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Abstract

In this paper, we review our experiences with the BACON project, which has focused on empirical methods
for discovering numeric laws. The six successive versions of BACON have employed a variety of discovery
methods, some very simple and others quite sophisticated. We examine methods for discovering a functional
relation between two numeric terms, including techniques for detecting monotonic trends, finding constant
differences, and hill-climbing through a space of parameter values. We also consider methods for discovering
complex laws involving many terms, some of which build on techniques for finding two-variable relations.
Finally, we introduce the notions of intrinsic properties and common divisors, and examine methods for
inferring intrinsic values from symbolic data. In each case, we describe the various techniques in terms of the
search required to discover useful laws.
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1. Introduction: An Overview of BACON
Science is a multi-faceted endeavor, encompassing such diverse activities as designing experiments,

discovering empirical laws, constructing new measuring devices, formulating theories, and testing hypotheses.
Yet despite its complexity, the scientific process appears amenable to analysis in terms of the same concepts
that have boon successfully applied to other aspects of intelligence — the notion oWsatrcli through a problem
space, and the notion of heuristics for directing that search. In this paper we examine one facet of science —
the empirical discovery of numeric laws — and describe a set of Al systems that arc capable of such discovery.
The programs arc successive versions of the BACON system, named after Sir Francis Bacon, since their
data-driven heuristics are similar in spirit to those proposed by the early philosopher of science in the
Sixteenth Century.

Before examining the BACON heuristics in detail, let us briefly review the concerns and capabilities of
different incarnations of the system. BACON.1 [1] was concerned mainly with the discovery of simple
numeric laws relating two variables, and employed heuristics for noting trends and constants to this end.1

BAC0N.2 [2] was concerned with the same task, but employed a simple differencing technique for finding
such relations. We examine methods for discovering two-term laws in the first section below. BAC0N.3 [3]
returned to the trend and constant detectors used in the first version, but combined these with a method for
rccursing to higher levels of description. This allowed the system to discover complex laws involving multiple
variables, and this is the focus of section 3 below.

The BAC0N.4 system [4, 5] employed all of the heuristics used in BACON.3, but also included
methods for postulating intrinsic properties and noting common divisors in cases where symbolic terms were
involved. We discuss these methods in some detail in sections 4 and 5, using examples from the history of
physics and chemistry. The fifth version of the system, BACON.5 [6, 7], was identical to BAC0N.4, except
that it incorporated a differencing technique for finding simple numeric relations (this was more general than
the one used in BAC0N.2), as well as expectation-based methods for reducing search through the space of
laws. Finally, BAC0N.6 [8,9] differed from its predecessor in that it replaced the differencing method with a
hill-climbing technique that was more capable of handling noisy data. Table 1 summarizes the methods used
in successive versions of BACON. In this paper, we examine the various heuristics for empirical discovery,
focusing on their capabilities and their requirements. We will not spend much space on the individual
BACON systems, since the interested reader may find descriptions in earlier papers.

2. Discovering Simple Numerical Laws
Let us begin with an apparently simple problem - determining the functional relation between two

numeric terms. To be more specific, given two terms X and Y, along with a set of paired observations (xl, yl),
(x2, y2), and so forth, we would like to find some function F such that Y = F(X) predicts the observed data as
closely as possible. Analytic solutions to this problem, such as the methods of regression and correlation, have
been developed in the field of statistics. Although quite robust, these methods require one to assume a linear
function (or some other simple form), thus ruling out many plausible relations. A few Artificial Intelligence
researchers [10,11] have tentatively explored search-based approaches to this problem, but no systematic
treatment has been carried out. Below we examine four different heuristic curve-fitting methods that vary in
terms of the size of the space they search, and in their ability to deal with noisy data.

BACON.l also included heuristics for finding conditions on laws and for noting periodicity, but since these were not concerned with
numeric law discovery, we will not focus on them here. BACON.2 and BACON.3 also included additional methods that we will ignore in
the present paper.



Table 1. Components of successive BACON systems.

BACON.1
Trend and constancy detectors

BACON.2
Specialized method for finding constant differences

BACON.3
Trend and constancy detectors
Recursing to higher levels of description

BACON.4
Trend and constancy detectors
Recursing to higher levels of description
Intrinsic property method
Common divisor method

BAC0N.5
General method for finding constant differences
Recursing to higher levels of description
Intrinsic property method
Common divisor method
Expectation-based methods

BAC0N.6
Hill-climbing method for dealing with noise
Recursing to higher levels of description
Intrinsic property method
Common divisor method
Expectation-based methods

2.1. Detecting Trends and Constants

Some early versions of BACON (1, 3, and 4) included four simple heuristics for finding two-term
numeric laws. The first two of the rules are responsible for noting constant values and linear relations, both of
which lead directly to the formulation of a law0 The second two rules come into play when neither of the first
pair can be used; these define some theoretical term as the product or ratio of existing terms. Once defined,
BACON recursively applies its rules to these theoretical terms, looking for constant values, linear relations, or
other trends, continuing until some law is discovered. These heuristics can be summarized as follows:

1. If Y has the value V in a number of cases, then hypothesize that Y always has that value.
2. If X and Y are linearly related with slope S and intercept 1 in a number of cases, then hypothesize

that this relation always holds.
3. If X increases as Y decreases, and X and Y are not linearly related, then define a new term T as

the product of X and Y.2

4. If X increases as Y increases, and X and Y are not linearly related, then define a new term T as the
nz//0ofXandY.

The last two rules can be viewed as directing BACON's search through the space of theoretical terms, where

Actually, the third and fourth rules apply only when the values of X and Y have the same sign. In cases where X and Y have opposite
signs, two analogous rules propose the opposite actions; for example, when the values of X and Y increase together, and X and Y have
different signs, the product XY is defined.



each new term is defined as an arithmetic combination of directly observable variables. They focus attention
on terms that show potential for leading to constant values or linear relations, while the first two rules are
responsible for detecting such laws once the appropriate terms have been defined.

The operation of these heuristics is best understood through an example. Consider the distance I) of
the planets from the sun (measured in astronomical units) along with the period of those same planets
(measured in years). As one can sec in Table 2, neither die values of D or P arc constant, nor are they linearly
related. However, the values of 1) increase along with those of P, so our fourth heuristic tells us to define the
new term D/P as the ratio of these variables. Upon computing the values of this term, we find that they are
neither constant nor linearly related to any other term, but that they do increase as those of both 1) and P
increase. At this point we might define cither the product D / P or the product PD/P. However, the latter of
these is equivalent to the distance, and so should be abandoned. When the values of D2/P arc calculated, we
find that they increase as those of D/P decrease. As a result, we would define the product D / P and compute
its values. Since these have the constant value 1.0, the first heuristic would apply, hypothesizing that this holds
for all planets. Acting together, our heuristics have directed us through tine space of theoretical terms, arriving
at the functional equivalent of Kepler's third law of planetary motion.

Although the linear relation detector was not used in the above example, it is useful in other cases, such
as the discovery of Ohm's law for electric circuits. In this situation, one varies the length L of a wire and
observes the resulting current I. The values of I increase as those of L decrease, but since they are not linearly
related, the product IL would be defined. Upon calculating the values of this term, one finds that IL and I are
linearly related by the equation IL = bl + v (where the particular values of b and v depend on the battery
used). This equation is equivalent to Ohm's law, with the slope b representing the internal resistance of the
battery and the intercept v its voltage.

Table 2. Data obeying Kepler's third law.

PLANET

MERCURY
VENUS
EARTH
MARS

JUPITER
SATURN

D

0.382
0.724
1.0

1.524
5.199
9.539

P

0.241
0.616

1.0
1.881

11.855
29.459

D/P

1.607
1.175
1.0

0.810
0.439
0.324

D2/P

0.622
0.851

1.0
1.234
2.280
3.088

D3/P2

1.0
1.0
1.0
1.0
1.0
1.0

The above heuristics do have limitations. For example, they cannot discover polynomial functions of
degree two or higher, including such simple laws as Y = aX2 + b. In such cases, the heuristics actually lead
the system to ignore theoretical terms that are required to state the laws. However, they have been able to
discover a number of nontrivial laws from the history of physics, including Galileo's laws for the pendulum
and constant acceleration, as well as Ohm's law and Kepler's law. In addition, when combined with a heuristic
for recursing to higher levels of description (discussed in the section 3), these methods can induce much more
complex relations, such as Coulomb's law of electrical attraction. What is amazing, then, is not the absolute
power of these heuristics, but the fact that such simple rules are so useful in directing search through the space
of possible laws. For instance, in finding Kepler's law, BACON.l examined only 4 theoretical terms,
compared to some 16 terms (a conservative estimate) that would be examined by a straightforward generate-
and-test approach that considers simpler terms before more complex ones. One is tempted to infer that the
early scientists also employed such simple heuristics to search for regularities, but that would lead us into
historical discussions for which we do not have space.



As implemented in the early versions of BACON, this method had only modest capabilities for dealing
with noisy data. The system required some ability on this dimension simply to deal with round-off errors in
computing the constant values of higher level terms such as D /P . However, we did not explore the effects of
significant noise in our experiments with BACON.1 through BACON.4. In section 3, we discuss an extension
of this basic approach that has excellent noise-handling capabilities, as well as being able to discover laws
relating multiple terms. First, though, let us examine some other approaches to finding simple numeric laws.

2.2. Finding Constant Differences

Despite the attraction of the trend and constancy detectors, their limitations led us to explore more
robust function-finding methods. As a result, BAC0N.2 incorporated a heuristic that searched for constant
differences, and BACON.5 included a more general version of this same method; in this paper we will
describe only the more general scheme. This technique searches for polynomial relations between two
variables, and with a simple extension, can discover all of the laws attainable by the earlier method (though in
a different form), along with many others as well.

Table 3. Determining the coefficient of a quadratic term.

