NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Matchmaker:
An Interface Specification Language for Distributed Processing

Michael B. Jones
Richard F. Rashid
Mary R. Thompson

19 December 1984

Abstract

Matchmaker, a language used to specify and automate the generation of interprocess communication interfaces, is
presented. The process of and reasons for the evolution of Matchmaker are described. Performance and usage statistics
are presented. Comparisons are made between Matchmaker and other retated systems. Possible future directions are
examined.

This paper also appears in the Proceedings of the 12th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, 1985.

Technical Report CMU-CS-84-161

Copyright ® 1984 ACM

Supported by the Defense Advanced Research Projects Agency, Department of Defense, ARPA Order 3597, monitored
by the Air Force Avionics Laboratory under contract F33615-81-K-1539. The views and conclusions contained in this
document are those of the authors and should not be interpreted as representing the official policies, either expressed or
implied, of the Defense Advanced Research Projecis Agency or the U.S. Government.

Matchmaker;

An Interface Specification Language for Distributed Processing

Michael B. Jones
Richard F. Rashid
Mary R. Thompson

Department of Computer Science
Carnegie-Mellon University
Pictsburgh, Pennsylvania 15213

Abstract

Matchmaker, a language used to specify and automate the
generation of inlerprocess communication interfaces, is
presented. The process of and reasons for the evolution of
Matchmaker are described. Performance and usage statistics
are presented. Comparisons are made between Matchmaker
and other related systems. Possible future directions are
examined.

Keywords

Remotle Procedure Call, Interprocess Communication,
Object-Oriented Languages, Multi-Targeted Compiler,
Interface Specification Language, Distributed Systems,

1. Introduction

One of the thorniest problems in building a distributed
system is how to interface distributed system components.
The carliest distributed systems required programs to
directly mamage a communication protocol on an 1/Q
channel. Work on message-based systems often led to a style
of interprocess interaction which stressed communication
flexibility over interface correctness or ease of programming.
Interfaces were effectively implemented in “message
assembly language™ as message records were explicitly
packed and unpacked by user written code,

In recent years a number of distributed programming
languages have been proposed. Design and implementation
considerations have ofien been driven by abstract issues
rather than the concrete requirements of a distributed
system. Designing a single distributed programming
language often ignores the fact that many applications are
already written in existing languages such as C, Pascal and in
the case of AT applications, LISP. Frequently such languages
stress simple client/server communication and ignore the
requirements of real-time sysiem services,

Rather than being another distributed programming
language, Matchmaker is an interface specification language
for use with existing programming languages. It provides:

¢ a language for specifying obiect-oriented remote
procedure call (RPC) interfaces between
processes executing on the same machine or
within the SPICE network, ‘

a multi-targeted compiler which converts these
specifications into interface code for each of the
major languages used within the SPICE
environment, including C, PERQ Pascal[1},
COMMON LISPJl4] and Ada[4]. This code
provides communication, runtime support for
type-checking, synchronization and exception
handling.

Matchmaker was started in 1981 as part of the CMU
distributed personal computing project (SPICE [3]). It was
built at first 10 automate some of the coding for the Accent?

lAccem. is a trademark of
Camegie-Mellon University

operating system kernel [11] message interface, which forms
the basis of the SPICE environment, It has evolved
significantly during the last three years in iis syniax, dala
representation semantics and communication semantics. At
each point of change, decisions about the new Matchmaker
design and implementation were driven by specdific
requirements of programmers in the SPICE environment.

Over the years, Matchmaker has proven (o be a valuable
tool. Ithas:

scased implementation and improved the
reliability of distributed programs by detaching
the programmer from concerns about message
data formats. operating system peculiarities and
specific synchronization details,

s improved cooperation between system
programmers working in different languages,

e enhanced system standardization by providing a
uniform message level interface between
Processes,

e provided a language rich encugh to express any
data structure which can both be efficiendy
represented in messages, and reasonably
represented in all targel languages,

o reduced the cost of reprogramming interfaces in
muitipte languages whenever a program
interface is changed.

Matchmaker provides a wide range of synchronization
semantics ranging from synchronous remote procedure call
to asynchronous message-style communication. A
programmer can usually change the synchronization part of
the Matchmaker specificadon without affecting the code
which uses that interface.

Today, Matchmaker interfaces define all interprocess
communication in the SPICE environment which consists of
over 150 PERQ2 computers communicating on an
internetwork of several 3MHz and 10MHz Ethernets.
Matchmaker is also used to specify and implement
interprocess communication interfaces between PERQs and

7‘PERQ is a trademark of Perg
Systems Corporation

the CMU CS Department’s 40 vax? computers, which run a
maodified version of Berkeley 4.1bsd unix? [12] supporting
Accent-style message communication. In all. Matchmaker
has been used as the distributed programming support
environment for over 500.000 lines of code written in four
major languages. Matchmaker has evolved from a simple
programming aid into the effective definition of interprocess
communication within the SPICE environment.

