
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

RAPIDbus: Design of an Extensible
Multiprocessor Structure

John C Willis
Arthur C. Sanderson

CMU-RI-TR^84-13

Department of Electrical and Computer Engineering
The Robotics Institute

Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

May 1984

Copyright <§) 1984 Carnegie-Mellon University

This work was supported in part by The National Science Foundation under grant number 7923893. Portions
of the work described here, particularly the RAPIDbus II design, were supported by the Air Force Office of
Scientific Research under contract number F49620-83-C-0100.

Table of Contents

1. Why RAPIDbus? 3
1.1. Defining the Application 4

1.1.1. Model of a Robotic System 4
1.1.1.1. Internalization 4
1.1.1.2. Knowledge Base Management 6
1.1.1.3. Goal Management 6
1.1.1.4. Extemalization 6

1.1.2. Machine Vision 7
1.1.3. Assembly Assistance 8
1.1.4. Design Assistance 8

1.2. RAPIDbus 10
1.2.1. Defining a Structure 10
1.2.2. The Goal 10

2. RAPIDbus I: Architecture and Realization 11
2.1. Why Build? 11
2.2. Systems Architecture 12

2.2.1. Choosing Versabus as a Host 12
2.2.2. PMS Level Alternatives 14
2.2.3. The RAPIDbus I Interface 16

2.2.3.1. RAPIDbus I Concept 16
2.2.3.2. RAPIDbus functional modules 18

2.3. Communications Protocol 21
2.3.1. The 68000 21

2.3.1.1. Memory Reference Cycles 22
2.3.1.2. Interrupt Cycles 23

2.3.2. The Versabus Data Transfer 23
2.3.2.1. Bus Arbitration 24
2.3.2.2. Data Transfer 24
2.3.2.3. Interrupt Handling 25

2.3.3. The RAPIDbus I Data Transfer 25
2.3.3.1. Data Transfer 25
2.3.3.2. Interrupt Handling 26
2.3.3.3. Multicasting 26

2.4. Evaluation Net Modeling 27
2.4.1. Use of Evaluation Nets for Hardware Modeling 27
2.4.2. Caveats 30
2.4.3. The VM02 Dual Port Processor 30
2.4.4. System Memory Cards 34
2.4.5. The Versabus Interconnect 34

2.4.6. The RAPIDbus Interconnect 35
3. RAPIDbus 1: An Evaluation 37

3.1. Evaluation Methodology 37
3.2. Architecture 39

3.2.1. Supporting Broad Task Concurrency * 39
3.2.2. Host Homogeneity 41
3.-2.3, Reliability 42
3.2.4. Programmability % 42
3.2.5. Societies of Processors 44

3.3. Implementation * 44
3.3.1. System Structure 44

3.3.1.1. Simulation Methodology 44
3.3.1.2. Versabus - Separate Processors and Memory 45
3.3.1.3. RAPIDbus I - Bus Memory 47
3.3.1.4. Versabus - Local and Global Processor Memory 47
3.3.1.5. RAPIDbus I - Local and Bus Memory 51
3.3.1.6. Versabus - Dual Ported Memory 51
3.3.1.7. RAPIDbus I - Dual ported Memory 53
3.3.1.8c Structural Conclusions 55

3.3.2. Bus Utilization 58
3.3.3. Bus Allocation 60
3.3.4. Interrupt Structure 61
3.3.5. Multicast Capability 62

3.4. Realization 63
3.4.1. Asynchrony 63
3.4.2. System Complexity 68
3.4.3. Bus Interface Integration 71
3.4.4. Fabrication Technology " 73

3.4.4.1. Power Supply Engineering # 73
3.4.4.2. Interconnect Engineering 75
3.4.4.3. Thermal Engineering 75

3.5. Major Contributions 77
4. RAPIDbus II: Architecture 79

4.1. The Goal ^ 79
4.2. Architectural Specification 79
4.3. Extensibility 80

4.3.1. Heterogeny of Elements 81
4.3.2. Software Support 83
4.3.3. Modularity 85
4.3.4. Specification Summary 87

4.4. Addressing 87
4.4.1. Memory Map Structure * 88

4.5. Data Formats 89
4.5.1. Scalar Data Types 90
4.5.2. Floating Point Data Types 92

4.6. Upward Compatibility: OIL 92
4.6.1. Objects 92
4.6.2. Object Support 93
4.6.3. Data Typing "*" 95

II!

4.6.4. Garbage Collection 96
4.6.5. Summary 97

5. RAPIDbus II: Implementation & Realization 99
5.1. The Implementation 99

5.1.1. Packet Switching Structure 100
5.1.1.1. Packet Routing 103
5.1.1.2. Bus Justification 106
5.1.1.3. Bus Allocation 107

5.1.2. Data Transfer 107
5.1.2.1. Single Cycle Read Request 108
5.1.2.2. Single Cycle Write Request 110
5.1.2.3. Multiple Cycle Read Request 110
..1,2.4. Multiple Cycle Write Request 111
5.1.2.5. Read-Modify-Write Request 112
5.1.2.6. Single Cycle Read Service 112
5.1.2.7. Single Cycle Write Service 113
5.1.2.8. Multiple Cycle Read Service 114
5.1.2.9. Multiple Cycle Write Service 114
5.1.2.10. Read-Modify-Write Service 115
5.1.2.11. Repeater Forward Service 115
5.1.2.12. Repeater Forward Request 116
5.1.2.13. Interrupt Generation 116
5.1.2.14. Interrupt Reception 117

5.1.3. System Reliability 117
5.1.3.1. Interchange Redundancy 117
5.1.3.2. Diagnostic Assistance 118

5.1.4. Upward Compatibility * 119
5.1.4.1. Parallel Switching Plane 120

5.2. Realization 124
5.2.1. Physical Structure 124
5.2.2. Microcoded Host Interface 124
5.2.3. Timing Analysis • 129

5.2.3.1. Local Memory Access 129
5.2.3.2. RAPIDbus Access 129

5.2.4. Evaluation Methodology 130
5.2.5. Extended Versabus Simulation 131
5.2.6. RAPIDbus Society Simulation 132
5.2.7. The Design Space 134

5.2.7.1. RAPIDbus I 134
5.2.7.2. RAPIDbus II 134
5.2.7.3. VAX - SBI 134
5.2.7 .4. University College, London 135
5.2.7.5. CA2 - Hamburg 136
5.2.7.6. Synapse N + 1 136
5.2.7.7. APTEC DPS 137
5.2.7.8. C.MMP 137
5.2.7.9. CM* 137

iv

6. Conclusions 139
6.1. Architecture 139
6.2. Implementation 140
6.3. Realization 141
6.4. Trial by Fire 142

List of Figures

Figure 1-1: Computational resources supporting many robotics applications can 5
be summarized as a system with internalization, knowledge
management, goal management, and externalization packages.

Figure 1-2: Mapping subsystems to separate simulation packages with inter 9
process communication along well defined interface paths can
improve simulator throughput.

Figure 2 -1 : A dual height Versabus card cage was constructed to house the two 12
processor RAPIDbus I prototype.

Figure 2-2: The RAPIDbus I interface was implemented on a mother daughter 13
board inserted between the physical bus and a commercial
monoboard computer.

Figure 2-3: Separation of processor and memory functions on the bus maximizes 14
bus loading and average memory reference latency.

Figure 2-4: Addition of local memory on the processor card permits quick access 15
to private data and instructions.

Figure 2-5: Dual porting of the Jocal memory can economize on bus cycles 16
required to access shared memory.

Figure 2-6: The virtual bus system is implemented using bus windows to link 17
several masters and slaves simultaneously.

Figure 2-7: Each RAPIDbus interface card is composed of multiple modules, 18
centered around the Ibus.

Figure 2-8: Bus transfer timing relative to the processor clock for two cycles, the 22
first in zero wait states, the second requiring an extra clock cycle.

Figure 2-9: Locations and transitions are used to represent control flow using 28
evaluation net notation.

Figure 2-10: The processor's local bus allows access to local memory, board ^ 31
registers, and the Versabus port.

Figure 2-11: The local ram is dual ported to both the Versabus and the local 32
processor bus.

Figure 2-12: The dual port arbiter allows a connection between local bus and 33
Versabus or between local ran and the Versabus.

Figure 2-13: System memory cards resemble VM02 ram cards without the dual- 34
port arbitration.

Figure 2-14: The Versabus interconnect protocol assigns the single physical bus 35
to a particular bus for the duration of of a data transfer operation.

Figure 2-15: The RAPIDbus interconnect provides four virtual bus paths, each of 35
which is described by the graph above.

Figu re 3 -1 : Use of separate processor and memory cards forces all processors to 46
be served by a central memory server on all memory reference cycles.

Figu re 3-2: With separate versabus processor and memory cards communicating 47
on the bus, our system would level out at less than twice the
performance of a single processor.

Figure 3-3: Addition of the RAPIDbus interface to a Versabus system with 48
separate processors and memory removes the critical section
enveloping bus memory.

Figure 3-4: Separate processors and memory cards running with the RAPIDbus 48
interface dramatically improve the throughput, but in an absolute
sense, still runs poorly.

Figure 3-5: Addition of local memory on each processor decreases contention for 49
main memory while increasing the complexity of memory allocation.

Figure 3-6: Addition of local memory decreases load on the system bus at the 50
expense of a possible increase in the complexity of the programming
environment.

Figure 3-7: Addition of RAPIDbus interfaces to a Versabus system with local 52
memory removes bus contention for those references mapped to the
system bus.

Figure 3-8: Addition of RAPIDbus interface cards decreases contention for the 53
system bus, improving performance in systems with low p and more
than three processors.

Figure 3-9: Dual porting the local memory to the system bus decreases bus 54
contention relative to separate memory cards without the
disadvantages of purely local memory.

Figure 3-10: Dual porting the memory local to the processor decreases bus 55
contention and simplifies restarting a suspended process.

Figure 3-11: Addition of a RAPIDbus interface to a dual port Versabus system 53
decreases bus contention while introducing the possibility of
deadlock.

Figure 3-12: Addition of the RAPIDbus interface to a dual port system produces a 57
very limited increase in system throughput for any but the lowest p
values.

Figure 3-13: Analysis of the information content during each window of a 58
RAPIDbus I data transfer operation suggests more efficient
transmission protocols.

Figure 3-14: Bistable elements, designed conceptually like that above form the 63
basis of the metastable problem.

Figu re 3-15: AD latch, key to the design of synchronizers, can be represented by 64
structures the two stage structure shown above.

Figure 3-16: The metastable voltage is surrounded by a small probabilistic 65
region, where escape is noise dependent, and a larger deterministic
region where the propagation delay is design dependent.

Figure 3-17: Design of a practical system using an asynchronous interface 66
requires a synchronization latency to increase the mean time
between metastables that propagate through to the second
subsystem.

Figu re 3-18: Package distribution on RAPiDbus I interface cards. 70
Figure 3-19: Consolidation of latches, drivers, psrity logic, and comparators into 72

a translator slice results in a fast, compact time-multiplexed bus.
Figure 3-20: Use of a good ground place, bypassing, and short lines, acceptable 76

waveforms were achieved using wire wrap on RAPIDbus I.

Figure 3-21: RAPIDbus I system specifications. 77
Figu re 4 - 1 : Multiword packets can be used to integrate a prototype functional box 82

onto RAPIDbus while existing processors absorb overhead
functionality.

Figure 4-2: The RAPIDbus II architecture is composed of societies with up to 85
fifteen host nodes. High speed parallel links between societies can be
configured in response to research requirements.

Figure 4-3: A pipeline of societies fits applications where most of the data flow 86
obeys a linear, single input port, single output port relationship.

Figure 4-4: A ring of societies provides low latency communication throughout 86
the address space with singly redundant paths between societies.

Figure 4-5: Rings of societies can be generalized into N-cube topologies, with 87
arbitrarily many redundant paths between societies at the price of
increased overhead.

Figure 4-6: The physical address space is partitioned hierarchically into societies 88
and then host nodes within a society.

Figure 4-7: Five primative scalar data types are supported based on Motorola 90
68000 representations.

Figure 4-8: Three different floating point representations are supported based on 91
the Motorola packing of the proposed IEEE floating point
specification P754.

Figure 4-9: The object interface layer is inserted between processor and 94
interchange to assist in operand management.

Figu re 4-10: The type box is used to retrofit a variety of existing processors to an 96
object based RAPIDbus II.

Figure 5 -1 : The least significant three bits of the function code field indicate the 102
transfer class.

Figure 5-2: The most significant five bits of the function code elaborate on the 103
class of the transfer.

Figure 5-3: Each primary bus has a paired acknowledge bus to confirm each bus 104
cycle.

Figure 5-4: Timing for the high speed buses is done by one arbiter module global 104
to each cage.

Figure 5-5: Use of a sixteen bit host on a thirty-two bit unjustified bus requires a 106
crossover to allow access to all bytes in memory along low data lines.

Figure 5-6: A single monolithic structure presents a multitude of independent 118
sources of failure, any one of which can fail the system.

Figure 5-7: Dividing a system into many, spared modules can increase fault 118
tolerance.

Figure 5-8: Bit slice crosspoint switch permits changing one routing per cycle in 121
each of four groups.

Figure 5-9: Many of the same fields carried in parallel with the common bus 122
implementation are doublet serialized with the crosspoint switch,
decreasing data path width.

Figure 5-10: Eighteen bit slice crosspoint chips interconnect a society of 123
RAPIDbus II processor nodes.

Figu re 5-11: RAPIDbus II proof-of-concept realization. 125
Figure 5-12: A micro-coded RAPIDbus interface simplifies the integration of 126

existing processor nodes.

Figure 5-13: Versabus systems quickly saturate in a tightly coupled system such 132
that increasing the number of processors does not improve the
throughput.

Figure 5-14: Use of a RAPIDbus II interchange network significantly reduces bus 133
contention in a tightly coupled application with respect to a similar
Versabus system.

Abstract

Research in areas of robotics such as machine vision and control systems can benefit from

appropriate increases in the available computational power. If algorithms can be structured

to take advantage of task level concurrency, a multiprocessor design can provide cost-

effective enhancements to the computational resources while decreasing the impact of

subsystem failures.

RAPIDbus is described in this report as two evolutionary steps in the development of a

system to support research in advanced, integrated, sensor based robotic systems.

RAPIDbus I, a four processor architecture, is evaluated based on a two processor

implementation fabricated in the laboratory. Building on the first design, RAPIDbus II is

described as an extensible, high performance, packet switched structure supporting a

multitude of heterogeneous processor-memory nodes.

Both RAPIDbus architectures assume a single address space populated by a moderate

number of comparatively powerful processors. RAPIDbus II goes beyond the breadtn of the

earlier architecture by assembling groups of fifteen processors into ensembles called

societies. Packet repeaters between societies allow up to sixteen ensembles to be assembled

in a problem-dependent configuration within a single shared address space. Although not

realized in the current proof-of-concept system, an object layer interface was suggested to

maintain cache coherency, support strong data typing, and assist in dynamic memory

management.

The RAPIDbus II implementation independently allocates bandwidth in each society using

redundant, time-multiplexed busses and an efficient bus transfer mechanism. Both single and

multiple word transfers are supported to match the needs of different tasks and processors.

An upward compatible implementation is suggested which replaces the busses in each

society with a cross-point switch, increasing performance while decreasing complexity.

Realization of prototype hardware led to exploration of asynchronous interface design,

system complexity, and integration level issues. Embodiment of the architecture and

implementation in hardware allows comparison with other designs, helping to locate

RAPIDbus within the multiprocessor design space.

Acknowledgements

This project report reflects the assistance of many people who, while not necessarily

endorsing the structure, have helped to bring the structure to life. RAPIDbus I is derived in

part from design concepts developed by Mario Zoccoli and Rafael Bracho.

Dave Coleman, Rob Emmons, and Paul Oppedal are providing essential assistance to

transform drawings into working hardware. Under IBM sponsorship, Pat Snyder of the

University of Minnesota Micro group is bringing parts and supplier relations together in record

time. Design automation was made possible by Dario Giuse's prompt and patient support of

early versions of drawing package. Thanks are also due to Howard Wactlar and the

engineering lab for providing the kind of support that makes almost anything possible.

Complementary to the hardware structure, Nanda Alapati and Jim McQuade are bringing a

software environment together with the assistance of Industrial Programming Inc.

RAPIDbus I was supported by the National Science Foundation. Architectural design and

partial fabrication of RAPIDbus II is being supported by the Air Force Office of Scientific

Research as a tool in the exploration of space based image analysis algorithms. Colin

Harrison and Dale Krutchten with IBM's Instrument's Advanced Technology Division are

supporting fabrication of the RAPIDbus I! implementation. SKY Computer is providing

essential hardware and support for the floating point processor nodes. H. T. Kung supported

importation of LLL's SCALD into our environment, and design of the ECL bus interface chip in

conjunction with A. Nowatzyk.

The advice and helpful suggestions made by many researchers, designers, and architects at

IBM Instruments, Motorola MicroSystems, Motorola Semiconductors, and ESL/TRW are

gratefully acknowledged.

Chapter 1
Why RAPIDbus?

Two hundred kilometers above the earth's surface, a space platform is responsible for the

analysis of imagery representing events below. Within a factory of the future, individualized

electronic packages are assembled by a team of interacting robots. In the laboratory, a new

computer system is taken from design drawings to gate level emulation with minimal human

intervention. Hypothetical settings such as these represent goals motivating current robotics

research. Each such application is rooted in specific theoretical and implementation

questions. They share a common need for appropriate and significant increases in the

computational power available to support future development.

RAPIDbus is directed at exploring one approach to providing computational resources for

the development of advanced robotic systems. It is both a project in application-directed

computer engineering, and a potential research tool. Conceived with such dual purpose, it is

a blend of the freedom provided by theoretical computer architecture, and the realities best

embodied by the label: tool. By providing a research multiprocessor which is attractive and

practical for a select user base, valuable feedback can be generated, improving our

understanding of both the application environment, and practical approaches to concurrent

programming.

This document describes RAPIDbus as an evolutionary foundation upon which an

application dependent configuration and software base can be built. Although both the

software environment and the implementation of the application are critical to a system

success, this document explicitly discusses neither beyond motivating the chosen machine

architecture.

1.1. Defining the Application

RAPIDbus is intended to provide a system architecture which transcends a particular

robotics environment, and yet no attempt has been made to create a "general" computing

resource. Many special purpose processors have been designed to effectively support a

narrow subsystem need. As a multiprocessor, RAPIDbus is intended to combine the

efficiency of such processors with the requisite general purpose processor element. Like a

visit to a fine tailor, there is no "size" (specific environment) cut into the design, yet a narrow

"style" (robotics research) is defined.

1. i .1 . Model of a Robotic System

From che standpoint of the computer architect, it is useful to create a model for the

computational engine within a robot system. Each environment will place slightly different

requirements on each subsystem, yet there is an underlying similarity in the structure of each.

Figure 1-1 illustrates a variety of internalization tasks interacting with a knowledge base to

form an integrated representation of the external environment. A dynamic goal manager

relies on the model generated by the knowledge base to provide control directives for

packages that modify the external environment.

1.1.1.1. Internalization

The internalization stage is one of the most difficult parts of the system, both conceptually

and computationally, since the external world is often weakly constrained. In a robust system,

this stage may be composed of a multitude of different packages which rely on both sensor

devices and the knowledge base for a bottom-up, top-down analysis of the external world.

Two-way interaction with a knowledge base functionally separates different internalization

media, and while allowing access to a time history of the internal model of the outside world.

Machine vision represents an appealing internalization medium in many applications, both

because of the available bandwidth, and by analogy to human strategy. Yet the bandwidth,

and the confounding of useful information by a multitude of factors often makes vision the

most computationally challenging of the internalization media. Vision represents a primary

[NTERNALIZATION EXTERNALIZATION

VISION
PACKAGE

CONSOLE
PACKAGE

SENSOR
PACKAGE

SENSOR
PACKAGE

/ / /

/ /

KNOWLEDGE
MANAGER

MANAGER

MANIPULATI
PACKAGE

DR

MANIPULATIOR
PACKAGE

DISPLAV

PACKAGE

Figu re 1 - 1 : Computational resources supporting
many robotics applications can be
summarized as a system with
internalization, knowledge management,
goal management, and externalization
packages.

application area guiding the RAPIDbus design.1

Auditory input can be represented as a linear input stream sampled in time, often with much

lower bandwidth than three dimensional visual signals.2 Once sampled, audio processing

often is computationally intensive with some of the same qualitative processing requirements

as vision [58].

Other internalization media include contact [18], proximity, position, or force sensing.

Internalization tasks must convert the sensor input to a representation useful for the

knowledge manager.

In contrast to more general computing systems, a user console is very much an ancillary

input task. In the laboratory, a console is useful for interacting with the system under

development using highly constrained, relatively low bandwidth paths. Seldom is there a

See the subsection following.

Two spatial dimensions and one of time.

need for multiple consoles beyond hardware diagnosis. It is conceivable that a fielded system

in the future might have no console at all.

1.1.1.2. Knowledge Base Management

Current research directed at a single portion of a robot system offen embodies the

knowledge base manager within the internalization and externaiization packages. As multiple

internalization and externalization packages are added, the concept of a central information

repository becomes more important. Packages represent the talents of many different

researchers who require a common means of communicating. For instance, tactile, auditory,

or other cues might be useful in the selection of relevant visual or other media, yet exposure

of one internalization package to another's data structures increases both the conceptual and

implementation difficulties. The structure of both such a knowledge base, and the means by

which it interacts with internalization packages is an open research topic.

1.1.1.3. Goal Management

The goal manager package motivates both the internalization and externalization stages

based on the internal state representation maintained by the knowledge manager. For

instance, Weiss's visual based servo control might be conceived of as a goal manager which

asks the knowledge base to maintain a stream of X and Y coordinates of specific features

relative to a reference frame [60]. The goal manager might then instruct the externalization

packages globally so as to narrow an arm down on an object of interest. At a higher level, the

goal manager might plan the assembly of an object based on a description maintained by the

knowledge manager.3

1.1.1.4. Externalization

The externalization packages attempt to affect the external environment in accordance with

the directives of the goal manager package. Generally each package can be expected to

merge the internal model of the environment, as depicted by the knowledge base package

with the directives from the goal manager to create control signals to specific actuator

mechanisms.

In some systems, such as an assembly cell, the externalization packages may regulate

position or process control parameters according to a control scheme. In other systems

auditory output or visual display may provide feedback to the user.

Perhaps this is a second knowledge base manager distinct from that monitoring the immediate state of the
internalization packages.

1.1.2. Machine Vision

Algorithm development for the analysis of time-varying space based imagery is a prime

motivator for the fabrication of a RAPIDbus system. This particular application serves to

illustrate some of the characteristics of vision internalization and knowledge base packages,

although console and display packages are also involved.

Vision packages are typically characterized as a pyramid, beginning with large iconic

images, which are typically processed to extract a concise representation of the external

environment relevant to the internal knowledge base. The knowledge base may guide the

vision task by providing information from a time history of past image frames or by describing

objects or situations known to the system [74, 50].

Most approaches to early vision processing, at the base of the pyramid, are highly parallel,

accommodating data rates which may exceed ten million, eight bit samples per second for

high resolution aerial image sensors. Many different special purpose architectures, both

digital [53] and electro-optic [40], have been designed to implement operators such as

convolution [15], correlation [56]; spatial filtering, moments [14] and edge enhancement [15].

At higher levels in the pyramid, data rates decrease, but the computations becomes less

regular. Concurrency is still possible, though at the task level, either by working on separate

portions of the image, or by working on different hypothesis of system structure. For

instance, in a graph matching approach [21], several tasks could start at different points on

the search tree, working to convergence on a particular representation. A multitude of other

high level analysis approaches are discussed in volumes such as Ballard & Brown [6], many of

which are potentially adaptable to programmer dictated parallelism.

As a high level representation of the external environment forms within the knowledge

package, the goal manager can begin to exercise reporting criteria, making decision as to

how and when to report the results of analysis.

8

1.1.3. Assembly Assistance

Research in sensor based robot assembly cells represent a second potential application for

a RAPIDbus system [61]. Within such cells, one or more manipulators may be used to accept

incoming parts, join them, and pass subassemblies on.

Automated assembly may require a wide range of internalization packages including binary

or grey level vision [62], acoustic, optical, electromagnetic, force, or tactile. Each of the

sensors may be introduced to the system expediently using a standard interface protocol

such as RS-232, GPIB, current loop, or parallel port. Preprocessors may already exi.st using

one or more I/O bus standards such as STD bus, Qbus, or Multibus. Other than vision

systems, such sensors are often low bandwidth, but numerous. Their internalization

packages can often be productively formulated with a separate package bound to each

sensor or group of sensors.

The centralized knowledge management package is especially useful with very diverse

internalization packages. As in the vision application accented above, flexible assembly may

rely on two knowledge base packages, one describing the immediate assembly environment,

the second describing the assembly procedure.

At a higher level, several such assembly cells may interact under the control of a goal

manager package within one tightly coupled system. Irregularities or individual job

^characteristics may then be passed from cell to cell through the knowledge base package.

At the externalization stage, a variety of different actuators may be required, controlling

position, flow, or force at many different points. Support for standardized interface protocols

is again useful in the rapid integration of existing controllers.

1.1.4. Design Assistance

Design automation represents a third application for a tightly coupled processor system.

Project's such as Demeter at CMU are working to develop integrated design environments to

assist in the translation from design specification to fabrication documents [34,66,8].

Although the majority of such systems fit well onto workstation or general purpose computing

environments, the gate level simulation of large digital circuits presents special performance

problems.

Prior to expending the effort required to fabricate either custom silicon or board level

designs, it is useful to analyze their behavior. Such analysis can help to verify correctness,

evaluate performance tradeoffs, and study the response to system faults. Although many

design automation tasks for a large project can be handled in small pieces, simulation, by

nature, often involves the entire design. Current uniproceesor-based simulators are

frequently too slow to get meaningful performance statistics, or to integrate actual silicon

devices with dynamic memory elements.

DIGITAL
SIMULATION
SUBSYSTEM
PACKAGE
ONE

DISPLAY
PACKAGE

DIGITAL
SIMULATION
SUBSYSTEM
PACKAGE

TWO

\

/

CLOCK
TASK

Figure 1-2: Mapping subsystems to separate
simulation packages with inter process
communication along well defined
interface paths can improve simulator
throughput.

Based on the pioneering work done by Lawrence Livermore Labs with SCALD [63], many

design automation systems support hierarchical design descriptions with a multitude of

different modules at all but the top layer, as shown in figure 1-2. At the second highest layer,

communication between modules can readily be made very explicit, and is usually along

clean interface boundaries.

This suggests the possibility of mapping each such modulo at a convenient high level to a

different task, and potentially processor, for simulation. Each task simulates an event queue

for a specific step interval. When the queue is exhausted, outputs are exported to other

simulation tasks for event scheduling, designated signals are sent to a display task, and a

clock task is given an interval completion signal. In turn the clock increments the timing and

initiates the queue for the next step in each simulation task.

1U

In this way, simulation of large digital circuits can be productively cast as a highly

concurrent multitasking problem with programmer controlled parallelism and tight coupling.

In the context of RAPIDbus, simulation is a support task for the efficient fabrication of new

digital hardware.

1.2. RAPIDbus

1.2.1. Defining a Structure

The model of a robot system described above has strong implications for the design of an

effective, very high performance machine architecture. Even at the package level, a high

degree of concurrency is suggested. As three example environments indicated, each

package is often further divisible into concurrent tasks. Coupling the need for high, cost

effective performance with this degree of concurrency led to the choice of a multiprocessor

architecture for RAPIDbus. The strong dependency between tasks suggested that low

latency communication was imperative. The variety of different tasks suggested a

heterogeneous processor structure.

1.2.2. The Goal

It is the goal of this project report to describe a multiprocessor structure supporting a

multitude of diverse, heterogeneous tasks grouped into packages with a tight locality of

reference. Parallelism is explicitly designated by the programmer, assisted by architectural

features to support modular, strongly typed code. Underlying this goal is the hypothesis that

such a structure can effectively support the development of advanced robot systems.

11

Chapter 2
RAPIDbusI:

Architecture and Realization

2 . 1 . Why Build?

When the time comes to create a machine intended for use in a particular application, one

begins to appreciate the observation that there are two kinds of computer architects [12]. The

fhst spend their lives studying how to build machines, the second build machines. Each

approach has strengths, each is symbiotic with the other. The first kind of architect lives in a

world of paper and models, the second in a world strung together with semiconductors and

unforgiving electrons. RAPIDbus I is our first step into the perils, and lessons of this second

realm.

A time-multiplexed common bus was chosen as a cost-effective initial configuration

connecting a small number of high-end microprocessors. At the suggestion of Rafael Bracho,

we took advantage of commercial Versabus monoboard computers connected through

individual interface cards onto a time-multiplexed physical bus [13]. The basic design for the

time-multiplexed bus was adapted in part from an earlier design by Zoccoli [81].

A two processor system, shown in figures 2-1 and 2-2, was constructed and evaluated to

provide a realistic basis for the qualitative and quantitative description presented in this

Figure 2-1: A dual height Versabus card cage was
constructed to house the two processor
RAPIDbus I prototype.

chapter. This background forms the basis of the evaluation described in the following

chapter. More extensive details of the RAPIDbus I design can be found in CMU Robotics

Institute Technical Report 82-13 [77].

2.2. Systems Architecture

2.2.1. Choosing Versabus as a Host

Versabus is a circuit-switched common bus protocol developed by Motorola to the 68000

family of microprocessors. Using an asynchronous handshaking protocol, data can be

transferred on up to 32 data lines and selected by 32 address lines in a series of upward

compatible steps. Multiprocessors are supported using a bus arbitration scheme controlled

by a central arbiter. Vector interrupts are impiementing by extending the 68000 interrupt

structure to the bus.

Figure 2-2: The RAPIDbus I interface was
implemented on a mother- daughter
board inserted between the physical bus
and a commercial monoboard computer.

In late 1981, when the processor was being selected, the 68000 microprocessor was a

reasonable choice for the kind of numerically intensive computation that was foreseen in our

application code. The 68000 allows use of 16 bit data transfer capability, with a 16 megabyte

(24 bit) addressing range.

