
IDENTIFYING SOLUTION PATHS

IN COGNITIVE DIAGNOSIS

Stellan Ohlsson
Pat Langley

CMU-RI-TR-85-2

The Robotics Institute
Carnegie-Mellon University

Pittsburgh, Pennsylvania 15213

March 1, 1985

Copyright © 1985 The Robotics Institute, Carnegie-Mellon University

TMs research was supported by Contract N00014^3~K-G074, NR 154-508, from the Per-
sonnel and Training Research Program, Psychological Sciences Division, Office of Naval
Research. Approved for public release; distribution unlimited. Reproduction in whole or
part is permitted for any purpose of the United States Government.

Stellan Ohlsson*s current address is: Learning Research and Development Center, Uni-
versity of Pittsburgh, Pittsburgh, Pennsylvania 15260. Pat Langley's current address is:
Department of Information and Computer Science, University of California, Irvine, Cal-
ifornia 92717. This research was carried out while both authors were at The Robotics
Institute, Carnegie-Mellon University.

unclassified
-L.--UWITY CLASSIFICATION OF THIS PAGErWhen Data Entered)

ABSTRACT

In this paper, we examine the problem of cognitive diagnosis - inferring explanations of
observed human behavior- We review previous approaches to cognitive diagnosis, focusing
on the methodology of Newell and Simon (1972), which relies on the Newell (1980)
problem space hypothesis. This approach proceeds in three stages: (1) identify the problem
space in which the subject is operating; (2) identify the subject's path through the problem
space; and (3) identify a set of rules that account for the steps along this path. We
recount earlier work on automating the diagnostic process, and focus on methods for
automating the second of the stages above — identifying the subject's solution path. We
describe the Diagnostic Path-Finder (DPF), an AI system that uses heuristic seaxch to
hypothesize a solution path to account for a subject's behavior. Unlike most heuristic
search systems, DPF employs psychological criteria to direct its search through the problem
space. We examine DPF's performance in explaining errors on multi-column subtraction
problems, and compare its explanations to those generated by Brown and Burton's (1978)
DEBUGGY system. Finally, we discuss the advantages and limitations of our approach
to automated cognitive diagnosis.

u n c l a s s i f i e d
SECURITY CLASKttCATlON OP THI1 PAaCf**«0 Bmtm

unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Dmtm Entmrmd)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

t. REPORT NUMBER

Technical Report No. 2
2. GOVT ACCESSION NO 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (»nd Subtitle)

Identifying Solution Paths
in Cognitive Diagnosis

3. TYPE OF REPORT & PERIOD COVERED

Final Report 11/83-11/8

«. PERFORMING ORG. REPORT NUMBER

•• CONTRACT OR GRANT NUMBER^)

N00014-83-K-0074Stellan Ohlsson
Pat Langley

9. PERFORMING ORGANIZATION NAME AND ADORESS

The Robotics Institute
Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

10. PROGRAM ELEMENT. PROJECT, TASK
AREA A WORK UNIT NUMBERS

NR 154-508

I t . CONTROLLING OFFICE NAME AND ADORESS

Personnel and Training Research Programs
Office of Naval Research
Arlington, Virginia 22217

12. REPORT OATE

1 March, 1985
13. NUMBER OF PAGES

48
14. MONITORING AGENCY NAME 4 AOORESSfJ/ different from Controlling Office) 13. SECURITY CLASS, (ot thie /•port)

uncla £ s if ied

15a. DECLASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the mbatrmct mtfrmd in Block 20» it different from Rmport)

a. SUPPLEMENTARY NOTES

19. KEY WORDS f Continue on reverse aide it nocmmemry mnd Identify by block numb*r)

cognitive diagnosis
problem spaces
production systems

machine learning
heuristic search
subtraction

20, ABSTRACT 'Continue on rmvmmm side if nece*e*ry mnd Identify by

OVER

DO i j2**73 1 4 7 3 EOSTtOM OF 1 MOV OS iS OBSOLETE
S/ii 0102*014*

unclassified
SKCUR1TY CLASSIFICATION OF THIS PAGE (*k*m Dmm

TABLE OF CONTENTS

Introduction 1
A Review of Cognitive Diagnosis 2
The Machine Learning Approach to Cognitive Diagnosis 8

From Solution Paths to a Procedure 9
From a Problem Space to Solution Paths 10
From a Task to a Problem Space . . 11
Summary 12

A Problem Space for Subtraction 12
The Diagnostic Path-Finder 16

Instantiating the Operators 16
Best-First Search through the Problem Space . 19
The Evaluation Procedure 19
Summary . 22

Computational Results 23
Ideal Data . . . 23
Empirical Data 34

Discussion 39
Competing Hypotheses . 41
Units of Analysis 42
Generality 43

References 47

LIST OF TABLES

Table 1. Basic Problem Space for Multi-Column Subtraction 13
Table 2. Standard Problem Space for Multi-Column Subtraction 15
Table 3, DPF's Performance on a 17 Problem Subtraction Test 26
Table 4. Subtraction Test Used in Evaluating DPF 46

Introduction

Consider the problem of describing the thought processes of a human being with respect
to how he solves a particular task. How can we infer his knowledge of the task and the
procedure or strategy he is using to solve it from his performance? We will call this the
problem of cognitive diagnosis.

The problem of cognitive diagnosis can be seen from several different points of view.
To the cognitive psychologist, it is the problem of methodology: How should one go about
constructing theories to account for empirical data? To the teacher, it is the problem of
understanding the misconceptions of students in order to plan remedial instruction. To the
Artificial Intelligence researcher involved in the construction of intelligent user interfaces,
it is the problem of what information the program should collect about the user, and how
it should use that information.

We have no proof that the problem of cognitive diagnosis has a principled, general so-
lution. In other words, we do not know whether there exists a justifiable procedure which
can take a behavioral record from an arbitrary task domain, and compute a description
of the mental processes which account for the recorded behavior. On the contrary, so-
phisticated arguments have been produced in support of the idea that cognitive diagnosis
is always impossible in principle (Anderson, 1984). However, these arguments have had
little impact on the activities of cognitive scientists. The general working assumption of
the field seems to be that the difficulties will eventually be overcome one way or the other.
Our own research shares in this working assumption.

In most contexts, the term "diagnosis" stands for a semi-formal procedure which is
usually carried out "by hand", and which may depend to a considerable extent on the good
judgment of the expert doing the diagnosis. This is certainly true for medical diagnosis,
which is the paradigmatic example of diagnosis. But it is also true of other instances, such
as trouble shooting of electronic machinery. Until recently, it has also been true of the few
scattered efforts to construct a methodology for cognitive diagnosis.

However, during recent years, a handful of automatic systems for cognitive diagnosis
have been constructed (Brown and Burton, 1978; Sleeman and Smith, 1981; Langley,
Ohlsson, and Sage, 1984). A computerized system for cognitive diagnosis has considerable
appeal, both for research and practical applications. The research to be reported here
shares the ambition to produce a computerized diagnostic system.

The first section below reviews the efforts to produce workable methodologies of cogni-
tive diagnosis to date, and explains why we do not think they axe sufficient. The following
section puts our own approach to cognitive diagnosis in relation to the others. In the
third section, we describe a computer program, the Diagnostic Path-Finder (DPF), which
performs (a part of) the task of cognitive diagnosis. In the fourth section, we report on
the results from running the DPF program, both on ideal and on empirical data. In the
final section we discuss a number of issues raised by our explorations with DPF.

A Review of Cognitive Diagnosis

The problem of cognitive diagnosis has a somewhat paradoxical status. To a layman it
seems as if the very basis of psychological expertise is to be able to infer a person's thoughts
and wishes from his words and actions. The belief that psychologists axe capable of doing
this is the source of the fear that members of this profession sometimes inspire in laymen.
However, the problem of (cognitive) diagnosis has not received much attention within
psychology. The two main trends in psychological research, Experimental Psychology and
Test Psychology, do not pose the problem of how to treat empirical observations in terms
of diagnosis. Let us consider briefly the reasons for this.

First, Experimental Psychology has not emphasized theories of mental processes. The
main goal of research in this tradition is to reduce the variation in some quantitative
aspect of performance to the variation in one or more stimulus variables. The problem of
describing the mental processes which account for the performance is not central. Second,
Experimental Psychology has not been interested in detailed descriptions of individual
persons, focusing instead on generalities. Third, Experimental Psychology has almost
exclusively used quantitative data which are treated statistically. Since standard methods
for statistical treatment of measurements have been available for 50 years or more, the
question of what one should do with psychological observations, and by what canons they
should be interpreted, has receded into the background. Instead of being a substantial
question, the answer to which depends on psychological theory, data treatment tends to
be viewed as a technical question which is answered with the help of statistical, rather
than psychological, expertise.

Unlike Experimental Psychology, Test Psychology has an explicit interest in interindi-
vidual differences. But this interest is limited in several ways. First, Test Psychology does
not aim for a theoretical description of the individual, or of the mental processes respon-
sible for a test performance, being content to describe the performance empirically, with
a so-called test score. Second, Test Psychology conceptualizes test scores as indicative of
stable traits or properties of the individual, rather than as the outcome of a performance
at a particular moment in time. Third, like Experimental Psychology, this branch of psy-
chology has mainly been interested in quantitative, rather than structured, descriptions.

Theoretically, both Experimental Psychology and Test Psychology have elected to
ignore the content of individual thought processes. The goal of capturing that which
is general across different contents was taken to imply that thought content should be
ignored. This further weakened the interest in, and the need for, detailed descriptions of
mental processes.

The upshot of these philosophical, theoretical, and methodological stances is that the
two main streams of research psychology during the present century have virtually ignored
(what one would expect to be) the most basic of all psychological skills - the ability to
infer what a person is thinking on the basis of how he behaves. This problem has only
been acknowledged within what is sometimes called the counter traditions (Anderson and
Bower, 1973). However, as the following brief review reveals, very little real progress was
made towards a well-specified methodology for cognitive diagnosis until the advent of the

information processing approach.

The most powerful counter tradition until the sixties was, of course, the clinical tradi-
tion. Psychoanalysis gets its distinctive flavor to a large extent from the various diagnostic
techniques pioneered by Freud and his disciples: free association, dream analysis, and pro-
jective tests. These methods are content-oriented, and aim at a detailed description of the
individual person. However, the resulting description is primarily focused on the emotional
experience of the individual, rather than on his knowledge. Also, Psychoanalysis shares
with Test Psychology the ambition to find out about stable properties of the individual,
properties of his mental life which are independent of the particular tasks that he encoun-
ters. Indeed, these methods minimize the influence of the task in the diagnostic situation.
They are therefore of less interest to cognitive psychology, which studies task-oriented
thinking.

A second counter tradition was that of Gestalt Psychology. The Gestalt psychologists
rejected Experimental Psychology on the basis of what they regarded as major theoret-
ical and philosophical errors. Instead, they made diligent use of qualitative data, and
aimed for detailed descriptions of mental processes. However, they showed little interest
in methodology, perhaps programmatically so. As a result, they never developed a set of
methodological canons. The empirical studies of Duncker, Wertheimer, and Kohler stand
as a set of examples of how one can arrive at a description of thought processes on the
basis of an observed performance, but the methodological principles involved were never
made explicit.

In contrast, the Piagetian tradition can be said to have begun with a methodological
stand: Having worked on a project of psychological testing, Piaget decided that he wanted
to study other questions, for which the methods of Test Psychology seemed inappropriate.
As is well known, what then followed was a long series of studies, first with extensive verbal
interaction with children, later with the main emphasis on observing the performance of
the child on a cleverly designed set of diagnostic tasks.

There has been some effort to formalize Piagetian diagnosis (Smedslund, 1969), but
the Piagetian approach to diagnosis is competence oriented. The diagnosis is intended
to reveal whether a particular knowledge item is present or not, or whether the person
really understands a particular principle or "has15 a particular concept or not. Although
the observations collected in this tradition are detailed, the final description of the subject
is rather course. The formal models used by Piaget axe quite abstract. In short, Piagetian
methods are not process-oriented.

The first successful attempt to produce a well-specified methodology for the diagnosis
of cognitive processes was that of Newell and Simon (1972). Since our own approach to
cognitive diagnosis builds extensively on theirs, we will discuss their methodology in some
detail.

The Newell-Simon diagnostic method takes a single performance as its unit of analysis.
The aim is to arrive at a description of the thought processes behind that performance
in the form of a formally specified procedure which can re-create that performance, a
so-called simulation model.

The basic principle of their approach is that in order to do cognitive diagnosis, one
needs temporally dense data. In other words, their methodology prescribes the use of data
from process-oriented methods - which monitor a performance as it unfolds, rather than
simply record some global property of the performance such as the answer, the correctness
of the answer, the time to solution, etc. The most important example of a process-oriented
method is the think-aloud method (Ericsson and Simon, 1984), but Newell and Simon
(1972) also showed how their methodology could be used with eye-movement recordings.
Others have shown how to apply it to recordings of motor actions (Young, 1976).

Another basis for the Newell-Simon approach to cognitive diagnosis is the problem
space hypothesis. This is a theoretical principle which says that cognitive processes take
the form of search through a problem space. A problem space is defined through (a) a
notation which encodes those properties of the task that the problem solver takes into
account, (b) a list of basic cognitive operators which the problem solver uses to process
the task, and (c) a termination criterion which the problem solver uses to decide that he
has finished the task. Within the problem space hypothesis, a representation of a thought
process takes the form of a strategy for searching the relevant problem space.

The problem space hypothesis implies that the task of cognitive diagnosis consists of
three sub-tasks:

• Identify the problem space. Scan the protocol for evidence of those aspects of the
problem to which the subject attends, for traces of the operators he is using, and for
his termination criterion. The resulting space is an hypothesis about how the subject
views the task.

• Having settled on a problem space, map the behavioral record onto a path through that
space. The resulting path (sequence of operator applications) is an hypothesis about
which mental steps the subject went through.

• Invent rules which can account for the individual steps along the path. The resulting
set of rules is a description of the regularities in the solution path, and thereby an
hypothesis about the procedure or strategy which the subject used to solve the task.

The strategy hypothesis is evaluated in several ways. For instance, one can take the steps
along the solution path which are successfully explained by the rules in proportion to the
various kinds of errors. Another evaluation method is to see to what extent the procedure
abstracted from one performance by a particular subject can simulate another performance
from the same subject (OhLsson, 1980).

The Newell-Simon method was proposed in the context of research on problem solving.
However, the problem space hypothesis is a quite general hypothesis about cognitive pro-
cesses, and process-oriented data can be collected from any kind of performance (except
the very fast ones). Thus, the methodology has great generality. However, it has not been
extensively used, in spite of the frequent use of verbal protocols in recent years.

Williams aad Hollan (1981) have put forward a method for the analysis of verbal
protocols from a long-term memory retrieval task. This method shares several important
characteristics with the Newell-Simon methodology. It presupposes protocol data, and it

attempts to capture the regularities in such data in a formal system intended to elucidate
the mental processes behind the protocol. As far as we know, this method, too, has been
ignored by most other investigators in the field.