X Y Y' Y"

6 121 * 3
10 321 » 3
15 706

Again, the method is best explained with an example. Consider the law Y = 3X2 + 2X + 1, where X is
the independent term and Y is the dependent variable. Table 3 presents some values obeying this law, along
with some differences computed by the method. The first step involves examining the first differentials of Y
with respect to X for successive values. This term is computed just as one would compute the slope of a line.
For instance, the first value would be (34 - 6)/(3 - 1) = 14, the second would be (121 - 34)/(6 - 3) = 29,
and so on, until all successive values of X and Y have been combined in this manner. Since the resulting
differentials are not constant, the process is repeated. The second differentials are computed using the first
differentials in the numerator and the X values in the denominator; however, differences are taken between
every other X value instead of directly adjacent ones. Thus, the first of the second differentials would be (29
— 14)/(6 — 1) = 3, the second would be (50 — 29)/(10 — 3) = 3, and so on. These values are constant, so
the system infers that the function relating the two terms includes an X2 term with a coefficient of 3. (This
method works equally well for real-valued coefficients.)

Given this knowledge, BACON subtracts out the variance accounted for by the X2 term, and repeats the
process on the values of Y - 3X2. Table 4 presents the resulting values, along with the first differentials of
this term. Since the values of this differential have the constant value 2, the program infers that an X term
with coefficient 2 is present in the final equation. Again, this component is subtracted and the resulting values
of Y - 3X2 — 2X are examined, as shown in Table 5. The values of this term are the constant 1, so BACON
infers that the final form of the equation is Y = 3X2 + 2X + 1. This differencing technique lets the system
discover any polynomial relation, provided enough data have been observed to compute the necessary
differentials. Thus, four observations would be required if the equation is of the third degree, three would be
necessary if an X2 term is involved, and so on. However, to ensure that spurious relations arc not found in this



manner, BACON insists that the functions it discovers be overidentified by the data, though the exact number
of additional observations is controlled by die user.

Table 4. Determining the coefficient of a linear term.

X Y - 3X2 (Y - 3X2)'

n i r~
10 21
15 31

The differencing method can be viewed as carrying out a heuristic search through the space of
polynomial functions. This search begins by considering candidates for the largest terms in the relationship,
examining constant, linear, and quadratic terms in turn. Terms that fail the test for constant differentials are
rejected, along with all branches occurring below them in the search tree. Terms that pass the constant
difference test are retained, and the more fully specified functions occurring below them in the tree are
considered by entertaining various possibilities for the next highest term in the function. Some of these are
also rejected, but some are retained, and the process continues until one or more functions with zero residuals
have been generated. By applying the test for constant differentials at each level of the search tree, this
technique examines only a few of the many functional relations that it would otherwise have to consider.

Table 5. Determining the constant term in an equation.

X Y - 3X2 - 2X

1 1
3 1
6 1
10 1
15 1

A simple extension of this method lets BACON deal with more complex laws as well. In addition to
considering polynomial relations between X and Y (or between any two terms), the system also considers
relations between X and Y2, X and Y3, and so forth. This enables the discovery of Kepler's third law (in the
form P2 = aD3), as well as many other numeric relations. Finally, the system can also consider
transformations of both die independent and dependent terms, such as inverse(Y), sine(Y), log(Y), and so on.
The first of these lets the system discover Ohm's law using the differencing method; in this case, the law is
stated as I""1 = aL + b, where a = voltage""1 and b = resistance/voltage. We have not yet uncovered any
heuristics to direct search through the space of possible transformations, so BACON.5 considers each
transformation in turn, using a simple-minded generate and test strategy. However, the user can direct the
system's attention by including some transformations and excluding others.

The differencing heuristic as implemented in BACON.5 can also deal with some degree of noise,
though the method has certain limitations. Rather than requiring a constant differential to be found, the
system is satisfied with near constant values. The meaning of near is determined by two parameters — the



relative error R associated with a dependent term, and the absolute error A associated with that term. These
parameters arc used to construct an interval around the observed mean of a given differential. If all values fall
within that interval, BACON infers that any divergence from the mean is due to noise of one form or another.

For instance, consider the values of X and Y in Table 6. The values of Y arc identical to those in Table
2, except thai some variation from the law Y = 3X2 + 2X + 1 has been included. Suppose that BACON is
given a relative error of 0.07 for Y, along with an absolute error of 0.001. Upon examining the values of Y, the
system finds a mean of 240. Multiplying this mean by the relative error gives the product 16.8, from which
BACON creates the interval (223.2, 256.8) by adding and subtracting this amount from the mean. (In this
case, the absolute error has negligible influence, although it becomes important when values approach zero.)
Since all of the Y values fall outside this interval, the program infers that Y is not constant. When the values
of the first differential are computed, the mean 43.29 results. Since these values arc based on pairs of the
original data points, noise can be confounded, so both tine relative and absolute error terms arc doubled,3

giving the interval (37.23, 49.35). Again, most results lie outside this interval, so the process is repeated.
When the second differentials arc calculated, the mean 3.22 is obtained. The error terms are again doubled,
since the second differentials further compound the potential noise, leading to the interval (2.3i, 4.13). All of
the values fall within this interval, so BACON concludes that the second differential has the near-constant
value 3.22. This process is repeated after the X2 term has been subtracted, to estimate the other coefficients of
the equation.

Table 6. Noisy data obeying the law Y = 3X2 4- 2X + 1 .

X Y Y Y"

1 6 ' 1 5 13,50
3 33.15 "" 336

10 312.98 „ ' , , 3.88
15 723.65 8 2 J 4

When BACON transforms the dependent values to consider more complex relations such as log(Y) = f
(X) and Y~2 = g(X), the absolute error term A must be transformed as well. If we let M represent the mean
of the observed dependent values and Mt stand for the mean of the transformed dependent values, then the
transformed absolute error term At = AMt/M. This formula guarantees that the ratio A/M will remain
constant across transformations. To see why this is necessary, consider the dependent term Y with mean 100,
and the transformed variable Y""1 with mean 0.01. If the absolute error for Y is 0.1, we certainly do not want
to use the same error term for the much smaller values of Y"1 . In this case, the transformed error term would
be (0.1)(0.01)/100 = 0.0001, which seems much more reasonable. Fortunately, there is no need to alter the
relative error term R when transformations are employed.

How robust is the differencing method with respect to noise? As long as polynomials with only a single
term are involved, such as Y = aX3 or Y = bX, it performs quite well. However, recall that in order to
estimate the parameters for more complex laws, BACON must first estimate one parameter, subtract out some
of the variance, then estimate the second parameter, and so forth. Thus, in estimating the parameters for the

This is a conservative estimate. Since each value of Y may be either RY + A too high or too low, it is possible that the difference of
two Y values will be 2 (RY + A) too high or two low.



law Y = aX2 + bX -4- c, the system would first determine a, then use this estimate in determining b, and
employ both estimates in finding the value of c. Unfortunately, small errors in the estimation of the quadratic
term a can seriously affect the estimate of the linear term 6, leading to even greater effects for the estimate of
the constant term c. Thus, while the differencing technique has some abilities for handling noise, a better
method would be desirable, and we examine such an approach below.

2.3. Hill-Climbing through the Space of Parameters

Both of the above methods carry out search through a space of functional relations, though they explore
somewhat different spaces and certainly employ different operators for generating new problem states.
However, in both cases, these operators actually use the data in generating the new state. Thus, the two
methods may be characterized as data-driven. Unfortunately, this reliance on the data leads to difficulties
when significant noise is present, and to deal with such situations, we have explored (in the BACON.6
program) a more enumerativc approach to finding numeric laws.

In this method, the user provides BACON with one or move forms of law that it should consider in
attempting to summarize the data. For instance, the system might be told to examine laws of the form Y =
aX2 + bX + c, as well as those having the form sin(Y) = aX + b (where X is independent and Y is
dependent). These forms define the space of laws that BACON should consider in its search for numeric
relations. Based on each of the forms, the system generates a set of initial states from which to begin the
search. These states are simply instantiated versions of the abstract forms with 1, 0, or — 1 inserted for the
parameters. For instance, given the form Y = aX2 + bX + c, BACON generates nine initial states: [a=l,
b = l], [a=l, b = 0]f [a=l, b= -1 ] , [a = 0,"b = l], [a=0, b = 0], [a=0, b= - 1 ] , [a= - 1 , b = l], [ a = - l , b = 0],
and [a= —1, b=—1]. These values are chosen because they are well-distributed throughout the space of
parameters, so that the optimum point should lie near one of them. The constant term c is not included, since
its value can be computed once the quadratic and linear terms have been estimated.

Starting from these points, BACON carries out a form of hill-climbing through a k-dimensional space
(in this case k = 2). At the outset, the system evaluates each of the initial points in terms of its ability to
summarize die observed data. This is accomplished by substituting each combination of parameter values into
the form, and predicting the value of the dependent term Y for each value of the independent term X. The
system then computes the correlation of the predicted and observed Y values; this is required since we are
concerned with relative parameter values rather than absolute ones. This process is repeated for each of the
initial points in the space, and the N highest scoring parameter sets are selected for further exploration.

For each of the N points that are retained, BACON generates a new set of points by adding 0.5 to each
of the parameter values. In addition, a second set of points is generated by subtracting 0.5 from the same
points. For example, if the initial points [a = 1, b = l]and[a=0, b= -1 ] had been retained (with N = 2), then
twelve additional points would be produced: [a=1.5, b = l], [a = l, b = 1.5], [a = 1.5, b = 1.5], [a = 0.5, b= - 1 ] ,
[a=0, b=-0 .5] , and [a=0.5, b=-0 .5 ] by adding 6.5; as well as [a = 0.5, b = l], [a = l, b = 0.5], [a=0.5,
b = 0.5], [a= -0.5, b= - 1 ] , [a = 0, b= -1.5], and [a= -0.5, b= -1.5] by subtracting 0.5. Each of these points
is evaluated in turn, and compared to the points from which they were generated. As before, the N best
parameter combinations are selected, based on their ability to predict the observed Y values in terms of the X
values.