Similar results are likely using the Intel 80X86 line of microprocessors running on a Multibus

with suitable modifications. Although the original Multibus was not designed for 32 bit

cc mpatibility, a new draft standard, MULTIBUS II, is expected to provide 32 bit synchronous

data transfer capability [70].

Versabus is specified in draft form as Motorola document M68KVBS-D4[46]. An IEEE

committee has been formed to consider IEEE standardization of a similar bus protocol. Since

the initial release of Versabus, market pressures have lead to the design of i\ VME bus

specification, which has a protocol similar to that of Versabus, but is usually implemented on

dual DIN cards using the 16 bit bus option.

Other industrial bus standards were rejected as a prototype host interface for a variety of

reasons. Card size restrictions and limited bus widths eliminated the S100. Qbus did not

provide a commercially available processor card with the price/performance that the VM02

offered. Tl's 9900 bus did not have a seem to have enough support or performance to be

interesting. Both the VAX SBI and the Gould SEL bus were considered and rejected based on

the inavailability of appropriate) single board processor cards.4

2.2.2. PMS Level Alternat ives

Once the decision was made to use a monoboard computer as the processor node, a variety

of processor-memory-switch (PMS) [64] level structures were possible using a common bus.

The simplest approach was to assign processors on one set of cards, and the memory on

another set of cards (figure 2-3). All memory references are subjected to bus latency,

increasing load on the interchange network.

M M

/ ' V 7 V

COMMON BUS

Figure 2-3: Separation of processor and memory
functions on the bus maximizes bus
loading and average memory reference
latency.

In order to reduce inter-processor bus contention, many monoboard computers provide

local memory, either ROMS containing system software, or RAM for private data or instruction

segments. Shared memory segments are still located on separate RAM cards accessible via

the common bus. Access to such shared memory requires that both a read and a write

operation take place on the system bus to communicate a word of data between processors

(figure 2-4).

By dual-porting memory onto both the local processor and system bus, the number of

The SBI and the SEL bus are synchronous, a appealing characteristic when time-multiplexing a host port

p M
/
\

S

P M

s s

M

/K

<5

COMMON BUS

Figure 2-4: Addition of local memory on the
processor card permits quick access to
private data and instructions.

references required on the system bus decreases (see figure 2-5). The communication of data

from one processor to another requires only a single bus transfer to share each word of data.

A circuit switched interchange network, which supports ortly one circuit path for the

duration of a memory access, such as Versabus, has no risk of deadlock resulting from the

sharing of a single interchange port between outgoing processor requests and incoming

memory accesses. Performance can decline resulting from memory contention, but since the

Versabus host port is only assigned to one master at a time, a situation cannot arise where

respective local dual ports are simultaneously assigned to the local processor engaging in a

bus transfer that requires the other dual port memory, resulting in deadlock.

Several months into the design of RAPIDbus I, after we were committed to implementing a

dual VM02 prototype with dual ported memory, it became clear that the circuit switching

assumptions built into Versabus would greatly complicate the overlaying of a time

multiplexing interchange with multiple simultaneous paths. Since multiple Versabus hosts

could simultaneously receive conflicting Versabus port grants, a serious deadlock problem

was introduced. Coupled with the 68000's inability to rollback on all instructions, we were left

with the possibility of either accepting bus error (time out) traps for legal accesses, or

modifying the Versabus protocol on each host.5

The efficiency of each of these approaches is analyzed in che following chapter, both using

a straight Versabus implementation of the common bus, and with a RAPIDbus interface card

interposed between host and bus to create the illusion of several physical busses through

RAPIDbus I accepted the possibility of traps on valid requests.

p

\

M

S

/

\

P

N

M

0
S

^ /

p

N
/

M

S

p

\

M

(j)
<5
ŝ

s

COMMON BUS

Figure 2-5: Dual porting of the local memory can
economize en bus cycles required to
access shared memory.

time-multiplexing. As one expects, performance comparisons can only be made based on

application dependent parameters. It is clear however that going from the first to fourth

configuration above, the hardware complexity increases. Al! tests involving actual hardware

were based on a pair of VM02 processors and RAPIDbus I interface cards.

2.2.3. The RAPIDbus I Interface

2.2.3.1. RAPIDbus I Concept

A primary goal of the RAPIDbus I protocol is to take advantage of the bandwidth differential

between a single block of bulk dynamic memory, and the theoretical bandwidth which the

system bus is capable of. By time multiplexing the physical backplane, each Versabus port

capable of initiating a data transfer (master) is assigned a virtual bus, along which all other

available RAPIDbus ports in the system may be accessed as slaves. Each master appears to

have a private link from the RAPIDOus port on the interface card to the RAPIDbus ports of all

other system cards. Versabus processor which share a dual-port with local memory may have

to arbitrate use of their port with other masters accessing the dual-port memory.

The virtual busses connecting the RAPSDbus port on each interface card are implemented

using time-domain bus windows. Each interface which supports a processor is sequentially

given a window during which the master interface may send a data transfer request to one or

more slaves, and/or receive a response from an already activated slave. System timing is

illustrated in figure 2-6. At least three windows are required to complete a data transfer.

Experience with the VM02 card suggests that most Versabus cards will require several more.

Thus the RAPIDbus interface card transforms between the time-multiplexed RAPIDbus

windows that are pertinent to a task, and the time-static Versabus host.

17

Latch Clock

Window Address
on the RAPIDbus

Processor #0

Processor

Processor #2

Shading indicates that the processor
drives the RAPIDbus.

Time

• >

Figure 2-6: The virtual bus system is implemented
using bus windows to link several
masters and slaves simultaneously.

Our FAST TTL implementation indicates that up to four windows can reliably be supported

using an eight to ten megahertz processor. A variety of signal lines are required to implement

data transfer, some of which are time-static, and *some of which are time-dynamic,

communicating during bus windows. Data and address lines are examples of lines sent on

bus windows, having different values for each of the virtual busses. Other lines are time-static

and are identical for all virtual busses. The interrupt lines are examples of time-static lines,

interrupting a processor handling a given level independent of the virtual bus that the

interrupt handler is assigned to.

A multicasting capability is supported on the interface which allows one master to write

blocks of data simultaneously into multiple memory locations. Prior to a multicast transfer,

the system multicast capability must be assigned to a master, and the required address

generators initialized.

2.2.3.2. RAPIDbus functional modules

Each RAPIDbus I interface card is composed of a series of functional blocks as shown in

figure 2-7. This compartmentalization of function is intended to improve the readability of a

design, simplify debugging, and identify functions that lend themselves to packaging

integration. The interface is composed of a window handler, drivers, latches, an address

translation unit, a multicast address generator, a parity check section, a chip select section, a

timing generator, an interrupt control section, and an interface controller. The Ibus links the

Versabus port on the top of each interface card with the RAPIDbus port at the bottom. It

comprises the address translation section, the drivers, and the latches. The Versabus port,

the RAPIDbus port, the multicast address generators, the parity section, and the chip select

section drive or monitor the Ibus.

VERSABUS PORT

/

INTEi"

\

JRUPT

CONTROL

/

f

->

WINDOW

/

MEMORY
MANAGEMENT

UNIT

CHIP
SELECT

PARITY

•4-

1

/
\ f

| BUFFER |

f
K IBUS

DRIVERS 1

>

LATC H 1

MULTICAST
ADDRESS
GENERATOR

PARITY I
1

LATCH 1

RAPIDBUS PORT

Figure 2-7: Each RAPIDbus interface card is
composed of multiple modules, centered
around the Ibus.

Window Handler

The heart of the time-multiplexed bus is the window handler. Each interface port off the

RAPIDbus is assigned a unique window identification number, which determines the home

address, timeout interval,6 and in the case of a slave, the control page address within the

RAPIDbus physical address space. The window handler scans the window address bus

looking for either the home window address or that of a master for whom this interface is

working as a slave. Through the control register the interface can be configured so as to

recognize only one window address for slave accesses (masking).

to reduce deadlock

19

Driver

The driver section is used to gate the address, data, and control lines onto the RAPIDbus

during a window as directed by the control sequencer. When the control sequencer does not

indicate that this interface is to drive a given backplane line in the current window, the lines

are to be tri-stated. Line drive is to commence as soon as the appropriate window is

recognized and continue until the next window is recognized.

Latch

The latch section holds data at two levels. The first latches all time-multiplexed RAPIDbus

lines at the end of every window. During the following bus window, these latched lines are

examined for a slave reference to this interface card. If the Ibus is not being requested or is in

use, and a slave reference to this interface is detected, then the contents of the first level latch

are held by the second level latch. The second latch also holds the bus window if the Ibus is

already allocated to the virtual bus currently sending the bus window held at the first level

latch. Under the direction ot the control section, lines can be se'ectively gated onto the Ibus

according to the function of the current ibus master.

Address Translation

Data transfer exchanges must always be initiated by a master, and each master interface

may optionally have an address translation unit positioned between the host processor

and the RAPIDbus drivers. The function of the address translation unit is to map A8 - A23 to

physical addresses PA8 - PA23. In any interface that incorporates a address translation unit,

the translation must be capable of being circumvented through the control register so as to

map the Versabus address directly to the RAPIDbus drivers. The lower seven address lines,

A1 - A7 are supplied directly to the driver section without translation. The control register also

allows switching between primary and secondary memory maps on interfaces that support

memory management.

Multicast Address Generator

The multicast address generator is required for all interface cards that must function as

a slave during a multicast data transfer cycle. The master desiring to multicast must set the

multicast request bit in its control register, asking the processor's interface to try for

ownership of the multicast capability. Line twelve of the interface status register is asserted

low by the interface to indicate that the multicast capability has been secured by this

interface.

20

Prior to sending multicast transfers, the multicast address generator registers of all

interfaces that are to be destinations must be loaded with the base address and the number of

words that are to be multicast. For interface cards which support master and slave functional

hosts, the master occupying the Versabus port must be asked to initialize his multicast

address generator since the MAG registers for a master interface only appear in that master

host's memory map. For slave-only interface hosts, such as a memory card, the MAG

registers are mapped into the RAPIDbus physical address space.

Following write instructions to the multicast reference address will be multicast to each

activated slave card until a slave's word count is exhausted or the master stops writing to the

multicast address. Each activated slave depends on its multicast address generator to supply

the memory address and maintain the count of words still to be transferred. The address

counter is not incremented and the word count not decremented if multicast retry is asserted

by any interface being multicast into before the multicast data acknowledge has gone high.

Parity

The parity section generates and checks parity during master and slave transfer operations

over both data and address lines. A parity error results in a retry of the transfer cycle unless

the aborted instruction was part of a read/modify/write operation.

Chip Select

The chip select section serves to direct references by the Ibus owner to the interface

control page, Versabus, or RAPIDbus port. If a master reference is not to the control page,

then the reference is directed to the RAPIDbus drivers. Control page references are subject

to further decoding to identify the reference as a multicast, multicast control, interface

control/status register, or memory management unit reference, selecting the appropriate

device or in the case of the multicast, the interface RAPIDbus multicast server.

Timing Generation

The timing generation section controls the timing of the interface state sequencing. This

section generates the multicast and regular address strobes when the respective address

lines are ready for the RAPIDbus drivers, and generates decode enables and DTACK for the

interface mapped resources.

21

Interrupt Control
The interrupt control section supports interrupt generation and interrupt handler vector

requesting. This section presents to the Versabus port on the interface only those interrupts

that the interface host is strapped to uniquely handle. If installed, the memory management

unit interrupts at one of the levels handled by the local host. The interface host is able to

generate any one of the seven levels of RAPIDbus interrupts.

Interrupt vector acknowledge operations are correctly supported, with the hardware

supported restriction that only one master at a time may run an interrupt acknowledge cycle.

Within an interrupt level, physical priority in the card cage dictates interrupt handling priority.

Control Section
The control section knits together the other functional blocks and controls the logical

state of the interface. The ownership of the Ibus is decided by the control section. The

interface bus error, retry, data acknowledge, and halt are generated by this section, as are

timeout and retry limits. The control section contains the control/status register which allows

dynamic configuration of interface parameters such as the masking address, the address

translation path, and the auxiliary memory map.

2.3- Communications Protocol

A variety of different data transfer protocol are used in the RAPIDbus I architecture. This

section serves as both a summary, and a pointer to more detailed literature.

2.3.1. The 68000

The Motorola 68000 forms an entire micro-coded processor on a chip. The chip must

communicate with external hardware however, in order to accept instructions, read and write

data, generate and handle interrupts, and respond to irregular termination conditions such as

reset, bus errors, and retries. This section is concerned with summarizing the protocol for

communication off chip. For detailed information, see the relevant Motorola manuals, and

technical bulletins [48, 35]

2.3.1.1. Memory Reference Cycles

The 68000 uses a handshaking protocol to access either byte or word operands from either

memory or peripherals. Twenty-three explicit address lines are used, supplemented by three

bits of function code, and two data strobes. The two data strobes, upper (AO is low), and

lower (AO is high) are used to select either or both of the least significant bytes addressed by

the sixteen megabyte address range. Long-word transfers are implemented as a pair of

atomic transfer operations. The 68000 defines five significant function codes, supervisor

program and data, user program and data, and an interrupt cycle. Either supervisor or user

function codes, when paired with an asserted address strobe, and at least one asserted data

strobe indicate a valid data transfer cycle.

A given data transfer cycle can read an operand; write an operand; or read an operand,

modify it's value, and write it back as part of an atomic bus cycle. A write operation is

indicated by the write line being asserted low while both address strobe and at least one data

strobe are low.

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 8 9 0
cue

ADOR X ! j>—C y—<

AS*

DTACK*

Figure 2-8: Bus transfer timing relative to the
processor clock for two cycles, the first
in zero wait states, the second requiring
an extra clock cycle.

Any data transfer operation is terminated either with data acknowledge, bus error, halt, or

reset being asserted low. Normal bus cycles conclude, or read-modify-write cycles are

punctuated by the assertion, and later removal, of data acknowledge. Bus error is an irregular

termination which is sampled once on each microcycle during the transfer. If bus error is

asserted, and halt is still inactive, then the transfer is aborted, and the microengine traps to a

handler routine. When bus error is asserted in conjunction with halt, then the current memory

fetch cycle is terminated, and if possible, rerun. In the current 68000, all instructions except

23

for test and set are capable of being rerun. Assertion of halt alone puts the microengine into a

state of suspended animation from which only a reset will recover.

Motorola specifies the data acknowledge, bus error, halt, and reset for assertion a setup

time before they are sampled by the internal microengine. It is interesting to note that some

designs violate this setup time, with apparent impunity. A penalty is, however, paid in

processor throughput, and potentially in system reliability. Since the internal micro-engine

samples the data acknowledge only once during each clock cycle at and following the end of

microcycle four, assertion of data acknowledge randomly with respect to the clock potentially

slows down every memory reference by an average of half a clock period, or about twelve

percent (relative to a zero wait state operation).

2.3.1.2. Interrupt Cycles

In order to efficiently respond to events asynchronous to the current instruction stream, the

68000 is designed to support vectored interrupts. Three external interrupt lines are sampled

at the end of each instruction cycle. Subject to possible internal masking, an interrupt

acknowledge cycle will be initiated on the data bus, denoted by an interrupt acknowledge

function code. The low address represents the interrupt level which the processor is currently

responding to. A pointer to the proper handler routine is returned by the interrupting device,

or an interrupt vector generator working on behalf of the interrupter on the low byte of the

data bus.

2.3.2. The Versabus Data Transfer

Shortly after the introduction of the 68000 processor, Motorola released Versabus as a bus

protocol optimized for their processor interface.7 Versabus was intended to support a tightly

coupled system of "data processing, data storage, and peripheral data control devices" [46],

Manufacturers and those using their parts have often designed bus protocols around a new processor, The S100
bus is based on an 8080, the Apple bus on the 6522, the Qbus on (he LSI-11, and the Multibus on the 8086, to cite a
few.

2.3.2.1. Bus Arbitration

Each Versabus system has a system controller which is responsible for Versabus arbitration

among other duties. A requester desiring use of the bus pulls one of five prioritized, open-

collector bus request lines BR0-BR4. A special requester, the emergency requester, has an

additional, high priority request line. If a request is submitted at a higher priority than the

current bus master, the system controller's arbiter can assert the bus clear line, instructing

the current user to free the bus. Some Versabus masters automatically release the bus after a

single data transfer, others hold the bus for multiple transfer cycles, and some even hold onto

the bus until ordered to release by the bus clear signal.

After the current bus master has removed the BBSY line, the arbiter grants the bus to the

highest priority active request level following an arbitration delay. In some implementations

this arbitration process can occur while the preceding data transfer operation is concluding.

Since multiple potential bus masters may have made a bus request on the same line, the

arbiter sends the bus grant signal down one of several daisy chains where it is passed along

until it encounters a card which requested the bus at this level. Such a card traps the bus

grant, and begins to drive the BBSY signal. The arbiter receives this BBSY signal, and

removes its bus grant.

2.3.2.2. Data Transfer

After bus mastership has been granted, a processor begins by asserting the address,

function code, address strobe, and data strobes as appropriate to the width of the data

transfer (see a description of the 68000 above for details). All potential slaves scan the

address and function code lines, waiting for a reference that addresses their resources. The

selected slave arbitrates for use of the dual-port RAM if needed, conveying the address bits to

the memory or peripheral logic.

If the write line is high following assertion of data strobes, then a read operation is in

progress. After the operands are available, and gated onto the Versabus, the slave drives the

data acknowledge line low, causing the master to latch the data and release the lines it is

driving. In the case of a write operation, with the write line low, the memory latches in the

data, and returns data acknowledge to the processor, causing the processor to release the

lines that it is driving. In the case of a read/modify/write operation, the address strobe

remains assert after data acknowledge comes back from the read operation, continuing

through the write cycle. Any data transfer cycle can be terminated if the BERR line is

asserted.

Optionally, parity is checked for both address and data transfers, although no current

Versabus processor cards are known to support this capability. The halt Sine is no longer

carried out to the Versabus, making retry operations impossible from the bus with unmodified

Versabus cards. A variety of bus width options are enumerated in the specification, covering

data paths of eight, sixteen and thirty-two bits, and address bus widths of sixteen, twenty-four

or thirty-two bits.

2.3.2.3. Interrupt Handling

The 68000 vectored interrupt capability is brought out to the Versabus, using a cycle similar

to a read data transfer. The handler is granted bus mastership, asserts address and data

strobes, and conveys the interrupt level being serviced on the least significant bits of the

address lines.

In order to support multiple potentially interrupting Versabus cards at the same level, the

interrupt lines are daisy-chained similar to the bus grant lines. Only the first card which

interrupted at the level being acknowledged by the daisy chain generates a vector. Thus

within a given interrupt level, physical location of the interrupter determines priority of service.

2.3.3. The RAPIDbus I Data Transfer

The RAPIDbus I data transfer protocol is based on an adapter which sits between the

Versabus port of a standard Versabus card, and the physical bus, converting between the

time-static bus seen by the Versabus card and the time-multiplexed busses implemented on

the physical RAPIDbus backplane. On each interface the Ibus connects the Versabus and

RAPIDbus port. This bus resembles a Versabus to the Versabus host port, with suitable

arbitration between host and requests that may come from the RAPIDbus port.

2.3.3.1. Data Transfer

Once the Versabus port has requested and been granted mastership of the Ibus, some

versions of the interface card translate the address using a Motorola 68451 memory

management unit. Later versions of the processor card incorporate the memory management

unit at the processor, and the interface MMU is not supported. The potentially translated

address is decoded for routing either to MMU control registers, the interface control register,

multicast address registers, or RAPIDbus resources.

A decoded address which maps to the RAPIDbus waits until the fixed time-slot allocated to

26

this interface card, then drives the backplane with the full address, function code, and control

lines. Other interface cards examine the backplane for references to their resources. Until

the full transfer operation is complete, all data transfer will occur on the home window of the

originating processor.

At some point the proper memory or peripheral card becomes available, latching in the data

transfer request so as to present it in a time- static manor to the slave Versabus card, where it

appears as a normal transfer operation. The data is similarly exchanged using the initiating

processor's home window. To the two Versabus ports involved, the transfer operation

completely resembles a standard Versabus transfer.

As the evaluation net model which follows will make clear, the current implementation

permits four such exchanges to occur simultaneously given four processors, four memory or

peripheral cards, and an appropriate addressing pattern. Each transfer is however slightly

longer than a single conventional Versabus transfer would be as a result of the additional

switching that is taking place. Data and address parity is checked on all transfers, with errors

handled via a processor rerunning the transfer for all but a 68000 test and set instruction.

2.3.3.2. Interrupt Handling

Interrupt vector operations are more complex than with a straight Versabus. The interrupt

vector request and return are handled as a data transfer operation, with a valid address

corresponding to the interrupt level which the interrupter generated. Problems arise in the

interrupt acknowledge daisy-chain. Unfortunately there is no simple way of multiplexing a

daisy chain at high speed. Since the interrupt acknowledge is not a very frequent bus cycle,

an interlock mechanism allows only one of the four virtual busses to run an interrupt vector

request cycle at one time.

2.3.3.3. Multicasting

The Multicast capability is an enhancement not supported under Versabus, which allows

one master to simultaneously write into multiple destination memory locations assisted by

address generators located on the interfaces of the destination cards. Only a single virtual

bus can own the multicast capability at any one time in order to simplify the complexity of the

address generators and share multicast acknowledge lines.

Hardware arbitrates the multicast capability among any busses desiring use of the

27

capability, based on interface control, register requests. As soon as the previous multicast

master releases the capability, a bit in the interface control register will indicate a grant to the

next requesting interface, allowing the new multicasting master to acquire the required

capability.

The master must then initialize the multicast address generators in each of the destination

cartls, specifying both the number of words to be transferred, and the base address. If the

destination is a memory card, the register can be written directly. If the destination is located

on a dual port processor card, then the initialization must be requested from the local

processor, perhaps through an interrupt.

As soon as all requisite address generators are initialized, the master can initiate transfers

by writing to a special multicast control address which is decoded on the local interface card.

With the overhead described above, it is clear that the multicast capability is only useful when

large blocks of data are to be transferred. As with standard data transfer operations, parity is

always checked. Parity failure results in a retry operation affecting all active multicast cards.

2.4. Evaluation Net Modeling

2.4.1. Use of Evaluation Nets for Hardware Modeling

Evaluation network [ENET] notation is a convenient method of representing control flow in

both hardware and software systems. Here it is used to provide a model of the RAPIDbus I

multiprocessor system. Use of enet notation allows critical timing paths in the control schema

to come to the forefront in preparation for performance analysis and system optimization.

'Once an enet model has been devised, translation to a computer simulation can be made

largely automatic." All timing information noted on the graphs was derived from logic analyzer

traces run on actual hardware with the exception of the memory-only card, which used times

extrapolated from a working VM02 and a memory card print set.

Enet notation was devised by Nutt [54], [52] based on experience gained in the practical

application of Petri nets to computer systems. The network is made up of transitions which

link locations in a unidirectional manner. Each location contains a vector of state information

(possibly zero length), called tokens. Several locations and transitions proposed by Nutt are

shown in figure 2-9,

Any particular transition has a set of input locations, on the left of the vertical line, and

output locations, to the right of the vertical line. A transition is said to fire if a set of locations

on the left specific to the transition type are occupied by a token, and none is present on the

relevant output. Firing a transition initiates a transition process which fills the proper output

location on it's expiration.8The transition process is often a function of the vector of state

information present at the input.

Although transition functions were not used explicitly in the modeling of the RAPIDbus I

system, transformations of the input vector to produce a new output vector can provide an

effective modeling of control path effects on data flow. Further development of hierarchical

CAD tools for parallel implementations could benefit from such capability.

Figure 2-9 illustrates the enet components used in the RAPIDbus I model. On the far left, the

circle is used to represent a location. The location is assigned a reference number to simplify

the pairing of text and diagram. Each location also has an initial marking indicating the

presence or absence of a token in a given location on reset. Here the initial marking for a

given figure is described in the accompanying text. At most a single token can occupy a

given location at any one time.

-t ~

Figure 2-9: Locations and transitions are used to
represent control flow using evaluation
net notation.

On the far right of a diagram are two arrows used to illustrate connectivity of flow in disjoint

Q

!n Nutt's original work, the transition process was formally divided into four phases: pseudo-enabled, enabled,
active, and terminating. The pseudo-enabled stage was only used by X and Y transitions where resolution was
required following the marking of input nodes and the clearing of output nodes. The enabled phase indicates that all
nodes were ready for firing of the transition. The active phase indicated transition was in progress. Finally the
terminate stage resulted in the marking of the required output nodes and the clearing of the required input nodes.

diagrams. Two connected arrows are assigned the same reference number in both diagrams.

In cases where one arrow may connect with several other matching arrows, as in a driver

gating onto a bus, the arrow number is suffixed with a letter.

The formal enet notation also specifies a resolution location which is used to direct the flow

of control to or from multiple paths, according to the value of the location. Here the function

of the resolution location is informally supplanted by text which indicates the arbitration

strategy. Consideration of the enet notation for performance evaluation in our work led to the

concept of a random variable resolution node, which took on random values according to

some specified parameters. The model implemented in the following chapter uses a poisson

process to model flow based on our first order application parameters.

The remainder of the symbols shown in figure 2-9 are transitions. The most basic is the T

transition. When the location at the right of the transition is unoccupied by a token, and the

input on the left is filled, then the transition fires. Firing of the transition causes a shift of the

input token to the output location after a transition time. Here the transition time is given by a

value under the transition's vertical bar.

The F or fork transition causes the input token to be conveyed to both output locations a

transition time after firing. The complementary function is the J or joining function, which

fires as soon as both input locations (to the left of the vertical bar) are filled, and the output

location on the right is empty. Note that when actually implemented in hardware, the proper

joining of two asynchronous events can make or break the correct functioning of a system.

The ramifications of this asynchrony are discussed in greater detail in the next chapter.

Both the X and Y transitions are shown in two forms, indicating the flexibility with which new

composite operators can be fabricated [52, 79]. The X operator allows the direction of the

input to a particular output node. When the input is filled, then the resolution node is

evaluated. If the destination selected by the resolution node is unoccupied, then the

transition fires, transferring and perhaps modifying tokens at the end of the delay. If not

explicitly shown, the resolution node is taken to be the upper left hand branch of both X and Y

nodes, as shown for the four output X node.

The Y node functions conversely to select one of a variety of inputs for the transition output.

The V node does not require the evaluation of the resolution node if only one input location is

marked. If more than one input location is marked, then resolution is initiated.

2.4.2. Caveats

With some transition delays, the timing could not be determined accurately, and is prefaced

by a "~". A notable example of this is the monostable used to control the refreshing timing.

The presence of several active time bases made determination of some parameters difficult,

and reflects itself in hardware reliability as discussed in the following chapter. Zero transition

delays are often artifacts of the notation's symmetry, in most cases representing the fact that

the transition function was actually lumped into another time delay. The slash between two

different transition delays conveys different timing for token vectors that designate a read or a

write data transfer operation. The read value is always given prior to the " / " , the write value

afterward. Where the resolution function is a priority encoding of inputs, a token on the zero-

input is taken to be highest priority.

2.4.3. The VM02 Dual Port Processor

Figures 2-10, 2-11, and 2-12 describe the data transfer timing of the Motorola VM02

monoboard computer card. The noted delays were implemented on the card using

combinations of a synchronous state machine (processor), delay lines (eleven actively used),

monostable multivibrators and gate delays. As delivered from the factory, the card operates

at eight megahertz with the time base derived from a thirty-two megahertz clock. When run in

a ten megahertz configuration, two time bases are used, one at twenty megahertz for the

processor (divided by two), another for the board, running at thirty-two megahertz. All

measurements here were made at eight megahertz.

Although these diagrams only illustrate memory reference paths, the VM02 and interface are

capable of a variety of alternate cycles including interrupt vector fetches, I/O bus references,

and in the case of the interface, of multicast operations. Since a survey of the intended

application indicated these were infrequent bus operations, mostly bound in performance by

external factors, they have not been included in the enet model depicted here.

The initial marking of figure 2-10 puts a token on L1, with all other locations in figure 2-10

blank. The delay time from L1 to L2 is highly dependent on the instruction mix being run by

the processor. The shortest delay results from the second half of a long word fetch, requiring

190 nanoseconds. Much longer delays are experienced when operations such as multiply

and divide are run with few external memory references required relative to the internal

microcycle count. The stated delay, 260 microseconds, was derived from both observation of

31

a variety of instruction mixes running on a 68K, and validated using hand calculation.9

The birth of a memory reference is signaled by the processor asserting address strobe.

Since the address lines are precharged a fraction of a clock cycle before address strobe, only

twenty nanoseconds are required for a PLA to select the addressed resources, transferring

the token on L2 to L3, L4, L5, or L6. The ROM access is predicated on the use of < 250

nanosecond memory, with no contention possible. Access to RAM, via arrows 1/2

references the dual port located in figure 2-11. Access to Versabus resources is through

arrows 3/4 to figure 2-12. A reference is terminated when date acknowledge is returned to

the processor, again marking node L1. As a result of the resource allocation schema taken

here, the address decode resolution delay is effectively lumped with the resource utilization

delay.

ADDRESS DFCOOF

FMORY REFERENCE , , 3°°^ n, MEMORY REFERENCE
OMPLETE (m1n 19°) INITIATED

ADDRESS DFCODE n
RESOLUTION R

REGRESS 30° / 140
T

L6 i » 3

—
VERSABUS ACCESS

Figure 2-10: The processor's local bus allows
access to local memory, board
registers, and the Versabus port.

The local ram is dual-ported, as noted earlier, to both the local processor bus and the

Versabus (figure 2-11). Since only one port can have access to the resource during one RAM

cycle time, a critical section is implemented. In the VM02 design, references that are resolved

by the priority decoder come from three asynchronous time bases, the refresh timer, the local

A scientific instruction mix was used based on the work of Marathe, converted to 68K "equivalents", and then
projected onto the Motorola microcycle statistics. The mapping of PDP-11 instructions to 68K "equivalents" is not a
highly accurate procedure, but it seemed a reasonable index into an otherwise unavailable number, since no
hardware monitor was available [47].

32

bus, and the Versabus. The refresh timer is initialized on reset by marking location L15, and

the critical section of the dual port is initialized by marking location L12.

