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Abstract

The objective of this dissertation is to develop analytical tools for the design and evaluation

jedback compensators for dynamic vision-based robot control.

Sensory systems, such as computer vision, can be used to measure relative robot end-effector (

>ol) positions to derive feedback signals for control of end-effector positioning. The role of vision

le feedback transducer affects closed-loop dynamics, and a visual feedback compensator

squired. Vision-based robot control research has focused on vision processing issues (e.g., ima

Itering, structured lighting environments, and image feature interpretation), while control syste

esign has been limited to ad-hoc strategies or linear single degree-of-freedom (DOF) systems. T\

issertation formalizes an analytical approach to dynamic robot visual servo control systems

rganizing and categorizing visual control strategies into position-based structures and image-bas*

:ructures. The image-based structure represents a new approach to visual servo control, which us

nage features (e.g., image areas, and centroids) as feedback control signals, thus eliminating

omplex interpretation step (i.e., interpretation of image features to derive world-space coordinate

his approach also facilitates robot task training by a "teach-by-showing" strategy for specification

le control system reference signal commands. The dissertation includes an in-depth analys

asign, and evaluation of image-based control.

image-based visual §ervo (IBVS) control presents formidable engineering problems I

ampensator design, including coupled and nonlinear dynamics, kinematics, and feedback gair

nknown parameters, and measurement noise and delays. To satisfy these requirements, a moc

Terence adaptive control (MRAC) feedback system and a fixed linear model following control!

.MFC) are designed and evaluated using mainframe simulation models of two and three DC

/stems, incorporating both nonlinear kinematics and dynamics. The MRAC is found to provh

jperior performance to the LMFC for large-signal trajectories of systems with unknown or nonline

fature sensitivity gains. The issue of selecting features for image-based control is addressed !

^fining and evaluating an index of feature coupling. The dissertation focuses on compensat

3signs based on multiple uncoupled single-input single-output (SISO) controllers, for coupl<

/stems, to simplify the design complexity and implementation.



 



 



 



Chapter 1
Introduction

1.1. Overview

The purpose of this chapter is to present an overview of the dissertation. In Section 1.2, the

background and problems of dynamic visual servo control of robots are outlined, and a novel

image-based approach to visual servo control is introduced. Section 1.3 includes a summary

of the dissertation goals and design approach as well as a chapter-by-chapter outline.

Detailed background and literature surveys are included in Chapter 2, in which the problem

areas and design approaches are described in detail.

1.2, Introduction to Visual Servo Control

A conventional robot arm which is programmed to pick up an object from a table must be

"taught" the position and orientation of that object before it can carry out the task. This

process of teaching a robot positions and updating them for each new object or location is a

routine part of current robot system development, and has become a major limitation in the

adaptation of robots to unstructured tasks including many routine industrial applications.

Flexible robotic systems would provide a capability to automatically modify positions and

trajectories to accommodate changes in the task or task environment. Such flexibility is

achievable only through the integration of sensors into robotic systems, and visual sensing, in

particular, would appear to provide fundamental capabilities in the adaptation of robots to

unstructured tasks. This dissertation will analyze and evaluate strategies which integrate

visual sensing with robot movements, and will emphasize the design of such "visual servo

control systems" in order to achieve stable and predictable system dynamics.

Figure 1-1 illustrates a visual servo control application for a robot. An object is placed on the

table in a position which is unknown to the robot. The robot has not been preprogrammed

with knowledge of the object position. In this sense, the task environment is said to be



Figu re 1 - 1 : Robot Acquiring Object Using Computer Vision

"unstructured". A television camera is attached to the robot arm and provides visual sensing

capability. The image acquired by the camera must be processed by a computer vision system

in order to identify the object in the picture. The vision system extracts information from the

image and may infer relationships between the spatial position of the object and camera

position. Such relative position information may be used to guide the robot to acquire the

object from the table-

Figure 1-2 shows a second typical application of visual servo control. In this case, a

stationary camera is used to observe the lead tip of an electronic component which is held by

the robot hand. The exact position of the lead tip relative to the robot hand is unknown due to

the uncertainty in the forming of the component leads. The camera also observes the hole in

the printed circuit board where the lead will be inserted. The vision system is used to resolve

the uncertainty in lead position relative to the hole position. The robot controller then

repositions the robot arm to correctly align the lead with the hole.

Several key issues arise in the design of visual servo control systems such as those

described above. Processing and interpretation of image information to infer object position



PC Board /Ai

Figure 1-2: Robot Assembling PC Boards Using Computer Vision

and orientation are difficult and computationally complex tasks. The resulting estimates may

be uncertain and require computational time delays. The robot controller, in turn, must

compensate for these properties of the vision system as well as those of the robot. The

resulting integrated system should have dynamic properties which are predictable and stable

even in the face of unknown task conditions. In this dissertation, an adaptive controller is

proposed to provide this consistent dynamic system response under unknown conditions.

The interpretation of image information to estimate object position normally requires the

extraction of quantitative image features which are related to a stored object model. The

resulting position estimates may be used to design a "position-based" visual servo control

system. In this dissertation, an alternative strategy is explored. Image features which are

monotonically related to spatial position may be used as a basis for control in place of

position estimates. Such an "image-based" visual servo control strategy may offer

advantages in terms of reduced delay and estimation noise, but require special attention to

control strategies which accommodate position-to-feature relationships. The image-based

visual servo control strategy is formalized for the first time in this dissertation and control

strategies are examined in detail.



Robot Model

.XREF

Reference
Position

Kinematic
Arm

Solution Closed-loop
Joint

01 Control

End-Effect
Position

Robot
Geometry

(No Measuremen
or Feedback)

Figu re 1-3: Basic Robot Positioning Control

In order to understand the relationship between conventional robot position control and

visual servo control, it is useful to examine a robot positioning system in a bit more detail.

Such a system may be described by the block diagram in Figure 1-3. The desired position of

the robot hand or end-effector is specified by the reference position vector X.REF The robot

moves by displacement of individual joint angles described by the vector £ R E P and a model of

the robot geometry, called the kinematic arm solution, must be used to find £REF when X.REF is

specified. An approximate kinematic arm solution is always available for a real robot though

variations between individual robots may result in significant inaccuracies of final arm

positioning.

The desired joint angles described by £REF are expressed as input reference signals to

individual joint angle control systems. Each joint controller uses position feedback to

accurately position the joint motor to the desired angle. The resulting vector of joint angles £

is therefore obtained by independent closed-loop control of the joints with respect to the

desired 0R£r

The position of the robot end-effector when the joints are set at angles £ is determined by

the robot geometry. In general, the robot geometry may be slightly different than the robot

model, and therefore the actual end-effector position X, may differ from the desired position

X.REF. In real systems, there is no way to determine this final positioning error since no

measurement or feedback of final end-effector position is available. In this sense, the control



loop is never closed around the end-effector position itself leading to inherent limitations in

the ability of such a system to compensate for inaccurate modeling of the arm or to derive

positioning error signals relative to unstructured environments.

The addition of visual sensing as a measurement system for relative end-effector position

provides a basis for overcoming some of these limitations. However, the use of computer

vision to infer position and orientation of objects, or interpret general three-dimensional

relationships in a scene, is in general a complex task requiring extensive computing

resources. Techniques which may exploit simptier sensors or minimize processing for image

interpretation offer major advantages for visual servo control implementations.

Figure 1-4 illustrates schematically some approaches to the interpretation of a two-

dimensional image for inference of three-dimensional position and orientation. In the block

diagram, a sensor, such as a TV camera, is used to acquire a two-dimensional array of

brightness values from the three-dimensional scene. This image array may undergo various

types of computer processing to enhance image properties and enable the extraction of both

local and global image features. These features typically include structural components of the

image such as points, lines, and areas, as well as quantitative parameters attached to them. In

reality there is a continuum of possible image features and their available transformations,

and their choice depends on the purpose and requirements of their subsequent use or

interpretation. The relationship between such structural components or image features is

then used to interpret the observed scene. The resulting interpretation provides an estimate of
A

the relative position X. which may be used for visual servo control. Such position estimates

may contain object model inaccuracies as well as feature measurement inaccuracies and

therefore may introduce measurement noise into a visual feedback control system.

Figure 1-5 shows a simple example of a visual servo control structure. This system is called

a "static look and move" structure for visual servo control and is described in more detail in

Chapter 2. The system operation consists of a sequence of independent steps:

LStep 1: The vision system "looks" at the scene, or object, and estimates the
end-effector position X;

2. Step 2: The position estimate is sent to a task computer. The task computer
computes the difference, AX., between where the end-effector should be, X.REF,
and the current position estimate. The task computer then issues a command to
the robot positioning system to "move" by the incremental distance AX,; and

3. Step 3: The robot moves to the new position. Step 1 is not repeated until the robot
completes the motion specified by the "move" command.
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Figure 1-5: Static "Look and Move" Control

The sequence of operations is repeated until a specified accuracy is achieved, that is, AX. is

reduced to some small quantity. The number of iterations will depend upon the particular task.

The "static look and move" structure demonstrates the concept of interactive sensing for

robot positioning, but is not a dynamic control system since each step is executed

independently and in sequence.

X

r
Visual

Feedback
Controller

A

X

Computer
Vision

Robot

Figure 1 -6: Dynamic Visual Servo Control

If the visual feedback system is structured so that the three steps outlined above are
A

executed in parallel (i.e., positions estimates, X, and position errors, AX., are updated as fast



as they are measured, and position corrections are commanded to the robot while it is

moving), then dynamic visual servo control systems such as that illustrated in Figure 1-6 can

be synthesized. The role of computer vision as the feedback transducer now affects the

over-all, or closed-loop, system dynamics, and a visual feedback controller is required for

stability and acceptable transient response. While dynamic control has the potential to

achieve faster responses than "static" systems, dynamic visual control presents a variety of

difficult design problems which are not currently addressed in the literature. This dissertation

focuses on two of these issues: the use of image features as feedback parameters in "image-

based" visual servo control, and the implementation of adaptive control strategies for visual

servo control.

In image-based visual servo (IBVS) control , the image features, as described in Figure 1-4,

are used to control robot motion directly without inferring position in the spatial coordinate

frame. This approach relies on the systematic variation of image features with relative object

position. Such a relationship is illustrated in Figure 1-7. In this case, the task is specified by

portraying the current camera image and the desired camera image. The image features

corresponding to an image trajectory as the camera moves may be plotted as shown in the

figure. Monotonic, although nonlinear, feature-to-position realtions are obtained in this case

using area, relative area, and center-of-gravity as features.

In an IBVS system, the reference and feedback signals are defined in terms of these image

feature values which correspond to current and desired robot positions. The feature error

may be derived at every measurement time and used to drive the robot in a direction which

decreases the error. The subsystem which converts the feature error to a robot control signal

comprises the heart of the IBVS controller. This dissertation will address the analysis and

design of such controllers for IBVS systems.

The IBVS approach to visual servo control presents a number of issues which require

careful formulation and analysis. Selection of features is closely tied to the problem of image

interpretation since features which are closely related to object position will be useful for both

interpretation and servo control. Criteria for feature selection are developed in this

dissertation based on feature sensitivity and feature coupling measures. The feature

sensitivity (or slope of the feature-to-position curve) appears in the control structure as a

small-signal gain term. The feature sensitivities are typically unknown a'priori and change

nonlinearly with robot movements. These properties of the feature sensitivity lead to our use

of adaptive control strategies in this study.
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Since an IBVS system controls image feature signals rather than position signals, it is

difficult to design a system with precisely predictable position trajectories. The relationship

between desired feature trajectory and resulting position trajectory is strongly dependent on

the choice of features. An important result of the simulation studies carried out in this

dissertation is the demonstration that position trajectories are typically well-behaved for

smooth monotonic feature sensitivity relations.

Flexible robotic systems will most likely incorporate different modes of control for different

tasks or subtasks. Visual servo control is one such mode of control which may be useful in

sensor-based systems. Position-based and image-based visual servo controls, in turn,

represent alternative but complementary strategies within this framework. As pointed out

earlier, there is a continuum of features which may be derived by measurement and

transformation from an image, and any combination of these may be useful as control

parameters. In this sense, spatial position estimates are one set of transformed image

features. They are particularly useful when available and reliable since an approximate model

of robot geometry is typically known. The use of alternative features in the IBVS approach

may have advantages in terms of speed and reliability when model-based information is not

available.

In more general terms, IBVS represents a case study of robot control in unstructured

environments where model-based information is either unavailable or unreliable. In this

sense, the adaptive control strategy may be viewed as a "learning mode" in which interactive

sensing of the environment defines an updated model of the world and provides a basis for

consistent control strategies. A mobile robot, for example, consistently must predict and

verify its motion using unreliable models of the world and robot itself. The identification phase

of adaptive control provides a mechanism to test and update dynamic models, and the image-

based approach can be used inversely to identify and confirm image features based on

compatibility of predicted and observed dynamic changes.

Another example of adaptive robot control using sensors arises in relation to force and

tactile sensing. Again, a consistent model relating robot control commands to desired force

signals may exist, and performance may depend on identification of transformation matrices

and on-line synthesis of an appropriate controller. Manipulation of structures with nonlinear

compliant elements raises exactly these questions.

Visual servo control is a fundamental component of sensor-based robotic systems, and the



analysis and design of systems using image-based control demonstrates the feasibility of a

new approach which may provide improved performance as one mode of an integrated

system. Analysis of the IBVS problem and incorporation of adaptive control as a design

solution have led us to derive principles with much broader applicability than to visual servo

control. An increasing number of problems require multiple sensory modalities for robot

control in unstructured environments, and adaptive modes of interactive sensing will become

increasingly important. The research reported in this dissertation provides a basis for

exploration of many such adaptive sensor-based strategies.

1.3. Outline of Dissertation

This section presents a brief summary of the goals and design approach of this dissertation

as well as a chapter-by-chapter outline of the technical content. A table of acronyms used is

included as Table 1-1 for reference.

1.3.1. Dissertation Goals

The goals of the dissertation are to address the problems of dynamic visual servo control of

robots, and provide insight into visual servo control by:

1. Organizing and categorizing visual servo control systems into well-defined
classical feedback control structures. Such an organization facilitates the
analysis and design of a servo controller, by showing the role of computer vision
as the feedback transducer, and by accounting for the static and dynamic
properties of the robot and measurement systems, which must be compensated.
The categorization can also serve as a framework for comparative evaluation of
different control approaches.

