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Abstract

This paper addresses two important issues in systolic array designs: fault-tolerance and two-level pipelin-
ing. The proposed “systolic” fault-tolerant scheme maintains the original data flow pattern by bypassing
defective cells with a few registers. As a result, many of the desirable properties of systolic arrays {such as
local and regular communication bhetween cells) are preserved. Two-level pipelining refers to the use of
pipclined functional units in the implementation of systolic cells. This paper addresses the problem of
efficiently utilizing pipetined units to increase the overall system throughput. We show that both of these
problems can be reduced o the same mathematical problem of incorporating extra delays on certain data
paths in originally correct systolic designs. We introduce the mathematical notion of a cut which enables us to

handle this problem cffectively.

The results obtained by applying the techniques described in this paper are cncouraging. When applied to
systolic arrays without feedback cycles, the arrays can tolerate large numbers of failures (with the addition of
very liitle hardwarc) while maintaining the original throughput, Furthermore, all of the pipcline stages in the
cells can be kept fully utilized through the addition of a smail number of delay registers. However, adding
delays to systolic arrays with cvcles typically induccs a significant decrease in throughput. In response to this,
we have derived a new class of systolic algorithms in which the data cycle around a ring of processing cells,
The systolic ring architecture has the property that its performance degrades gracefully as cells fail. Using our
cut theory for arrays without feedback and the ring architecture approach for those with  feedback, we have

effective fault-toierant and two-level pipelining schemes for most systolic arrays.

As a side-effect of developing the ring architecture approach we have derived several new systolic al-
gorithms. These algorithms generally rcquire only one-third to one-half of the number of cells used in
previous designs to achieve the same throughput. These new systolic algorithms include ones for LU-
decomposition, QR-decomposition and the solution of triangular linear systems.
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1. Introduction

The progression towards increasingly large and complex integrated circuits has been accompanicd by
smaller device geometrics and larger dies, which in turn have fed to a decrease in integrated circuit yield. A
strategy for increasing the vield involves the design of integrated circuits whose correctuess does not require
100 percent of the constituent circuits to be correct.  Such approaches fall under the heading of “fault-
tolerant” or “restructurable™ techniques, and arc typically characterized by the inclusion of redundant fune-
tional clements and the ability to modify the interconnection structure of the constituent clements, These
techniques arc particularly important, and frequently applied, in the arca of wafer scale integration. A
number of different Lccﬁniques exist for modifying the interconnection structure of integrated circuits. They
range from static, pre-packaging approaches {(e.g., adding a layer of metalization, laser created/dcleted
connections) to more dynamic approaches that can be applied after packaging (e.g., fusible links, transistor

switching dcvices)l.

Fault-tolerant methods are particularly important to systolic array implementations. A unique property of
the systolic approach is that as the number of cclls grows, the system performance increases proportionally.
Thus it is desirable for a systolic array to have as many cells as a given problem can cffectively utilize.
However, when the number of cells is large, it is inevitable that some of them may fail. Therefore it is
important that the systolic arrays be designed to function correctly in spite of the fact that some cells may not
(see Figure 1-1 (a)). This paper addresses the problem of how to tolerate the defects once they are located.
The fault detection problem, requiring a totally different set of techniques such as voting and self-testing, is

beyond the scope of this paper.

(a)

®)

Figure 1-1: Two problems addressed in the paper: {a) fault-tolerance
for arrays with faulty cells and (b} two-level pipelining



INTRODUCTION

High throughput floating-point multiplier and adder circuits typically employ threc or more pipeline
s[agcsz. Systolic cells implemented using these units form a second level of ;Jipeie’nfng3 in the pipelined
organization of systolic arrays (sce Figure 1-1 (b)). This additional level of pipclining can greatly increase the
system throughput; it is thercfore important to be able to systematically transform existing systolic array

designs assuming single-stage cells to ones with pipelined cells.

We will show that both the fault-tolerance and the two-level pipclining problems can be solved by the same
mathcematical reasoning and techniques. Our results imply that once a “generic” systolic algorithm is
designed, other versions of the algorithm (for cxecution on arrays with failed cells, or for implementation
using different pipelined processing units) can be systematically derived. The techniques of this paper can

also be applicd to other computation structures, such as FFT processor arrays and parallel sorting processors,

In the next section we will introduce our approach, using as an example the simplest type of systolic arrays
(uni-diréctional lincar arrays). We will discuss our solutions for all systolic arrays without feedback in section

3, and then for those with feedback in section 4. Section 5 includes a summary and some concluding remarks.