RFFRFSH
TTMFR

FRFSH CYC1F
COMPIFTE

PRTORTTY
FNCOPTNG

31

50

CONTROL FlOW

IOCAI : 0 / 0
VFRSARUS: 120 / 120
RAPIDBUS: 150 / 150

(.R/W)

RAM CYCI F
TTMF

RAM
REQUEST

RAM
ACCESS

INITIATED

LOCAL: 610 / 470
VERSABUS: 700 / 480
RAPIDBUS: 990 / 690

(R/W)

1. 2 RFPRESENT LOCAL ACCESS TO RAM.
5, 6 REPRESENT VERSABUS ACCESS TO RAM.

Figure 2-11: The local ram is dual ported to both
the Versabus and the local processor
bus. «

Once a port has been granted access, the service time is dependent on the source and type

of reference (read/write). The source dependency results from the need to send data

acknowledge to the initiating processor, and receive the address strobe removal before

releasing the resource. This allows the proper operation of read/modify/write operations.

The dependency on the operation type reflects the ability of hardware to return a write

operation data acknowledge earlier in the ram cycle than could a read data acknowledge.

Read/modify/write operations are not analyzed here as part of the performance since they

are a very infrequent bus operation.

After data acknowledge is returned to the processor, there is still a period of latency before

the memory array can handle another request. This is reflected in the delay between L51 and

L12.

The Versabus dual port arbiter, figure 2-12, allows either the local processor to access the

Versabus port, or another card to access the dual port memory from the Versabus port. As in

figure 2-11, a critical section is front-ended by an arbiter which has asynchronous inputs,

Note that if arrow 3 is granted access, then the arbiter assigns flow through the 7/8 arrow

pair to the Versabus diagram, located in figure 2-14. If arrow 9 is granted access, then s

request from the Versabus is granted access to the dual-ported memory. Arbitration between

the local bus and Versabus port for the local memory must then take place, before the

reference begins service.

CONTROI FIQW

3, 4 RFPRF.SFNT A LOCAL VERSABUS REQUEST.
9, 10 REPRESENT A BUS REQUFST OF THIS VFRSABUS PORT.

Figure 2-12: The dual port arbiter allows a
connection between local bus and
Versabus or between local ran and the
Versabus.

Since the RAM resource or bus resource service times include the return of date

acknowledge to the initiating processor, transition delays are set here to zero. At the expense

of suggesting a non-causality in the notation, accuracy could be improved by modeling c

slight negative transition time, or using a more complex resource model. The Versabus

specification allows arbitration of Versabus ownership during the end of the last data transfei

cycle, leading to similar remarks about an instantaneous bus clear. The diagram is initial!}

marked on location L19 to activate arbitration of the dual-port critical section.

2.4.4. System Memory Cards

The model of a Versabus memory-only card with no processor on board is based on the

VM02 design strategy and timing model. The local timing here refers only to the cycles

devoted to the refresh timer. The diagram is initially marked on L47 to activate the critical

section used for RAM service, and L46 to activate refresh.

RFFRFSH CYCIF
COMP1 FTF

RFVFRSF CONTROL PI OW

LOCAL: 0 / 0
VFRSABUS: 120 / 120
RAPIDBUS: 150 / 150

(R/W)

RAM CYCLE
TTMF

50 RAM
REQUEST

RAM LOCAL: 610 / 470
T ACCFSS VERSABUS: 700 / 480
INITIATED RAPIDBUS: 990 / 690

(R/W)

RAM
ACCESS

COMPLETE

Figure 2-13: System memory cards resemble VM02
ram cards without the dual-port
arbitration.

2.4.5. The Versabus Interconnect

The VM02 processor card was designed to function in a multi-card, multi-processor

configuration using the Versabus protocol. Control-flow for a sample Versabus system is

illustrated in figure 2-14, with four masters with dual-port memory, and four memory-only

cards. Arrows marked xA, xB, xC, and xD correspond to masters with dual-port memories.

Memory-only Versabus cards are designated by arrows xE, xF, xG, and xH.

The arrow pair 7x/8x represent requests for the Versabus and the termination of requests

respectively. As indicated by the critical section (locations L27, L28, and L29), only one of

the four masters, designated by xA, xB, xC, and xD is able to access the bus during any one

memory reference cycle. The memory reference can be serviced by any Versabus port other

than the port granted access to the bus. In order to prepare for proper operation, location

L28 must initially be marked.

THF Al PHABFTTC POSTFTX TO ARROW IABFI.S RFFER TO
DTFFFRFNT HOST CARDS. A THROUGH D ARF. MASTER /
SLAVES. F. THROUGH H ARE SLAVE ONLY.

Figure 2-14: The Versabus interconnect protocol
assigns the single physical bus to a
particular bus for the duration of of a
data transfer operation.

2.4.6. The RAPIDbus Interconnect

in contrast to the single figure 2-14 which represented the entire Versabus interconnect

scheme for four processors, figure 2-15 is replicated for each of the virtual Versabuses, four

in this example. Each of the four memory-only cards operating using a similar flow diagram

without the arbitration process for the Ibus required to choose between incoming and

outgoing references (arrows 7/8).

Address decoding is restricted from the Ibus. If the instantiation of a diagram represents an

interface with a processor, then the control register space, memory management unit, and

RAPIDbus are only visible to the processor directly attached to the interface. If the interface

represented by the diagram is being accessed via flow arrows 11x/12x from the bus, then

the only accessible resource is the Versabus port, providing access to the dual-ported

memory. If the diagram is an instantiation of an interface used in memory-only mode (slave)

then the interface register, and Versabus port are available for access through the RAPIDbus

port.

36

CONNFCTTONS 7 & 8 ARE
RFQUFSTS TO THF TNTFRFACF

CONTROilFR FROM IMF
VFRSABUS PORT.

THF ALPHABFTIC POSTFTX TO ARROW
I.ABFI S RF/FFR TO DTFFFRFNT HOST CARDS.
A THROUGH 0 ARF MASTER / SLAVES.
F THROUGH H ARF SIAVF ONIY. HARDWARE
TNTFR10CKS PRFVENT VERSABUS HOST N FROM
ACCESSING HOST CARD U AS A SLAVE. WHERE
N rS ANY CARD A THROUGH 0.

PATHS FORMFD FROM BROKEN l.TNFS
INOTCATF TTMF-MUI.TTPIF.XED. CIRCU
SWITCHED COMMUNICATIONS PATHS.

Figure 2-15: The RAPIDbus interconnect provides
four virtual bus paths, each of which is
described by the graph above.

The enet model developed above forms the basis for a simpler queuing model developed i

the following chapter for use in the computer simulation of a variety of Versabus an

RAPIDbus system configurations.

37

Chapters
RAPIDbus I:
An Evaluation

3.1. Evaluation Methodology

Building on a description of RAPIDbus I, this chapter identifies and evaluates critical design

decisions. A convenient structure is imposed through vertical stratification at three different

levels of abstraction. Following the style of Blaauw and Brooks, analysis is divided into three

sections covering system architecture, implementation, and realization [9],

The three levels of abstraction represent different project goals. At the highest level of

abstraction, the architecture represents the functional character of the programming

environment visible to the user. Supporting the architecture is an underlying logical structure

referred to as the implementation, which is described in terms of protocol and functional

diagrams. At the lowest level the machine depends on its realization, composed of elements

such as gates and transmission lines which provide a physical substance.

The machine architecture represents an investment in both familiarization and software

development by any potential user. Users are more likely to accept a machine to which they

can apply what they have internalized from other machines. In order to design a valid

research machine which will attract users in a free market environment, the architect needs to

carefully choose those aspects of the machine which are experimental at the user interface

level. These changes must show potential for increasing performance, reliability, or quality of

the programming environment. In order to derive valid scientific data from any new

architecture, particularly one inside previously charted regions of the design space, the

experimental and control aspects must be clearly located and delineated with respect to other

data points.

Once the architecture is accepted by a user base it becomes a very difficult layer in which to

make non-upward compatible changes. In the development of a research machine which is

exploring the interesting fringes of the design space, experience dictates that it is critical to

budget several fabrications and redesigns of a machine before any presentation to a user

community should take place.10

The implementation layer is more amenable to changes than t!ie architecture since by

definition, this layer must remain transparent to the user. Reduction of compatibility

constraints opens the implementation layer to the unbridled creativity of the designer, with the

potential for enhancements which race ahead of device technology. Through an

understanding of the critical facets of each subsystem, new protocols are developed which

become visible to the user as enhanced performance and reliability.

The realization layer exists to embody the architecture and implementation within devices

and interconnect technology. At best, this layer will use appropriate technology to bring the

machine to life. The quality of that life; its reliability, and performance, are vulnerable to

compromise at this point. This section will survey some of the real-world lessons we have

learned from RAPIDbus I.

Quantitative performance evaluation represents a important and yet highly controversial

field. Characteristics of all three levels of abstraction are combined with the uncertainties of

the measurement process, resulting in a" metric which one hopes to correlate with

performance. The ultimate test of any realization of RAPIDbus lies in its performance within

the intended robotics application environment. Since implementation of an application and

operating system were deferred to run on the RAPIDbus II design, comparison between

benchmarks run on RAPIDbus I, and performance on other machines running a full operating

system would be misleading, and have been omitted in this report.

A glowing example of this is the evolution of the MIT LISP machine into the Symbolics 3600.

3.2. Architecture

Our initial goal, achieved with the fabrication of RAPIDbus I, was to gain experience in the

systems design of a small multiprocessor communicating through shared memory. Based on

what we learned from RAPIDbus I, and an improved understanding of the application

environment, the need for major alterations in the RAPIDbus architecture became evident- In

order to justify the effort required to create a new tool for research in machine vision and

robot control, the resultant architecture needs to qualitatively extend the state of the art in

performance, reliability, and programmability which can be brought to bear on robotics

applications in the laboratory.

There are many approaches for accelerating image processing and control algorithms using

ensembles of hardware elements. Many of these architectures are highly effective, often by

building assumptions about the structure of a particular class of regular algorithms into the

architecture. In order to effectively support research into robot systems, a very broad

spectrum of algorithms need to be both supported, and at a higher level, need to tightly

interact to form a cohesive whole.

3.2.1 . Supporting Broad Task Concurrency

RAPIDbus is fundamentally based on the hypothesis that an advanced robotic system can

be composed of a multitude of small, concurrent processes which are hierarchically

structured to create the desired system behavior. Thus the process or task forms the unit of

parallelism granularity, with problem decomposition explicitly controlled at some level by the

programmer. Many new structured high level languages are being developed with the intent

to assist the programmer in abstractly dealing with concurrency.

ADA represents a major example of a high level programming language which supports

concurrent code as an integral part of the language structure [5]. Sections of high level code

can be packaged into tasks. Each is capable of execution either on a multi-tasking

uniprocessor, or concurrently on one of an ensemble of processors. A master task,

subprogram, block statement or library package can activate a task, or access entry points

internal to a task. Language constructs allow tasks to converge, or continue execution

through conditional waits. Variables can either be shared directly between tasks, in which

case no assurance of state coherence is made, or parameters can be explicitly passed,

invoking normal task synchronization techniques.

Resulting from the many kinds of run time checking which a full ADA implementation is

required to do, current implementations generate less dense machine code for standard

machine architectures than a simpler language such as Bell Lab's C. As support for ADA and

similar languages grow, one can expect to see language subsets which disable run time

checking, and the development of machine architectures which provide run-time assistance.

Real-time multiprocessor operating systems, such as MTOS, developed by Industrial

Programming, provide task activation, synchronization, and communication in the form of

high level calls from existing high level languages such as C [51]. Such external extension of

the language is in keeping with C philosophy at the expense of integral structural

enforcement provided by ADA.

Although many uniprocessor, multitasking operating systems provide support for multiple,

intercommunicating tasks, t!ie programmer is not rewarded for the effort required to learn

how to think concurrently. Since the "concurrency" is achieved by swapping the state of one

process for another in the core of the processor every few milliseconds, such parallelism is

often penalized.

In the search for incremental performance increases through parallelism, the first stepping

stone is often a master-slave configuration in which one processor handles I/O intensive

tasks, and the other processor handles computationally bound work. Dual porting an MA-780

memory module to two VAX 780 processors created the VAX 782 multiprocessor. Resulting

from the partitioning of tasks, very few data structures are simultaneously accessible to both

processors. Thus few modifications are required to run existing VAX system uniprocessor

code [23].

Taking the next step up to a system with several undifferentiated processors, major changes

need to be made in system and application code to protect data structures in the event of

cycle by cycle concurrent access to the same system structures. With multiple processors,

the application programmer is given incentive to decompose his project into smaller,

separately executable pieces. With the move from a uniprocessor to effective multiprocessor

code, a substantial software development overhead is paid.

In the case of the RAPIDbus I implementation, it is very difficult to justify additional

development time to write an application as a set of communicating processes if the maximum

potential speedup is less than four times that of more traditional serial code. Once the

conceptual barrier to writing modular, concurrent code is overcome, proponents of

languages such as ADA argue that large programming project are made both simpler, and

more reliable than with less modular languages [55].

The four processor limitation of the RAPIDbus I implementation needed to be increased, but

there were no guidelines for a "sufficient" number of processors. Most contemporary

multiprocessor architectures lead to implementations which are heavily limited in their

practical extensibility. Thus a revised architecture- for RAPIDbus II could benefit from

practically extensibility to almost arbitrary numbers of processors.

Interconnect architectures such as the University of Maryland's ZMOB [59] and

Cambridge's FastRing [67] provide a precedent for such extensible multiprocessors, but often

at the expense of increasing average transfer latency as the number of hosts is increased.

Experience with system such as Camegie-Mellon's CM* supports the intuitive conclusion that

effective use of a tightly coupled system is dependent on minimizing the transfer latency

between cooperating tasks [73,80].

3.2.2. Host Homogeneity

Many extensible multiprocessors are based on replication of the same host node, often

referred to as an homogeneous multiprocessor. Use of the same host node architecture does

simplify both the hardware realization, and later the design of system software, but often at

the expense of performance.

Both vision and control represent a wide ranging set of algorithmic requirements. One

processor design cannot be optimized, for instance, to handle large arrays, complex decision

making, and I/O operations. With a shared pool of processors, specialization becomes much

more practical than with a uniprocessor. Either multiple task queues can be maintained for

different classes of processors, or a field can be used within the task control block to indicate

which processors can execute a given task.

Such diversity of roles was supported in the RAPIDbus I architecture through the use of a

standard host interface (Versabus), for which many different kinds of commercial hosts could

be acquired without incurring host development expense. Within a research environment, it

is essential that a revised RAPIDbus support the integration of commercial hosts.

Use of existing commercial hosts from different sources opens up questions of architectural

compatibility. Different processors recognize a variety of data types and package similar data

types differently within a word. To further complicate integration, few processors indicate to

the host port what type of data they believe they are accessing. For instance, a Motorola

processor may write an IEEE floating point number to a 32 bit memory word. A floating point

accelerator based on the DEC floating point format may later read the number, assume a

native format, and proceed with an incorrect calculation. The interchange network has no

way of knowing the difference between either floating point number or a string of bytes.

3.2.3. Reliability

Robotic systems are increasingly being placed in roles where dependable operation is

essential. If the system is operating in an unmanned or unmonitored location, it is important to

exploit the parallelism of a multiprocessor so as to gracefully degrade performance in

response to system failures. Within the laboratory environment, the success of RAPIDbus is

judged on it's ability to act as a tool. Failures which are visible to the user by interrupting or

corrupting the execution of an application directly detract from the system's usefulness.

However, if incorrect behavior has occurred so that rollback to a known correct state is

impossible, it is highly desirable for the machine to detect the situation and gracefully inform

the user.

4

RAPIDbus I provided poor fault tolerance at all levels of abstraction. Even fully functional

hardware had the potential to interrupt user activity in the event of deadlock during a

processor test and set instruction. At the implementation level, the single common bus

provided fnany points at which a single hard or soft failure could halt operation. In order to

support continued system operation in response to single point faifures, multiple redundant

interconnect paths are essential in the revised RAPIDbus architecture.

3.2.4. Programmability

As multiprocessors develop from being laboratory curiosities into usable tools, the quality of

the programming environment, the "programmability", becomes an essential concern [33].

As temporal concurrency is coupled with tight interaction, it becomes critical to appropriately

abstract system functionality through modularization. Communication between modules must

be made explicit, with assertions on the temporal coherence and semantic compatibility of the

data which can be checked at run-time.

Modularity has its roots in the currently accepted tenets of structured programming.

Decomposition of an application into small parcels of code with specified input and output

allows the programmer to concentrate on a tangible goal. As the complexity of the potential

interactions among modules increase for a multiprocessor, it becomes increasingly likely that

unintended and incorrect interactions will occur. In order for the multiprocessor system to

confirm that the assumptions stated by the programmer are valid, support must be present at

both the high level language and the machine architecture ievels.

Unfortunately, the vast majority of high level language and microprocessor implementations

are inadequate to support a truly concurrent, quality programming environment. Paying with

performance, ADA and Intel's 432 provide notable exceptions. Development of both the

required languages and supporting processors is currently an important research topic.

Communication of data between processes is aided by object based addressing, in which

the name and the location of the object referred to by the name are separate entities.

Unfortunately, this frequently requires one or more levels of indirection through main memory

to access an operand, resulting m a performance penalty. In order to soread the overhead of

such object based addressing across multiple word fetches, several authors have proposed

the implementation of hierarchically defined data types which can be manipulated as a singlo

entity [33, 68].

RAPIDbus I was constrained to use a.i existing microprocessor with minimal support for

data type checking, object addressing, or enforced access rights. The 68000 processor used

provided four kinds of memory accesses, divided into data and code, as well as user and

supervisor segments. Within the shared memory, any user code running on any processor is

given the ability to modify any write enabled area of memory. Since any one of several

concurrent processes can alter a location, errant code can easily result in behavior which is

neither replicable nor correct. Since this was judged unacceptable, the interface card

provided a commercial memory management unit which restricted access for each class of

transfer to or from one or more variable size memory segments. The same component, a

Motorola 68451 memory management unit, allowed translation of virtual to physical addresses

for bus memory, but not for local memory. Such non-uniform protection and address

transition was a undesirable compromise in order to use an existing Versabus processor

card. It would be highly desirable to extended the granularity of protection down to a single,

variable sized data object, with checking for process access rights as well as data type

matching.

3.2.5. Societies of Processors

The architectural evaluation of RAPIDbus I, the related experience of other, relevant

multiprocessor projects, and an analysis of the intended application suggests that a minimal

ensemble of homogeneous processors is a marginally useful tool. In order to provide a

powerful application engine with moderate fault tolerance and a quality programming

environment, a more appropriate structure seems to result based on several, tightly

communicating societies of heterogeneous processors adapted to support a quality

multiprocessor environment.

Such, multiprocessor configurations have been proposed before [3, 24]. Revised RAPiDbus

designs provide the ability to support such proposals with realizable hardware which can

place modified commercial host processors into a highly extensible, modular ensemble

limited in performance primarily by the throughput and transfer bandwidth of each host

3.3. Implementation

The RAPIDbus I implementation was intended to allow evaluation of a time-multiplexed,

rotary access communications structure based on existing Versabus cards. Success was

achieved through the design, fabrication, and productive evaluation of a four virtual bus

system populated by two dual port processor cards.

3.3.1 . System Structure

Both Versabus and RAPIDbus I implement a multiprocessor in which a shared address

space is visible to all processors in the system (full connectivity). It is useful to consider three

different PMS level diagrams for Versabus systems with and without RAPIDbus

enhancements.

3.3.1.1. Simulation Methodology

Each system configuration was simulated using a queuing model and parameters measured

on the two processor system fabricated in the laboratory. Although RAPIDbus I is limited to

four processors, simulation was carried out for systems with up to eight processors under the

assumption that alternate protocols could be developed with similar service times

accommodating a larger number of processors.

Instruction cycles were initiated using a Poisson birth process with a 2.25 machine cycle

parameter between memory references. Twenty-five percent of the memory reference cycles

were assumed to be write operations, with the entire workload running from RAM. Both

parameters are reasonable estimates derived from several sources including our logic traces

of monitor routines, and a much longer set of PDP-11 traces gathered by Marathe and

mapped into the 68000 instruction set for this study [47].

The percentage of memory references which involved communication with other processors

is a critical parameter determined by both application and data structure design. Rather than

make assumptions, p was established as a parameter ranging between 95% local and 80%

global. Each data point represents 1000 processor instruction cycles for each processor in

the data point configuration. Experimentally this lead to stable performance statistics while

consuming a reasonable number of CPU hours for simulation.

The effectiveness of the interconnect structure was determined using a system efficiency

metric (SEM). The SEM compares the throughput of N processors relative to a single

processor running the same code. Since most code adapted for a multiprocessor application

requires a larger number of instructions than an equivalent algorithm on a uniprocessor, the

SEM probably represents an upper bound on the speedup as processors are added to a

system. SEM was determined by measuring the average number of clock cycles among all

"installed11 processors required to complete a synthetic workload, and then normalizing by

the time required by a single Versabus processor with dual port memory.

3.3.1.2. Versabus - Separate Processors and Memory

The simplest, and least efficient Versabus configuration provides for n processors and m

separate memory cards communicating via the Versabus. Illustrated in figure 3-1, such a

structure requires every memory reference to request, wait on, and receive service from a

central memory server. All bus memory becomes a part of the central memory server with a

single unit of parallelism and a service time equal to the memory access time.

Resulting from contention for the central memory server, a separate processor and memory

Versabus configuration SEM can at best asymptotically approach

as many processors are added to the system, independent of the number of individual

memory blocks (T represents the time spent between memory references to the bus, Tm

46

VERSABUS QUEUEING MODEL
(Separate Processors and Memory)

BUS QUEUE

CRITICAL SECTION INTFRIOCK
BEGIN CRITICAL SECTION

TERMINATE CRITICAL SECTION

1
BIRTH

PROCESSC

INTERFAC

MEMORY

DEATH

Figure 3-1 : Use of separate processor and memory
cards forces all processors to be served
by a central memory server on all
memory reference cycles.

represents the service time of a bus memory unit.). Simulation confirmed a SEM which

leveled off as more processors were added at less than twice the throughput of a single

processor, as illustrated in figure 3-2.

The full separation of storage and processing functions shown here represent an extreme

corner of the design space, unsuitable for a performance multiprocessor with a single circuit-

switched interchange system such as Verssbus. Practical systems using separate processor

and memory units are possible using high speed, very parallel interconnects with

simultaneous access to multiple memory units, or through the buffering of shared memory,

perhaps in a cache.

0)

o

i B -a a -a a >—a
VERSABUS INTERCONNECT USiNG SEPARATE
PROCESSOR AND MEMORY.

1 2 3 4 5 6 7 8
Number of processors

Figure 3-2: With separate Versabus processor and
memory cards communicating on the
bus, our system would level out at less
than twice the performance of a single
processor.

3.3.1.3. RAPIDbus I - Bus Memory

Addition of RAPIDbus interface cards to a separate processor and memory system replaces

the critical section containing the Versabus with independent queue at each of the system

memory cards as illustrated in figure 3-3.

Under simulation, the performance of one or two processors was slightly lower than than in

the Versabus control (see figure 3-4), as a result of additional interface overhead. From the

third processor on, the results show improvement. With four processors there is a fifty

percent increase in system efficiency. In an eight processor system, the increase is more than

170 percent, appearing to increase linearly, although not with unity slope, up to the system

implementation limit.

3.3.1.4. Versauus - Local and Global Processor Memory

Contention for system resources can be reduced along with the average memory service

time if some memory space is located on the processor card, visible only to the local

processor. Such a structure is shown in figure 3-5. This can take the form of either explicitly

addressable local memory, or transparently addressable memory such as a cache.

48

RAPIDbus I QUEUEING MODEL
(Processor with separate memory cards)

Fach of n processors directly
adds to each memory service queue.

L

r~ —
BIRTH

PROCESSC

INTERFAC

n - DEEF
MEMORY
QUEUE

MEMORY

DEATH

Figure 3-3: Addition of the RAPIDbus interface to a
Versabus system with separate
processors and memory removes the
critical section enveloping bus memory.

i*
CO

RAPIDbus I INTERCONNECT USING SEPARATE
PROCESSOR AND MEMORY.

Ur"

6 7 8
Number of processors

Figure 3-4: Separate processors and memory cards
running with the RAPIDbus interface
dramatically improve the throughput, but
in an absolute sense, still runs poorly.

VERSABUS QUEUEING MODEL
(Separate Local and Global Memory)

i X LOCAL MFMORY
' ACCESS DFATH

CRTTTCAI SFCTTON TNTFRiOCK

IOCAI MFMORY \ n
y

ACCFSS DFATH

BUS QUEUE

BEGIN CRITICAL SECTION

TERMINATE CRITICAL SECTION

Figure 3 - 5 : Addit ion of local memory on each
processor decreases content ion for
main memory while increasing the
complexity of memory al locat ion.

49

BIRTH

PROCESSOf

INTERFACi

LOCAL
MEMORY

SYSTEM
MEMORY

DEATH

50

If the memory is explicitly addressable, then variables must be partitioned between local and

global memory segments. Contemporary multiprocessors often reserve the local storage for

system software, where the partitioning burden is felt less often. Alternately the programmer,

perhaps with high level language assistance, can separate the variables. If the system is*

required to suspend a process being executed and restart on another processor, then any

required local variables must be moved to another physical location within the address space

visible to the restarting processor. If the restart is required because the first processor failed,

a problem exists.

o

s
RAPIDbus I INTERCONNECT USING SEPARATE

</5 4 PROCESSOR AND MEMORY.

4 5 6 7 8
Number of processors

Figure 3-6: Addition of local memory decreases
load on the system bus at the expense of
a possible increase in the complexity of
the programming environment.

If the memory is transparent to the programmer, such as a cache, then the partitioning is

taken care of (all variables can be assigned to a single address space), but the problem of

cache coherency arises [57]. In common bus systems, each cache will often monitor bus

activity for write operations which invalidate an entry in the local cache. The Charles River

Universe 68 is an example of a cached Versabus processor which monitors the common bus

to stay coherent [17].

51

In the queuing model, figure 3-5, any memory reference mapped to the bus will still see a

single server with unit parallelism. The major.difference is that p% of the references never

become part of bus traffic. If the local memory takes the form of a cache, stable performance

values for a properly designed cache range from .80 to .90 (the hit ratio). With explicitly

addressed memory, p values are less accurately estimated.

As shown in figure 3-6, performance is greatly improved for high p values (most references

local), relative to the separate processor and memory configuration shown in figure 3-2. The

simulation run with p = .20 and eight processors required 160,490 clock cycles, or about

39,000 cycles fewer than the system with independent processor and memory cards.

3.3.1.5. RAPIDbus I - Local and Bus Memory

Addition of the RAPIDbus interface to a system with both local and bus memory, as

illustrated in figure 3-7 removes contention for the bus from the remaining (1-p)% of the

memory references. The single memory server is replaced with M separate servers, each with

roughly the same service time. Unlike the Versabus case, adding memory cards to the bus

will increase performance.

Simulation of this configuration, figure 3-8, showed an increase in throughput for systems

with three or more processors and a p less than .8. For high p values, and few processors,

the increased system overhead actually decreased throughput. With eight processors and a p

of .8, the RAPIDbus interface increases performance by ten percent. For p of .4, the four

processors see a sixteen percent performance increase. With eight processors, performance

jumps 117%. In order to control the effect of addition blocks of memory, a memory card was

added to the simulation for each processor added, keeping M equal to N.

3.3.1.6. Versabus - Dual Ported Memory

Some of the disadvantages of strictly local memory on the processor card can be removed

by dual porting the memory both to the local processor and the system bus, as shown in

figure 3-9, replacing the global memory cards used earlier. Dual porting increases the

effective bus bandwidth since communication of a word on the bus can be accomplished with

a single transfer cycle compared with the bus write followed by a read required on a bus with

separate memory. With a slight performance disadvantage, processes can be suspended and

restarted without active assistance from the initial processor.

RAPIDbus I QUEUEING MODEL
(Separate Local and Global Memory)

Fach of n processors directly
adds to each memory service queue.

L

1

BIRTH

PROCESS'

INTERFA'

LOCAL
MEMORY

LOCAL M
ACCESS I

n - DEE
MEMORY
QUEUE

MEMORY

DEATH

,J

Figure 3-7: Addition of RAPIDbus interfaces to a
Versabus system with local memory
removes bus contention for those
references mapped to the system bus.

Any reference to memory blocks on other processor cards must still contend with the single

Versabus server surrounding all bus memory ports. Contention also exists between

references by the local processor to local memory, and references by foreign processors to

the local memory. Simulation results, shown in figure 3-10, suggest that the effect of

contention for each dual ported memory is less than the contention for the bus with separate

local and global memory shown in figure 3-6. As expected, the improvement is greatest for

systems with much interprocessor communication (low p), and many processors. In the

extreme case, with a p of .2, and eight processors, there is a 97% increase in performance

due strictly to dual porting.

In order to keep the use of p comparable across configurations, half of all references which

the local memory configuration would have mapped to the bus are directed to the dual port

memory instead. This assumes that each word communicated is sent only to a single

destination. If the communication is read many times for each update, then the improvement

due to dual porting would be decreased,

o
c;
O
o 7

RAPIDbus I INTERCONNECT USING SEPARATE
LOCAL AND GLOBAL MEMORY.

i 4
5

4

D
#

O
X

o

rho
rho
rho
rho
rho

= ,95
* .80
= .60
= .40
= .20

A

,<r-

2 3 4 5 6 7 8
Number of processors

Figure 3-8: Addition of RAPIDbus interface cards
decreases contention for the system
bus, improving performance in systems
with low p and more than three
processors.

3.3.1.7. RAPIDbus I - Dual ported Memory

Addition of the RAPIDbus interface to a dual ported Versabus system removes bus

contention while introducing the possibility of port contention and of deadlock, as shown in

figure 3-11. As with each of the above RAPIDbus enhancements, the single critical section

containing the Versabus is replaced by independent critical sections around each of the

memory blocks, located one to a card. Unfortunately dual porting encloses the host

processor's port to the system bus in the same critical section as the local dual port memory.

The local processor can't access either local or other bus memory while another processor is

accessing the local memory through the dual port, decreasing performance. Relative to a

system with separate memory and processor ports, dual porting reduces the number of ports

to the common bus by fifty percent.