2. Analyzing, designing, and evaluating the IBVS approach to visual servo control.
The objectives are to show that IBVS can produce stable systems, with good
transient responses, and suitable path performance; and to provide analytic tools
to design real systems. In the dissertation, IBVS systems are evaluated using
computer simulation models.

In the next section, a controller design approach for IBVS control is proposed.
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1.3.2. Design Approach

Feedback controllers can be categorized as being either fixed or adaptive. It is a formidable

engineering task to design effective fixed feedback controllers to compensate for nonlinear

and unknown systems. The gains of an adaptive controller are adjustable and are

dynamically changed during control from on-line parameter identification of the unknown

system. The model reference adaptive control (MRAC) approach has been extensively

studied for the control of unknown linear systems, and empirically evaluated for dynamic

nonlinear systems. Based on these studies, MRAC appears to be well suited for IBVS control,

and is the design approach developed in the dissertation. An enhanced MRAC (with series-

parallel reference model and control penalty) is selected for IBVS control to suppress noise,

and be less sensitive to control signal saturation. In the dissertation, the author modifies the

MRAC to account for measurement delay, and identifies the requirement of a control penalty

for use with nonlinear IBVS systems. The dissertation also includes a comparative evaluation

of fixed versus adaptive control. The fixed controllers are synthesized by fixing the adjustable

gains of the adaptive controller (i.e., linear rnodel following control (LMFC)).

Feedback control of a multi-input multi-output (MIMO) system (with m inputs and m outputs)

can be based on either m independent single-Input single-output (SISO) controllers, or on a

single MIMO controller design. MIMO control, of coupled systems, seems to have an

inherently greater potential to achieve the desired control system performance criteria. SISO

controllers are simplier to implement, since they are computationally less complex, and can

be modularized. A modular system can easily be extended to increasing DOF, and distributed

processing. In the dissertation, the author has selected to investigate an SISO approach,

since it would be easier to implement (in future research) with current laboratory and factory

computing environments. With increasingly powerful and less expensive processors, an

MIMO approach may be more suitable for future research investigations.

1.3.3. Outline of Dissertation

In Chapter 2, visual servo control is discussed in detail. The chapter begins by reviewing

robot kinematics, dynamics, and control. The formal categorization and organization of

previously implemented and proposed visual servoing strategies, into classical feedback

control structures, is then presented. The control requirements for IBVS are described, and

the MRAC approach is proposed to meet these requirements.
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In Chapter 3, the enhanced SISO MRAC algorithm is reviewed. The algorithm is modified for

systems with measurement delay and coupling, the chapter concludes with guidelines for

MRAC parameter selection.

The purpose of Chapter 4 is to specify the visual servoing tasks configurations (including 1,

2, and 3 DOF systems) which are evaluated, in simulations, using fixed and adaptive IBVS

control. Mathematical models, required for the computer simulations and control evaluations,

are developed, and incorporate robot kinematics and dynamics, camera picture taking, and

feature transformations.

Chapters 5, 6 and 7 include the evaluation of LMFC and MRAC control of progressively

more complex systems. The complexity relates to

• DOF: 1, 2, and 3 DOF (in Chapters 5, 6, and 7, respectively);

• Dynamics: linear uncoupled vs. nonlinear coupled;

• Kinematics: linear uncoupled vs. nonlinear coupled; and

• Features: minimal features (i.e., the number of features available for control
equals the number of DOF to control) vs. excessive features (i.e., feature
selection required when there are more features available than there are DOF to
control).

The evaluation includes a sensitivity analysis of the feature transformation coupling;

comparative study of fixed vs. adaptive control; isolation of problem areas associated with

SISO control of coupled systems; evaluation of a path constraint strategy; and, evaluation of a

feature selection strategy to discriminate among candidate features.

In Chapter 8, the results and contributions of the dissertation are summarized, and

directions for future research are suggested. Preliminary investigations of MiMO control,

issues of physical implementations, and simulated control of a 5 DOF IBVS system, are

described.

The principal contributions of the dissertation are:

• Formalization of dynamic visual servo control of robots.

• Introduction of a novel "teach-by-showing" image-based control approach.

• In-depth analysis, design, and evaluation of fixed and adaptive control of IBVS
systems.



• Extension of enhanced SP MRAC to control of systems with delay and nonlinear
gains.

• Demonstration of enhanced SP MRAC for direct joint-level control of a simulated
articulated robot arm.

• Identification of the applications and limitations of SISO adaptive control of
coupled systems.



DOF degree-of freedom
FP full-earallel
IBVS image-based yisual-servoing
LMFC linear model following control
MIMO multiple-|nput rnultiple-output
MRAC model reference adaptive control
OFV out-of-field of view
SISO single-input single-output
SP series-fiarallel
PBVS fiosition-feased yisual-servoing

Table 1 - 1 : Acronym Table



 



Chapter 2
Visual Servo Control

2.1. Overview

The objective of this chapter is to formalize an analysis and design approach for dynamic

robotic control using computer vision for sensory feedback information. Controller design will

focus on an adaptive approach to compensate for nonlinear robot dynamics, and nonlinear

and unknown gains introduced by the sensory feedback.

This chapter is organized as follows. Control system analysis and design requires kinematic

and dynamic models of the robot under control. In Section 2.2, manipulator kinematics and

dynamics are reviewed. Detailed model developments for specific cases are presented in

Chapter 4. In Section 2.3, a review of control is presented, describing standard non-sensor

based control at the joint and world levels when feedback measurements are limited to joint

level space. The problem of controlling highly coupled, nonlinear, and possibly unknown

dynamic systems is described. Control law approaches for these systems, including model

reference adative control (MRAC), are discussed since similar problems arise in sensory

based systems.

The remainder of the chapter summarizes the contributions of the dissertation. In Section

2.4, previously implemented and proposed visual servoing strategies are formally organized

and categorized into classicial feedback control structures. Such organization has not

previously appeared in the literature. While the scope of the dissertation is limited to a

detailed design and evaluation for one of these structures, this formalization will provide a

framework for future investigations. The control structures are based on feedback

measurements which are extended to include world coordinate, measurements. Previously

implemented structures derive control laws based on relative world space position

information. A novel structure is proposed, which uses image features for feedback. The

image-based approach has potential advantages, including being able to teach a task by
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visually "showing" the robot what to do. Design of the image-based visual feedback

controller requires compensation of robot dynamics and kinematics, and of the feedback

properties including delay, coupling, nonlinearity, noise and unknown parameters. In Section

2.5, an adaptive control law approach is proposed to meet these requirements. The

remainder of the dissertation includes an analysis, design, and evaluation, in simulations, of

image-based visual servoing.

2.2. Robot Kinematics and Dynamics

A robot consists of a sequence of links connected in series or parallel by revolute (i.e.,

rotational) or prismatic (i.e., transiational) joints [Lee 82a]. Each joint is independently

actuated by electrical, hydraulic, or pneumatic devices resulting in relative motion of the links.

The first link is attached to a reference frame, which can be either fixed or mobile, while the

end of the final link is equipped with an end-effector (e.g. mechanical hand or tool) to

manipulate objects or perform assembly tasks. Each joint-link combination constitutes one

degree-of-freedom (DOF). For general purpose tasks, six degrees-of-freedom are required;

three for positioning and three for orienting. Fewer degrees-of-freedom may be used to

accomplish specific tasks.

A block diagram of an N DOF robot is shown in Figure 2-1.

F(t)
Manipulator

Dynamics

q ( t )
\ Geometry-

Kinemati cs

X ( t )

Figure 2-1 : Robot Block Diagram

The control vector u(t)= {u1(t),...,un(t)}T represents the actuating or control signals. In

response to u(t), the actuators develop forces or torques, F(t), which drive the manipulator

links. The resultant joint positions, n(t), are called the generalized coordinates [Paul 81]. Each

joint position, q.(t), is referenced to the coordinate system of the previous link in the chain.

The position and orientation (or pose) of the end-effector, >L(t)== {x i(t)...X6(t)}T, is

referenced with respect to a world coordinate frame.



2.2.1. Kinematics

Robot kinematics deals with the static modeling of the spatial relationships of the links with

respect to a world reference frame or coordinate system. Robot kinematics thus relates joint

variable space, g, to world space X.. World space can be defined in many possible coordinate

systems including Cartesian, spherical, and cylindrical. While typical robotic tasks are defined

in Cartesian space, particular robot geometries may lead to more natural definitions in other

coordinate frames.

Kinematic modeling consists of two problems:

1. The direct kinematic problem: given a, find X, and

2. The inverse kinematic problem, or "arm-solution": given X., find fl.

To solve these problems, kinematic modeling and analysis have been defined in terms of

homogeneous transformation matrices [Paul 81]. A brief description of homogeneous

transformations, for developing robot and visual servo control models, is presented here.

Homogeneous transformation matrices, which define postions and orientation of coordinate

systems, have the following important property. If matrix transformation T | /k describes the i th

coordinate frame relative to the kth frame and Ty | describes the j t h frame with respect to the j t h

frame, then

Tj/k~ Tj/i i/k

and consequently,

T - T "1 T
i/k~ j/i j'/k

For robotic manipulators, a Cartesian coordinate system is established for each link

according to the systematic convention proposed by Denavit and Hartenberg [Denavit 55].

The homogeneous transformation matricies, or A matricies, describe the relative translation

and rotation between successive link coordinate frames. Thus, A1 describes the pose of the

first link relative to the reference base, and A. describes the pose of the ith link with respect to

the (i-1)th link. For a six degree-of-freedom manipulator,
T6=A1A2A3A4A5A6 (2.1)

where T describes the pose of the final link relative to the world reference frame. The direct

kinematic problem is then to solve for & according to (2.1). The inverse "arm-solution" is

more complex. Methods for finding ci given T6 are presented in [Paul 81].

And end-effector (or tool) can be fixed and referenced to the final link according to the

transformation matrix Ttoo|. When X.t00, is the tool pose relative to the reference frame, then



6 tool = tool/world l*tooH

where H[] maps a 6 DOF vector into the equivalent (4x4) homogeneous matrix transformation.

Thus, the T6 matrix, which must be evaluated by the "arm-solution", becomes

T = T *1 T (2 2)
6 tool tool/world K^'^}

In practice, the "arm-solution" produces only estimates of the joint positions, g, which are

required to produce a desired T6. The following error sources can lead to inaccuracies:

• Inaccuracies in the geometric modeling of link or tool dimensions, or tool
mounting dimensions;

• Unmodeled link compliance;

• Non-ideal joint coupling between links such as gearing backlash; and

• Computer quantization and round-off in the "arm-solution" evaluation.

While these error sources can be reduced by careful design and analysis, they can deteriorate

task performance as the required accuracy increases.

2.2.2. Rigid Body Dynamics

Dynamic modeling of the robot arm is required for designing the control algorithm to

achieve a desired system performance. Dynamic equations model the motion of the robot

links in generalized coordinate space. This motion can then be related to world space by the

kinematic equations. Several approaches are available for formulation of the arm

dynamics [Hoilerbach 80]. The Lagrangian method [Paul 81,Uicker 67]s which is reviewed

below and derived for a specific case in Appendix B, has the advantages that it is a systematic

approach (utilizing the A matrices), and the equations have easily interpreted physical

meaning which have significance when applied to control law design (Section 2.3).

The Lagrangian formulation for rigid body kinematic linkeages can be written as

i = F(t) (2.3)

where D(g) is the (n x n) inertial matrix, C(g,g) is the (n x 1) centrifugal and Coriolis vector,

G(g) is the gravitaicnal vector, and F(t) are the joint forces or torques, Equation (2.3) signifies

that the robot dynamics are characterized by a system of of n second order, coupled, and

nonlinear differential equations whose parameters are dependent on the robot's

instantaneous configuration (generalized coordinate positions and velocities). The model



does not include frictional components, which may be significant for some robot designs.

Viscous friction can often be modeled by additional linear terms of the form Ff. . = Kf. q.

It is more difficult to derive simple models for Coulomb frictions. Whether or not they are

included in the dynamic model, the control engineer must be aware of their effects.

Independent actuators develop the required force or torque to cause link motion. While the

actuator can often be modeled by a linear system when operating in nominal regions, the

control engineer must be aware of the nonlinearities and time-varying phenomena in the

device. For example, DC motors have torque offset nonlinearities when operating in low

torque regions. Power amplifiers exhibit current limiting saturation noniinearities, and the

gain drifts with time and temperature. While the control law design is based on the linear

actuator model, the control engineer must choose a design which can still perform adequately

in nonlinear regions and be relatively insensitive to parameter variations.

2.3. Control

Robot tasks (e.g., put the peg in the hole) must ultimately be defined in terms of a set of

reference or command signal inputs to a control system. The control problem is to design a

control law, based on dynamic models, so that the system is stable and the output tracks the

reference signal according to a predefined performance specification.

With respect to robot positioning control, two levels of tasks can be identified:

1. Dynamic joint control, and

2. Kinematic (or end-effector positioning), path and trajectory control

While joint control deals directly with the issue of plant dynamics and control law design for

reference signal tracking, kinematic control deals with generation of the reference signal

required for end-effector positioning and motion along a specified path or trajectory.

Depending on the approach to control law design, dynamic and kinematic control can be

coupled or treated as independent problems.

In robotic control applications, the reference signal can be specified in terms of the

generalized coordinate or world coordinate parameters, depending upon the required task.

For example, when a robot is taught a desired position, or trajectory, through the "teach-

mode" operation [Luh 83], joint positions are directly recorded and can be "played-back" as

the desired reference signals. If the task requires that the end-effector move in a straight line
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path to the end-point, then the reference signal must first be specified in Cartesian space.

Without sensor-based control, with which the position of the end-effector can be measured

directly, controller designs are constrained to use feedback measurements limited to the

generalized coordinates (i.e., joint displacements). Thus, reference signals defined in

Cartesian space must be mapped into estimated joint level reference signals by the inverse

kinematic "arm-solution." This approach results in open-loop control of the end-effector.

This section includes a review of control at the joint and world levels when the feedback

measurements are limited to the generalized coordinate space. In Section 2.4, visual servo

control structures are described which extend the measurement space to include world

coordinates.

2.3.1. Joint Level Control

Practical approaches to control law design for robotic manipulators include:

1. Feed-forward open-loop control [Lee 82b, Luh 80, Hollerbach 80, Raibert
78, Albus 75];

2. Linear servo control [Paul 81, Luh 83, Williams 83]; and

3. Adaptive servo control [Chung 82, Dubowsky 79, Horowitz 80, Koivo 80, Koivo
83, LeBorgne81].

These controllers can be applied independently, or in combination, as each has certain

advantages and disadvantages.