2. Fauit-Tolerance and Two-Level Pipelining for Uni-directional Linear
Arrays

Figure 2-1 depicts a systolic array4 for the convolution computation with four weights wy, ... .w,. In this
array the data flow only in one direction, that is, both x; and y; move from left to right (with x; going through
an additional “delay register” following cach cell). This is an cxamplc of a systolic array without feedback
cycles—an array where none of the valucs in any data strcam depends on the preceding values in the same

stream. (For an cxample of an array with feedback cycles, sce Figure 4-1 (a)).
X1

Xg Xy X3 — X3 — —
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Figure 2-1; Uni-directional lincar systolic array for convolution

Suppose that the third cell from the left in the array of Figure 2-1 were to fail. As depicted in Figure
2-2 (a), we would replace the defective cell with two “bypass’ registers {shown in dotted linesy—one for the
x-data stream, one for the y-data stream. To solve a problem of the same size, the defective array must have
one more cell to compensate for the failed cell. It can easily be shown that the new array correctly solves the
same problem at the original computational rate of one output per cell cycle. For example, y, picks up wy x,,
Wy Xy and wy- X, at the first, second and fourth cell respectively. The only difference is that the latency of the
selution is increased by one cycle. Figure 2-2 (b) depicts the cell specification for this fault-tolerant scheme,
using reconfigurable links. Note that the input/output register in a systolic cell can be used as a bypass

register in case the cell fails. Therefore no extra registers are needed to impiement this fault-tolerant scheme.

Figure 2-2: (a) Defective cell replaced with registers and (b) cell specification

A basic assumption of this paper is that the probability of the interconnection links and registers failing is
negligible. This is reasonable because these components are typically much simpler and smaller than the cells

themselves and can be implemented conservatively.

In the proposed scheme data move through all the cells. At failed cells, data items are simply delayed with
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bypass registers for onc cycle, and no computation is performed (Figure 2-3 (a)). We refer to fault-tolerant
schemes of this type as sysrolic fault-tolerant schemes in view of the fact that data travel systolically in a

defective array from cell o cell, at the original clock speed.

For uni-dircctional linear arrays, the systolic fault-toletant scheme proposed here has the distinct advantage
that a/l live cclls can be utilized (Figure 2-3 (a)). As illustraced by Figure 2-3 (b), fault-tolerant schemes
previously proposed in the literature cither suffer from low utilization of live cells™ & 78, or reduced through-
put due to-a slower éystcm clock required by the fact that the communication between logically adjacent ceils
can now span an arbitrarily large number of failures™ 10, Mareover, as will be shown in the next section, this

systolic fault-tolerant technique can be generalized to two-dimensional arrays.

Unused cells Long connection
Figure 2-3: (a) Systolic and (b) previous fault-tolerant schemes for uni-directional linear arrays

We now examine more carefully the idea behind our fault-tolerant scheme for the linear array of Figure
2-2. Because of the unit delay introduced by the bypass registers, all the cells after the failed one receive data
items one cycle later than they normally would. Since both the x- and y~data streams are delayed by the same
amount, the relative aligpnment between the two data streams remains unchanged. Thus, all the cells after the
third one receive the same data and perform the same function, with a one-cycle delay, as would the cell
preceding it in a normal array. For this reason, an s-cell, uni-directional, linear array with k defective cells

will perform the same computation as a perfect array of n= k cells.