Deadlock represents a more serious problem in the RAPIDbus I design using a dual ported

processor/memory card. Since the local Ibus is arbitrated on each interface card, it is

54

VERSABUS QUEUEING MODEL
(Dual Ported Processors and Memory)

- - BUS QUEUE

CRTTTCAI SFCTTON TNTFRlOCK BFGTN
CRITICAi
SFCTTON

(Clear only on services originating
in the bus queue.) TERMINATE

CRITICAL
SECTION

i-

BIRTH

PROCESSC

INTERFAC

MEMORY
QUEUE

MEMORY

DEATH

Figure 3 - 9 : Dual port ing the local memory to the
system bus decreases bus content ion
relative to separate memory cards
without the disadvantages of purely local
memory.

possible for two hosts to be granted access to their local Versabus port and Ibus before either

has requested the required slave memory port. The retry line, added to the Versabus

specif icat ion for operation with a RAPIDbus interface allows deadlock to be resolved by

timing out and repeating one bus reference at a t ime, unless the instruction to be retried is an

atomic read-modify-write. By design, the 68000 will not retry such an instruct ion and

automatically traps to an except ion handler rout ine. In order to reliably run transfers related

to any instruct ion, a more extensive modif icat ion of Versabus is required for use in a practical

RAPIDbus system.

Simulation of the RAPIDbus I enhanced dual port system showed an increase in throughput

over a similar RAPIDbus enhanced system with strictly local memory only for systems with low

s8

PORT MEMORY

S6I
VERSABUS INTERCONNECT - DUAL

a rho = .95 ''m*'' •0&'
• rho = .80 s ' ' ' ' ^ ' ^ ^ ~-- — "~~* *
o rho = .60 x - ' ^ ' ^ ^ - ^ . — *--"""'' *"""
x rho » .40 ~
O rho = .20

2 3 4 5 6 7 8
Number of processors

Figure 3-10: Dual porting the memory local to the
processor decreases bus contention
and simplifies restarting a suspended
process.

p values. For a p of .8, system performance was roughly identical for both configurations.

Only when the p dropped to .2 did the performance improvement exceed ten percent.11

Figure 3-12 allows direct comparison with a Versabus dual port system, shown in figure

3-10. The addition of the RAPIDbus interface increased system efficiency noticeably only for

p values of .6 or less. At best, with a p of .2, and eight processors, performance increased

twenty-nine percent.

3.3.1.8. Structural Conclusions

The results of the above discussion and simulation are not too surprising. The RAPIDbus

interface is most effective in systems with high bus bandwidth, either because of the number

of processors, their structure, or the nature of the code. More efficient structures, such as a

dual ported memory benefit least. In the two later configurations, the most efficient in an

With a p of .2, performance was enhanced 12% for the four processor system and 13% for an eight processor
system.

RAPIDbus I QUEUEING MODEL
(Processor with Dual Port Memory)

Fach of n processors directly
adds to each memory service queue.

BIRTH

PROCESSO

INTERFAC

n - DEEP
MEMORY
QUEUE

MEMORY

DEATH

Figure 3-11 : Addition of a RAPIDbus interface to a
dual port Versabus system decreases
bus contention while introducing the
possibility of deadlock.

absolute sense, the RAPIDbus I architecture never increased performance more than a factor

1.3 with four processors, and 2.5 with eight.12

There is an inherent bias toward Versabus in the performance modeling, resulting from the

two interfaces (Versabus and RAPIDbus) traversed in the RAPIDbus configuration versus one

in the Versabus configuration. Replacement of the Versabus interface on the processor by a

RAPIDbus interface would increase throughput, but probably not dramatically. Revisions

need to be explored at all levels in order to provide a more significant performance

improvement, and to accommodate systems with many processors, where RAPIDbus appears

to have real value.

12.This is for local and global memory. With dual porting, the improvement was even less significant.

57

a

S 7
RAPIDbus I INTERCONNECT USING A DUAL ^-x

<U PORT PROCESSOR - MEMORY.

I6

a rho = .95 .*~ ^ ' ^ ^ ^
m rho = .80 ^ ^ * ^^' ^"**\<"

4 i o rho = .60 ^ ^ ' ~*' •**' -'*"
Y x rho = .40 ^ -S" '

O rho = .20 . - ^ ' . ^ * ^

3

3 4 5 6 7 8
Number of processors

Figure 3-12: Addition of the RAPIDbus interface to
a dual port system produces a very
limited increase in system throughput
for any but the lowest p values.

3.3.2. Bus Utilization

In order to increase the number of processors communicating along the same physical bus

without decreasing the response to any one processor, it is useful to evaluate the

informational content of the bus, seeking strategies for bandwidth compression.

Analysis is facilitated through division of time-multiplexed lines into three categories; the

master, data, and slave busses. The master bus is always driven by the processor initiating

the data transfer. The data bus can be driven by the master or the slave depending on the

state of the write line.13 The slave bus is always driven by the slave card responding to the

transfer master.

ADDRESS BUS

1) Selects memory block
2) Identifies memory location(s)
3) Confirm Data Parity (read)
4) Releases memory block

Unavailable memory
request

ZXZXZI
Accepted memory

request
Memory access

de 1 ay
Data transfer Data transfer Release memory

acknowledge block

IIXCZ

DATA BUS 1) Transfer data

SLAVE BUS

zxzxz:

1) Confirm Address Parity
2) Confirm Data Transfer
3) Confirm Data Parity (write)

Figure 3-13: Analysis of the information content
during each window of a RAPIDbus I
data transfer operation suggests more
efficient transmission protocols.

Following the virtual Versabus strategy, RAPIDbus I updates the connection between

exchanging master and slave on every fourth bus cycle on all lines. For simple bus cycles,

most lines are latched at the host receiving end only once during the entire data transfer

process. Thus a great deal of redundant information is being transmitted on the bus without

increasing the system fault tolerance or performance.

-JO
v In a sixteen bit data path, twenty-four bit address system the master bus consists of address, address modifier,

three strobes, write, address parity, and a read parity confirmation line [33 lines]. The data bus includes data and
data parity [18 lines]. The sfave bus includes a data acknowledge, and bus error line to confirm address strobe and
write data parity [2 lines].

59

Consider a typical data transfer cycle such as illustrated in figure 3-13. During the first bus

cycle, the four most significant address bits and the address strobe are required to select a

destination card. If the destination card is not available, these lines must be repeated until the

destination becomes available. On these cycles, five of 53 lines are used, resulting'in 9.4%

informational efficiency.

After the destination becomes available, the full address can be sent effectively using 32 of

53 lines for a 60% efficiency. Once primed, the following cycle can be used to transfer data

and confirm address parity for a write (a read would probably use the same lines a cycle later).

On the data transfer, 19 lines are used for a 36% data transfer efficiency. On the following

cycle, before the write takes place, or during the cycle preceding data transfer for a read, no

information is transferred, resulting in 0% efficiency. Data transfer acknowledge and data

parity confirmation require two lines for a 3.7% informational efficiency. The final bus transfer

frees the destination as address strobe is removed with 1.8% efficiency.

Thus the six bus cycles used by current Versabus cards in a RAPIDbus configuration have a

combined efficiency of 18.5%. A comparable thirty-two bit address and data path version

would achieve a 20.8% efficiency. In contrast, a Versabus system with a similar bandwidth

backplane would only achieve a 4.7% efficiency over sixteen bits and 5.2% efficiency over 32

bit paths.

This suggests that decomposing the bus into separately switched groups of lines covering

destination allocation, memory location selection within a card, address parity, data transfer,

data parity, data acknowledge, and destination deallocation would result in a nearly five times

increase in effective bus bandwidth. Relative to the control Versabus configuration, effective

bandwidth would climb by a factor of nearly twenty. This increased bandwidth could be

utilized by additional processor ports.

Making use of this potential bandwidth ^suggests increased control complexity required to

independently drive and latch lines with six different functionalities and timings. Whereas

some additional complexity is undeniable, the relationship between all of the lines is not

independent. The address parity acknowledge always follows the window specifying the

address location within a memory block by a known interval. Similarly the data parity

acknowledge also follows the data by a known delay.

60

3.3.3. Bus Allocation

RAPIDbus I uses a rotary allocation scheme for the assignment of virtual bus time slices to

the physical bus. This approach to bus allocation assigns equal bus bandwidth to each of the

four processors in the system, avoiding use of a global bus arbiter with the accompanying two

way communication delays.

Considering only bus allocation on RAPIDbus I, the bus communications latency between

master and slave on a virtual bus is never more than four bus cycles or two processor clock

cycles, with an average delay of one processor clock cycle. Since implementation of a bus

arbiter with the same semiconductor technology used on RAPIDbus I would result in a

processor cycle delay, there is no performance advantage here to either strategy. In order to

appreciate the bus allocation design space it is useful to consider the original RAPIDbus

allocation scheme from which Bracho derived the bus allocation scheme used on RAPIDbus I

[13].

The RAPIDbus design proposed by Zoccoli was based on 25 of Zilog's Z8001

microprocessors running at four Mhz[81]. Unlike the heavily nano/microcoded 68000

processor used in later RAPIDbus machines, the Z8001 uses a hardwire instruction decoder

and sequencer which results in fewer, but longer average clock cycles. Zoccoli took

advantage of this clock parsimony and the bandwidth afforded by ECL to allow each of the 25

processors to receive a bus time slot during each processor clock cycle. Since the processor

was tightly coupled to the high speed bus, the processor clock phase could easily be

synchronously shifted so as to minimize the time between control generation by the processor

and the occurrence of a processor's bus slot.

While the possibility of implementing the required ten nanosecond windows is open to

question at the implementation level, the viability of the rotary bus access is clear here.14The

communications latency across any one of the twenty-five virtual busses is largely limited by

potential timing skew in the processor relative to the clock, without any arbitration delay

component. Performance is bought here at the expense of a tremendous bandwidth

differential between processor and bus technologies.

RAPIDbus I was constrained to use a bus implementation technology which afforded much

14Mn rnmmArrial nrnr<a«scinr ha«a fr\i&r hAon Hmliv/AroH \A/hirh ran CK 1fi nannQprnnrl rnmmnn

lower bandwidth than the 1OK ECL used on the original RAPIDbus. At the same time, the

switch to a microcoded processor running at higher speeds than the Z8001 decreased the

time interval between potential generation of new control signals. Use of the 68000 on an

Advanced TTL bus shifted the break even point from twenty-five to four processors for.a bus

arbiter. As the designers of busses such as Multibus and Versabus are keenly aware, use of a

dedicated bus protocol reduces the break even point for bus arbitration down to a two

processor system; both use bus arbiters, not dedicated time slots.

3.3.4. Interrupt Structure

The exception structure within a real-time, multitasking system forms a priority scheduler,

implemented largely in hardware, which runs asynchronous to the regular software

scheduler. The priority scheduler causes currently executing code to be suspended,

resuming execution with code from a particular exception handler process.

In the context of a multiprocessor system, exceptions can be broadly divided into processor

specific and system exceptions. Processor specific exceptions, such as a hardware bus error

or an instruction fault are sensitive to the context in which the processor was executing when

the exception was raised, and are best handled on a particular processor. System exceptions

occur when the exception handler must be scheduled on a processor separated from the

exception generator by the system interchange network. Analogous to the binding of

processes by the software scheduler, the system exception may need to run on a particular

processor, one of a particular class of processors, or on all processors in the system.

Under Versabus, system exceptions are asserted along one of seven open collector lines

available to all processors. In response to assertion of a particular interrupt line, a hardware

assigned processor requests a vector along the Versabus from the exception generator

describing the requested service through an indirect pointer to an exception handler process.

Since more than one Versabus card can raise the same exception simultaneously, the request

for vector is daisy-chained until a card is reached which pulled the appropriate interrupt line.

The Versabus protocol permits only seven different interrupt handlers, each with 256 possible

handler processes. Beyond the hardwired power failure and reset exceptions, which are

non-vectored, there is no provision for the exception handler being activated in either a class

of processors, or on all processors simultaneously in the Versabus design.

The RAPIDbus concept of four independent virtual Versabuses was complicated by the

Ok:

Versabus interrupt structure. The open- collector interrupt lines were no problem, however

the daisy chain used in the interrupt acknowledge bus cycle could not be practically time

multiplexed. The arbitration capability mechanism used to assign the daisy chain to a

particular virtual Versabus for the duration of an interrupt acknowledge cycle violated the'

orthogonality of the busses, and required additional distributed logic.

System extensibility and implementation simplicity would be enhanced if special backplane

lines such as the open-collector interrupt lines and the daisy-chain interrupt acknowledge

lines were not required. The interrupt acknowledge cycle's addressing based on the three

lowest bits of the address, the address modifier lines, and the daisy chain also limits

extensibility (a three bit address space for exception handlers), and requires gates not used'

for any other cycle on the high speed side of the bus interface.

3.3.5. Multicast Capability

In the quest for optimal use of RAPIDbus I host and bus bandwidth, it was attractive to

consider directing a single bus write cycle to multiple destinations. Once the overhead

required for initialization is complete, this capability effectively reduces latency and increase

the apparent transfer bandwidth for the associated cycles. Bracho proposed multicasting in

the RAPIDbus I design to facilitate an approach to image preprocessing in which several

processors would simultaneously run different operators on the same incoming image [13].

Implementation of a one to many bus transfer is relatively inexpensive when the interchange

network is based on a common bus where all interfaces have access to all bus transfers. It is

at the realization level that multicasting on even a common bus starts becoming expensive.

The originating master must collect transfer acknowledges from each of several potential

destinations before finishing the bus cycle. Without providing separate acknowledge lines or

an acknowledge arbitration, this requires use of an open collector multicast acknowledge

line. Since TTL open collector technology does not permit the same short windows that are

allowed by tri-state technology, the designer could either increase the system window size, or

implement a multicast acknowledge line which is not time multiplexed. If the window size is

increased enough to allow use of a TTL open-collector line, bus throughput will be seriously

compromised for all data transfer cycles. Use of a special, non-multiplexed line forces

arbitration for the multicast capability. In the RAPIDbus I realization, eight percent of the

interchange logic was directly tied to supporting the multicast capability.

Unfortunately, the special provisions required for a one to many routing become an

increasing portion of the total system complexity as system performance increases. Without

technological changes, the interconnect performance can be dramatically increased only by

increasing parallelism so that not all communication between system elements is visible to all

system interfaces. Routing information can no longer be encoded as an N bit number for 2N

destinations, but rather increases to 2N separate lines. Creating a consistent implementation

required this overhead cost be paid even for interchange ports which would not use the

multicast capability.

3-4. Realization

At the realization level, he sought to learn how to build reliable, complex digital hardware

operating at cycle times below 100 nanoseconds. This goal was realized through the

successful fabrication of two interface cards capable of reliable digital communication with a

64 nanosecond window.

3.4.1. Asynchrony

The greatest single challenge at the realization level arose from the inherent conflict

between reliability and performance at each interface between the asynchronous Versabus

and the synchronous interchange network. Our experience, in complete agreement with the

consensus of current literature, pointed to the need to avoid asynchronous interfaces

wherever possible within a high performance machine [72]. When an asynchronous interface

is absolutely required, the lines involved must be identified and properly synchronized, often

at the expense of performance.

RFSFT
OUTPUT

C r i t i c a l feedback
path

Figure 3-14: Bistable elements, designed
conceptually like that above form the
basis of the metastable problem.

Synchronization problems may potentially arise any time two digital subsystems running on

different time bases attempt to exchange information. Since the incoming information is not

guaranteed to have any particular timing relationship to state changes in the receiving

subsystem, a synchronizer is required to permit only intended state changes. Unfortunately

there are no known methods for absolutely reliable synchronization in a bounded amount of

time.

Some version of a bistable element, or flip-flop, forms the basis of any synchronizer. Using

digital logic gate notation, a bistable element can be represented as in figure 3-14. If the set

input is asserted the output stabilizes to a high value. Likewise, assertion of the reset terminal

will lead to a stabilization at a low output value. Unfortunately, the feedback path between the

two elements of the bistable requires a finite amount of time to communicate information.

When the bistable is incorporated into a D latch, as shown in figure 315, this critical time

delay results in a temporal window of vulnerability for each of the two stages in the D latch,

often with different critical skew times for the two independent sections [16].
OCX PHASE 1

OCK PHASE 2

iTA INPUT | \ j

INPUT
BUFFER

STAGE ONE

V^ "X.

X

STAGE TWO

/ \ V, ^ v . LATCH OUT

y(. OUTPUT
LJ ; -^ | BUFFER

Figure 3-15: A D latch, key to the design of
synchronizers, can be represented by
structures the two stage structure
shown above.

The digital flip-flop, like any physically realizable bistable element, must have an

intermediate, or metastable region. In the first stage of the flip-flop, if the clock and data

change state well separated in time, the bistable element can reach steady-state across the

feedback path. Under steady-state conditions, the bistable changes state in a well defined

period of time. However as changes in the data and clock line approach a slightly skewed

simultaneity, the feedback path no longer has time to reach a stable state. The two

subcomponents of the bistable reach equality at a metastable voltage about half way between

a high and low output.

According to analysis by Couranz and Wann, this metastable voltage is surrounded by a

65

LOGIC HIGH

Deterministic region

Probabaiistic region
METASTABLE VOLTAGE ' " '

^ Probabai istic region

Deterministic region

LOGIC LOW

Figure 3-16: The metastable voltage is surrounded
by a small probabilistic region, where
escape is noise dependent, and a
larger deterministic region where the
propagation delay is design dependent.

small probabilistic region on either side of the metastable voltage, and a large region on either

side which has a deterministic behavior, as shown in figure 3-16 [20]. Once the two

components of a bistable have both settled at the metastable voltage, a chance event made

more likely as the data and active clock edge approach each other, the time required to

escape is largely dependent on the circuit noise. Random noise provides the primary force

required to allow escape from the probabilistic region, into a deterministic delay region where

transition time to a known output value is dependent largely on circuit design parameters.15

In order to quantify the probability distribution function for the duration of the metastable

state, researchers have built both accurate simulation models at the silicon level, [75, 20] and

developed device level parameterizations for existing devices [72, 31, 16]. The general form

for the mean time between metastable states arising from a flip-flop being used as a

synchronizer, and still unresolved after time t A4N is given by...
r6S

[exp<WT]/TT0 * Tclk • T.nput]

The flip-flop can be described by T, the time constant of bistable resolution, and by T , given

by various researchers as either the "normal" propagation delay [72] or as an experimentally

derived parameter [16].

When a designer is aware of the potential problems inherent in communicating across an

asynchronous interface, a design similar to that shown in figure 3-17 is used. The first

register in subsystem B is allowed the possibility of a metastable state, since the second D

latch will not allow the incoming signal to propagate into the B state machine for the duration

of the subsystem B timebase period minus the normal propagation delay of the D latch.

Inherent in this synchronization scheme is an average communications delay from the output

The effective magnitude of the noise voltage can be increased, and the delay of the deterministic region
decreased as the load capacitance and series resistance of the resolution node are decreased.

1.5 times the period of the subsystem B timebase. If the period of the B clock is chosen to be

too brief for the resolution time of the chosen bistable element, the possibility of a metastable

propagating through to the B subsystem increases.

CONTROL
SIGNAL

SYSTEM A
TTMEBASE

SUBSYSTEM A

REG
D Q

> CK

SUBSYSTEM B

"ASYNCHRONOUS"
CONTROL SIGNAL

SYSTEM B
TIMEBASE

REG
D Q

> CK

RFG
D Q

> CK

SYNCHR(
CONTROIT

I—>
MINIMUM COMMUNICATION DELAY

Figure 3-17: Design of a practical system using an
asynchronous interface requires a
synchronization latency to increase the
mean time between metastables that
propagate through to the second
subsystem.

As complex digital systems become more common and designers strive for higher

performance, asynchronous interfaces are often seen as a easy solution. Lurking in the

shadows of all too many of these designs is a cavalier attitude toward the pitfalls of the

asynchronous interface.

One early implementation of a Versabus single board computer seems to have ignored the

synchronization problem entirely. Among other problems, logic was required to arbitrate

between asynchronous local and Versabus references to the dual port memory. With roughly

100K transfers trying to compete with the local processor per second, failures which took the

effected processor out of the system were observed every two to twenty minutes on five

different cards. A two level synchronization circuit was used based on Schottky logic and a

twenty-five nanosecond interlatch delay. Using Chaney's data for the 74S373 octal latch, TAU

= .91 nanoseconds, TQ = 60 microseconds, and h = 16 nanoseconds [16]. Substituting this

into the model, a failure is predicted roughly every minute.16

Replacing the sampling latch with an F374 part, and extending the sampling time to fourty nanoseconds, the
calculated MTBF for the synchronizer rises to several centuries, clearly a small but important changel Later
engineering change orders by the manufacturer are reported to reflect a more reasonable arbitration time.

Asynchronous interfaces are advocated by their supporters as a means of eliminating

synchronization delays, reliance on a single clock, and enforced conformity to a particular

clock among different subsystems. It is useful to examine the basis for these claims in the

majority of applications seeking maximum performance from commercially available logic.

It has often been suggested that use of an asynchronous, "handshake" protocol allows

control information to propagate from one subsystem to the next without waiting for the next

clock edge. If both subsystems are synchronous state machines (SSM) of some form, then

reliable operation requires that all control inputs coming in from a foreign source undergo a

synchronization step. With the best TTL technology, this requires about 40 nanoseconds for

reliable operation. In contrast, data coming in from another subsystem with a time base

synchronous to the receiving SSM will average out to roughly a half clock cycle input delay.

Since most performance TTL and MOS system today can support at least a 12 Mhz clock

speed, there is no noticeable timing advantage to asynchronous timing. Clock skew between

physically distributed components of a system is a potential area of trouble, but through

careful clock distribution with well characterized logic, it is possible to distribute a single high

speed clock within a moderate size card cage.

Fault tolerant systems where operation must continue following one or more subsystem

failures are often forced into use of separate time bases.17 In most system, the master clock

and the distribution logic are both straight forward and are usually reliable. Unless

extraordinary means must be taken to prevent a system failure, separate clocks are likely to

do more harm than good in a properly designed performance system.

Finally designers often argue that use of an asynchronous interface simplifies the design

task through relaxed timing requirements between separately designed subsystems. Whereas

it is undenialable that it is easier to make a system initially operate if no set-up and hold times

must be met, it is much harder to build such a system with both high reliability and maximal

performance. A price is paid for the simple system interface.

ZoccoH has proposed the use of a phase-lock oscillator linked to a master time base. Failure of the master
clocks would cause separate system clocks to gracefully pick up. Unfortunately such a system would need to
incorporate synchronization devices at the interface level to cover the eventuality of global time base loss. Unless
these synchronizers could be gracefully added and removed, the performance penalty for separate time bases would
be paid even in the primary mode of operation [81].

3.4.2. System Complexity

The few research multiprocessors which have reached the realization stage seem to

indicate that there is there is an upper bound on system complexity as expressed by the

number of independent components which must be made to work in reliable harmony. An

informal survey of projects implemented with commercial, chip level packaging suggests that

current design and realization techniques have great difficulty in supporting 10,000 or more

active, independent data path packages in a research environment.18Advances in computer

aided design and fabrication systems may make the implementation of a 10,000 component

system easier, however device reliability and characterization problems are not likely to

greatly increase this bound in the immediate future.19

In order for an architect to increase the complexity of a system, the gate density of each

package becomes an important issue. Very high speed logic is severely limited in packaging

density. GaAs system designers can hope for 500 gates per custom package, bipolar

designers for 2500 gates. With moderate speed logic families, custom MOS designers can

hope for a quarter million gates or more per package. Unfortunately the designer of a

research machine is often limited by the high cost of developing new packages. Introduction

of funding derived from a potential user based reduces freedom to scrap an approach and

reimplement

Accepting an upper bound on the number of component packages in a realizable system,

the number of processor societies, and the complexity of each society is directly governed by

the ability of the designer to reduce package count per host node. Such a system design is

then caught between the need to take advantage of existing, very dense components, such as

the 68000, or the 68451 used in RAPIDbus I, and the need for new functionality.

is
Several very expensive projects have tended to suggest that even large influxes of capital don't noticeably alter

this upper bound.

19
Commercially supported machines are able to exceed such a limit at great expense and effort. For instance, the

CRAY IS uses 230,000 gates in the CPU with a packing density of roughly 2 gates per board level package. This
complexity comes at the price of tremendous design effort and substantial machine field support. As of 1981,
expected MTBF was "more than 100 hours" for the system as a whole [43]. Such support is not realistic for a
research project.

Hierarchical computer aided design systems patterned after Lawrence Livermore's SCALD

have potential for allowing many mistakes to be discovered prior to fabrication of an

implementation, and support the rapid rerealization of an implementation in new media. Thus

an early design in discrete logic could in theory be revised and reimplemented with denser,

custom or semicustom packaging [63].

Unfortunately, tools which will provide useful assistance for the designer are new, often still

in the development stage. As the need for such development tools became evident in

preparation for a second implementation, SCALD II was imported from Lawrence Livermore,

with the assistance of Dr. Ray Picard at ESL Inc. and Dr. H. T. Kung and group at CMU.

Unfortunately SCALD II, while a valid research project, was far from a usable design tool.

Shaping a system like SCALD II into a useful tool is a major job which directly subtracts from

the effort devoted to the computer architecture. Commercially design systems with modest

capability exist, but were not available beyond the schematic capture and net list extraction

stage for the design of RAPIDbus L20 Experience in the realization of the designs described in

this report suggests that a good design environment is essential. Use of a less than fully

debugged environment, or no environment at all, is a serious mistake if any value is assigned

to project manpower or development schedules.

RAPIDbus I began with Versabus processor card which required nearly two hundred chips

to support a 68000 processor. The Versabus to RAPIDbus interface added over 150 sixteen

pin equivalents to the processor node parts count. Whereas we had little control over the

host, useful conclusions came from examining the breakdown of chip complexity on the

interface, as enumerated by figure 3-18.

The combined latches, drivers, and parity logic represent more than a third of the package

count on the RAPIDbus I interface card. Expansion to a thirty-two line address and data bus

would have increased contribution for these three sections to more than fifty percent of the

the total parts count. These sections also had dominant responsibility for determining bus

bandwidth. Recognizing that this was an excellent candidate for custom packaging,

independent of the Versabus host used in RAPIDbus I, an interface bit slice was devised as

described in the next section.

20Use of Dario Giuse's drawing package is gratefully acknowledged, but It was never intended to provide a full
CAD system with simulation and timing verification capability.

Section Name Package Count

Window handler 10

Drivers 11

Latches 36

Memory Management 21

Multicast Generator 13

Parity 12

Chip Select 7

Timing Generator 5

Interrupt Control 11

Control 36

Spare 5

Total 167

Figure 3-18: Package distribution on RAPIDbus I
interface cards.

The control section and the memory manager were also responsible for large numbers of

packages. From analysis of the RAPIDbus I design at the implementation level, it was clear

that a new implementation could benefit from an even more complex control algorithm than

RAPIDbus I used. Since the control logic was both host dependent, and likely to undergo

numerous changes, a custom sequencer package was ruled out. Use of a microcode,

augmented by hardwired RAPIDbus interface logic has potential for both increasing control

complexity and decreasing package count. At the architecture level, it was earlier observed

that the memory management capability on the interface was another concession to the

available Versabus hosts, and was more effectively placed on the processor card.

3.4.3. Bus Interface Integration

Recognizing the importance of the combined driver, address recognition logic, two level

latch, and parity logic as a modular package, a custom bit-slice was devised. Use of a custom

logic package offered the opportunity to increase bus speed, and decrease package count.

The conceptual design is shown in figure 3-19.

ECL logic was recognized as an essential medium for decreasing the length of a bus

window, and increasing bus bandwidth. Since the interface host was constrained to a TTL

implementation by the available high density commercial components, any bus implemented

in commercial 10K ECL would require use of 10124 and 10125 level translators in quad

packages. For wide address and data paths, this would have resulted in nearly fifty additional,

high powered packages. Realization as a custom module offered the possibility of combining

level translators with the other logic without increasing the package count. American Micro

Circuits Corporation verified that they could fabricate such a mixed level chip. Initial

accessment of the design by AMCC suggested that the sixty-four nanosecond bus window

realized in Schottky could be reduced to 12.5 nanoseconds using differential drivers on their

ECL gate array.

Referring to figure 3-19, the TTL host address, data, function code, or control bus is

attached to an eight line bus at the top of the diagram. Outgoing information is held in the

driver latch at the left of the diagram while waiting for a bus cycle grant. For each class of

lines on the backplane, only one set of drivers is activated for each bus grant. All bus cycles

are held in the first level receiving latch on all cards. During the bus cycle following, either

address or data packet tag information can be decoded to identify references to a particular

card. Only the card detecting a valid reference will drive the parity acknowledge lines during

the second cycle following transmission of the bus. If all goes well, the received bus cycle will

propagate through the second and third level latch up to the TTL host bus port on the

destination card.21

21
The second and third latching levels are designed to provide sufficient time for address comparisons from all

slices in an interface to be joined and propagate out again to each slice.

Schottky TTL Host Bus

A Local Fnabie

LATCH 3rd 1atch

LATCH

Driver Iatch
LATCH

Driver Enable \

PARITY

2nd Iatch

REF REG
Mask Latch
Ref 1atch

COMP

_ PARITY

Val id Ref

Parity Check

LATCH 1st Latch

T

D i f f e r e n t i a l ECL System Bus

Figure 3-19: Consolidation of latches, drivers, parity
logic, and comparators into a translator
slice results in a fast, compact time-
multiplexed bus.

The high cost of realizing the chip fell beyond the resources available to this project, and

was picked up by the CMU VLSI project under Dr. H. T. Kung. With changes to support eight

simultaneous outstanding data transfer requests per hosts, and a multiplexed address / data

bus, a chip was realized in collaboration with A. Nowatzyk which provided four multiplexed

address and data lines per slice. This chip forms the basis for the backplane of the Kung's

Universal Host machine. The chip was not etvailable for use with follow-on RAPIDbus designs.

