detailed Results of Simulations 
This section describes the detailed results of simulations performed to determine the speed-up available 

from parallelism in the match step. It describes the simulation model, the programs that were measured, the 

results of the simulations, and the limitations of the simulation results. This section may be skipped by those 

readers who arc not interested in these details. Many of the important results have already been summarized 

in the previous section. 

5 .1 . The Simulation Model 

Previous analysis of parallelism in production systems [7,8] was done using very simple models. Only 

production-level parallelism was explored and even there the variation in the cost of processing the 

production activations was not taken into account. The measurements were still important because they 

provided some robust upper-bounds on the speed-up that could be obtained using production-level 

parallelism. To explore the parallelism in more detail the current simulator was constructed. The goals were 

the following: (1) To determine the amount of speed-up that could be achieved from each source of 

parallelism individually, so that it is possible to trade off the extra speed-up from a source with the overheads 

of using that source. (2) To study the botdenecks in obtaining speed up from parallelism. Once the 

botdenecks are understood, it should then be possible to devise means to eliminate them. (3) To study the 

effect of different cost models for node activations on the amount of speed-up that could be obtained from 

parallelism. (4) To study the effect of architecture (shared memory versus non-shared memory) on the 

speed-up. The conflict-resolution and the act steps were not considered, since they are not expected to 

contribute significantly to the overall speed-up and because exploiting parallelism in those steps does not 

appear to be as complex. 

The simulator that has been constructed for determining the parallelism in production systems is event-

driven. The input to the simulator consists of: (1) a detailed trace of node activations in the Rete network 

corresponding to a production-system run; (2) a cost model that can be used to determine the cost of any 

given node activation; and (3) a specification of the parallel computational model on which the trace is to be 

executed. The output of the simulator consists of statistics for the overall run and the individual cycles in the 

run. 

Figure 5-1 shows a small fragment of a trace that is fed to the simulator. The trace contains information 

about the dependencies between the node activations, and the simulator understands which node activations 

can be processed in parallel and which cannot be processed in parallel. The trace also contains other 

information which is necessary to determine the cost of a given node activation. 

The simulator uses a cost model to determine the processing cost of the node activations found in the trace. 
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(wme-change) 

((prev 5) (cur 10007) (type and) (node-id 6) (prods (p1)) (side right) (flag new) (numl 2) (numr 2) (lev 2) (ntests 2) (tests (teqb 10002 1 teqb 1 2)) (nsent 1)) 

((prev 10007) (cur 10008) (type p) (node-id 7) (prods (p1)) (flag new) (lev 3)) 

(wme-change) 

((prev 6) (cur 10009) (type and) (node-id 6) (prods <p1)) (side right) (flag new) (numl 2) (numr 3) (lev 2) (ntests 2) (tests (teqb 10002 1 teqb 1 2)) (nsent 1)) 

((prev 10009) (cur 10010) (type p) (node-id /) (prods (p1)) (flag new) (lev 3)) 

(wme-change) 

((prev 7) (cur 10011) (type and) (node-id 3) (prods (p1)) (side right) (flag new) (numl 2) (numr 2) (lev 1) (ntests 0) (tests nit) (nsent 2)) 

((prev 10011) (cur 10012) (type and) (node-id 6) (prods (p1)) (side left) (flag new) (numl 2) (numr 3) (lev 2) (ntests 2) (tests (teqb 10002 1 teqb 1 2)) (nsent 1)) 

((prev 10011) (cur 10014) (type and) (node-id 6) (prods (p1)) (side left) (flag new) (numl 3) (numr 3) (lev 2) (ntests 2) (tests (teqb 10002 1 teqb 1 2)) (nsent 1)) 

((prev 10012) (cur 10013) (type p) (node-id 7) (prods (p1)) (flag new) (lev 3)) 

((prev 10014) (cur 10015) (type p) (node-id 7) (prods (p1)) (flag new) (lev 3)) 

Figure 5-1: A Sample Trace Fragment 

The cost depends on the type of the node activation, the amount of state associated with the node, whether 

the state is stored as a linear list or in a hash table, the number of tests that have to be performed to check if 

two tokens are consistent, etc. For the majority of the simulations the cost model used is based on 

measurements made on the OPS83 interpreter. 1 6 The model differs from the OPS83 interpreter in that the 

interpreter uses linear memories to store the tokens associated with a node, while the model assumes that the 

tokens are stored in a hash table. 

