
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Matchmaker:
An Interface Specification Language for Distributed Processing

Michael B. Jones
Richard F . Rashid

Mary R. Thompson

19 December 1984

Abstract

Matchmaker, a language used to specify and automate the generation of interprocess communication interfaces, is
presented. The process of and reasons for the evolution of Matchmaker are described. Performance and usage statistics
are presented. Comparisons are made between Matchmaker and other related systems. Possible future directions are
examined

This paper also appears in the Proceedings of the 12th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, 1985.

Technical Report CMU-CS-84-161

Copyright © 1984 ACM

Supported by the Defense Advanced Research Projects Agency, Department of Defense, ARPA Order 3597, monitored
by the Air Force Avionics Laboratory under contract F33615-81-K-1539. The views and conclusions contained in this
document are those of the authors and should not be interpreted as representing the official policies, either expressed or
implied, of the Defense Advanced Research Projects Agency or the U.S. Government

Matchmaker:

An Interface Specification Language for Distributed Processing

Michael B. Jones
Richard F. Rashid

Mary R. Thompson

Department of Computer Science
Carnegie-Mellon University

Pittsburgh, Pennsylvania 15213

Abstract

Matchmaker, a language used to specify and automate the
generation of interprocess communication interfaces, is
presented. The process of and reasons for the evolution of
Matchmaker are described. Performance and usage statistics
are presented. Comparisons are made between Matchmaker
and other related systems. Possible future directions are
examined.

Keywords

Remote Procedure Call, Interprocess Communication,
Object-Oriented Languages, Multi-Targeted Compiler,
Interface Specification Language, Distributed Systems.

1. Introduction
One of the thorniest problems in building a distributed

system is how to interface distributed system components.
The earliest distributed systems required programs to
directly manage a communication protocol on an I /O
channel. Work on message-based systems often led to a style
of interprocess interaction which stressed communication
flexibility over interface correctness or ease of programming.
Interfaces were effectively implemented in "message
assembly language" as message records were explicitly
packed and unpacked by user written code.

In recent years a number of distributed programming
languages have been proposed. Design and implementation
considerations have often been driven by abstract issues
rather than the concrete requirements of a distributed
system. Designing a single distributed programming
language often ignores the fact that many applications are
already written in existing languages such as C, Pascal and in
the case of AI applications, LISP. Frequently such languages
stress simple client/server communication and ignore the
requirements of real-time system services.

Rather than being another distributed programming
language, Matchmaker is an interface specification language
for use with existing programming languages. It provides:

• a language for specifying object-oriented remote
procedure call (RPC) interfaces between
processes executing on the same machine or
within the SPICE network,

• a multi-targeted compiler which converts these
specifications into interface code for each of the
major languages used within the SPICE
environment, including C, PERQ Pascal [1J,
COMMON LISP[14J and Ada[4j. This code
provides communication, runtime support for
type-checking, synchronization and exception
handling.

Matchmaker was started in 1981 as part of the CMU
distributed personal computing project (SPICE [3]). It was
built at first to automate some of the coding for the Accent1

Accent is a trademark of
Carnegie-Mellon University

operating system kernel [11] message interface, which forms
the basis of the SPICE environment. It has evolved
significantly during the last three years in its syntax, data
representation semantics and communication semantics. At
each point of change, decisions about the new Matchmaker
design and implementation were driven by specific
requirements of programmers in the SPICE environment

Over the years. Matchmaker has proven to be a valuable
tool. It has:

• eased implementation and improved the
reliability of distributed programs by detaching
the programmer from concerns about message
data formats, operating system peculiarities and
specific synchronization details,

• improved cooperation between system
programmers working in different languages,

• enhanced system standardization by providing a
uniform message level interface between
processes,

• provided a language rich enough to express any
data structure which can both be efficiently
represented in messages, and reasonably
represented in all target languages,

• reduced the cost of reprogramming interfaces in
multiple languages whenever a program
interface is changed.

Matchmaker provides a wide range of synchronization
semantics ranging from synchronous remote procedure call
to asynchronous message-style communication. A
programmer can usually change the synchronization part of
the Matchmaker specification without affecting the code
which uses that interface.

Today, Matchmaker interfaces define all interprocess
communication in the SPICE environment which consists of
over 150 PERQ computers communicating on an
internetwork of several 3MHz and 10MHz Ethernets.
Matchmaker is also used to specify and implement
interprocess communication interfaces between PERQs and

^PERQ is a trademark of Perq
Systems Corporation

the CMU CS Department's 40 VAX^ computers, which run a
modified version of Berkeley 4.1bsd U N I X 4 [12J supporting
Accent-style message communication. In all. Matchmaker
has been used as the distributed programming support
environment for over 500,000 lines of code written in four
major languages. Matchmaker has evolved from a simple
programming aid into the effective definition of interprocess
communication within the SPICE environment

In this paper we will discuss the Matchmaker language
- its syntax, data representation and communication
semantics, and its implementation. We will also examine the
issues which forced many of the important decisions in the
Matchmaker design.