Using the N new points, the process is repeated, this time adding and subtracting the value 0.25 from
each of the parameter values. Again each of the resulting points is evaluated, with the N best combinations
being retained for use on the next cycle. In this way, BACON continues to improve its ability to predict the
observed data, using a method of successive approximation. This beam-search version of hill-climbing
proceeds, with the size of the step being halved on each cycle, until the step size falls below a user-specified



level. At this point, the system stops its search, and for each of the N best parameter sets, the program
generates a specific equation that can be used to predict Y in terms of the X values.

Table 7 summarizes the path taken in summarizing noise-free data obeying the polynomial Y = 3.1X2

H- 2.35X + LO, using a beam size of one. At the outset, the system generated the nine initial states given
above, finding that the pair [a= 1, b= 1] best predicted the observed data. On the next cycle, BACON used a
step size of 0.5 to produce six new states, this time finding the pair [a= 1.5, a= 1.0] to have die highest score.
This process continued until the system reached a step size of 0.03125, the user-specified condition for halting.
At this point, the best set of parameters was [a =1.03125, b = 0.78125], which accounted for 0.9999999999 of
the variance. In other words, the Y values predicted by these parameters were highly correlated with the
observed Y values. However, BACON still had to compute the actual values for these parameters, along with
the value for tine constant term in the equation. This was easily done using the coefficients in the regression
equation relating the observed and predicted values of Y, and BACON generated the final law Y = 3.1001 X
+ 2.3485 X + 1.0031. Although the estimated coefficients are not identical to those from which the data were
generated, they arc remarkably close.

Table 7. Beam search discovery of the law Y = 3.1001 X2 + 2.3485 X + 1.0031.

Step size

1.00000

0.50000

0.25000

0.12500

0.06250

0.03125

Quadratic term a

1.0000

1.5000

1.2500

1.1250

1.06250

1.03125

Linear term b

1.00000

1.00000

1.00000

0.87500

0.81250

0.78125

Correlation

0.9999827810

0.9999974065

0.9999994657

0.9999998815

0.9999999865

0.9999999999

This method is quite robust with respect to noise, since it uses the data only to test hypotheses rather
than to generate them* When noisy data are involved, the path taken is very similar to the noise-free case we
have just examined. ITie main difference is that the correlations used in evaluating parameter combinations
never reach the same heights, since the observed Y values can never be completely predicted by the X values.
The greater the noise in the data, the lower the final score that BACON must accept. Still, the evaluation
function generally leads the system to parameter estimates that closely approximate the correct values. Unlike
the differencing technique, this method does not require the user to provide an estimate of the amount of
noise in the data; it arrives at the best parameters for summarizing the data, whether these are very good or
very poor predictors.

However, note that if the user has provided a number of possible forms, the system must still select
between these competitors. To this end, BACON employs a second evaluation function. First, the system
computes the complexity C of each hypothesis (measured by the number of non-zero terms in the expression)
and the variance V explained by the rule0 It then combines these values into the ratio V/C9 a function that
improves with better fits to the data, and decreases as hypotheses become more complex. Once the scores
have been computed, BACON finds the best score and multiplies it by a user-specified system parameter; the
values of this parameter must fall between zero and one (we have used 0.8 in our runs). The resulting score is
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treated as a threshold; all hypotheses having scores below this limit are rejected, while those with scores
exceeding it are retained. This strategy has a useful property. If one or a few hypotheses arc clearly superior to
the others, only these are retained; however, if many of the hypotheses are basically equivalent, then all of
these are kept. In our experiments with noisy data, this approach has proven much more robust than the
earlier data-driven methods.

2.4. Expecting Similar Relations

The heuristics we have examined so far all rely heavily on the observed data to direct their search
through the space of functional relations. However, once the system has discovered a law in one context, it
makes sense to use that information to direct the search process in related contexts. To this end, we have
introduced certain expectation-drive}} heuristics (in BACON.5 and BACON.6) that take advantage of early
findings to aid die discovery process at later points. In this way, BACON can reduce its search without any
loss in generality, since the particular class of hypotheses that the system considers depends on those found
earlier by the data-dependent methods. This contrasts with the type of domain-specific expectations found in
most experts systems, which greatly constrain these systems' range of application.

The simplest of BACON's expectation-driven heuristics proposes that if the system has found a law in
one context (i.e., when the independent terms not included in the law are held constant), it should expect a
similar form of law to hold in a new context (i.e., when those terms take on different values). For example,
once the system has discovered that Kepler's third law holds for the planets orbiting the sun, it could employ
this similar relations heuristic to predict an analogous law for the moons of Jupiter. Specifically, if the law D3

= LOP2 were found in the first situation (when the sun was held constant), BACON would expect that a law
of the form D3 = kP2 would hold in the new case (when the sun was replaced by Jupiter), though it would
not yet know the value of the parameter k. In the case of BACON.5's differencing method, such a prediction
lets the system immediately consider polynomial functions of D3, rather than considering functions of D,
D""1, D2, and D~2 , which would normally be tried first. In the case of BACON.6's hill-climbing method, an
additional savings occurs. Rather than searching the three-dimensional parameter space associated with the
form D3 = aP2 + bP + c, the system can search the much simpler one-dimensional space to estimate the
quadratic coefficient a, since it expects both the linear and constant terms to be zero.

The reader will recall that BACON.S's differencing method requires different numbers of observations
to estimate the parameters for polynomials of different complexity. This leads to a second expectation-driven
method that we will call the data-reduction heuristic. Initially, BACON.5 gathers more than the necessary
number of observations to ensure that a law is correct. However, once the system expects a particular form of
a law to hold, it can determine the number of observations necessary to estimate the desired parameters, and
collects only the minimum number of observations necessary to complete its description of the current law.
Thus, in the above example, BACON would need only three data points to determine the value of k for the
Jovian moons. Of course, additional observations would be required if significant noise were present, but the
principle of reduced data would remain.

This method leads to only minor computational savings for two-term laws, but for more complex
multi-term relations (discussed in the following section), the savings can be quite significant. Thus, in
discovering the ideal gas law, the standard version of BACON.5 (without the data-reduction heuristic) ran for
some 35 CPU seconds. Using the data-reduction method, the program arrived at the same law in only 21 CPU
seconds. Very similar results emerged with runs on Coulomb's law, another four-term relation with a
somewhat different form.



3. Discovering Complex Numeric Laws
The methods described in the previous section can discover numeric relations between two variables,

but more complex relations lie beyond their scope. For instance, one would like methods for discovering
functions involving many variables, such as the ideal gas law and Coulomb's law of electric attraction. Upon
closer examination, one finds that there exist two quite different situations in which one can attempt to
discover complex laws. In the first case, one has experimental control over all but one of the terms, so that the
traditional method of "varying one term at a time" can be used to separate the effects of each independent
term on the dependent variable. This is the approach we explored in BACON.3 and successive versions of the
system, and we discuss the basic method below. After this, we examine an extension of the method that
employs knowledge of symmetry to reduce search through the space of laws. In the second situation, there is
no experimental control over any of die observable terms, and one can only observe co-occurring values.
Later in the section, we examine a method for dealing with such cases, based on a generalization of the
heuristics used in BACON. 1. The distinction between experimental science and observational science seems a
major one, and there is no a priori reason to expect that identical methods will prove useful in both contexts.

3.1. Recursing to Higher Levels of Description

In order to let BACON discover laws relating many numeric terms, we introduced another heuristic that
let it summarize regularities at different levels of description. This method operates when the system is given a
number of terms over which it has experimental control BACON begins by holding all but one of the terms
constant, and discovering a specific law in that context. The constant values found in this situation are stored
along with the independent values for which they occurred. Different constants are found for different
contexts, and when enough values have been found, the system treats them as dependent values at a higher
level of description, and attempts to find a higher level relation. The system employs the same method to find
the second level law as it did at the lower level. After a law at the second level has been found, the program
recurses to still higher levels, until all of the independent terms have been incorporated into a unified law, and
all of the data have been summarized.

BACON's discovery of the ideal gas law provides a useful example of this strategy. This law may be
stated as PV = 8.32N(T — 273), where P is the pressure on a quantity of gas, the dependent term V is the
volume of the gas, T is the temperature of the gas in degrees Celsius, and N is the quantity of gas in moles. In
order to run an experiment, BACON must be provided with values for each independent term; let us suppose
the system is told to examine N = 1, 2, and 3, T = 10,20, and 30 (Celsius), and P = 1000, 2000, and 3000. In
discovering this law, BACON begins by holding N at 1 and T at 10, and varying the values of the pressure P,
examining the resulting values of V in each case. Suppose that for P = 1000, 2000, and 3000, the program
observes V = 236,1.18, and 0.78. Using one of the methods for finding simple laws we described in the last
section, BACON arrives at the relation V"*1 = 0.000425 P. In addition, it introduces the theoretical term a as
the coefficient of P in this equation. The constant value a = 0.000425 is stored with the values N = 1 and T
= 10 for later use, and system moves on to a new experimental combination.

BACON'S next step is to continue holding N at 1, but to examine a different value of T, say 20, and to
find a new relation between P and V in this new context. Suppose in this situation, for P = 1000, 2000, and
3000, the system finds that V = 2.44,1,22, and 0.81. Although the same form V" 1 = aP continues to hold, in
this case it estimates that the parameter a = 0.000410, instead of the earlier value. This new value is stored
with N = 1 and T = 20 for future use. Analogous events occur when BACON considers T = 30, with the
system finding that a = 0.000396. At this point, the program has three values for the term a, each associated
with N = 1 and with a different value for T. Accordingly, it attempts to find a relation between the parameter
a and the temperature T. Using the same method it used at the lower level, BACON finds the linear relation



a i = 8.32 T + 2271.4. It also defines b and c, two theoretical terms that correspond to the two parameters in
this equation. The values b = 8.32 and c = 2271.4 are stored with N = 1 for later use, and the system
continues.