The above reasoning also implies that the correctness of a uni-directional linear array is preserved, if the
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same delay of any length of time is introduced uniformly to aff the data strcams between two adjacent cells.
This result is directly applicable to the implementation of two-level pipelined arrays. We can interpret the
stages in a given pipelined processing unit as additional delays in the communication between a pair of

adjacent ccils,

Consider, for cxample, the problem of implementing the systolic array of Figure 2-1 using the pipclined
muitiplier and adder of Figure 1-1 (b). Since the adder is now a three-stage pipeline unit instcad of a
single-stage unit, two additional delays are introduced in the y~data path. Thus cach cell requires a total
number of four delay registers be placed in the x-data path—one is implicit in the original cell definition, one
is the delay register in the original algorithm design, and the rest to balance the extra delays in the y-data
stream. The resuiting two-level pipelined array is depicted in Figure 2-4. This two-level pipelined scheme

was proposcd previously?, but we show it here as a special case of a gencral theory.,
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Figure 2-4: Two-level pipelined systolic array for convolution,
using pipelined arithmetic units of Figure 1-1 (b)



3. Systolic Arrays without Feedback Cycles

3.1, The Cut Theorem

The results of the preceding section can be casily derived from a general theory formulated in terms of a

maihematical notion called a cir. We model a systolic array as a directed graph, with the nodes denoting the

combinational logic and the cdges the communication links!!. The cdges are weighted by the number of

registers on the links. We say that two designs arc equivalent if, given an initial state of one design, there exists

for the other design an initial state such that (with the same input from the hoss) the two designs produce the

same outpui values (although possibly with a different delay). In other words, as far as the host is concerned

the designs are interchangeable provided the differences in the timing of the output are taken into account.

We define a cuf to be a set of edges that “partitions” the nodes into two disjoint sets, the source sef and the

destination sef, with the property that these edges arc the only ones crossing the boundary and are all directed

from the source to the destination set.

Theorem 1: (Cut Theorem) For any design, adding the same delay to all the edges in a cut and
to those pointing from the host to the destination set of the cut will result in an equivalent design.

Proof: Let S be the original design partitioned by a cut into sets 4 and B, the source and the
destination set respectively. Let $7 be the same as S (with its corresponding scts A’ and B87), with
the difference that d delays are now added onto the edges in the cut.

We will show that S and S’ are equivalent in that if we properly initialize S, the output values
from A and A’ are identical starting from time 4. Similarly the output values from B and B’ are
identical, except that the latter lag behind by dcycles. -

We define the initial state of A/ (at time ) to be identical to the state of A at time 4. Since none
of the edges in the cut feed into A’, directly or indirectly, nodes in 4’ behave exactly the same way
as the corresponding ones in A and thus produce the same outputs. Therefore, all the inputs
arriving at B/ are the same as those arriving at B, except that they lag behind by dcycles due to the
additional delay registers. If we can define an initial configuration for B such that at time 4 +d, it
reaches the same configuration as B at f, then nodes in B/ will behave the same way as the
corresponding ones in B with a dcycle delay.

We will now proceed to show that such an initial configuration can indeed be defined. First, we
let the initial state of B’ be identical to the state of B8 at time 4,~d, Associated with each input
edge into set B’, e’, are the registers r(e%), ... .ry(e’), where the contents of ry(e’) are moved to
ri+1(e’) every cycle. We let the initial values of these registers ry(e), . . . ,rz(e) be the values of the
corresponding edge in S at time f,—1,4,—2, ... 5 —d respectively. This implies that the behavior
of B/ from time , to 4+ d— 1 is identical to that of B from f—d to {,—1 and thus the configura-
tion of B’ at £+ d and that of B at ¢ are identical. O

Since we are concerned with only adding extra delays to an optimized design, we do not need the generality

in Leiserson and Saxe’s retiming lemmal? 2. Thus the result we need requires a far simpler proof.
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We will demonstrate that despite its simplicity, the cut theorem is a powerful and convenient tool for
designing fault-tolerant and two-level pipelined systolic arrays. For example, as depicted in Figure 3-1 (a),
the edges between any two adjacent cells of a uni-dircctional lincar array form a cut. Hence by the cut
theorem, we can see immediately that both the defective array of Figure 2-2 (a) and the two-level pipelined
array of Figure 2-4 are cquivalent to the original array of Figure 2-1. Figure 3-1 (b) depicts a less obvious cut,
consisting entirely of all the output edges from the multipliers. This implics that the convolution array will
function cerrectly regardless of the number of pipeline stages present in the multipliers (provided the number
is the same for all the multipliers in the array). For instance, if all the four-stage muitipliers in Figure

2-4 werce replaced with ten-stage multiplicrs, the resulting systolic convolution array would still be correct.