The Newell-Simon method is a diagnostic method in the classical sense that although
it structures the diagnostic task into distinct steps, it is nevertheless dependent on the good
judgment of the psychologist who is using it. Some effort has been put into the automatic
analysis of think—aloud protocols (Waterman and Newell, 1972). The idea is to have a
computer program which takes the think-aloud protocol as input, and goes through the
diagnostic steps discussed above. Some progress has been made towards such a system,
but as far as we know, no such system is currently in use. The main difficulty seems to
be that in order to construct a problem space on the basis of a think-aloud protocol, the
computer program must understand the utterances in the protocol. Thus, future advances
in natural language understanding by computers may put the construction of systems for
automatic protocol analysis back on the research agenda.

The next major advance in cognitive diagnosis came from the field of Artificial Intelli-
gence (AI), rather than from psychology. Brown and Burton (1978) presented DEBUGGY,
a computer program which made cognitive diagnoses in elementary school arithmetic (and
related domains). When children learn arithmetic, they usually pass through a stage where
they get some problems right, and others wrong. In other words, they know something
about how to do the task, but they do not yet know the arithmetic procedure the teacher
has been trying to teach them. One hypothesis about such superficially inconsistent perfor-
mances is that the child is executing an arithmetic procedure with one or more "bugs" or
errors. For example, if the child has not understood that he should decrement the number
from which he borrows during subtraction, he will perform correctly on non-borrowing
problems, while producing wrong answers on borrowing problems.

Brown and Burton (1978) pointed out that remedial instruction could benefit from
detailed description of the exact procedure the child is using. Therefore, it would be very
useful to be able to identify a student's errorful procedure on the basis of his answers.
Brown and Burton proceeded to write a computer program, DEBUGGY, which was ca-
pable of making such diagnoses in the domain of multi-column subtraction. DEBUGGY
represents the first fully formalized method for cognitive diagnosis.

The diagnostic method of DEBUGGY presupposes considerable pre-analysis of the
possible procedural errors:

• Select some procedure for the relevant task domain as the correct procedure. In the
case of school subjects like subtraction, the correct procedure is simply the procedure
the teacher has been trying to teach.

• Analyze this procedure into a set of components or ^subroutines".

• For each component, construct a list of erroneous or abuggy** versions of that compo-
nent.

The last of all erroneous versions of the components we will call a bug library. Given
a particular bug in the library, the construction of the corresponding buggy procedure is

simple: replace the relevant component of the correct procedure with the erroneous version.
Given the correct procedure and the bug librajy, a large number of buggy procedures can
be generated by "inflicting" one or more bugs on the procedure. The buggy procedure can
then be run on a set of problems in order to predict which answers should be observed for
a person who is "suffering" from that bug (or combination of bugs).

In order to diagnose a particular person, one finds a set of bugs such that the resulting
procedure predicts that person's answers. This can be done in several different ways. In
principle, one can go through all bugs in the bug library in a Generate-and-Test fashion.
However, the bug library can be very large. For the subtraction domain, more than a
hundred distinct procedural errors have been identified (VanLehn, 1982). Also, a child
may "suffer" from a combination of two or more bugs, leading to a combinatorial explo-
sion in the simple-minded approach. Thus, the Generate-and-Test strategy, although
possible in principle, is not practical. Instead, the DEBUGGY system was equipped with
a discrimination net which sorted a child (i.e., a performance) into the right bug. This
mechanism also allowed DEBUGGY to consider several different diagnoses for the same
performance. This is particularly important for those cases in which no diagnosis covers
a child's performance perfectly, so that the final diagnosis has to be made by choosing
between several diagnoses, each of which is only partially successful in accounting for the
observed answers.

A very similar diagnostic method has been used in Sleeman and Smith's (1981) LMS,
a system for the diagnosis of algebra behavior. A library of algebra bugs, here called "mal-
rules", is set up on the basis of empirical research, and a computer program finds out which
combination of correct rules and mal-rules solves the algebraic tasks in the same way as
some particular child. The main difference between the LMS and the DEBUGGY systems
seems to be the different representations used for the procedures: a Lisp-like hierarchy of
procedure calls in the case of DEBUGGY and a set of production rules in the case of LMS.

Why is the bug library method successful? Its most salient feature is that it ignores the
main methodological insight of the Newell-Simon contribution - that cognitive diagnosis
demands temporally dense data. The DEBUGGY system does not need process-oriented
data in order to do diagnosis. Why is this? We believe that there are three features of
the subtraction domain which makes it possible to do cognitive diagnosis based only on
answer-data.

First, in a subtraction task, the goal-object (the sought-for number) is not given with
the statement of the problem. In this aspect, arithmetic in general differs from the classical
problem solving puzzles often used in both AI and psychological research. In the typical
puzzle, there is a situation or state of affairs which the problem solver is to achieve. This
means that the problem solver can easily determine the correctness of his answer; he ne&h
only to compare the current situation with the goal situation as described in the problem
statement. It also means that answer-data are meaningless. The goal-object does sot
contain any information about the problem solver.

Second, in the subtraction domain, the goal-object is chosen from a very large set of
objects. This contrasts with many tasks used in studies of verbal reasoning and question-

answering, where there is a small set of objects which constitute the possible universe of
answers. Thus, answer-data for subtraction tasks can be very discriminating.

Third, the answer to a subtraction problem consists of parts, the individual digits,
which are organized in a linear ordering. Thus, the answer has internal structure. This is
in contrast to many tasks used in psychological research in which the answer is an atomic
symbol, such as a name, a word, or a classification.

These three aspects, that the answer is not given with the problem, that it has to
be chosen from a very large space of possible answers, and that the answer has internal
structure, implies that there is a lot more information about the problem solver in a
subtraction answer than in answers to most cognitive tasks. This is why cognitive diagnosis
can succeed in this domain even in the absence of process-oriented data. We notice that
some algebra tasks share in these properties, but that proof-tasks do not (since the goal
object is given with the statement of the problem).

The bug library approach to automatic diagnosis has a proven generality across two
dissimilar task domains, further strengthened by the recent application of DEBUGGY to
errors in fractions (VanLehn, personal communication). However, each instance of the
method is limited to the domain for which the particular bug library was designed. One
cannot make diagnoses for algebra tasks with the bug library developed in connection with
subtraction, or vice versa. A bug library must be constructed for each task domain where
the method is to be applied. The two existing bug libraries (VanLehn, 1982; Sleeman,
1983) have been constructed on the basis of extensive empirical investigations. Over the
long haul, one can imagine psychologists having access to standard bug libraries for all
task domains in which cognitive diagnosis is frequently done, such as the various school
subjects.

However, there is something conceptually disturbing about a bug library, over and
above its limited generality across task domains, and the large amounts of work involved
in constructing it. How, we must ask, can one construct a bug library without using
a diagnostic procedure? The bugs in the two published bug libraries have been found
empirically. But what can "finding a bug empirically" mean except to go from the observed
performance to the bug which accounts for it? But that is the diagnostic inference. Thus,
there seems to be a paradox lurking here: Either a bug library is necessary for doing
diagnosis, in which case the bugs in the library cannot be found empirically; or eke there
is some way of doing diagnosis which does not presuppose a bug library, in which case the
library is unnecessary.

The two extant bug libraries have presumably come about through a combination of a
priori analyses and intuitions informed by large amounts of empirical observations. This
leaves us with a set of bugs which have a Mgh probability of being relevant for human
performance. However, we have no information about the entire space of possible bugs, or
about what part of that space the bug library represents. There is no principled way to
answer questions like the following:

* Can the bug library be extended or not?

• If the diagnostic system fails to find a systematic diagnosis for a particular perfbr-

mance, could that performance be diagnosed with an extended bug library, or is the
performance irregular?

• If the bug library was to be extended, would it alter any of the diagnoses which the
system has already performed?

Furthermore, it seems plausible that an adtdt is limited by his own expertise with respect
to subtraction in his thinking about possible subtraction bugs, but we have no way of
systematically identify such limits. In short, the problem with the bug library method is
that the diagnostic system is exactly as good as its bug library, but we have no systematic
method for determining the quality of the bug library.

We also notice that the bugs in a bug library are erroneous versions of distinct compo-
nents of the correct procedure for the domain. This means that the bug library is relative
to a particular correct procedure. Also, it means that the bug library is relative to the
particular representation of procedures used. In a different representation, the correct
procedure will come apart into a different set of components, implying a different bug li-
brary. Thus, the bug library method makes theoretical commitments which are somewhat
obscured by the practice of publishing only natural language paraphrases of the bugs.

To summarize, mainstream psychological research during this century has not had a
great interest in cognitive diagnosis, basically because there was no interest in detailed
descriptions of the thought processes of individual persons. The various counter traditions
that did exhibit such an interest either failed to formalize their diagnostic methods or
focused on something else than processes. Real progress in cognitive diagnosis came about
through the method of Newell and Simon (1972) for the analysis of the think-aloud proto-
cols. The problem space methodology has great generality, but so far no one has produced
a working computer system which can use this method, largely due to the difficulties in
computerizing the understanding of the natural-language utterances in a verbal protocol.
In contrast, the bug library approach taken in the DEBUGGY and LMS systems allow
fully automatic diagnostic systems to be built. However, it is unclear how bug libraries
should be created and evaluated. In the next section we describe our own approach to
cognitive diagnosis.

The Machine Learning Approach to Cognitive Diagnosis

The approach to cognitive diagnosis to be discussed here follows the main outline of the
diagnostic method of Newell and Simon (1972). To recapitulate, the Neweil-SImon method
takes the question "Which procedure did the subject/student execute?" and decomposes
it Into three sub-questions:

• WMch problem space did the subject /student work in? This question is answered by
scanning the tMnk-aJotid protocol for information about notation and operators.

• WMch solution path did the subject/student take through the problem space? This
question is answered by mapping the protocol step by step onto the problem space*

• WMch procedure did the subject/student use to generate the solution path? This
question Is answered by inventing production rales which account for the successive

steps in the path, while trying to keep both the number of rules and the number of
errors as small as possible.

Our method works with these three questions, but uses other techniques to answer them.
The differences have two sources: First, we are aiming for a diagnostic system which can
solve the same tasks as the DEBUGGY and LMS systems; thus, the system is to work on
answer-data, rather than on think-aloud protocols or other process-oriented data- The
diagnostic method has to be adapted to this fact. Second, we are making use of AI results
from the field of machine learning which were not available at the time Newell and Simon
developed their methodology.

The three questions above will be discussed one at a time. It turns out that it is easier
to discuss them in reverse order. Thus, we begin with discussing the last step, that of
going from a set of solution paths to a procedure which is capable of re-creating them.

From Solution Paths to a Procedure

Let us assume that the first and second diagnostic tasks have been carried out with
respect to a particular set of performances. We then have a set of path hypotheses. The
final step to a computer simulation of those performances is to find a procedure which will
generate those paths.

A similar problem has been studied in the field of machine learning, under the name
of strategy acquisition or heuristics learning. Researchers in this area have constructed a
number of learning systems have been that consist of two components - a problem solver
and one or more learning mechanisms. The problem solver attacks a problem with some
general, weak search method (such as exhaustive search), eventually producing a solution
path. The information in the solution path is used by the learning mechanisms to propose
some (task-specific) improvement in the problem solver (Mitchell, Utgoff, and Banerji,
1983; Ohlsson, 1983; Langley, 1983; Anzai and Simon, 1979; Hagert, 1982). For instance,
the learning component might generalize over the good steps, it might discriminate between
good and bad steps, and so forth.

The AI approach to this problem normally assumes that the solution paths produced
by the problem solver and used by the learning mechanisms represent correct solutions.
However, the typical learning mechanisms, such as generalization and discrimination, do
not make any use of the intended interpretation of the paths or the procedures they
generate. Therefore, they are neutral with respect to correctness. Our approach to the
problem of generating procedures from solution paths assumes that AI techniques for
automatic strategy acquisition can also work on incorrect solution paths, and thereby
produce incorrect or "buggy" procedures. This assumption has been supported in runs with
a previous diagnostic program called ACM (Langley, Ohlsson, and Sage, 1984; Ohlsson and
Langley, 1984; Langley and Ohlsson, 1984).

ACM carried out a breadth-first search through a problem space, finding the shortest
solution path accounting for the observed answer. This process was repeated for a number
of problem-answer pairs. Operator instantiations lying along a solution path were marked
as positive instances of the responsible operator, while instantiations leading one step off of

9

the path were marked as negative instances. After collecting the set of positive and negative
instances for each operator, ACM passed each set to a nonincremental discrimination
learning mechanism. For each operator, this method generated a set of conditions that
covered all positive instances but none of the negative instances. When these conditions
were added to the original conditions for each operator, the result was a production system
model capable of reproducing (and thus explaining) the inferred solution path.f ACM's
main limitation lay in its method for inferring these solution paths, and our current research
has focused on remedying that limitation. Accordingly, let us now turn to this issue.

From a Problem Space to Solution Paths

Suppose that we have identified the problem space used by a subject/student. Our
basic technique for finding the solution paths corresponding to an observed (typically
incorrect) answer is to do a search through that problem space. Let us pause and consider
why search is an appropriate technique. Search is usually used to find the correct answer
to some problem. How can we search for an incorrect answer?

Consider a problem space for, say, subtraction. If we develop that space exhaustively,
we are guaranteed to find the correct answer* Since every possible sequence of operators
have been developed, by definition of "exhaustive search", the particular sequence of steps
which lead to the correct answer must have been developed. However, by the same ar-
gument, the particular sequence of steps leading to a certain incorrect answer must have
been developed as well. In fact, every terminal node in that subtraction space, except those
containing the correct answer, represents some incorrect solution to the problem. We will
say that the problem space contains each of the procedural errors that is represented by
some terminal node in the space.

Our first hypothesis about how to find the solution path corresponding to a particular
incorrect answer was to use exhaustive search in the following way:

1. Develop the entire problem space.

2. Go through the terminal nodes until one is found which contains the incorrect answer.

3. Collect the solution path by traversing the search tree backwards from the terminal
node to the initial node.

The above method is attractive for several reasons. First, it is quite general. It can be
applied to any performance which can be cast as a search through a problem space. Second,
it is foolproof. If the problem space contains the particular error, the method is guaranteed
to find a solution path. Third, it does not make any theoretical commitments other than
the problem space hypothesis.

However, exhaustive search is a dangerous technique. We originally believed that

f Our work on ACM has been strongly influenced by Young and G'Shea5s (1981) pro-
duction system analysis of subtraction errors. However, our approach differs in relying
explicitly on the problem space hypothesis, while Young and O'Shea viewed subtraction
in algorithmic terms*

;j

problem spaces for simple task domains, such as multi-column subtraction, were small
enough so that exhaustive search could be practical to use. Experience has shown that this
is not so, even when partial answer information is used to eliminate branches in the search
tree. We therefore abandoned the idea of exhaustive search, in spite of its advantages.

The obvious alternative to exhaustive search is, of course, selective search. Let us
consider what this involves. To search the space selectively means that we do not develop
all paths until they end in a terminal node. Some paths, the more the better, are rejected
before they axe fully developed. In order to do this, we must have some criteria by which
we can recognize one path as a more fruitful or psychologically plausible hypothesis than
another, before either path is fully developed. Expressed differently, a selective search
presupposes a formal definition of what is meant by a good psychological hypothesis.
Thus, selective search in this case requires more theoretical commitments than exhaustive
search.

Our ambition is to construct a system which is domain-independent. The criteria for
what is to be regarded as a good path hypothesis should therefore not make use of the
particular properties of any one task domain, but be general criteria for the plausibility
of path hypotheses. Thus, we must consult psychological theory for criteria by which one
can judge one psychological hypothesis as more plausible than another.