This process is repeated for N = 2, with BACON finding different estimates of the parameter a, and
relating them to the values of'T. In this case, it finds the relation a"1 = 16.64 T + 4542.7, and stores the
values c = 16.64 and 4542.7 with N =2. Analogous events occur for N = 3, giving the value 24.96 for b and
6814.1 for c. At this stage, BACON has enough values of N and b to search for a relation between the two
terms, and it arrives at the law b = 8.32 N. Similarly, it looks for a law relating N and the parameter c, this
time finding c = 2271.4 N. In addition, it defines two terms d and c, having the values 8.32 and 2271.4,
respectively. These two values arc not conditional upon the values of any other term (at least as far as
BACON knows), and so the system halts, having summarized all of its data, and relating the terms V, P, T,
and N to one another.

Let us examine the mapping between BACON'S laws and the ideal gas law. The first level law has the
form V"" = a P , while the second level law has the form a = b T + c. Substituting (b T + c)"~ for a in
the first law, we get V""1 = (b T + c)~ ] P. From the two third level laws, we know that b = 8.32 N and c =
2271.4 N, and substituting for b and c, we obtain V"1 = (8.32 NT •+• 2271.4 N)""1 P. Dividing through by P,
inverting both sides of the equation, and factoring out 8.32 N, we get PV = 8.32 N (T + 273). The standard
version of the law is PV = 8.32 NT, where T is measured in degrees Kelvin. Since adding 273 degrees Celsius
converts the Celsius scale into the Kelvin scale, the above equation is equivalent to the standard form of the
ideal gas law. In a sense, BACON has generated its own measurement scale for the temperature, in order to
state the relation succinctly. Table 8 summarizes the steps taken in this discovery, comparing BACON'S
version of the law with the standard version, and showing the independent terms held constant at each level of
description.

Table 8. Summary of ideal gas law discovery.

BACON's version Standard Version Constant Terms

V^aaP PV = k T,N
V""1 a P/(bT+c) PV = k(T-273) N
V- 1 = P/(dNT + eN) PV = 8.32N(T-273)

Taken together, the heuristics for finding simple numeric relations and recursing to higher levels give
BACON considerable power. Using these two strategies, the system has successfully rediscovered versions of
Coulomb's law of electrical attraction, a complex version of Ohm's law, and the ideal gas law. The recursion
heuristic has been somewhat modified in BAC0N.6 to aid the system in dealing with noise. Since more than
one functional relation may be found acceptable by the hill-climbing method, the system must be able to store
each of the resulting sets of parameters at higher levels of description. However, if a hypothesis is found to be
acceptable in one context, but in a later context no analogous hypothesis is found to fit, the hypothesis is
rejected and its associated parameters are removed from the higher level store. For example, suppose the laws
Y = 3.0X2 + 2.0 and log(Y) = 0.5X + 4.0 both fit the data fairly well when Z = 1.0. As a result, the
parameter values 3.0, 2.0, 0.5, and 4.0 would be stored at the second level of description for later use. Now
suppose that when Z = 2.0, only the law log(Y) = 0.75X + 6.0 obeys the data well enough to be accepted.
Since it does not appear to be general, the first law relating Y to X would be rejected as a summary of the
initial data, and the parameter values 3.0 and 2.0 would be removed. One can imagine more lenient versions
of this strategy in which a few exceptions were allowed, but some approach of this type that tests the
generality of functional forms would appear to be very useful.



3.2. Discovering Symmetrical Laws

Although the method of varying one term at a time considerably simplifies the task of discovering
complex laws, it can require considerable amounts of data to be gathered. One way to avoid this is to employ
expectation-driven heuristics to reduce the amount of data required to identify a complex law. For example,
the notion of symmetry has played an important role in the history of physics, and one might well use
expectations of symmetry to constrain search through the space of laws. Table 9 presents three well-known
laws that exhibit symmetry — SnelFs law of refraction, conservation of momentum, and Black's heat law0

Although BACON.3 and its successors can discover these laws with just the heuristics we have already
described, the inclusion of a new heuristic that postulates symmetry significantly reduces the search required
to find the relations. This heuristic applies whenever BACON is asked to run an experiment involving two
objects that have the same set of associated variables. The method first varies in turn all terms associated with
the first object, and finds an Nth level description of the relationship between these terms. Once the form of
this law is known, the heuristic assumes that the same function will relate die terms associated with the second
object. It then computes the values of these two higher level functions for a number of situations, and checks
to see if they are linearly related. If so, the symmetry assumption is verified, and the two terms are combined
into the final law.

Table 9. Symmetrical laws discovered by BACON,

Snell's law of refraction sine 0^^ = sine #2
/n2

Conservation of momentum m i ^ i " ^ ) = ~ m 2 ^ 2 "" ^2)

Black's specific heat law c iM i<T i " F i ) = ~ c 2 l v V r 2 " F2*

As an example, consider BACON's discovery of Snell's law of refraction, as summarized in Table 10.
The program starts with two objects and two variables associated with each object - die medium through
which light passes, and the sine of the angle the light takes. Varying medium 2 and holding medium, and
sinel, constant, the system postulates an intrinsic property, n-, whose values are associated with different
media. Of course, the ratio sine 02^

n2 ^ a s ^c c o n s t a n t value 1.0. At this point, BACON relates the terms
associated with the second object, and decides that it should examine the values of sine 0l/nl and relate them
to the former ratio. Upon gathering additional data, the program discovers that the two ratios are identical, or
that sine 9^/n^ = sine Q^^T wh*ch IS o n e statement of Snell's law.

The BACON system has discovered two other symmetrical relations — conservation of momentum and
Black's specific heat law —. following very similar paths. Table 9 presents the full form of the laws; directly
observable terms are shown in upper case, while intrinsic properties (discussed in the following section) are
shown in lower case. We may have given the impression that the symmetry heuristic eliminates search
entirely, but this is not the case. Aldiough the set of hypotheses considered is drastically reduced, it is not
always narrowed to a single function. Only one symmetrical hypodiesis emerges in Snell's law, since the
reladon that is found combining the first set of terms involves only one parameter. In discovering both Black's
law and conservation of momentum, two parameters occur, so the enhanced version of BACON considers two
possible symmetries. For both laws, one of these symmetries is found to sadsfy the observed data, while the
other is rejected. However, because the system has strong expectadons, it can test its hypotheses against much
less data than would be necessary using the purely data-driven approach.

In the case of symmetrical laws, we have another example of expectadon-driven heuristics and their use
in reducing search through die space of possible laws. In rediscovering Snell's law, the data-driven version of



BAC0N.5 required some 40 CPU seconds. However, when the symmetry heuristic was included (along with
the similar relations and data reduction heuristics), the system found the same law in only 5 CPU seconds.
Hvcn greater savings occurred for Black's heat law, since this involved a total of eight terms. In this case, the
data-driven version took 8433 CPU seconds, while the expectation-driven version (using the symmetry
heuristic) required only 23 CPU seconds, an improvement of more than two orders of magnitude. Moreover,
the symmetry heuristic accomplished this reduction with little loss in generality, since symmetry relations can
be found in a wide variety of scientific domains.

Table 10. Discovering SnclKs law of refraction.

MKDIUM,

VACUUM
VACUUM
VACUUM

SIN tf,

0.25
0.25
0.25

MHD!UM2

WATKR
OIL

GLASS

SIN 02

0.33
0.37
0.42

"2

0.33
0.37
0.42

SIN 02/n2

1.0
1.0
1.0

3.3. Finding Observational Laws

The numeric heuristics we have considered, together with the method of recursing to higher levels of
description, are very useful for finding laws when some of the variables are under experimental control.
However, since this approach relies on the ability to. vary the values of one term while holding the others
constant, it cannot be used to discover relations in purely observational data. Interestingly, a modified version
of BACON's first numeric heuristics, which we described in section 2.1, can be be applied in such cases. The
modification is a simple one: rather than looking for monotonic trends, one looks at correlations between
terms. Thus if one found X and Y to be positively correlated, their ratio would be defined as a new term,
while if they were negatively correlated, their product would be considered. Since correlations are used, one
can apply this revised method to observational data involving many covarying terms. Of course, any pair of
terms has some correlation, so one must have some means for directing search through the space of new
terms. Our solution is to carry out a beam search, in which only the N highest correlations arc used to define
new terms. 'Hie values of these terms arc computed, as well as their correlations with other terms, and the
process is repeated. As more complex terms are defined (redundant terms are eliminated), the best
correlations approach 1 or - 1 , until eventually a near linear relation is found and a law is formulated. The
system continues until all terms have been incorporated into a law, or until the terms become too complex.

We have implemented this approach to observational discovery, and Table 11 presents a trace of the
system discovering the law XY/WZ = 1, using a beam size of two. The program begins by finding the
pairwise correlations between the four observable terms X, Y, Z, and W. Since the two highest correlations (in
terms of absolute values) occur between W and Z (—0.5617) and between Y and X ( — 0.5099), these are used
as the basis for two new terms. Since both correlations are negative, the two products XY and WZ are defined,
and the system computes their values. Next, the correlations between the new terms and the directly
observable terms are calculated, and the highest scores are noted. The two highest correlations are between W
and XY, and between W and WZ. Since both of these are positive, the products XY/W and WZ/W are
defined. However, since the second of these is equivalent to the observable term Z, it is dropped from
consideration and the next highest correlation is used. Since the pair Y and XY leads to XY/Y, which equals
X, this ratio is rejected and a fourth pair is considered. This time the pair Y and WZ leads to the ratio W2/Y,
which is a genuinely new term. When the third round of correlations is computed using XY/W and WZ/Y,
the system finds two relations that exceed its threshold for actual laws. First, it finds the correlation between
XY/W and Z to be 1.0, leading to the law XY/W = 1.0Z, or XY/ZW = 1.0. Second, it finds an identical
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correlation between WZ/Y and X, producing the law WZ/Y = 1.0X, which can also be transformed into
XY/ZW = 1.0. The current version of the system does not realize that these laws are identical, but it does
know that once all known terms have been incorporated into a law, it can halt its search through the space of
products and ratios.