In this paper we will discuss the Matchmaker language
- jts syntax, data representaiion and communication
semantics. and its implementation. We will also examine the
issues which forced many of the important decisions in the
Matchmaker design.

2. Language Overview

The computational mode! for Matchmaker consists of
processes communicating with one another via messages.
Messages are sent to communication ports. Accent ports,
and rights o receive messages from specific ports, can be
sent between processes in messages.

Ports also serve in a dual role as capabilities for objects.
Matchmaker interfaces define operations upon those objects.
Every remote procedure call specifies a destination port for
the request. Thus, the ports may be viewed as tokens for
instantations of objects, and RPC requests to ports may be
viewed as invocations of operations upon cbjects. Such an
identification logicaily makes every Matchmaker request to a
port an operation on the object represented by that port.

The syntax of Matchmaker specifications is fairly dose to
the Pascal or Ada specifications for the analogous objects.
Constants of various types can be declared, new data types
can be constructed from built-in types (within certain
constraints), and remote procedures can be declared with a
syntax fairly similar to Pascal procedures or functions. The
invocation of a remote procedure on a port in a given target
language usually consists of a procedure call, with that port
as the first procedure parameter.

The built-in data types provided by Matchmaker are:
Booleaa, Character, Signed and Unsigned Integers of various

3V.uc is a trademark of Digital
Eguipment Corporation

4UNIX is a trademark of AT&T
Bell Laboratories

bit sizes. Integer SubRanges, Strings, Communication Ports,
and Reals. New data types can also be constructed with
some restrictions. Type constructor functions supported are:
Records, fixed and variable-sized Arrays. Enumerations,
Poinlers to the above types. and cenain kinds of Unions.

Representations for remote procedurs arguments in
messages are chosen by the Matchmaker compiler. Each
message is assigned a unique id by Malchmaker, which is
used at run-lime to identify messages for a given interface.
Once the message has been identified, the types of all fields
within it are also known, since messages are strongly typed
by Malchmaker at compile-time.

Certain semantic restrictions are placed upon the data
types which can be declared to allow efficiemt passing of
arguments in messages. In particular, pointers, variable-
sized arrays, and unions can only occur in top-tevel remote
procedure call declarations, and may not be used when
constructing other types.

Several semantically different kinds of remote procedure
call interactions can be specified in Matchmaker. The
process normally initiating an operation is called the client
process, and the process normally receiving requests is called
the server process. The RPC paradigms provided are:

* Remote_ Procedure: Generates code for a dlient
process to send a request 1o a server, and to
receive reply parameters back from the server.
Timeout values can be specified, and the reply
wail can be made asynchronous as well.

e Message: Generates code for a client process to
send a single request message 10 a server without
areply.

» Server Message: Generates code for a server
process to send a single message t0 a client
process.

o Alternate Reply: Generates code for a server
process to send a reply message back to a client
process in response to a Remote Procedure
which is different than the normal reply message.
Alternate Reply messages are meant to be used
for signaling exception conditions which
occurred during execution.

Each of these varieties of calls except for Alternate Reply
takes a port to which to send the request as a parameter.
Thus, “binding” is done dynamicaily on the basis of ports,

and not by using some compile-time or iink-time discipline,

3. Language Evolution

The Maichmaker program was originally conceived as a
programming tool to simplify the sending and recetving of
messages. [t was planned to be a temporary expedient which
would generate Pascal code until language intrinsics for
sending and receiving messages could be added to the Pascal
compiler. The intention to add interprocess communication
support (¢ our main programming languages was in line with
contemporary distributed programming language proposals
such as PLITS [5].

The original input to Matchmaker consisted of the names
of the procedures to be generated and the list of parameters
to each procedure. Associated with each parameter was an
indication of the direction in which it was to be sent, the
Pascal type of the parameter and the message-specific type
description for the parameter. Since the only target language
anticipated at that time was Pascal, the Pascal type
declarations were imported into the generated code. This
first version only generated simple synchronous remote
procedure calls. Each generated procedure call would send a
message to the server and then wait for a reply before
returning to the client.

After several months of use it became apparent that the
Matchmaker approach had several important advantages
over the notion of adding language intrinsics to Pascal:

o The procedure-based form of Matchmaker
generated calls made these interfaces easy to
document and use.

e Such intrinsics would have 10 be added to each
language which was to be used in the SPICE
environment. Moreover, adding intrinsics would
leave the project with the burden of supporting a
non-standard version of each language.