2. Language Overview
The computational model for Matchmaker consists of

processes communicating with one another via messages.
Messages are sent to communication ports. Accent ports,
and rights to receive messages from specific ports, can be
sent between processes in messages.

Ports also serve in a dual role as capabilities for objects.
Matchmaker interfaces define operations upon those objects.
Every remote procedure call specifies a destination port for
the request Thus, the ports may be viewed as tokens for
instantiations of objects, and RPC requests to ports may be
viewed as invocations of operations upon objects. Such an
identification logically makes every Matchmaker request to a
port an operation on the object represented by that port

The syntax of Matchmaker specifications is fairly close to
the Pascal or Ada specifications for the analogous objects.
Constants of various types can be declared, new data types
can be constructed from built-in types (within certain
constraints), and remote procedures can be declared with a
syntax fairly similar to Pascal procedures or functions. The
invocation of a remote procedure on a port in a given target
language usually consists of a procedure call, with that port
as the first procedure parameter.

The built-in data types provided by Matchmaker are:
Boolean, Character, Signed and Unsigned Integers of various

VAX is a trademark of Digital
Equipment Corporation

4 U N I X is a trademark of AT&T
Bell Laboratories

bit sizes. Integer SubRanges. Strings, Communication Ports,
and Reals. New data types can also be constructed with
some restrictions. Type constructor functions supported are:
Records, fixed and variable-sized Arrays, Enumerations,
Pointers to the above types, and certain kinds of Unions.

Representations for remote procedure arguments in
messages are chosen by the Matchmaker compiler. Each
message is assigned a unique id by Matchmaker, which is
used at run-time to identify messages for a given interface.
Once the message has been identified, the types of all fields
within it are also known, since messages are strongly typed
by Matchmaker at compile-time.

Certain semantic restrictions are placed upon the data
types which can be declared to allow efficient passing of
arguments in messages. In particular, pointers, variable-
sized arrays, and unions can only occur in top-level remote
procedure call declarations, and may not be used when
constructing other types.

Several semantically different kinds of remote procedure
call interactions can be specified in Matchmaker. The
process normally initiating an operation is called the client
process, and the process normally receiving requests is called
the server process. The RPC paradigms provided are:

• Remote.Procedure: Generates code for a client
process to send a request to a server, and to
receive reply parameters back from the server.
Timeout values can be specified, and the reply
wait can be made asynchronous as well.

• Message: Generates code for a client process to
send a single request message to a server without
a reply.

• Server.Message: Generates code for a server
process to send a single message to a client
process.

• Alternate.RepIy: Generates code for a server
process to send a reply message back to a client
process in response to a Remote.Procedure
which is different than the normal reply message.
Alternate.RepIy messages are meant to be used
for signaling exception conditions which
occurred during execution.

Each of these varieties of calls except for Alternate.RepIy
takes a port to which to send the request as a parameter.
Thus, "binding" is done dynamically on the basis of ports,

and not by using some compile-time or link-time discipline.

3. Language Evolution
The Matchmaker program was originally conceived as a

programming tool to simplify the sending and receiving of
messages. It was planned to be a temporary expedient which
would generate Pascal code until language intrinsics for
sending and receiving messages could be added to the Pascal
compiler. The intention to add interprocess communication
support to our main programming languages was in line with
contemporary distributed programming language proposals
such as PUTS [5].

The original input to Matchmaker consisted of the names
of the procedures to be generated and the list of parameters
to each procedure. Associated with each parameter was an
indication of the direction in which it was to be sent, the
Pascal type of the parameter and the message-specific type
description for the parameter. Since the only target language
anticipated at that time was Pascal, the Pascal type
declarations were imported into the generated code. This
first version only generated simple synchronous remote
procedure calls. Each generated procedure call would send a
message to the server and then wait for a reply before
returning to the client

After several months of use it became apparent that the
Matchmaker approach had several important advantages
over the notion of adding language intrinsics to Pascal:

• The procedure-based form of Matchmaker
generated calls made these interfaces easy to
document and use.

• Such intrinsics would have to be added to each
language which was to be used in the SPICE
environment. Moreover, adding intrinsics would
leave the project with the burden of supporting a
non-standard version of each language.

• The input to Matchmaker could be developed
into a language independent formal specification
of the interfaces to the system servers.

This early version of Matchmaker also had its share of
problems, however

• The inflexible format of Matchmaker
specifications made them difficult to use.

• Dala type specification was awkward and too
limited.

• The semantics of remote procedure call were too
limited.