A block diagram of a robot under computer control is shown in Figure 2-2. The control

system represents a sampled-data system in which jJ(k)=M(kT), where T is the constant

sampling period. The control signals are applied through digital-to-analog converters (DAC)

which can be modeled by the cascade of an ideal impulse sampler and a zero-order hold with

saturation nonlinearity [Neuman 79a]. Over the interval kT < t < (k + 1)T,

ua(t) -
u,(kT) for lUj(kt)l<Vsat

sat for ui(kT)>Vsat (2.4)
-Vsat for ui(kT)<-Vsat

where Vsat is the maximum DAC output signal. For simplicity, the block diagram in Figure

2-2 shows position feedback. The following discussions do not preclude the use of

tachometers and observers to measure and estimate joint velocity and acceleration.
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Figure 2-2: Robot Control Block Diagram

2.3.1.1 . Feed-Forward Open-Loop Control

In feed-forward open-loop control, the reference signals are specified as a sequence of joint

position, velocity and acceleration values {jaref(k),ciref(k),jaref(k)}. Feed-forward open-loop

controllers use the nonlinear dynamic equations of motion to compute the joint torques or

forces, F(k), to track the reference signals. (In practice the dynamic equations include the

actuator dynamics so that u(k) is computed). Since this method supplies a direct solution to

these equations, it has the advantage of precision tracking of the reference commands. It has,

however, three significant disadvantages. First, this open-loop controller is sensitive to

parameter variations in the actuators, robot, and DAC converters, and to unmeasurable

external torque or force disturbances. Second, this technique is computationally intensive.

The on-line computational complexity can constrain the sampling interval, T, thus limiting the

maximum allowed joint velocities. While the Lagrange-Euter approach is simple and

systematic, it is inefficient for on-line computation and control. More efficient algorithms for

on-line computation are available. These include recursive Newton-Euler formulations [Lee



82b, Luh 80], recursive Lagrangian formulations [Hollerbach 80], and table look-up

methods [Raibert 78, Albus 75]. Finally the computed torques are only as accurate as the

model in (2.3). Uncertainties in the model parameters, including the pavload, and phenomena

which are difficult to model, such as backlash, Coulomb friction, voltage offsets, and link-

compliance, will introduce deviations from the reference signals. The relative mechanical

simplicity of the CMU Direct-Drive Arm is an attempt to reduce such uncertainty [Asada 82].

To compensate for tracking errors due to imprecise models and controller sensitivity to

parameter variation and uncertainty, these controllers can be augmented by conventional

linear feedback controllers.

2.3.1.2. Fixed Linear Servo Control

Linear feedback or servo controllers compute control signals from the servo errors,

including both position errors e(k) and velocity errors. In fixed control, the controller gains

are constant.

In fixed controller design synthesis, it is assumed that the robot dynamics are time-invariant

or can be linearized about a nominal operating point or trajectory. Upon examination of the

dynamic equations (2.3), the robot can be assumed to have linear dynamics if the Coriolis-

centrifugal terms are neglected, and if the interial matrix and gravitational torques are

constant. When the Coriolis-centrifugal torque components are neglected, they can be

viewed as external torque disturbances which must be rejected by the feedback control

compensation. At low operating speeds, the magnitude of these apparent disturbances are

often assumed to be small. However, the relative contribution of these terms may still be

significant during typical movements at low velocities. If the actuators are coupled to the

joints by gear-reducing mechanisms, then the Coriolis-centrifugal forces reflected back to the

actuator are reduced by the gear ratio. In present industrial manipulators, gearing is used to

optimize power transfer from the motor to the link, and minimize the required motor size.

Gravitational forces reflected back to the motor are divided by the gear ratio and reflected link

inertias are reduced by a factor of the gear ratio squared. Thus, apparent variations in the

inertia! and gravitational forces are reduced. Under the assumptions that Coriolis-centrifugal

torques are neglected, and inertial and gravitational changes remain small, the control

engineer designs a fixed controller using methods derived from classical and modern control

engineering. Ideally, the fixed control design is insensitive to small parameter variations and

small external torque disturbance sources. In practice, it is a formedable engineering task to

design a robust fixed controller for such systems.



Feedback controller designs can either be uncoupled or coupled. Coupled, or multi-Input

multi-output (MIMO), control laws derive u.(k) as a linear combination of the entire reference

and feedback vectors. Independent uncoupled, or single-input jingle-output (SISO),

controllers produce u.(k) based only on the i th reference and feedback signals (i.e., e{(k)). For

an n DOF robot, n independent SISO controllers are used. There are no systematic rules for

design of SISO controllers for coupled systems. MIMO control design is more straight-

forward, and can, in theory, achieve a larger degree of dynamic uncoupling than SISO

control. However, SISO controllers facilitate implementation because they are:

1. Computationally less complex than a coupled controller;

2. Modular, and computation can be distributed; and

3. Simpler to tune than a coupled controller.

Commercially available industrial robots use SISO controllers. To the best of the authors

knowledge, most use SISO control which is not augmented by feedforward control, because

of gearing and their lower speed and tracking precision requirements.

A typical linear SISO controller is the Proportional + Summation + Difference (PSD) regulator

derived as
k

^ e.(k) + KD[e.(k).e.(k-1)]

Fixed controller gains are selected using root-locus or frequency response

techniques [Williams 83] (and ultimately manually tuned) to achieve an acceptable trade-off

between transient speed of response and steady-state velocity errors to ramp inputs. The

gain selection process is based be on a nominal robot configuration and neglecting inertial

coupling. It has been suggested that improved performance results if a gain-scheduling

approach is utilized, where the adjustable fixed gains are selected as a function of the robot

configuration [Paul 81 ].

Relative to feedforward control, fixed linear controllers have the advantages of being

simpler to implement in real-time and can be less sensitive to parameter variations and

uncertainty. Fixed controllers cannot achieve adequate dynamic response at higher speeds,

and over a broad range of arm configurations.



2.3.1.3. Adaptive Feedback Control

Recently researchers have sought a controller approach which can compensate for

parameter uncertainty and variation over a wide range, while operating at high joint speeds. In

addition, the controller should be compatible with microprocessor implementation to make it

a feasible solution for common industrial application. To this end, initial research has been

conducted, based on computer simulations, into the application of adaptive control to robotic

manipulators [Chung 82, Dubowsky 79, Horowitz 80, Koivo 80, Koivo 83, LeBorgne 81]. While

adaptive control theory has been in existence for twenty years, high speed digital computing

has now made it a viable option for on-line robotic control applications. Adaptive controllers

have adjustable gains which are automatically tuned, on-line, based on measurement of

system performance and/or characteristics. Modern approaches to adaptive

control [Goodwin 84] can be categorized as either

1. Self-Iuning Regulators (STR) [Astrom 77], or

2. Model Reference Adaptive Control (MRAC) [Landau 79].

Both approaches derive linear models of the manipulator, whose inadequacies are

compensated by permanent parameter adaptation [LeBorgne 81]. While both STR and MRAC

approaches lead to similar algorithms [Shah 80], the MRAC approach provides a simple and

flexible means of specifying closed-loop system performance. STR and MRAC configuration

block diagrams are shown in Figures 2-3 and 2-4. STR's derive a linear controller, whose

gains are a function of identified robot parameters, under the assumption that the robot is

linear and constant, but has unknown parameters. An on-line identifier estimates parameters

of an equivalent input/output (I/O) linear model of the robot based on the I/O information

vectors u(k) and a(k). An equivalent I/O model predicts the output Q(k) from past and present

I/O information independent of the physical model of the robot The estimated parameter

values are then used in the linear controller as though they where the actual parameters. Both

SISO and MIMO equivalent model formulations can be used. Neuman and Stone [Neuman

83] have justified the latter modeling approach by demonstrating that individual joints of a

coupled and nonlinear robot can be modeled by linear time-varying second-order SISO

transfer functions. They show that the transfer function parameters vary smoothly \n the work

space as a function of the joint positions, velocities, and accelerations.

In MRAC control, the reference model output sR(k) specifies a stable and realizable

closed- loop dynamic response of the the output cj(k) to the reference signal 3Ref(k). The

difference between the reference model output and the process is called the full-parallel (FP)

output error:
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The adjustable controller utilizes I/O information to adjust the gains on-line to drive the FP

error to zero, thus forcing the robot output to track the reference signal in accordance with

the performance specified by the model. Within the framework of robot control, two methods

have been applied.[LeBorgne 81]:

1. Identification-error method, and

2. Output-error method



In the identification-error method (which is developed in detail in Chapter 4), an identifier

predicts the robot joint outputs, t(k), based upon parameter estimates of an equivalent linear

I/O model. The identification error
e|D(k) = g(k)-t(k)

drives the adjustment mechanism which updates the estimates of the equivalent parameters.

These estimates are then used to adjust the gains of a linear controller which is driven by the

model output. In the output-error method, the FP error drives an adjustment mechanism

which directly adjusts the controller gains. From a physical implementation point-of-view, the

identification error approach has the advantage that the adjustment mechanism need not be

turned off during control signal saturation [Morris 79].

The adjustment mechanisms of STR or MRAC controllers can be designed from either

parametric optimization or stability viewpoints. Parametric optimization techniques include

recursive least squares (RLS) and gradient (or "steepest-descent") methods. The stability

approaches derive adjustment mechanisms using stability theory to assure that the

identification ..errors are asymptotically stable. Since the adjustment mechanisms are

nonlinear, either Popov's hyperstabilty or Lyapunov's stability criteria have been used. Both

the optimization and stability approaches make the assumption that the system under control

is linear and time-invariant (or slowly time-varying).

For the optimization approach, stability analysis of the over-all closed-loop system is

demonstrated through the theory of stochastic convergence of optimization

mechanisms [Astrom 77], When hyperstabilty or Lyapunov mechanisms are used, stability of

the identification error is related directly to the FP error. Beacuse of the assumptions of

linearity and time-invariance, stability of adaptive controllers applied to nonlinear and time-

varying robot dynamics has not been proven, and it remains an open question as to whether it

can. Control engineers rely on ad-hoc assumptions that fast adaptation speeds and the ability

to model the robot as an equivalent time-varying linear system will lead to stable systems.

STRs and MRACs can be formulated as either SISO or MIMO controllers, depending

whether the robot is modeled as an equivalent SISO or a MIMO system. The adaptive

controllers can be used independently or augmented by feedforward control. When used

independently, minimal a'priori knowledge of the dynamics is required.

STRs applied to multi-DOF manipulators have been reported to control arm simulations over

a wide range of speeds and configurations [Chung 82, Koivo 80, Koivo 83, LeBorgne 81].
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Koivo and Guo [Koivo 83] applied both coupled and uncoupled STRs (using RLS) to control a

6 DOF arm. They observed that the MIMO algorithm required a longer time to converge and,

at least in the simulated trajectories, they showed no improvement in response relative to the

SISO controllers. LeBorgne [LeBorgne 81] applied SISO STRs and output error MRACs

(using a RLS adjustment mechanism) to control of a 3 DOF arm, and found that the STR was

computationally less complex, but that the MRAC showed better overall performance. Chung

and Lee [Chung 82] use feedforward control augmented by an RLS STR. In this approach the

dynamic robot model is linearized about a nominal trajectory to obtain a small-signal

perturbation model. The adaptive controller then identifies a small-signal model and drives the

perturbations to zero.

Successful simulation results of MRAC control have also been reported [Dubowsky

79, Horowitz 80, LeBorgne 81]. Le Borgne [LeBorgne 81] applied SISO identification error

and output error methods (using RLS adjustment mechanisms) and observed that the

identification error approach displayed better overall performance. Neuman and

Morris [Neuman 80, Neuman 79b] performed extensive analysis and evaluation of uncoupled

MRAC applied to linear SISO plants, with emphasis on implementation and computational

complexities. They suggest that these uncoupled algorithms can also be applied to robotic

control [Morris 81]. Enhancements to the basic MRAC algorithm are included to reduce the

effects of controller saturation and measurement noise. Added stability constraints limit the

adjustable controller gains to assure a bounded and stable controller. They conclude that an

enhanced identification-error MRAC, with a hyperstable adjustment mechanism, produce the

best results with respect to convergence speeds, noise supression, recovery from control

signal saturation, estimated parameter accuracy, and propagation delays [Morris 81].

2.3.2. Kinematic Control

Robotic positioning tasks require that the end-effector move between specified points in

space, and along specified paths and trajectories. This kinematic control problem can be

separated from the dynamic control problem if it can be assumed that the joint level

controllers can assure reference signal tracking. Other approaches, including optimal and

adaptive control, combined the kinematic and dynamic control problem. Kahn and

Roth [Kahn 71] address the near-minimum-time optimal control problem for a nominal

trajectory. This and other optimization techniques are still too complex to be practical. More

recently, it as been suggested to extend joint level adaptive controllers to world-level



tracking [Koivo 83, Takegaki 81]. Measurement of the world level positions must still be

predicted by the direct kinematic solution. Takegaki [Takegaki 81] has reported effective

performnace of an output-error type controller in initial simulation studies. In practice, the

kinematic problem is still considered to be independent of robot dynamics.

End-points and paths for the end-effector can be specified in three ways:

1. Teach-mode1 (points defined at joint-level);

2. Pre-defined task (points generally defined in world space); and

3. On-line decisions (information supplied by external sensors, and points defined in
world space).

Points defined in world space must first be mapped into joint space using the "arm-solution".

Control of the world reference signal Kref(k) is depicted in Figure 2-5, where the closed-loop

block represents the joint-level control system depicted in Figure 2-2.
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Figure 2-5: Open-Loop Kinematic Control

If the end-effector, or tool, is referenced to the final link by T*too|, then the arm-sol ution must

evaluate Tg according to

A

The resultant joint level reference signal, fl^tk). is an estimate due to any of the

aforementioned inaccuracies in the "arm-solution." In real systems, there is no way to

determine the final positioning error since no measurement or feedback of final end-effector

position is available. In this sense, the control loop is never closed around the end-effector

postion itself leading to inherent limitations in the ability of such a system to compensate for

The "teach-mode" operation, for programing industrial robots, includes manually guiding the manipulator to
desired locations and recording the joint positions at each point. The stored points can then be used to derive the
reference signals.



inaccurate modeling of the arm or to derive positioning error signals relative to unstructured

environments.

The time-amplitude profile of the reference signal dictates end-effector path motion

between task points. For example, when a well-defined path is required (e.g., to avoid

obstacles), straight-line motion is specified. The points on a straight-line (including

orientations) are mapped into joint level commands via the arm-solution. To compensate for

speed limitations in computing the "arm-solution", linear interpolation of the resultant joint

positions are used to supply intermediate points. When the task requires that the robot

cannot stop between end-points of a path (e.g., welding), trajectory control deals with

specification of smooth transitions between path segments. One approach is spline function

fitting [Paul 81] to the endpoints of adjacent path segments.