3.4.4. Fabrication Technology

Fabrication represents the last, crucial step in moving from architectural statement to

working machine. Requirements for high performance translate at the fabrication stage into

use of the highest speed logic logic family available commensurate with system power, size,

and cost constraints. In order for the inherent speed of higher speed logic families to become

manifest in the realization while not jeopardize reliability, the designer must deal with

distinctly analog power supply, interconnect, and thermal issues.

3.4.4.1. Power Supply Engineering

The power supply subsystem extends from the line voltage supplied by the building power

system, through conditioning, transformation, rectification, and regulatioa into a power

distribution system which creates the proper power environment at each semiconductor

package. Inadequate conditioning of the power environment, or a potential difference

between corresponding supply terminals of communicating packages can adversely affect

the noise margin, speed, or fanout.

The TTL logic used in RAPIDbus I expects a reference ground and a positive rail supplying

between + 4.75 and + 5.25 volts. Within this supply range the noise margin, or minimal

voltage difference between an output voltage and the TTL threshold voltage is roughly 450

mV [28]. This noise margin decreases as the positive supply rail dips below 4.75 volts, or with

asymmetries in the grounds or positive rails between communicating chips. If the sum of the

noise superimposed on the line between driver and any receiver on the same line exceeds the

noise margin, unreliable behavior may result. Noise superimposed on the signal line may

come from interconnect problems, covered later.

External noise can enter the machine via either electro-static or electro-magnetic coupling

to machine wiring. The large variety of power supply and signal interconnects form a myriad

of tuned antenna elements. Whereas electro-static energy can be effectively stopped by a

tight aluminum enclosure, electro-magnetic energy requires a ferrous metal enclosure with all

elements tied to ground.

Noise generated internal to the machine calls for a distributed solution. Most ground and

positive rail noise begins with current spikes caused by the synchronous switching of many

package output stages. The finite impedance of the current return path through the ground

plane results in momentary voltage spikes.

since HAPIUDUS is a synchronous macmne using nign speed drivers and latches in close

proximity, it was important to develop techniques to minimize the voltage spikes that might

potentially decrease noise immunity. Ground and positive voltage pins on the dual-in-line

(DIP) sockets were tied to corresponding power planes on the wire-wrap card using low

inductance, high current copper links. Each high speed package was provided with a .1 vf

ceramic capacitor with low series inductance, and adequate capacitance in the radio-

frequency region. Slower, but larger variations in the current load are absorbed by Tantalum

capacitors ranging from four to fourty pfarads.

Bus drivers are a major source of spikes since by design they have fast edges, sink a great

deal of current, and are usually gated on in large numbers. In addition to performance

reasons for decreasing the number lines which are simultaneously switched, the realization

becomes easier.

The speed and fanout are decreased for high performance components when adequate

current is not provided, even momentarily, by the board level design. The rate of voltage

change at any given circuit node, either inside the chip, or on external interconnects, is

directly proportional to the current available to that portion of the circuit, and inversely

proportional to the load capacitance:

I = C dV

dt

Output buffers are typically much slower than gates internal to a chip as a result of the

increased loading. If the current available from the power terminals is inadequate, the

required slew rate may not be maintained. Since additional inputs tied to an output buffer

increase the capacitive load (C), for a fixed current, the slew rate must decrease. In practical

terms this underscores the need for both good, low inductance bypassing (instantaneous

current available), and the need for low impedance connections back to the power supply

sensing terminals. Constraining the fanouts to five for time-critical circuits within a card

seemed to work out well with RAPIDbus I.22 With adequate power engineering, performance

is still dependent on the proper handling of interconnects and thermal problems.

22
The available bus bandwidth is constrained by the unavoidable bus capacitance, current limitations on

individual drivers in an octal package, and the required fanout to two devices [driver and receiver] on each interface.

75

3.4.4.2. Interconnect Engineering

The high speed propagation of digital signals between semiconductor packages presents a

major challenge to maximizing performance and reliability from a particular performance logic

family. High speed bipolar logic such as Advanced Schottky and 10K ECL provide rise and

fall times of one to two nanoseconds, with substantial frequency components of several

hundred megahertz [71, 25, 27, 10, 7] Transmission of such high speed edges is prone to

ringing and crosstalk among lines on a bus. Ringing occurs when the far end of an

interconnect is not terminated at the characteristic impedance of the line. TTL logic is at a

major disadvantage here since few TTL gates will drive the 100 ohms or less commonly

realized with high speed, multilayer PCB technology. A variety of Schottky clamping circuits

are now incorporated into high speed TTL in order dampen reflections. ECL logic in contrast

can drive lines down to 25 ohms in many cases, allowing termination at the characteristic

impedance of the line in order to reduce ringing.

Crosstalk results from fast signals on one conductor inducing large enough voltages in

adjacent conductors through capacitive coupling that a state change on the second line is

perceived to occur. Use of the relatively random spacing between wires provided by wire

wrap minimized this potential concern. In order to avoid problems with ribbon cables

transmitting high speed RAPIDbus II signals, alternating conductors are assigned to ground

and signal lines.

Wire-wrap was the only prototype medium suitable for the RAPIDbus I interface cards. In

order to reliably run a 64 nanosecond cycle, all clock lines were carefully fanned out from a

single octal bu3 driver package, using twisted pair wire wrap. The card layout was arranged

to minimize propagation distances for high speed control lines. Supported by good power

supply bypassing, reliable waveforms resulted (see figure 3-20).

3.4.4.3. Thermal Engineering

Thermal engineering becomes an important issue as clock speeds and gate densities climb

in response to performance requirements. When the thermal environment of a

semiconductor package is stressed both the propagation and mean time to failure can be

expected to increase [65, 76, 10].

The first order linear coupling between supply current and output buffer slew rate

Figure 3-20: Use of a good ground place,
bypassing, and short lines, acceptable
waveforms were achieved using wire
wrap on RAPlDbus I.

establishes our interest in current for high performance logic.23 Additional large current

spikes arise from the momentary simultaneous conduction of buffer pull-up and pull-down

stages using TTL logic. Thus with TTL logic, as state changes more rapidly, power

dissipation climbs.24 Virtually all energy supplied by the power supply subsystem as electrical

energy must later be removed from the semiconductor package as thermal energy. The rate

at which thermal energy is removed from the semiconductor die is directly proportional to the

temperature difference between the die and the external air flow, and inversely proportional to

the thermal resistivity. Forced air cooling attempts to bring cool air into the package

environment, replacing warmer air so as to increase the thermal gradient. Heat spreaders

internet! to large (hot) semiconductor packages, as well as heat sinks attached to the package

help to decrease the thermal resistivity between die and airflow. Although cool air is a

23
New FAST and AS gate design minimizes the amount of additional current which early TTL logic families used to

saturate transistor junctions.

Current requirements for ECL are relatively insensitive to clock rates for a given ECL subfamily, and voltage
swings are much lower than for TTL, leading to a break-even point for high speed logic where ECL requires less
power than TTL.

77

convenient heat transfer medium, it is highly inefficient, leading to current research into

alternate heat transfer media for cooling digital hardware.

3.5. Major Contributions

RAPIDbus I served important and productive roles at all three levels of abstraction. At the

architecture level, the first implementation helped point to a more appropriate system

specification based on linked societies of heterogeneous processor elements. Analysis of the

RAPIDbus I implementation pointed to developments which both dramatically increased the

performance and extensibility of the interchange network, but also decreased cost and

complexity. At the realization level, many techniques required for the fabrication of large,

high performance digital systems were verified. System specifications for RAPIDbus I are

summarized in table 3-21.

RAPIDbus I: Four processor, four slave system

Two dual port Versabus processor system built

1.7 microsecond observed transfer latency

-1 Megabyte per second bandwidth observed in prototype

~16 Megabyte per second theoretical bandwidth

Figure 3-21: RAPIDbus I system specifications.

Beyond the three primary goals with which the project was entered, RAPIDbus I lead to the

evaluation of several computer aided design tools including a schematic capture system,

several post processors, and LLL's SCALD system. The evaluation described here directly

shaped more practical RAPIDbus designs.

79

Chapter 4
RAPiDbus II:
Architecture

4 . 1 . The Goal

RAPIDbus II was conceived as a architecture to support the developing specifications for an

advanced robot system which was formulated as a multitude of concurrent, tightly coupled,

computationally intensive tasks. In support of this goal, a multiprocessor structure was

designed which provides a quality support environment, moderate fault tolerance, and high

system performance implemented in convenient steps.

4.2. Architectural Specification

Literally hundreds of data points exist within the multiprocessor design space, each devised

in response to a particular set of application requirements. Thus it is useful to describe the

RAPIDbus II system specifications both in relation to the application, and the realities of a

large digital system for which an implementation is required.25

In this case, practicality demands that the desire of the purist to separate architecture from implementation or
realization must be moderated.

4.3. Extensibility

A substantial overhead cost is paid at the systems software level when moving from one to

two equal processors. Relatively few changes are needed to the software structure as

additional processor are added to the initial pair. If a sufficient number of tasks are available,

potential increases in system throughput are generally limited by the increasing average

communications latency as tasks begin to block each other while accessing common data

structures. Through implementation techniques evolved from earlier RAPIDbus designs,

RAPIDbus II appears to be capable of minimizing both contention for interchange bandwidth,

and with suitable hosts, contention for access to shared memory blocks [81, 77].

Since the number of tasks is an experimental variable, the ideal number of processors

appears limited by the maximum acceptable average communications latency. A reasonable

metric for such a radius of extensibility is based on the time required for a processor to

respond to a context swap request and execute the desired task. If a process can get the

results of a task execution faster locally than by communicating with a distant processor, the

foreign processor clearly lies beyond the range of practical extensibility.

Consideration of actual RAPIDbus II implementation technology suggests that a task swap

has nearly 100 clock cycles of overhead before replacement code can begin execution.

Several hundred RAPIDbus II processors could be placed within this communications latency.

Thus in order to demonstrate reasonable extensibility without incurring substantial

addressing overhead, 240 nodes.26 are defined by the architecture, with straight forward

extension to a larger population.

Within a single task, address space limitations in previous multiprocessor systems have

been recognized as a serious limitation to extensibility [41]. Processors such as the DEC

PDP-11, and the Zilog Z80 used in several early multiprocessors are limited to a 216 byte

address space [41,59]. Taking advantage of the tremendous leap in semiconductor

technology, RAPIDbus II is designed around a 232 byte physical address space. The virtual

address space available to the programmer is host dependent, but in the proof-of-concept

realization, provides up to 224 bytes in one or more separately mapped segments.27

OfK

The number of potential nodes Includes both processor locations, and those used only for system
communication [links],

27
Bankswitching makes the remainder of the address space accessible with greater effort

81

4.3.1. Heterogeny of Elements

In traversing the depth of an advanced robot system from visual input, through image

understanding, to a suitably enunciated output, a myriad of different kinds of algorithms are

required. Early vision processing may require very regular operators on large data objects.

Later stages of vision may require the manipulation of small objects interwoven within

intricate data structures. Reporting or control stages will require still other computational

support. Within a research environment, externally supplied input or data output may be

required at any point in conjunction with a variety of devices.

Traditionally, multiprocessors have relied on a single general purpose execution element

which is replicated as needed throughout the structure. Although such homogeneity

simplifies the design, any general processor cannot hope to optimally handle a broad range of

array, scalar, and I/O tasks in a cost- effective way. Trade-offs are inevitable with a general

purpose architecture. In contrast, designers are increasingly finding ways to create

processor structures which achieve very impressive performance over a limited algorithm

domain [45]. For a given cost, performance often is inversely proportional to flexibility in the

design of a processing element.

A multiprocessor provides potential to take advantage of special purpose processor

structures interfaced as one or more host nodes. If a complementary set of nodes is

assembled so as to work symbiotically with one another, the performance of special purpose

designs can be harnessed without loosing some generality of overall function. However,

within a research environment, the cost of designing any processor module is high. Seldom

do resources provide adequate support for both the hardware design and later software

support of more than one processor architecture.

RAPIDbus thus relies heavily on being able to integrate the vast effort invested in existing

commercial hosts, either at the chip set or subsystem level. Typically such hosts have widely

diverse, often conflicting interface requirements [19]. Such simple grounds for

communication as the location of the most significant bit or the packing of bytes within a

quadlet is seldom the same for different hosts. In order for any interface to bring order from

the bable, the mapping between bus cycles and data objects must be known to the interface.

In the general case, this requires both data typing, and either control over operand alignment,

or an indication of the relationship of the bus cycle to the boundaries of the data object.

82

In the course of algorithm research, it is useful to integrate prototype functional

accelerators. Both in the digital domain, and with electro-optic or CCD technologies, very

regular portions of a specific algorithm can often be readily implemented to achieve

performance well beyond the range of a general purpose computer of comparable-

complexity. The catch is often in the support logic required to get operands in and out of the

regular portion of the box, and handle boundary requirements. Such support logic frequently

consumes major amounts of design time while directly contributing little to performance

enhancement. Experimentation with new functional boxes becomes more practical if

overhead requirements, such as operand stream generation and boundary calculations can

be assumed by other, existing, members of the processor society [30].

p M

1 1
s

\

FUNCTIONAL BOX

Figure 4 -1 : Multiword packets can be used to
integrate a prototype functional box onto
RAPIDbus while existing processors
absorb overhead functionality.

The multiword packet is provided within the RAPIDbus II architecture specification in part to

provide streams of high bandwidth operands to or from very simple functional hosts. Each

port of a functional box is connected to a RAPIDbus node, which acts as a slave to sink or

source streams of data coming from other, more general purpose nodes as shown in figure

4-1. Host nodes can be added as required to meet channel bandwidth or address stream

interleaving requirements as needed.

4.3.2. Software Support

The concurrency provided by a multiprocessor adds a new spatial dimension to the

temporal medium programmers are skilled at dealing with. Because of the additional

complexity introduced by the new dimension, hardware support for quality programming

becomes more important than on a comparable uniprocessor system. Although

contemporary compilers and assemblers provide checking to catch errors prior to run-time,

some interactions can only be reliably detected while code is running. Many kinds of run-time

checking can be performed with software in line with application code at the expense of both

reliability and performance.28 Earlier discussions established the need to integrate existing

processor implementations where possible. Yet with reasonable retrofits to existing VLSI,

RAPIDbus II can potentially assist the programmer by restricting access to memory, mapping

virtual addresses to physical memory locations in a storage hierarchy, managing of

dynamically allocated storage, and assisting in the maintenance of data type coherency.

With relative simplicity, a commercial memory management part can be interposed between

processor and the local processor bus, providing both segment level memory protection and

virtual to physical address translation. Such coprocessors have memory descriptors paired

with each segment of memory for which the task currently executing on the coupled

processor has access. In some units, segments can further be decomposed into pages, or

the available capabilities made specific to read or write operations.29

Ideally, both access protection and relocation of segments would be extended downward to

support small objects structured from one or more of the primative data types according to a

template. An upward compatible enhancement path, based on one or more object

coprocessors for each operand processor is proposed, creating an object interface layer

[OIL], OIL is intended to support object based access protection, true visualization of shared

data, and effective support for dynamic memory allocation. In order to maintain compatibility

with other objectives, OIL must be adaptable to existing processors and not exact significant

performance penalties.

Compiler generated run-time checking is asking software to verify software integrity, a questionable case of
self-policing. Software run-time checking must insert additional instructions into the stream, competing for machine
cycles with the application task. As the level of verification increases, the performance must suffer.

29The proof-of-concept processor node replaces the 68000 processor socket on an existing CS-9000 processor
card with a board which includes a 68000, 68451 [MMU], and a single entry translation cache.

Many different algorithms operating in minimally constrained environments, such as

robotics, use large data structures whose size and growth patterns are data dependent. For

instance, a structure describing a particular situation which the system may find itself in, a

frame, is the result of information acquired at run-time. At compile-time, the programmer

neither knows how many frames will be used, nor how complex a given frame might be.

Dynamic memory allocation is commonly used to parcel such storage on a demand basis.

During the course of running a particular application, such storage space may become

allocated and at a later time, the application will loose interest in the information. Particularly

if the memory is allocated in small pieces, such memory can drop out of sight without being

returned to the pool of available memory; storage can leak.

As tasks run for some period of time, loosing small areas of physical memory on each

allocation and return cycle, the system will encounter a state where insufficient memory is

available to be allocated, even thought substantial pools of memory are inactive. Some form

of garbage collector is required to reclaim this memory. Garbage collectors are often run on

machines without hardware support, but at the expense of both performance, and periodic

intervals when the machine is unable to respond while "collecting". With contemporary

machines and a large address space, this may require several minutes.

If memory is packed in large, nondescript segments allocated by the compiler, as is the case

with most uses of VLSI memory managers, hardware does not have the information required

to assist in garbage collection, leaving the burden to software. Thus the RAPIDbus II

architecture does not provide badly needed support for garbage collection. Once again, the

object interface layer coprocessor, running in support of a primary processor, provides a

hardware basis with the proper level of granularity to consider putting garbage collection into

hardware.

Data type checking is also a difficult retrofit to an existing processor / software system.

Most commercial processors at the chip or board level do not provide strong data typing.

Those that do, such as Intel's 432 family, currently exact an unacceptable performance

penalty. The basic RAPIDbus II architecture depends on host adherence to whatever

limitations are needed to allow interface hardware to transform shared variables to and from

the interchange data specification. This may include alignment restrictions or require the use

of external hardware monitoring the instruction stream.

Potential upgrades to the RAPIDbus II architecture based on OIL can support automatic

data type coherence and impose data type checking external to existing processors. This

requires that the strong data typing of a language such as ADA be carried to the machine

level, assisted by type conversion instructions executed by the coprocessor. Within the

object interface layer, data typing operations are performed by the TYPE BOX.

4.3.3. Modularity

At the structural level, programmability, performance, and reliability are enhanced by the

partitioning of large host ensembles into subsets called societies. Such processor societies

are composed of several different kinds of processor hosts chosen to provide complementary

capabilities needed to handle a particular package of tasks. By partitioning into societies at

the architecture level, the complexity which a programmer must organize at any one time is

limited to a single subgoal. Each processor node may own a portion of the total system

address space through a dual porting of local memory to the RAPIDbus interchange.30 As

shown in figure 4-2, repeaters are used between processor societies to support access by any

processor to memory segments in another society for which memory protection tables offer

access.

Host
Node

P M

1
S

r
I
lost
Jode

P M

1 1

S

1

Host
Node

P

1
S

1

Host
Node

P M
i I

S

/ Inter- \

S

1
Society
Link S

1

Host
Node

P

11
S

1

M

Host
Node

M

I
S

1

Host
Node

P M
I I

S

Host
Node

P

1
S

Processor Society Processor Society

Figure 4-2: The RAPIDbus II architecture is
composed of societies with up to fifteen
host nodes. High speed parallel links
between societies can be configured in
response to research requirements.

Performance is enhanced in most implementations by decomposing processors into

societies since the bulk of interprocess communication can be expected to fall within a tight

locality of processors (the society). If bandwidth is independently allocated for each society,

30
In an extended RAPIDbus It architecture, each host node would also be responsible for supporting objects

"owned" by a particular host and resident in the dual ported memory. Such support includes maintaining a list of
tasks with local copies of the objects, those with write authorization for their local copies, and dynamically insuring
consistency of remote object copies as they are mutated by tasks.

RAPTDbus IT
SOCIETY

RAPIDbus
SOCIFTY

1
RAPIDbus II
SOCIFTY

RAPIDbus II
SOCIETY

IT

I
RAPIDbus II
SOCIETY

RAPTDbus IT
SOCIFTY

RAPIDbus II
SOCIETY

Figure 4-3: A pipeline of societies fits applications
where most of the data flow obeys a
linear, single input port, single output
port relationship.

RAPTDbus
SOCIETY

I
RAPIDbus II
SOCIETY

1
RAPIDbus
SOCIETY

RAPTDbus
SOCIFTY

1
II

II

T
RAPIDbus
SOCIETY

II

1
RAPIDbus II
SOCIETY

1
RAPIDbus II
SOCIETY

I
RAPIDbus II
SOCIETY

1
II

Figure 4-4: A ring of societies provides low latency
communication throughout the address

•^- space with singly redundant paths
between societies.

then the total bandwidth available in ail linked societies can be increased with respect to

allocation over a single system bus. By partitioning a system into small sections, each of

which has redundant hardware, the probability of two uncorrelated failures leading to a

system failure is greatly decreased [44]. When a subsystem component does fail, narrowing

the neighborhood of the failure simplifies either automated or human diagnosis.

In response to particular application requirements, RAPIDbus societies can be linked in a

variety of different topologies to minimize the average number of societies through which a

memory reference must pass between master and slave. Applications which are generally

structured as a pipeline, with the bulk of information flowing from one society to the next can

effectively be linked as shown in figure 4-3. Alternate problem domains might best be served

by a ring, as in figure 4-4 or an n-cube such as the 3-cube shown in figure 4-5.

RAPTDbus
SOCIFTY

RAPTDbus
SOCTFTY

/

TT

/

TT

/

/

RAPTDbus
SOCTFTY

RAPTDbus
SOCTFTY

TT

TT

RAPTDbus
SOCTFTY

RAPTDbus
SOCfFTY

/

n

/
IT

/

/

RAPTDbus
SOCTFTY

RAPTDbus
SOCTFTY

IT

TT

Figure 4-5: Rings of societies can be generalized
into N-cube topologies, with arbitrarily
many redundant paths between societies
at the price of increased overhead.

4.3.4. Specification Summary

Both the application environment, and the realities of the implementation have lead to a

structure based on small groups of heterogeneous processors called societies. Inter-society

links provide communication paths to create a single shared memory environment for the

entire ensemble of societies required by a particular application. Several capabilities are

recognized as being essential for optimal support, and yet had to be designated as an upward

compatible path for practical reasons.

4.4. Addressing

Communication within the RAPIDbus II architecture is through a sparsely populated

physical address space composed of 232 addressable bytes of information. Locations can be

accessed as bytes, doublets (16 bits), quadlets (32 bits), or multiple quadlets. Doublet or

quadlet transfers which cross a quadlet boundary must be run as two separate RAPIDbus

transfers, one on either side of the quadlet boundary. Multiple quadlet transfers must take

place aligned to quadlet boundaries. Most processor architectures allow split transfers

arising from quadlet boundary crossings to be handled transparent to the programmer

interface. Where supported by the processor, RAPIDbus transfers are optimized for quadlet

transfers aligned to quadlet boundaries.

Transfer requests can always be made for any of the four supported access widths,

independent of the width of the slave implementation as long as physical memory is available

on a single host for each byte being accessed. If the data path of the slave is insufficient to

handle the required transfer, the slave RAPIDbus interface will split the access into multiple

host cycles.

Access to nonexistent memory locations will be handled differently depending on whether

the location fits within a valid memory descriptor for the task in question. If no descriptor

exists, the interface defines an error handling protocol which may involve bringing the

required segment in from a secondary storage medium (virtual memory). If a valid descriptor

exists for a nonfunctional memory location, the processor will be interrupted with a

nonvectored bus error exception.

4.4.1 . Memory Map Structure

Each installed host node is populated with a contiguous segment of the 232 byte physical

address space. As shown in figure 4-6, the physical address space is hierarchically

structured. The highest four bits, A31-A28, indicate the society in which a memory location is

to be found. The next four bits, A27-A24, are currently assigned to provide a 224 byte

potential address space on each host node. As an upgrade path, A27-A24 could also be

repartitioned to increase the number of societies, the number of host nodes within a society,

or the number of virtual processor / memory servers located at a single host node.

Society i d e n t i f i c a t i o n number
Addressing in te rna l to aach processor
.Slot number w i t h i n a society

I n i t i a l byte of access
Inter leaved addressing b i t

Addressing in te rna l to each proc

31 28 27 24 23 20 19 3 2 1 0
MSB LSB

Figure 4 - 6 : The physical address space is
part i t ioned hierarchically into societies
and then host nodes within a society.

Within a society, there are fifteen host nodes which could potentially be populated. Address

values zero to fifteen on address lines A20-A23 indicate the node to which a memory

reference should be directed. The megabyte belonging to the sixteenth node, independent of

A31-A24 in the address, contains a local control segment to accommodate system ROM,

peripheral device and control registers, many of which will vary with the particular host.

The RAPIDbus interface specifies four locations within the local control page; an interface

control, a diagnostic, a bank switching register, and the node address. The bit assignments

of the control register are specific to the nature of the host interface. In the case of the

microcoded interface described in the realization section, five bits are used to extend the

number of different host nodes on which a remote interrupt handler can be scheduled. The

highest three bits are potentially used to control the conversion of user data flowing through

the interface. Diagnostic information specific to the RAPIDbus host interface operation can

be read from the same address at which the control register is written. The bank switch

register expands the address space accessible to hosts with less than a 32 bit'address range.

The location of both registers within the local control segment is flexible to conform to

existing host memory maps.

The lowest twenty bits of the address access within a potential one megabyte memory block

on a host node. Many commercial monoboard computers with dual port memory are shipped

with memory located at the bottom of the address space (OxxO) for all cards. The same

memory locations appear in higher address ranges from an off-board access. The local

address decode on such cards must be modified to make the internal and external addresses

identical if all fifteen host nodes are to be populated with dual port processors within a

society.

4.5. Data Formats

In order to efficiently and unambiguously support the interchange of data between

processor nodes, specification of both data representations, and their assignment to the the

interchange structure is essential. The high degree of incompatibility between existing

commercial processor nodes forces the RAPIDbus interface to perform host specific format

translation to achieve format compliance for any data object traversing RAPIDbus [42,19, 11].

In formulating interface strategy, data structures were considered for the Intel 80x86 [2],

National xxO32[1], Motorola 680xx [48], VAX [23], and IEEE 896 advanced backplane [4].

Even though software considerations may prohibit direct use of more than one processor

architecture, compatibility with ancillary hardware designed for different data structures is

essential. Analysis of conversion problems confirms Cohen's conclusion [19] that the current

proliferation of structures is a costly, time consuming tragedy.

BYTE

MSB

MSB

M

M+4

ISB

ISB

MSB

MSB

M+1

M+5

I SB

ISB

MSB

MSB

M+2

M+6

1 SB

1 SB

DATA

MSB

MSB

TYPE

M+3

M+7

= 000

ISB

ISB

31

DOUBLET

24 23 16 15 7 0

DATA TYPE * 001

MSB i SB MSB M+2 ISB

MSB M+4 SB MSB M+6 ISB

31 16 15

ER QUADLET

MSB

MSB

M

M+4

DATA TYPE = 010

t SB

ISB

31

:D BCD

MSB I SB

MSB ISB

M
MSB

M+4
MSB

ISB

ISB

MSB

MSB

M+1
LSB MSB

M+5
LSB MSB

LSB

ISB

MSB

MSB

M+2
ISB MSB

M+6
I SB MSB

1 SB

1 SB

DATA

MSB

MSB

TYPE =

M+3
LSB MSB

M+7
LSB MSB

O i l

LSB

LSB

31 24 23 16 15 8 7

KED

0

0

BCD
M

MSB

M+4
MSB

LSB

LSB

0

0

M+1
MSB

M+5
MSB

LSB

LSB

0

0

M+2
MSB

M+6
MSB

tSB

1 SB

DATA

0

0

TYPE =

M+3
MSB

M+7
MSB

111

LSB

I SB

31 24 23 16 15 8 7

Figure 4-7: Five primative scalar data types are
supported based on Motorola 68000
representations.

4.5.1 . Scalar Data Types

At the lowest level of structuring, the RAPIDbus interchange handles five different scalar

data types. Each is described in relation to a quadlet, or thirty-two bit word around which the

memory system is organized. The packing is identical to that of the 68000 processor family,

optimizing the system for such processors as a matter of practicality. This packing is

suboptimal, since ascending bytes or doublets packed within a quadlet (32 bit word) are

stored going from the most significant to least significant side of the quadlet, in direct contrast

to the bit numbering scheme. All operands are referenced by the byte address of the lowest

IEEE

IEEE

IEEE

SINGLE FORMAT

S

S

MSB EXPONENT ,.SB

MSB EXPONENT i SB

31 30 23

DOUBLE FORMAT

S Msn EXPONENT

31 30

EXTENDED FORMAT

S

MSB

MSB

21

ISB

20

MSB EXPONENT

MANTISSA

MANTISSA

DATA

DATA

MSB HIGH MANTISSA

LOW MANTISSA

19

LSB

HIGH MANTISSA

LOW MANTISSA

DATA

UNUSED

TYPE =

TYPE =

TYPE =

100

LSB

LSB

0

101

ISB

0

110

31 15 16 0

Figure 4-8: Three different floating point
representations are supported based on
the Motorola packing of the proposed
IEEE floating point specification P754.

byte enclosed within the operand. Where possible, operands should be assigned to avoid

crossing quadlet boundaries.31 Packing strategies, and the associated data typing indices

are indicated in figure 4-7 for bytes, doublets (16 bits), quadlets (32 bits), packed BCD, and

unpacked BCD. As an upward compatible step, type translation logic would be significantly

simplified if doublets were assigned only to addresses where AO is zero, and quadlets

assigned only to addresses where both AO and A1 were both zero. Since this requires

modification of existing assembly code and compilers, this requirement is not made, by the

RAPIDbus II architecture.32

31
Performance is improved by avoiding quadlet crossings. Unlike the 68000 architecture, this restriction is not

required.
32

Use of a 68000 processor with an internal instruction cache will make this requirement essential since less
information is available retrofit instruction monitoring logic. If software enforces this restriction, and avoids the use
of shared BCD data types, only references to floating point operands need to be caught by external instruction
monitoring logic. Since such floating point references should be executed on a separate floating point coprocessor,
data types can still be translated to alternate packing structures even with a processor cache.

4.5.2. Floating Point Data Types

The three IEEE floating point data types are supported using Motorola packing structure,

shown in figure 4-8 [38]. Respectively, single, double and extended formats require one, two,

or three quadlets. Once identified, the IEEE single format can be readily translated when

accessed as a single data cycle into alternate packings. Unfortunately, IEEE double and

extended format require more complex translation techniques. Translation into alternate

packing structures requires that the order of the successive words be inverted. Since such

words are handled by the RAPIDbus interface as independent data transfers, complex logic is

required at the host to reorder both words and bytes within a word. Conversion to and from

DEC floating point notation also introduces numerical transformations in addition to byte level,

repacking.