In response to these problems, the second version of
Matchmaker allowed declaration of types in a Pascal-like
syntax, the specification of some global message style
options, and the specification of an arbitrary number of RPC
interfaces. As Matchmaker was used to generate interfaces
for more servers, variations on the remote procedure call
were added. For example, the window management process
was sent character strings to display on the screen. These
messages did not require a reply message, so messages
without replies were added. Some applications wanted to
use remote function calls rather than procedure calls.
Procedures that signaled their errors as exceptions were also
added. Gient and server processes were found to require
completely asynchronous communication for some tasks.
During this period, the evolution of Matchmaker was driven
by specific demands made by the writers of server processes.

At this time, Matchmaker was widely used only by Pascal
programmers and still required the inclusion of Pascal
import files. The next major modification to the
Matchmaker language came as a result of the need to use the
Matchmaker specifications to generate C and USP code.
Since C is close to Pascal in style, it was possible to use
Matchmaker to generate C code and to import the language
types from C include files, instead of Pascal import files.
The LISP implementors were not so fortunate. The
usefulness of COMMON LISP was delayed by the need to
hand code the LISP function to message interface for all the
system servers. It was now obvious that a genuinely
language independent specification was needed for the
server interfaces.

The third and current version of the Matchmaker language
fulfills this requirement A Matchmaker specification now
includes complete descriptions of the types of every
argument that is passed. Matchmaker generates the target
language (Pascal, C, LISP, etc.) type declarations to be
imported into the generated code. The Matchmaker
specification for a client/server interface is written in a
formal language that is approximately as readable as Pascal
type and procedure declarations. This specification is both
the documentation of the interprocess interfaces, and the
source code which is compiled into correa procedure calls

and type declarations for the target language. The
Matchmaker compiler is internally structured to allow the
addition of code generators for other languages as they are
added to the SPICE environment

This same version of Matchmaker also includes
enhancements which allow a fine grain of control over the
message send/receive options. While older Matchmaker
implementations made various assumptions about the
manner in which messages were to be sent and received, it is
now possible to control all such parameters, both statically
and dynamically.

4. Usage and Performance
Given the extensive usage of Matchmaker within the

SPICE system, there are a number of interesting statistics
which are available on the use and performance of
Matchmaker interfaces. The figures below were gathered
from the PERQ Pascal interfaces to the standard SPICE
server interfaces, including the Accent kernel.

Number of Interfaces 15
Total Calls Declared 268
Total Asynchronous Requests 67
Total Alteraate.Replys 7

Dynamic Usage:

No exact figures are available, but it is known that far
more asynchronous (unacknowledged) calls take place
than synchronous ones. ThitTis due to the fact that most
I/O activities such as screen, mouse, low-level keyboard,
and Ethernet I/O are handled asynchronously.

AvftT Qxfc Bytes Per Qfl ;
Client Server

Min. (Accent Kernel) 146 165
Max. (Filesystem) 246 242
Avg. 212 181

It is significant to note that server interface code is
usually smaller than the corresponding client code. This
directly corresponds to the fact that more parameters
tend to be passed into calls than are returned by them.

% Matchmaker Code bv Size in Servers: Matchmaker Overhead as % Total Time:

~ 30 msgs / sec
x 0.6 ms Matchmaker overhead / msg
= -1 .8% total time in Matchmaker overhead

The currently generated Matchmaker code is known to be
inefficient. Yet, it is important to note, as shown by the
above statistics, that actual Matchmaker overheads in
message passing have no perceivable effect upon system
performance. If they were eliminated entirely, it would not
be noticed.

Although all communication in SPICE is via messages and
Matchmaker, we know of no normal system activity which is
dominated by message passing time. Even at the maximum
observed message passing rate, roughly 2/3 of the total time
would still be used for other things. This is easily explained;
it almost always takes longer to process the information
passed in messages than the time it took to transmit it, given
Accent's efficient message implementation.

Throughout several years of use, Matchmaker has
permitted distributed applications to be built with nearly the
same ease as single-process applications. Two examples
illustrate this point:

• The SPICE window manager was originally
written and debugged as a stand-alone
application and then converted into a server
process using Matchmaker. The conversion
process required virtually no change to the
underlying structure of the program.

• A set of autonomous file servers were converted
into a distributed filesystem in less than a week
by designing and implementing an appropriate
Matchmaker interface between them.

5. Comparisons
Matchmaker can be most directly compared with Nelson's

Diplomat [10] and the Cedar Lupine system [2].
Matchmaker, Diplomat and Lupine can all be described as
remote procedure call stub generators. Both of these Xerox
systems, however, were built around a single programming
language. Lupine, in particular, uses the existing Mesa [9]
interface modules as the basis for generating the remote
procedure call stubs.