The computation model input to the simulator specifies how the trace is to be executed. It specifies: 

© The kinds of parallelism that may be used while executing the trace (some combination of 
production-level, node-level, and action parallelism). For example, when only production-level 
parallelism is allowed, the simulator docs not allow activations of nodes belonging to the same 
production to be evaluated in parallel. It further disallows sharing of Rete nodes between 
different productions. 

• Whether the processors have shared memory or not. The main implication of not having shared 
memory is that productions must be statically assigned (at the beginning of the run) to specific 
processors, and node activations corresponding to a given production can only be processed on 
the associated processor. The restriction of processing a node activation on a specific processor 
exists because the state associated with the given node is present in the local memory of a specific 
processor and its communication to another processor is very expensive. This restriction is not 
present in shared-memory architectures, where a node activation can be processed on any 
available free processor. Presence of shared memory, however, entails overheads associated with 
memory contention and synchronization. The affects of memory contention and synchronization 
are not modeled in the current simulator. This results in better performance for shared memory 
architectures than will be actually observed. Despite this limitation, the simulation results have 
brought to light a number of facts about the parallel execution of production systems. 

The OPS83 interpreter was chosen as the basis for the cost model because it represents a state of the art software implementation of 
the Rete algorithm. The measurements on the OPS83 interpreter were made by Charles Forgy. 
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• The number of processors that are available. This obviously determines the maximum number of 
node activations that can be evaluated in parallel. 

• Whether scheduler optimizations arc present, that is, if it is allowed to reorder the evaluation of 
node activations to optimize overall performance. 

The statistics output by the simulator consist of both per-cycle information and overall-run information. 

The statistics that are output for each match-execute cycle of the production system are: 

i'tmax-h w h e r c smax-iis * e maximum speed-up that can be achieved in the i m 

cycle irrespective of the number of processors used, kt is the number of tasks 1 7 in the ith cycle, 
tavg-i is the average cost for tasks in the ith cycle, and imax-i *s t ^ e maximum cost of any task in 
the ith cycle as determined by the simulator. Note that 'avg-/ represents the cost of executing 
the ith cycle on a uniprocessor. 

• Sact-i = kj-tayg-i/tcyc-j, where S f l c r - / is the actual speed-up that is achieved in the ith cycle using 
the number of processors specified in the computational model, and / c v c . / is the cost of the ith 

cycle as computed by the simulator. Note that it follows from the definition of z ^ . / and ^ c - / 
t h a t / ^ - / ^ tmax-h 

• PUf = Sact-i/NumProcessors% where PUt is the processor utilization in the ith cycle and 
NumProcessors is the number of processors specified ia the computation model. 

The same set of statistics can also be computed at the level of the complete run. The overall statistics are: 

• Smax = ^ / ' ^ - i ^ / I i lmax-i* where is the maximum speed-up that can be achieved 
over the complete program run irrespective of the number of processors used. 

• S a c t = 2 f l i ki'tavg-i/*2i f l i *o*-'» w h e r e Sactis * e actual speed-up over the complete run using 
the number of processors specified in the computation model. 

• PU = Sact/'NumProcessors, where PU is the processor utilization over the complete run. 

The following sections mainly refer to the overall statistics. The following equations show the relationship 

between the overall statistics and the per-cycle statistics: 
N 

The above equations state that the overall speed-up is not a simple average of the per-cycle speed-ups but a 

A task here corresponds to an independently schedutable piece of work that can be executed in parallel. Thus when using 
production-level parallelism, a task corresponds to all node activations belonging to a production. When using node-level parallelism a 
task becomes more complex, corresponding approximately to a sequence of dependent-node activations, i.e., a set of node activations no 
two of which could have been processed in parallel. 