4.6. Upward Compatibility: OIL

The object interface layer is intended as an upgrade path for the RAPIDbus II architecture to

support features and implementation performance enhancements which were not in keeping

with the needs of a basic proof-of-concept implementation. OIL is intended to combine the

performance of existing operand based architecture implementations with some of the

advantages of an object oriented environment. The interface layer is conceptually interposed

between processor and an upward compatible RAPIDbus II interchange network. Basic to the

approach taken by OIL is the assumption that interconnect bandwidth is plentiful, but that

only point-to-point links are supported between nodes.

4.6.1. Objects

The concept of an object oriented multiprocessor is not new. This section builds on ideas

from machines like Starlet [33], Intel's 432 [39], CMU's C.MMP/HYDRA [65] and CM* [41],

MIT's Lisp Machine [78], and A MACHINE ARCHITECTURE TO SUPPORT AN OBJECT-

ORIENTED LANGUAGE, a Phd thesis by Alan Snyder [68]. It is not intended as a final design,

but rather to suggest that a high performance multiprocessor and an object architecture can

coexist productively in the intended robotics laboratory environment.

An object, used in the context of RAPIDbus II, is the name of a location containing a value;

either a single primitive data item (for instance a doublet integer), or a more complex structure

composed of primitive data items. Support for complex structures as a single object is an

important factor in minimizing overhead in a system built for high performance, largely

numeric computation [33]. All objects are dynamically allocated at run-time by OIL running as

a host coprocessor. Complementing the objects used for shared storage, OIL supports

variable based segments, allocated by the compiler, for non-shared operands.

With the support of OIL, each shared object has a unique name, by which the object is

known by all tasks to which it is accessible. At any instant, OIL insures that a single value is

attributed to the object by any processor running in the environment, even though

performance may dictate that multiple "copies" of the object are kept.

4.6.2. Object Support

A group of consecutive objects is "owned" by a particular node within the RAPIDbus

system. Although performance is enhanced if objects are allocated on a node within a society

making frequent reference to an object, this is not essential. The owner node maintains a

record of each object's value, including the required tag, a list of tasks with copies of the

object, and a list of tasks with access rights. The owner node is responsible for maintaining

the consistency of each copy of owned objects through cache update packets [57]. Mapping

between an object's identifying number; the "address", and the location of the owner node is

done through a writable routing table on each node. In this way, objects can be migrated

from one owner node to another in response to node failures or the paging onto secondary

store of a sequential group of objects.

Access rights are given to a task either in response to object allocation, or through a

coprocessor instruction run by OIL copying access rights owned by the current task to

another task. OIL, acting as a coprocessor, sends an appropriate packet to the object owner.

Tasks which no longer need access to large objects can speed up the garbage collection

process by sending a coprocessor instruction to OIL, releasing object access rights. If the

last access rights are returned to an object owner, and packet skew limitations are met, an

object's storage can be returned to the pool of available memory prior to being reached by the

garbage collector.

The conceptual structure of an object layer interface is shown in figure 4-9 with the

processor at the top of the figure, and the two RAPIDbus ports at the bottom. The processor

can fetch from either a cache, which supports small primative data types, or a larger, directly

addressable memory accessible through a commercial memory management unit. The

PROCESSOR
ADDRESS DATA

DATA

MEMORY

MIC
ENG'

MMU

RO
INE

TYPE
BOX

CACHE

ADDRESS

DATA

OIL
BOX

OBJECT
STORE

1

PORT PORT

. . .
OBJECT
STORE

ADDRFSS

ROUTING
TABLE

ABUS DBUS

Figure 4-9: The object interface layer is inserted
between processor and interchange to
assist in operand management.

memory mangement unit maintains descriptors which represent either directly addressable;

compiler allocated variable segments, large shared objects, or mailslots.33 Directly

addressable memory is handled as intended by the MMU designers. In the second case,

where a descriptor represents a shared object such as an image or a block of code, the MMU

/ memory is functioning as a cache with a block size equal to a page. The difference between

this use of an MMU and traditional virtual memory is evident when the operand is neither

available in the cache nor does the MMU have a descriptor. When a descriptor represents a

mail slot, as in the third case, the reference is treated as non-cachable, and written or read

directly to or from the owner object store via the OIL microengine.34

Local memory faults are handled by the microengine which forms the heart of the OIL on

33
Since segments representing small portions of the local physical memory might be typically used, having a large

number of MMU descriptors is essential.
34Useful for feeding special purpose pipes or other functional blocks.

each processor node.35 A memory fault which comes from an MMU descriptor for local,

compiler generated storage, is handled as a traditional virtual memory problem with the

microengine requesting the segment from another host node with a secondary storage device

(such as a disk). The segment is brought into the memory block as a large, multiword packet,

possibly causing another descriptor to become Mpaged out". If a descriptor for a large object

is paged out, the owner node of the object must be notified that a copy is no longer present on

the paging node.

Cache faults, and faults from MMU descriptors representing large objects are handled

differently. The fault initiates a read packet addressed to the object owner as selected by the

routing table. The object owner node can either respond with the requested object for

placement in the memory or cache (depending on size), or the requester can be refused

access because the task requesting the object did not have access rights. Such access

violation is intended to prevent one task from affecting another except along communication

channels asserted by the programmer through access ownership.

4.6.3. Data Typing

The typing capability provided by the TYPE BOX within OIL retrofits type checking and type

translation to an existing processor implementation. Detailed in figure 4-10, the TYPE BOX

requires the support of a strongly typed language, a compiler/assembler which retains the

strong typing, and the addition of type translation instructions executed by the OIL as a

coprocessor.

Addition of type logic increases the variety of different processor architectures which can

cleanly be interfaced into the multiprocessor structure since conformity to a particular

standard is not required, only convertability. Although code segments are obviously not

simply translated, shared objects can be readily transformed between the representation used

by the host and that of the interchange network. The type logic also detects type violations in

an effort to detect processor operations which were not as intended by the programmer.

35
Performance considerations may dictate multiple OIL microengines per oil box.

PROCESSOR

OATA
FUNCTION

CODF

TYPE
BOX

FORMAT
CONVFRTFR
COPROCFSSOR

SSM

DATA TYPE
MONITOR &
CONVFRSTON

CONTROI

MEMORY

Figure 4-10: The type box is used to retrofit a
variety of existing processors to an
object based RAPIDbus II.

4.6.4. Garbage Collection

Finally, OIL supports incremental garbage collection assisted by explicit release of shared

objects by coprocessor instructions. Each pointer to a dynamically allocated object is tagged

for ready identification. Starting a garbage collection cycle, each task access entry for each

object has a marker bit, which is initially set. As each task is temporarily deactivated, OIL on

the node upon which execution has just completed proceeds through the list of accessible

objects, signaling the object owner to clear the marker bit associated with the task. Access

grants conveyed to tasks during the garbage collection cycle also clear the bit. At the

completion of the garbage collection cycle all objects with no clear bits for any task access

entries are returned to the heap for reallocation.

97

4.6.5. Summary

The structure of a possible object based enhancement to RAPIDbus is described here to

support the extensibility of the basic design. By taking advantage of very high bus bandwidth,

local copies of shared data can be kept coherent across many processor nodes without any

bus monitor logic. Removing the need to monitor bus traffic to maintain coherency, as is

done in many current multiprocessors with local data caches, [32] opens the possibility of

many new interconnect structures, such as the switching plane described in the next chapter.

The OIL interface helps to identify at run-time programmer assertions on both the scope and

typing of shared information. Reliability is enhanced by the ability to migrate either tasks or

groups of objects from one node to another transparently. OIL improves the quality,

reliability, and performance of the programming environment, building on the foundation

RAPIDbus II architecture.

99

Chapter 5
RAPIDbus II:

Implementation &
Realization

5.1. The Implementation

The RAPIDbus II implementation is intended to provide efficient protocol and functional

structure to allow a high performance, practical realization of the architecture specification.

Performance is primarily dependent on the use of existing host processor nodes executing

one to twenty million operations per second and having frequent need for low latency

communication with shared data structures. Practicality demands that the realization reduce

performance gradually in response to as many single point failures as possible.36

The RAPIDbus II implementation draws heavily from Zoccoli's original RAPIDbus, and the

RAPIDbus I implementation [81, 77]. Going beyond the insights and lessons that were

suitable for use with commercial hosts and off-the-shelf realization technology, the

implementation section will conclude with a discussion of an enhanced interconnect

implementation.

36
The need for graceful degradation with RAPIDbus should not be confused with designs where the primary

requirement is reliability at the expense of considerable duplication of hardware and machine resources. Examples
of multiprocessors where primary emphasis is placed on uptime include C.VMP, Tandem's Non-Stop series, or
NASA's FTMP [65].

5.1.1. Packet Switching Structure

The RAPIDbus II switching structure has evolved from a time-multiplexed, circuit-switched

bus into a packet-switched interconnect structure. Although RAPIDbus II breaks

communication into several, multiple stage, discontinuous bus cycles, it differs from common

packet interconnect definitions in two important ways. Sequential bus cycles implementing a

single packet are not sent on adjacent bus slots.37 Secondarily, each host is capable of

handling bus cycles from only one packet transaction at any one time in the proof-of-concept

implementation.

Both departures optimize support for existing commercial hosts.38 Virtually all candidate

hosts were limited to producing 42 or fewer lines of new information during any processor

clock cycle.39By transferring information as it was generated by the host, routing complexity

was increased, but the width of a given information path is reduced. The second departure

came from the inability of existing circuit-switched host bus protocols to initiate or begin

service on a second interchange transfer while an earlier request was still outstanding.

Packets form the fundamental unit of communication between any two host nodes across

the RAPIDbus II interchange network. Each packet in turn is composed of two or more

transfer cycles. If both the master and slave associated with a transfer cycle are in the same

cage, only one bus cycle is required to implement the transfer. If the master and slaves are

situated in different cages,40 one bus cycle is required across each intervening cage to

complete a single transfer cycle. Bus cycles are implemented as short temporal windows

during which one set of drivers on each bus41 within a cage are gated onto the backplane. At

37The 56 bit width of each bus allows substantial concurrent information transfer on each bus cycle however.

38
During the design process, the impact of integrating a variety of board and chip level hosts was considered.

Versabus hosts from IBM Instruments [CS-9000], SKY Computer, BioResearch, and Motorola were considered.
Compatibility with Multibus I and II specifications from Intel, the IEEE P896 Advanced Bus standard and the Analogic
AP-500 generalized host port and auxiliary I/O ports provided longitudinal tests of host extensibility. At the chip
level, consideration was also given to interfacing native hosts based on the Motorola's 68000 and 68020, Intel's
80286, and National's 16032 and 32032.

39These are generally some form of 32 address lines, three function code, three data type [externally added], two
size, write, and read -modify- write lines.

40
A cage of processors is the physical implementation of an architecture society

41
The bus grantee

the conclusion of this bus cycle, the interface to which a bus cycle is being routed,42 latches

in all lines of the accessing bus.

A packet transfer begins by connecting the master, or originating node, with the slave, or

destination node using an address transfer cycle. Once a memory block is assigned to a

packet, no further address transfer cycles will be accepted until the transfer protocol is

completed or aborted. The address cycle conveys the physical address being referenced, a

function code detailing the nature of the transfer, and control information designating the

transfer as a read, write, or read-modify-write and the bus transfer width. Following data

transfer cycles within the packet may only be sent after acceptance of the address transfer

cycle by the destination, and then only in agreement with the type of transfer indicated by the

function code of the initial address transfer cycle.

Following acceptance of the address cycle, up to four bytes (a quadlet) of data, an address

acknowledge from a remote cage, an abort cycle, or an interrupt cycle may be transmitted

using a single data transfer cycle.43 Packets designated read-modify-write by the initial

address cycle require two data cycles, the first from the slave to the master, the second, a

write, from master to slave. Multiword data packets require an overhead data transfer from

master to slave (the word count), followed by the number of data transfer cycles indicated by

the packet word count parameter.

Each cage supports one backplane with two redundant 56 line buses, the ABUS and DBUS.

Within either bus, 32 lines are used for address or data information, eight lines to

communicate the transfer function code, eight for routing information,44 four bits for control

with address-cycles, and four bits of parity covering the first 52 lines. The function code field

is used to specify the class of access request for an address transfer cycle. During a data

cycle, the function code can either describe the data, indicate an abort, or a remote

acknowledge. Function code assignments are shown in figures 5-1 and 5-2.

Within each of the buses, the control fields are used only for address cycles. Bit fields are

provided to identify read, write, and read-modify-write atomic cycles. A pair of bits within the

42
The bus accessee

43
Additional packet types are required to support an OIL- like enhanced bus.

44
During an address cycle, the routing byte indicates the interface address of the originating host node. Data

transfers use the routing byte to indicate the destination of the data.

102

Cycle Type Markers:

Lines 7654321

XXXX X000 Control cycle

XXXX X001 Supervisor code request cycle

XXXX X010 Supervisor data request cycle

XXXX X011 Data cycle (see below)

XXXX X100 Reserved

XXXX X101 User code request cycle

XXXX X110 User data request cycle

XXXX X111 Reserved
Figure 5-1: The least significant three bits of the

function code field indicate the transfer
class.

control field indicate the number of bytes following the given (byte) address for which transfer

is requested.

•>

Bus cycles on the ABUS or DBUS are confirmed by signals on the respective three line

acknowledge busses. Not to be confused with a remote acknowledge cycle on the ABUS or

DBUS, the sole function of these buses is to confirm the integrity of a single bus cycle two bus

windows after the primary (ABUS or DBUS) grant. Acknowledge bus codings are described in

figure 5-3.

Timing for both 56 bit backplane busses within a cage is tightly controlled by unbussed,

point to point links between each slot in a cage and the cage arbiter, as shown in figure 5-4.

Each arbiter cable allows the interface to request one or both buses at a time, to specify a

request for an bus as an address or data cycle, and to prohibit address accesses to an

interface while a packet transfer is in progress. A four line slot address indicates the

immediate destination of the requested bus cycle within the cage. Returning from the arbiter

to each interface slot are bus grant signals for each of the buses, bus access signals, a cage

timebase, and a cage reset line.

Cycle Sub Types:

Lines 7654321

103

XXXX OXXX

XXXX1XXX

0000 XXXX

0001 XXXX

0010 XXXX

0011 XXXX

0100 XXXX

0101 XXXX

0110 XXXX

0111 XXXX

1000 XXXX

1001 XXXX

1010 XXXX

1011 XXXX

0000 1XXX

1111 1XXX

01101XXX

0111 1XXX

1101 1000

1011 XOOO

1000X000

Figure 5-

5.1.1.1. Packet Routing

Route to master

Route to slave

Byte data (data cycle)

Doublet (data cycle)

Integer Quadlet (data cycle)

Packed BCD (data cycle)

IEEE Single floating point (data cycle)

IEEE Double floating point (data cycle)

IEEE Extended floating point (data cycle)

Unpacked BCD (data cycle)

Untype data [wild type] (data cycle)

Code type (data cycle)

Pointer (data cycle)

Multiword parameter (data cycle)

Single word access [32 bit master] (request cycle)

Single word access [16 bit master] (request cycle)

Multiword access [32 bit master] (request cycle)

Multiword access [16 bit master] (request cycle)

Interrupt access (control)

Abort access (control)

Remote acknowledge (control)

2: The most significant five bits of the
function code elaborate on the class of
the transfer.

Host nodes are logically identified by a unique home address used by software to name the

executing processor node, and by hardware to coordinate sets of bus cycles within a packet

transfer operation. RAPlDbus II uses the most significant four bits of the home address to

designate the society number, and the least four bits to designate host slots zero through

fifteen within a society. Upgrades could add bits to either field within the home address.

104

Lines 210

000 Cycle received, but repeated to another RAPIDbus backplane

001 Sixteen bit value received at final destination

010 Eight bit value received at final destination

011 Thirty-two bit value received at final destination

1 xx Error, repeat bus cycle

Figure 5-3: Each primary bus has a paired
acknowledge bus to confirm each bus
cycle.

CAGE SLOT ARBITER

REQUEST ABUS
REQUEST DBUS ~~~
REQUEST IS ADDRESS
ENABLE ADDRESS ACCESSES
REQUEST SLOT <0:3> *?"* G R A N T

UoUo
ABUS ACCESS
DBUS ACCESS
CLOCK
RESET

Figure 5-4: Timing for the high speed buses is done
by one arbiter module global to each
cage.

The home address is readable on each RAPIDbus host interface at the address location

written to set the address extension. This allows software running on each processor to

choose unique portions of system data structures, and to report diagnostic information

referenced to the physical position of the host node.

Interface hardware uses the home address to create virtual links between master and slave

processors across the interchange network. The home address of a host node accessing

memory on another node is carried within the routing field address transfer cycle so that the

slave host will know where to respond.45 Each data cycle following the address cycle uses

The address cycle is routed to the appropriate slave based on the concatenation of address lines A31:A28 and
A23.A20 within the bus cycle.

105

the transfer routing field to designate the destination of the particular bus cycle. Bus cycles

implementing a data write transfer will convey the slave home address. Respectively, a data

read transfer will contain the master home address.

Upgrade paths could increase the number of bits in the home address to provide for multiple

memory blocks accessible through one host node, or processors capable of several

simultaneous outstanding packets. Provision for multiple concurrent memory accesses

within a single host node increases the parallelism of the bus memory server, potentially

decreasing memory contention. Depending on the processor node architecture, multiple

outstanding packets can arise from either a write-through cache, or a processor running

several interleaved instruction streams. Each unit of processor or memory parallelism visible

to RAPIDbus must be assigned a unique home address.

The home address, or subset of the address value in the case of an address transfer,

indicates the destination to which the cycle is to be directed, but does not specify the path to

be taken when the reference is in a remote cage. This mapping from destination to path takes

place in stages. A transfer cycle between communicating hosts encounters a new routing

table on entering each cage through which it must pass. The table selects the slot within the

cage to which each transfer must be route; either to another repeater link, or to the intended

destination.

It is useful to consider making such routing tables reconfigurable in software, permitting

paths to adapt to changing system conditions. Many arrangements of society links provide

potentially redundant paths between distant hosts (for instance the ring, shown in figure 4-4

or the 3-cube, shown in figure 4-5.). Use of writable routing tables would allow either new

paths to circumvent failed nodes, or migration of physical address space segments from

primary to secondary storage areas.

The modularity of bus repeaters allows rapid reconfiguration of processor cages, or inter-

society links to optimize connectivity for changing applications. With a writable routing table,

proper code in each host node would allow automatic resource identification and table

creation during system boot. Although RAPIDbus II was designed for proof-of-concept using

fixed (ROM) routing tables, making these tables routable is a clear upgrade path toward a

more flexible interchange system.

106

5.1.1.2. Bus Justification

A variety of different schemes are used for transferring data of lower width than the bus,

depending on the type of transfer for which the system is to be optimized [42]. In order to

optimize bus bandwidth for 32 bit transfer operations, RAPIDbus uses an unjustified 32 bit

bus. Each byte-wide lane of the bus is logically paired with separate byte-wide memory

sections within a bus. For instance, bytes with the A0 and A1 set to one are always

transferred on data lines D31-D24.

When narrow hosts are attached to the bus, crossover buffers are required to allow access

to all byte locations. A sixteen bit host requires two octal bidirectional buffers. An eight bit

host requires three. Integration of a sixteen and 32 bit host is shown in figure 5-5.

32 BIT HOST

D<31:24> D<23:16> D<15:8> D<7:0>

Figure 5-5: Use of a sixteen bit host on a thirty-two
bit unjustified bus requires a crossover
to allow access to all bytes in memory
along low data lines.

In order to hide implementation details of one host from another, it is important that one host

need not know the width of another's data path. Thus the bus buffers are also used to allow

the RAPIDbus interface serving a narrow data path host to run multiple transfer cycles locally

so as to transparently fulfill a transfer request.

5.1.1.3. Bus Allocation

Performance maximization based on available interconnect bandwidth is critically

dependent on an effective allocation scheme. Practical considerations almost always lead

designers to some form of fixed priority allocation scheme with ranking determined in

hardware [29,70,46]. Simulation of different allocation schemes for the RAPIDbus II

backplane busses suggested that even within a fixed allocation framework, significant

differences could be made in the load level which resulted in bandwidth starvation of some

nodes depending on the arbiter chosen. With a dual port 68000 processor implementation

integrated directly onto RAPIDbus, running a code stream with 60% of the references off

board, starvation occurred with as few as nine processors per cage using a simple arbitration

scheme. The approach finally chosen showed no starvation under the same conditions for up

to fifteen processors per cage (the implementation limit).

Two separate arbiters control ABUS and DBUS allocation. Normally a request is made to

both arbiters by an interface desiring a bus cycle. The ABUS arbiter grants cycles with

highest priority to cage node fifteen, and lowest to node zero. Conversely, the DBUS arbiter

gives node zero highest priority, and fifteen the lowest priority. A cycle will only be allocated

to the same interface on both busses simultaneously if only one bus request is active.46 This

approach still allows hardware to recognize one of the two busses in each cage as unreliable,

removing requests from the suspect bus until repair can be made. Transfers continue at a

reduced throughput.

5.1.2. Data Transfer

Data transfer packets are initiated by an address transfer cycle from an originating master to

the requested slave. Only after the slave accepts the transfer request can one or more data or

control transfer cycles be exchanged. If the master and slave are in different cages, one or

more repeaters must be used to echo bus cycles between cages so as to complete the

required transfer cycle.

In order to understand this implementation of the RAPIDbus II bus protocol in moderate

detail, it is useful to consider the state behavior of host nodes involved in each kind of transfer

operation. In order to avoid details of the host implementation, only those state changes

involving RAPIDbus interface ports will be considered.

46
Arbiter hardware arbitrarily selects the ABUS to run the cycle if both busses are granted simultaneously to a

single requestee.

Considerable performance can be achieved through concurrent operations within each host

node, depending on the host design. The following state descriptions mask such

concurrency in the interest of clarity. The states and state transitions shown here are similar

to, but do not represent a one-to-one mapping with the microcode interface realization.

Unless otherwise noted, states are executed sequentially.

0. In the quiescent, or reset state, the host has no transfers active, and the
RAPIDbus port is unassigned to any transfer. The sequencer loops in this state
until a data, interrupt, or remote acknowledge transfer is initiated by the host or
received from RAPIDbus. For a data or interrupt initiation, execution continues
with the appropriate section below depending on the source. A remote
acknowledge from the bus causes the sequence to branch based on the
suspended processor control lines, which are waiting for the slave in a remote
cage to accept a transfer request.

5.1.2.1. Single Cycle Read Request

1. A single cycle read request is initiated by the host processor on the requesting
node. The address, function code, control, and parity information is sent to the
outgoing latches of the RAPIDbus interface pcrts (ABUS or DBUS). Bits are
abstracted from the address field to provide input to the routing table. A request
is placed for an address transfer cycle on either the ABUS or DBUS with the cage
arbiter. If the home address of the originating node is greater than the address of
the node being accessed/the interface is assigned to this transfer.47 Once an
interface is assigned to a transfer, a simple RAPIDbus II host cannot accept
incoming address packets until the assigned transfer is completed or aborted.

2. When a cycle is granted, the arbiter activates bus drivers on the originating
interface, directing the address cycle stored earlier onto one of the two
interchange busses within the cage. At the conclusion of the cycle, the arbiter
will activate the latches in the slot being accessed, as designated by the output of
the routing table on the requesting interface.

3. During the following bus window, the arbiter blocks requests from the previously
granted interface while the grantee removes the bus request.

4. On the third bus following the bus grant, the originating interface latches in three
acknowledge lines corresponding to the bus on which the original address cycle
was sent. These lines can indicate that the cycle was refused, that it was
repeated to another cage, or that the cycle was accepted by the final destination.
If the cycle was refused, the bus cycle must be repeated, starting with state one.
If the cycle was echoed to another cage, the interface must wait for a remote

47
This conditional allocation of the interface is to prevent deadly embrace \n which two dual port host nodes are

allocated simultaneously to outgoing transfers which involve the other's memory. Since many host port conventions
support only one transfer at a time, a deadlock would result under which neither transfer could be completed.

acknowledge bus cycle before,exchanging data. In response to such a deferred
acknowledge, an unassigned interface must return to state zero above. Once
assigned to a transfer, a wait loop must be executed in state five below. If the
cycle was accepted, then data transfer can proceed with state six, with the
outgoing host port assigned to this packet transfer

5. When a remote acknowledge is received, as denoted by the remote acknowledge
function code, parity is checked by the waiting host node to confirm integrity. If
the parity checks, the remote acknowledge cycle is accepted from the immediate
source, and a data transfer cycle is initiated with the remote host, entering state
six. If the parity check fails, the acknowledge sent back to the interface sending
the remote acknowledge cycle indicates a refusal, and the interface returns to the
previous waiting loop, either state zero or state five. If the remote acknowledge
cycle is not received within some generous timeout interval, the transfer is
aborted using an abort cycle directed at the unanswering node. The abort cycle
is initiated from state eight.

6. A successfully acknowledged request for a single cycle read causes the host port
to enter another waiting state for a return from the memory location being read.
Looping in state six, expiration of a generous timeout interval will again lead to an
abort through state eight. Incoming data accesses or abort cycles are checked
for parity. If the parity is incorrect, the cycle is refused on the second cycle
following receipt. If either cycle is received with correct parity, the cycle is
accepted from the immediate source. A validated data access advances to state
seven, an abort to state eight.

7. In the event of a successful return of read data from another host, the data held in
the last incoming ABUS or DBUS latch is returned to the processor along with the
type coding returned by the function code lines from the remote node. The
RAPIDbus port is deassigned, and address accesses enabled again by returning
to reset state zero.

8. If an abort is received from the remote node, or generated locally from a timeout,
the transfer packet is terminated with a bus error signal to the host processor.
The interface is deassigned, and on a simple interface, again able to receive
incoming address packets.48

9. After the processor acknowledges the bus error, the sequencer returns to
quiescent state zero.

A flag is set in a diagnostic register, along with information pointing to the source of the bus error. This register
is visible either to the host processor within the local control page, or via a diagnostic path to a front panel processor.

5.1.2.2. Single Cycle Write Request

The single write cycle request begins rdentically to states one through five. The write cycle

continues from state four or five as appropriate, branching to state ten below.49

10. A successfully acknowledged request for a single write cycle causes the
originating RAPIDbus port to load the data to be written into the outgoing
RAPIDbus latches. The routing field is derived from the upper address lines of
the address to which the write is taking place. The function code fields indicate
the type of the data being written. A bus cycle is requested from the central
arbiter, with an immediate slot destination based on the earlier output of the
routing table.

11. As before, when the arbiter responds with a bus grant, the output buffer lines on
the originating interface are driven, and latched into the respective bus port as
designated by the routing instruction to the arbiter.

12. The incoming data cycle is sent to the parity check logic, and on the second
window following transmission, the accessed interface accepts or requests a
repeat on the bus cycle. If a repeat is required because of a parity error or a busy
bus repeater, execution proceeds with state ten, perhaps using the alternate bus.
If the accessed interface accepts the cycle, it is assumed to repeat the data
transfer as required to the destination, or to execute the write if it is the actual
destination. An accepted bus write returns the interface to state zero.

5.1.2.3. Multiple Cycle Read Request

The multiword read cycle is designed to facilitate the transfer of many sequential words of

memory. The transfer begins as in the single word read, with states one through five above.

Unlike the single word read, the function code indicates to the slave serving the transfer that a

multiword transfer has been requested. The address field within the outgoing address cycle

indicates the base address with which the transfer is to begin. State four or five is then

followed by a data transfer cycle from master to slave indicating the number of words to be

transferred, starting in state thirteen.

13. After the slave accepts the multiword packet, the originating interface loads the
outgoing latches of the RAPIDbus ports with the number of words to be
transferred. The function code indicates that this is multiword parameter
transfer, and the routing indicates the home address of the slave node from the
map table. A bus cycle is requested from the cage arbiter.

14. Following transmission of the multiword parameter data transfer cycle, parity is
checked at the receiving end, and the cycle is repeated if needed beginning with
state thirteen. The parameter is repeated, or accepted by the immediate
destination as directed by the routing field.

In state one, the outgoing packet indicated that the transfer was a write in this case, not a read.

in

" 15. The originating interface now sits in a loop at state fifteen waiting for data to
begin returning from the slave interface. Receipt of a data word for which parity
checks advances the sequencer to state sixteen. Receipt of a valid abort directs
the sequencer to state eight, prematurely terminating the transfer cycle. Lack of
any response from the slave during a generous timeout period results in a abort
cycle generated by the originating host, followed by execution at state eight.

16. For each word of data received, the local packet address generator can supply a
storage address and does decrement the local word count. If the word count is
non-zero after storage of a given word, the sequencer reverts to state fifteen.
Expiration of the word count normally terminates the multiword packet and
reverts the interface back to the quiescent state zero. Note that data coming in
faster than the local write operations can be executed will not be lost since the
master will refuse to acknowledge receipt. If needed, this will back up all the way
to the slave node, slowing the pipeline down without loss of data.

5.1.2.4. Multiple Cycle Write Request

The multi-word write cycle, like the multi-word read cycle, is designed to facilitate the

transfer of large quadlet blocks located at successive addresses. This request begins with

states one through five above, indicating both a write operation in the control field, and a

multi-word access in the function code. The parameter is sent between master and slave as

in state thirteen and fourteen.

17. With a multi-word write, the parameter from state fourteen is followed by
successive data cycles. In each cycle, the information field contains the data to
be written, the function code contains the data type, and the routing field
contains the home address of the slave. After each quadlet is accepted by the
immediate destination, be it slave or repeater, the sequencer advances to state
eighteen.

18. After each quadlet is sent, the local packet address generator increments the
address and decrements the word count. A non-zero word count continues
execution at state seventeen. If the originating host needs to terminate early, an
abort cycle can be sent to the slave. Alternately, if the receiving slave needs to
terminate prematurely, an abort cycle may be received. Either abort is sent
through state eight.

19. Expiration of the word count terminates the transfer normally, deassigning the
host node, and resuming the quiescent state zero

5.1.2.5. Read-Modify-Write Request

Read-modify-write packets are run as atomic transactions between a particular task and

memory block as intended by host architectures that support instructions such as test and

set. RAPIDbus II flags such transfers during the initial address cycle through a RMW* line in

the control field of each bus. Two data cycles are then required before the allocated block of

memory is released. With the exception of the RMW* control line, such cycles begin as in

states one through seven. However in state seven, instead of terminating the cycle with the

incoming read, both master and slave expect the processor to issue a write cycle.