Table 11. Discovering the law XY/WZ = 1 using observational data.

The correlation between W and Z is -0.5617
The correlation between W and Y is 0.4704
The correlation between W and X is 0.3161
The correlation between Z and Y is -0.0157
The correlation between Z and X is -0.1234
The correlation between Y and X is -0.5099

Defining XY as the product of X and Y
Defining WZ as the product of W and Z

The correlation between W and XY is 0.8907
The correlation between W and WZ is. 0.8907
The correlation between Z and XY is -0.2343
ITie correlation between Z and WZ is -0.2343
The correlation between Y and XY is 0.6484
The correlation between Y and WZ is 0.6484
The correlation between X and X Y is 0.2457
The correlation between X and WZ is 0.2457

Defining XY/W as the ratio of XY and W
Defining WZ/Y as the ratio of WZ and Y

The correlation between W and WZ/Y is 0.3161
The correlation between W and XY/W is -0.5617
The correlation between Z and WZ/Y is -0.1234
The correlation between Y and WZ/Y is -0.5099
The correlation between Y and XY/W is -0.0157
The correlation between X and XY/W is -0.1234
Tve found a law: XY/W = 1.0Z
I've found a law: WZ/Y = 1.0X

We have not incorporated this correlational method into BACON, since that system is so oriented
toward dealing with experimental data. However, the method can discover many of the laws found by
BACON even without experimental control over the variables involved. For instance, the method discovers
Kepler's third law in much the same way as BACON, and it can find the ideal gas law, though it does so at a
single level of description. In addition, since the technique uses correlations to direct its search through the
space of terms, it is quite robust with respect to with noise. Although this approach cannot arrive at the
polynomial relations found by the differencing method, it is a very promising approach to observational
discovery that we plan to explore further.
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4. Postulating intrinsic Properties
The heuristics we have examined arc appropriate for finding relations between numeric variables, such

as distance and current, but they cannot by themselves deal with situations involving nominal or symbolic
terms. In particular, suppose one's dependent variables arc numeric, while the independent terms take on
only symbolic values. In this section, we describe a discovery method, first introduced in BACON.4, that deals
with such cases. The approach involves postulating a new term, which we call an intrinsic property. It also
involves inferring a set of numeric values for the new property, associating these values with the observed
symbolic values, and retrieving these inferred values when appropriate. Once BACON has associated a set of
numeric intrinsic values with a set of nominal values, it can apply its numeric heuristics to discover new laws.
We begin with a simple example in which intrinsic properties arc required, and then examine a second case
that led us to introduce a more conservative strategy for retrieving intrinsic values. After this, we consider the
role of symmetry in situations involving intrinsic terms, and propose extensions to the method that handle
cases in which multiple intrinsic properties occur.

4.1. Postulating Properties and Inferring Values

We saw earlier that BACON could rediscover Ohm's law when given numeric measures for external
resistance (the length of the wire) and current. However, suppose we assume a slightly different situation in
which the dependent variable I (the current) is still numeric, but in which the two independent terms - the
battery and the wire used in the current —. take on only nominal values. For instance, let us take three
batteries — A, B, and C — and three wires — X, Y, and Z. These can be combined in different ways to
generate different currents, but nothing is known directly about the batteries and wires except their identities.
In this case, BACON could vary the battery and wire and observe the resulting current, but since the
independent values are nominal, it would not be able to find a numeric law. Our solution is to let the system
"invent" numeric terms that are associated with the batteries and the wires, such as voltage and resistance. We
will call such terms intrinsic properties, since their values are associated with particular objects or sets of
objects.

Let us examine the process of postulating intrinsic properties for our modified electrical experiment.
Table 12 presents the currents for nine combinations of batteries and wires. ITiese currents were computed by
assuming the voltages VA = 4.613, VR = 5.279, Vc = 7.382 for the batteries, and the resistances Rx = 1.327,
Ry = 0.946, and Vz = 1.508 for the wires. In addition, we assumed that the internal resistance for each
battery was negligible. Upon examining the first three rows of the table (when the battery is A), BACON
notes that the current I varies as the wire is varied. Since it cannot relate a numeric term to a nominal one, it
postulates a new term (let us call it the conductance c), and bases its values on those of the current. Given the
two numeric terms, any of the numeric discovery methods we have described would immediately find that
they are linearly related with a slope of 1.0 and an intercept of zero. Of course, this is hardly surprising, since
the values of c were defined to be those of the current I. However, the tautology disappears when BACON
considers the next three rows (in which the battery is B). In this case, the system has already encountered the
wires X, Y, and Z, so it retrieves their associated intrinsic values and compares them to the observed currents.
This time BACON's numeric method also finds a linear relation with a zero intercept, but here the slope is
1.1444 rather than 1.0. An analogous law is discovered when the final three rows are examined, this time with
1.6003 as the slope.



Table 12. Postulating the property of conductance.

BA'ITKRY

A
A
A
B
B
B
C
C
C

WIRE

X
Y
Z
X
Y
Z
X
Y
Z

CURRENT I

3.4763
4.8763
3.0590
3.9781
5.5803
3.5007
5.5629
7.8034
4.8952

conductance c

3.4763
4.8763
3.0590
3.4763
4.8763
3.0590
3.4763
4.8763
3.0590

voltage v

1.0
1.0
1.0

1.1444
1.1444
1.1444
1.6003
1.6003
1.6003

Once these three relations have been found, BACON uses the slopes of these lines to search for a
relationship at the second level of description. However, the system again finds that it cannot relate a nominal
variable (the battery) to a numeric term (the slope). Accordingly, a new, higher level intrinsic property (let us
call it the voltage v)is created, with its values based on the slope values and associated with the different
batteries. Again a tautological linear relation is found, but since no other independent terms exist to be varied,
the system cannot move beyond this stage to discover empirically meaningful laws. At this point, BACON
halts, having arrived at two intrinsic properties and their values for different objects. Hie values of the
conductance c are associated with individual wires, while the values of the voltage v are associated with
particular batteries. In addition, these terms are related to the current by the law I/vc = 1. Since the
conductance c is the inverse of the resistance r, we can restate this relation as I = v/r, which is one form of
Ohm's law for electric circuits. Moreover, the values obtained for v and r differ only by a constant factor from
the values we used to compute the currents, meaning that BACON has effectively regenerated these values
using only nominal values and their associated currents. The constant factor was introduced when BACON
used the first set of currents as its values for die conductance, since the introduction of intrinsic properties
involves the selection of a measurement scale along which nominal values can be ordered.

Note that intrinsic properties are useful only in cases involving at least two independent nominal terms.
This is because the first set of dependent values must be used in defining the intrinsic values. Unless one or
more additional sets of dependent values are observed, the law incorporating the new property will be
tautological and have no predictive power. Thus, this method differs from the numeric techniques we have
considered, since the latter can be used to find simple laws relating two variables, while the intrinsic property
method applies only to the discovery of complex laws involving three or more terms, and multiple levels of
description. Also note that upon achieving predictive power, any law involving an intrinsic property also
acquires the ability to make incorrect predictions. This suggests a more conservative version of the method, to
which we now turn.

4.2. Generalizing Conditions for Retrieval

The strategy described above works well for cases in which intrinsic properties are associated with single
nominal variables, as conductance is associated with the wire and voltage with the battery. However, one can
find cases in which an intrinsic property is instead associated with multiple nominal terms, and to deal with
these situations BACON must use a more cautious strategy. As an example, let us consider the friction
between two surfaces. Here we have two independent nominal terms, the composition of the first surface and
the composition of the second, and one dependent numerical term, the friction observed when the two



surfaces are placed in contact Superficially, this arrangement is very similar to the battery-wire case, and one
might expect to be able to postulate an intrinsic property associated with individual surfaces, and to use these
values to predict the observed frictions.

Let us step through the strategy described earlier and sec how it fares. As before, the system would
begin by holding the first surface constant and varying the values of the second surface. Upon noting that the
friction is different in each case, BACON would postulate an intrinsic term (let us call it F), and base its values
on those of the observed friction. The program would also discover the tautological relationship between F
and the friction, and store this information for later use at a higher level of description. BACON would then
consider the same values for the second surface, this time using a different value for die first independent
term. After observing the friction values, the system would retrieve the intrinsic values that it had associated
with the three values of the second surface, and attempt to relate these values of F to the observed frictions.
However, in this case, no relation can be discovered, nor can one be found when the first surface is again
varied. In this case, associating the intrinsic values with the second surface alone was inappropriate. Instead,
these values should be retrieved only when a particular pair of surfaces arc involved.

In order to deal effectively with cases in which intrinsic values should be associated with sets of terms,
BACON employs a more conservative strategy for retrieving intrinsic values. When a property is first
postulated, the system assumes that all independent nominal terms are relevant, and so associates the various
intrinsic values with a conjunction of the nominal values. For instance, given the first three rows of Table 12,
BACON associates 3.4763 with both wire X and battery A, 4.8763 with wire Y and battery A, and 3.0590 with
wire Z and battery A. When the battery is varied and the wires are reexamined, the system does not
immediately retrieve the various conductances. However, it does attempt to relate the newly observed currents
to the original conductances. Upon finding a linear relation, BACON infers that the battery does not affect
the conductance, and removes it as a condition for retrieval. When the battery C is considered, the three
conductances (now associated only with the wires) are immediately retrieved and related to the observed
currents. In the friction example, no linear relation is found when the second set of values is examined, so the
values of the first surface arc retained as conditions for retrieving the values of F. New conditions are
associated with the second set of F values, and still another set with the third. More complex examples arc
possible in which some nominal terms are relevant while others are not, and BACON's intrinsic property
heuristics are general enough to deal with such cases.