N 
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weighted average of the per-cycle speed-ups. rYhc weight for the ith cycle is / m f l J f - / / 2 (max m toe first 

equation and / c > . c - / / 2 t c y c in the second equation. Thus the per-cycle statistic is weighted by its fraction of 

the total cost in the parallel implementation (not the total cost in the uniprocessor implementation). As a 

result, a few long cycles with low speed-ups can destroy the overall speed-up for a run. 

5.2. Production Systems Measured 

Traces from eight different production system programs were used to analyze the parallelism in the match 

phase. These production systems are : 1 8 

• XSEL [18], a program acting as a sales assistant for VAX computer systems. It is written in OPS5 
and consists of 1443 productions. For the XSEL system two traces have been included in the 
analysis. These are referred to as xsel-trl and xsel-tr2 in the subsequent sections. The second 
trace of XSEL is included because it involves interaction with an external database (working 
memory changes are fetched from outside), and such working memory changes were found to 
have much larger affect-sets than the normal changes. 

• PTRANS [9], a program for factory management. It is written in OPS5 and consists of 1016 
productions. 

• MUD [10], an OPS5 program which does analysis of mud used in oil drilling. It consists of 872 
productions. 

• DAA [12], an OPS5 program which automatically designs computers from a high level ' 
specification of the system. It consists of 314 productions. 

• Rl-SOAR [22], a program for configuring VAX computer systems. It is written in the SOAR 
language and implements only a small part of the functionality of the corresponding OPS5 
program. It consists of 235 productions. 

• R1LRN-SOAR, is the same as Rl-SOAR except that it consists of nine new productions 
automatically learned by the program. It consists of 244 productions. 

• EIGHT-SOAR [16], a SOAR program which solves the eight puzzle. It consists of 108 
productions. 

• ELRN-SOAR, is the same as EIGHT-SOAR except that it includes fifteen new learned 
productions. It consists of 123 productions. 

The above programs represent a variety of applications and programming styles. For example, XSEL and 

PTRANS programs are knowledge-intensive expert systems and are currently being used in the industry. 

Both are forward-chaining systems and are primarily data driven. The MUD system is a backward-chaining 

Note many of the production systems mentioned below are still growing. The number of productions listed with the programs 
correspond to the number actually present in the programs when the traces were obtained. 
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production system (though still written in OPS5) and is primarily goal driven. The DAA program represents 

a computation-intensive task compared to the knowledge-intensive tasks performed by XSEL, FFRANS, and 

MUD programs. The last four programs represent programming styles in SOAR, both when the productions 

are totally written by humans and when some fraction are automatically learned by the program. 

5.3. Production-level Parallelism 

As described in Section 4.1.1, when using production-level parallelism it is possible to process node 

activations corresponding to different productions in parallel. Whether they are all actually processed in 

parallel depends on the number of processors available, whether the processors have shared memory or not, 

etc. Figures 5-2 and 5-3 show the speed-ups (for overall runs) that can be obtained by using production-level 

parallelism over a uniprocessor implementation. Figure 5-2 shows the speed-up for a multiprocessor with 

shared memory and Figure 5-3 shows the speed-up for a multicomputer that does not have shared memory. 

O 8 16 24 32 40 48 56 64 72 
Number of Processors 

Production-level Parallelism (Shared Memory) 
Figure 5-2: 

Figures 5-2 and 5-3 show that the speed-up available from production-level parallelism tapers off quite 

sharply. To explain the nature of the graphs it is convenient to divide the curves into two regions. The first 

region, the active region, of the curve is where the overall speed-up is increasing significantly with an increase 

in the number of processors. The second region, the saturated region, corresponds to the portion where the 
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curve is almost flat19 

48 56 64 72 
Number of Processors 

Production-level Parallelism (Non-Shared Memory) 

Figure 5-3: 