¢ The input to Matchmaker could be developed
into a language independent formal specification
of the interfaces to the system servers.

This early version of Matchmaker also had its share of
problems, however:

o+ The inflexible format of Matchmaker
specifications made them difficult to use.

e Dala type specification was awkward and oo
limited.

« The semantics of remote procedure call were 100
limited.

In response to these problems, the second version of
Matchmaker allowed declaration of types in a Pascal-like
syntax, the specificaion of some giobal message style
options, and the specification of an arbitrary number of RPC
interfaces. As Matchmaker was used 1o generate interfaces
for more servers, variations on the remote procedure call
were added. For example. the window management process
was sent character strings to dispiay on the screen, These
messages did not require a reply message, SO messages
without repiies were added. Some applications wanted to
use remote function calls rather than procedure calls.
Procedures that signaled their errors as exceptions were also
added. Client and server processes were found to require
completely asynchronous communication for some tasks.
During this period, the evolution of Matchmaker was driven
by specific demands made by the writers of server processes.

At this time, Matchmaker was widely used only by Pascal
programmers and still required the inclusion of Pascal
import files. The nexi major modification to the
Matchmaker language came as a result of the need to use the
Matchmaker specifications to generate C and LISP code.
Since C is close 1o Pascal in style, it was possible to use
Matchmaker to generate C code and to import the language

types from C include files, instead of Pascal import files.

The LISP implementors were not so fortunate. The
usefulness of COMMON LISP was delayed by the need to
hand code the LISP function to message interface for all the
system servers. It was now obvious that a genuinely
language independent specification was needed for the
server interfaces,

The third and current version of the Matchmaker language
fulfills this requirement. A Matchmaker specification now
includes compiete descriptions of the types of every
argument that is passed. Matchmaker generates the target
language (Pascal, C, LISP, eic.) type declarations 10 be
imported into the generated code. The Mauchmaker
specification for a client/server interface is written in a
formal language that is approximately as readable as Pascal
type and procedure declarations. This specification is both
the documentation of the interprocess interfaces, and the
source code which is compiled into correct procedure calls

and type declarations for the tlarget language. The
Matchmaker compiler is internally structured to allow the
addition of code generators for other languages as they are
added to the SPICE environment.

This same version of Malchmaker also includes
enhancements which allow a fine grain of control over the
message send/receive options. While older Maichmaker
implementations made various assumptions about the
manner in which messages were 10 be sent and received, it is
now possible to control all such parameters, both statically
and dynamicaily.

4. Usage and Performance

Given the extensive usage of Maichmaker within the
SPICE system, there are a number of interesting statistics
which are available on the use and performance of
Matchmaker interfaces. The figures below were gathered
from the PERQ Pascal interfaces to the standard SPICE
server interfaces, including the Accent kernel,

Static Usage:
Number of Interfaces 15
Total Calls Declared 268
Total Asynchronous Requests 67
Total Alternate Replys 7
Dynamic Usage;

No exact figures are available, but it is known that far
more asynchronous {(unacknowledged) calls take place
than synchronous ones. Thi¢is due to the fact that most
1/0 activities such as screen. mouse, low-level keyboard,
and Ethernet 1/0 are handled asynchronously.

Av Pe
Client Server
Min, (Accent Kernel) 146 165
Max. (Filesystem) 246 242
Avg 7 212 181

It is significant to note that server interface code is
usually smaller than the corresponding client code. This
directly corresponds to the fact that more parameters
tend to be passed into cails than are returned by them.

% Matchmaker Code by Size in Servers;

Min. (Authorization Server) 14%
Max. (Filesystem) 23%
Kemel 65%

The relative size of the interface code varies with the
number of routines provided. the number of arguments
passed, and the amount of processing requested by each
call. The Kerne! and Authorization Server each use one
relatively simple interface, and respond directly 10
requests from clients. The filesysiem. on the other hand,
s implemented as a set of co-operating processes
distributed across several machines, using several
different interfaces. Hence, filesystem processes are
clients of one another via inter-filesystem interfaces, as
weli as being servers, thus explaining the high

percentage of interface code.
% Matchimaker Code b Size in Clients:

The percentage of total code in client processes which
is Matchmaker code is not especiaily useful, since for afl
standard SPICE servers, client interfaces are imported

from shared runtime libraries.

Ave. M Passi ve with A
Bare Kernel Send & Receive 25ms
Maichmaker QOverhead 06ms
Total Msg Passing Time Ilms

Thus, Matchmaker interfaces account for ~ 19% of
message passing lime, when packing and unpacking the
arguments into messages is included.