The retrieval of intrinsic values under certain conditions can be viewed as a form of expectation-driven
discovery, since the system uses knowledge it has gained in one context to aid discovery in a similar yet
different context. The main difference is that with the numeric expectation-driven techniques, the form of
some law is retrieved and used to reduce search, while in the intrinsic property method, a set of values are
retrieved and used in the discovery process. Also, the numeric methods BACON employs do not require it to
generalize the retrieval conditions on the forms before they are used. However, one can imagine a more
conservative version of the system that required a particular form of law to prove itself useful in a number of
contexts before being used with confidence. This leads us to return our attention to another form of
expectation-driven discovery' that can also be adapted to laws involving intrinsic properties.

4.3. Symmetry and Intrinsic Properties

We have seen how BACON can use the assumption of symmetry to drastically reduce both its search
through the space of laws, and the amount of data it must gather. The notion of symmetry can also be applied
to the intrinsic property method, leading to additional computational savings. Let us examine a case where
both symmetry and intrinsic terms occur, such as Black's specific heat law. This may be stated as

Tf = ( ^ M J j + c2M2T2)/(clM1 + c2M2),
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where Tj and T2 are the initial temperatures of two liquids, M] and M2 are the respective masses, c] and c2

arc the specific heats, and Tf is the final temperature after the two liquids have reached equilibrium. Specific
heat is an intrinsic property associated with the particular (symbolic) type of liquid used, and must be inferred
from the directly observable temperatures and masses.

In rediscovering Black's law, BACON varies the initial temperatures and masses, and relates these terms
to the resulting final temperature When it begins to vary the substances used for the first liquid in the
experiment, it finds that different substances give laws with the same form but with different coefficients.
Accordingly, the system postulates an intrinsic property whose values arc based on these differences. When
the second liquid is varied and the values of the first liquid arc rcexamincd, BACON finds a linear relation
between its first set of intrinsic values and the coefficients found in the new context. As a result, it generalizes
the conditions for the retrieval of these intrinsic values, associating them only with the values of the first
liquid.

This is the point at which the symmetry assumption comes into play. It is natural to assume that a
substance will have the same specific heat, whether it is used as the first liquid in the experiment or as the
second liquid. Thus, if the same symbolic values are used for analogous variables, and the program has
associated intrinsic values with those symbols in one context, it retrieves them immediately should it require
them in the other context. This strategy lets the system avoid postulating an entirely new property in such
cases, which would lead it to tautological rather than empirical laws at the higher levels of description. This
method works equally well for other symmetric laws, such as SnelFs law of refraction, in which die intrinsic
term index of refraction is inferred, and conservation of momentum, in which the concept of inertial mass is
generated.

Table 13. Inferring multiple intrinsic properties*

s

X
X
X
Y
Y
Y
Z
Z
z

T

A
B
C
A
B
C
A
B
C

D

1
2
3
4
6
8
4
7
10

j

1
2
3
1
2
3
1
2
3

m

1
1
1
2
2
2
3
3
3

b

0
0
0
2
2
2
1
1
1

Symmetry plays a different role in the intrinsic property method than in the purely numeric techniques.
In the latter, the symmetry assumption lets BACON determine the actual form of the law with less search than
it would otherwise require. With respect to intrinsic properties, the symmetry assumption simply allows the
system to sidestep the generalization process, letting it retrieve intrinsic values in new contexts that would
normally require additional observations. Of course, these two applications of symmetry can be used in
conjunction, and this is precisely the course BACON follows when it encounters nominal terms in
symmetrical situations.



4.4. Extending the Intrinsic Property Method

BACON's intrinsic property heuristics appear to be quite general, and have been used to rediscover
Proust's law of definite proportions and a version of Archimedes' law of displacement, as well as the modified
version of Ohm's law we have already considered. In addition, we saw that the notion of symmetry could be
easily incorporated into the approach, leading to a number of other laws. However, the existing method does
have its limitations. For example, it seems odd that BACON'S numeric heuristics arc able to discover complex
functional relations, while the intrinsic property heuristic considers only linear relations with zero intercepts.
In fact, as implemented, the intrinsic property method does not require any search; it entertains a single
hypothesis, and if this fails, the system docs not generalize (as in the friction example). Fortunately, the
method can be extended to deal with more complex circumstances, and the numeric techniques can be used
to direct search through the space of possibilities.

Let us begin with an example that is only slightly more complicated than those we have already
considered. Suppose we have two nominal independent terms S and T, along with the single dependent term
D, and suppose we observe the values of D shown in Table 13. Since the values in the first three rows differ
(when T is varied and S is held constant), we would posit an intrinsic property (say j), and base our initial set
of intrinsic values on the observed values of D. When the second set of D values are observed, we find a linear
relation between these values and the original set, but this case differs from those we have seen before in
having a nonzero intercept. The natural way to deal with this situation is to create a property for the intercept
(b) as well as for the slope (m), and to consider both terms when one searches for second level laws. As a
result, one would postulate two intrinsic properties at the second level of description, basing their values on
the values of m and b. This extension of the basic method should work equally well in cases involving
quadratic and higher relations, though even more second level intrinsic properties could result in such cases.

In fact, relations involving nonzero intercepts and other complex relations will be found precisely when
multiple intrinsic properties are involved. For instance, the data in Table 13 were generated by the law D =

. mj + b, where j is an intrinsic property associated with T, and m and b are independent intrinsic properties
associated with S. Since the ability to infer multiple intrinsic properties would seem to be very useful, it is
appropriate to consider the circumstances under which this extended method will succeed. The approach
appears to work if, at a given level of description at which the nominal term Y is varied first and the nominal
term X is varied second, and the dependent term D is affected, there exists a polynomial relation D = P(i),
where i is a single intrinsic property associated with Y, and for which the coefficients of the polynomial are
intrinsic properties associated with X. For instance, if m and n are intrinsic properties associated with X, and p
and q are associated with Y, the method will work for the relations D = mp, D = mp + n, and even D =
mp2 + np. However, the method will fail if the relation D = mp + nq is involved, since it cannot handle
interacting sets of intrinsic properties. Also note that the order in which terms are varied can be significant. If
the data in Table 13 are rearranged so that S is varied before T, the method will also fail. Given this
constraint, future versions of BACON may be forced to examine their data in different orders if they hope to
uncover multiple intrinsic properties.

To summarize, we see that BACON'S ability to find complex numeric relations can be employed to
discover multiple intrinsic properties. In general, any form of numeric law that the system can discover can
also be used in assigning intrinsic values. Thus, the differencing method and the hill-climbing method could
lead to intrinsic properties based on transformations of observable terms, since both can discover laws such as
Y = a sin2(X) 4- b sin(X) + c. For example, consider the data in Table 14, in which we again have two
nominal terms (S and T) and a single dependent term (D). Upon looking for a relation between the first set of
D values and the second set, no polynomial relation is apparent. Since no relation can be found between the
directly observable terms, the next natural step would be to examine transformations of the two sets of values,
and attempt to relate them.



In this case, a linear relation is found if we examine the logarithms of both terms, and a similar relation
holds between the first and third sets of values. Based on this success, we would postulate an intrinsic property
(i) and base its values on those of D. However, since a transformation of the second set of values was required
to discover the relation, our final law will be simplified if we use log(D) for our intrinsic values, rather than
the values of D themselves. This leads to a single higher level parameter, which can be expressed as log(D)/i,
since we have a zero intercept This term takes on different values for different values of S, and so leads to a
single intrinsic value at die second level of description. The data in Table 14 were computed from the law D
= pq, where p is an intrinsic term associated with T, and q is similarly associated with S. The intrinsic values
pa = 1, pb = 2, pc = 3 and qx = 1, q = 2 , qz = 3 were employed. Thus we see that by considering
transformations, an extended version of BACON would be able to discover intrinsic properties involved in
laws of a very different form than we have seen before. Now that we have introduced the notion of intrinsic
properties and explored its implications in some detail, let us turn to another discovery method that builds on
this concept.

Table 14. Basing intrinsic properties upon transformations.

s

X
X
X
Y
Y
Y
Z

z
z

T

A
B
C
A
B
C
A
B
C

D

2
3
4
4
9
16
8

27
64

log(D)

0.301
0.477
0.602
0.602
0.954
1.204
0.903
1.431
1.806

i

0.301
0.477
0.602
0.301
0.477
0.602
0.301
0.477
0.602

log(D)/i

1
1
1
2
2
2
3
3
3

5. Finding Common Divisors
The early versions of BACON were designed with laws from physics in mind, but after BACON.4 had

been successfully tested on a number of such laws, we began to look for other applications. In examining the
history of early chemistry, we found that BACON's heuristics for finding numeric relations and inferring
intrinsic properties were necessary, but not sufficient, to discover many of the empirical laws in this domain.
Closer examination revealed that early chemists also employed the notion of common divisors for a set of data,
leading them to a number of laws that could not be found using the other heuristics in isolation.

For instance, John Dalton's law of multiple proportions (1808) states that if two elements can combine
in different ways (leading to different compounds), then the combining weights will always occur in small
integer proportions. Thus, 1.3 grams of oxygen combines with 1.0 gram of carbon to form the gas carbon
monoxide, while 2.6 grams of oxygen combine with the same amount of carbon to generate carbon dioxide. In
1808, Joseph Gay-Lussac proposed a similar law for volumes, stating that the combining volumes of gases
always occur in small integer multiples of one another. In 1815, William Prout hypothesized that the atomic
weights of the elements were all multiples of the weight for hydrogen, suggesting that this was the basic
building block of nature. Nearly fifty years later, integral values also figured prominently in Stanislao
Cannizzaro's redctermination of the atomic weights. At least in the early days of quantitative chemistry, the
notion of common divisors played a central role in the search for regularity.