The saturation speed-up, or the maximum speed-up, available from production-level parallelism is 

primarily determined by two factors. (1) It is limited by the number of affected productions, that is, the 

number of productions whose state changes as a result of a working memory change. For the traces under 

consideration the average size of the affect-set is 32. For the xsel-tr2 and mudw traces, which show a large 

saturation speed-up, the average affect-set size is 50 and 39 respectively. (2) The saturation speed-up is 

proportional to the ratio / f l V g/Wx- F ° r toe curves shown in the figures the average saturation speed-up is 6, 

which is much smaller than the average affect-set size of 32. Thus a large factor of almost 5 is lost due to the 

variance in the costs of the different production activations. Consequently one of the main objectives of our 

research has been to develop a computational model to reduce this variance, a model where the cost of 

Note that since the scales for the x-axis and the y-axis are different, the line representing linear speed-up (with a slope of 1) will have 
an angle much more than 45 degrees in the graphs. 
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processing activations of different productions takes approximately the same t ime. z u 

The speed-up in the active region of the curves, in addition to being limited by and affected by the factors 

affecting the saturation speed-up, is dependent on the following factors. (1) ITic speed-up is obviously 

bounded by the number of processors in the system. (2) The speed-up is reduced by the loss of sharing in the 

nodes of the Rete network. 2 1 The effect of lost sharing is quite significant and results in a loss of a factor of 

around 1.4. For example, in the trace corresponding to the DAA program when 8 processors are present, 

although the processor utilization for the 8 processors is 80% (resulting in a virtual speed-up of 6.4), the actual 

speed-up is only 4.1, due to the loss of sharing. (3) The speed-up is also reduced by the variance in the size of 

the affect-sets. The variance results in a loss of processor utilization because within the same run for some 

cycles there are too many processors (the excess processors remaining idle) and for some cycles there are too 

few processors (some processors have to process more than one production activation, while other processors 

arc waiting for these to finish). This is the reason why even if the average affect-set size is the same as the 

number of processors and all activations cost exactly the same, 100% processor utilization is not achieved. (4) 

In the case of non-shared memory multicomputers, the speed-up is greatly dependent on the quality of the 

partitioning, that is, the uniformity with which the work is distributed amongst the various processors. The 

round-robin 2 2 partitioning strategy was used to obtain the results shown in Figure 5-3. 

In summary, it is observed from the graphs that the speed-up that may be obtained from production-level 

parallelism is limited to 4-8 fold. This is significantly below our initial expectations and the expectations of 

other researchers [7,8,24,25]. The major blow comes from the limited number of affected productions 

(limiting the number of independent tasks) and the large variance in the processing requirements of these 

productions. To obtain more speed-up it is essential to either increase the number of independent tasks, or to 

decrease the variance, or to do both. 

This is the reason why the cost model for the simulations is derived from OPS83 with hash table based node memories. If node 
memories based on linked lists are used the variance increases significantly and simulations show that the saturation speed-up drops by a 
factor of almost L3. 

21 
Recall that in a uniprocessor implementation similarities between the left hand sides of productions are exploited to share tests and 

operations. In order to gain the independence of being able to perform the tests and operations in parallel for various productions 
activations, the sharing has to be given up. 

2 2 I n this strategy the kth production in the source file is allocated to the (k mod NumProcessors)th processor. This strategy works 
reasonably well for production system programs written by humans, where textually close productions usually respond to the same 
working memory elements. 
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5.4. Node-level Parallelism 

One way to increase the number of independent tasks and to decrease the variance in their processing 

requirements is to decompose die larger tasks into smaller tasks each of which can be processed in parallel. 

This is cxactiy what node-level parallelism attempts to do. When using node-level parallelism, in addition to 

processing the activations of different productions in parallel, multiple node activations corresponding to the 

same production are processed in parallel. Of course, it is not always possible to process all node activations 

corresponding to a production in parallel because of dependencies between them (one node activation 

causing another node activation). Furthermore, when using simple node-level parallelism, several activations 

of the same node in the Rete network are not allowed to be processed in parallel because of the excessive 

synchronization required by several processes working on the same data. Figure 5-4 shows the speed-up that 

can be obtained using node-level parallelism. 