Avg, 25 to 30 msgs / sec
Max. Ever Observed 110 msgs / sec
M ing Ti T

~ 30 msgs / sec
X 31ms/ msg
= ~9%% total time spent in msg passing

Matchmaker Overhead as % Total Time;

~ 30 msgs / sec
X 0.6 ms Malchmaker overhead / msg
= ~1.8% total time in Matchmaker overhead

The currently generated Matchmaker code is known 10 be
inefficient. Yet, it is important (o note, as shown by the
above stalistics, that actual Maichmaker overheads in
message passing have no perceivable effect upon system
performance. [f they were eliminated entirely, it would not
be noticed.

Although all communication in SPICE is via messages and
Matchmaker, we know of no normal system activity which is
dominated by message passing time. Even at the maximum
observed message passing rate, roughly 2/3 of the total time
wouid still be used for other things. This is easily expiained;
it almost always takes longer to process the information
passed in messages than the time it took to transmit it, given
Accent’s efficient message implementation.

Throughout several years of use, Matchmaker hag
permitted distributed applications to be built with nearly the
same ease as single-process applications. Two examples
fllustrate this point:

e The SPICE window manager was originally
written and debugged as a stand-alone
application and then converted into a server
process using Matchmaker. The conversion
process required virtually no change to the
underiying structure of the program.

e A set of autonomous file servers were converted
into a distributed filesysiem in less than a week
by designing and implementing an appropriate
Matchmaker interface between them.

5. Comparisons

Matchmaker can be most directly compared with Nelson’s
Diplomat[10] and the Cedar Lupine system[2].
Matchmaker, Dipiomat and Lupine can all be described as
remote procedure call stub generators. Both of these Xerox
systems, however, were built around a single programming
language. Lupine, in particular, uses the existing Mesa [9]
interface modules as the basis for generating the remote
procedure call stubs.

Maichmaker evolved during roughly the same period as
Diplomat and Lupine. Matchmaker differs from these
efforts in that it: is an external specificalion lanzuage,
suppons mullipie languages in a heterogencous machine and
operaling system environment, provides for a wide class of
synchronization semantics in addition to remole procedure
call. and supports an object-oriented computational model.
Matchmaker is also unique in that it is the sole interface
language for both local and network communication,

Matchmaker can also be compared with earlier attempts in
the RIG [7] system 10 build generic interprocess interfaces.
RIG provided a "Call” function which took as ils arguments
the object to be operated on (represented as a RIG process-
port pair), the function to be invoked (message identifier),
and the arguments. Matchmaker interfaces in contrast (o the
RIG approach are type checked, handle mulliple languages
in the style appropriate to that language and allow for
greater flexibility in defining the information to be passed as
part of a remote call.

Unlike the Argus's Actions and Guardians protocol [8].
Matchmaker does not provide for alomic transactions. The
nearest that a server can get to providing atomic transactions
is to provide Remote_Procedure interfaces, with reply status
values, and reply limeout values that cause blocking until a
reply is received. These actions can then be known 0 be
atornic in some cases. If the server cannot receive the
message, the reply code is set to “Failure” and no action
takes place.. Likewise, if the server is reached, but can not
successfully carry out the request, it will return a “Failure”
code and abor the entire transaction. However, the hard
case where a server is reached and then crashes before it
completes the transaction, cither leaves the client
permanently biocked waiting (o receive a reply, of returns a
“Timeout" status, depending upon the options selected.

Unlike systems that are written entirely in one strongly
typed language such as Argus/CLU and the Xerox systems,
Matchmaker's type checking may be compromised by the
language that invokes its interfaces. Maichmaker runtime
code checks the types of the arguments that are extracted
from messages but il must rely on its implemention language
(Pascal, LISP, C, etc.) to guarantes the integrity of the values
passed to it as parameters.

6. Future Directions
As with any evolving system, there is still substantial room
for improvement in Matchmaker.

Matchmaker does not enforce a robust implementation of
interprocess communicalion. Rather, it allows the
implementer of a server process to choose from the
underlying primitive communication paradigms provided,
and to easily provide an RPC interface to the user.

A synchronous remole procedure call does not currently
terminate when the targel server process lerminates
abnormally. Instead. an exception or timeout is generated
which must be handied by the client. It was originally felt
that this was an adequate solution to the problem, but as
more and more naive programmers usé the system for
developing their own applications, it has become apparent
that handling such conditions can be difficult.

As a resuit, system work is underway to allow for a
synchronous error return to be provided when a server
crashes during the execution of a remote request. This
support should be an appropriate mechanism for
implementing truly atomic remote procedure calls.
Likewise, enhancements were recently added which ailow a
fine grain of controi over the message send/receive options.
With these improvements a careful server implementer
should be able to write a robust and transparent server
interface that requires no particular sophistication on the
part of the user of the interface.