Depending upon the set of criteria used, one can search a problem space for an erro-
neous answer in different ways. The particular selective search that we have implemented
will be discussed in a later section.

From a Task to a Problem Space

In the two previous sections, we described our approach to (a) generating a procedure
from a set of solution paths, and (b) finding the relevant solution paths, given a problem
space. To complete the methodology, we need some way of finding the relevant problem
space.

In the Newell and Simon methodology, the problem space is identified by scanning the
think-aloud protocol for evidence as to which aspects or properties of the problem the
subject is using. The paradigmatic example here is the observation from the cryptarith-
metic domain that some subjects made use of the parity property of numbers, while others
did not, a fact that can be seen clearly in the protocols (Newell and Simon, 1972). Also,
the protocol is scanned for evidence concerning the operations by which new partial or
intermediate results are derived or computed.

Since we are aiming for a system which should be capable of working on answer-data,
this technique cannot be used. We must identify the problem space in some other way.
Currently, we have no principled solution to this problem.

Hayes and Simon (1974) have described UNDERSTAND, a computer program which
inputs a task description and constructs a problem space for that task. The criterion for
correctness is that the resulting space can be passed on to a problem solver which then
solves the problem. However, the UNDERSTAND program does not handle interindividtial

II

differences* In other words, it constructs one problem space for each task. But any one
task can be solved in a variety of problem spaces. We need to find the particular problem
space which is used by some particular subject/student. Thus, the space cannot be a
function of the task only.

Newell (personal communication) is currently pursuing a new approach to the problem
of constructing problem spaces. As far as we know, no results have yet emerged that could
be useful to our endeavor.

It is possible to make an empirical study of the problem space used by a particular
person. This would involve interviewing him/her as to how he sees the problem, to perform
tests to see which operators he has available, etc. However, our diagnostic method is based
on the assumption that such an empirical approach is not possible. We want to construct
a diagnostic system which can work on a set of answer-data only, with no possibility to
extend the empirical information.

Thus, we are left with only one method - a priori analysis. We set up some hypothesis
about how the subject /student represents the problem, and what cognitive skills he is using
to process the problem that seems reasonable to us. This space is then given as input to
the program we describe in a later section. In fact, the program is designed to take a list
of problem spaces as input, and to iterate through them, using the one that gives the best
diagnosis. However, in the runs to be reported, a single problem space has been used. The
particular space will be described in the next section.

Summary

We aim to develop an automated diagnostic system which can map a set of answers
onto a computer simulation of the thought processes which led to those answers. We
base the system on the problem space hypothesis, which implies that diagnosis consists of
three steps: identifying the problem space, finding the relevant solution paths through that
space, and inventing a procedure which can re-create those paths. We have no principled
solution to the problem of identifying the problem space. We use search through the
problem space to find the path terminating with a particular incorrect answer. Finally,
we use machine learning methods to invent a procedure which can generate the solution
paths. In the next section, we will describe the particular selective search method that we
have used in our runs. But first, let us consider the task domain we selected as a testbed,
and some problem spaces for that domain.

A Problem Space for Subtract ion

We have chosen multi-column subtraction as the first domain in which to try out our
diagnostic system. This domain has already been investigated from the point of view of
diagnosis. The published bug library (VanLehn, 1982) for this domain gives us a good
overview of the kinds of bugs we should expect our system to find. Also, we have available
an empirical study of several school children5 with complete sets of answers to several

tests, and with the corresponding diagnoses by the DEBUGGY program.t This gives us
something to compare the performance of our program against. Finally, arithmetic is a
task domain which has inherent interest, especially from a practical point of view.

As discussed in the previous section, we have no principled solution to the problem of
identifying the correct problem space. We are therefore left with the possibility of choosing
one, and then arguing for its plausibility. In order to put the space we have been using
into perspective, we will contrast it with two other spaces — a more basic space and a
higher-level space-

TABLE 1
Basic Problem Space for Multi-column Subtraction.

Representation:

Digits in positions within a two-dimensional grid.

Empty positions axe possible.

Operators:

MoveEye(direction) Moves the eye one step (Le., one position) in the given direction.
The directions are up, down, left, and right.

WriteDigit(digit, position) Writes a given digit in a specified position-

Cross Out (digit, position) Puts a scratchmark across a digit in a specified position.

FindDifference(nl, n2) Finds the difference between two numbers, the first being at
most 19, the second being at most 9.

FindSum(nl5 n2) Finds the sum of two numbers, the first being at most 10, the
second at mast 9.

We assume that the termination criterion for subtraction is that all columns have been
processed.

Table 1 summarizes the states and operators the basic problem space for multi-column
subtraction. This space is basic in the sense that the operators cannot be analyzed into
smaller pieces without leaving the area of thinking or problem solving. The first three
operators can only be analyzed further by descending to the level of the organization of
motor actions. The last two operators represent the addition and subtraction tables, which
anyone who is doing multi-column subtraction in schools has presumably learned by heart.
Thus, they represent long-term memory retrieval actions, and the further analysis of them
is a task for memory theory.

f The material has kindly been made available to us by Susan OmanssoH at the Learning
Research and Development Center at the University of Pittsburgh, where the empirical
study waa carried out. The DEBUGGY diagnoses were computed by Kurt VanLehn.

IS

We would argue that mating diagnoses in this basic subtraction space is not reason-
able. Recall that the psychological interpretation of an operator in a problem space is
that it represents a cognitive skill which the person can carry out or execute without diffi-
culty. But the basic space represents as complex operations processes that we believe most
school children actually have available as ready-made skills. For instance, in this problem
space decrementing a digit during borrowing would be represented as a complex process
consisting of the following steps:

(FindDifference Nl 1) =• N2
(CrossOut Nl Posl)
(MoveEye up) =^ Pos2
(WriteDigit N2 Pos2)

But we are willing to believe that the population of subjects relevant for this research -
school children about to learn multi-column subtraction - are capable of replacing a digit
with the result of subtracting unity from it. Thus, there is no point in the above step-wise
representation. Instead, we can make do with the higher-level operator Decrement (digit,
position), which performs the above sequence of steps.

A second reason to work with the higher-order operator Decrement is that the above
representation has no effect on how the rest of the problem is processed. The child either
replaces the digit with another, or else he does not. To consider the internal structure
of the decrement operation does not open up any new possibilities for making arithmetic
errors. For instance, the child might forget to cross out the decremented digit. However,
this does not seem to make any difference for the rest of the solution path, because it does
not affect the value being used in the rest of the calculations. Since we are thinking in
terms of answer data, it is inappropriate to use a level of analysis in which differences in
the solution paths do not give rise to different answers.

A third reason for not working in the basic subtraction space is that one of the operators
is too general. The only number added to another number in a subtraction problem is
ten. We are willing to believe that children discover this regularity eaxly on. If so, it is
unnecessary to include in the subtraction space their general capacity to add numbers.
Only the addition of ten is relevant. Thus, instead of FindSum(nl, n2), we can use a
AddTen(number, position) operator which replaces a number with the result of adding ten
to it.

Finally, the basic subtraction space is inappropriate in that its notation is too frag-
mented- We would be unwilling to' assume that children see the digits of a problem as a
set of iinoj^aaked entities. Instead, we find it more plausible to assume that they see the
digits as organised into rows and columns, as we ourselves do when we look at a subtrac-
tion problem. Therefore, the notation should include such entities as the columns, and the
three rows with the two subtrahends and the answer, respectively.

In response to these observations, let us introduce a slightly more aggregated prob-
lem space, which we will call the standard subtraction space. We specify the state mxi
operators for this space in Table 2.

14

TABLE 2
Standard Problem Space for Multi-column Subtraction.

Representation:

The basic components axe digits, columns, and rows.

The columns axe designated column— 1, column-2, etc.

The columns are numbered from right to left.

The rows axe designated top-row, above-row, and bottom-row.

Operators:

Decrement (number, column) Takes a number in the top-row of a certain column,
and replaces it with the result of subtracting unity from it.

AddTen(number, column) Takes a number in the top-row of a certain column, and
replaces it with the result of adding ten to it.

FindDifference(nl, n2, column) Takes two numbers in a column, and writes the
result of subtracting the second from the first in the answer—row of that column.

FindTop(nl, column) Takes a number in the top-row of a column writes that number
in the answer-row of that column.

SkipZero(column) Takes a zero in the top—row of a column and puts a "nothing" sign
in the answer-row of that column.

ShiftLeffc (column) Takes a column as input, and returns the column immediately to
the left of it.

Shift Right(column) Takes a column as input, and returns the column immediately
to the right of it.

We believe that this space is appropriate for the diagnosis of subtraction performances.
On the one hand, it is difficult to argue that children who are studying multi-column
subtraction are typically incapable of executing any of these operators. On the other
hand, if we decided to work with even higher-order operators, we would lose the ability to
account for a good many procedural errors included in the Brown and Burton bug library.

To illustrate the latter statment, consider a problem space with the following two
operators:

Process Column (column) Process any column which does not make borrowing nec-
essary, and shift left to the next column.

Borrowlnto(column) Make a correct borrow into the given column.

In this space we are assuming that the subject/student already knows almost everything
about xxmltir-column subtraction. Thus, this space is not appropriate for diagnosis, because
it contains virtually none of the typical subtraction bugs. Indeed, the only bug from the

15

Brown and Burton (1978) bug library that can be accounted for in this space is Always-
Borrow, in which the child borrows in every column, regardless of whether it is needed or
not. This would be the appropriate space if the empirical evidence showed that Always-
Borrow was virtually the only mistake children made on subtraction. However, this is not
the case. Thus, this space is too aggregated to be useful.

The three spaces we have shown differ mainly in the level of aggregation of the oper-
ators. It is reasonable to ask whether there are alternative subtraction spaces that differ
along other dimensions. Do there exist a qualitatively different space in which subtraction
can be carried out, and which is at approximately the same level of aggregation as the
standard space above? If there is, we axe unable to think of it.

The Diagnostic Path-Finder

The purpose of this section is to describe a computer program which solves the second of
the three diagnostic sub-tasks - that of finding the relevant solution paths, given a problem
space, a set of problems, and a set of (possibly incorrect) answers to those problems. We
call the program the Diagnostic Path-Finder, or DPF for short. According to the over-
all approach as presented in the previous section, the DPF is intended to work together
with (a) some procedure for identifying the relevant problem space, and (b) some machine
learning mechanism which can take the paths and discover a procedure which is capable
of re-generating them.

DPF is a general system in the sense that the techniques it uses do not make xise of
the properties of the particular task domain to which it is applied. All the task-specific
information is located in the problem space and in the correct solution paths, which are
given as inputs to the program.

There are two main techniques used by the program: a technique which finds the
operator applications which are relevant, and a selective search scheme. We will describe
each of these techniques in turn.

Instantiating the Operators

The first component of DPF is based on the idea that selective search can be carried
out more efficiently if we know in advance which applications of the operators might be
involved in the solution path we are looking for. By "operator application" we mean
an operator with particular arguments, e.g. (FindDifference 8 2 column-l). The terms
^operator application5* and *%istantiated operator" will be used interchangeably* The
question is whether we can identify the relevant operator instantiations ahead of time. It
turns out that we can do this by applying the operators backwards..

Briefly, the technique is as follows: For each part of the observed answer (for the
subtraction domain* each digit), we compute which applications of the operators in the
problem space could have had that partial result as its output. For instance, suppose that
the otearred answer is *78's; how could the *8* have been produced, given the operators
in the standard subtraction space discussed above? There axe eleven possibilities:

16

(FindDifference 17 9 column-l)

(FindDifference 8 0 cohimn-1)
(FindTop 8 column-l)

If the child worked in the standard subtraction space, the "8" in column~l must have been
produced in one of these eleven different ways. This assumes that the student has not
made a "number fact" error, such as computing 16 - 9 = 8.

Next, we continue the analysis by asking, for each of the arguments of each of these
operator applications, how that argument could have been derived. For instance, where
could the "8" in the (FindTop 8 column-l) have come from? There are only two possibil-
ities: either the "8" comes from the givens of the problem (i.e., the problem has an 8 as
top-digit in column—1 as stated), or else the 8 has been created by applying:

(Decrement 9 column-l)

If the 8 is found among the givens, the derivation is terminated. If not, the same argument
is again applied to the 9 in the Decrement operation. The process is repeated until one
has considered all possible ways of deriving the digits in the answer from the givens of the
problem. We call the result of this process an operator graph.

In order to understand the operator graph, and to understand how it differs from
a search-tree, let us extract different objects from it and try to interpret them. First,
suppose that we extract a "path" from such a graph, by traversing one link at a time
backwards from the observed answer until we reach a termination point. This "path" is
not a solution path. It does not show how the answer was produced, because it contains no
information about the other digits in the answer. Also, it does not show how the particular
digit we started with was derived, because it does not explain how the other arguments to
the various operators were derived. In fact, such a "path" through the operator graph has
no interpretation.

Instead, let us look at the subgraph which "stands" on one of the digits in the answer.
That graph represents all possible ways to derive that digit from the givens of the problem.
(This is easily seen by imagining the operator graph for a single-digit answer.) Now
suppose that we prune this graph by erasing from each node all incoming links but one,
beginning with the "lowest" node, and continuing upwards. This pruned subgraph also
has an interpretation: It is one possible derivation of that digit. However, notice that the
derivation is not represented as a linear ordering of operator applications. The operator
applications are only partially ordered.

Thus the operator graph is not the problem space. The interpretation of the single
link in the operator graph is not "follows", but "makes possible" or "creates the inputs
to". The links show logical dependency, rather than sequential ordering.

The operator graph is, in fact, a compact representation of the problem space. This
can be seen by asking what the interpretation of a single node in the operator graph is. A
single node in the operator graph stands for an equivalence class of states in the problem
space* namely all states in which that application of that operator is legal, but in which

1?

the result of the application is not available. Since such a class of knowledge states can be
very large, a small operator graph can summarize a very large problem space.

From the present point of view, the important point is that the operator graph contains
all operator applications which could be involved in the derivation of the observed answer
from the given problem (assuming we have the right problem space). No other applications
of those operators need be considered during the search through the problem space.

What are the prerequisites for this technique? First, we notice that the usefulness
of this technique derives from the fact that the answer to a subtraction problem consists
of independent "parts" (the digits). If knowledge-states were unitary or atomic, so that
operators took a single symbol as input, and delivered a single symbol as output, then
this technique would be meaningless. The operator graph would then be identical with
the problem space, and the process of constructing it identical with exhaustive, backwards
search through the space. Second, notice that the construction of the operator graph
presupposes that the operators can be written as functions or processes which take one or
more inputs, but which deliver a single expression as output. In most task domains, these
two requirements will be fulfilled.

DPF employs a number of tactics to prune its development of the operator graph. Let
us consider each of them in turn.

• First, a derivation is continued backwards until some fixed depth, which is a user-
controlled parameter. At some distance from the bottom-node, the effort to connect
with the givens of the problem is given up as hopeless. For the subtraction domain,
we have used 10 as the value for this parameter.

• Second, the user has the option of listing a set of "bad objects" which should not
appear as inputs to any operator. Developments which depend on such bad objects
axe not continued. For the subtraction domain, bad objects would include non-existent
columns, such as the fifth column in a three-column problem.