Figure 5-4: 

An advantage of exploiting node-level parallelism over production-level parallelism is that it is possible to 

share nodes in the Rete network, as is done in the uniprocessor implementations. Node sharing is not 

possible when using production-level parallelism because each production is processed separately and 

consequendy a separate Rete network is required for each production. 2 3 Because of the finer granularity of 

23 
Network sharing is possible when using production-level parallelism only at the intra-prpduction level, that is, within the network 

for a single production. 
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node-level parallelism, it is no longer necessary to keep the separate identity of productions, and whenever 

two productions have similar condition elements it is possible to share the corresponding two-input nodes. 

Computing the extra speed-up from node-level parallelism over production-level parallelism, it is seen that 

for the case of 8 processors we gain a factor of 1.38; for 16 processors a factor of 1.36; for 32 processors a 

factor of 1.33; and for 64 processors a factor of 1.31. 2 4 This factor although significant is not very large. The 

reason for the small gain is that the parallelism is still being restricted by small affect-sets, long chains of 

dependent node activations, and multiple activations of the same node which have to be processed 

sequentially. These bottlenecks are discussed in detail in Section 5.6. 

5.5. Action Parallelism 
A production firing usually results in several changes to the working memory. For example, each cycle of 

an OPS5 program results in 2.4 changes to the working memory, and the corresponding number for SOAR is 

8.8 changes. 2 5 This subsection discusses the results of processing these changes in parallel. Figures 5-5 and 

5-6 show the results of using combinations of production and action parallelism, and node and action 

parallelism respectively. 

As discussed in Section 4.1.3, the primary effect of using action parallelism is that it increases the number of 

independent tasks that may be processed in parallel. The result of using action parallelism with production-

level parallelism enhances the maximum obtainable speed-up by a factor of 1.27, and using it with node-level 

parallelism enhances the maximum obtainable speed-up by a factor of 1.72. There are two reasons why the 

increase in speed-up is much less than 5.3 (the average number of changes processed in parallel): (1) The 

changes processed in parallel have overlapping affect-sets, that is, the multiple changes affect the same 

productions or they result in multiple activations of the same nodes which have to be processed sequentially. 

The simulations show that while on average 5.3 changes are processed in parallel, the average size of the 

affect-set increases only by a factor of 2. In one extreme case (xsel-tr2), there was one production firing that 

resulted in 109 changes to the working memory. However, the affect-sets of all the changes were exactly die 

same, so no speed-up was gained from processing them in parallel. (2) When the affect-sets of several 

working memory changes are combined together, the value of / f l V g does not increase, but the value of 

increases. This makes the value of / f l v e / / m f l J C small and decreases the obtainable speed-up. 

2 4 T h e reason for the decreasing gain as the number of processors increases is that the extra gain from the sharing of nodes in the 
network decreases as the number of processors increases. 

^ T h e number for SOAR corresponds to the combined number of changes made to the working memory by the productions firing in 
parallel. 
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Production-level and Action Parallelism 

Figure 5-5: 

Note in Figure 5-6 that the performance of rllrn-soar is much worse than the performance of rl-soar even 

though the production systems are almost identical. This is a consequence of the fact that the productions 

which are learned by rl-soar have many more condition elements (one of the learned productions has more 

than 100 condition elements) than the number of condition elements in productions written by humans. The 

large number of condition elements leads to long chains of dependent node activations for rllrn-soar, which 

greatly decreases the factor t^/tn^, correspondingly decreases the speed-up. 