5.1. Detecting Integer Relations

In order to account for these discoveries, we introduced a method (first used in BAC0N.4 [4, 5]) for
noting common divisors in a set of data. This heuristic may be viewed as a special case of the intrinsic
property heuristic, since it is applied whenever the latter is applied, but produces useful results only in some
cases. Let us consider how BACON uses this method to rediscover DaUon's law of multiple proportions.
Fable 15 presents some data on the manner in which nitrogen combines with oxygen. Three of the
independent terms - the first clement (in this table always oxygen), the second element (in this table always
nitrogen), and the resulting compound — take on nominal values, while the fourth independent term — the
weight of the first element used in the reaction — and the single dependent term - the weight of the second
clement in the reaction - take on numeric values. Upon varying the first weight and observing its effect on
the second weight, BACON finds linear relations and defines the ratio W2 /W r though different slopes occur
for different values of the second element and the compound.

Up to this point, the system has used only its heuristics for finding numeric relations, and the relations it
finds are equivalent to those first stated by J. L. Proust (1797) in his law of definite proportions. The constants
for the various oxygen-nitrogen reactions are shown in Table 16, along with those for two oxygen-carbon
reactions; this table shows BACON's second level summary of the original data. As we have seen, BACON
treats such summaries as if they were data, and applies its heuristics to see if any higher level relations can be
uncovered. In this case, since the independent terms are nominal and the dependent term is numeric, and
since the values of W2/Wx are not constant, the program postulates an intrinsic property (let us call it i), and
this is the point at which the common divisor detector comes into play. It examines the dependent values of
the first three rows and notes that they have the common divisor 0.57. A similar discovery is made for the
carbon reactions, though the divisor is 1.33 in this case.

Table 15. Determining the combining weights for reactions.

ELEMENT^

OXYGEN
OXYGEN
OXYGEN
OXYGEN
OXYGEN
OXYGEN
OXYGEN
OXYGEN
OXYGEN

ELEMENT2

NITROGEN
NITROGEN
NITROGEN
NITROGEN
NITROGEN
NITROGEN
NITROGEN
NITROGEN
NITROGEN

COMPOUND

NITRIC OXIDE
NITRIC OXIDE
NITRIC OXIDE

NITROUS OXIDE
NITROUS OXIDE
NITROUS OXIDE

NITROGEN DIOXIDE
NITROGEN DIOXIDE
NITROGEN DIOXIDE

W l

1.0
2.0
3.0
1.0
2.0
3.0
1.0
3.0
2.0

W 2

1.14
2.28
3.42
0.57
1.14
1.71
2.28
4.56
6.84

W 2 / W l

1.14
1.14
1.14
0.57
0.57
0.57
2.28
2.28
2.28

At this point, BACON diverges somewhat from the course it would normally take in storing intrinsic
values. Rather than basing these intrinsic values directly on the dependent values, it divides the latter by the
common divisor, giving a set of integers. Thus, the intrinsic value stored for the oxygen-nitrogen-nitric oxide
triple would be 2, the value for oxygen-nitrogen-nitrous oxide would be 1, and that for oxygen-nitrogen-
nitrogen dioxide would be 4. As a result, the values of the ratio W2/Wxi become simply the observed
common divisors, which are 0.57 for the oxygen-nitrogen pair and 1.33 for the oxygen-carbon pair.
Otherwise, events proceed as they normally would. The system initially stores all independent values as
conditions for retrieval of the integral intrinsic values, and checks to see if these conditions should be
generalized. In this case, no generalization can be made, since the values of the compound arc never repeated



for different values of the elements. Although this makes non-tautological laws impossible at the current level
of description, the fact that different values occur for the ratio W2/Wji make it possible for further discoveries
to be made at higher levels. This approach to breaking out of the tautological loop is best illustrated with
another example from the history of chemistry.

'Fable 16. Datum's law of multiple proportions.

ELEMENT^

OXYGEN
OXYGHN
OXYGEN
OXYGEN
OXYGEN

ELEMENT2

NITROGEN
NITROGEN
NITROGEN

CARBON
CARBON

COMPOUND

NITRIC OXIDE
NITROUS OXIDE

NITROGEN DIOXIDE
CARBON MONOXIDE

CARBON DIOXIDE

w 2 / W l

1.14
0.57
2.28
1.33
2.66

i

2.0
1.0
4.0
1.0
2.0

W2/Wxi

0.57
0.57
0.57
1.33
1.33

5.2. Complex Laws Involving Common Divisors

Table 17 presents a slightly different formulation of the standard chemical experiment. In this case we
told BACON to vary only one of the elements entering the reaction, along with the resulting compound and
the weight of the element used in the reaction The first two of these terms are nominal, while the third is
numeric, as is the single4 dependent term — the volume Vc of the resulting compound. After gathering these
data, BACON employed its numeric heuristics to find linear relations between W and V . Since these lines
always had zero intercepts, we will focus on the slopes, which can be represented as We/Vc. Table 17 presents
the slopes discovered for a number of element-compound pairs, which were then stored by BACON as
second level summaries.

Table 17. BACON's rediscovery of Cannizzaro's law.

ELEMENT

HYDROGEN
HYDROGEN
HYDROGEN

OXYGEN
OXYGEN
OXYGEN

NITROGEN
NITROGEN
NITROGEN

COMPOUND

WATER
AMMONIA
ETHYLENE

NITROUS OXIDE
SULFUR DIOXIDE
CARBON DIOXIDE
NITROUS OXIDE

AMMONIA
NITRIC OXIDE

w/vc

0.0892
0.1338
0.0892
0.715
1.430
1.430
1.250
0.625
0.625

integer j

2.0
3.0
2.0
1.0
2.0
2.0
2.0
1.0
1.0

divisor W /VJ

0.0446
0.0446
0.0446
0.715

. 0.715
0.715
0.625
0.625
0.625

Upon examining these higher level data, the system postulates an intrinsic property (let us call it j), and
finds the dependent values to have common divisors. This leads to integers being associated with the various
element-compound pairs, such as 2 for hydrogen-water, 3 for hydrogen-ammonia, and 2 for hydrogen-
ethylene. These values correspond to the coefficients for the elements in the balanced equation for each

In the actual run, BACON was also told to examine two other dependent terms - the weight of the compound and the volume of the
element. The program found a number of additional relations involving these variables, including Gay-Lussac's law of combining
volumes, but for the sake of brevity we will not focus on them here.



compound, though BACON does not interpret them in this fashion. In addition, the term We/V(j takes on the
values of the common divisors that were found. As we noted before, these values are different, so that even
though BACON cannot generalize the retrieval conditions on its intrinsic values (again because the
compounds are never repeated), the potential for higher level discoveries remains. In this case, that potential
is fulfilled, as shown in Table 18, which lists the third level summaries that result from BACON's endeavors.
Given different values for W^V^j, the program postulates an intrinsic property (k), but a common divisor is
again found in these higher level values. Integers are computed and associated with the elements; these
integers are equivalent to the relative atomic weights found by Cannizy.aro in 1860. Moreover, BACON'S
statement that these values have a common divisor is equivalent to Prout's hypothesis that all atomic weights
are divisible by the weight of hydrogen (though again, it docs not interpret its finding in this manner).

Table 18. BACON's determination of relative atomic weights.

ELEMENT divisor divisor/k

HYDROGEN
OXYGEN

NITROGEN

0.0446
0.715
0.625

1.0
16.0
14.0

0.0446
0.0446
0.0446

5.3. Extending the Common Divisor Method

As with the intrinsic property method, the current version of the common divisor heuristic carries out
very little search. It does consider the possibility that the inverses of a set of values will have a common
divisor, rather than die values themselves, but one can imagine more sophisticated strategies. At first glance, it
seems reasonable to extend the method to handle multiple properties in the same way we proposed for the
basic intrinsic property method. However, this extension works only in cases where some relation can be
found between two sets of dependent values, and these are precisely the situations where there is no need to
look for common divisors. This is because one can generalize the retrieval conditions, and thus find non-
tautological laws without resorting to postulating integer values for the intrinsic properties. The two methods
are complementary, since the common divisor heuristic may lead to useful results even if the more basic
approach fails.

However, the two other extensions we proposed earlier apply equally well to searching for integral
relations. If neither the observed values of a dependent term D nor its inverse D""1 have a common divisor,
then BACON could examine transformations of the term, such as log (D), sin (D), and D2. Similarly, if
multiple dependent terms X and Y are present, the system could consider combinations of these terms, such
as XY, X/Y, X2Y, and so forth. If no divisor was forthcoming, the program could even examine
transformations of these terms, such as sin (XY), or even combinations of transformations, such as sin (X) log
(Y). Of course, this would lead to vast search spaces, and unless we can find heuristics to direct search through
these spaces, the chance of finding useful laws would be small. Fortunately, once a transformation or
combination has been proved worthwhile in one context, BACON could immediately try it in analogous
contexts, and so reduce search considerably. This is another instantiation of the expectation-driven approach
to discovery that we first introduced in BACON.5.

It is interesting to note that, as far as we know, no truly complex common divisors have been found in
the history of science. There are two possible explanations for this absence: (1) scientists are very good at
selecting useful variables, so that such transformations and combinations are seldom necessary; or (2) such
laws are so complex that scientists have simply never discovered them. In either case, we feel that an extended



version of the common divisor method should be included in future versions of BACON, and tested on its
ability to discover useful concepts and interesting empirical laws.

6. Discussion
In the previous pages we have examined the process of empirical discovery, focusing on a number of

heuristics for this domain. We have implemented and tested these heuristics in successive versions of the
BACON system, and we have discussed their capabilities and limitations in earlier sections of the paper We
have also suggested some extensions to BACON'S discovery methods, such as altering the intrinsic property
heuristics so that they consider multiple terms and transformations of directly observable terms. In this
section we will also propose some directions for future research, though here we will focus on more global
issues that transcend the particular methods that BACON employs. We will address three issues — the role of
structural knowledge, the importance of qualitative laws, and die relation between quantitative empirical laws
and theoretical explanations. In closing, we consider whether BACON should be classified as an expert
system, despite the simplicity and generality of its discovery methods.