2.3.2.1. Incremental Motion Control

Robotic tasks often require the end-effector to move by increments, A-Xtooj> rather than to

absolute positions. If an absolute positioning control system is used, then the "arm-solution"

must evaluate TQ ref according to

where TQ(k) is the estimated present position transformation based on the direct kinematic

solution, and T jnc=H[AX.nc].

A more efficient approach to incremental motion is resolved-rate-motion (RRM)

control [Whitney 72]. In this approach the inverse arm Jacobian is used to find the

incremental joint velocities which are required to achieve motion in the specified directions. If

the direct kinematic solution, K, maps a into X. according to X. = K(ci), where K can be derived

from T~, then the arm Jacobian, J , is defined by
o arm

(2.5)

World increments are then related to joint increments according to

and the joint increments are

These joint increments then drive closed-loop velocity servo mechanisms.

An incremental robot system, using either the direct "arm-solution" or the RPM approach, is
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Figure 2-6: Incremental Robot System

represented by the block in Figure 2-6 for reference in Section 2.4. The system in Figure

2-6 includes internal joint level feedback and kinematic decoupling. Such a system is ideally

linear uncoupled, without discrete time delays; i.e., each DOF can be represented by a

transfer function of the form

X(s)tool-Ref-i S < T S + 1 >

The next section extends dynamic robot control to closed-loop control of world-space

coordinates.

2.4. Visual Servo Control Structures

Research in computerized vision for automation is directed toward fast systems which can

interpret image features for

• Object recognition [Myers 80, Fu 82, Vuylsteke 81];

• Inspection [Jarvis 80} Porter 80]; and

• Measurement of object positions relative to the vision transducer, or relative
positions between objects [Hail 82, Tani 77, Birk 79, Agin 79].

Such capabilities may be combined into more general modes of scene interpretation.

Complete functional systems are not yet available. If such a system were used in conjunction

with a robotic system, then direct world space measurements of relative end-effector

positions could be achieved. For example, the vision transducer can be fixed to the end-

effector and move with the manipulator as it observes an object's pose relative to itself [Agin

79]; or equivalent^/, it can be stationary while observing the relative pose between an end-

effector and object [Ward 79]. Also, the transducer can be stationary while observing the

relative pose between itself, or equivalents the world, and an object being manipulated or the

end-effector itself [Birk 79]. These integrated systems have the potential for improving robot

accuracy, and extend the robot's capability to operate in unstructured environments

containing objects which can be in random poses or possibly moving.



When vision systems are integrated with robots, the measurement space is extended to

include relative the end-effector pose. Positioning control systems, which directly utilize such

measurements, can be synthesized using visual feedback [Sanderson 83a]. The resulting

visual servo system is depicted in Figure 2-7, where Gfre{ and ^represent the reference and

feedback signals.
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Figure 2-7: Robotic Visual Servo Control

The role of computer vision as the measurement process affects the overall system dynamics,

and a visual feedback controller is required. The linearity, noise properties, coupling, and

computational delays of this measurement process become essential considerations for

controller design. Formal analysis and design of feedback controllers for visual servoing, in

terms of well-defined control theory, has not appeared in literature except for a simple

case [Coulon 83]. Visual servo controllers have been designed using ad-hoc strategies [Agin

79]. In this section, the dissertation contributes to the basic understanding of visual servo

control by organizing previously implemented and proposed visual servo control strategies

into clearly defined control structures. It is shown, in Sections 2.4.2 and 2.4.3, that the task

reference signal, ?T f, and feedback signal, 2J can be based on either image feature space or

position space measurements. The robot under control can be either open-loop (i.e, without

joint level feedback • Figure 2-1), or an incremental system (i.e., with internal joint level

feedback, and kinematic decoupling - Figure 2-6). The formalization of visual servo control

structures is based on these feedback signal and robot categorizations. The formalization

clarifies the requirements placed on the visual servo controller, and facilitates the design

process. In Section 2.5, a controller design for image-based structures is proposed. The



formalization also provides a framework for evaluating different visual servo control

structures. It is beyond the scope of this dissertation to make such comparative evauiation.

The characteristics of a general vision system are reviewed in the next section. The

objective of the dissertation does not include presention or proposal of a detailed design for

such a system.

2.4.1 . Computer Vision

A computer based vision system is represented in Figure 2-8.
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Figure 2-8: Computer Based Vision System

Vision transducers typically include vidicons, charge coupled devices (CCD}; photosensitive

diode arrays, and structured fiber optic sensors [Agrawal 83]. The transducer produces a

2-dimensional array, A, of light intensities. The array can be distorted from an ideal image, A,

due to:

• Transducer resolution;

• Transducer nonlinearities such as optical aberrations and out of being focus;

• Background lighting conditions; and

• Electronic noise and drift.

The transduction process can have time-dependent dynamics such as the persistence effects

associated with CCD and vidicon devices. At slower sampling rates these effects can be

neglected [Coulon 83].

The image is preprocessed by filtering operations to enhance image quality. The enhanced

image is then segmented into connected regions. A one-dimensional feature vector, f, or a

relational feature description, <&, which describe segmented regions of the image are then

extracted. Features include areas, angles, center-of-gravity, and intensities. Feature



extractors are typically digital computer algorithms. High-speed optical processors can also

be used for preprocessing, segmentation, and feature extraction [Merkle 83, Stermer 83].

A

Feature space representations must be interpreted (signified by I in Figure 2-8) to
A

recognize both the object and its pose .X,e|(k-nd). Interpretation is based on 3-dimensiona!

models of the object and transduction process, and can include statistical modeling

considerations. Transduction noise and modeling inaccuracies can degrade the estimate.

The interpretation process can be facilitated by operating within structured lighting

environments [Agin 79]. The measurement delay, ndT, which is the total time required to

acquire, process, extract, and interpret the image, can vary over wide ranges depending on

the complexity of the image. High-speed feature extractors (33-100 msec) for simple

structured images have been built or proposed [Bracho 82, Vuylsteke 81] and systems which

can operate on more complex scenes can be envisioned using optical processors [Merkle 83].

Additionally, special purpose optical proximity sensors have been constructed which can

measure positions and orientations of a plane in about 1 msec [Kanade 83].

Visual control structures, based on both image feature space and position space

measurements, will now be described. Control structures can be categorized as either

position-based or image-based. This formalization was first introduced by Sanderson and

Weiss [Sanderson 82]. While individual structures are described as autonomous processes,

the possibility of a complete system implementation which uses combinations and

augmentations of these structures is a viable concept.

2.4.2. Position Based Visual Control Structures

Position-based control structures define task reference signals in world space position

coordinates. The image interpretation step provides feedback by producing position

estimates whose expectations are generally linearly related to actual positions.

2.4.2.1. Static Position Based "Look and Move"

The static position based "look and move" structure (Figure 2-9) is used most often in

present industrial applications [Tani 77, Birk 79, Kashioka 77]. In the "look" stage, the vision

system estimates the object pose. The control computer calculates the error, AX, between a

reference and the measured pose. A "move" by the incremental error command is then

issued to an incremental robot system. In this structure, the incremental robot system only

accepts new commands after it has completed the previous commanded motion. This
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characteristic is typical of commercially available robots where the programmer can only

access higher level control functions. The control operation is sequential and asynchronous,

and the sequence is repeated until AX is within specified tolerance bounds.
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Figure 2-9: Static Position-Based "Look & Move"

When the camera is attached to the robot end-effector (according to the transformation

T ), then .X . becomes the relative position between the camera and object. In this case the
cam' -re!

tool transform is assigned according to:

too! cam

When the camera is stationary, T(oo| can be either the position of the end-effector tool

mounting or the object held by the manipulator.

The static "look and move" structure is not a dynamic closed-loop control system because

each operation is performed sequentially and independently. Thus, the dynamics of each

operation does not affect the overall system. No additional control law, except that used by

the robot, is required. The resulting control system is slow, unable to track moving objects,

and may require many iterations to achieve desired accuracy. Implementations of these

structures have demonstrated the basic concept of interactive sensing.



2.4.2.2. Dynamic Position-Based "Look and Move"

In the static "look and move" structure, the reference signal to the robot can be updated

only after the robot has reached a previously commanded goal. When the robot system is

designed so that command inputs can be synchronously updated, independent of the robot's

position and velocity (i.e., robot can be moving), then the "look and move" structure can be

configured as a dynamic closed-loop sampled data system (Figure 2-10).
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Figure 2-10: Dynamic Position-Based "Look & Move"

The closed-loop visual servo system requires a feedback controller, Cv to compensate for

system dynamics, with the added complexity presented by feedback delays and measurement

noise. For applications requiring tracking of moving objects, prediction algorithms have been

studied [Hunt 82] to improve system steady-state performance. When the vision system is

viewed as a single process, then nd = 1 (where nd is the number of discrete feedback delays)

and the sampling period is chosen to be the net time required by the individual vision

processes. Alternatively, shorter intervals can be chosen by considering the vision system as

a pipe-line of the individual processes. In this case, nd>1 and the time interval is determined

by the maximum individual vision component processing time. From a control viewpoint,

systems become more difficult to control with added delays, even if the sampling period is

reduced. Sampling periods of 100 ms have been suggested as being sufficient for visual servo

control; shorter sampling periods would be required for high-speed control.

Agin [Agin 79] was the first to implement dynamic visual control of a multi-DOF manipulator.



The camera was mounted to the end-effector and interpretation was facilitated by the use of

structured light-striping techniques. Simple proportional controllers, sampling at between

150 to 500 msec, were manually tuned to achieve the desired response. Control system

analysis did not accompany these experimnts. Geschke [Geschke 82], who has implemented

similar multi-DOF visual servoing experiments, at 100 ms sampling periods, noted that the

independent closed-loop joint-level robot servo controllers required high damping at these

sampling periods, supposedly to avoid exciting structural resonances. Other examples of

dynamic control are reported in [Albus 81] and [Ward 79]. To the best of the author's

knowledge, the only reported research which uses control system analysis to design a

dynamic visual servoing system is presented by Coulon [Coulon 83]. In this research, a fixed

proportional + summation controller is designed for single-DOF linear system.

2.4.2.3. Position Based Visual Servoing

Since visual sensors provide direct world space information, and thus world space servo

errors, it should be possible to control the open-loop robot dynamics and kinematics directly

and eliminate the "arm-solution" or Jacobian required by the "move" commands to a closed-

loop robot positioning system. This configuration is termed Position-Based Visual Servoing

(Figure 2-11).
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Figure 2-11: Position-Based Visual Servoing

This configuration may have potential advantages including:

1. Elimination of added computational delays, required by the "arm-solution"
evaluation period, which detract from relative stability;



3. Increased efficiency, since the "arm-solution" does not have to be evaluated, and
independent joint controllers are not required. However, the sampling period
dictated by the vision system may be too long to control the robot, depending
upon the robot's dynamic and mechanical properties. In these cases,
independent joint-level velocity feedback controllers, which operate at higher
sampling rates, can be used. These cases are discussed in Chapters 3 and 8.

In addition to measurement delays and noise, the visual feedback controller, C2, must

compensate for possibly nonlinear and coupled robot dynamics and kinematics.

Implementions or simulations of this structure have not appeared in literature, in

relationship to visual servo control. While Koivo [Koivo 81] and Takegaki [Takegaki 81] did

not mention visual servoing , they did propose adaptive feedback controllers for combined

dynamic and kinematic control. They assumed that the world coordinate position of the end-

effector, as predicted by a direct kinematic solution, could be used as the feedback signals,

but they did not consider measurement delays. Takegaki reported "effective" control with this

approach in limited simulations of an output-error type controller using a Lyapunov

adjustment mechanism.

2.4.3. Imaged Based Visual Control Structures

In the position-based approaches, the image interpretation step can be complex and affect

control system design and performance by

1. Adding additional time delays, and

2. Introducing measurement noise resulting from inaccuracies of the object and
transduction modeling.

As discussed in the remainder of this chapter, image features are often continuous functions

of object position, and for fixed ranges of control, could provide sufficient information for

robot control without carrying out the interpretation process. Thus, the continuity of feature

representations of time-varying imagery can lead to potential simplifications of the control

strategy including task training by a "teach-by-showing" operation.



2.4.3.1. Dynamic Image-Based "Look and Move"

The feedback path of the dynamic position-based "look and move" structure (i.e, the vision

measurement system in Figure 2-8) can be decomposed into two nonlinear transformations.

The transduction and feature extraction functions, or world-to-feature space transformation,

can be viewed as the inverse of an ideal interpretation, in the absence of noise, according to:

f-i-1oj
where i is "ideal" in the sense of being based on exact models. The feedback path is then

mapped to world space by the interpretation transformation:

If the ideal interpretation has a unique inverse mapping, over the control region of interest,

such that )( ! are single-valued functions of f, then this suggests that the system can be

controlled, to unique end-points, using f(k) directly as the feedback and reference signals,

thus eliminating the interpretation step. This condition must also be satisfied for achieving

unique solutions with the position-based approaches. The uniqueness condition is satisfied,

for the control region of interest, when [Wylie 61J:

1. The first partial derivatives of f are continuous, and

2. If the Jacobian of the ideal inverse interpretation is nonsingular; i.e.,

dArel

where J f e a t is defined as the feature sensitivity matrix.

In practice, J f e a t could be measured on-line to test the condition in (2.6). This condition must

be true for both position and image-based approaches. Since the dissertation does not

directly address the imaging problem, features which are unique will be chosen. Further,

since the determinant is only defined for square matrices, then the permitted number of

degrees-of-freedom must equal the number of measured features.

The dynamic image-based "look and move" structure, shown in Figure 2-12, which uses

feature feedback,-was first proposed by Sanderson and Weiss [Sanderson 82]. In addition to

compensating for robot dynamics, measurement noise, and feedback delays, the feedback

controller, Co must also compensate for the nonlinear and coupled feature transformations.
o

Reference signals, !ref(k), must now be defined in feature-space. The task could first be

defined in world space, )HrQ^reV and then mapped into fref according to an idealized inverse

interpretation. Equivalents, if Jfeat(X.rei) is known, or can be measured, and the initial
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Figure 2-12: Dynamic Image-Based "Look & Move"

displacement X.° is known, then the feature signal can be derived by evaluating the feature

sensitivity matrix along X , + 8X , f according to

Both approaches still require an interpretation step, but may have potential advantages by

eliminating inaccuracies of the actual interpretation, in the feedback path, and by requiring

smaller sampling periods as a result of the elimination of the feedback interpretation delay.