• Third, the development is selective in the sense that it prefers operator applications
which occur in the correct solution path above those that do not. For this, we must
assume that DPF also' has the correct solution path available.

• Finally, DPF tries to connect each development with the givens as soon as possible; in
other words, it develops applications with a higher number of given arguments before
others.

The operator graph is a very compact representation of the possible ways to derive the
observed answer. Problem spaces which contain thousands of knowledge-states can be
suxmnarised in an operator graph with, say, 50 operator applications. However, It is
Important to realise that all possible paths to the observed answer are represented in the
operator graph. Thus, the problem of finding the path has not been simplified, since we
need only consider a few of the many possible operator applications, but it has not been
eliminated. All the different paths are t̂here1* in the graph. The question is which one
we should *read outw from the graph, Reading out a path Involves (a) selecting which
operator applications should be included in the path* (b) deciding how many Instances of

18

each application should be included, and (c) ordering them linearly. The search-scheme
we discuss in the next section can be seen as a mechanism for doing this.

Best—First Search through the Problem Space

The purpose of searching through the problem space is to find a solution path which
ends in the observed answer. Furthermore, the path should be the psychologically most
plausible one. Thus, the problem can be divided into two components. The first of these -
deciding on a search scheme - is basically an AI task. The other problem - deciding which
path hypothesis is more plausible than another - is basically a psychological one.

In response to the first issue, we are searching the problem space with a best-first
search, using the instantiated operators found in the operator graph discussed in the
previous section. The search scheme is the standard one: a list of unexpended knowledge-
states is retained. An evaluation procedure iterates through the unexpanded list, and
selects one or more nodes which represent the most interesting possibilities. These are
expanded, and then removed from the unexpanded list. Their descendents are then added
to the unexpanded list, and the process continues. The search continues until a complete
path hypothesis has been found (i.e., until some path ends with the observed answer).

In ordinary applications of best-first search, the various alternative paths are evalu-
ated with respect to the possibility that they lead to an answer to the problem. In our
application, alternative paths are evaluated with respect to how psychologically plausible
they are as path hypotheses.

DPF employs a number of tactics are used to make the search more efficient. First, a
one-step look-ahead is used. Paths which can be completed in one more step axe always
expanded, regardless of the evaluation procedure. Second, the system begins with breadth-
first search up to a certain depth, before the evaluation-based best-first search takes over.
This is to make certain that the evaluation procedure operates on paths of some minimal
length. Obviously, the evaluation criteria cannot rely on paths containing only one or two
nodes. Third, new nodes axe only compared with the best alternatives from the previous
evaluation. Only rarely need the evaluation procedure consider all unexpanded nodes.
Fourth, the evaluation criteria are themselves evaluated as the search continues. More
discriminating criteria are given more influence over the search than less discriminating
criteria. Fifth, the program derives more than one complete path hypothesis, and the final
output is selected by running the evaluation procedure one more time on the complete
paths only. The exact number is specified by the user.

The Evaluation Procedure

The best-first search is guided by an evaluation procedure which compares the incom-
plete paths, Mid selects one or more of them as more likely to lead to a psychologically
plausible path hypothesis than the others. Thus* the evaluation procedure amounts to a
formal definition of what is meant by a "good hypothesis5*'* The Diagnostic Path-Finder's
evaluation procedure uses several different criteria. Let us consider each of them in turn,
beginning with three assumptions that constitute a basic platform for cognitive diagnosis

is

(and for computer simulation in general).

Assumption of Caused Closure:

When DPF expands a node in the problem space, it considers only those operator
applications which have all their arguments available in that node. These may be available
either because they are part of the givens of the problem, or because they have been
produced by some earlier operator. Expressed differently, we are only considering paths
in which the arguments to the operators have some rational connection with the task. We
do not consider paths in which arguments to operators are generated through imagination
(or divine intervention).

It is important to note that this assumption is sometimes false. For instance, a child
may get a digit by peeking at his neighbor's worksheet. However, the ambition to account
for inputs to operators gives discipline to the diagnostic process (or to any use of computer
simulation). If operators can take arbitrary arguments, then any solution path can produce
any answer.

Assumption of Purposefulness:

We axe assuming that operators are executed because their outputs are needed for some
purpose; in other words, they will be used as inputs to some other operator further down
the line, or they occur in the final answer. DPF rejects paths in which several intermediate
results have not been used by any subsequent operator, even if these paths arrive at the
desired answer. In short, we do not consider paths with superfluous steps.

Again, this assumption is sometimes false. It is possible that students are executing all
kinds of unnecessary operators, the outputs of which are not used for anything. However,
the very fact that the outputs are not used for anything makes it impossible for us to
know anything about them. We cannot evaluate hypotheses about extra and unnecessary
steps which have no effects on subsequent processing and, in particular, no effect on the
answer. Also, the space of such paths is clearly infinite. Thus, we choose to ignore such
path hypotheses.

Assumption of No Duplication:

We assume that children do not derive intermediate results which are already available.
If an expression is available in a knowledge-state,, we do not consider operator applications
which generate that expression as output.

Again, this assumption is certainly fake in some cases. However* steps which produce
already available Imowiedge-itema have no effect on the future processing, since they do
not produce any new possibilities for action. Thus, their existence is also impossible
to determine. Again, the set of possible paths becomes infinite if we allow repreated
derivations of the same remit within a path.

Taken together, these three assumptions provide a definition of rationality. In practice,
these assumptions are presupposed by most cognitive simulations of human behavior* The
only major exceptions axe computer modeb which include a long-term memory component.
The first principle can then be broken, in the sense that some arguments are produced

by retrievals from long-term memory. (This is not a very plausible alternative for the
subtraction domain.)

Note that these three assumptions lead to absolute path criteria, rather than relative
ones. They are not used to evaluate whether one path hypothesis is better than another.
Paths which violate any of these criteria are simply rejected. However, the Diagnostic
Path-Finder also employs two kinds of relative criteria: those which axe based on psycho-
logical theory, and those which are based on other considerations, such as simplicity.

Criterion of Memory Load:

One of the few general principles that has emerged from Cognitive Psychology relates
to the limited capacity of humans' short-term memory. There is still considerable debate
about the cause of this capacity limitation, but for our purposes, it it is enough to know
that such a limitation exists. Given this knowledge, a path hypothesis which requires a
smaller short-term memory load seems more plausible than a hypothesis which requires a
larger memory load. Thus, given two hypotheses which are comparable on other criteria,
DPF prefers the one with the smaller memory load.

We compute memory load as the number of unused intermediate results at each state
along the path. An intermediate result which is not used immediately must be kept in
memory until it is used. Thus, the number of operator outputs which have not yet been
used as inputs to any operator is a reasonable estimate of memory load.

Criterion of Subgoaling:

A second psychological principle of some generality is that human thinking is goal-
oriented. We assume that the different parts of the goal (in the case of subtraction, the
different digits) are sub-goals for the subject/student. In its evaluation, DPF prefers paths
which have more subgoals satisfied.

The user also has the option of specifying some preferred order in which the subgoals
are mast likely to be satisfied in. For the subtraction domain, we specified right-to-left as
the most plausible ordering of the subgoals. During evaluation, DPF prefers paths which
have the subgoals in the preferred order, rather than in some other order.

Criterion of Productivity:

A third psychological principle of general importance is that skills of all kinds are con-
tinuously being made more efficient through a process called automatization. Several dif-
ferent znediaaiflixui have been proposed to escplain how automatization occurs: composition
of heuristic rules (Lewis* 1985; Andersen* 1983), chunking of existing skills (Rosenbloom,
1963), and the exclusion of unnecessary steps (Neches, 1961). For present purposes, the
exact medianlsm behind automatization is not important. It is enough to know that there
are processes in human cognition which continually look for short-cuts and weed out un-
necessary steps. We take this to imply that during the search we should prefer a path
hypothesis with a higher degree of productivity above one with a lower degree. We com-
pute productivity as the number of satisfied subgoais divided by the number of operator
applications path (Len as "results per effort").

The Diagnostic Path-Finder also uses additional relative criteria related to the notion
of parsimony, to which we now turn.

Criterion of Minimal Error:

We want to ascribe to the subject/student as few bugs as possible, consistent with his
erroneous answers. This follows one of the oldest methodological canons of science: do
not complicate the explanations more than necessary. Given two path hypotheses, DPF
prefers the one which more similar to the correct path. (This use of the correct path is
one reason why the correct procedure is given as one of the inputs to the program.) We
compute the similarity between a path hypothesis and the correct path as the average
length of the maximal common subsequences of the two paths.

Criterion of Minimal Length:

A second measure of simplicity involves the length of the path hypothesis. Given two
path hypotheses, DPF prefers the shorter path, other things being equal. Length is defined
as the number of operator applications.

DPF's evaluation procedure applies these criteria in an "additive" fashion. Whenever
a new node is generated, its score for each criterion is computed, and the N best nodes are
marked. After each criterion has been applied, the nodes to be expanded are taken from
the set of marked nodes. The number of nodes to be expanded in each search cycle is a
user-settable parameter.

These eight criteria constitute a formal definition of what we mean by a "good hypoth-
esis" . Later, we will propose methods for improving DPF that are based on sharpening
this definition. In particular, one would wish psychological theory to contribute more prin-
ciples that could be used as path criteria. Note that the current criteria are quite general
This gives us some hope that they will be useful even in domains other than subtraction.

The use of length in evaluating hypotheses combines in an interesting way with DPF's
preference for using more discriminating criteria in making its decisions. First, note that
breadth-first search can be construed as best-first search with minimal length as the
evaluation function. In a pure breadth-first search, one always expands the nodes at
the least depth. As explained earlier, DPF's evaluation criteria axe ordered with respect
to how well they discriminate between the unexpanded nodes. Suppose that we have a
situation in which none of the evaluation criteria other than length can discriminate very
well between the various path hypothesis. In that case, none of them will influence the
search very much, and the system will faU back on length as the evaluation criterion.
Thus, in situations where other evaluation functions are powerless, the best-first search
gracefully degenerates into breadth-first search.

Sinnm&ry

The Diagaostic Path-Finder (DPF) accepts four inputs: a problem space, a set of
problems, a correct procedure for those problems, and a set of (typically incorrect) answers
to those problems. As output, it delivers aa hypothesis about which solution path the
subject used to arrive at each of those answers* The program works in two stages. First, it

22

derives the set of instantiated operators which could possibly be involved in the derivation
of the observed answers. Second, it carries out a best-first search through the problem
space, using only those instantiated operators. The search is guided by numeric functions
that measure the quality of competing path hypotheses. The evaluation procedure employs
several different criteria, which together embody a definition of what is meant by a good
hypothesis.

Computational Results

The obvious way to evaluate a diagnostic system is to run it on some data, and ex-
amine the resulting diagnosis in order to see how well it is doing. However, this approach
leads to a conceptual difficulty similar to that facing a person who wants to calibrate a
thermometer: how does one calibrate a thermometer without already knowing the tem-
perature (Le., without applying an already-calibrated thermometer)? How do we know
whether a diagnosis is accurate, without having a fool-proof diagnostic method already
available?

This problem can only be attacked in a spiral manner. First, we apply the program to
cases where we have some grounds for knowing the "correct" diagnosis. When the program
performs satisfactorily on those cases, we apply it to other cases, where we do not have
any grounds for believing a particular diagnosis.

Of course, there exists a special case in which the correct diagnosis is known with
certainty - the case of correct answers. In this situation, the correct solution paths can be
derived by simply running the correct procedure. Thus, a minimal condition of adequacy
for a diagnostic system is that if when presented with the correct answers for a set of
problems, it should generate the correct solution paths.

In the case of subtraction errors, we also have available the considerable results of
Brown, Burton, and VanLehn, and we have relied extensively on their analyses in our
efforts to evaluate our program. First, we have applied the program to ideal data, in
which we "planted" some selected bugs from the Brown and Burton bug library. Second,
we have applied DPF to empirical data consisting of three tests completed by school pupils.
The data were collected at LRDC in Pittsburgh, and have been analyzed by VanLehn with
the DEBUGGY program. In the following pages, we will compare the analyses generated
by DPF with those produced by DEBUGGY.

Ideal Data

In testing the Diagnostic Path-Finder against idealized subtraction data, we proceed
as follows:

1. We select a particular subtraction test used in the studies by VanLehn et al.

2. We select a bug from the Brown and Burton bug library.

3. We then compute the expected solution paths and answers for the problems in that
test, under the assumption that the person solving them suffers from the selected bug.

m

4. We then feed the predicted answers to the DPF program and let it produce a path
hypothesis for each problem.

5. Finally, we compare the expected solution paths with the ones produced by the DPF
program.

In short, the idea is to "plant" some specific bug in the data, and then see whether the
DPF program can "recover" that bug.

The reader is reminded that DPF treats each problem-answer pair as a unit, and thus
derives a diagnosis for that pair independently of the diagnoses it has produced for other
problem-answer pairs (even from the same individual). Thus, for a test with 17 answers,
the program is in effect applied 17 times.

We selected a subtraction test with 17 problems which has been developed by Brown,
Burton, and VanLehn for use in their research on subtraction errors. The test is reproduced
in Table 4. The initial test was to run DPF on the correct answers for the 17 subtraction
problems. It generated the correct solution path for each of those answers.f For example,
the solution path for problem 3 (127 - 83 = 44) looked as follows:

(First Column)
(FindDifference 7 3 column-l)
(ShiftLeft column-l)
(SMftLeft column-2)
(Decrement 1 column-3)
(SMftRight column-3)
(AddTen 2 column-2)
(FindDifference 12 8 column-2)
(SMftLeft column-2)
(SkipZero 0 column-3)
(Answer: 4 4)

A few features of this path deserve comment. First, the program always starts out with
its attention directed towards the rights-most column. This is the meaning of the zero-
axgumexit operation tt(FintColuznn)9> at the beginning of the path. Second, each solution
path ends with the pseudo-operator "Answer:* which simply notes that the answer is
complete* with underscores representing positions that were left blank. Third, the columns
are numbered from right to left, so that ^column-!1* is the right-most column.

The path for the more complicated problem 17 (10013 - 318 = 9695) looked as follows:

(FinrtColuxzm)
(ShiftLeft column-l)
(Decrement 1 cohxmn-2)
(SMftEight column-2)

f This was not overly surprising, since one of DPP*s evaluation functions computes
similarity to the correct solution path.

24

(AddTen 3 column-1)
(FindDifference 13 8 column-l)
(ShiftLeft column-1)
(ShiftLeft column-2)
(ShiftLeft column-3)
(ShiftLeft column-4)-
(Decrement 1 column-5)
(ShiftRight column-5)
(AddTen 0 column-4)
(Decrement 10 column-4)
(Shiftright column-4)
(AddTen 0 column-3)
(Decrement 10 column-3)
(ShiftRight column-3)
(AddTen 0 column-2)
(FindDifference 10 1 column-2)
(ShiftLeft column-2)
(FindDifference 9 3 column-3)
(ShiftLeft column-3)
(FindTop 9 column-4)
(ShiftLeft column-4)
(SkipZero column-5)
(Answer: _ 9 6 9 5)

Looking at the path from problem 3, we see a typical sequence for a column in which
no borrowing is needed:

• a *

(FindDifference 7 3 column-1)
(ShiftLeft column-1)

* »

If no borrowing is needed, the column is processed by applying FindDifference, and shifting
attention left to the adjacent column. At another place in the same path, we see a typical
sequence of operators which deal with a column in which borrowing is necessary:

(ShiftLeft column-2)
(Decrement 1 column-3)
(ShiftRight column-3)
(AddTen 2 column-2)
(FindDifference 12 8 column-2)

In this case, the column is processed by shifting left one step, decrementing the top number
in that column, shifting towards the right again to get back to the column being processed,
adding 10 to this column, and then applying FindDifference. An even more complex
solution path results for problem 17, which borrowing across several zeroes.