Min. (Authorization Server) 1.4%
Max. (Filesystem) 23%
Kernel 65%

The relative size of the interface code varies with the
number of routines provided, the number of arguments
passed, and the amount of processing requested by each
call. The Kernel and Authorization Server each use one
relatively simple interface, and respond direcdy to
requests from clients. The filesystem, on the other hand,
is implemented as a set of co-operating processes
distributed across several machines, using several
different interfaces. Hence, filesystem processes are
clients of one another via inter-filesystem interfaces, as
well as being servers, thus explaining the high
percentage of interface code.

% Matchmaker Code bv Size in Clients:

The percentage of total code in client processes which
is Matchmaker code is not especially useful, since for all
standard SPICE servers, client interfaces are imported
from shared runtime libraries.

Avg, Messqgt? Passing Qverhe^d with Argumqits;

Bare Kernel Send & Receive I S ms
Matchmaker Overhead 0.6 ms
Total Msg Passing Time 3.1 ms

Thus, Matchmaker interfaces account for ~ 19% of
message passing time, when packing and unpacking the
arguments into messages is included.

Message Passing Frequency:

Avg. 25 to 30 msgs / sec
Max. Ever Observed 110 msgs / sec

Msg Passing Time as % Total Time:

- 30 msgs / sec
x 3.1 ms / msg
= ~ 9% total time spent in msg passing

Matchmaker evolved during roughly the same period as
Diplomat and Lupine. Matchmaker differs from these
efforts in that it: is an external specification language,
supports multiple languages in a heterogeneous machine and
operating system environment, provides for a wide class of
synchronization semantics in addition to remote procedure
call, and supports an object-oriented computational model.
Matchmaker is also unique in that it is the sole interface
language for both local and network communication.

Matchmaker can also be compared with earlier attempts in
the RIG [7] system to build generic interprocess interfaces.
RIG provided a "Call" function which took as its arguments
the object to be operated on (represented as a RIG process-
port pair), the function to be invoked (message identifier),
and the arguments. Matchmaker interfaces in contrast to the
RIG approach are type checked, handle multiple languages
in the style appropriate to that language and allow for
greater flexibility in defining the information to be passed as
part of a remote call.

Unlike the Argus's Actions and Guardians protocol [8],
Matchmaker does not provide for atomic transactions. The
nearest that a server can get to providing atomic transactions
is to provide Remote.Procedure interfaces, with reply status
values, and reply timeout values that cause blocking until a
reply is received. These actions can then be known to be
atomic in some cases. If the server cannot receive the
message, the reply code is set to "Failure" and no action
takes place. # Likewise, if the server is reached, but can not
successfully carry out the request, it will return a "Failure"
code and abort the entire transaction. However, the hard
case where a server is reached and then crashes before it
completes the transaction, either leaves the client
permanently blocked waiting to receive a reply, or returns a
"Timeout" status, depending upon the options selected.

Unlike systems that are written entirely in one strongly
typed language such as Argus/CLU and the Xerox systems,
Matchmaker's type checking may be compromised by the
language that invokes its interfaces. Matchmaker runtime
code checks the types of the arguments that are extracted
from messages but it must rely on its implemention language
(Pascal, LISP, C, etc.) to guarantee the integrity of the values
passed to it as parameters.

6. Future Directions
As with any evolving system, there is still substantial room

for improvement in Matchmaker.

Matchmaker does not enforce a robust implementation of
interprocess communication. Rather, it allows the
implementer of a server process to choose from the
underlying primitive communication paradigms provided,
and to easily provide an RPC interface to the user.

A synchronous remote procedure call does not currently
terminate when the target server process terminates
abnormally. Instead, an exception or timeout is generated
which must be handled by the client It was originally felt
that this was an adequate solution to the problem, but as
more and more naive programmers use the system for
developing their own applications, it has become apparent
that handling such conditions can be difficult

As a result system work is underway to allow for a
synchronous error return to be provided when a server
crashes during the execution of a remote request This
support should be an appropriate mechanism for
implementing truly atomic remote procedure calls.
Likewise, enhancements were recently added which allow a
fine grain of control over the message send/receive options.
With these improvements a careful server implementer
should be able to write a robust and transparent server
interface that requires no particular sophistication on the
part of the user of the interface.

The future direction of Matchmaker will probably be
influenced by the development of SPICE applications that
are implemented as closely co-operating servers distributed
over more than one machine. Both the Sesame File System
[6J and the TABS [131 Distributed Transactions manager are
currently being implemented in this manner. The issues of
robustness in the face of a remote server failure, and
guaranteed response to the original client are being
addressed by these servers.

7. Conclusions
Matchmaker is not a new distributed programming

language; it is not a radical departure from existing
techniques in the design and implementation of
programming languages. Instead, Matchmaker is an
important tool for distributed programming which has been
evolving and in use for over three years. It has proven
valuable and simple to use. It allows a server to
automatically be accessible from clients written in any of the
supported languages, regardless of the language in which the
server is written. It permits distributed applications to be
built with nearly the same ease as single-process applications.