Figure 3-1: Two types of cuts for a uni-directional linear systolic array for convolution

3.2. Systolic Fault-Tolerant Schemes for Two-Dimensional Arrays

We first illustrate the basic techniques by considering the rectangular array of Figure 3-2 (a) where the data
move downwards and to the right. Among many other applications, this array can perform matrix multiplica-
tion with either an operand or the partial resuit matrix stored in the array during the computation. Any curve
whose slope at any point is within 90 degrees defines a cut, as illustrated in Figure 3-2 (b),

(&)

1l
Figure 3-2: (a) Rectangular systolic array without feedback loops and (b) exampies of cuts
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Suppose that cclls 3, 6, 9 and 13 were faulty, as depicted in Figure 3-3 (a}. Figure 3-3 (b) illustrates that cell
7 couid receive data from its new neighbors, cells 2 and 5, via bypass registers at cells 3 and 6. Figure 3-3 (¢)
shows that the resultant array can be viewed as a 4¢3 systolic array where a unit delay is added to all the edges

in a cut. Thercfore by the cut theorem, this defective array is cquivalent to a flawless 4% 3 array,

Figure 3-3: (a) Systolic array with defective cells, (b) systolic fault-tolerant scheme
using bypass registers and (c) the corresponding cuts

Our simulation results show that while the utilization of the live cells for the above scheme using only
bypass registers can be poor, it is greatly improved if an additional “delay register” is provided in cach cell.
Figure 3-4 (a) depicts a diagonal failure pattern, for which it is possible to prove that no systolic fault-tolerant
procedure using only bypass registers can achieve a high utilization of the live cells. [f we could introduce an
extra delay on each of the data paths other than those on the diagonal, then as shown in Figure 3-4 (b}, all the
live cells were utilized, We can view this array as a 4x3 array with an additional delay on every edge in the

cuts shown in Figure 3-4 (c), thus it is equivalent to a perfect 4x3 array by the cut theorem.

Figure 3-4: (a) Failures on the diagonal, (b) fault-tolerance with delay registers,
denoted by black dots and (c) the corresponding cuts

A more realistic example is given in Figure 3-5 (a), where 28 cells in a 1010 array fail. If only bypass
registers are used, it seems that the largest square array that one can implement is 6x6, as depicted by Figure
3-5 (b). However, if one delay register is allowed for each data stream at each cell, it is possible to implement

a 7X7 array, as depicted by Figure 3-5 (c).
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Figure 3-5: (a) Live cells, (b) 36 cells linked to form (b’) using only bypass registers and
(c) 49 to form () if one extra delay register is provided. (Black dots represent delay registers
and the weight on each edge indicates the amount of delay)

In general, the more delay registers are provided, the better the utilization. Study is currently underway 1o
examine the tradeoffs between the amount of hardware required and the utilization of the live cells at
different failure rates. We note that for systolic arrays made of programmable cells such as the CMU
Programmable Systolic Chip (PSC)“' 5 implementing programmable delay in the data path is stfaightfor-
ward and requires no extra circuitry, If the necessary channel width is also provided, any arbitrary assignment

scheme can be implemented. In particular, the previous upper bound results'® 17 on the maximum connec-
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tion length for the reconfiguration of two-dimensional systolic arrays can be directly translated into upper

bounds on the maximum programmable delay needed for cach data path through each cell.

For the case of two-dimensional arrays, the cut theorem does not lead dircctly to an cffective procedure to
obtain a functional array from a defective one. The following theorem, which can be proven to be equivalent
to the cut theorem., is uscful for this purpose:

Theorem 2: [f a systolic design is obtained from an other one by adding delays to some of its
edges, then these two designs are cquivalent if the wtal delay added to all the paths between any
two nodes is the same.

Proof: The result follows directly from the retiming lemma of Leiserson and Saxe'?, by assign-
ing the lag of a node to be the total amount of delay added to any of the paths linking the host to
the node. O

For a rectangular or hexagonal array with no feedback cycles (as depicted by Figures 3-2 (a) and 3-6 (a)},
the condition in Theorem 2 holds if and only if it holds in every unit square or triangle respectively. There-
fore we have a simple criterion for deriving equivalent designs which relies only on “local information™. Tt is

used in the heuristic program that gencrated the configurations of Figure 3-5 (b) and (c).

3.3. Two-Level Pipelining for Two-Dimensional Systolic Arrays
‘We consider a hexagonal systolic array that can perform band matrix multiplication!®, as depicted in figure
3-6(a).