Alternatively the reference signal could be defined directly in image feature space using a

"teach-by showing" strategy whereby an image is transduced in the desired reference

position and the corresponding extracted features represent the reference features. When the

task is repetitive and the desired path or trajectory remains constant, the reference feature

signals can be defined a'priori as a "moving" or time-varying image along the path. If the

object is allowed to be in random poses, then only the final feature values can be defined

a'priori. While the path cannot be directly specified, absolute positioning can still be

achieved. The most useful applications of image-based systems might be for tasks requiring

fast and accurate corrective motions, where exact path is not critical (e.g., for precision

assembly including random part aquisition and parts alignment).

While path cannot be directly controlled with the IBVS "teach-by-showing" strategy,

interesting relationships between predicted pathes (i.e., the path that would result if the

control system achieved perfect tracking of the feature reference signals) and feature control

are:
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1.lf the coupled feature sensitivity matrix J f is constant, and each feature is
specified to have identical time responses, the predicted path is straight-line
(Section 2.5.2.2).

2. For the 2 DOF system evaluated in Chapter 6, for which J f is coupled and varys
dramatically over the trajectories, the predicted pathes are either straight-line, or
approach straight-lines (Section 6.2.1,1).

3. For the 3 DOF system evaluated in Chapter 7, for which J f e a t is also coupled and
varys, the observed pathes are smooth (i.e., not tortuous), and approach straight-
lines as features are selected which reduce system coupling. (The index of
system coupling is described in Section 2.5.2.)

Such results are encouraging for future investigation of more general systems, and suggest

that features may be found which can be used to achieve some degree of path control. As an

alternative to path control, a path constraint strategy is proposed in Section 2.5, and

evaluated in Chapters 6 and 7.

The "teach-by-showing" approach presents additional requirements for controller design.

This approach assumes that the inverse transformation I*1 is unknown. Therefore, the

controller C3 must be based on a design approach which not only compensates for the

nonlinear and coupled properties of I"1, but also for unknown values. These control

requirements are discussed in detail in Section 2.5, along with the issue of selection process.

That is, how should a subset of n features be selected for control from a set of m extracted

image features f. (i = 1 ....n), where m>n?

In any of the visual based control structures, some a'priori knowledge of object geometry

may be required for feature identification and a level of interpretation may be required for

object recognition. In many industrial vision applications, identification and recognition is

based on the "teach-by-showingM principle using statistical feature information generated by

image training sets. Other approaches may only require qualitative and relational information

for identification and recognition. Thus*, detailed a'priori modeling would not be required at

this level of vision processing.

2.4.3.2. Image-Based Visual Servoing

An image-based version of the position-based visual servoing structure can also be

formulated by controlling the open-loop robot directly and eliminating the

"arm-solution" [Sanderson 83a]. This approach is called image-based visual servoing (IBVS)

(Figure 2-13). The physical variable under control, fl(k), can be related to f(k) by
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Figure 2-13: Image-Based Visual Servoing

1 - I"1 ( X r e l } - I"1 (Xo b i -K(f l ) } =F(g,Xobj).

The feedback path is characterized by an overall small-signal sensitivity matrix J given by
J=HeatJarm (2.7)

where
8F

The IBVS approach is similar to the dynamic "look and move" structure except that the

design of the feedback controller, C4, is further complicated by having to compensate for any

nonlinear and coupled robot dynamics and kinematics. In the "look and move" structures, the

robot system is ideally linear and uncoupled, thus simplifying control system design.

The image-based structures are representative of sensor based control structures which

include:

1. A measurement system which generates sensory information that is difficult to
interpret;

2. A sensory feedback path which can be nonlinear, coupled, noisy, contain
unknown parameters, and include delays; and

3. A robot under control which can be dynamically and kinematically nonlinear and
coupled.

A control approach for image-based systems may then have potential for application to other
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sensory modalities (e.g., touch and acoustic). Because of this potential and the novelty of this

approach, the remainder of the dissertation is concerned with a detailed analysis, design and

evaluation of "teach-by-showing" image-based systems. The "teach-by showing" approach

is analogous to the basic robot control "teach-mode" operation. In the author's experience,

the "teach-mode" strategy for robot task definition has greatly facilitated the incorporation of

robots into the industrial environment by providing a simple means for task training. Similarly,

the "teach-by showing" approach has the potential of simplifying applications of visual

servoing.

2.5. Control Of Image-Based Systems

A control law approach for image-based control structures is presented in this section.

Several characteristics of these structures, which are noted in Section 2.4, will present

particular challenges for design of a suitable controller. These include:

1. Nonlinearities: dynamics (including actuator), kinematics, and feature-space
transformations;

2. Unknown parameters: limited a'priori knowledge (e.g., in "teach-by-showing"),
parameter variation and uncertainty;

3. Measurement delay;

4. Measurement noise;

5. Feature selection and assignment (the feature assignment process addresses
issues in uncoupled control of coupled plants);

6. Path control: when tasks are specified directly in feature space; and

7. Tasks requiring tracking of moving objects.

The final aspect implies that, in designing the control system, a distinction is made between

visual servoing applications where the object and camera are stationary versus moving in the

steady-state. An example is the case of an object moving with velocity V which is tracked a by

a system which does not include a prediction algorithm and has a unit feedback delay of T

seconds. If the steady-state error between the reference and delayed feedback signals can

be driven to zero, then an actual tracking error of VT remains. Steady-state servo errors can

be made small with a sufficiently large bandwidth controller, but controller design trade-offs

are usually made between transient response and steady-state errors. As T increases (due to

vision processing constraints), the controller bandwidth is forced to be smaller. The steady-



state servo error and actual tracking error increase, and a prediction algorithm is required to

reduce tracking errors. For tasks involving stationary objects, a controller can always be

designed to reduce steady-state position errors to zero, irrespective of controller bandwidth

or the use of prediction algorithms. For these applications, transient performance becomes

the important design goal. As an initial step in understanding image-based control, prediction

algorithms are not included in this dissertation and only tasks involving stationary steady-

states are considered. Step input reference signals, defined by the "teach-by-showing"

strategy, provide a suitable measure of system performance.

In this section, a control law approach is introduced, and the controller is designed in

Chapter 3. The feature selection and assignment issues are addressed by defining a measure

of feature transformation coupling. And, finally, methods for path constraint are suggested.

2.5.1. Control Approach

To design a controller, it is useful to consider small-signal models of the system. Small-

signal models (about a nominal operating point or trajectory) of "look and move" and IBVS

structures are represented in Figures 2-14 and 2-15, respectively.
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Figure 2-14: Small-Signal Image-Based "Look and Move"

In these figures, J f ea t is defined in (2.6), and JArm in (2.5). In Figure 2-15, Jnrpn is assigned a

negative sign. Since

then
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Figure 2-15: Small-Signal Image-Based Visual Servoing

for a stationary object or camera. The system output is the undelayed feature, while the

feedback path is modeled by discrete unit delays. The incremental robot system is WCL(z*1)

(Section 2.3.2.1). Linearized open-loop robot dynamics [Chung 82], or equivalent linear I/O

modeles [Stone 84], are represented by W (z"1). In addition to the control requirements of the

robot dynamics, described in Sections 2.3 and 2.4, the design of the controller, C3 or C4, also

depends on the " J " sensitivity matricies, feedback delays, and measurement noise. In

Chapters 5, 6, and 7, the sensitivity matricies are shown to be nonlinear and coupled

functions of a and X.rej; thus, J varies as <a varies, and feature-space transformations are

manifested by time-varying open-loop gains. Predicted values of J can deviate from actual

values due to inaccuracies in the modeling of the three dimensional object and transduction

process, and from drift and variation in the transducer parameters. At the extreme, the values

may be completely unknown a'priori when minimal knowledge of the inverse interpretation

transformations I'1 are available, such as arises when task programing is limited to the

"teach-by-showing" strategy.

Fixed feedback controller designs have limitations in the control of such nonlinear and

unknown systems. Even if the nonlinearities are known, a fixed controller design for these

systems is a formidable engineering problem. In contrast, the adaptive approach to controller

design appears to be applicable for these requirements. The adaptive approach has already

been suggested and studied in application to nonlinear dynamic and kinematic control of

possibly unknown plants (Section 2.3.1.3). It would appear that this approach is also capable



of adapting to nonlinear and unknown feature gains (J feat or J). The IBVS controller design

developed in the dissertation will therefore emphasize the adaptive approach. Performance

limitations and application of fixed controllers are also evaluated by fixing the adjustable

gains of the adaptive controller (derived from initial adaptive learning trials) in the simulation

experiments.

Adaptive and fixed controllers can be coupled or uncoupled. Coupled controllers have an

inherently greater potential for being able to uncouple a coupled system. Uncoupling of a

feature based input/output system, however, does not, in general, uncouple the world space

variables. Coupled controllers have several potential disadvantages, including:

I.They are computationally complex relative to uncoupled controllers. For
example, it is shown in Chapter 8, that the computational copmplexity of an m-
input, m-output n lh order MIMO MRAC controller is order m3n2, versus mn2 for m
independent SISO controllers;

2. MIMO controllers do not lend themselves to modularity. A modular system can
easily be extended to increasing degrees-of-freedom, and distributed processing;
and

3. MIMO feedback controllers make available extra degrees-of-freedom in the
controller, such that non-unique combinations of controller gains can specify
desired pole locations. Added controller degrees-of-freedom essentially
complicate the manual tuning process, and parameter initializations.

Uncoupled adaptive controllers have already demonstrated the potential to control

dynamically coupled robots. They are modular, and computationally simpler, and would thus

be easier to implement (in future research) in current laboratory and factory computing

environments. For these reasons, the approach developed in this dissertation will emphasize

uncoupled control of coupled systems, using the concept of equivalent SISO plants (See

section 2.3.1.3). For example, a 2 DOF IBVS system is controlled by independent MRAC

controllers in Figure 2-16. The small-signal sensitivity matrix, J in (2.7), is included in the

figure to clarify its role in system coupling. From the adaptive controller {J. and JL2)

viewpoints, the system is equivalent to controlling two independent plants, depicted in Figure
A t A 1

2-17. In the figure, W (z ) and W A (z ) are equivalent SISO linear prediction models with
1

parameters that may be time-varying. That is, W. (z ) predicts f^k), from past and present

values of u(k) and f^k), independent of actual physical plant models.

A coupled controller, which estimates coupled models, is outlined in Chapter 8 for

computational complexity analysis and possible future implementation. Problem areas of
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Figure 2-16: MRAC Control of an IBVS System

SISO control, which are isolated in Chapters 6 and 7, suggest the potential performance

advantages gained by MIMO control.

The approach to adaptive control will follow the enhanced identification error MRAC

developed by Morris and Neuman [Neuman 80]. While similar approaches have appeared in

literature, their research focused on details of physical implementation including control

signal saturation and controller stability, measurement noise, and computational complexity
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Figure 2-17: Equivalent IBVS Control

for microprocessor implementation. Since the algorithm does not include control of systems

with discrete measurement delays, the algorithm is extended in Chapter 3 to include control of

systems with delay. Additional modifications for applying uncoupled MRAC to the control of

coupled nonlinear systems are also developed.

2.5.2. Feature Selection and Assignment

Feature transformation coupling (i.e., represented by the small-signal feature sensitivity

matrix J) leads to related problems of feature selection and assignment. The feature selection

process asks the question: How should a subset of n features be selected from a set of m

possible control features f. (i = 1,....,m), where m>n? And, the feature assignment process

asks: Since the uncoupled controllers are used to control coupled plants, which feature

should be used to control each actuator? Both issues are related to the degree-of-coupling of

the feature transformation. A measurement of coupling is proposed to help answer these

questions.

2.5.2.1. Feature Assignment Using Diagonal Dominance

In applications, where uncoupled controllers are used to control coupled plants, there is

always the problem of choosing which servo error will control which actuator; that is, for a set

of n outputs y} (i = 1,...,n), which servo error, Ay., should be filtered and coupled to the j t h

actuator as u.? The control engineer tackles this problem with insight into the physical nature

of the system and formulates qualitative notions of the degree-of-coupling between the



independent actuators and the system output. For joint-level robot control, Aq. should be

used to derive a. For other systems, such as IBVS control, the assignment may not be

straight forward. To formalize this procedure let the open-loop linear system be defined by

Y(s) = H(s)u(s)

where H(s) is an (n x n) transfer function matrix. When the system is uncoupled, H(s) can be

transformed into a diagonal matrix by switching the j t h and kth columns of H(s)5 and therefore

the j t h and kth rows of u(s), until all off diagonal elements of H(s) are zero. When H(s) is

diagonal, the only choice for servo error/actuator assignment is u.«—Ay.. When the system is

coupled, then H(s) cannot be transformed into a diagonal matrix. Servo error/actuator

assignment selection can be accomplished by organizing H(s) in a "diagonally dominant"

fashion [Rosenbrock 74], such that the diagonal elements dominate the off-diagonal

elements. Diagonal dominance is defined as

IH..(s)l for i = 1,...n; and all son a desired contour. (2.8)

When H(s) can be organized according to this definition of dominance, then limited stability

properties of both coupled and uncoupled fixed control of the system can be

formulated [Rosenbrock 74]. When applied to image-based systems, with IJW l<~H(s), it will

be shown in Chapter 6, that for limited degrees-of-freedom, the sensitivity matrices cannot in

general satisfy this definition of dominance.

An alternative approach is to organize JW to maximize the inequality (2.8) over all possible

column arrangements. This criterion reduces to defining the dimensionless measure of

diagonal dominance as

" " IJW ..(k)l
D(k) = log> > p-'» (dimensionless) (2.9)

T? TT ' J VV ( k>'

and then minimizing D(JW ) over all n! possible column arrangements. The logarithm of the

dominance is used since the ratios change by orders of magnitude. The suitability of

minimizing D(JW ) to predict a suitable feature/joint assignment2 will be evaluated in

Chapters 6 and 7. In these evaluations, it is assumed that the open-loop plant time constants

2
The nomenclature "feature/joint assignment", throughout the dissetation, is used to mean the feature to actuator

servo error assignment issue.



are much smaller than the closed-loop system time constants. The plant W will be

approximated by its low frequency gains for calculation of dominance. This corresponds to

the DC gains for Type 0 plants. For Type I plants, the low-frequency gain of the open-loop

integrator is used.