The future direction of Matchmaker will probably be
influenced by the development of SPICE applications that
are implemented as closely co-operating servers distributed
over more than cne machine. Both the Sesame File System
[6] and the TABS {13] Distributed Transactions manager are
currenty being implemented in this manner. The issues of
robustness in the face of a remote server failure, and
guaranteed response to the original client are being
adidressed by these servers.

7. Conclusions

Matchmaker is not a new distributed programming
language: it is not a radical departure from existing
techniques in the design and implemenwation of
programming languages. Insiead, Maichmaker i an
important tool for distributed programming which has been
evolving and in use for over three vears. It has proven
valuable and simple o use. I allows a server to
automatically be accessibie from clients written in any of the
supported languages, regardless of the language in which the
server is written. It permits distributed applications 1o be
built with nearly the same ease as single-process applications.

Probably Maichmaker's greatest value is that it has
become, in effect, the working definition of inter-domain
communication in the SPICE system. Singe it automates the
implementation of RPC on top of messages, it is conceivable
that different Matchmaker code generators could implement
a similar form of RPC on a different communication
medium, with almost no change 10 the client or server code
involved.

Through use in reat distributed systems, Matchmaker has
succeeded in proving itself a useful tool for creating
interprocess interfaces in a very demanding distributed
environment,

1. Example Specification
The text which follows is a fictional Matchmaker interface
specification for a “display server” process.

Interface Screen = 15000; | Base Mag ID {5 18000

Canytant

Hax_3X = 132;

Max_Y L H

Inverted - true:

Normal = not Inverted: I A consiant exprassion
Type

Screen_Array = packed array [Max_X * Max_Y] of Character;
Char_vactar = t packed array [*] of Charactaer:

Screen_State - record

x : byte:
y i byte:
Reavarss ¢ boolean:

end recard;
Screen * port: | Port usad for screan tokan

Measage DisplayChars(
i Screeu;
z : byte:
Y 1 byte:
chars [aum} : Char_Vector: t Note size parameter
} : Weo_Valus:

Masyage FutChar{ : Screan: c : Character) : No_Valus:
* Messaga ClearScraen(: Screem) No_Value;

Remote_Procedurs GatwholeScreen(
: Scraen;
qut ScraenArray 1 Scraen_Areay;
eut Current_X_St1ze : byts:
out Current_Y_Si2e : byts:
) : GR_Veiue;

Ramote_Procadure SwapScresnState(
: Screen;
inout State : Screen_State:

} ¢ No_Value:
Alternate_Reply No_Such_Screen;

End Intarface

11. Example Matchmaker Output

This appendix contains the Matchmaker source and
generaled PIRQ Pascal outpul for the client side of one call
in an actual interface used in SPICE. The call presented is
relatively simple in comparison 10 many of the calls used by
the system. Essentially, it sends a communication port to a
server. and receives a new port back from that server in a
reply message.

The Matchmaker specification for the call is:

Reamots_Procedure CopyEnviennection(

: Port;
0ldCannaction : Port;
out NewCannsciion : Port_Ouwnarship

)y GR_Value;

The generaled Pascal code implementing the client
interface depends upon the following data structures, which
define Accent messages and type descriptors within
messages. They are presented here without explanation (see
[11] for details) in order to clarify the code to follow.

TypeType = packed record
cass integer of

1: (TypeMams : Bitl;
-_— TypaSizeInBits : 31t8;
Numlb jects : 81112
inLine : booleaw:
LongForm : booleam:
ODsallocats : boglean
)i
2: (LongInteger : lomg)
[LLH
Port = long:
Mag = record

SimpleMsg : boolean:

MsgSize - : Tong:

MagType =~ : Toag:

LocalPort : Port:

Remotalfort : Port;

0 1 Tomg:
ond:

Finally, the generated client code for sending the request,
and receiving the reply is as follows. (“ReplyPort” is an
Own variable; “{$IFC ... }” is conditional compilation;
“WordSize"islike“sizeof”inC)

Function CopyEnvConnaction(

sarvPort : Port:
OTdConnection : Port;
var MewConnection : port

}: GenerslReturn:

tyos
MyMassage = recerd
head HE 1 H
IPCRam2 : TypaTypu;
Arge 3 port:
[H
type

Repdesaage = record

heng 1 Msg:
RetCodeType : TypeType:
Retlode : Inteager;
IPLNaAm3 : TypaType:
Argd i oports
and;
var
MyMsg 1 MyMeszage:
Rapisg : RepMessage:
vagtn

wiih MyMsg.hand do

segin
SimplaMyg := false:
MsgSize := wWordSize(MyMsg)®2:
MsgType = NORMALMSG;
RemotaPort i+ ServPort;
LocalPort := ReplyPort:
I0 = 1804;

and;

with MyMig do

bagin

(SIFC FastAssign then}

[PCNam2 . LongInteger := #2000220008;
{$ELSEC}
TFCKam2.InLine = TRUE:
IPCNam2.Ogallocats := FALSE;
{PCNam2.LongForm ;= FALSE:
IPCNam2 . TypaName := TypePt:
[PCNam2 . TypeSizelnBity :» 32:
[PCKam2 Nuymibjects :+ 1;
{SENDC}
Arg2 := (O0ldConnection);

and:

with RegMig, head do

hagin
MsgSize := WordSiza(RepMsg)*l;
LocuifPort :+ ReglyPort:

and:

GR :« Sand(MyMsyg.head.0,WAIT):

if GR <> Success them

begin ’
CopyEnvConnection :e GR;
exit(CopyEnvConnection};

and;

GR := Receive(RepMsg.head.0, LOCALPT RECEIVEIT);
1t GR «> Success then
begin
CopyEnvConnection := GA:
axit{CopyEnvConnaction):
end:
with RepMag do
bagin
1T hesd.ID o 1704 thea
begin
CopyEnvConnection ;= SADREPLY:
exit(CopyEnvCannection):
and;
{3IFC TypeCheck THEN}
+f RetCodeType. TypeName <> TYPCINTIG then
bagin
CopyEnvCannection := SADREPLY:
exit{CopyEnvConnection};
and;
{SENDC}
CopyEnvConnection := RatCoda:
(SIFC TypaCheck THEN}

17 IPCHamd . Typalame < TypePiQuwnarship them

begin
CapyEnvCannection :» 3adReply:
extt(CopyEnvConnection);

and:

{SENDC}

NewCannaction := (Argd):

[TTH
and;

11, Matchmaker Language Syntax

The following is a syntax description of the MatchMaker

language. Conventions used are as follows:

Double quotes (**) denote literal tokens.

Square brackets ([]) denote optional productions,
Braces {{}) are used to enclose a group of productions,
Three periods (. . .) dencte optional repetition.
Vertical bars (|) separate choices between productions.
Parens (()) are used to enclose comments.

Interface and Options Definitions

Specification
t:a Intarface_Spec
rrm Typen_Spec

Interface_Spec
i:» Interface Dect [Options_Decl]... [Deta_Deci]...
{Msg_Dacl]... "End™ “Interface”

Types_Spec
1:e Types_Decl [Options_DecT]... [Dats_Oecl]...
“"Eng”® "Typea"

Interface_Duc?
ite "Interfuce”™ Interface_Rame "= Myg_ID_Bass *:*

Types_Duc
13 "Types"™ Interface_Name ";°

Intarface _Name
tis ldentifter

Msg ID_Buze
:i% Intager_Constant

Cptions_Dact
1= "Gptions” (Optiom_Decl ";"}...

Option_Dect
ti= Msg_Optioms
z:= Protogol _Uptions
;i Parts_Optioas

Protocol_Options
i1= "Protocol Version“ *=* Integer_Comatant

Forts_Options
iz= “Local_Ports™ *=* [Integer_Constamnt | "**}
1z “Ports_Backlog® "= Enteger_Constamt

DataType Definitions

Dats_Decl
:im Use Dec)
1= Type_Decl
::= Constant_Dacl

Use_Dact
iiv "Use” Single_Usse...
Single_lUsse
izw Intertace _Neme “From” File_Nems ;"

File_lame
1:e String_Constamt

Constant_Dec)
1% "Constamt”™ Single_Constant...

Single_Constant
tie Constant_Mame "= Constent_Expr =:°

Constant_Name
1= Ideantifier

Typs_Dscl
1ie "Type” Single_Typs...

Singla_Type
tia Typey_Wume "=~ Typa_Speciftcation [™," Typs_Optton]...

Type_Nams
ri= [dentifier

Typs_Opttan
11 "TypeType™ "+" Integer_Constant
"Oeallacate” ["=" Boglesn_Consytant]

"NeDeallacate”
"Elament_S51ze” “=" Integer_Constant
“Elament_Count™ "s" Intager_Constant

Typa_Spacificattan
1= Type_Nama
o= Builtin_Type
1= Array_Type
i:= Racard_Type
it Pointer_Typs
130 Enumeration_Typa
iz Unton_Type

Builtin_Typs
1i= "So0lean"
ix "Charactar”
i "Real”
1 Integer_Type
1= String_Type
iiv Part_Type

Integar_Type

ti= "Unsigned” ["[* Integer_Constant "]")
t1e “Signed” ["(" Integer_Comstant *]°]
:1= Subrangs_Type

11w “Long”

1:ie "Short”

ire "Byte”