Figure 3-6; (a) Hexagonal systolic array without feedback loops and (b) original cell definition
Two results follow directly from the cut theorem:

1. It is easy to see that the edges under each dashed line in Figure 3-6 (a) define a cut. Every vertical
edge, representing the output from an adder (Figure 3-6 (b)), intersects two dashed lines while any
other edge intersects only one. Thus by the cut theorem, if the number of pipeline stages in all the
adders is increased by 2k, then for each cell, k delays must be added to the other data paths.
Figure 1-1 (b) depicts the case when k=1.

2. Consider the output edges of ail the multipliers in the array. Like those in the one-dimensional

10
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convolution array (Figure 3-1 (b)), thesc cdges define a cut since none of the outputs from the
adders are fed back into the multipliers. By the cut theorem, we can conclude that systolic cells
can be implemented using pipelined multipliers of any number of stages without any further
modification provided the number of stages is the same for all the multipliers.



4. Systolic Arrays with Feedback Cycles

As previously noted, a cut partitions the nodes of a graph into two sets with data flowing uni-directionally
batween them. ‘Thus a cut cannot cross feedback cycles in systolic arrays. This is the same as saying that
“retiming™ preserves the total number of registers in a cyclcu. In other words, it is impossible to add extra
dclays on edges in a feedback cycle for fault-tolerance and pipelining purposes. In this section we describe a
new technique for treating systolic arrays with feedback cycle. Such arrays include systolic designs for

LU-dccompositiunlg, Ql{-dccumpositionm, triangular lincar s;ystcrnsil9 and recursive ﬁltcringzl.

4.1. Computation of Simple Recurrences—An Example of Cyclic Systolic Arrays

To illustrate the basic ideas, we consider the computation of the following simple recurrcnce of size n—1:

given the initial vatues {y, Y=1. . - s Y=na2}
compute the output sequence {y, yy, . . . } as defined by
2 j= 1 Yiej <

Although summation is used here, the computational structure presented below generalizes to any associative
operator. An s-cell systolic array with fcedback cyc:les21 is capable of performing this simple recurrence
computation of size up to n—1. Depicted in Figure 4-1 (a) is such an array where n=6. The partial sums
move down the array from left to right picking up the completed results that move in the opposiie dlrection
The computaticn of each sum is completed when it reaches the end of the array. Note that this is a 2- siow'?

systemn, in the sense that only half its cells are active at all time,

@ —»n — % —M
(b} —wu o) hg)
mfss]

X Vs Vi
() ! il Y 3

vl

- - 1"}

Y6 : Ys Ya

Figure 4-1: Linear array with feedback: (a) original array, (b) reduced throughput and (c) single failure

A naive attempt at achieving fault-tolerance involves slowing the system down even further. In the array of
Figure 4-1 (b) data pass through an extra register per cell. This is a 4-slow system, performing the same
computation as the 2-slow version, but at half its throughput. Suppose that the third cell from the left were to
fail. The original function of the array could be preserved by simply allowing cells 2 and 4 to communicate

through a bypass register (as illustrated in Figure 4-1{c)). A drawback of this approach is that the perfor-

12
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mance of the array degrades rapidly with respect to the number of consccutive failed cells that need to be
tolerated. Note that systolic arrays with feedback cycles are initially 2- or 3-slow in general, and in order to

tolerate & consecutive failures, the throughput must be further decreased by a factor of K+ 1.

The recurrence of size n—1 computed by an n-cell bi-dircctional linear array {illustrated in Figure 4-1 (a)),
can also be implemented on an n/2-cell ring with uni-directional data flow (as in Figure 4-2). The systolic
ring works as follows. The #/2 most recently computed results are stored in each of the n/2 cells, while the
next n/2 partial sums travel around the ring to meet these stored values. A sum is compicted as it travels past
the cell with the most recently stored value. It is then deposited in the next cell, which contained the oldest
value. Meanwhile, the computation of a new value begins in the next successive cell. Figure 4-2 (a) indicates
that y, has just been added to Y. Figure 4-2 (b) shows the result of the next cycle—the final value of ¥, has
replaced y, while y, is ready to pick up its first term, y,. Like the bi-directional systolic array of Figure 4-1 (a),
this systolic ring has a computational rate of one output every two cycles, However, since ail its ceils are active

.

at any time, only half as many cells are needed.