Since J, and possibly W , are time-varying, the assignment might require on-line

reassignment during control. This would require J and W to be known a'priori or estimated

on-line. In the 2 DOF evaluations (in Chapter 6), J and W are derived analytically for

specification of feature assignment over the trajectory. In the 3 DOF evaluations (in Chapter

7), IJW I it is measured at the start of the control task by sequentially moving each degree-of-

freedom by small increments, and measuring the change in features. The resulting feature

joint assignment is then fixed over the entire control trajectory. Evaluation of limited degree-

of-freedom systems suggests, for a set of features, the feature/joint assignment remains

constant over large regions of control for uncoupled kinematic configurations (e.g., Cartesian

robot and "look and move" structures). For coupled kinematic configurations (e.g., an

articulated arm), a feature/joint reassignment is predicted when controlling over large

distances in space. Thus, measurement of JVV at the start of the control task may only be

suitable for feature/joint assignment applications requiring small corrective motions. A

general image-based system would require on-line estimation of JW to determine suitable

assignments. A method for accomplishing this task is proposed in Chapter 8.

2.5.2.2. Feature Selection

The image of a typical scene generally contains more features than there are degrees-of-

freedom to control. The number of features must equal the number of degrees-of-freedom in

an image based system since the feature sensitivity matrix is constrained to be square. The

feature selection question is then: How should a subset of n features be selected, for an

n-DOF robot, from a set of m features, where m>n? The possible number of candidate

subsets is

m!

n!(m-n)!

If a coupled control law is used, then the ordering of the feature subset is not an issue. The

process of feature selection becomes more complex when an independent control law

strategy is used. The feature/joint assignment issue increases the total number of ordered

candidate subsets to



p(m,n) = -
(m-n)!

How can a subset be chosen from p(m,n) potential candidates? To arrive at a strategy, it is

useful to first describe the idealized attributes for a feature subset. While such attributes may

not be expected in practice, they can serve as guidelines.

To arrive at a criterion for feature selection, two aspects of feature-based control are

analyzed:

1. Abilty to specify world space path using feature based trajectories (assuming that
the control system can achieve a specified feature space performance), and

2. The control effort required to achieve the specified feature space dynamic
performance.

It is shown below that the attributes of the feature sensitivity matrix, J f ea t . relate to path

performance, while the attributes of JW relate to the control effort aspects.

With respect to world space path, it is desireable to be able to control independently each

world level DOF. To achieve this goal, an ideal subset of features should yield a feature

sensitivity J f which is diagonal and constant. Then,

Af.

feati

where, AX. is the path error for the ith DOF, Af. is the ith feature error, and J fea t - i { is the (i,i)th

element of J f ea t . If straight-line motion is desireable, and all of the features exhibit the same

dynamic response, then straight-line motion would be achieved. For example, assume that the

i th feature response is specified by the critically damped response

f|°(t)=f|(t)-f|(O)=:Af|(1.e-t/r)

and all feature responses have the same' time constant r. The response of the i th DOF is

xj
o(t)=xi(t)-x(0) = jf-Ja,.ifi°(t)

The relationship between any two Cartesian degrees-of-freedom becomes

X;° j ; L : A f . 1-et/T

1 rrr = Constant— i _ =—lesi
X i Jfeat-j A f j 1 " e

which is constant and specifies the equation of a straight-line in Cartesian coordinates. It thus

becomes straightforward to specify straight-line motion!



If an ideal feature sensitivity matrix could be synthesized, then it still remains to control

dynamically the system to achieve the desired feature response. Attributes of the overall

sensitivity, JW , can be used to describe the control effort required to achieve the desired

response. Similar to the feature sensitivity attributes, the idealized overall sensitivity matrix

should be diagonal and constant. Diagonalization permits the unqualified use of independent

controllers. And, constant elements would permit the use of fixed controllers, or using an

adaptive approach, would require lower sampling-to-bandwidth ratios (Section 3.6.2).

The evaluations, in Chapters 6 and 7, demonstrate that the idealized sensitivity attributes

cannot be expected in practice. The matricies are coupled (i.e., not diagonal) and typically are

time-varying. Feature sensitivity changes are minimized for small motion tasks, and for

configurations with large magnifications. If the feature sensitivity were constant, but coupled,

the predicted path would still be straight-line motion! Since

then

= K.(1-et/T)

where K( is a constant. The constant relationship between any two Cartesian DOF becomes

X.0/X.0=K./K.

From the dynamic control viewpoint, it will be shown that SISO independent controllers can

be used to control these feature coupled systems, with limitations. An MIMO control law might

produce superior performance, but with added computational complexities.

Since we may not expect to find feature subsets which yield idealized sentitivity attributes, a

feature selection strategy could seek a subset which best approximates these ideals; i.e.,

select features which minimize the coupling and senitivity changes along a trajectory. The

dissertation will limit its scope by focusing on feature coupling issues for feature selection.

The question which again arises is how to quantify degree-of-coupling. In the dissertation, the

diagonal dominace measure, D(JW ), in (2.9), will be used to quantify system coupling. The

feature selection strategy then becomes minimizing D(JWJ and D(J. .) over the set of

candidate features. By minimzing D(JW ), improved dynamic response is expected with SISO



controllers. And, by minimizing D(Jfeat), closer to monotonic path performance would be

expected. Each strategy may not produce mutually exclusive decisions, and arbitration

between them would be based on the relative importance of each attribute. For example, a

system could be feature uncoupled in the joint space of an articulated robot arm, but not

uncoupled in Cartesian space. Since the degree-of-coupling plays such an important role in

the independent control approach, the dissertation will limit the evaluations to feature

selection based on minimization of D(JW ).

Finally, when designing an image-based "look and move" system, the feature selection

process can equivalently be viewed as a world coordinate system selection process. That is,

the "arm-solution" could be based on Cartesian, cylindrical, or spherical reference frames.

For a subset of features, J f may be less coupled in one world frame than in others. While

this approach is not evaluated in this dissertation, this is an important topic for future

research.

2.5.3. Path Constraint

In this section, the issue ofpath constraint is addressed, when the task is specified directly

in feature space and objects can be in random poses so that, only the end-points of the

reference commands are known a'priori. In this case the exact path cannot be specified. For

example, for a "look and move" structure, with J f e a t uncoupled (i.e., D= -oo), a monotonic

path can be predicted. When J, . is coupled, the path which produces asymptotic feature
(Sell

errors need not be monotonic. When this occurs, task performance can be affected as

follows:
1. An object image can be driven out of the field-of-view, and the feature control

must be stopped;

2. A potential for collisions with other objects in the surrounding environment can
arise;

3. Longer distances to travel increase the response time; and

4. Overshoot can occur, resulting in physically bumping into the object.

The alternative to path control becomes path constraint. In this approach, independent

robot degrees-of-freedom (i.e., joint level in IBVS and world level in "look and move") are

constrained by dynamic braking (by position servoing), disabling (by mechanical braking), or

by forcing direction reversal along that degree-of-freedom. Constraint is based on on-line
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measurements of path performance. For example, path performance can be specified in robot

world space by requiring that either boundaries and/or directions of travel are constrained to

limits defined by a'priori task knowledge. Directional constraints may arise naturally from the

task requirement (e.g., the object is always in front of or to the right of the initial robot

position). Work cell boundaries can also be specified. During control, 3 is measured and

robot world coordinate positions are predicted using the direct kinematic solution. Deviations

from specified directions or across boundaries signal the requirement to constrain motion

along the responsible degrees-of-freedom. In the "look and move" structures, it is

straightforward to command independent world coordinates. In the IBVS structure, the

problem becomes more difficult without the internal compensation for nonlinear kinematics,

and only the generalized (or joint) degrees-of-freedom which "dominate" the specified world

coordinates can be constrained. Generalized coordinate domination is then predicted based

upon the diagonal dominance minimization of J (i.e., q. dominates X. when J is
cUMl t J CUll l

organized to minimize D(J ). Directional constraints might also be evaluated by using

feature space measurements and on-line estimates of J f e a t according to

If a'priori task constraints are not specified, can feature measurements alone be used to

constrain motion, and if so how? While a general approach for feature based path constraint

has not been developed, a potential strategy has evolved, and is evaluated in the dissertation.

In this approach, a hierarchy of control is established (Figure 2-18). At the top level of control,

limited degrees-of-freedom are under feature control, while the remaining are constrained. In

proceeding from top to bottom, additional degrees-of-freedom become available for feature

control. At the bottom level, all degrees-of-freedom are under feature control. At each

sampling instant, decisions are made to determine the operating level. These decisions are

based on feature performance indices, PI (defined below), compared with a threshold e. By

not forcing ail degrees-of-freedom to be turned-on initially, this strategy may minimize non-

monotonic path deviations. It remains to specify how to select the degrees-of-freedom which

comprise each level, and performance measures which dictate which level is operational.

The object pose, X, j, is defined in Cartesian space and is divided into three movement

modes according to:

1. position: Xre|,ZreJ

2. orientation: <p,e,̂
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a depth: Yre|

It appears logical to control first the position degrees-of-freedom which grossly align th

perceived object image with the desired view. Depth control would be operational at th

lowest level of the hierarchy, only after gross positioning and orientation have been achievec

Individual feature measurements are assigned to each degree-of-freedom according to th

diagonal dominance organization of Jfeati and movement in each mode is evaluate

according to the corresponding percentage feature error used as the PI:
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This measure attempts to normalize the feature error relative to the image boundaries. In IBV

structures, generalized coordinates which dominate movement in the world modes ar

selected according to the diagonal dominance of J (i.e., minimization of D(J )). Th
arm • arm

resulting hierarchy is represented in Figure 2-19.
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Figure 2-19: Hierarchical Control Example

In the experimental simulations, joints are assumed to be constrained by mechanic

breaking, and the threshold levels are determined experimentally.



60

2.6. Summary

The central theme of this chapter is the dynamic control of robot end-effectors. Non-sensor

based robotic systems are limited to control systems which use generalized coordinate

measurements for feedback, while end-effector position is. then predicted using kinematic

models. The control issues involve compensation of nonlinear, coupled, and possibly

unknown robot dynamics. Feedforward control leads to precise tracking, but is

computationally intensive and relies on accurate robot models. Fixed linear feedback

controllers are simple to implement, but their dynamic performance can degrade with

increasing joint speeds, and over broad ranges of arm configurations. Application of adaptive

controllers has only recently be evaluated, but initial simulation studies suggest that they are

suitable for robot control over a wide range of speeds and configurations, and can be

implemented using currently available microprocessor technology.

Computer vision extends the feedback measurement space to include relative end-effector

position. This capability permits the synthesis of control systems which utilize such

measurements for control of end-effector positioning. These integrated visual servo systems

have the potential for improving robot accuracy and extending their capabilities for operating

in unknown environments (e.g., objects to be aquired, or worked on, are in random positions).

Control structures for visual servoing are formally organized, and summarized in Figure 2-20.

The image-based approaches are novel structures and facilitate robot task training by using a

"teach-by-sllowing" strategy. They may also exhibit superior accuracy, relative to the

position-based approaches, since they do not require explicit interpretation, of image

features, to measure world coordinates.

For each control structure (with the exception of "static" position-based), a visual feedback

controller is required since the role of computer vision as a measurement process affects the

closed-loop system dynamics. In addition to robot dynamics and kinematics, the linearity,

noise properties, coupling, unknown parameters, and computational delays of the

measurement process must be considered in the design of the control system. To meet the

requirements for image-based control, an adaptive SISO MRAC approach for control system

design is proposed. Issues of feature selection and assignment are addressed by defining an

image feature transformation coupling measure based on "diagonal dominance" of the

transformation Jacobian. While the analysis (in this chapter and Chapters 6 and 7) shows that

the predicted position trajectories, for image-based control, can be straight-lines or approach
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straight-lines (for the systems evaluated in the dissertation), the end-effector path cannot be

directly specified. Path control reduces to a problem of path constraint. A hierarchical control

strategy, using feature based performance measurements, is proposed to minimize deviations

from a non-monotonic path.

The model-reference adaptive controller is developed in Chapter 3. In Chapter 4, simulation

models are presented for the visual servcing tasks to be evaluated (in Chapters 5, 6, and 7)

using the IBVS approach,



 



Chapter 3
Model Reference Adaptive Control

3.1. Overview

The purpose of this chapter is to review the uncoupled MRAC control algorithm, and modify

it for systems with measurement delay. Additional modifications for applying uncoupled

MRAC to control of coupled systems are presented. Interpretation of MRAC control of a

constant linear plant, and selection of MRAC parameters are also discussed. The controller

described here is based on the algorithm developed at Carnegie-Mellon University by Neuman

and Morris [Neuman 30, Morris 81]. Their research concentrates on microprocessor adaptive

control of linear SISO processes with slowly time-varying parameters. Similar algorithms have

been applied in the literature [Dubowsky 79, Horowitz 80, LeBorgne 81] to control simulations

of nonlinear and coupled robot dynamics, but have not utilized the enhancements, stability

viewpoints, and attention to implementation presented in this dissertation.

The SISO MRAC controller, developed at CMU, is reviewed in Section 3.2. A contribution of

this dissertation is the extension (in Section 3.3) of this controller to control systems with

measurement delay. In Section 3.5, steady-state analysis of this system predicts a minimum

requirement for a control penalty enhancement to insure relative stabilty. Additional

modifications for applying uncoupled MRAC to control of coupled systems, including signal

biasing and gravity compensation, are presented in Section 3.4. Finally, Section 3.6 includes

guidelines for selection of MRAC parameters.

3.2. MRAC for Systems Without Measurement Delay

The purpose of this section is to review the SISO MRAC controller developed by Neuman

and Morris [Neuman 80]. A detailed derivation and discussion of this controller is included in

Appendix A.
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A block diagram for a SISO plant under discrete computer MRAC control is shown in Figure

3-1 [NeumanSO]
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Figu re 3-1: Analog Process Under MRAC Control

The MRAC system comprises three basic components:

1. Analog plant under control;

2. Full-parallel reference model; and

3. Adaptive controller

The reference model transfer function M(z*1) specifies the desired closed-loop response of

the sampled plant output, y(k), to a reference signal r(k). The adaptive controller is a digital

feedback controller. The controller gains are adjusted to drive the closed-loop response of

the system to that of the reference model. The controller uses both plant and model input and

output information to generate the control signal u(k).