The second half of the cycle is then run as in states ten through twelve, releasing both

master and slave resources at the conclusion of the write operation to state zero. If the

second data cycle is not forthcoming within a generous timeout interval, an abort cycle can

be sent by either side, terminating execution through state eight.

5.1.2.6. Single Cycle Read Service

Previous discussions in this section have centered on the role of the master within data

transfer operations. The slave plays a crucial support role in each of the above cycles. Note

that designations of master and slave can only be made with respect to roles in a single

packet transaction. Any node can function as either master or slave if supported by the host.

Depending on the complexity of the RAPIDbus port at a particular node, a host could

simultaneously act as master and slave for two different transactions.50

21. A node is activated as a slave by an address bus cycle delivered by the cage
arbiter to the incoming latches of-either the ABUS or DBUS. If the local node bus
is available, the address cycle is sent to the parity logic to confirm the validity of
the cycle. The information field indicates the location of the operand, two size
bits within the control field indicate the width, and the routing field indicates the
home address of the master.

22. The address cycle is acknowledged differently depending on the proximity of the
master making the transfer request. If the master is within the same cage, only a
code on the three line acknowledge bus paired to the main bus that the cycle
came in on is required. If the master is in a remote cage, as indicated by the cage
address bits of the routing field, a remote acknowledge packet must be sent along
the ABUS or DBUS to confirm acceptance of the address cycle, in addition to the
acknowledge cycle to the immediate bus cycle source. During such a remote
acknowledge cycle, the routing field indicates the home address of the master,
the function code indicates a remote acknowledge cycle, and the information
field is left high.

A bit within the function code field of all transfer cycles is required to differentiate between data returning from a
read to the processor, and data being written to the host slave.

23. A valid request to available memory results in an acknowledge cycle on the three
line acknowledge bus corresponding to the ABUS or DBUS that the cycle arrived
on, two bus cycles after the incoming address cycle. If the address packet is
accepted, the memory block is assigned to the packet, and other incoming
address cycles are refused through the arbiter. If the parity was invalid, or the
node unable to handle the request, a refusal is sent on the acknowledge lines,
returning the interface to state, zero.6^

24. After accepting the read address cycle, the memory block must either provide the
requested memory value, or return an abort cycle to the master. If an abort
control cycle is received from the master, the memory access is terminated and
the sequencer returns to state zero. During normal operation, the memory
obtains the desired operand, calculates parity over the outgoing cycle, and
requests a bus data cycle from the cage arbiter. The home address of the master
is supplied to the routing table to select the immediate destination of the returning
data packet. If the master is in the same cage as the slave, this destination will be
the master slot. Otherwise it will be the slot occupied by the chosen repeater
path.

25. On receiving bus grant, the slave drives the data cycle onto the backplane lines of
the chosen bus. The immediate destination, designated by the output of the
routing table, receives the data cycle as an access. Two bus windows later the
accessed node either accepts or rejects the data cycle. A rejected cycle is resent
starting with state twenty-two. An accepted cycle causes the slave to return to
state zero.

5.1.2.7. Single Cycle Write Service

Service of a single cycle write request proceeds similarly to the single cycle read directly

above, except the data flows from master to slave following acceptance of the address cycle.

States twenty, twenty-oney and twenty-two are identical. From state twenty-two, a write

service proceeds to state twenty-five below.

25. After accepting the write request, the memory block goes into a wait loop at state
twenty-five. The loop exits on receipt of a data or abort cycle for which parity
checks, or expiration of a generous timeout interval. Successful receipt of data
advances to state twenty-six. Receiving an abort cycle, the service terminates,
enabling incoming address cycles, and returns to state zero. Expiration of a
timeout causes an abort cycle to be sent to the master, followed by an enabling of
incoming address cycles and a return to state zero.

26. On the successful receipt of a data cycle, the node conveys a positive
acknowledge to the immediate source of the bus cycle, and stores the latched
data in the previously assigned memory location. On termination of the storage
cycle, the node deassigns the memory block and returns to state zero.

If the sequencer was unable to process the request, the default is to refuse address cycles, even without the
intervention of the sequencer.

114

5.1.2.8. Multiple Cycle Read Service

Service of a multiword read request begins with the acceptance of the address cycle, as in

state twenty through twenty-two with a multiword packet function code. The host node then

continues with state twenty-seven,

27. After accepting and acknowledging the address cycle, the interface loads the
address cycle information field into the base address register of the slave packet
address generator, and enters a wait loop at state twenty-eight,

28. The slave must then wait for the receipt of a parameter cycle indicating the
number of memory words to be transferred during the following data cycles. If
the parameter is not received within a generous timeout interval, an abort cycle is
sent to the master, the memory block deassigned, and incoming address cycles
enabled. Receipt of the parameter cycle advances the sequencer to state
twenty-nine after parity has been validated and the immediate bus cycle
acknowledged.

29. The packet address generator now supplies an address to the local memory block
for a quadlet read access. On successful read, the sequencer advances to state
thirty.

30. The data produced by the memory is sent via a data bus cycle to the master node.
The data type is supplied by the memory block, and is sent back to the master
within the function code field. The routing field contains the home address of the
master. The packet address generator (address) is incremented, and the word
count decremented. If the word count is zero, the memory block is deassigned,
incoming address cycles are enabled, and the interface returns to state zero.
Otherwise another quadlet is accessed and sent by looping to state twenty-nine.

5.1.2.9. Multiple Cycle Write Service

Multiple word write cycle service begins with receipt of an address cycle with a multiword

function code, and activated write control line. It is acknowledged either directly by the three

line acknowledge bus directly within the cage, or through a remote acknowledge cycle in the

case of foreign server. The base address register of the packet address generator is loaded

with the information field from the address cycle, and the parameter cycle is loaded into the

word count register as in states twenty-seven and twenty-eight above. Execution then

continues with state thirty-one.

31. The slave loops in state thirty-one, waiting for either a data or an abort packet for
which parity checks. The slave responds with a receipt refusal for all incoming
cycles with bad parity. Receipt of a valid abort cycle deassigns the slave to the
transfer. On receipt of a valid data cycle, the immediate source is acknowledged,
and execution proceeds with state thirty-two.

115

32. A valid data cycle is stored in the memory location selected by the address
register of the slave packet address generator. The word count is decremented,
branching on a non-zero value back to state thirty-one.- When the word count
reaches zero, the slave terminates normally by deassigning the memory block
and accepting new incoming address cycles.

5.1.2.10. Read-Modify-Write Service

Service of read-modify-write packets occurs in two stages. An incoming address cycle is

accepted with the RMW line asserted, and execution proceeds like a read operation in states

twenty-one through twenty-five. Instead of terminating in state twenty-Vive, the slave loops,

waiting for the write portion of the cycle. If the write is not forthcoming within the timeout, an

abort cycle is sent to the master, and the slave deassigned. Normally the write section will

proceed as in state twenty-six, terminating normally by deassigning.

5.1.2.11. Repeater Forward Service

Links between cages are implemented using pairs of special nodes, called repeaters. One

repeater is inserted in each of the two cages that are to be linked to create a point-to-point

link. The repeater forwarding service is initiated by the receipt of any transfer cycle at the

RAPIDbus port of the repeater. Execution of the service routine begins with state thirty-three.

33. Any bus cycle received by the RAPIDbus port of the repeater is checked for
correct parity. Any parity error results in a refusal to the immediate source along
the acknowledge bus paired to the bus on which the cycle was received. If the
cycle is valid, and the repeater is not already handling a request, it accepts the
bus cycle, continuing with state thirty-four.

34. Upon receiving a valid bus cycle, the repeater requests a forwarding by the
repeater on the other side of the point-to-point link. The servicing repeater loops
in state thirty-four, waiting for the second half of the link to acknowledge the
request. Since the second repeater is running on a different time base, two
synchronization steps are required for the link grant to be returned, and later
another to confirm the cycle. When the link grant is received, execution proceeds
to state thirty-five. Timeout causes the link request to be removed and an abort
cycle sent back to the source of the cycle, deassigning the repeater.

35. Receipt of a link grant causes the incoming information, function code, control,
routing, and parity fields, augmented with a validity strobe, to be passed over the
link to the second cage, where parity is again checked. If parity is confirmed, a
transfer acknowledge will be received back, confirming the transfer and
deassigning the first repeater node. If the acknowledge is not received within a
timeout interval, an error signal is asserted, and an abort sent back to the source
of the cycle. Following the abort, the repeater sets bits in it's diagnostic register
and deassigns itself.

116

5...2,12. Repeater Forward Request

Repeater nodes can act as either servers or requesters at any instant, either taking a cycle

from the bus for relay across the link, or taking a cycle on the link for transmission across the

backplane of the cage in which the repeater is installed. A service request is initiated by the

remote pair of the link asserting link request. Execution begins in state thirty-six.

36. An incoming link request must be synchronized to the time base of the second
cage. If the repeater is not previously assigned, it will respond with a link grant.
The repeater then waits until the validity strobe is asserted before proceeding to
state thirty-seven. If timeout occurs before the strobe is asserted, link error will
be asserted by the granting repeater, and the connection terminated.

37. Assertion of the validity strobe on the link results in a comparison of link parity
against the information on the link. If parity is correct, an acknowledge is sent to
the first repeater, terminating the intercage link. The receiving repeater then
calculates the address of the next node based on the function code, routing, and
upper address lines. An appropriate cycle is requested on the backplane busses,
and the cycle forwarded. Refusals result in a retry, or eventually in an abort cycle
directed back to the original source of the bus through the first repeater
Successful acknowledge of the bus cycle deassigns the repeater from the
transfer.

5.1.2.13. Interrupt Generation

Interrupt packets begin with a node functioning as an interrupter. An interrupter functions

identically to the single word write request above in states one through five and ten through

twelve above except for the contents of the transfer cycles. The information field contains the

address of the handler, as determined by an interrupt routing table, in the high order byte.

The lower information lines are unused. The routing field has the home address of the

interrupter. The control fields indicate a quadlet write. The function code lines indicate a

interrupt cycle.

During the data cycle, the upper doublet of the information lines encodes the level of the

interrupt in the least significant three bits, and a doublet vector in the lower doublet. The

doublet vector is a previously agreed upon descriptor of the required service.

5.1.2.14. Interrupt Reception

Interrupt reception functions analogously to a single cycle write service, translating the

incoming interrupt packet into the proper interrupt format for the interrupt handler. In the

instance of a 68000 handler, the encoded interrupt level is prioritized and sent to the

processor interrupt lines. Meanwhile, the interrupt parameter is queued in a FIFO. When the

processor runs a RAPIDbus priority interrupt acknowledge cycle, the lowest byte of the

parameter is provided to vector the interrupt handler. The second byte of the parameter is

discarded in the proof-of-concept implementation.

5.1.3. System Reliability

Successful achievement of RAPIDbus II design goals requires that the resulting design

effectively support algorithm research. The stress inherent in a low cycle time realization with

numerous packages dictates that the resulting design must be tolerant of subsystem failures

and support rapid localization of faults. Both the interchange redundancy and the diagnostic

assistance built into the design are examples of the system reliability considerations which are

intended to make RAPIDbus II a practical laboratory tool.

5.1.3.1. Interchange Redundancy

The choice of many, multiply interconnected bus segments contributes not only to

performance by allowing localized allocation of bus bandwidth, but also to the reliability of the

entire processor ensemble. Perhaps the best support for this strategy comes from the

telephone switching industry, with a long history of successfully fielding large interchange

systems.

Bell's experience with the first electronic switching systems [ESS] put solid experience

behind the need to divide a complex system into many small, redundant fault modules [44].

The reliability of any large system, such as that shown in figure 5-6 can be represented as the

product of the reliability of all the subcomponents which must work reliably for proper

operation. As additional parts are added with a finite failure rate, the mean-time-to-failure

drops.

The ESS's divide the required structure into a multitude of small, replaceable modules which

directly spare each other, as shown in figure 5-7. If the sparing mechanism does not form a

single point, of failure, then several failures must occur in order to interrupt operation. As the

INPUT OUTPUT

Figure 5-6: A single monolithic structure presents a
multitude of independent sources of
failure, any one of which can fail the
system,

number of components subject to failure decreases in a module, and the parallelism

increases, reliability can be made almost arbitrarily high. This parallelism translates into

increased performance with RAPIDbus since the spared units are all doing useful work until a

failure is detected. Since the sparing mechanism (repeater links) used by RAPIDbus

introduces a performance penalty as the fault module (cage size) becomes smaller, the

reliability of each RAPIDbus interface to a backplane bus interacts with the performance cost

of increased repeater cycles to set the cage size.

INPUT B
• >

OUTPUT

Figure 5-7: Dividing a system into many, spared
modules can increase fault tolerance.

5.1.3.2. Diagnostic Assistance

Dividing the system interconnect into many small pieces decreased the probability of a

given subsystem failure stopping the system. Yet if failures are allowed to accumulate, any

spared system will fail. Thus the reliable design and liberal sparing of small modules must be

assisted by a rapid fault localization process to the board level. In the design of a fault

localization system, it is useful to divide subsystem failures into four classes; interconnect,

power, and logic faults. Each fault class is best handled by a different localization system.

In a debugged system, interconnect failures are probably the most common failure

mechanism. As the average module size decreases, the number of interconnects generally

increase for a given system complexity. Failure modes include not being fully inserted,

contact oxidation, and broken connectors. If each module can have a minimal functionality

test initiated and monitored through two or more interconnect ports, localization of any single

failed interconnect is simplified. Since each processor node can have ROMed diagnostics

run from either a diagnostic serial line or through the RAPIDbus, processor-interchange

connections can be verified if testable memory locations, such as the control page, are visible

119

from both the bus and processor. Nodes populated solely with memory cannot run such a

test, and thus present a potential fault ambiguity.

In an age of dynamic storage systems, where a system cannot do operate at less than tens

of thousands of cycles per second, localized power failures provide a practical excuse for a

visual indicator on each module. In combination with current monitoring on power busses,

voltage monitoring lights help spot both power distribution and interconnect problems.

The RAPIDbus II design provides for the isolation of both intermittent and hard faults. Each

interface is equipped with an eight bit fault diagnosis register, visible either to the host

processor or through an extension of the arbiter-interface cable to a cage level monitor. The

monitor could either be a socket for a logic analyzer, or an input port for a simple eight bit

cage diagnostic processor.

Both hardware fault isolation, and kernal level debugging are assisted by one or more test

headers to trace processor and node state changes. In combination with ROMed diagnostics

initiated via a test switch, such test points can rapidly confirm a hard failure diagnosis at the

subsystem level.

5.1.4. Upward Compatibility

The basic RAPIDbus II implementation described above was designed to support a simple

proof-of-concept demonstration of both the RAPIDbus II architecture, and the underlying

application hypothesis. The implementation was built around the limitations of existing

performance microprocessors, and standard logic parts. If these requirements are relaxed, it

is useful to consider how performance might be practically extended significantly beyond the

current implementation while maintaining high level language compatibility and increasing

cost-effectiveness.

In order to maximize the effectiveness of enhancements, comparable changes must occur

simultaneously in the interchange and data storage components of the system. A design is

proposed for a switching plane which reimplements the redundant buses within a RAPIDbus

cage using a parallel switching plane.

5.1.4.1. Parallel Switching Plane

In order to motive the topological transformation from a time-multiplexed common bus

implementation to a parallel switching plane, it is useful to consider the efficiency with which

the RAPIDbus II interface hardware is used, both within a cage and across links between

cages.

Along each of the primary busses, the ABUS or DBUS, only one pair out of potentially fifteen

drivers and latch can be active during any bus window. Although the backplane can achieve

near 100% productive information efficiency,52 bus interface hardware at any one node, on

average, is used less than 15% of the time. Considering drivers and receivers separately, less

than 7% efficiency is achieved. Driving a physically disperse (17 inch) backplane also places

a lower limit on the minimum window cycle time.53 A packet switch bus system, MARTINUS,

provides a topological link between the packet switched common bus implementation and the

switching plane proposed for an enhanced RAPIDbus implementation. Designed by the

Norwegian Defense Research Establishment (NDRE), the MARTINUS multiprocessor is based

on a pair of custom NMOS chips [69]. Conceptually, the same bit position from sixteen

different host ports is collected together on a single chip per bit position, queued, and then

switched on a very high speed bus internal to the die as a packet. This reduces the bus

loading from a large backplane to the drivers and receivers on a single chip. Links to and

from the hosts are point to point, running in parallel to and from the switch matrix for all hosts.

Although there is a vast literature on switching plane networks, this design provided a

topological link between the bandwidth limitations of a common bus and a compatible

switching plane structure. Once the lines were collected together on one die, it was then

useful to consider ways of increasing parallelism so as to increase the average duty cycle of

each port beyond one part in fifteen.

Evaluation of new bipolar gate array technology suggested that sixteen, sixteen input

multiplexers, output latches, and logic to retain routings for each multiplexer could be placed

in a single package, effectively a bit slice of a cross-bar. Unfortunately, each multiplexer

required four bits to steer the output, or sixty-four lines for routing if all were brought to the

52
Refused address cycles and unused control field cycles prevent absolutely efficient bus usage.

53
Estimates suggest that use of single ended ECL would permit a 25 nanosecond bus window, or differential ECL

a 12.5 nanosecond cycle. Even with packets traveling at the speed of light, little more than a factor of fifty increase in
throughput is available with a common bus in this geometry over the current implementation.

BIT 0

BIT 1

BIT 0

BIT 1

BIT 14 BIT 14

BIT 15

FROM
ARBITER

B-IT 15

Figure 5-8: Bit slice crosspoint switch permits
changing one routing per cycle in each
of four groups.

outside of the chip. This routing problem has commonly driven switching plane packages to

multiple stage bit planes with a smaller fan-in and fan-out, or to the incorporation of routing

information into the streams being switched.54

Using a switching plane strategy, the cycle time of the interconnect is not limited by the time

to charge and later latch a physically distributed backplane, rather all connections are either

point-to-point (host/switch) or one driver to many receivers (arbitration routing for all chips).

Since both can be pipelined to almost arbitrary throughput, the switching plane suggested the

possibility of reducing the fifty-six lines sent on one long window into four cycles of sixteen

bits sent on faster windows. A potential packing scheme is illustrated in figure 5-9, where the

auxiliary fields suggest the ease with which additional information can be incorporated.

Since once a connection was made between input and output, it was retained for at ieast

four cycles, routing information to the multiplexers could be multiplexed as well with little loss

of throughput. For each group of four multiplexers, two lines select the routing latch, one

enables it, and four lines provide the routing information. Thus routing can be accomplished

Adding depth to the switching plane increases the number of chip I/O buffers traversed, increasing latency.
Adding routing information into the bit stream can cause competition for data transfer bandwidth.

122

ROUTE <7:0>

INFO <31:24>

INFO <15:8>

AP <4:0> PAR <4:0>

AUX <31:24>

AUX <15:8>

FUNCTION <7:0>

INFO <23:16>

INFO <7:0>

VIR <4:0> CONTROL <4:0>

AUX <23:16>

AUX <7:0>

SEQUENTIAI
SWITCH
CYCLES

\ /

Figure 5-9: Many of the same fields carried in
parallel with the common bus
implementation are doublet serialized
with the crosspoint switch, decreasing
data path width.

by twenty-eight pins, accommodated along with thirty-two data lines and a clock on a large

contemporary bipolar gate array as shown in figure 5-8. Preliminary indications suggest that

the regularity of the switch will not prohibit routing of the chip.

Each RAPIDbus II society is then capable of being implemented by an array of eighteen

such chips as in figure 5-10. Connections to and from the RAPIDbus port on each host

reduce to thirty-six unidirectional lines, replacing the fifty-six bidirectional lines used

previously. The live bit shown in figure 5-10 indicates that valid information is passing to the

destination (in contrastjo null words sent while waiting for arbiter routing to change). The

ack bit fulfills some of the functions of the acknowledge bus used on the common bus

implementation. The additional lines to and from the host ports in addition to the sixteen

switched lines control clocking and port reset. Links to other processor societies would be

implemented between switch ports in extension of the current link scheme.

As a suggestion for an enhanced RAPIDbus II implementation, the 16 x 16 cross-point

module appears to both reduce the number of chips required to implement a society of

processors, and to increase the interconnect bandwidth. Conversion of the host/switch link

to a narrower, unidirectional data path supports use of fiber optic or other high-bandwidth,

unidirectional media.

123

ACK

JL
x 4
ARB

Figure 5-10: Eighteen bit slice crosspoint chips
interconnect a society of RAPIDbus II
processor nodes.

5.2. Realization

Building on the experience with high speed hardware design gained with RAPIDbus I, the

RAPIDbus II architecture and implementation are being realized in a minimal proof-of-concept

system. Technological advances with registered proms and bidirectional registered

tranceivers contribute performance and flexibility enhancements beyond those optimizations

possible at higher levels of abstraction.

5.2.1, Physical Structure

A RAPIDbus II proof-of-concept realization has been designed based on a combination of

Advanced Schottky TTL and 10K ECL logic within an extended Versabus packaging. Existing

hosts are integrated into the system using a microcoded RAPIDbus interface card which

doubles as a cage repeater as shown in figure 5-11.

The ABUS and DBUS are realized on existing Versabus backplane lines, while the arbiter,

clock, reset, diagnostic port, and serial line connections are made via the I/O pins on the P2

connector. The cage arbiter is suspended under the Versabus cage, with a cable to the P2

connector of each occupied host slot.

The microcoded RAPIDbus interface fits in a standard Versabus enclosure with an

additional inch at the top to support a host P1 and P2 connector and four fifty-pin ribbon

cables. The P1 and P2 edge connectors allow a modified Versabus card to be inserted in the

top of the interface card to create a processor node a little more than twice the height of a

standard Versabus cage. Alternately, the four, fifty pin ribbon cables can be used to tie two

interface card together to create a repeater pair between cages, or to tie into an existing

circuit-switched backplane. The flexibility of the microcode interface allows a remote host

adapter to be populated with as few as ten chips.

5.2.2. Microcoded Host Interface

The micro-coded RAPIDbus II interface was designed to support rapid integration of a

multitude of existing hosts into a proof-of-concept system. Shown in block diagram form in

figure 5-12, the RAPIDbus ABUS, DBUS, and arbiter interface is shown at the bottom of the

drawing. The generalized host interface, or HBUS, is shown at the top of figure 5-12.

Under microcode control, information is exchanged among ABUS, DBUS, and HBUS ports

FROM FACH OCCUPIED
CAGE SLOT

125

RAPIDBUS
ARBITER

RAPIDBUS

RAPIDBUS
ARBITER

Figu re 5-11: RAPIDbus II proof-of-concept
realization.

along one of three buses internal to the interface card, the IBUS, the AMBUS, or the RBUS.

The IBUS is composed of 32 address/data lines and six control lines; AS*, WRITE*, RMW*,

SIZE.O*, SIZE.1*, and DS*.55 The AMBUS is used for address modifier codes, and the RBUS

for interface routing codes, both along byte-wide data paths.

55 Address strobe and data strobe are not carried on the bus, but are regenerated on each RAPIDbus card.

1
4

I
- 50 PIN

I
RIBBON

VERSABUS
I

CONNFCTORS)

(J l & J2)
I 1

TNTFRRUPT
GFNFRATOR

& FIFO BUFFFR

ROUTF
COMTROL

ARBITFR
& ROUTING

ADORFSS
ROUTING

ADORFSS
MODIFIFRS

TNTFRNA1
ADDRFSS ADDRFSS DATA

AMBUS

<1 TNTFRFACF
ADDRFSS

ABUS
<R.0:7>

DBUS
<R.0:7>

PAG
GFNFRATORS

RFGTSTFRS

ABUS
h 7>

I
OBUS

<AM.0:7>

i

<=
MICROCODF

48 BIT x
1024 WORDS

£ 2

PARITY
GFNFRATOR
& CHFCK

ABUS
<0:3t>

& CONTROL

DBUS

& CONTROL
ABUS

<CB.0:3>
OBUS

<CB.0:3>

RAPIDBUS (PI & P2)

CAGE BUS
ARBITERS

VERSION 7

Figure 5-12: A micro-coded RAPIDbus interface
simplifies the integration of existing
processor nodes.

The IBUS supports several devices which serve to source, sink, or transform externally

supplied IBUS information. Octal bidirectional transceivers port to the RAPIDbus's ABUS and

DBUS transfer lines. Address and data ports within the HBUS port demultiplex the IBUS for

presentation to the Versabus host. Internal address buffers allow the interface to monitor

address and control lines internal to the attached host to determine where an address

reference will go prior to granting bus access to the host.

In order to support a mixture of sixteen and thirty-two bit hosts within a system, interface

microcode must perform dynamic bus sizing using an IBUS crossover. This crossover allows

information from the lowest sixteen IBUS lines to be routed to the upper sixteen, or the upper

sixteen to be routed to the lower sixteen IBUS lines. For instance a thirty-two bit host can

initiate a thirty-two bit write operation which is resolved as two independent sixteen bit write

operations at the destination RAPIDbus interface.

127

The packet address generator, another IBUS attachment, generates sequential addresses

and decrements word count to support multiword data packets. Since no current Versabus

hosts support the sequential access modifier code, the interface traps on a local control page

address, replacing the data transfer modifier code and initiating a microcode sequence which

traps each successive read or write operation to the sequential address trigger location until

the word count in the transmitting interface is exhausted.

In order to provide support for hosts which use data formats incompatible with the majority

of other hosts in a RAPIDbus system, an edge connector is provided with connections to IBUS

and required control lines. Physically located in the center of the interface card, this allows

connection of a converter intercept board personalized to the host processor data types. For

instance, one converter board could be used to convert user data transfer cycles from ASCII

to EBCDIC and EBCDIC to ASCII on the fly. Another converter intercept board allows

conversion between a DEC floating point format array processor and the IEEE floating point

format used by RAPIDbus. Most conversions require two to three additional interface clock

cycles.

The IBUS is used by the interrupt buffer/generator in order to unify interrupts with other

data transfer operations on the bus. In response to a host interrupt, the interface runs an

interrupt acknowledge cycle during which the interrupt level is encoded on IBUS.01*,

IBUS.02*, and IBUS.03*. The interrupting host is then expected to return an interrupt vector

byte on the lowest eight data lines. The interrupt generator combines this byte with an

encoded interrupt level on IBUS.16*, and IBUS.17* to generate a RAPIDbus interrupt packet

which includes the interrupt vector.

An interface receiving an interrupt packet queues the vector and interrupt level in a FIFO. If

the top level of the FIFO is occupied, an interrupt is sent to the Versabus host. In response to

an interrupt acknowledge cycle, the vector stored in the FIFO is supplied to the host,

completing the interrupt cycle. Note that although four interrupt levels are supported,56 a

host configured to service more than one host interrupt level will only see the oldest queued

interrupt, not the highest priority interrupt, in the queue.

Two explicitly addressable registers are provided on the interface, a control register, and an

address extension register. The control register bits zero through four are used to bank

56
Versabus levels one, two, three, and four.

switch Versabus interrupts into one of sixty-four different groups. Bits five, six, and seven of

the control register are used to direct conversion of user data by the converter intercept

board. The address extension register is used by hosts with a 24 bit address space to enable

bank switching into the full 32 bit RAPIDbus II addressing range. Both registers are only

accessible to a processor running in supervisor mode.

The AMBUS, or address modifier bus, is driven by four sources, the address modifier field of

the ABUS or DBUS, the address modifier field of the HBUS, or the interface address modifier

generation buffer. The generation buffer is used to replace the address modifier codes during

a multiword packet transfer, or while obtaining an interrupt vector from an interrupting host

The ABUS, DBUS, and HBUS buffers also monitor AMBUS lines, latching them according to

microcode instructions.

The RBUS, or routing bus, is used to control the coupling of the originating and destination

interface RAPIDbus host ports. When an address packet is sent, host address lines are used

by the routing control circuit to select the destination host slot within the originating cage. If

the destination is not in the local cage, the routing control selects the required repeater.

When the originating interface is granted a bus cycle, the address of the originating interface

goes along with the destination address. In this way the slave interface will know where to

respond with data from a read request. During a data transfer, the routing lines of either

ABUS or DBUS are used to designate the destination host slot. If a memory page is accessed

outside of the originating cage, the home address of the originating interface is returned by

the slave interface to indicate a successfully received address packet.57

Parity is checked on the high speed bus for groups of eight bits on an interleaved basis.

Thus a parity error on either a single line, or on several physically adjacent lines will be

detected, forcing repeat of the transfer operation from the immediate sending node. A fifty-

nanosecond bus window is intended to make parity errors a very infrequent event.

On the ABUS and DBUS, a three line packet transfer acknowledge scheme is used. On the

third bus cycle following a grant on either bus, the corresponding three acknowledge lines

are driven. The most significant bit of the three is driven high to indicate a receipt error,

requiring a retransmission. The remaining two lines indicate the width of data accepted by

the local destination, or indicate that the cycle was repeated.

Data packets are only acknowledged on a link by link basis, never reverting all the way back to the originating
cage when the reference traverses repeaters. In accepting the original address packet, the slave host is confirming
that it can process the required transfer request.

129

5.2.3. Timing Analysis

In order to provide a basis for performance evaluation, it is useful to estimate the service

latencies for both local and interchange references on a RAPIDbus II processor node

comparable to the Versabus VM02 monoboard computer used in RAPIDbus I. A version of the

microcoded host interface described above is considered with a dedicated 68000, a single

bank of dual ported memory, no error detection, and a state machine synchronized to the

RAPIDbus cage timebase. The processor is assumed to run at half the clock frequency of the

board state machine. Below, the microcode state changes are enumerated for both a local

and cage level access. Write operations can skip some stages, as noted by the * prefacing

the line.

5.2.3.1. Local Memory Access

1. Processor AS * to local resource decode

2. Processor address to memory block on Ibus

3. Initiate memory access (row address latched)
(Processor to memory block data transfer on Ibus)

4. *(Column address latched)

5. *(Ram access time)

6. *(Ram data available, four more clock cycles to complete ram cycle)

7. *Memory to processor data transfer on Ibus

Thus the processor can access local memory in 3.5 processor clock cycles for a read, or 1.5

for a write if there is no contention from either refresh or the RAPIDbus.