(a) . o (b) ) o

Ye Y7

¥ Y
Figure 4-2: Two consecutive snapshots of a systolic ring

More importantly, the throughput of this structure degrades gracefully as the number of defective cells
increases. For example, for an array of size n with one cell failure, the reduction in throughput is only
17(2n—1) of the original. A defective ring of 5 cells with 2 failures is illustrated in Figure 4-3. Asin an
acyclic array, each failed cell in the ring is bypassed with a single register. This ring can solve a problem of
size 6 at a throughput of 3 outputs every 8 cycles. In this example, the final values of Yas Voo Y5 and y; are
produced at time instants , 4,2, 4+ 5 and i+ 8, respectively.

4.2. Performance of Systolic Rings

We have shown in the previous section that the ring structure is suitable for solving simple recurrences
where each result is dependent on a fixed number of previous results. This characterizes many of the
problems solved by systolic arrays with feedback. Before we propose ring algorithms for these problems, we
first analyze the performance of the general ring structure. The performance measures of primary interest are
the data throughput rate and the amount of hardware required. We will show that a fully functional ring
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Fiaure 4-3: Defective systolic ring with 2 faulty cells

typically requires only a fraction of the hardware required by other proposed algorithms and achieves the
same throughput. Furthermore, systolic rings are much more amenable to the addition of fault-tolerant

features and a second level of pipelining.

To dissociate the issue of the problem size a ring can handle from the analysis of the data throughput, we
will first consider the hypothetical case of an “infinite” structure. By “infinite”, we mean that this structure
has at least as many cells as the number of results we want (o compute. Since each cell is used to store only
one result, there is no feedback, and this structure can be viewed as a uni-directional linear array. Therefore

we can apply the previously derived resuits to analyze the performance in case of cell failures.

If the ring is flawless, the output stream cf each cell is fed directly into the next, and a result is produced
every two cycles (independent of the problem size). Let us consider the case where we have k failures every m
cells. Similar to the previous case, a defective cell in a ring can be bypassed with a register. While this
procedure does not change the functionality of the algorithm, all the actions of the cells following a failed cell
are delayed, relative to the one preceding it, by one extra clock cycle. As a result, the action of every
{m— k) th live cell has a relative delay of k cycles. Therefore, while a perfect array stores a result in each of the
m~k consecutive cells every 2(m— k) cycles, an impaired array stores a result in each of the m— k live cells
every 2(m~ k) + k cycles.

Lemma 3: A perfect array of “infinite” size can solve a recurrence problem of any size at a
throughput rate of 1/2. If k out of every m cells fail, the throughput is reduced to
(m—k)y/(2m—k).

In this “infinite” array, cach cell is only active for a period of n clock cycles. Moreover, the ith live cell is
activated by the arrival of the ith result. Since every result depends on the value of the preceding result, a cell
can be activated only after the activation of the preceding cell. Consequently, the string ofl active cells is
always contiguous and its length is the product of the duration of the active period and the throughput rate. If
a finite ring is used to solve a particular problem and its size is no smaller than the length of the active string,

then it is virtually equivalent to this “infinite” structure. Therefore we have the following results:

14
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Theorem 4: A perfect ring of size m can solve recurrences of sizes up to 2m—1 aca throughput
rate of 1/2. If k cells fail, it can solve probiems of sizes up to 2m— k-1 at a throughput rate of
(m—k}/(2m—£&). In other words, the reduction in throughput due to the & failurcs is only
k/(2m— k) of the original,

4.3. Two-Leve! Pipelining for Systolic Rings
By going through a similar argument as previously presented for the two-level pipclined array, we can
obtain the following result.

Theorem 5: A systolic ring of m p-stage pipelined cells can solve recurrences of sizes up to
(p+1)m—1 at a throughput ratc of Wip=+1). If k of the m cells fail, this ring can solve problems
up to size (p+ 1)m—pk~1 at a throughput rate of (m—kY[(p+ L~ pkl. In other words, the
reduction in throughput is only &/f(p -+ Dym— pk] of the original.