Our next test was to run DPF on incorrect answers for the same problems. VanLehn
(1982) has published the frequences of the various bugs in the library of subtraction bugs.
We selected a handful of the more frequent bugs, and computed for each bug the answers
and solution paths that would result on the 17 test problems if they were solved with that
bug. The DPF program was then run on the predicted incorrect answers. The results are
presented in Table 3.

TABLE 3

DPF's Performance on a 17 Problem Subtraction Test.f

Planted Expected Unexpected paths N
error paths Alternative Order Weird Incomplete

Correct
SfxomL
BnoD
0 - N = 0
0 - N = N
BonceSfromL
StopBatO
BfroinO
BacrossO
BacrassO/-

17
12
10
5
5
4
2
2
0
0

0
0
2
2
1
1
1
0
0
0

0
0
1
0
0
1
2
0
2
1

0
0
0
0
0
0
0
1
1
1

0
3
2
0
0
0
1
3
1
1

17
15
15
7
6 1
6 I
6 1
6 I
4 1
3 1

The number of relevant answers in each row, the column marked aW, varies because
the number of problems in the test for which a given bug predicts incorrect answers varies.
None of the bugs predict incorrect answers to all problems in the test. Since we had already
run it on the complete set of 17 correct answers, we did not present DPF with the correct
answers again in these cases. The column marked ^Expected*5 represents the number of
cases in which DPF generated the solution path that we predicted on the basis of the bug
we had

Hie three columns marked •'Unexpected** contain those cases in which the program
output path hypotheses, but not the ones we expected. They are divided into three

f Correct = No bugp, SfromL = Smaller-firom-Larger, BnoD = Borrow-no-Decrement,
BonceSfromL = Boxrow^Ec^theii-Smaller-from-Larger^ StopBatO = Stop-Boixow-at-zero,
BfromO = Borrow^fxom-Mro, BaorosaG = Bonxw-acrass-zero, BacrossQ/- = Borrow-across-
icro-orer-blaak.

26

categories. The first category, "Alternative" represents cases in which the path hypotheses
output by DPF can be recognized as belonging to some other bug in the Brown and Burton
bug library than the one we had planted. On the other hand, "Order" represents cases
where the solution path produced by DPF contains exactly the expected steps, but in a
garbled order. The third sub-category, "Weird", represents the cases in which the DPF
program output a path hypotheses which bears no resemblance to any of the bugs in the
Brown and Burton bug library.

Finally, the category marked "Incomplete" represents those cases in which the program
could not find an hypothesis within the limits put on the best—first search. For these runs,
a limit of 400 nodes was set. In other words, if the system could not find a path hypothesis
by expanding at most 400 nodes of the problem Space, it gave up (on that particular
problem-answer pair).

Let us examine some of the diagnoses. Problem 4 (183 - 95) in Table 4 has the correct
answer 88. The correct path is:

(First Column)
(ShiftLeft column-l)
(Decrement 8 column-2)
(ShiftRight column-2)
(AddTen 3 column-l)
(FindDifference 13 5 column-l)
(ShiftLeft column-l)
(ShiftLeft column-2)
(Decrement 1 column-3)
(ShiftRight column-3)
(AddTen 7 column-2)
(FindDifference 17 9 column-2)
(ShiftLeft column-2)
(SkipZero 0 column-3)
(Answer: _ 8 8)

The Borrow-no-Decrement bug, shown in the third row of Table 3, consists in doing
subtraction correctly, except that a column which is being borrowed from is not decre-
mented. TMs bug predicts the incorrect answer 198 to problem 4. Given this answer,
DPF outputs the following solution path;

(FirstColumn)
(AddTen 3 column-l)
(FindDifference 13 5 column-l)
(ShiftLeft column-l)
(AddTen 8 column-2)
(FindDifference 18 9 co!umn-2)
(ShiftLeft CQiumn-2)

27

(FindTop 1 cohimn-3)
(Answer: 19 8)

In contrast, the Boirow-once-then-SmaUer-from-Larger bug, shown in the sixth row
of Table 3, consists of only doing the first borrowing operation in each problem correctly.
On the following columns in which borrowing is necessary, borrowing is replaced by sub-
tracting the smaller number from the larger, regardless of which is above the other. This
bug predicts the incorrect answer 128 to problem 4. Given this answer, DPF produces the
diagnosis:

(First Column)
(ShiftLeft column-l)
(Decrement 8 column-2)
(Shiftright column-2)
(AddTen 3 column-l)
(FindDifference 13 5 column-l)
(ShiftLeft column-l)
(FindDifference 9 7 column-2)
(ShiftLeffc column-2)
(FindTop 1 column-3)
(Answer: 1 2 8)

Looking instead at problem 5 (106 - 38), the Borrow^o-Decrement bug predicts the
incorrect answer 178, which prompts DPF to suggest the following solution path:

(First Column)
(AddTen 6 column-l)
(FindDifference 16 8 column-l)
(ShiftLeft column-l)
(AddTen 0 column-2)
(FindDifference 10 3 column-2)
(ShiftLeft column-2)
(FindTop 1 column-3)
(Answer: 17 8)

In contrast, let us look at another bug for the same problem. The Borrow-from-Zero
bug consists in changing a top zero to a nine while borrowing* without decrementing any
column to the left of the sero. This bug predicts the incorrect answer 168 on problem 5.
The DPF diagnosis for this answer is:

(First Column)
(ShiftLeft column-l)
(AddTen 0 column-2)
(Decrement 10 column-2)
(SMftRtghi column-2)

2S

(AddTen 6 column-l)
(FindDifFerence 16 8 column-l)
(ShiftLeft column-l)
(FindDifference 9 3 column-2)
(ShiftLeft column-2)
(FindTop column-3)
(Answer: 1 6 8)

Note that the "changing of a zero into a 9" is accomplished by first adding ten and then
decrementing.

Finally, let us look at a so-called "pattern error", the 0 — N = 0 bug. On problem 6
(800 - 168), this bug predicts the incorrect answer 700. The DPF diagnosis is:

(FirstColumn)
(FindTop 0 column-l)
(ShiftLeft column-l)
(FindTop 0 column-2)
(ShiftLeft column-2)
(FindDifference 8 1 column-3)
(Answer: 7 0 0)

Note that the pattern error is accomplished with the help of the FindTop operator, which
is a necessary component of the correct subtraction skill.

In summary, the category "Expected" contains those cases in which the program output
the expected solution path. As we can see from Table 3, this happened in 57 cases of 74
completed diagnoses.

Let us next consider the categories under the general heading "Unexpected". The first
group, "Alternative" means that DPF output a solution path expected on the basis of
some other bug in the bug library than the one we had "planted". This simply means that
there is more than one bug in the bug library which predicts a particular incorrect answer,
and that the evaluation procedure used by DPF implies that the path belonging to some
other bug was to be preferred above the one we expected to see.

For instance, consider the problem 7 (513 - 268), with correct answer 245. The
"planted" bug Borrow-no-Decrement predicts the incorrect answer 355, and the solution
path:

(FirstColumn)
(AddTen 3 cotaxxm-l)
(FindDifference 13 8 column-l)
(SHftLeft column-l)
(AddTea 1 column-2)
(FindDifference 11 6 column-2)
(ShiftLeft coitnnn-2)

29

(FindDifference 5 2 column-1)
(Answer: 3 5 5)

However, the bug Smaller-from-Larger, which involves subtracting the top digit from
the bottom digit in any column in which borrowing is necessary, also predicts the incorrect
answer 355 to this problem. The solution path actually output by DPF for this problem-
answer pair is:

(FirstColumn)
(FindDifference 8 3 column-l)
(ShiftLeft column-1)
(FindDifference 6 1 column-2)
(ShiftLeft column-2)
(FindDifference 5 2 column-3)
(Answer: 3 5 5)

In other words, the DPF system preferred the SmaUer-from-Larger diagnosis on this
problem—answer pair, in accordance with our intuition that this is a simpler account.

Looking at another example of an alternative diagnosis, consider problem 17, (10013 -
318), with correct answer 9695. The pattern bug 0 - N = 0 predicts the incorrect answer
10Q05. However, the solution path suggested by DPF for this answer is:

(FirstColumn)
(FindDifference 8 3 column-1)
(ShiftLeft column-1)
(FindDifference 1 1 column-2)
(ShiftLeft column-2)
(FindTop 0 column-3)
(ShiftLeft column-3)
(FindTop 0 column-4)
(ShiftLeft column-4)
(FindTop 1 column-5)
(Answer: 10 0 0 5)

As we see from this path* DPF has a different explanation for the digits in the two rightmost
columns. The 5 in column-1 has come about, the program suggests, by using the Smaller-
firoKQr-Larger strategy in that column* The 0' in cohxmn—2 then does not need any particular
explanation* It follows by correct application of FindDifference, since there is now a 1 in
both the top-row ancl the bottom-row of that column* However* the 0 in column-3 is
deriTed with the 0 - N = 0 bug.

The interesting point of this example is that according to DPF, this hypothesis (which
in DEBUGGY's terms postulates two different bugp) is simpler (according to DPF's eval-
uation functions) than an explanation based solely on the 0 - N == 0 bug. This comes
about bee&uae DPF does not rely upon Brawn, Burton, and VaiiLehn's notion of bugs; it

10

finds a solution path which accounts for the given answer, but it does not know how many
distinct bugs a human interpreter will find in that path.

In summary, the "Alternatives" consist of cases in which the program produced accept-
able hypotheses which just happened to be other diagnoses than the ones we thought we
had "planted". As we can see from Table 3, this happened in 7 cases out of 74 completed
diagnoses.

The next category of unexpected paths, the "Order" group, involves diagnoses which
consist of exactly the same steps as the expected paths. However, the steps are arranged
in unexpected order. (We are comparing the actual path output by the program with the
expected buggy path, not with the correct path.)

For example, problem 6 (800 - 168) has the correct answer 632, and has the predicted
incorrect answer 542 with the Borrow-across-Zero bug (row 9 in Table 3). This bug
implies that columns with top zeroes are ignored during borrowing. For problem 6 this
means that there should first be an incorrect borrow to deal with column—1: the 8 should
be decremented, and ten added to column-1 (while ignoring column-2). Then a correct
borrow should be made for coluinn-2 (decrementing column-3 a second time).

However, DPF outputs the following path hypothesis in this case:

(FirstColumn)
(ShiftLeft column-1)
(ShiftLeft column-2)
(Decrement 8 column-3)
(ShiftRight column-3)
(AddTen 0 column-2)
(ShiftRight column-2)
(AddTen 0 column-1)
(FindDifference 10 8 column-l)
(ShiftLeft column-1)
(FindDifference 10 6 column-2)
(ShiftLeft column-2)
(Decrement 7 column-3)
(FindDifference 6 1 column-3)
(Answer: 5 4 2)

As we see, the program has postulated exactly the expected steps, including the double
decrementing of cokmn-3. However, the steps have been ordered so that the over-all
character of the path is more similar to the correct path. The crucial column-2 is not
ignored during the first borrow. It is incremented with 10, but not decremented. This
gambit gives the expected value for column-2, but it leaves the final decrement of column—
3 without any reasonable motivation* However, according to the evaluation procedure used
by DPF, this is the best path hypothesis for this answer.

The problem of evaluating diagnoses now becomes acute: What should we think about

SI

this "oddly-ordered" diagnosis? On the one hand, the path is a valid diagnosis in the sense
that the path will, in fact, produce the given answer with the operators of the problem
space. Thus, it is at least possible that a person working in that space actually proceeded
in the way described by the path. On the other hand, our intuitions rebel against such
an hypothesis: the unexpected path "feels" unnatural. However, as long as our intuitive
judgement cannot be backed up by good arguments, it is not clear whether we should
believe our intuitions or the program.

As a further example of a strangely-ordered solution path, consider the bug Borrow-
across-zero-over-blank, which is a special case of the Borrow-across-zero bug, in which the
error only occurs when the zero is over a blank in the borrow row. For instance, problem
17 (10013 - 318) has the correct answer 9695, while the Borrow-across-zero-over-blank
bug predicts the answer 659. Given this answer, DPF outputs the path:

(First Column)
(ShiftLeft column-1)
(Decrement 1 column-2)
(ShiftRight column-2)
(AddTen 3 column-l)
(FindDifference 13 8 column-l)
(ShiftLeft column-l)
(AddTen 0 column-2)
(FindDifiference 10 1 column-2)
(ShiftLeft column-2)
(ShiftLeft column-3)
(SkipZero 0 colunm-4)
(ShiftLeft colunm-4)
(Decrement 1 column-5)
(SkipZero 0 column-5)
(SMftRIght column-5)
(ShiftRight column-4)
(AddTen 0 column-3)
(Decrement 10 column-3)
(FIndDlffemce 9 3 column-3) •
(Answer - . 6 5 9)

Again* the hypothesis postulates all the right steps, but their order feels unnatural. As we
can see from Table 3* 7 out of the 74 completed diagnoses consisted of the expected steps,
but in an unexpected order.

The third group of unexpected paths we have labeled "weird" because they show no
relationship to aay recognisable procedural bug, and because they are difficult to interpret.
There are only three such cases, which we discuss in turn-

First, consider problem 15 (608 - 209), which has the correct answer 399. For this

32

problem, the Borrow-from-Zero bug predicts the incorrect answer 499. However, when
given this problem—answer pair, the DPF program produces the following solution path:

(First Column)
(ShiftLeft column-1)
(ShiftLeft column-2)
(Decrement 6 column-3)
(Shiftright column-3)
(AddTen 0 column-2)
(Decrement 10 column-2)
(ShiftRight column-2)
(AddTen 8 column-1)
(FindDifference 18 9 column-1)
(ShiftLeft column-1)
(FindDifference 9 0 column-2)
(ShiftLeft column-2)
(Decrement 5 column-3)
(FindTop 4 column-3)
(Answer: 4 9 9)

In this path, everything is done correctly until the processing of column-3. In order to
reconcile number 4 as the answer in this column with the previously correct steps, DPF
invents the clever trick of arbitrarily decrementing the top digit (5) in column-3 one more
time, and then simply copying the result as the column answer, equally arbitrarily ignoring
the 2 in the bottom row of that column. This is a valid diagnosis in the sense that the
path generates the given answer, but it does not make much sense.

The second example of a weird diagnosis concerns problem 14 (700 - 5), which has the
correct answer 695. For this problem, the Borrow-across-Zero bug predicts the incorrect
answer 605. However, when given this answer, DPF generates the path:

(First Column)
(FindDifference 5 0 column-1)
(ShiftLeft column-1)
(FindTop 0 column-2)
(ShiftLeft column-2)
(Decrement 7 column-3)
(FindTop 6 column-3)
(Answer: 6 0 5)

The pattern here is similar, although the path is not correct even initially. DPF begins
by postulating the Smaller-from-Larger bug to account for the answer in column-1: the
smaller number is simply subtracted from the larger number 5 although the smaller is above
the larger. This gives the right digit in column-1, but leaves the problem of how to account

for the rest of the digits unsolved. When it gets to column-3, DPF again resorts to the
trick of performing an arbitrary decrement to get the desired value. The special case of this
bug, Borrow-across-zero-over-blank, predicts the same incorrect answer for this problem,
so DPF output the same weird path.