Probably Matchmaker's greatest value is that it has
become, in effect, the working definition of inter-domain
communication in the SPICE system. Since it automates the
implementation of RPC on top of messages, it is conceivable
that different Matchmaker code generators could implement
a similar form of RPC on a different communication
medium, with almost no change to the client or server code
involved.

Through use in real distributed systems, Matchmaker has
succeeded in proving itself a useful tool for creating
interprocess interfaces in a very demanding distributed
environment

I. Example Specification
The text which follows is a fictional Matchmaker interface

specification for a "display server" process.

Interface Screen - 15000; ! Bast Msg 10 1s 15000

Constmt
MaxJC • 132;
Max J f • 40;

Inverted • t rue;
Normal a not Inverted; I A constant expression

Type

Screen_Array • packed array [Maxjt • Maxjr] of Character;

Char_Vector • t packed a«*ray [•] of Character;

Screen^State • record
x : byte:
y : byte;
Reverse : boolean;

end record;

Screen • port; ! Port used for screen token

Message D1sp1ayChars(
: Screen:

x : byte:
y : byte:
chars [num] : CharJ/ector; t Note size parameter
) : Noj /a lue:

Message PutChar(: Screen: c : Character) : Noj/alue;

Message C1earScreen(: Screen) : Noj /a lue;

Remote.Procedure GetWho1eScroen(
: Screen;

out ScreenArray : Screen.Arrey;
out CurrentJl .SIze : byte;
out CurrentJT.Slze : byte:

) : GRJ/alue;

Remote.Procedure SwapScreenState(
: Screen;

Inout State : Scroen_State;
) : Noj /a lue;

Alternate.RepIy No_Such_Screen;

End Interface

II. Example Matchmaker Output
This appendix contains the Matchmaker source and

generated PHRQ Pascal output for the client side of one call
in an actual interface used in SPICE. The call presented is
relatively simple in comparison to many of the calls used by
the system. Essentially, it sends a communication port to a
server, and receives a new port back from that server in a
reply message.

The Matchmaker specification for the call is:

Remote_Procedure CopyEnvConnect1on(
: Port;

OldConnectlon : Port;
out NewConnectlon : Port_0wnersh1p

) : GRJ/alue;

The generated Pascal code implementing the client
interface depends upon the following data structures, which
define Accent messages and type descriptors within
messages. They are presented here without explanation (see
[11] for details) in order to clarify the code to follow.

TypeType • packtd record
casa Integer of

1: (TypoName
TypeSlzelnBlts
NumObjects
InLine
LongForm
Deallocate

) :
2: (Longinteger :

: BUS;
: BUS;
: B H U ;
: boolean;
: boolean:
: boolean

long)

Port

Msg

end:

long;

record
Simple* sg
MsgSlze
MsgType
LocalPort
RemotePort
10

end:

boo le
long:
long;
Port:
Port;
long;

Finally, the generated client code for sending the request,
and receiving the reply is as follows. ("ReplyPort** is an
Own variable; "{$IFC . . . } " is conditional compilation;
"WordS i z e M is like "s i zeo f " in C.)

Function CopyEnvConnect1on(
ServPort : Port:
OldConnectlon : Port;

var NewConnectlon : port
) : General Return;

type
MyMessage • record

head
IPCNaetf
Arg2

end:

Msg:
TypeType:
port ;

head
RetCodeType
RetCode
IPCNam3
Arg3

: Msg:
: TypeType;
: Integer;
: TypeType;
: port;

end;

var
My Ms g
RepMsg

begin

MyMessage:
RepMessage;

type

with MyMsg.head do
begin

SlmpleMsg :- f a l s e :
MsgSlze : - WordS1ze(MyMsg)*2;
MsgType NORMALMSG;
RemotePort ServPort;
LocalPort : • ReplyPort:
ID :- 1604;

end;
with MyMsg do
begin

{SIFC FastAssIgn then}
IPCNam2.LongInteger :- #2000220000;
{SELSEC}
IPCNam2.Inline : - TRUE;
IPCNam2.Deal locate :• FALSE;
IPCNam2.LongForm :- FALSE;
IPCNam2.TypeName : - TypePt;
IPCNam2.TypeS1zeInB1ts : - 32:
IPCNam2.NumObjects :• 1 ;
{SENOC}
Arg2 :- (OldConnectlon);

end;
with RepMsg.head do
begin

MsgSlze : - WordS1ze(RepMsg)*2;
LocalPort :« ReplyPort:

end;
GR :- Send(MyMsg.heed.0.WAIT):
i f GR <> Success then
begin

CopyEnvConnectlon : • GR;
exlt(CopyEnvConnectlon);

end;