4.4, Other Examples of Systolic Ring Architectures

4.4.1, Solution of Triangular Linear Sysiems

Let A =(a;) be a nonsingular nx# band, lower triangular matrix with bandwidth ¢. Suppose that 4 and an
nvector b=(b,, .., ,b,,)T are given, The problem is to solve Ax=b for x=(x,, ... .x,). Thisis a typical
recurrcnce of size g—1. A ring of ¢/2 cells is sufficient to solve the problem at a throughput of one result
every two cycles. As a comparison, the previous bi-dircctional linear systolic arraylg has the same throughput,
but it uses twice as many cells. The ring is also more robust—with 4 failures in a ring of m cells, the
throughput is only reduced from 1/2 to (m— k)Y (2m— k).

Figures 4-4 and 4-5 illustrate the data flow pattern of a perfect 3-cell ring and a 4-cell ring with one failure,
respectively, when solving a triangular linear system with bandwidth g=6. While this problem size is the
largest the former ring can handle, the latter one can solve linear systems with bandwidth up to g=7. Asa
result, the cells in the defective ring of Figure 4-5 are idle one-seventh of the time. “In the figure, a cell is
assumed to be idle for one cycle if the input has a “don’t care” value.

The final step in the computation of cach result (xp invclves a subtraction (from b3} and a- division (by ap).
This needs to be performed by every cell. To avoid having to provide each cell with a division capability and
an external data path, we precompute the reciprocals of the diagonals outside the ring and send the additional
input (b)) to the cells via a systolic path.

4.4.2. Triangularization of a Band Matrix

The usefulness of the systolic ring approach is not limited to linear array solutions—Figure 4-6 (a) depicts a
two-dimensional ring structure for triangularizing a band matrix 4, with bandwidth w=6 and ¢=3 sub-
diagonals. This ring structure can perform the QR-decomposition, an important computation for linear least
squares approximation, and solve linear systems stably using neighbor pivotingzz.

15
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Figure 4-4; Systolic ring for solving triangular linear systems

Each ring in the structure of Figure 4-6 is responsible for the elimination of a subdiagonal, with the
bottommost ring handling the bottommost subdiagonal. Consider the operations of a ring, as illustrated by
Figure 4-6 (b). The parameters needed for performing the elimination (which for the QR-decomposition are
the values defining the Givens rotations) pass around the ring after they are generaied. Let p; be the
parameter generated by the element to be eliminated in row i and the ¢lement above it. 1fthe data input ay is
not an element of the subdiagonal to be eliminated, it is updated on the arrival of p. Itis then retained for
one cycle to compute with p;,, before it is output to the next ring. If a; is to be eliminated, it is computed
with the stored value, a;_, ; to get p; which is then passed down the ring, Thus the output of each ring is the
result obtained by eliminating the last subdiagonal of the input array. The uppermost ring outputs the entries
of the triangular matrix that we want to compute. Note that corresponding to the elimination of each
subdiagonal, a new super-diagonal is created. In the systolic ring, the new elements for this super-diagonal
take the place previously occupied by the elements of the eliminated subdiagonal.
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Figure 4-5: A single failure in a systolic ring for solving triangular linear systems

Unlike the data values circulating the rings in the previous examples, the p; are computed before they are
passed around. However, they have the same property that they are produced every two cycles and need to
meet with w—1 input values before they can be discarded. Therefore, from our previous analysis, g rings of
w/2 cells each are required for triangularizing a band rﬁatrix with bandwidth w and ¢ ;subdiagonals. For the

case of QR-decomposition, it requires half the amount of hardware and achieves the same throughput of a
previous solution®®,

Figure 4-7 depicts the fault tolerance scheme for such a structure. If the failed cells are covered by k cuts,
then by Theorem 4 the throughput is reduced by &/(w—~ &) of the original.‘
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Figure 4-6: (a) Two-dimensional systolic ring structure for matrix triangularization and
(b) two snapshots of the bottommost ring

Figure 4-7: (a) Failed cells in aring architecture for matrix triangularization and (b) the corresponding cut
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4.4.3. LU-Decomposition of a Band Matrix

Figure 4-8 depicts a “two-dimensional systolic ring architecture™ for the LU-dccompositien of a band
matrix, A= L. For a given matrix A with bandwidth 2g— 1 we nced to use g/3 rows of cells, with g cells in
cach row. The g/3 most recently computed rows of uy;'s arc stored in the cells as they are generated, while the
Iy's arc passed down the rows. Figure 4-9 shows the snapshots of this structure at various stages in the
computation. By viewing this structure as an array of rings, its performance can be analyzed using the result
of Theorem 5 with parameter p=2. The throughput of this array is the same as the previous dcsign19 which
use, however, three times as many cells. Figure 4-10 illustrates how we apply the cut technique to this array.
Vertical connections have to be provided for linking purposes. Note that if all the faults arc covered in & cuts,

the decrease in throughput is only &/(g—2k) of the original.