Figure 5-7 shows the maximum speed-up obtainable from the various sources of parallelism (shown in the 

corners) and the multiplicative increase when an additional source of parallelism is exploited (shown in the 

middle of the connecting line). An observation that requires some explanation is that the enhancement of 

speed-up is more when action parallelism is used with node-level parallelism (factor of 1.72) than when it is 

used with production-level parallelism (factor of 1.27). The reason is that, when action parallelism is used 

with production-level parallelism, if two changes affect the same production they have to be processed 

sequentially, and no extra speed-up is gained. When action parallelism is used with node-level parallelism, 

then even if the two changes affect the same production, it is often the case that they affect two different 

nodes belonging to that production. Since the two node activations can be processed in parallel extra 

speed-up is obtained. 
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Figure 5-6: 

node 
parallelism 1.72 

1.30 

prod, 
parallelism 

1.27 

node and action 
parallelism 

1.76 

prod, and action 
parallelism 

Figure 5-7: Maximum Speed-up Obtainable from Various Sources 

In summary, it is essential to use action parallelism if large speed-up is to be obtained from parallelism. 

This kind of parallelism is especially important in systems where a large number of changes are made to the 

working memory on every cycle. The large number of changes could result from (1) interaction with the 

external environment or database (as in XSEL), (2) parallel firing of productions (as in SOAR systems), or (3) 

use of application parallelism, where multiple threads of computation are being followed simultaneously. Of 

course, a large number of changes by itself is not sufficient to ensure large speed-ups. It is essential that these 

changes have differing affect-sets, so that the resulting node activations can be processed in parallel. 
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5.6. Bottlenecks in Obtaining Speed-up from Parallelism 

As stated in previous subsections, the two primary factors limiting speed-up arc the small number of 

affected productions and the small value of tavg/tmax. Since the number of productions that are affected on 

each cycle is not controlled by the implcmcntor of production system interpreter (it is governed mainly by the 

author of the program and the nature of the problem), this subsection concentrates on what can be done to 

increase the value of tavg/tmax. Looking at the execution of the traces in the simulator, two major causes for 

the large value of l m a x were found. The first cause is the cross-product effect and the second cause is the 

long-chain effect. These causes are pictorially depicted in Figure 5-8. 2 6 

CE1 CE2 CE1 CE2 

(a) (b) 
Figure 5-8: Bottlenecks 

In the cross-product effect shown in Figure 5-8-a, a token arriving at a two-input node finds a large number 

of tokens with consistent bindings in the opposite memory. As a result a large number of new tokens are sent 

to its successor nodes. The successor nodes are now subject to this large number of activations, which have to 

be processed sequentially, 2 7 causing a large value of t m a x and resulting in low speed-up. If the multiple 

activations of the same node are processed in parallel, simulations show that the maximum speed-up 

obtainable from node-level and action parallelism goes up from 13.95 to 24.06, thus providing an extra factor 

o f l .72 . 2 8 

During the simulations it was often observed that the large value of t m a x resulted from a long chain of 

e arrows represent the flow of tokens in the Rete network, while the thick lines represent the network for the production. 

27 
The reasons for processing multiple activations of the same node sequentially are similar to the reasons for locking a shared-stack 

data structure in a multiprocessor. 
28 

As a result of recent research, we now have a solution to the problem of processing multiple activations of the same node in parallel 
without significant overhead. 
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dependent node activations (see Figure 5-8-b), that is, one node activation causing an activation in a successor 

node, which in turn caused an activation in its successor node, and so on. These long chains occur in 

productions having a very large number of condition elements. We arc currently working on methods for 

reducing these long sequences of node activations. While the sequences of dependent node activations cannot 

be totally eliminated, we believe that they can be shortened significantly. Simulations show that in the 

hypothetical case where the dependent chains are eliminated totally an extra factor of 2 in speed up is 

obtained. 

5.7. Comparison of the Sources of Parallelism 

So far the sources of parallelism have been considered in relative isolation. To enable the comparison of 

speed-up from the various sources, Figure 5-9 shows the speed-up from combinations of various sources 

averaged over all the traces. As expected the combination of node-level and action parallelism does much 

better than any of the other combinations. Node-level parallelism comes second and the combination of 

production and action parallelism a close third. The rest are all clustered below. 