At the heart of the MRAC is the controller adjustment mechanism. If the full-garallel (FP)

output error is defined as

ejk) = x(k)-y(k), (3.1)

the adjustment mechanism must be designed so that

1- eQPM asymptotically approaches zero, and

2. The closed-loop system is stable.
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Adjustable controller design is based on the identification-error [Neuman 80]. The plant

input-output information generates estimates of the plant parameters and are used by an

identifier to predict the plant output. The identification error is
e1D(k)=y(k)-t(k) (3.2)

where the identifier output t(k) is the predicted plant output. This error drives the adjustment

mechanism which updates the estimates of the plant parameters. In turn, these estimates are

used to adjust the controller gains. The adjustment mechanism is designed so that e|D(k) is

globally asymptotically stable for a SISO linear system. The controller is then designed to

guarantee the asymptotic stability of the full-parallel error.

The mathematical structure of the MRAC, without measurement delay, is described in

Appendix A.

3.3. MRAC Control With Measurement Delay

The adaptive control algorithm, reviewed in Section 3.2, assumes instantaneous

transduction of the feedback signal. Control systems, such as IBVS, have time delays in the

feedback path. These delays, which increase the order of the system under control (by adding

discrete open-loop poles at z= 1), make the system more difficult to control and reduce the

margins of relative stability.

One approach to the adaptive control of systems with delay might be to apply the algorithm

reviewed in Section 3.2, with higher-order estimators. Preliminary simulation evaluation with

this approach resulted in unstable systems.

Another approach is to make the order of the system equal to that of the plant by using a

predictive algorithm to estimate the undelayed process output. For example, Bahill [Bahiil 83]

suggests the use of a Smith predictor control scheme which includes an adaptive controller.

This approach adds another level of complexity to the control law design and evaluation. The

approach followed in this dissertation is to use the delayed output directly as the feedback

signal by extending the basic MRAC algorithm to include known time delays in the control

law. Extension of the MRAC algorithm to include measurement delays follows.
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3.3.1. MRAC Controller with Delay

The functional arrangement for a system, with nd unit time delays in the feedback path,

under MRAC control is shown in Figure 3-2.
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Figure 3-2: MRAC with Measurement Delay

To modify the control algorithm, the measurable signal at t = kT, yd(k), is assumed to be the

variable under control. The actual process output, delayed by nd sampling periods, is yd(k). If

yd(k) is stable, then y(k) must be stable since yd(k) is related to y(k) by the stable polynomial

The process under control becomes G(s) in cascade with nd time delays. The discrete

process transfer function Wd(z*1) is

\KI / - , -1 \ d^ _ . _-• d\
d " UCz1)

where W(z') is specified in (A.8). Thus,

d( ' 1-a1zl-....anZ
n

The input-output difference equation of the process under control becomes

a,q-']yd(k) (3.3)



<^d(k-1)=[u(k-1-nd)...u(k-n-nd)yd(k-1)...ycJ(k-nd)]
Tisthe (2n X 1) information vector

where

<^d(k-1)=[u(k-1nd)...u(knnd)yd(k1)...ycJ(knd)]Ti

modified to reflect the measurement delay. The adjustment mechanism in (A. 15), (A.16), and

(A. 17) becomes

s(k) = --T 8 |D (3.5)

P(k)=-P(k-1)—-pf J P(k-1)£{> ,(k-1)<I>T (k-1)P(k-1) (3.6)

The identifier is chosen to represent an input-output model of the process with delay, and

(A.11) becomes

n
^k) (3.7)

where td(k) is the estimated process output delayed by nd sampling instants.

The identification error becomes

elD(k) = yd(k)-td(k) = [ ^ T l V i -nd)] ^(k-1) (3.8)

The identifier in (3.7) is inverted to derive the control law. From (3.7),

td(k) = b1(k-i-nd)u(k-1-nd)

Solving for the control signal u(k-nd) that would have been required to force the one-step

ahead identifier output t,(k + 1) to follow the reference model signal leads to

1 n

b.(k-1-nd)q-<M + nd )]u(k) (3.9)

This approach specifies what the control signal should have been nd sampling instants in the

past. The actual control signal is formulated according to (3.9), with the left-hand side of the

equation replaced by u(k):



(3.10)

3.3.2. Control Penalty

The control penalty is reformulated to account for control delays. The Z-transform of (3.10),

with the control penalty included, is

and the controller characteristic equation is
n

b 1 ( k " V i = 2

The Jury conditions are applied to (3.11) for the case of n = 2 and nd = 1. Upon applying the

transformation z = yz \

,2 bJk-1)

F < 2 ) z N J
For this quadratic equation, the Jury conditions lead to

The control penalty is computed as

A A

1 for Ib2/b1l<y2

(3.12)

A A

forlb2/b1l>y-!

3.3.3. Reference Model

The reference model in Figure A-1 is modified in Figure 3-3 to include nd unit delays in the

output. In Figure 3-3, Wm d ^z"1) is specified in (A.7), and the root-locus as a function of the

gain (for n. = 1) is shown in Figure 3-4. There are two dominant right-half z-plane poles and a

fast pole on the negative real axis. The gain is tuned to achieve critical damping of the two

dominant poles. The critical gain is found as follows. The characteristic equation is



r ( k )

Figure 3-3: Reference Model With Delays

Im[z]

^ Real [Z]

Figu re 3-4: Reference Model Root-Locus with One Delay

1 + K

Differentiating (3.13) with respect to the gain, K results in the third order polynomial

2b1z
3 + (3b2-a1b1)z

2-2a]b2z-a2b2 = 0

The roots are found with the Fortran IMSL [IMSL 82] library routine ZPOLR, and the root lyi

between 1 and -a2 corresponds to z
break- The critical gain is determined by evaluati

(3.13)atz = z.break"

KPcrit'
break"aiZbreak'a2a 2^

b1Zbreak



The closed-loop transfer function becomes

, b.z' + b-z2

and the model parameters of (A. 13) are

2 = b2KPcrit

m = 3

3.4. Signal Biasing and Gravity Compensation

To apply the uncoupled MRAC controller to a coupled nonlinear system, two modifications

are required:

1. Biasing of the reference and output measurement signals so that the operating
point is numerically zero, and

2. Addition of gravity compensation if the plant under control is type zero.

3.4.1. Signal Biasing

To assure that the FP steady-state errors go to zero, the control operating points must be

referenced to zero. To demonstrate this requirement, a step input, r(k) = R, is applied to the

controller and the steady-state FP error is calculated. In steady-state, it is assumed that the

reference, output, and control signals have the following constant values:

XR(k) = R

In addition the estimated parameter vector is assumed to be in steady-state:

If 77 = 1, the controller in (A.12) or (3.10) reduces to:



A

ft - I

U = _ _ j = t _ _ (3.14)
- ,

Ei,
Upon solving (3.14) for R, the steady-state FP error, eCD M = R-Y . is

ir'SS SS

A n A
eFP-ss= [Uss"Yss / W ( 1 ) ] ' D b i <3-15)
A

where W(1), the estimated DC gain of the equivalent SiSO system, is

2—i ss-i

'•£
If the open-loop plants are type I (ie; there is an open-loop pole at z = 1), then U must be zero

A

for the system to be at rest. For ess = 0, then Y /W(1) must be zero. Thus, either Yss or
A

1/W(1) must be zero. Type I systems have infinite open-loop gains. However, simulations

using type I plants with nonlinear gains (Section 5.4) produce steady-state equivalent SISO

model estimates which can be type 0. Type 0 processes have finite open-loop gains. Thus,

the operating point, Y . must be forced to be zero. To accomplish this, the reference signal
So

is forced to zero, and the output signal is biased by the reference:
1. XR(k)=0;

2. y(k)Hy(k)-XR(k)]; and

3. Initial model conditions: x(0)«-[y(0)-x(0)].

3o4.2. Gravity Compensation

Let a type 0 SISO process be under MRAC control. When the gravity component is zero, no

actuating force is required and U =0. From (3.15), the measured output signal must then be
SS

referenced such that Y =0 when Uss = 0. In contrast, each type 0 process in a coupled

system (such as an articulated robot arm) has an equilibrium point which is configuration

dependent. The zero reference point cannot be assigned in advance. To overcome this
problem, the identifier in (3.7) is modified to include the bias aQ as follows:

(3.16)



The information and parameter vectors, respectively, are redefined to be

f!>d(k-1)=[u(k-1-nd),..u(k-n-nd) 1 yd(k-1)...yd(k-nd)]
T ([2n + 1] X 1) inform, vector,

£T=(b r..bnaoa r..an) ([2n + 1) X 1) parameter vector

and the dimension of adjustable gain matrix becomes ([2n + 1] X [2n + 1]). This identification

structure has been used successfully by Koivo [Koivo 81], for optimal least-squares

estimation, to estimate an equivalent-SISO model for a robot joint. With this identifier, the

controller in (3.10) becomes

[X; ^ V l ^ ^ ^ ^ } (3.17)

A

For control of type 0 processes, a steady-state error can occur when a control penalty and

U ^0, according to (A.18). Neuman and Morris suggest that auxiliary fixed PSD control can

be used to drive these errors to zero. Alternatively, the adaptive bias term proposed in

(3.16) can also drive steady-state errors to zero. This approach requires that the control

penalty not be applied to the bias term in (3.17). Also, when ramp inputs are applied to type I

processes (e.g., moving targets), steady-state errors could also be reduced to zero with this

approach.

3.5. Linear Control interpretation

When a SISO linear process, under adaptive control, remains constant and the adjustment

mechanism converges, the closed-loop MRAC becomes a linear time-invariant feedback

system. This is called linear model following control (LMFC) [Landau 79]. When the actual

plant is time-varying, the MRAC attempts to perform as if the true linear parameters were

being utilized, since the nonlinear and time-varying adjustment mechanism attempts to drive

the identification error to zero. The characteristics of the LMFC approximate those of the

MRAC even when the nonlinear and time-varying adjustment mechanism is active. Linear

analysis of a SISO linear autonomous process under LMFC control (with reference model and

control penalty enhancements included) can thus provide insight into MRAC control.

Neuman and Morris have performed extensive linear analysis to systems without

measurement delay. This section extends the linear root-locus analysis to systems with delay.



This analysis shows that with measurement delays, the control penalty enhancement is a

requirement for relative stability, and the stability margin of the SP MRAC system exceeds that

of the FP MRAC.

In the following analysis, the plant under control is assumed to be linear (described by
A

(A.8)), and the adjustable parameters have converged to their true values, that is £=£ .

3.5.1. FP MRAC

The closed-loop transfer function of the FP MRAC is derived. The Z-transform of the

controller (3.10), with control penalty included, is

where the controller gains are

K=

but^ '

(3.18)

\ Bm( z
- t

z Am( z"1

Figure 3-5: FP LMFC Control

From the block-diagram, in Figure 3-5, the closed-loop transfer function is

Kz"dW(z1)

z'1Am(z'1) dKuKu)-KyW(z-1)z
(3.19)



Upon substituting the controller gains into (3.19), the closed-loop transfer function becomes
"W , Xnd

( 3 2 0 )
n d

b 1

When n = 0 and 7r(k) = 1, (3.20) reduces to

and the closed-loop transfer function reduces to the model in (A.3). If nd^0 and ?r(k)= I,

(3.20) becomes
znd

"nd ^ .yz'nd
] + _ W ( z )__

and the closed-loop response is a filtered model response. Without a control penalty, this

filter can be unstable as demonstrated by the following root-locus analysis.

The characteristicf equation of (3.20) is
-n 7r(k) ' z"nd

1-7r(k)z u + W(zM)—r = 0 (3»21)
b1

Let the process under control be described by (A.6), and let there be a single delay. This

structure is simulated, in Chapter 5, to verify the root-locus analysis, with the parameters

mode.
T = 0.033 sec

and a reference model with two closed-loop poles at z = 0.730, and one at z==0.015. The

roots of the characteristic equation, in (3.21), as a function of the control penalty w (as IT

varies from 0 to 1) are shown in Figure 3-6. When m = 0, there are two open-loop poles which

originate at the open-loop process poles

zt = e"T/Tm = .632 ; and z2 = 1

and a pole at the origin. As the control penalty decreases (and ?r approaches 1), the dominant

poles originating from the process poles break away from the real axis (when TT^O.OIS),

become oscillatory and eventually cross the unit circle and become unstable. A relatively

large control penalty is thus required to achieve a smooth response, at the expense of slower

tracking of the reference model.
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Figure 3-6: FP Root Locus vs. IT

3.5.2. SPMRAC

The Z-transform of the SP reference model is

B(z*1) A°(z"1)

Upon substituting (3.22) into (3.18), the Z-transform of the SP controller is

From the block diagram in Figure 3-7, the closed-loop transfer function is



R ( z " ' )
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m v

-1
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Figure 3-7: SP LMFC Control
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a
( 3 .2 3 )

W(z')

When nd = 0 and ?r(k) = 1, (3.23) reduces to

Y.(z"1) B (z"1) .d , = — ^ — r = M ( z )
R(z') Am(z')

and the closed-loop model reduces to the model, as predicted. If n.^0 and w(k) = 1,

(3.23) reduces to

1 z " d 1

1 z a W(z')
1 + A —' -fw ~A—

^ 1 - z d z 1

which does not reduce to the model. To understand the characteristics of (3.24), the root-

locus is examined. The characteristic equation of (3.24) is

1 TTZ^ W(z'1)
1 + A m b ; T ^ T V i " T T " " = = a (3>25)

For the process pararnaters in Section 3.5.1, the roots of the characteristic equation, in (3.25),

as a function of the control penalty (?; varies from 0 to 1) are shown in Figure 3-8. When IT = 0,

two open-loop poles originate at the process poles, and there are three poles at the origin. As

the control penalty decreases, the process poles migrate toward the two dominant critically

damped model poles and eventually break away with a relatively small overshoot. One of the

poles at the origin migrates toward the fast model pole on the negative real axis. Even though

the system characteristics tend toward the model, two additional poles at the origin break

away from the real axis causing significant oscillation as m decreases.

Comparison of the SP and FP root-loci, in Figures 3-8, and 3-6 shows that the SP MRAC

system has a significantly larger margin of stability when operating with the same control

penalty. Since it is desirable to minimize the control penalty (to keep the closed-loop

bandwidth large), the SP MRAC is recommended for control of systems with delay.
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Figure 3-8: SP Root Locus vs. ir

3.6. Parameter Specification

Selection of MRAC controller parameters involves compromises among several factors. In

this section, guidelines and tools are presented to aid the control engineer in making suitable

choices. Optima! selections result from the tuning of the parameters over specific regimes of

system operation. Parameters are selected in Chapters 5 through 7 to achieve acceptable

operation over a wide range of control tasks, as opposed to optimizations over local regions.