Iglogly oo v v oo o
......... a, a,d,day -
' l'43 161 151 141 [31 In- .
...... ) By Uy s A A A -
ay
Ty @
4y & 4
Qy G4y 4 4
g  Q &G & a4
Ay Ay 4y G Ay \
a, 4, a
ed e Initialization
@ - e Gy g
B T
: . @Gy - .
Qy - . 4, .
W oo - 4
. aas . . \—_ .
. G . nput to top row

C Ay
) Input to bottom row
Figure 4-8: Systolic ring architecture for LU-decomposition

4.5. General Remarks on Systolic Rings

The systolic ring architecture has some disadvantages over other systolic architectures, but they are compen-
sated for by its superior fault-tolerance performance. One of the possible disadvantages is that we need to
provide an additional data path to unload the values during the computation, as the computed results are
continuously stored in the ring. This is, however, not the case for the triangularization schemes of section
442,
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Figure 4-9: Snapshots of a ring architecture for LU-decomposition

In many of the conventional cyclic algorithms, only cne or a few boundary cells may require special
processing capability and extra input/output bandwidth, However, with some ring architectures, moré cells
are required to assume the role of a boundary cell. Algorithm-dependent methods can sometimes be used to
alleviate the problem of having to provide all these cells with special functionality. For instance, in the
previous example of solving triangular linear systems, instead of providing each cell with the capability to

divide, we precompute the reciprocals of the diagonals.
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Figure 4-10: (a) Failures in a ring architccture for {.U-decomposition and (b) the corresponding cut

Finally we note that the one-dimensional ring can be laid out simply and cffectively by folding the array in
half. A cell only communicates with a neighboring cell and thus needs only constant length interconnection
wires. For a two-dimensional ring, such as the one used for LU-decomposition, it is possible to lay it out by

folding cach column in half.



5. Summary and Concluding Remarks

Systolic arrays are more specific than general processor arrays, in the sense that data streams in a systolic
array move in a prespecified manner.  Making explicit use of this additional information, the systolic fault-
tolerant approach introduced in this paper is usually more effective than other schemes designed for general
processor arrays. In particular the systolic approach requires no increase in interconnection length. This
climinates a source of inefficicncy, such as increased system cycle time or driver arca, common to most other

approaches.

For uni-directional linear arrays, our systolic fault-tolerant technique achicves 100% utilization of iive cells,
without extra registers nor interconnection links. For two-dimensional arrays without feedback cycles, we
have established the basic theory needed for developing efficient systolic fault-tolerant schemes. We expect
that if one extra delay register is provided for cach data stream at cach cell, a reasonably good utlization of
live cells can be achieved. We are currently investigating the performance of our techniques for two-

dimensional arrays with different degrees of redundancy.

Although many systolic algorithms with feedback have been proposed, some of the same problems to which
these algorithms address can also be solved by systolic arrays without feedback. Examples of such problems
include convolution, graph conncctivity and graph transitive closure® - 24, Acyclic implementations usually
exhibit more favorable characteristics with respect to fauit-tolerance, two-level pipelining, and problem

decomposition in general,

For problems that have been solved exclusively by systolic arrays with feedback cycles, the paper introduces
a new class of systolic algorithms based on a ring architecture. These systolic rings have the property that the
throughput degrades gracefully as the number of failed cells in the rings increases. Furthermore, as a
byproduct of the ring architecture approach, we have derived several new systolic algorithms which require
only one-third to one-half of the cells used in previous designs while achieving the same throughput.

We have shown that the two-level pipelining problem in systolic arrays can be solved by the same tech-
niques used te solve the fault-tolerance problem. An important task left for the future is the development of

software of solving both problems automatically,
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