Figure 5-9: 

The Rete network compiler constructs a linear network for productions, that is, the two-input nodes for the production are strung in 
a linear chain. It has been empirically observed in uniprocessor implementations that this reduces the amount of state that has to be 
stored in the network. 
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5.8. Limitations of the Simulation Results 

An important fact that was mentioned in Section 5.1, but omitted in the subsequent discussion is that most 

curves shown in graphs so far are results of a simulation model that does not take scheduling, synchronization, 

and memory contention overheads into account. 3 0 Several observations can be made: 

• All the curves corresponding to shared-memory multiprocessors in Figure 5-9 will be pushed 
down, while the curves corresponding to non-shared memory multicomputer will retain their 
positions, as they do not encounter the above overheads. In fact, one might speculate as to what 
the curves will look like if the overheads are taken into account. One possible outcome is shown 
in Figure 5-10. It is expected that the systems which will offer the best cost-performance in the 
small speed-up range will be non-shared memory or shared-memory architectures using simple 
sources of parallelism (p-par, pa-par), since the associated overheads are small. However, if a very 
high performance system is desired, then it will be necessary to exploit all the possible sources of 
parallelism (na-par) even if it means high overheads [6]. 

• For small number of processors (10-20) the memory contention and synchronization overheads 
are not expected to be very significant. The two main reasons are: (1) because of the constraints 
imposed on the processing model (for example, no two activations of the same node are to be 
processed in parallel) most processors will be working on different data, resulting in very few 
conflicts; and (2) there is a large amount of read-only data which can either be cached or be 
replicated in the local memories of the processors to reduce contention. 

• The predicted speed-ups without taking memory contention and synchronization overheads into 
account represent upper-bounds 3 1 on the speed-ups diat can actually be achieved. While the 
analysis presented in [7] gave some upper-bounds on the basis of the size of the affect-sets, the 
upper bounds determined in this paper are much tighter. 

As stated in Section 5.2, the simulation results presented in this paper are based on traces derived from eight 

programs written in OPS5 and SOAR. There are some issues related to the representativeness of the traces 

and thus the results. The production systems considered in the simulations are limited in two ways: (1) they 

are limited in that they represent only a fraction of all existing OPS5 and SOAR programs, and (2) they are 

limited in that they say little about the characteristics of production systems several years hence. The 

following observations can be made: 

• Although the production system programs included in the simulations form only a fraction of the 
programs written using OPS5 and SOAR, they include some of the largest programs written in 
these languages [9,10,18,22]. Also, many programs not included in the simulations but studied 
in other papers [7,20] show characteristics similar to the programs included in the simulations. 
Since the characteristics are similar, there is good reason to believe that the speed-up obtainable 
from parallelism will be similar. 

We are currently working on models that will take such overheads into account 

The notion of upper-bound is used in a loose sense here and refers to the speed-up obtainable within the specified model of 
parallelism. It is quite possible that if the style of programming production systems changes in the future or with the discovery of new 
parallel algorithms the predicted speed-up is exceeded. 
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Figure 5-10: Cost-Performance Tradeoffs 

• An important factor determining the speed-up available from parallelism in production systems is 
the number of productions affected by a change to working memory. This number has been 
observed to be quite small and of similar magnitude in all the programs studied (irrespective of 
the total number of productions in the programs). An intuitive explanation for this observation is 
that programmers recursively divide problems into subproblems when writing the programs. 
Then, at any given time, the program execution corresponds to solving only one of these 
subproblems. The size of the subproblems (which is correlated to the number of productions 
associated with the subproblems) is independent of the size of the original problem and primarily 
depends on the complexity of the subproblem and the complexity that that the programmer can 
deal with at the same time. Thus, if the above explanation is true, then many programs written by 
programmers in the future will exhibit small affect-sets, and consequently will have only limited 
benefits from parallelism. 3 2 