In summary, DPF's performance on the ideal data was mixed. Out of 74 completed
diagnoses (one diagnosis for each problem-answer pair), some 57 were as expected. Another
7 consisted in a different diagnosis than the one expected, and 7 more included the expected
steps in an unexpected order. A strict evaluation of the program would count only the
57 expected diagnoses as correct, in which case the system performed correctly on 77% of
the cases. A more lenient evaluation would count all 71 of the above paths as correct, in
which case the program performed correctly 96% of the time.

In addition, there were 12 cases in which the program could not complete the diag-
nosis within the limits set for exploring the problem space, and this is a serious matter.
They indicate that the program must be made considerably more selective, since the cur-
rent evaluation criteria axe simply not sufficient. Of course, there is no way of knowing
which way these incomplete diagnoses would have gone had they been allowed to run to
completion.

Empirical da ta

We have the data from an empirical study of several school children taking the test
in Table 4, as well as other subtraction tests. We also have the diagnoses by DEBUGGY
for these children. The diagnoses have been produced by Kurt VanLehn. We thank
Susan Omansson at the Learning Research and Development Center at the University of
Pittsburgh for making the material available to us.

We have selected three children, and run DPF on their answers. The first child, here
called Tommy** was diagnosed as "mostly unsystematic" by DEBUGGY, while "James"
is diagnosed as "systematic* with the two bugs Borrow-across-Zero and Borrow-dont-
decremmt-top--sinaller. The third child, "Judy" was diagnosed as "highly systematic59

with the bug Stopg-Borrow-at-Zero.

Diagnosis of Tommy

Tommy solved all 17 problems in the test in Table 4. He solved 12 of them correctly,
delivering only 5 incorrect answers. DEBUGGY considered 19 different diagnosis for this
subject. The best diagnosis turned out to be Boirow-aoross-Zero in combination with
Treat-Top—Zero-as-Ten, plus the local number-fact error 8 - 1 = 5, applied to problem
6. This diagnosis accounts for 4 of the five incorrect answers, while at the same time
predicting correct answers to 7 problems that Tommy also solved correctly. However,
this diagnosis Mis to account for one of Tomirsyss incorrect answers, and predicts incorrect
answers to five problems which Tommy solved correctly. The other 18 diagnoses considered
by DEBUGGY for this child account for even less of the behavior.

We ran DPF on the Ive problems which Tommy solved incorrectly. It was unnecessary
to run the program on the correct answer since we already knew that DPF would output

M

the correct solution paths for them. DPF generated solution paths for four of the five
problems.

On problem 5 (106 - 38), Tommy answered "72". None of the 19 diagnoses considered
by DEBUGGY can explain this answer. The solution path suggested by DPF is the
following:

(First Column)
(ShiftLeft column-1)
(ShiftLeft column-2)
(Decrement 1 column-3)
(ShiftRight column-3)
(AddTen 0 column-2)
(FindDifference 10 3 column-2)
(ShiftLeft column-2)
(SkipZero 0 column-3)
(ShiftRight column-3)
(ShiftRight column-2)
(FindDifierence 8 6 column-1)
(Answer: __ 7 2)

Thus, DPF postulates that Tommy did Smaller-from-Larger in column-1, but solved the
rest of the problem correctly. The steps seem at first to be arranged in a completely
arbitrary order.

However, closer inspection reveals an interpretation of the solution path. The steps
and the order in which they appear axe consistent with the hypothesis that Tommy began
to make a correct borrow from column—3 into column-1. However, at column-2 he forgot
which column was the "current column" (i.e., the column he was working on). Thus, he
processed column-2 and then column-3 correctly. He then discovered that the answer
"looked funny", because of the missing digit in column-1. He then returned to column-1
and treated it in isolation from the rest of the problem, in the only way possible. Of course,
the value of such speculation in a practical context is questionable. However, here it serves
points out that an interpretable explanation for the mysterious "72" answer is possible,
and that DPF can generate it.

The second buggy answer by Tommy is a542" as the answer to problem 6 (800 - 168).
This answer is predicted by four of the 19 diagnoses considered by DEBUGGY. DPF
outputs the path:

(FirstColumn)
(ShiftLeft cohraffi-l)
(ShiftLeft column-2)
(Decrement 8 column-3)
(ShiftRight columo-3)
(AddTen 0 cotamn-2)

35

(ShiftRight column-2)
(AddTen 0 column-1)
(FindDifference 10 8 column-1)
(ShiftLeft column-1)
(FindDifference 10 6 column-2)
(ShiftLeft column-2)
(Decrement 7 1 column-3)
(FindDifference 6 1 column-3)
(Answer: 5 4 2)

This path belongs in the category of "weird" diagnoses. Part of the path is systematic
enough: Tommy forgets to decrement the 10 which is added to column-2- However, DPF
also infers that he applied an extra decrement to column-3, to make the left-most digit
come out right. The path as a whole does not seem to yield any systematic understanding
of what Tommy did.

However, his behavior on the next problem does yield to a systematic interpretation.
Tommy gave "2087* as the answer to problem 12 (3005 - 28). This answer can be explained
only by two of the 19 diagnoses considered by DEBUGGY, in both cases by combinations
of two bugs- In contrast, DPF gives the path:

(First Column)
(AddTen 5 column-1)
(FindDifference 15 8 column-1)
(ShiftLeft column-1)
(AddTen 0 column-2)
(FindDifference 10 2 column-2)
(ShiftLeft column-2)
(FindTop 0 column-3)
(ShiftLeft column-3)
(Decrement 3 column-4)
(FindTop 2 column-4)
(Answer; 2 0 8 7)

This path suggests a new subtraction procedure, which is not listed in the Brown and
Burton bug Ebrary: In each column where borrowing is necessary, add ten to the top
digit, and then subtract; when yon reach the left-most column, decrement the top digit
befog* subtracting. Thus, the columns are processed from right to left, and at the end ail
the mkmmw are ^pald backw in a single decrement. In the style of Brown and Burton's way
of naming bugs, this might be called Add-Ten-Preely-Decrem^it-Last.

This bug also predicts the solution path constructed by DPF for the next buggy answer,
5 to the problem (608 - 200):

(FintCohurm)

(AddTen 8 column-1)
(FindDifference 18 9 column-1)
(ShiftLeft column-l)
(FindDifference 0 0 column-2)
(ShiftLeft column-2)
(Decrement 6 column-3)
(FindDifference 5 2 column-3)
(Answer: 3 0 9)

Unfortunately, DPF left the last diagnosis uncompleted. However, the Add-Ten-Freely-
Decrement-Last bug does not predict the fifth and final incorrect answer by Tommy. On
the whole, that bug does not make a better over-all diagnosis of Tommy than any of the
other diagnoses considered by DEBUGGY.

However, if we look more abstractly at the four different solution paths suggested by
DPF, two regularities emerge: First, Tommy never decremented a 10 which he added
during a borrow. Second, he always decrements the top digit in the left-most column.
These regularities may be useful, even if they are not sufficient to specify a particular
procedure.

In summary, DPF's analysis mainly agrees with the DEBUGGY verdict that Tommy's
subtraction behavior is unsystematic. However, the bottom-up nature of DPF allows it
to find a novel explanation for the a72" answer. Moreover, two of DPF's proposed paths
suggest a systematic subtraction bug not mentioned in the Brown and Burton bug library.
Finally, the set of paths as a whole suggests two weak regularities in Tommy's behavior.

Diagnosis of James

James delivered answers to all 17 problems in the test. Eight of these were correct,
and nine incorrect. DEBUGGY considered twelve different diagnoses for this child, and

| classified him as "systematic". The best diagnosis accounted for 6 of his correct answers,
| and 8 of his incorrect ones, a success rate of 14 out of 17. The diagnosis is a complex one,
I consisting of two main bugs supplemented with two assumptions of local pattern errors
I on problems 13 and 16. The two main bugs axe Borrow-across-Zero and Borrow-dont-
J Decrement-Top-Smaller. These two bugs account for 12 of the observed answers. In order
| to make 14 hits, this hypothesis was supplemented with the assumptions that the child
I made the local number-fact error 8 — 2 = 7 on problem 13, and the error 10 - 2 = 9 on
I problem 16.

j Before considering what DPF has to say about this child, let us pit the bug, that we
\ discovered while diagnosing Tommy against the best DEBUGGY diagnosis. It turns out

that Add-Tea-Freely-Decrement-Last predicts five of James3 incorrect answers* and five
of Ms correct ones. It would rank as second best among the 12 diagnoses considered by
DEBUGGY.

Can we find some supplementary hypothesis which helps Add-Ten-Freely-Decrement-
Last to account for Tommy's behavior? Inspection of his answers suggest the pattern bug
1 - 1 =s 9, restricted to the tens column. This bug implies that a one over a one is treated

37

as a ten. Especially in the tens column, this does not seem like an unreasonable bug.

If we extend our account by assuming this new pattern bug, which we might call
Treat-One-Over-One-As-Ten, then our hypothesis predicts two additional answers, one
correct and one incorrect, to make a total of 12 answers correctly accounted for. In
short, the bug combination Add-Ten-Freely-Decrement-Last plus Treat-One-over~One-
As-Ten competes favorably with the best DEBUGGY diagnosis for this particular child.
How useful this hypothesis would be on a large sample of children we do not know.

Let us now have a look at the paths actually output for James by the DPF system.
For 8 out of James5 9 incorrect answers, DPF generated complete path hypotheses, but
recall that the program treats each problem-answer pair separately. Thus, it tries to find
the best path hypothesis to account for each particular answer, making it quite insensitive
to the implications of that hypothesis for the over-all picture of James.

Because of this piecemeal and bottom-up strategy, no consistent picture of James
emerges from the eight solution paths. Two of these follow perfectly the Add-Ten-Freely-
Decrement-Last bug. The answer 605 to problem 14 (700 - 5) is, on the other hand,
accounted for with a perfect example of Borrow-across-Zero:

(FirstColumn)
(ShiftLeft column-1)
(ShiftLeft column-2)
(Decrement 7 column-3)
(ShiftRight column-3)
(ShiftRight column-2)
(AddTen 0 column-1)
(FindDifference 10 5 column-1)
(ShiftLeft column-1)
(FindTop 0 column-2)
(ShiftLeft column-2)
(FindTop 6 column-3)
(Answer: 6 0 5)

However, the remaining five path hypothesis from James are more or less wekd. One is
based on SmalleiHErom^Larger, followed by a decrement of the top-dipt in the last column.
Three paths include the psycholo^cally implausible trick of decrementing the top digit in
a column until it has the expected value, and then copying it as the answer for that column
(ignoring the number in the bottom-row in that column). (These three include the two
answers which DEBUGGY could not explain, except by postulating local pattern errors.)
The last one is a different variant of the ^oo many decrements"' theme. In short, DPF's
path hypotheses for James do not reflect the regularities that we know exist in his answers.

Diagnosis of Judy

Judy solved all 17 problems,, and her performance is easy to describe: All her answers,
6 incorrect aad 11 correct, are in accord with the Bontw-across-Zero bug. DEBUGGY

38

classified her as "highly systematic".

We ran DPF on the 6 incorrect answers, and the system completed 5 diagnoses. Of
these, four are consistent or nearly consistent with the Borrow-across-Zero bug; two have
the correct order, and two have the steps in slightly garbled order.

However, on problem 14 (700 - 5), DPF suggests that the Smaller-from-Larger is a
better diagnosis:

(FirstColumn)
(FindDiflference 5 0 column-1)
(SHftLeft column-1)
(FindTop 0 column-2)
(Shiftleft column-2)
(FindTop 7 column-3)
(Answer: 7 0 5)

Thus, in this case, the two systems essentially agree on the diagnosis of the child, though
again DPF's blindness to the overall picture kept it from generating completely systematic
paths.

Discussion

To summarize, we have presented an approach to automated cognitive diagnosis which
builds on the problem space hypothesis. This hypothesis implies that cognitive diagnosis
consists of three distinct steps: identifying the problem space, finding the relevant path in
that space, and inventing a procedure which can re-create that path. The first problem
is still far from being automated. We have explored the second problem through the
Diagnostic Path-Finder (DPF), a computer program that constructs a solution path for
an observed answer. Approaches to the third problem have been examined by AI machine
learning researchers, and in earlier papers (Langley, OhLsson, and Sage, 1984; Langley and
Ohlsson, 1984) we have shown how one such approach can be used in cognitive diagnosis.

DPF inputs a problem space, a set of problems, a correct procedure for those problems,
and a set of (typically incorrect) answers to those problem. It delivers as output a path
hypothesis - some sequence of steps (operator applications) which lead from the problem
to the given answer. In generating this path, the program carries out a best-first search
through the problem space, using an evaluation function to guide its search. This evalua-
tion function estimates the psychological plausibility of alternative paths, rather than their
likelihood of leading to a solution. The evaluation metric h composed of a set of criteria
which together constitute the system's definition a "good psychological hypothesis*.

We applied the program to both ideal and empirical data in the domain of multi-
column subtraction. In the ideal data test, we planted selected bugs from the Brown
and Burton bug library for subtraction, and then tested the program to see whether
it could recover the planted blip. The program completed 88% of the diagnoses. Of
these completed diagnoses, 77% were the expected ones, 19% were unexpected (but still

39

acceptable) diagnoses, while 4% of the diagnoses were weird or uninterpretable.

In the empirical data test, we applied the system to the answers given by three different
school children, classified by the DEBUGGY system as "mostly unsystematic", "system-
atic", and "highly systematic", respectively. DPF managed to reveal a couple of weak
regularities in the performance of the supposedly unsystematic child. However, with re-
spect to the systematic child, DPF failed to emphasize the known regularities, producing
a diverse set of diagnoses, including five weird solution paths. Finally, DPF essentially
agrees with DEBUGGY with respect to the highly systematic child.

The most interesting achievement of DPF on this set of runs was that it suggested a
new subtraction bug. Several solution paths proposed by the system can be summarized
by the following buggy procedure: Process the columns from right to left; for each col-
umn in which borrowing is necessary, simply add ten to the top digit before subtracting
in that column; when you reach the left-most column, decrement the top digit once be-
fore subtracting in that column. We suggest the name Add-Ten-Freely-Decrement-Last
for this bug. This bug does a fairly good job of accounting for the "systematic" child,
which DEBUGGY diagnosed as suffering from a combination of Borrow-Across-Zero and
Boxrow-Dont-Decrement-Top-Smaller. Thus, it may be a worthwhile addition to the
Brown and Burton bug library for subtraction.

Among the strong points of DPF, we would like to emphasize the following:

• DPF is able to construct solution paths for some incorrect answers which DEBUGGY
cannot account for at all. There are incorrect answers in the performance of the three
children which are not accounted for by any of the bugs or bug combinations considered
by DEBUGGY. The solution paths output by DPF in those cases are frequently weird
and unnatural. However, the extent to which those paths have psychological validity
is an empirical question.