GR :- Receive(RepMsg.head.Q.L0CAIPT,RECEIVEIT);
1f GR o Success then
begin

CopyEnvConnectlon : • GR;
exlt(CopyEnvConnectlon);

end:
with RepMsg do
begin

i f head.ID o 1704 then
begin

CopyEnvConnectlon : • BAOREPLY;
exH(CopyEnvConnectlon);

end;
{SIFC TypeCheck THEN}
i f RetCodeType.TypeName <> TYPcINTIB then
begin

CopyEnvConnectlon :• BAOREPLY;
tx1t(CopyEnvConnectlon);

end;
{SENOC}
CopyEnvConnectlon :• RetCode;
{SIFC TypeCheck THEN}
1f IPCNam3.TypeName <> TypePtOwnershlp then
begin

CopyEnvConnectlon : - BadReply;
ex1t(Copy£nvConnect1on);

end;
{SENOC}
NewConnectlon : • (Arg3):

end;
RepMessage • record

III. Matchmaker Language Syntax
The following is a syntax description of the MatchMaker

language. Conventions used are as follows:

Double quotes (" ") denote literal tokens.
Square brackets ([]) denote optional productions.
Braces ({}) are used to enclose a group of productions.
Three periods (. . .) denote optional repetition.
Vertical bars (|) separate choices between productions.
Parens (()) are used to enclose comments.

Interface and Options Definitions
Specif ication

::« Interface_Spec
::» Types_Spec

Intepface_Spec
: : • IntepfaceJDecl [Opt lonsJJecl] . . . [D a t a J) t c l] , . .

[MsgJDocl]. . . "End" " Interface"

Types_Spec
: : • TypesJDecl [O p t i o n s J) t c l] . . . [D a t a J) e c l] . . .

"End"~"Typea"

Interface_Dec1
: : • " Interface" InterfactJUme "•" Msg_ID_8ase • ; "

TypesJ)ecl
: : • "Typet" Intepface_Mi«e ";"

Interface^Name
fden t l f l e r

Msg_ID_Base
: : • Integer_Constant

0pt1onsJ)ecl
::» "Options" {0pt1on_0ed " ; " } . . .

0pt1onJ)ec1
: : • Msg_0pt1ons
::» Protocol JDptlons
: : - PoPts_0pt1ons

Ppotocol J)pt1ona
: : • "Ppotocol_Vep*1on" "•" Integer_Constaat

PoPtsJ)pt1ons
: : - "Local J»opts" "•" {Integep_Constant | • • • >
: : • "PoPts_Backlog" "•" Integer_Constant

DataType Definitions
Data.Oecl

: : - UseJ>ecl
: : - TypeJJecl
: : - Constant.Oecl

UseJ>ecl
: : • "Use" SlngleJJse. . .

SlngleJJse
: : • In ter f acaJUme "From" FUeJIasie " :"

Fi lename
: : • StPlng_Constant

ConstantJ)ec1
: : - "Constant" S1ngle_Constant...

S1ngle_Constant
Constant Jlame "•" Constant_Expr " •"

Cons tant_Namt
: : -~Ident1f 1er

Type_Decl
: : • "Type" S1ngle_Type...

Single_Type
::"- Type_Name "•" Type_Spec1f1cat1on ["," Type_0pt1on].. .

Type_Name
: : • I d e n t i f i e r

TypeJ3pt1on
: : • "TypeType" "•" Integer_Constant
: : • "Deallocate" ["•" Boolean_Constant]
::> "NoOeallocate"
: : - "Element_S1ze" "•" Integer_Constant
: : • "Element_Count" "•" IntegeP_Constant

Type_Spec1f1cat1on
:: • Type_Name
: : • Bu1U1n_Type
::» Appay_Type
: : • Recopd_Type
: : • Polntep^Type
: : - Enumepat1on_Type
: : • Un1on_Type

Bullt1n_Type
: : • "Boolean"
: : • "Character"
: : • "Real"
: : • Integer_Type
: : • Str1ng_Type
: : • Port_Type

Intoger_Type
: : • "Unsigned" ["[" Integer JTonetant "] "]
: : • "Signed" ["[" Integer_Constant "] "]
: : • Subrange.Type
: : • "Long"
: : • "Short"
: : • "Byte"

Subrange_Type
: : • Integer_Constant " . . " Integer_Constant

Port_Type
: : • "Port"
::» "Port_Send"
: : • "PortJ*ece1ve"
: : • "PortJ5»ntrsh1p"
: : • - P o r t J H T

Str1ng_Typ«
"Perq_Str1ng" ["[" Integer_Constant "] "]

Arpay_Type
::« [Packing] "Appay" " [" Appay_S1ze " O f
TyP«_Spec1f1cat1on

Appay_Sl2e
: : • Integep_Constant
. . • «•«

Packing
: : • "Packed"
: : • "Unpacked"

RecoPd_Type
: : • [Packing] "Record" RecoPd_Componont... "End" "Record"

Rocord_Coinponont
::"- F1eld. Ident1f 1er ":" Type.Spedf 1cat1on ":"

Fleld_Ident1f1er
I d e n t i f i e r

Po1nter_Type
. . . - t - Type_Spec1f1cation

Enumerat1on_Typt

::» " (" E.iumJJst ") "

Enum_L1st
: : • EnumJIement ["," Enuinj lement] . . .