Subrange_Type
r:= Integer_Comstant *. .~ Intager_Constant

Part_Type
tie "Port”

"Port_Send*

“Part_Receive"

= "Port_(wnarship”

* "Port A11"

String_Type
11w “Parq_String® ["(" Enteger_Constant *J*]

Array_Type
1:= [Packtng] “Arrey" “[* Array_Stze *]* "Of"
Type_Spacification

Array_Size
iiw Integer_Conatant

iie T
Facking

ti» "Packed”

t1* “Unpacked”

Record_Type
ite [Packing] “Record” Record_Component... "End" “Record®

Record_Component
iiw Fleld_Tdentifier ":" Type_Specificatiem ";"

Figld_Tdentifier
tie [dentifier

Pointar_Type
tim "+® Typa_Specification

Enumeration_Type

tre M(" Eaym_List ")

Enum_L1s2
i:= Enum_Element [~.” Enum_Element]...

tnum_Element
tze Enum_Name ["=" Integer_Consiant]

Erum_Name
tix Tdentifier

Union_Type
tie "Unton™ “<" Union_Selector_Typs ™»* "Of"
Unign_Component... “End” "Union”

Unign_Selactor_Type
tiv Type_Specification

Unian_Component
pie Untan_Teg ":* *(" {Record_Component] ") ";*

Union_Tag
ri= Constant_Expr
i ‘Otharwise”

Message Definitions

Msg Decl
1rm Mzg_Code Decl
pie Msg_I0_Decl

M1g_Cogs_Dacl
1o Mgg_Body [*.* Mig_Optiens]... ™;"

M3g_Options
i:e Mag_Farem Xey " Integer_Cosstaat

Msg_Sady
11w "Message" Arg_List ":” Msg_Resuit
1z= "Ramots_Procedure™ Arg_List ":" Msg Result
tie "Server_Message” Arg List
tie "Alternata_Reply” [Arg_Liat]

Msg_ResuTt
11w Speciel_Result
ii= Arg_Type

Spectal_Result
ti= "GR_Vatus®
1ie "No_Valus®

Arg List
tre (" Mg _Arg [":" Msg_Argl... ")"

Msg _Arg
1o Data_Arg
1:w Special_Arg

Data_Arg
12« [Arg_Direction] Data_Arp_Spec:

Arg_Dirsction
iim “Ia®

“Qut*

1o TInQutt

bata_Arg_Spec

1o Simpla_Arg_Spec
variable_Arg_Spec
ize Union_Arg _Spec

Simple_Arg_Spec
pzv Arg_Name ":” Arg_Type

variable_Arg_Spec
11 Arg_Name "[" Arg_Cnt_Neme =] ":" Arg_Type
e 07 Arg_Cot_Mame 17 Arg Nuome “:° Arg_Type

Union_arg_Spec
tim Arg_Name "<" Selector_Mame *>° ":" Arg Type
11w "«” Selactor_Name ">" Arg_Neme *:* Arg Typs

Special_Arg
:r= Spactsi_Usage Arg_Name ~:" Arg _Typs

1ze %" Arg_Type

Special_Usage
11% Port_lUsaga_Key
11w Msg Parsm_Key

Part_Usage_Key
ii= "Remgtefort”
ri= "LocalPert”

Msg_Param_Key

tie "MagType”
"RepiyType”
"Send_Option”
"Send_Timeout”
"Receive_Timeout”

Arg_Cni_Name
rre Arg_Name

Selector_Name
Die ACQ_Name
Arg_Nama
tia Identifier
Arg_Type
1:w Type_Name ["." Type_Optfan]...

Mag ID_Decl
tre "Skep_TD" ":t
i1 "Next_ID* *»" Integer_Caonstant °;~

Expression Syntax

Constant_Expr

11w Qr_CTCE (Valtd typss context dependent)}
Integer_Conatant

1:e Adding_CTCE " (Must be integer valued)
Boolean_Constant

ii= Or_CTCE (Must ba hoolesn valued)
Character_Constant

t1e Primary _CTCE (;qu be charscter vaiued)
String_Constant

tie Primary_CTCE (Must be string valued)
Enumeratian_Constant

iie Peimary_CTCE (Muzt result in o declared Enum_Name

1dantif ter)
Qr_CTCE

i1 Amg_CTCE [“Or* And_CTCE]... ’
Ang_CTCE

1o Not_CTCE ["And" Mot_CTCE]...
Mot _CTCE

i:e ["Hot“] Relutional CTCE

Relational _CTCE
1: Equality CTCE
[{*>" | "»e" | "<=" | “<"} Equality_CTCE ...

Equaltty_CTCE
rie Ading _CTCE [("=" | "<»"} Addiag CTCE]...