• DPF does not postulate unanalyzed errors. For instance, so-called pattern bugs like 0
- N = 0 are simulated with the help of the FindTop operator. The point is that the
FindTop operator is a necessary component of subtraction skills, since some problems
have many more digits in the top number than in the bottom number. As a second
instance, the operation of "changing a zero to a 9" (which is at the heart of the Borrow-
from-Zero bug) is represented as an application of AddTen, followed by an application
of Decrement. Thus, there axe no black boxes which simply output wrong results.
Every incorrect digit is derived through a sequence of steps, each of which represents
the correct application of some operator.

• Since DPF produces solution paths, it is possible to find regularities in a performance
even when it is too unsystematic to be simulated. Even if a child keeps changing his
subtraction procedure in an erratic way, it may be that there axe still some proper-
ties of his performance which remain stable under those changes. Such a performance
cannot be simulated by any subtraction procedure, but given the solution paths, the
regularities may still be recovered. For instance, in diagnosing the child classified as
'Hinsystematic*, DPF's solution paths suggested the regularity that the tens which are
added during borrowing are never decremented. For practical purposes, such regular-

m

ities may well be useful.

Among the negative points of the DPF program, the following two dominate:

• Too many of the diagnoses were left incomplete. DPF could not find any solution
path within the limits set on the search in 12% of the cases. This suggests that the
evaluation procedure guiding the best-first search is not selective enough, and should
be improved.

• The pure bottom-up approach taken in DPF is clearly unreasonable. The solution path
for each answer is computed independently of any other answer by the same problem
solver. In the case of the "systematic" child, this approach led to a blindness for the
over-all regularities in that subject's performance. The program should be augmented
with the capacity to attend to the over-all consistency of its diagnosis of a particular
subject.

There axe several issues which need to be discussed further. They include questions con-
cerning the existence of competing path hypotheses, problems of generality, and alternative
goals in constructing diagnostic systems.

Competing hypotheses

The work on errors in subtraction exemplifies a general rule - for any given (incorrect)
answer to a task, there exists more than one (buggy) procedure that can generate that
answer. This is only one instance of an even more general rule - that most facts can
be explained by more than one theory. How should a system for automated cognitive
diagnosis respond to this possibility of competing hypotheses?

The traditional scientific stance regarding competing hypotheses is that one should use
the hypotheses to make differential predictions, and then collect more observations. The
hypothesis which mast successfully accounts for the new data should be preferred.

This approach might be plausible, if people were completely stable in their thought
habits over long periods of time. We could then derive the expected performance on
a new set of problems, reobserve the subject, and check the predictions. However, the
experience so far suggests that people change their strategies frequently. The fact that
subject S applied procedure P to task T at time t is not a Law of Nature, nor is it a
Law of Psychology. Thus, the method of designing critical experiments is not necessarily
meaningful in this field, though it may have limited usefulness.

However, one could imagine diagnostic systems which are not confined to answer-data
alone- Automated diagnostic methods have been successful in some task domains using
only answer-data, but this does not mean that other types of data could not be useful as
well. In fact, DPF and similar systems would benefit greatly from process-oriented data.
For instance, best-first search through the problem space could be guided by a rough
outline of the student's path, derived from some form of process—oriented data.

However, this approach introduces problems of its own. First, developing task inde-
pendent methods for the treatment of process-oriented data is an AI research problem in

its own right. The second drawback is a practical one; process-oriented data generally
requires extensive recording equipment, the ability to observe one subject at a time, en-
suring that subjects axe not disturbed by the recording equipment, and so forth. These
conditions are usually fulfilled in a research laboratory, but seldom in real-world contexts.

Another response to the problem of competing hypotheses is to make the diagnostic
system interactive. When the program cannot choose between two or more competing
hypotheses, it can explain its choice to the user, who then indicates which alternative
should be used. The success of such a scheme depends on the intended user; e.g., it may
require a level of sophistication beyond the range of most grade school teachers.

Even should such a solution work well in practice, it would not be very intellectually
satisfying. It implies that the diagnosis will still be only as good as the intuitions of the
person interacting with the system. Also, it means that the actual problem of determining
a good hypothesis has been circumvented, rather than solved.

In the end, the only honest approach to this problem is to supply the program with some
procedure by which it can choose between competing hypotheses. Of course, in DPF, such
a procedure is necessary anyway because the hypotheses are constructed though selective
search. Thus, the problem of selecting between competing hypotheses and the problem of
making the program more efficient are one and the same: how can we make the evaluation
procedure better?

Our difficulties in constructing the evaluation procedure for the DPF system has
brought home to us the poverty of current psychological theorizing. The number of the-
oretical principles that can be turned into useful evaluation criteria is very small. Most
psychological theorizing seems to be have no implications for how to evaluate psychological
hypotheses!

Considering our intuitions about why we disbelieve the Monster diagnoses* that our
program has produced, the two concepts of justification and genesis come to mind. The
path hypotheses which we find natural and psychologically plausible axe those, in which we
can imagine either how the child justifies the steps to himself, or how the bug came about.
If we cannot imagine either of these things, then we experience the explanation as weird.
Future improvements of the evaluation procedure should probably take its inspiration from
these intuitions. For example, one way to proceed would to be formalize the justification
(i.e., the semantics) of the correct procedure, and then search for diagnoses which violate
that justification as little as possible.

Units of Analysis

The roost glaring difference between DPF and the DEBUGGY system lies in the di-
agnostic unit employed by the two systems. DEBUGGY makes a diagnosis of a subject,
considering all answers produced by that subject. DPF makes a diagnosis of an answer,
ignoring other answers from the same subject.

Since we want to understand a subject, it might seem as if the subject is the most
natural unit of diagnosis. This would be so? provided subjects were completely consistent.

42

If we could trust that a subject executed exactly the same procedure on all the problems
in a test, then it would be very inefficient indeed not to take all solution paths into account
while doing diagnosis.

However, the situation is otherwise. Subjects/students (a) change their procedures in
"midflight", replacing one buggy procedure with another in the midst of solving a problem,
(b) learn while doing, and (c) make a fair number of random mistakes. This means that a
diagnostic system cannot assume that it will be able to find a single procedure which will
account for all the answers by a particular subject.

DEBUGGY's response to this situation is to consider a number of diagnoses for each
subject, apply each to the entire range of answers, and tabulate the hits and the misses. The
diagnosis with the most hits is regarded as the best. If there is no diagnosis which accounts
for a significant proportion of the performance, the subject is classified as "unsystematic".

In the bottom-up approach of the DPF system, there is no assumption of inter-problem
consistency. This gives us a handle on inconsistent performances. For example, if a subject
solves 10 problems with bug A, and then another 10 problems with bug B, DPF should
produce ten paths consistent with A followed by ten paths consistent with B.

However, the runs made with DPF indicates that doing diagnosis on each problem-
answer pair separately may not be a reasonable ambition*. Unless the paths are compared
with each other, larger regularities may be ignored completely.

The problem, then, is to develop a method for using inter-problem consistency to
facilitate diagnosis, while at the same time avoiding unwarranted assumptions about sys-
tematicity on the part of the subjects. Currently, we have no handle on this problem.

Generality

Our aim is to develop a domain-independent system for automated cognitive diag-
nosis. The usefulness of such a system for both research and practical work should be
obvious. This makes the diagnostic problem very hard. If we had allowed ourselves to
use subtraction-specific evaluation criteria in DPF, it would have performed considerably
better. Indeed, the generality goal makes the problem so hard that one might reasonably
ask whether this is not an overly ambitious goal. There are several aspects to this issue.

First, let us point out that the machine learning methods that we plan to use for
the third diagnostic step - generating a procedure from a set of paths - axe domain-
independent. Generalization, discrimination, and related mechanisms have already been
cast in content-independent form in functioning AI programs and cognitive simulations
of human behavior. Thus, one part of the problem is already solved at a high level of
generality.

Second, we have already discussed the properties of the task which might facilitate
diagnosis of the kind that DPF represents. Diagnosis on the basis of answer-data only
is likely to be possible in task domains in which (a) the goal-object is not given in the
statement of the the problem, (b) the goal-object is chosen from a very large set of objects,
and (c) the goal-object has internal structure^ the richer the better.

43

Presumably, the ambition to construct a very general diagnostic methodology implies
that we must give some thought to what we should do in domains which do not share these
properties. The obvious answer is to provide in the system for the use of process-oriented
data as well.

However, the automatic treatment of process-oriented data is a difficult matter. Some
efforts have been spent on constructing a system for automatic analysis of think-aloud pro-
tocols (Waterman and Newell, 1972), but without any great success. The problem lies not
in making use of the data, but in designing a procedure that is domain-independent. One
would have to formally define the various forms of process-oriented data that one might
collect in a psychological investigation (think-aloud protocols, eye-movements, motor ac-
tions) . For each type of data, one would have to specify general procedures for treating
each such data-type. We are not currently pursuing this line of research.

However, the generality of an AI system is always a matter of degree. Obviously, some
description of the task must always be given to any system. The relevant questions are
rather what kind of task-specific input a system requires, how difficult it is to prepare,
and how much of the system's intelligence is actually hidden in that hand-crafted input.
Even if our ambition is to construct a general methodology, we do not believe it is possible
without some task-specific input. The question, then, is what Mud of input.

Comparing the DEBUGGY and DPF systems on this question, we see that differ
markedly on this point. Presumably, the main machinery of the DEBUGGY system could
be used in any task domain for which a bug library is available. Thus, it is the bug library
that carries the task-specific information. In the DPF system* the only task-specific part
is the problem space. How can the problem space replace the bug library* and what has
been gained thereby?

First, let us recapitulate a previous argument. Suppose that we have a problem space
and develop it exhaustively. One or more terminal nodes wii then contain the ^correct"
answer to the problem. All other terminal nodes will represent some '̂ incorrect19 answer
to the problem- Obviously, the only incorrect answers which can be teccoooied for in that
space are those which are represented by some termmiil ifcode* la other'words, 'a problem
space implicitly defines a bug library. The reason why BPF eta make diagnoses without
an explicit bug library is that is has an implicit bug library fogtettdL '

Has anything been gained by going from an explicit to on Implicit library? We want
to argue that several important iMnj^ have been gained.

First, the problem space has several functions in the system* It » not just an implicit
bug library. It also constitutes an hypothesis about the subjects1 representation of the task.
The problem space hypothesis is not an arbitrary construct, independent of psychological
theory. By adopting this hypothesis, we link our diagnostic methodology to a theory of
problem solving* and thereby to research inspired and piMed by that theory. Hopefully,
this means that advances in the theory can be easily related to the diagnostic task.

Second, notice that according to the problem ipmcc hypothesis, we always need to
specify the problem space the subject is working In, whether we are doing diagnosis or
something else* Thus, the problem space is not an extra addition to our arsenal required

44

by the diagnostic task, but something we must have anyway in order to produce a cognitive
simulation.

Third, and more importantly, perhaps, is that a problem space is a specification or
characterization of the bug library that is implicit in it. The standard subtraction space
used in DPF's runs represents all bugs consistent with the assumption that the problem
solver knows the operators of that space. Thus, we can discuss the differences between
bug libraries in terms of the differences between the operators. When we run the DPF
program we know that the program, by construction, "considers" all the bugs in the
implicitly defined bug library.

Fourth, and most important of all, a problem space, being an hypothesis, can be
researched and evaluated. One can gather information relevant to the notation used in
the problem space by interviewing subjects about how they view the task, recording their
eye-movements in order to observe what aspects of the task they attend to, and so on.
One can collect information about which operators one can plausibly postulate in the
problem space by observing which sub-skills subjects can execute without difficulty. Thus,
a problem space can be backed by empirical evidence independent of the buggy answers
for which it accounts.

In short, we feel that there are considerable advantages to using problem spaces as the
caxrier of the task-specific information in a diagnostic system. The approach makes a clear
separation between task-specific and general knowledge; the problem space represents the
task domain; the generality of the system lias in the task-independent method used to
search the space, and in the evaluation procedure used to direct that search.

TABLE 4
Subtraction Test Used in Evaluating DPF.

N Problem Correct answer

36
56
44
88
68
632
245
196
450
2694
2482
2977
607
695
399
2808
9695

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

43-7
80-24
127 - 83
183 - 95
106-38
800- 168
513 - 268
411 - 215
654-204
5391 - 2697
2487-5
3005 - 28
854 - 247
700-5

608-209
3014 - 206
10013 - 318

References

Anderson, J. R. The Architecture of Cognition. Cambridge, Mass.: Harvard University
Press, 1983.

Anderson, J. R. Cognitive principles in the design of computer tutors. Proceedings of the
Sixth Conference of the Cognitive Science Society, 1984, 2-9.

Anderson, J- R. and Bower, G. H. Human Associative Memory. Washington, D.C.: Win-
ston, 1973.

Anzai, Y. and Simon, H. A. The theory of learning by doing. Psychological Review, 1979,
86, 124-140.

Brown, J. S. and Burton, R. R., Diagnostic models for procedural bugs in basic mathe-
matical skills. Cognitive Science, 1978, 2, 155-192.

Brown J.S. and VanLehn K. Repair theory: a generative theory of bugs in procedural skill.
Cognitive Science, 1980, 4, 379-427.

Burton R. Diagnosing bugs in a simple procedural skilL In D- Sleeman and J. S. Brown
(Eds.), Intelligent Tutoring Systems. Academic Press, London, 1982.

Ericsson, K. A. and Simon, H. A. Protocol Analysis: Verbal Reports as Data. Cambridge,
Massachusetts: MIT Press, 1984.

Hagert, G. On procedural learning and its relation to memory and attention. Proceedings
of the European Conference on Artificial Intelligence, 1982, 261-266.

Hayes, J. R. and Simon, H. A. Understanding written problem instructions. In L. W. Gregg
(Ed.), Knowledge and Cognition, Potomac, Maryland: Lawrence Erlbaum Associates,
1974.

Langley, P. Learning effective search heuristics. Proceedings of the Eighth International
Joint Conference on Artificial Intelligence, 1983, 419-421.

Langley, P. and Ohlsson, S. Automated cognitive modeling. In Proceedings of the National
Conference on Artificial Intelligence, 1984, 193-197.

Langley, P., Ohlsson, S., and Sage, S. A machine learning approach to student model-
ing. Technical Report CMU-RI-TR-84-7, The Robotics Institute, Carnegie-Mellon
University, 1984.

Lewis, C. Composition of productions. To appear in D. Klahr, P. Langley, and R. Neches
(Eds.), Production System Models of Learning and Development. Cambridge, Mas-
sachusetts: MIT Press, 1985.

Mitchell, T. M., Utgoff, P., and Banerji, R. B. Learning problem solving heuristics by
experimentation. In R. S. MichaJski, J. G. Carbonell, and T. M. Mitchell (Eds.),
Machine Learning: An Artificial Intelligence Approach. Palo Alto, CA: Tioga Press,
1983.

Neches, R. A computational formalism for heuristic procedure modification. Proceedings
of the Seventh International Joint Conference on Artificial Intelligence, 1981, 283-288.

Newell, A. Reasoning, problem solving, and decision processes: The problem space hy-
pothesis. In R. Nickerson (Ed.), Attention and Performance VIII. Hillsdale, N. J.:
Lawrence Erlbaum Associates, 1980.