Enumjl ement
: : • EnumJIame ["•" Integer_Constant]

EnumJIame

I d e n t i f i e r

Unlonjype
: : • "Union" "<" Un 1on_Selector J y p e ">" " O f

Un1on_Component... "End" "Union"
Un1on_Se1ector J y p e

Type_Spec1f1cat1on

Un1on_Component
":• Un1onJ"ag ":" " (" [Record_Component] ") " ";"

Union J a g
: : • Constant_Expr
::« "Otherwise"

Message Definitions
MsgJ)ecl

: : • Msg_CodeJ)ec1
: : • Msg~IOJ)ecl

Msg_CodeJ)ecl
: : • Msg_Body ["." MsgJ)pt1ons]. . . " :"

Ms adoptions
: : • Msg_PsramJ(ey "•" Integer.Conatant

Msg_Body
: : • "Message" ArgJ.1st ":" Msgjlesult
::» "Remote.Procedure" Arg_L1st ":" Msgjlesult
: : • "ServerJ*essage" ArgJ.1st
: : - "Alternate_Reply" [ArgJ.1et]

Msgjlesult
: :• S p e d a l j l e s u l t
: : • Arg_Type

S p e d a l j e s u l t
: : • "GR.Velue"
: : • "No~Vi1u#"

ArgJ. lst
: : - " (" Msg_Arg [":" Msg_Arg].. . •) •

Msg.Arg
:: - Data J r g
: : • SpecTal.Arg

DataJVrg
[ArgJ>1 rect i on] Data_Arg_5pec;

Arg_01 rect i on
: : - " In"
: : • "Out"
: : - "InOut"

Data_Arg_Spec
: : • Slmple.Arg^Spec
::- Var1ab7e_Arg_Spec
: : • Un1on_Arg_Spec

Slmple.Arg^Spec
:•"« A~gjlame ":" Arg_Typw

Variable Arg_Spec
::-"ArgJlame "[" ArgJTntJUme "] " ":" Arg_Type
: : - "["~Arg_CntJlame "] " ArgJIame ":" Arg jype

Union Arg_Spec
ArgJIame "<" Selector Jlame ">" ":" ArgJ-ype

: : • "<"~Se lector Jlame ">" ArgJIame ":" Arg_Type

Spedal^Arg
: : - SpedalJJsago ArgJIame ":" Arg_Type

: :• ": " Arg jype

Spedai JJsage
: : - PortJJsageJCey
: : • MsgJ>aramJ(ey

PortJJsageJCey
: : • "RemotePort"
: : • "LocalPort"

Msg_ParamJCey
: : • "MsgType"
: : - "ReplyType"
: : • "SendJ)pt1on"
: : • "SendJ'Imeout"
::» "Rece1veJ"1meout"

Arg_Cnt Jlame
: : • ArgJIame

Se lector Jlame
: : • ArgJIame

ArgJIame
" : I d e n t i f i e r

Arg jype
: : - TypeJIame ["." TypoJ3pt1on].. .

Msg_IDJ)ecl
"SkipJO" ":"

::« "NextJO" "•" Integer_Constant ":"

Expression Syntax
Constant jxpr

::-~0r_CTCE (Val id types context dependent)

Intoger_Constant
: : " Add1ng_CTCE*(Must be Integer valued)

Booletn^Constint
: : ~ 0 r j : T C E (Must be boolean valued)

Character_Constant
: : • PMmary.CTCE (Must be character valued)

Str1ng_Constent
: : - PrlmaryJTTCE (Must be s t r ing valued)

Enumeration Jlonstant
: : • PMmary_CTCE (Must resul t 1n a declared EnumJIame
i d e n t i f i e r) "

Or CTCE

: : - And—CTCE ["Or" And—CTCE]... 9

And.CTCE
" : : • Not.CTCE ["And" Not.CTCE]. . .

Not.CTCE
" ::« ["Not"] Relat1onal_CTCE

Relatlonal.CTCE
: : • Equal1ty_CTCE

[{">" | "> -" | "<-" | "<"} Equal1ty_CTCE] . . .

Equality CTCE
: : • Addlng^CTCE [{"•" | "<>"} Add1ng_CTCE]...

Add1ng_CTCE
: : • [{ " • " I " " " }] Mult i piy1ng_CTCE H«+* i - - - } Mult1ply1ng_CTCE]...