6.1. The Role of Structural Knowledge

In each of the versions of BACON we have described, the system relied on the programmer to suggest a
set of independent and dependent terms that it should examine. Thus, extending the program to select
potentially relevant variables is an obvious direction for future research. There is little doubt that research
scientists employ domain-specific knowledge in deciding which variables to examine and which experiments
to run, and if we hope to extend BACON in this direction, it will also have to accept and manipulate such
domain knowledge. However, it would be very desirable to implement these components in a general manner,
using a few simple reasoning methods that could operate on many different instances of domain knowledge.

The notion of structural knowledge suggests such a potentially general approach. Given a description of
some physical or social situation, one can often reason about potential causes and effects, while having no
knowledge of the particular equations governing the situation's behavior. For instance, suppose we have the
description of a bridge in terms of the connections between various components. If we believe that forces can
only be transmitted through adjacent objects, then we can make immediate inferences about which variables
are directly related, and which are unrelated or indirectly related to one another. In addition to simplifying
the search through the space of possible laws governing stable entities such as bridges, these inferences will
also suggest which experiments to run, since for a given dependent variable, we expect certain terms to be
relevant and others to be irrelevant.

The same type of reasoning occurs in economics and econometrics, where scientists begin with certain
beliefs about direct connections between socio-economic variables, and use these beliefs to simplify the task
of modeling large-scale human behavior. In this case, assuming that there is no direct connection between two
variables (such as the unemployment rate and the price of wheat) is equivalent to assuming a zero coefficient
in a set of complex simultaneous equations. Once enough such assumptions have been made, the set of
equations can be solved and the parameters of the system can be estimated. In some cases, the causal
assumptions can be quite general. For example, one naturally believes that a later event can never cause an
earlier event, allowing one to rule out entire classes of potential relations. Since economics is an observational
science, these inferences cannot be used to aid experimental design, but they can be very useful in directing
search through the space of quantitative empirical laws.

BACON has already shown an ability to employ certain kinds of structural knowledge, for the
symmetry assumption used in discovering conservation of momentum and other laws can be viewed as an
example of such knowledge. The reader will recall that the assumption of symmetry was made in cases



involving two analogous objects. The "structure" implicit in this assumption was that no direct causal
connections occurred between the observable terms associated with each object. Rather, a single causal
connection occurred between two instances of an inferred theoretical term, one associated with each object;
moreover, this theoretical term could be expressed as some combination of an object's associated observable
terms. Thus, the task of empirical discovery was reduced to finding the appropriate combination of
observable terms, and determining which of the few possible symmetries actually summarized the data.
However, the symmetry assumption did more than simply reduce BACON's search through the space of
empirical laws. In addition, it led the program to alter its experimental designs so that it gathered much less
data, since fewer observations were required to arrive at an acceptable law.

Unfortunately, BACON's use of symmetry was implemented procedurally rather than declaratively, so
that it must be restated before we can begin to explore general methods for using structural knowledge to aid
the discovery process. Still, the symmetry heuristic will act as a useful example in our attempts to implement
more general methods, and it is encouraging to know that the BACON framework has the potential to
incorporate such domain knowledge with its data-driven methods. We hope that the combination of data-
driven and knowledge-driven discovery methods will lead to a more robust system than would be possible
using either method in isolation,

6.2. The Importance of Qualitative Laws

Another approach to determining potentially relevant terms involves the notion of qualitative laws.
Since qualitative laws are generally formulated before their quantitative counterparts, they are a likely source
of knowledge for determining which variables to examine. Let us return to an example from the history of
chemistry, and explore the relation between these two types of empirical laws. In an earlier section, we
described BACON's rediscovery of Dalton's law of multiple proportions. During its data-gathering process,
BACON varied the values of three nominal terms — the two elements entering a reaction, and the comppund
resulting from that reaction. In the run we described, the system was provided not only with the independent
terms it should examine, but with their values as well.

Let us examine the sort of knowledge a discovery system might require to design this experiment on its
own. Suppose the system had qualitative descriptions of various chemical reactions, such as (reacts inputs
(oxygen nitrogen) outputs (nitric-oxide)) and (reacts inputs (oxygen nitrogen) outputs (nitrous-oxide)). Since
the arguments of the predicate reacts can differ, these suggest obvious independent terms that the system can
vary in an experiment. Now suppose that the system knew that only certain elements reacted with one
another; using this information, it could limit itself to certain combinations that it knows will give results.
Finally, suppose the system had placed certain substances (such as nitric-oxide and nitrous-oxide) into the
same class, based on similar features (e.g., both result from reactions involving oxygen and nitrogen). Such a
classification scheme, together with knowledge of potential variables and useful combinations of their values,
could be used to generate an experimental design like that shown in Table 16.

Of course, if we must provide such domain-specific knowledge to the discovery system, we have not
done much better than providing a complete experimental design. However, if the system could discover such
qualitative knowledge on its own, and use this information in designing experiments, then this would be
significant progress. Since BACON is designed for discovering quantitative empirical laws, one might need an
entirely different system that could discover qualitative laws from facts such as the reactions shown above.
However, the interaction between BACON and the proposed system would be quite direct, with the new
program providing BACON with a basic plan for collecting data. Although the task of finding qualitative laws
is interesting in its own right, we are much more interested in the potential for interaction between qualitative
and quantitative discovery systems.



6.3. Empirical Laws and Explanations

A third avenue to constraining the search for empirical laws relies on the use of theoretical knowledge
or explanations. Given some theory that accounts for a class of phenomena, one can often use this theory to
predict those independent terms that will affect a given dependent variable, and in some cases, even predict
the form of the relation. These predictions can then be tested empirically, providing evidence for the theory if
they are borne out. For instance, Dalton's atomic theory can be used to predict and explain both the law of
multiple proportions and Gay-Lussac's law of combining volumes, while Newton's theory of gravitation
explains both Galileo's law for falling bodies and Kepler's three laws of planetary motion.

However, we encounter the same difficulty using theories to direct the search for empirical laws as we
did using qualitative laws for this purpose. If we gave our discovery system detailed knowledge of some
domain, we would be effectively building in its discoveries. This would be especially true for the examples
given above, since these empirical laws were proposed before the theories that were eventually formulated to
explain them. In many cases in the history of science, empirical laws were discovered first, and provided the
raw material from which theories were constructed. Thus, an obvious direction for future research would be
to develop a discovery system that generates such theories; this system would accept BACON's output —
empirical laws — as its inputs, and search a space of theories - either structural (like the atomic theory) or
mechanistic (like the kinetic theory) — which might explain these laws.

The details of such a theory-building system1 are far from clear, though some of BACON's current
heuristics suggest interesting possibilities. For instance, the notion of common divisors leads naturally to
structural models involving component particles, such as the atomic theory. Similarly, the notion of
symmetry often seems associated with the conservation of some theoretical quantity, such as heat or
momentum. The proposed system might have a small repertoire of theory types, each associated with some
cue such as the discovery of common divisors or the discovery of a symmetrical law. The particular laws that
were found could then be used to instantiate the prototypical theory, leading to a specific theory capable of
explaining the empirical laws.

Of course, once such a theory has been forwarded, there is nothing to prevent a BACON-like system
from using this knowledge to direct its search for new empirical laws. This would be very similar to BACON's
existing expectation-based discovery methods, although the system's expectations would be based on rather
more sophisticated grounds in this case0 In other words, it may be possible to establish a feedback loop in the
discovery process, with BACON finding an initial set of empirical laws using the techniques we have
discussed, followed by a theory formation system using these laws to produce explanations, followed in turn
by BACON using the resulting theories to find new empirical laws, and so forth. This approach is attractive
because it potentially provides the search-reducing power of theory-based discovery without requiring the
programmer to build in theoretical knowledge. When combined with the system for finding qualitative laws
proposed above, we will have the beginnings of a truly integrated model for the process of scientific discovery.

6.4. Evaluating BACON

There is some question about how to evaluate the BACON systems. Our research goal has never been to
model the historical discovery process in detail, though we have turned to the history of science for ideas on
discovery methods and for tests of those methods. Neither have we focused on constructing a tool for
scientific data analysis that could be used by present-day researchers, though one can imagine extensions of
BACON that would be used in this manner. Rather, we have attempted to understand the general principles
underlying scientific discovery, in particular the discovery of quantitative empirical laws. With respect to this
goal, we feel that we have been quite successful, since we understand considerably more about this process
than we did at the outset of our research some years ago. Moreover, the principles and methods we have
uncovered appear both simple and general, criteria usually considered desirable for scientific theories.



Some colleagues have Suggested that BACON may be viewed as an expert system for the domain of
empirical discovery. In fact, our concern with generality and simplicity was largely a reaction against the
traditional expert system approach of building in considerable domain knowledge of great specificity. Still,
IJACON does share certain characteristics with expert systems, and we should examine this relationship,
however briefly. In particular, expert systems can be viewed as moving through potentially very large search
spaces; however, their motion through these spaces is constrained by knowledge of the domain, so that very
few states are actually visited.

BACON can also be viewed as moving through a large search space, in this case a space of empirical
laws and theoretical concepts. On close examination, we found that BACON actually carried out very little
search, since its heuFistics were generally powerful enough to lead to the optimum concepts and laws. Most of
these heuristics were data-driven, so that if different data were observed, the system would follow quite
different paths and discover quite distinct laws. However, this is no different from an expert system like
DENDRAL [12], which follows different paths when given different input. Thus, on this dimension, BACON
may profitably be viewed as an expert system concerned with empirical discovery. However, this does not
detract from either the generality or the simplicity of its methods, and we plan to continue using these criteria
in directing our future work on discovery.

Fortunately, the generality and simplicity of BACON's heuristics have not detracted from the system's
power, and it has shown itself capable of finding laws that were very significant when first discovered
centuries ago. It remains to be seen whether the most recent versions of the system, with their ability to deal
with noise, can aid modern-day scientists in discovering new empirical laws, and this is another obvious
direction for future work. However, based only on the historical examples covered in the previous pages, we
may conclude that BACON has led to significant improvement in our understanding of empirical discovery,
and we fully expect that it will lead to deeper insights in the years to come.
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