Newell, A. and Simon, H. A. Human Problem Solving. Englewood Cliffs, N.J.: Prentice-
Hall, Inc., 1972.

Ohlsson, S. Competence and strategy in reasoning with common spatial concepts: A study
of problem solving in a semantically rich domain. PhD thesis, Department of Psychol-
ogy, University of Stockholm, 1980.

Ohlsson, S. A constrained mechanism for procedural learning. In Proceedings of the Eighth
International Joint Conference on Artificial Intelligence, 1983, 426-428.

Ohlsson, S. and Langley, P. Towards automatic discovery of simulation models. Proceedings
of the European Conference on Artificial Intelligence, 1984.

Rosenbloom, P. The Chunking Model of Goal Hierarchies: A Model of Practice and
Stimulus-Response Compatibility. Dissertation, Department of Computer Science,
Carnegie-Mellon University, 1983.

Sleeman D. Inferring student model for intelligent computer-aided instruction. In R. S.
Michalski, J. G. Carbonell, and T. M. Mitchell (Eds*), Machine Learning: An Artificial
Intelligence Approach, Palo Alto, Cau Tioga Press? 1983.

Smedslund, J. Psychological diagnostics, Psychological Bulletin, 1969, 71, 237-248.

Sleeman, D. H. and Smith, M. J. Modeling students1 problem solving. Artificial Intelli-
gence, 1981, 16, 171-187.

VaaLehn, IL Bugs are not enough: Empirical studies of bugs> impasses, and repairs in
procedural skills. Journal of Mathematical Behavior^ 1982, St 3^72-

VanLehi* IL Human procedural skill acquisition: Theory, model and psychological val-
idation. In Proceedings of the National Conference on Artificial Intelligence, 1983,
420-423.

Waterman, D. A. and Newell, A. Preliminary results with a system for automatic protocol
analysis* CD? Report No. 211, Department of Psychology, Carnegie-Mellon University,
Pittsburgh, Pennsylvania, 1972.

WiHams, M. D. and Hoilan9 JL D. The process of retrieval from very long-term memory.
Cognitim Science^ 1981, 5, 87-119.

Youngs R. M. Seriation % Children: An Artificial Intelligence A>nalysi$ of a Piagetian
Task Basel, Switzerland: Birkhauser, 1976.

Young, R. M. and O^Shea, T. Errors in children's subtraction. Cognitive Science^ 1981 % 5,
153-177.

48

(Nl 15*-508) 1 Wan-Si Page 1

ttivy

1 Robert Ahlfsm
Code Mfil
HIM«n Factors Laboratory
HAVTHAEQUIPCEN
Orlando, Ft, 32813

1 Dr. Ed Aiken
Navy Pcrionnfl R&D Center
3»ti Diego, CA 92152

! Dr. Meryl S. Baker
Navy Personnel R&D Center
San Diego, CA 92152

1 Dr, Nick Bond
Office of Haval Research
Llaiaon Office, Far East
APQ San Francisco, CA 96603

1 Dr. Richard Cantone
Navy Research Laboratory
Code 7910
Washington, DC 20375

1 Dr. Fred Chang
Navy Personnel R&D Center
San Diego, CA 921*32

1 Or. Stanley ColIyer
Offie© of Naval Technology
800 N, Quiney Street
Arlington, VA 22217

1 CDR Hike Cur ran
Office of Naval Research
Him H, Oulnoy St.
Code 270
Arlington, VA

\ Dr* John Ellin
Navy Personnel B&D Center
San Diego, CA 92252

1 DH, PAT FBDERICO
Code PI3
NFKDC
San Diego, CA 92152

1 Dr. Jude Franklin
Code 7510
Navy Research Laboratory
Washington, DC 20375

Navy

1 Dr. Jin Ho11an
Code 14
Navy Personnel R 4 D Center
San Diego, CA 92153

1 Dr. Ed Hutehins
Navy Personnel R&D Center
San Diego, CA 92152

1 Dr. Norman J. Kerr
Chief of Naval Technical Training
Naval Air Station Memphis (75)
Millington, TN 38054

CMU/Langley (NR 154-508)

Navy

11-Jan-84 Page 2

1 Dr. Peter Kincaid
Training Analysis &
Dept. of the Navy
Orlando, FL 32813

Evaluation Group

1 Dr. William L. Maloy (02)
Chief of Naval Education and Training
Naval Air Station
Pensaoola, FL 32508

1 Dr. Joe MeLachian
Navy Personnel R&D Center
San Diego, CA 92152

1 Dr, James McMiehael
Navy PersonnelR&D Center
San Diego, CA 92152

1 Dr William Montague
NPRDC Code 13
San Diego, CA 92152

1 Library, Code P201L
Navy Personnel R&D Center
San Diego, CA 92152

1 Technical Director
Navy Personnel RAD Center
San Diego, CA 92152

6 Commanding Officer
Naval Research Laboratory
Code 2627
Washington, DC 20390

1 Office of Naval Research
Code 433
800 N. Quincy SStreet
Arlington, VA 22217

6 Personnel & Training Research Group
Code 442PT
Office of Naval Research
Arlington, VA 22217

1 Dr. Robert G. Smith
Office of Chief of Naval Operations
OP-987H
Washington, DC 20350

1 Dr. Alfred F. Smode, Director
Training Analysis & Evaluation Group
Dept. of the Navy
Orlando, FL 32813

1 Dr. Richard Snow
Liaison Scientist
Office of Naval Research

Branch Office, London
Box 39
FPO New York, NY 09510

1 Dr. Richard Sorensen
Navy Personnel R&D Center
San Diego, CA 92152

1 Dr. Frederick Steinheiser
CNO « 0P115
Navy Annex
Arlington, VA 20370

1 Dr. Thomas Sticht
Navy Personnel R&D Center
San Diego, CA 92152

1 Mr. Brad Sympson
Navy Personnel R&D Center
San Diego, CA 92152

1 Roger Weissinger-Baylon
Department of Administrative Sciences
Naval Postgraduate School
Monterey, CA 93940

1 Mr John H. Wolfe
Navy Personnel R&D Center
San Diego, CA 92152

1 Dr. Wallace Wulfeck, III
Navy Personnel R&D Center
San Diego, CA 92152

Marine Corps

1 H. William Greenup
Education Advisor (E031)
Education Center, MCDEC
Quantico, VA 22134

1 Special Assistant for Marine
Corps Matters

Code 100M
Office of Naval Research
800 N. Quincy St.
Arlington, VA 22217

1 DR. A.L. SLAFKOSKY
SCIENTIFIC ADVISOR (CODE RD-1)
HQ, U.S. MARINE CORPS
WASHINGTON, DC 20380

inn tl-jwa-S*

l Birertor
II. 3, krmy Research Ins t i tu te for the
Behavlaral am! Social ftii
WO I Eiacnhow<*r Avwiw
AleiMHfrla. ¥A

1 Dr. ftoatrlet J. Fan*
U* 8* Ar«y Research In&tltvfct
*»0ti1 Klsenluwer Avenue
Alexandria, ¥

1 Dr. Harold F. tVMMl, J r .
Director, Training Research Lafe
Amy Resewh Ins t i tu te
r*d01 Elsenhower Avenue
Aleiandria, ¥4

1 C:«Mfifidtr, M.S. Ar«y »?a«areh Ins t i tu te
f«r th« fiuhnvioral 4 *k>cial 3»«l#nee»

ATTM? FMI-BII I Or. JtJdlth i

a, VA .»2

Faotka, Wi.&.
ATT*: PT1I-1C
Aray l#»*»reh In«tl tut«

Alctaadrla, tt

If, f, Amy HtJfctsreit In«tltui» for th«
art

Pags 3

Air for#«

1 U.S. Air Fore© Office of Scientific

CHU/Langl«y 15^-508) t1-Jan-81

Life Soitneea Direotorata, ML
Boiling Air Foroe Base

on t DC 20332

1 Dr. Burl A. Alluisi
HQ, AFHRL (AF3C)
Brooks AFB, TX 78235

t Hre Raymond E* Christ i l
AFHRL/HOE
Brook« AFB, ft 78235

1 Bryan Dallsnan
AFHRL/LRT
towry AFB, CO 80250

1 0r8 G«oevi®ve Haddad
Frogran Ma««i©r
Life Sciences Directorate
AF08R
Boiling AFB, DC 2®

TangMy
AT05R/NI.
Boiling AFB, PC

Ehra Joaepb Ya«atuk«
AFmtL/UIT
Unry AFBe CO

Department of Defense

12 Defensn Technical Information Center
Cameron Station, Bldg 5
Alexandria, VA 22311
Attn: TC

1 Military Assistant for Training and
Personnel Technology
Offio® of the Under Secretary of Dofen8
for Research & Engineering
Room 3D129, The Pentagon
Washington, DC 20301

1 Major Jack Thorpe
DARPA
1M00 Wilson Blvd.
Arlington, VA 22209

1 Dr, Robert A. Wisher
OUSDRE (ELS)
The Pentagon, Room 3D129
Washington, DC 20301

. ¥A

Page 4

Civilian Agencies

1 Dr. Patricia A. Butler
NIE-BRN Bldg, Stop # 7
1200 19th St.; NW
Washington, DC 20208

1 Dr. Susan Chipman
Learning and Development
National Institute of Education
1200 19th Street NW
Washington, DC 20208

1 Dr. Arthur Melmed
72M Brown
U. S. Dept, of Education
Washington, DC 20208

1 Dr. Andrew R. Molnar
Office of Scientific and Engineering
Personnel and Education

National Science Foundation
Washington, DC 20550

1 Chief, Psychological Reserch Branch
U, S. Coast Guard (Q-P-1/2/TP42)
Washington, DC 20593

1 Dr, Edward C. Weiss
National Science Foundation
1800 G Street, NW
Washington, DC 20550

1 Dr. Joseph L. Young, Director
Memory & Cognitive Processes
National Science Foundation
Washington, DC 20550

Private

t 0r» John ft. Anderaon
0«partm«nt of Psychology
Carnegie-Heilon University
Pittsburgh, PA 19213

1 Eva I, Baker
Director
UCLA Center for the Study of Iv t lu t t ion
14§ Moor® Hall
University of California, Los Angeles
Loi Angeles, CA 90024

1 Mr, Avron Barr
Apartment of Computer Sclenot
Stanford University
Stanford, CA 91105

1 Dr, Isaac
Educational Testing Service
Prinetton, NJ 08450

1 Dr. Menueha Bir«nbau»
School of Education
Tel Aviv University
T©1 Aviv, Rwat Aviv 69978

1 Dr. John Black
Yal« University
Box HA, Yale Station
M«w Havtn, CT Q6S2G

1 Dr. John S, Brown
XEROX Palo Alto Research Center
3333 Coyote Road
Palo Alto, CA 94 304

1 Dr» Glenn Bryan
6208 Poe Road
Rethttsda, HD 20817

1 Dr, Bruc© Buchanan
Department of Computer Seienot
Stanford University
Stanford, CA 94305

1 Dr. Jaime Garbonell
Carnegie-Mellon University
Department of Psychology
Pittsburgh, PA 15213

Page

Private Sector

1 Dr, Pat Carpenter
Department of Psychology
Carnegie-Mellon University
Pittsburgh, PA 15213

1 Dr. Michellne Chi
Learning R A D Center
University of Pittsburgh
3939 0'Hara Street
Pittsburgh, PA 15213

1 Dr. William Clancey
Department of Computer Science
Stanford University
Stanford, CA 9*1306

1 Dr. Michael Cole
University of California

at San Diego
Laboratory of Comparative
Human Cognition - D003A

La Jol la , CA 92093

1 Dr. Allan M. Collins
Bolt Beranek & Newman, Inc.
50 Moulton Street
Cambridge, MA 02138

1 Dr. Emmanuel Donohin
Department of Psychology
University of I l l i n o i s
Champaign, IL 61820

1 ERIC Facility-Acquisitions
4833 Rugby Avenue
Hethe3da, MD 20014

1 Dr, Anders Ericsson
Department of Psychology
University of Colorado
Boulder, CO 80309

1 Mr. Wallace Feurzeig
Department of Educational Technology
Bolt Beranek & Newman
10 Moulton St.
Cambridge, MA 02238

1 Dr. Dexter Fletcher
University of Oregon
Department of Computer Science
Eugene, OR 97103

CMU/Langley <NR 154-508) 11-Jan-84

Private Sector

1 Dr, John R. Frederiksen
Bolt Beranek & Newman
50 Moulton Street
Cambridge, MA 02138

1 Dr. Michael Genesereth
Department of Computer Science
Stanford University
Stanford, CA 94305

1 Dr. Dedre Gentner
Bolt Beranek & Newman
10 Moulton St.
Cambridge, MA 02138

1 Dr. Robert Glaser
Learning Research & Development Center
University of Pittsburgh
3939 O'Hara Street
PITTSBURGH, PA 15260

1 Dr. Daniel Gopher
Faculty of Industrial Engineering

A Management
TECHNION
Haifa 32000
ISRAEL

1 DR. JAMES G. GREENO
LRDC
UNIVERSITY OF PITTSBURGH
3939 O'HARA STREET
PITTSBURGH, PA 15213

1 Dr. Barbara Hayes-Roth
Department of Computer Science
Stanford University
Stanford, CA 95305

1 Dr, Frederick Hayes-Roth
Teknowledge
525 University Ave.
Palo Alto, CA 94301

1 Dr. Joan I. Heller
Graduate Group in Science and

Mathematics Education
e/o School of Education
University of California
Berkeley, CA 94720

Page

Private Sector

1 Dr. James R. Hoffman
Department of Psychology
University of Delaware
Newark, DE 19711

1 Dr. Earl Hunt
Dept. of Psychology
University of Washington
Seattle. WA 98105

1 Dr. Marcel Just
Department of Psychology
Carnegie-Mellon University
Pittsburgh, PA 15213

1 Dr. David Kieras
Department of Psychology
University of Arizona
Tuscon, AZ 85721

1 Dr. Walter Kintsch
Department of Psychology
University of Colorado
Boulder, CO 80302

1 Dr. Stephen Kosslyn
1236 William James Hall
33 Kirkland St.
Cambridge, MA 02138

1 Dr. Jill Larkln
Department of Psychology
Carnegie Mellon University
Pittsburgh, PA 15213

1 Dr. Alan Lesgold
Learning R&D Center
University of Pittsburgh
3939 O'Hara Street
Pittsburgh, PA 15260

1 Dr. Jim Levin
University of California
at San Diego
Laboratory fof Comparative
Human Cognition - D003A
La Jolla, CA 92093

1 Dr. Michael Levine
Department of Educational Psychology
210 Education Bldg.
University of Illinois
Champaign, IL 61801

« ii Pf- h 1 hi*
« 2Hiilii

8|S
o c * *
* M g S -
£ . £ 4> C
•Q . £ GO rH O

3

I
11 2 ? - 5:

I

°.s| w |as£!ii PII

SI
J COco

it

r . Ts-

sis 5=!s£ flies * „ - . - * --*« t i l l «iiSS AS

i I ^

55 „ -£c
> g

0

4 r*

5 2 "
5 *» <v

I
g

3

8 S ? O 1:
s.- s i ** i *

•II

5

.3

III |
iff

t*
£ -

Sf||g

5
ca

o
c
—(

I 3 S Sn ;
O m .-4 ,

ll

s