Multipiy1ng_CTCE
: : - Prlmary.CTCE [{ " •" | " / " | "Mod"} PrlmaryJTTCE]..

Pr1mary_CTCE
: : - I d e n t i f i e r
: : • Cons tan t j -exene
: : - " (" OrJTTCE ") "

Lexical Definitions
Cons tant_Lexeme

::« O c t a l J - U e r a l
::» Decimal^Literal
: : - Str1ngJ.1tera1
: : • CharacterJ.1tera1
: : • BooleanJ.1tera1

O c t a l J J t e r a l
"#" followed by a non-empty octal d i g i t s t r i n g .

Oeclmal.. L i t e r a l
: : - A non-empty decimal d i g i t s t r i n g .

Str1ng_L1teral
: : - A character s t r ing enclosed 1n double quotes. A
double quote 1n a s t r i n g must be doubled.

Character_LUera l
::> A character enclosed 1n single quotes. A s ingle quote
in a character l i t e r a l must be doubled.

Boolean_L1teral
: : • "True"
: : • "False"

I d e n t i f i e r
: : • A s t r ing composed of l e t t e r s , d i g i t s and the
underscore character , not s t a r t i n g wi th a d i g i t .
I d e n t i f i e r s are matched 1n a non-case-sens1t1ve manner.

Comment
: : • At any l e x i c a l break, comments can be Inserted as:

" t " Arb i t ra ry comment t e x t <End_OfJ.1ne>

Acknowledgments

The authors would like to express their thanks to the
following people who helped in the design, evolution, and
implementation of Matchmaker: Jeff Eppinger, Joe Ginder,
Jim Large, Rob MacLachlan, Doug Philips, Keith Wrifeht,
and Mike Young. Thanks also go to Bob Fitzgerald, who
provided some of the statistics for this article.

This research was sponsored by the Defense Advanced
Research Projects Agency, Department of Defense, ARPA
Order 3597, monitored by the Air Force Avionics
Laboratory under contract F33615-81-K-1539.

The views and conclusions contained in this document are
those of the author and should not be interpreted as
representing the official policies, either expressed or implied,
of the Defense Advanced Research Projects Agency or the
U.S. Government

References

1. Miles Bartel, Michael Kristofic. PERQ Pascal Extensions.
In PERQ Software Reference Manual, Three Rivers
Computer Corporation, 1981

1 Birrell, A. D. and Nelson, B. J. "Implementing Remote
Procedure Calls." ACM Transactions on Computer Systems
2,1 (February 1984), 39-59.

3. . Proposal for a joint effort in personal scientific
computing. Tech. RepL , Computer Science Department,
Carnegie-Mellon University, August, 1979.

4. Reference Manual for the Ada Programming Language.
July 1982 edition. Dept. of Defense, Ada Joint Program
Office, Washington, DC, 1982.

5. Jerome A. Feldman. "High Level Programming for
Distributed Computing." Comm. of the ACM 22,6 (June
1979), 353-368.

6. Michael B. Jones, Richard F. Rashid, Mary Thompson.
Sesame: The Spice File System. Carnegie-Mellon
University, October, 1982. Internal Document

7. Keith A. Lantz. Klaus D. Gradischnig, Jerome
A. Feldman, Richard F. Rashid. "Rochester's Intelligent
Gateway." Computer (October 1982), 54-68.

8. Liskov, B. and Scheifler, R. Guardians and actions:
Linguistic support for robust, distributed programs.
Proceedings Ninth ACM SIGACT-SIGOPS Symposium on
Principles of Programming Languages, ACM, January, 1982,
pp. 7-19.

9. J.G. Mitchell, W. Maybury, R. Sweet Mesa Language
Manual. Xerox Research Report CSL-79-3, Xerox Research
Center, Palo Alto, CA, 1979.

10. Bruce Jay Nelson. Remote Procedure Call Ph.D.Th. f

Carnegie-Mellon University, May 1981.

11. Rashid, R. F. and Robertson, G. Accent A
Communication Oriented Network Operating System
Kernel. Proceedings of the 8th Symposium on Operating
Systems Principles, December, 1981, pp. 64-75.

1 1 D.Ritchie. "The Unix Time-Sharing System." CACM
/7 ,7 (July 1974), 365-375.

13. Alfred Z. Spector, Jacob Butcher, Dean S. Daniels,
Daniel J. Duchamp, Jeffrey L. Eppinger, Charles
E Fineman, Abdelsalam Heddaya, Peter M. Schwarz.
Support for Distributed Transactions in the TABS
Prototype. Proceedings of the 4th Symposium on Reliability
In Distributed Software and Database Systems,
October, 1984. Also available as Carnegie-Mellon Report
CMU-CS-84-132, July 1984.

14. Guy L. Steele Jr.. COMMON LISP: The Language.
Digital Press, 1984.