A few words on the dependence of the results presented in this paper on the use of the Rete algorithm as 

the base for the parallel implementation. Although the exact numbers about the speed-up available from 

paralellism have certainly been influenced by the use of the Rete algorithm, we believe that the overall nature 

of the results has not been influenced greatly. For example, we do not think that the use of a different 

algorithm will increase the speed-up obtainable from parallelism (of course, compared to the best 

uniprocessor implementation of production systems) to a 100-fold instead of the 10-fold to 20-fold that we 

have found. The reasons are: 

• The Rete algorithm embodies two general principles that do not restrict the use of parallelism. 
The first principle is that of precompiling the productions into a form so as to gain run-time 

Die above discussion only addresses the case where application parallelism (see Section 4.5) is not exploited. In case application 
parallelism is used, it is possible for a program io be working on several subproblems simultaneously, thus having a large set of affected 
productions. 
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efficiency. ITiis is not incompatible with the use of parallelism. J J The second principle is that of 
storing die results of match from previous cycles as state, so that only incremental processing has 
to be done on each cycle. Although it is possible to keep a large number processors busy if no 
state is stored, our experience has been that this does not result in an increased absolute speed of 
program execution [8]. 

• Any attempt to explore parallelism in production systems must begin with some base algorithm. 
After considering many alternative algorithms, we have not found any algorithm, significantly 
different from Rete, that is more suitable for a parallel implementation (at least for the production 
systems resembling the ones considered in this paper). It appears that the data-flow like 
representation used by the Rete algorithm captures most of the inherent parallelism present in 
production system programs. Finally, it is important to note that the Rete algorithm is being used 
only as the starting point and where necessary it will be and has been modified to suit the needs of 
a parallel implementation. 

6. Summary 
This paper describes the various sources of parallelism that can be used to speed up the execution of 

production systems. The sources of parallelism considered are: (1) production-level parallelism, (2) node-

level parallelism, (3) action parallelism, (4) parallelism in conflict-resolution, (5) parallelism in act, (6) 

parallelism from the run-time addition of productions, and (7) application parallelism. Out of these seven 

sources, the first three are examined in greater detail than the others. Results of simulations show that it is 

possible to speed up the match phase by up to 6-fold using production-level parallelism, up to 8-fold using 

node-level parallelism, and up to 14-fold using a combination of node-level and action parallelism. While the 

speed-ups obtained from parallelism are significant, they are much below our initial expectations (order of 

100-1000 fold). The main reasons for the limited speed-up are (1) the small number of affected productions 

for each change to the working memory, (2) the large variance in the processing requirements of the 

production activations, and (3) the fact that successive changes to working memory affect almost the same set 

of productions. While the first and the third bottlenecks listed above are beyond the direct control of the 

person implementing the production system interpreter, it is possible to do something about the second 

bottleneck. Our recent efforts to reduce the variance in the cost of production activations show that it may 

now be possible to achieve as much as 24-fold speed-up over state of art uniprocessor implementations. 

Finally, the following assumptions of the analysis should be kept in mind. The analysis is based on 

measurements and simulations performed on programs in OPS5 and SOAR. The analysis is dependent on 

In actuality the situation is not as simple as this point makes it out to be. Since the traces for the simulations are obtained from a 
particular uniprocessor implementation of Rete, in some instances specific choices made in the implementation have influenced the 
results. For example, the existing Rete compiler compiles productions into linear networks (linear list of two-input nodes). Although it 
would be interesting to evaluate the performance when the productions are compiled into binary networks, it was not possible to do it 
from the existing traces corresponding to the linear networks. However, for most OPS5 systems analyzed in this paper, the average 
number of condition elements per production is so small that binary networks would cause only minor changes in the results. 
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prevailing programming styles and will lose some of its validity as programming styles evolve. The simulation 

results presented do not include the scheduling, synchronization, and memory contention overheads that will 

be experienced in a shared-memory multiprocessor, and to that extent the results represent an upper-bound 

on the amount of speed-up that is obtainable. Our current research on multiprocessor architectures for 

production systems, however, shows that it is possible to use custom hardware to significantly reduce some of 

the above overheads. 
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