Ageing_CTCE
tiw [{™#" | "="}] Multtplying_CTCE
[{=+" | ==} WMuitipiying CTCE]...

Multiplying _CTCE
rrw Primary CTCE { {"*" | "/~ | "Mou"} Primary_CTCE]...

Primury _CTCE
tin Identifier
1i= Conatant_Laxeme
tze (" Qr_CTCE)"

Lexical Definitions

Constant_Lexeme
12 Qotai_Literad
* Dectmal_Ltteral
ti= Siring_Literal
ii= Character_Literal
1ie Boolean_ELiteral

Octal_Liters]
rim T#" followsd by 4 non-empty octal digit strimg.

Decimal Literu)
iie A non-empty decimal digit string,

String_Litersl
ri= A churacter string enclosed in double quotes. A
double guote in a sirtng must be doudled.

Character_Literal
iiw A character anclosed in single guotas. A single quote
1h & charecter Titerzd must be doubled.

Boolean_L1itaral
z:e *Trus”
= "Falze®

Identifier
1im A string composed of letters, digits snd the
underscors character, not starting with a digit.
Identifiers ara matched 1n & non-case-sensitive manner.

Commant
it At any lexica) bresk, commants can be inzerted as:
"1® Arbttrary comment text <Eng_Of _Line>

Acknowledgments

The authors would like to express their thanks to the
following people who helped in the design, evolution, and
impiementation of Matchmaker: Jeff Eppinger, Joe Ginder,
Jim Large, Rob MacLachlan, Doug Philips, Keith Wrikht,
and Mike Young. Thanks aiso go to Bob Fitzgerald, who
provided some of the statistics for this articie.

This research was sponsored by the Defense Advanced
Research Projects Agency, Depaniment of Defense, ARPA
Order 3597, monitored by the Air- Force Avionics
Laboratory under contract F33615-81-K-1539.

The views and conclusions contained in this document are
those of the author and should not be interpreted as
representing the official policies, either expressed or impited,
of the Defense Advanced Research Projects Agency or the
U.S. Government.

References

1. Miles Bartel, Michael Kristofic. PERQ Pascal Fxtensions.
In PERQ Software Reference Manual, Three Rivers
Computer Corporation, 1982,

2. Bimrell, A. D. and Nelson, B. J. "Implementing Remote
Procedure Calls." ACM Transactions on Computer Systems
2,1 (February 1984), 39-59.

3. . Proposul for a joint effort in personal scientific
compuung. Tech. Rept , Computer Science Department,
Carnegie-Mellon University, August, 1979.

4. Reference Manual for the Ada Programming Language.
July 1982 edition. Dept. of Defense, Ada Joint Program
Office, Washington, DC, 1982,

5. Jerome A. Feldman. "High Level Programming for
Distributed Computing.” Comm. of the ACM 22, 6 (June
1979), 353-368.

6. Michael B. Jones, Richard F. Rashid, Mary Thompson.
Sesame: The Spice File System. Camegie-Mellon
University, October, 1982. Internal Document

7. Keith A. Lantz, Klaus D. Gradischnig, Jerome
A. Feldman, Richard F. Rashid. "Rochester's Intelligent
Gateway.” Computer (October 1982), 54-68.

8. Liskov, B. and Scheiﬂer, R. Guardians and actions:
Linguistic support for robust, distributed programs.
Proceedings Ninth ACM SIGACT-SIGOPS Symposium on
Principles of Programming Languages, ACM, January, 1982,
pp. 7-19.

9. J.G. Mitchell, W. Maybury, R. Sweet. Mesa Language
Manual, Xerox Research Report CSL-79-3, Xerox Research
Center, Paio Alto, CA, 1979.

10. Bruce Jay Nelson. Remote Procedure Cail. Ph.D. Th.,
Camegie-Mellon University, May 1981.

11. Rashid, R. F. and Robertson, G. Accent: A -
Communication Oriented Network Operating System
Kernel. Proceedings of the $th Symposium on Operating
Systems Princiglw. December, 1981, pp. 64-75.

12 D.Ritchie. “The Unix Time-Sharing System.” CACM
17,7 (July 1974), 365-375.

13. Alfred Z. Spector, Jacob Butcher, Dean S. Daniels,
Daniel J. Duchamp, Jeffrey L. Eppinger, Charles

E. Fineman, Abdeisalam Heddaya, Peter M. Schwarz.
Support for Distributed Transactions in the TABS
Prototype. Proceedings of the 4th Symposium on Reliability
In Distributed Software and Database Systems,

October, 1984. Also available as Carnegie-Mellon Report
CMU-CS-84-132, July 1984,

14. Guy L. Sieele Jr.. COMMON LISP: The Language.
Digital Press, 1984.