5.2.3.2. RAPIDbus Access

1. Processor AS * to local resource decoded

2. Processor address to RAPIDbus interface port

3. Routing table lookup

4. RAPIDbus cage arbiter delay (contention may add arbitration cycles depending
on the bus priority of the host and momentary bus load.)

5. RAPIDbus address cycle on ABUS or DBUS

6. Slave routes address to local parity tree

7. Slave accepts reference and routes to memory block

8. Slave initiate memory access (row address latched), address acknowledge is
returned to originating processor.
Write: Processor sends data via IBUS to RAPIDbus interface..

9. Slave continues access (Column address latched)
(9) Write: Originating RAPIDbus interface requests ABUS or DBUS cycle.

10. Slave continues memory block operation.
Write: Arbiter considers bus cycle request (may add cycles from contention).

11. Read: Slave memory block produces data and requests a cycle on the ABUS or
DBUS.
Write: Master sends data via the RAPIDbus.

12. Read: Data flows from memory block to slave RAPIDbus interface.
Write: Data flows from the slave RAPIDbus interface to the local parity tree and
the appropriate memory block.

13. Read: Slave sends ABUS or DBUS cycle
Write: Memory block completes cycle, parity accepts bus cycle

14. Read: Master host sends data from RAPIDbus to processor, parity tree.
Write: Slave runs data cycle acknowledge to master.

15. Read: Processor receives data acknowledge upon parity confirmation.
Write: Processor receives acknowledge upon receiving acknowledge from slave.

Thus, at least seven and a half processor clock cycles are required by this implementation

to read or write within the immediate processor cage. This translates to six wait cycles for the

68000.58 Faster memory times would improve the read cycle, but the write is limited by the

time for the slave to accept the access request.

5.2.4. Evaluation Methodology

Based on the estimated performance above, and timing data taken from a Motorola VM02

Versabus processor card, it is useful to compare the relative performance of the two bus

structures under conditions of high interprocess communication. A queuing simulation was

constructed, driven by a synthetic workload, and the relative throughputs of the two systems

measured for varying numbers of processors.

58
This could be reduced to four wait cycles if a bus interface was used that allowed parity to be checked without

gaining IBUS mastership. Such a capability was provided by our custom bus interface, but was not available with the
stock bus interface parts used here.

The workload was based on the assumption that 25% of the memory access were write

operations, and that an "average" 68000 instruction had 2.25 clock cycle between assertions

of address strobe.59 For the workload, a poisson distribution was assumed around 2.25

instructions to account for the variety of instructions in a "typical" mix.

On the X axis, the number of processors was varied from one to fifteen. The Y axis shows

the system efficiency metric, an index of how the throughput of N processors compares to a

single VM02 processor running the same code. Since most problems require additional

instructions when decomposed across multiple processors, this speedup index probably

represents an upper bound on what can be expected.

In order to simulate a variety of different algorithms with differing degrees of coupling,

simulation runs were done with fourty, sixty, and eighty percent of the references to local

memory. Note that this differs from the definition of r used earlier by a factor of two. Such

high degrees of interprocessor communication were intended to stress the interconnect and

are not typical of some applications.

5.2.5. Extended Versabus Simulation

Figure 5-13 shows the results of running the simulated workload in a Versabus cage with a

collection of one to fifteen processors. Although the application with fewer references across

the common bus ran more efficiently due to the lower contention, all three leveled out at no

more than eight times the throughput of a single VM02.

Since the Versabus is only allocated to a single master for the duration of an entire memory

cycle, the contention seen here as additional processors contend for the bus is completely

understandable. Even if bus window repeaters were installed to allow more than fifteen

processor slots, the same bandwidth would be available, shared by a larger number of

processors.

Versabus is not an effective way to tie together large numbers of tightly coupled processors.

For an application where 40% or more of the references are mapped through Versabus, no

more than four processors result in useful performance increases.

The estimate of 2.25 clock cycles was derived from monitor logic traces, and PDP-11 instruction frequencies
mapped into the 68000 instruction set [47].

132

o

O

I
12

8

4

VERSABUS INTERCONNECT USING DUAL
PORT MEMORY (Motorola VM02)

o 80% of references local / •
n 60% of references local ^.er'
m 40% of references local ^ o " "

4 5 6 7 8 9 10 11 12 13 14 1i
Number of processors

Figure 5-13: Versabus systems quickly saturate in a
tightly coupled system such that
increasing the number of processors
does not improve the throughput.

5.2.6. RAPIDbus Society Simulation

The result of building a RAPIDbus based system is shown in figure 5-14 for the same

workload, and high inter-processor load. Resulting from the lower contention for backplane

bandwidth, and reduced contention for each host port, performance continues to increase up

to the implementation limit, roughly linearly, although not with unity slope.

I
I
,o

I

133

76

12

8

o
a
•

80% of
60% of
40% of

RAPIDBUS INTERCONNECT
PORT MEMORY

references local /
references local &
references local / js

y* '•* .*

USING

y

DUAL

/
0'

y

s
/

y

y'

s' y

•y y
y

-**

/

y *
y

s'
M

,m'

1 2 3 4 5 6 7 8 9 10 11 12 13 14 U
Number of processors

Figure 5-14: Use of a RAPIDbus II interchange
network significantly reduces bus
contention in a tightly coupled
application with respect to a similar
Versabus system.

In contrast to a circuit-switched protocol such as Versabus, RAPIDbus II allows additional

cages to be added to the system with independently allocated bandwidth. Thus as additional

societies are added to a system, the total bandwidth increases linearly, short that required for

references crossing a cage link.

Based on this simulation, RAPIDbus II shows potential for the high bandwidth

interconnection of many host nodes grouped into societies. The radius at which performance

limits the number of processors is both configuration and code dependent, and has not been

accurately estimated.

5.2.7. The Design Space

Although numerous attempts have been made to categorize multiprocessors [36, 26, 65],

current literature suggests that we still do not understand enough about them to create a

comfortable metric describing a design space [37]. Thus it is useful to locate RAPIDbus II

within the design space by briefly describing several other multiprocessor designs. For a

detailed understanding of each, the reader is referred to the cited references.

5.2.7.1. RAPIDbus I

RAPIDbus I supported four virtual Versabuses using a time-multiplexed common bus

implementation [77], Designed by the machine vision group at Carnegie-Mellon's Robotics

Institute, a two processor system was fabricated using Motorola VM02 processors. A 1.7

microsecond transfer latency was observed with the VM02, although the theoretical system

bandwidth over a 32 bit data path was sixteen megabytes per second. As a project in

hardware design, no system software was written for the machine.

5.2.7.2. RAPIDbus II

RAPIDbus II, described in this report, builds on the lessons learned from RAPIDbus I. Using

societies of fifteen dual port processor-memory nodes internally linked by two redundant

packet switched busses, bus repeaters support a variety of hierarchical structures. Still in the

fabrication stage as of this writing, eighty megabytes per second of random access bandwidth

is expected per society, augmented by a multiword packet mode which asymptotically

provides 160 megabytes per second as packet lengths increase. Although the proof-of-

concept implementation provides no caching or hardware support for objects, an upgrade

path has been proposed for handling access protection, typing, and cache coherency.

5.2.7.3. VAX -SBI

The VAX Synchronous Backplane Interconnect implemented in the DEC VAX-780 [23] is not

intended to support a true multiprocessor, although its protcol closely resembles that used by

either of the intra-society RAPIDbus II busses. During 200 nanosecond windows either a

word of data or an address is transmitted. When possible, one address cycle initiates an eight

byte memory access packaged as two bus data cycles. RAPIDbus has generalized such octal

word accesses into a multiword packet. Proposed RAPIDbus enhancements diverge at the

implementation level from the SBI.60

The VAX SBI bus arbitration mechanism uses a separate request line for each potential bus

master. At the beginning of the next bus cycle, the bus is granted to the interface driving the

highest priority line. Routing information carried on the bus window selects the destination.

RAPIDbus II modified this protocol to support a fifty nanosecond bus window. A central

arbiter, implemented in higher speed logic than the data path with minimal skew accepts the

request lines for a bus, generating grant and access signals respectively to link origin and

destination during the following bus cycle. Since the routing decision is made-by the arbiter,

the each interface need not decode routing information during the bus window or hold all bus

cycles for consideration as RAPIDbus I did.

5.2.7.4. University College, London

Researchers at University College, London have designed a multimicroprocessor computer

based on time-sliced synchronous buses [22]. Sharing features of both RAPIDbus I and

RAPIDbus II, fifty nanosecond windows were allocated on a rotary basis connecting

processors and separate bus memory servers. Each processor used a commercial memory

management unit for segment level address space translation and protection of global

resources, local storage, and local I/O devices.

Memory requests were queued by busy memory units receiving a memory request,

minimizing bus bandwidth and retry latency. According to their simulation, FIFO queueing

reduces the variance in processor access times, and preserves the sequentially of access

requests. Although there is no indication that such an approach was implemented, dual

porting of memory to multiple buses was suggested by the authors in order to create a

hierarchical* structure.

In an enhanced RAPIDbus which was less concerned about optimizing for Versabus style hosts, the SBI practice
of sending data as part of a write operation address cycle would be adapted, as shown in figure 5-9.

5.2.7.5. CA2 -Hamburg

Researchers at the Deutsches Elektronen-Synchrotron DESY and Institut fur Mathematik

und Datenverarbeitung in der Medizin designed both the CA1 and CA2 multiprocessors for

use in image processing. Two asynchronous busses are used, one with a 100 nanosecond

window for data, the other with a one microsecond window for instructions. A heterogeneous

processor mix was used, supporting both general purpose and dedicated processor

Interleaved memory was used for image store, accessible in either single word or variable

length blocks as required, providing up to 40 megabytes per second across a 66 line bus with

separate address and data lines.61 Asynchronous bus allocation protocols were used to

make integration of hosts with different time bases easier.

5.2.7.6. Synapse N + 1

The Synapse N + 1 [32] is a commercial, 68000 based multiprocessor intended for online

transaction processing. Dual 32 bit "expansion busses" connect up to 28 processors and 16

memory blocks with separate address and data windows. Each processor node can have a

cache controller, which monitors both expansion buses to maintain cache coherence.

The overhead required for efficient cache operation led the designers to a sixteen byte

transfer block, with a 32 bit address or data window run on each bus every 100 nanoseconds.

After accounting for address overhead, this provides a 64 megabyte per second throughput.

RAPIDbus II differs from the Synapse design in several important ways. Caching is

supported in the enhanced mode using cache coherence packets which do not depend on

each node have access to every transfer cycle. Thus although the RAPIDbus II design is

easily extensible to networks having segments with separately allocated bandwidth, additional

bandwidth is required to support cache coherence packets. The fixed sixteen byte block size

is an implementation tradeoff which may not fit well in applications such as robotics.

i
Up to 80 megabytes per second are supported by a 64 bit data path.

137

5.2.7.7. APTEC DPS

The APTEC DPS [49] is designed to network up to eight commercial array processors using

interleaved shared memory blocks. An internal, synchronous bus transfers up to 24

megabytes per second between microprogrammed DMA controllers.

5.2.7.8. C.MMP

C.MMP, designed by Carnegie-Mellon University in the early seventies around a hardware

crossbar switch and sixteen PDP-11 processors, represents a standard multiprocessor data

point [64], Almost four thousand MSI parts were used to create a switch system with a one

microsecond access and 27 megabytes per second of throughput.

5.2.7.9. CM*

CM* built upon many of the lessons learned with C.MMP and inherited the Hydra operating

system [41]. Composed of a hierarchical tree structure, five clusters of ten LSI-11

microprocessors each were supported. Two intercluster busses were implemented to link

each of the five cluster or map busses. CM* made major contributions to multiprocessor

literature through the microcode support of an object environment, and the StarOS operating

system.

RAPIDbus II differs from CM* in many important ways. Using a wide mix of processor types

within a society, RAPIDbus is optimized for research in real-time, numerically intensive

application work. Taking advantage of technology improvements, throughput is significantly

increased. Problem decomposition is directly under the control of the programmer in contrast

to efforts at automatic problem decomposition studied on CM*.

139

Chapter 6
Conclusions

At the beginning of this project report, a set of architectural goals were set for the RAPIDbus

multiprocessor structure. Attaining these goals require contributions at three levels of

abstraction; the architecture, the implementation, and the realization. Two machine designs

were carried to the gate level in order to provide verification of high level concepts.

6.1. Architecture

The architecture sought to support "a multitude of diverse, heterogeneous tasks grouped

into packages with a tight locality of reference". The resultant architecture structure directly

responded with a network of processor societies using configuration dependent inter-society

links.

The large pool of potentially concurrent tasks coupled with the hypothesized locality of

communication led to a two level hierarchy of reference. At the local level, up to fifteen

processor nodes are grouped together in a society to collectively execute one or more

software packages. At the intersociety level, random society-to-society links can be set up to

reflect application data flow patterns. Use of a single, large physical address space

distributed throughout the system provided a foundation for such interprocess

communication mechanisms as mailboxes and semaphores.

The variety of different code requirements led to the concept of a society of processors

complementing each other's capabilities instead of duplicating them. Effective support for

such a heterogeneous mix of processors led to strong data typing to allow differing host data

representations and the associated conversion logic. Differing data object sizes required a

variety of transfer mechanisms ranging from a single byte to an atomic transaction with

hundreds or thousands of words accessible using two basic mechanisms (single and

multiword transfer).

Effective support for broadly multitasking code led to several different access protection

mechanisms. Each implementation supported protection at the segment level A suggested

enhancement of the RAPIDbus II design, OIL, created an object based interchange coupled to

an operand based processor. OIL combined efficient support for large objects required in a

signal processing machine with support for objects down to the byte level of granularity.

Under the enhanced interchange design, each object required a capability assigned to the

task before the object was made accessible. Shared address space relocation was also

supported at the same level of granularity as the protection mechanisms in each design.

Garbage collection of dynamically allocated storage was recognized as an important

function for hardware to assume, but requiring the additional typing and support of the OIL

enhancement. Making use of typed pointers and information fields associated with each

object, garbage collection was suggested as an upgrade path.

The architecture specification presented a challenge at the implementation level to provide

the required functionality and still achieve significant performance increases over existing

alternatives. Since the resulting design would only be successful if it was robust enough to be

used as a laboratory tool, reliability considerations put additional constraints on the

implementation.

6.2. Implementation

The resulting implementation placed each society in a separate cage with fifteen host slots

interconnected with two, redundant interchange busses, the ABUS and the DBUS. Repeater

hosts were designed to work in pairs, occupying one node in each linked cage, repeating

transfer cycles as needed.

By separating the functionality of a data transfer into several different components, the

usage efficiency of each backplane was shown to increase dramatically over existing circuit-

switched interconnects such as Versabus. A request-grant paradigm for bus allocation

coupled with a fast arbiter minimized the number of unused cycles while a transfer was ready

to take place.

By pipelining the routing decision within the bus arbitration mechanism, each temporal

window needed only be long enough to allow a line to be driven on the backplane and reliably

latched. No address recognition delays were required during the bus window, nor was more

than one level of bus latching.

Use of a writable routing table on each host was suggested as a means for rapid

reconfiguration of the interchange paths in software in response to a failed repeater or host

node. The dual, redundant busses, coupled with potentially redundant inter-society links

supported graceful degradation in response to single point bus failures.

A parallel switching plane was suggested as an upward compatibility path for increasing

interchange bandwidth while decreasing parts count, and simplifying host/switch cabling. In

a system with many host nodes, reliability and cost requirements dictate that techniques such

as the parallel switching plane be used to minimize the number of components per node.

The implementation is then critically dependent on the proper functioning of the realization

layer. Although little original work was done at the lowest level of abstraction, it required a

considerable expenditure of time in order to gain reasonable master of the required electro-

magnetic interactions.

6.3. Realization

Experience with the RAPIDbus I realization supported the need to avoid shortcuts when

building high speed logic systems. Through proper synchronization of incoming

asynchronous signals, generous tolerances for propagation delays, and an adequate power

environment, we gained confidence in the design of high speed bipolar logic.

RAPIDbus II made use of the power, speed, density tradeoffs between ECL and advanced

TTL to maximize bus performance. The bus timing was controlled by an ECL arbiter with well

characterized skew and edges, but low density. The bus made use of dense Advanced TTL

transceiver chips to create a fast, cost effective interface.

142

Comparison with a benchmark Versabus multiprocessor system running a very tightly

coupled instruction stream suggested that the RAPIDbus II interconnect structure

significantly increased both the bandwidth and the number processors that could be

incorporated in a system.

6.4. Trial by Fire

As a project in applied computer engineering, the true test of the RAPIDbus II design lies in

its ability to support the intended robotics research environment. As this report is filed, two

prototypes are being designed and built. Final conclusions must ultimately be based on the

performance of these machines, and their ability to teach us about practical multiprocessor

systems for robotics.

143

References

[I] NS16032 High Performance Microprocessors
Preliminary edition, National Semiconductor, 1982.

[2] Intel.
High Performance Microprocessor with Memory Management and Protection
Preliminary edition, 1982.

[3] Dharma P. Agrawal and Rarmesh Jain.
A Multiprocessor System for Dynamic Scene Analysis.
In K. S. Fu (editor), Computer Architecture for Pattern Analysis and image Database

Management, pages 96-103. IEEE, November, 1981.

[4] Andrew A. Allison.
Status Report on the P896 Backplane Bus.
IEEE Micro 1(1):67-82, February, 1981.

[5] ANSI.
American National Standard Reference Manual for the Ada Programming Language.
ANSI, 1430 Broadway, New York, New York 10018, 1983.

[6] D. H. Ballard and C. M. Brown.
Computer Vision.
Prentice-Hall, 1982.

[7] Thomas Baiph.
Implementing High Speed Logic on Printed Circuit Boards.
In Stephen E. Grossman (editor), Transporting High-Speed Digital Signals Point-to-

Point on Circuit Board Assemblies, pages 18/1/1 -18/1/7. Wescon/81,
September, 1981.

[8] W. P. Birmingham.
MICON: A Knowledge-Based Single Board Computer Designer.
Master's thesis, Carnegie-Mellon University, June, 1982.

[9] Gerrit A. Blaauw and Frederick A. Brooks.
Computer Architecture.
(indraft), 1981.

[10] William R. Blood Jr.
MECL System Design Handbook.
Motorola Semiconductor Products, 1980,

[II] Paul L Borrill.
Microproccessor Bus Structures and Standards.
IEEE Micro 1(1):84-95, February, 1981.

[12] B. A. Bowen and R. J. A. Buhr.
The Logical Design of Multiple Microprocessor Systems.
Prentice-Hall, Englewood Cliffs, New Jersey, 1980.

[13] Rafael Bracho and Arthur C. Sanderson.
Design of RIP1: An Image Processor for Robotics,
Technical Report CMU-RI-TR-82-3, Carnegie-Mellon University Robotics Institute,

November, 1982.

[14] D. Gasasent and D. Psaltis.
Hybrid Processor to Compute Invarient Moments for Pattern Recognition.
Optics Letters 5(9):395-399, September, 1980.

[15] W. Thomas Cathey.
Pure and Applied Optics: Optical Information Processing and Holography.
Wiley InterScience, 1974.

[16] Thomas J. Chaney.
Measuring Flip-Flop Responses to Marginal Triggering.
IEEE Transactions on Computers 32(12):1207-1209, December, 1983.

[17] CP-32 Processor Manual
Charles River Data Systems, Natick, Mass., 1983.

[18] J. Christ and A. C. Sanderson.
A Prototype Tactile Sensor Array.
Technical Report CMU-RI-TR-82-14, Carnegie-Mellon Robotics Institute, 1982.

[19] Danny Cohen.
On Holy Wars and a Plea for Peace.
Computer i4(10):48-54, October, 1981.

[20] George R. Couranz and Donald F. Wann.
Theoretical and Experimental Behavior of Synchronizers Operating in the Metastable

Region.
IEEE Transactions on Computers C-24(6):604-616, June, 1975.

[21] J. L. Crowley and A. C. Sanderson.
Multiple Resolution and Probabilistic Matching of 2-D Grey-Scale Shape.
In Proceedings 2nd IEEE Computer Society Workshop on Computer Vision,

Representation, and Control, pages 95-105. IEEE, May, 1984.

[22] O. J. Davies and A. B. Kovaleski.
Feasibility Study of a Modular Multimicroprocessor based Computer Architecture with

Time-sliced Synchronous Busses.
In Microprocessors in Automation and Communications, pages 19-27. Institution of

Electronic and Radio Engineers, January, 1981.

[23] DEC.
VAX Hardware Handbook.
Digital Equipment Corporation, Maynard, Mass., 1980.

[24] J.-D Dessimoz, J. Birk, R. Kelley, J. Hall.
A Vision System with Splitting Bus.
In K. S. Fu (editor), Computer Architecture for Pattern Analysis and Image Database

Management, pages 62-66. IEEE, November, 1981.

145

[25] Thad Dreher.
Cabling fast pulses? DorVt trip on the steps.
The Electronic Engineer :71-75, August, 1969.

[26] Philip H. Enslow.
Multiprocessor Organization • A Survey.
Computing Survey 9(1): 103-129, March, 1977.

[27] John A. Falco.
Reflection and crosstalk in logic interconnections.
IEEE Spectrun :44-50, July, 1970.

[28] FAST Logic Data Book
2nd edition, Fairchild Digital Products, South Portland, Maine, 1982.

[29] U.S. NIM Committee.
FASTBUS: Modular High Speed Data Acquisition System
First edition, 1982.

[30] A. Fisher, H. T. Kung, K. Oflazer, M. K. Ravishankar, S. Yu.
Architecture of the Universal Host: Preliminary Progress Report.
1982.
Department of Computer Science, Carnegie-Mellon, Internal Report.

[31] Werner Fleischammer and Osman Dortok.
The Anomalous Behavior of Flip-Flops in Synchronizer Circuits.
IEEE Transactions on Computers C-28(3):273-276, March, 1979.

[32] Steven J. Frank.
Tightly Coupled Multiprocessor System Speeds Memory-Access Times.
Electronics 57(1):164-169, January, 1984.

[33] Wolfgang K. Giloi et al.
Fachbereich 20 - Informatik: Realizing Innovative Multicomputer Architectures With

Off-The-Sheif VLSI Components.
Technische Universitat Berlin, 1000 Berlin 12, Strafe des 17 Juni 135,1982.

[34] D. Giuse, D. P. Siewiorek, and W. P. Birmingham.
DEMETER: A Design Methodology and Environment.
Proceedings of the IEEE International Conference on Computer Design/VLSI in

Computers , 1983.

[35] Stan Groves.
The Inter-Relationship Between Access Time and Clock Rate in an MC68000 System.
Engineering Bulletin EB-83, Motorola Semiconductor Products Inc., March, 1980.

[36] Jean-Loup Baer (editor).
The Impact of Classification Schemes on Computer Architecture.
IEEE Computer Society, 1977.

[37] Segalletal.
Position Papers - Workshop on Multiprocessors for High Performance Parallel

Processing.
1983.
Seven Springs, Penn. June 27-29.

[38] IEEE P754 Committee.
A Proposed Standard for Binary Floating Point Arithmatic.
IEEE Draft.

[39] Intel Corporation.
Intel 432 System Summary: Manager's Perspective.
Intel Corporation, 1981.

[40] Caulfield (editor).
Tenth International Optical Computing Conference.
IEEE Computer Society, 1983.

[41] A. Jones, E. Gehringer.
The CM* Multiprocessor Project: A Research Review.
Technical Report CMU-CS-80-131, Carnegie-Mellon University Computer Science

Department, 1980.

[42] Hubert Kirrmann.
Data Format and Bus Compatibility in Microprocessors.
IEEE Micro 3(4):32-47, August, 1983.

[43] James S, Kolodzey.
Cray-1 Computer Technology.
IEEE Transactions on Components, Hybrids, and Manufacturing Technology

CHMT-4(2):181-186, June, 1981.

[44] George D. Kraft and Wing N. Toy.
Microprogrammed Control and Reliable Design of Small Computers.
Prentice-Hall, 1981.

[45] H. T. Kung.
Why Systolic Architectures ?
Computer :37-46, January, 1982.

[46] Versabus Specification Manual
Third edition, Motorola Microsystems, Phoenix, Arizona, 1981.

[47] Madhav V. Marathe.
Performance Evaluation at the Hardware Architecture Level and the Operating System

Kernal Design Level.
PhD thesis, Computer Science Department, Carnegie-Mellon, December, 1977.

[48] MC68000 16-Bit Microprocessor User's Manual
Third edition, Motorola Semiconductor Products, 1982.

[49] Gary L. McAlpine.
Dimensional Processing System: A Controller for Multi-Processor Architectures.
In Peripheral Array Processor Conference, pages 140-156. IEEE, October, 1982.

147

[50] David M. McKeown and John McDermott.
Toward Expert Systems for Photo Interpretation.
In IEEE Proceedings of Trends and Applications, pages 33-39. IEEE Computer

Society, 1983.

[51] MTOS-68K System Kernal Manual
Second edition, Industrial Programming Incorporated, Jericho, New York, 1982.

[52] Jerre D. Noe and Gary J. Nutt.
Macro Enets for Representation of Parallel Systems.
IEEE Transactions on Computers C-22(8):718-727, August, 1973.

[53] Graham R. Nudd.
Image Understanding Architectures.
AFIPS :377-390, 1980.

[54] G. J. Nutt.
Evaluation Nets for Computer System Performance Analysis.
AFIPS Fall Conference Proceedings 42(1):279*286, December, 1972.

[55] Elliott Organick.
The Multics System.
MIT Press, Boston, Mass., 1980.

[56] L. Pichon and J. P. Huignard.
Dynamic Joint-Fourier-Transform Correlator by Bragg Diffraction in Photoreflective

BI12SiO20.
Optical Communications 36(4):277-280f February, 1981.

[57] A. V. Pohm and O. P. Agrawal.
High-Speed Memory Systems.
Reston Publishing, Reston, Virginia, 1983.

[58] Lawrence R. Rabiner.
Theory and Application of Digital Signal Processing.
Prentice-Hall, 1975.

[59] Chuck Rieger.
ZMOB: Doing it in Parallel!
In K. S.Fu (editor), Computer Architecture for Pattern Analysis and Image Database

Management, pages 119-124. IEEE, Computer Society, November, 1981.

[60] A. C. Sanderson, and L. E. Weiss.
Adaptive Visual Servo Control of Robots.
In Proc. 26th SPIE International Symposium. SPIE, 1982.

[61] A. C. Sanderson and G. Perry.
Sensor-Based Robotic Assembly Systems: Research and Applications in Electronic

Manufacturing.
Proceedings of IEE 71 (7):856-871, July, 1983.

[62] A. C. Sanderson.
Robot Vision and Industrial Automation.
Industrial Applications of Image Analysis.
D.E.B. Publishers, Pijnacker, The Netherlands, 1983, pages 31-49.

[63] Thomas McWilliams, Lawrence Widdoes, and Lowell Wood.
Advanced Digital Processor Technology Base Development for Navy Applications: The

S-1 Project (SCALD Section)
Lawrence Livermore Laboratory, Livermore, California, 1978.

[64] Daniel Siewiorek, C. Gordon Bell, Allen Newell.
Computer Science: Computer Structures, Principles and Examples.
McGraw Hill, 1982.

[65] Daniel P. Siewiorek and Robert P. Swarz.
The Theory and Practice of Reliable System Design.
Digital Press, 1982.

[66] D. P. Siewiorek, D. Giuse, and W. P. Birmingham.
Proposal for Research on Demeter - A Design Methodology and Environment,
Technical Report, Carnegie-Mellon University, January, 1983c

[67] Kevin Smith.
Wideband Local Net Allocates Bandwidth.
Electronics :76-80, February, 1984.

[68] Alan Snyder.
A Machine Architecture to Support an Object-Oriented Language,
Technical Report 209, Computer Science Laboratory- MIT, 1979.

[69] Bjorn Solberg, Oddvar Sorasen, Steinar Forsmo.
A Very Fast Packet-Switched Bus SYstem Based on Two Custom NMOS Chips.
VLSI '83 :295-304, 1983.

[70]
MULTIBUS II Bus Architecture Will Carry Designers to the 1990's.
Solutions Magazine.

[71] Robert K. Southard.
Interconnection System Approaches for Minimizing Data Transmission Problems.
Computer Design :107-116, March, 1981.

[72] Peter A. Stoll.
How to Avoid Synchronization Problems.
VLSI Design :56-58, November/December, 1982.

[73] Richard J. Swan.
The Switching Structure and Addressing of an Extensible Multiprocessor: Cm*.
PhD thesis, Carnegie-Mellon, 1978.

[74] J. M. Tenenbaum, H. G. Barrow, R. C. Bolles, M. A. Fischler, H. C. Wolf.
Map-Guided Interpretation of Remotely-Sensed Imagery.
AFIPS :391-408, 1980.

149

[751 Harry J. M. Veendrick.
The Behavior of Flip-Flops Used as Synchronizers and Prediction of their Failure Rate.
IEEE Journal of Solid-State Circuits SC-15(2):169-176, April, 1980.

[76] Mike Williams and Stuart Miller.
Series 54ALS/74ALS Schottky TTL Applications
B215 edition, Texas Instruments, 1982.

[77] John C. Willis and Arthur C. Sanderson.
RAPIDbus: Architecture and Realization.
Technical Report 82-13, Carnegie-Mellon University Robotics Institute, 1982.

[78] Patrick H. Winston and Richard H. Brown.
Artificial Intelligence: An MIT Perspective.
MIT Press, 1982.

[791 R. Winter.
An Evaluation Net Model for the Performance Evaluation of a Computer Network.
In H. Beilner and E. Gelenbe (editor), Measuring, Modelling, and Evaluating Computer

Systems, pages 95-113. North-Holland Publishing Company, 1977.

[80] William A. Wulf and Samual A. Harbison.
Reflections in a Pool of Processors.
Technical Report CMU-CS-78-103, Carnegie-Mellon Computer Science Department,

February, 1978.

[81] Mario P. Zoccoli and Arthur C. Sanderson.
Rapid bus Multiprocessor System.
Computer Design :189-200, November, 1981.