3.6.1. Model Time Constant Specification

The reference model specifies the desired closed-loop system performance. Control

performance can be defined by time or frequency domain specifications, performance index

optimization, or pole-zero location. For step-inputs, a convenient performance measure is

rise-time, tf, defined as the time it takes the output to go from 0 to 99% of it's final value. The
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rise-time criterion is specified by s-plane pole requirements which are then mapped into the

z-plane according to z = est. The model time constant, Tmode| in (A.6), is then selected to place
zbreak a t *' ie desired location according to the methods outlined in Appendix A, for r»d = 0, or in

Section (3.3.3), fornd = 1.

An s-plane model of a system, with a pair of critically damped poles at a>n, is

X(s) con
2

where con specifies the system bandwidth. The unit step response ison

The bandwidth vs. rise-time is found by solving

0.01 =e'wntr(1-(jfitr) (3.26)

Once the desired rise-time is selected, (3.26) is solved numerically for <on. This bandwidth

then specifies the closed-loop reference model pole at

Many constraints must be considered in specifying tf. Selecting too large or too small a

rise-time can result in the following problems:

1. The sampling period (in Section 3.6.2) places constraints on <on and thus tr> A
lower bound on t results from lower bound constraints on T.

2. As tr decreases, con increases and zbreak decreases. As zbreak becomes smaller,
and the system speeds-up, the the controller gain increases, thus amplifying
noise and degrading system performance. As the controller gain increases, the
system tends to saturate more which in turn reduces relative stability. As trjse

increases and zbreak approaches the unit circle, the full-parallel error epp

(A.23) increases, relative to any identification error since Am(z'1) increases.m(

3.6.2. Sampling Period Selection

While there are guidelines for the selection of the sampling period T, the choice can be

forced upon the designer by hardware, software, or cost constraints. When this occurs,

control performance criteria must be evaluated in light of these constraints.

The following guidelines are used in to specify the sampling period and control performance

specifications.



3.6.2.1 . Fundamental Upper Bound

When the closed-loop system bandwidth is specified to be con, the Nyquist sampling theorem

sets the upper bound on the sampling period according to

T U B <—. (3.27)
^ n

If hardware, software, or cost constraints limit the sample period to T . . ,, where
constraint

constraint U.B,'
the closed-loop system bandwidth must be constrained by

7T

constraint

It is important to note that there is a distinction between the closed-loop bandwidth and the

highest frequency components of the open-loop process dynamics, since these two

frequencies can be quite different. Thus, potentially slow visual sampling rates can be used to

control fast open-loop processes, if the closed-loop bandwidth is reduced proportionally.

3.6.2,2. Performance Margin

For reasons outlined below, TUB is judged to be insufficient. A performance margin (PM)

can be specified to decrease the sample period according to

T--JJB Where PM>1
PM

and therefore,

7T

For control of constant systems, typical values for PM are 2<PM<10, depending upon the

particular application. Adaptive control of nonlinear systems require larger margins (Section

3.6.2.3). In terms of a sampling rate to closed-loop bandwidth ratio, this requirement is

f 1/T
= 2*PM, (3.28)

fBW < V 2 *

The performance margin is specified to:

1. Reduce any delay between a reference signal command change and system
response to that change;

2. Smooth the system response to the control inputs which are applied to the
process through a DAC;

3. Minimize aliasing effects, since the actual system may have attenuated signal
components above <o ; and



4. Increase relative stability for MRAC with discrete delays by minimizing the
difference between the estimated control signal and the required control signal.

From (3.28), the constraint on the closed-loop system bandwidth becomes

a>< (3.29)
PM*T

constraint
3.6.2.3. MRAC Identifier Requirements

The discrete time-identifier used by MRAC places additional requirements on the sampling

period.

1. If the open-loop plant to be identified is constant and linear with no complex
poles, then no additional requirement is placed on T (assuming the computer has
sufficient precision to measure smaller input-output signal changes, as T
increases and tr decreases). The plant dynamics can be identified independently
of T. If the plant has complex poles at a±j<o , then the sampling theorem
requires that

max

If sampling period constraints cannot satisfy this requirement, then an
independent velocity feedback (which samples at a higher rate than the main
control loop) can be incorporated.

2. If the plant is time-varying or nonlinear, then the sampling period must be chosen
to be short enough to track parameter variations. In evaluations in Chapters 5, 6,
and 7, performance margins of 10<PM<25 are demonstrated to be suitable for
tracking the nonlinear plant gains for IBVS tasks which require small corrective
motions. Motions over large distances, and thus larger gain changes, require
even higher margins. These requirements are discussed in Chapters 5 and 6.

3.6.3. Adaptive Gain Matrix Initialization and Limiting

The adaptive gain matrix P(k) in (3.6) is initialized to a non-zero value prior to the start of

control. Subsequent control tasks can then use previously learned values. To the best of the

author's knowledge, guidelines for the initialization are not presented in literature and the

approach seems to be empirical. This topic is an area requiring future research since

initialization of P(k) will affect the identifiers rate of convergence and thus the controller's

relative stability. The following tools and guidelines have been developed to facilitate the

experimentation.

A

LWhen the estimated process gain b^ is small it becomes difficult to find an
initialization which is not too sensitive. Thus, the reference and output signals are
multiplied by a §cale factor (SF) to increase the apparent process gain. The scale
factor is increased until b1 execceds 0.001 .
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2. Since the operating points vary widely from one control task to the next, it
becomes difficult to find an initialization that is suitable over a wide range of
control tasks. Signal biasing (Section 3.4.1) makes it much easier to find values
which can be used over a wide range of tasks.

3. in accordance with Neuman and Morris5 work [Neuman 79b], P(0) is initialized to ,
be a diagonal matrix.

4. When the sampling interval is decreased, P(0) is also decreased.

5. Values of P(0) found to be suitable for control of uncoupled SISO systems
appeared to be suitable for control of the coupled systems.

6. When P(0) is initialized with unsuitably small values, the controller would exhibit
poor stability. In these cas^s, if the tĵ e signs of the steady-state estimated gain
terms were opposite (e.g., fi^>0, and /)2<0), then larger gain matrix initializations,
resulted in improved stabilty and consistent signs (Appendix D).

Equally important is gain matrix limiting. If the system reaches steady-state (lfc = 0), the gain

matrix adjustment mechanism reduces to

P(k) = ( i / \)P(k-D.

and the gain matrix thus becomes unbounded when X<1. This presented implemention

problems for Neuman and Morris due to arithmetic overflow in the ^-processor. To overcome

this, Neuman and Morris simply reset P(k) = P(0) when the diagonal element Pnn(k) exceeded

a threshold P. .. In this dissertation, simulations are implemented on a large mainframe

where overflow is not an immediate problem. However, as P(k) becomes large, the adjustment

mechanism becomes too sensitive to adaptation to changes in the plant parameters, and

decreases system relative stability. To overcome this problem, P(k) is reset to P(0) whenever

where the threshold is selected experimentally. Similar to the initialization of P(k), the

threshold should decrease as the the sampling period decreases.

3.6.4. Parameter Vector Initialization

A

While hyperstability does not put any constraints on the initialization of £(0), better

initialization leads to faster convergence of the identifier. If the initialization of b1 is too large,

the rate of convergence and system response are unacceptably slow. This is observed to be

more pronounced as the reference model bandwidth decreases. If b^O) is too small, then the

system accelerates rapidly, decreasing relative stability.
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Any a'priori knowledge of the system should be used to guide the initialization. For instance,

as the sampling period becomes smaller, the gains {b.} become smaller, and the poles

approach unity. Initializations which are satisfactory for control of SISO uncoupled plants

appear to be acceptable for the coupled plant initializations.

3.6.5. Weighting Factor

The least-squares weighting factor X is chosen as a compromise between sensitivity to

adaptation to process changes and over reaction to noise measurement. For the

experimentation presented in this dissertation, and for Neuman and Morris' research, X = 0.85

provided satisfactory response.

3.6.6. Control Penalty

The controller pole bound, y, which indirectly sets the control penalty, is tuned to minimize

ringing in the output. Faster model responses cause increased saturation tending to ring the

controller more. When this occurs, the control penalty is increased by reducing y.

Physical implementation, by Neuman and Morris [Morris 81], of MRAC position control of a

DC motor required smaller values of y than for simulation trials. This resulted from the

computational delay required to actually compute u(k). The LMFC analysis, in Section 3.5,

explains why systems with delay require increased control penalties. Since the computational

delay is only a fraction of the sampling interval, Neuman and Morris set y in the vicinity of 0.9 .

When unit delays are present, as with IBVS, larger control penalties are needed.

3.7. Summary

In this chapter, the independent MRAC controller is extended to include measurement

delays. Analysis of this controller, for control of a constant linear plant, predicts the

requirement for a control penalty to achieve relative stability. Chapter 5 includes simulation

examples which verify the algorithm for control of SISO plants. Analysis of independent

control of a coupled nonlinear plant shows an additional requirement for signal biasing and

gravity compensation to assure zero steady-state errors. Guidelines for the practical selection

of controller parameters are emphasized and will be used in the following chapters where

actual values are selected.



 



Chapter 4
Task Modeling and Simulation

4.1. Overview

The purpose of this chapter is to specify the visual servoing task configurations which are

evaluated under fixed and MRAC control in this dissertation. Mathematical models of robot

kinematics and dynamics, camera picture taking, and feature transformations (which are

required for implementation of the task simulations)3 are developed. The task configurations

are selected so that the delay, nonlinear, and coupling aspects of IBVS can be studied and

evaluated independently as applied to control progressively complex dynamic and kinematic

systems consisting of:

• 1 DOF linear dynamic and kinematic robot, with either constant or noniinear
feature sensitivity;

• 2 DOF linear, uncoupled dynamic and kinematic robot, with nonlinear and
coupled feature sensitivity;

• 2 DOF nonlinear, coupled dynamic and kinematic robot, with nonlinear and
coupled feature sensitivity; and

• 3 DOF linear, uncoupled system dynamics, with a combination of linear and
nonlinear kinematics, and nonlinear and coupled feature sensitivity.

The 1 DOF configuration simulations are summarized in Chapter 5 to verify the basic MRAC

algorithm (with and without delay), and provides an initial evaluation of a system for which the

control variable is nonlinearly related to the physical plant variable. The 2 DOF systems, which

include coupled feature transformations, are evaluated in Chapter 6. For these

configurations, the basic MRAC algorithms will be augmented by a hierarchical control

strategy, and feature/joint assignment is based on the concept of diagonal dominance. One

of the 2 DOF configurations represents an ideal "look and move" structure since the robot is

All simulations are implemented on a DEC-20 processor.



dynamically and kinematically linear and uncoupled. The other configuration specifies an

articulated robot arm in order to investigate the relative contributions of nonlinear and

coupled robot dynamics and kinematics. The 3 DOF simulation represents a visual servoing

configuration, with planar Cartesian and rotational degrees-of-freedom, presently

implemented in the CMU Flexible Assembly Laboratory [Sanderson 83b] using a static

position-based "look and move" control structure. Simulations of this configuration, with

linear and uncoupled dynamics, emphasizes the feature selection process. It is natural to

implement IBVS for this system in future research.

This chapter is organized as follows. In Section 4.2, the task configurations, including

transducer mounting (the transducer is assumed to be a camera), robot type, and object in

the scene are described. In Section 4.3, the dynamic modeling and simulation of the linear

and uncoupled robots is presented. The dynamic and kinematic modeling and simulation of a

2 DOF robot arm is described in Section 4.4. Modeling of picture taking and feature

measurement is described in Section 4.5.

4.2. Task Configurations

This section describes the visual servoing task configurations (i.e., transducer mounting,

robot type, and object in scene). The first configuration describes a 2 DOF system. This

system is then used to simulate 1 DOF systems by restricting relative motion to one of the

degrees-of-freedom.

4.2.1. Configuration 1: 2 DOF with linear kinematics and dynamics

The camera is mounted on a 2 DOF linear kinematic system such as a Cartesian robot, a set

of translational stages, or possibly a mobile robot. The camera is servoed relative to a fixed

line in space to control the relative position between the robot and a line (Figure 4-1). A line in

space problem is selected because the corresponding sensitivity functions can be easily

analyzed, it is complex enough to be both interesting and useful. The line is assumed to be

fixed in spaced so that

1. The line lies entirely in the plane defined by [X ,Y ]; and

2-Zrel=°

The camera is mounted to the robot so that:

1 - [ Y ^ ] is parallel to [YJ; and



obj =0 re!

ob j

[XQ>Yo,Zo] World Coordinate Frame
tXcam'Ycam'Zcam] Camera Coordinate Frame

I 3 dimensional length of j[ne
Angle of line relative to X

obj ^ o

X(t),Y(t) Position of line relative to world
Xob,Yob. Position of center of line relative to world

X ,(t),Y ,(tj Position of line relative to camera
roi TGI

Figu re 4 -1 : Configuration 1

2. [Zcam] is parallel to [ZJ

The robot is modeled as X-Y translational stages with the Y-stage mounted on top of and

orthogonal to the X-stage. The camera is fixed to the Y-stage. The X-stage controls only x(t)

and the Y-stage controls only y(t). The actuators are armature controlled DC motors with

negligible armature inductance. When the translational stages are orthogonal, the axes are

decoupled. In addition, it is assumed that gravity acts in the Z-axis direction so that

gravitational effects are abscent. Thus, the robot is modeled an uncoupled linear system.

It is shown, in Chapter 5, that when motion is constrained to the X-axis, and the center-of-

gravity of the line image is chosen as the control feature, this configuration becomes a 1 DOF



autonomous linear system, wnen motion is constrained to tne Y-axis, and the line image

length is the control feature, then the configuration becomes a nonlinear system. When both

degrees-of-freedom are free, the robot represents an idealized incremental robot system

(Section 2.3.2.1), since the dynamics and kinematics are uncoupled and linear. Thus, the

resulting control structure represents a dynamic "look and move" structure.

4.2.2. Configuration 2: 2 DOF with nonlinear kinematics & dynamics

In the second configuration, the camera is mounted to a 2 DOF nonlinear kinematic

articulated robot arm (Figure 4-2).

Yo/\

Xobj

rvr2 Length of robot links
, ^ ) Link angles
#o(t) Angle of X ^ ^ relative to the second link

o Cam
Cam

Figure 4-2: Configuration 2.

The line is fixed in space so that:

1. The line lies entirely in the plane defined by [X ,Y ]; and

The camera is mounted so that



1. 8Jt) is automatically rotated to -[0, (t) + OJt)] so that [Y o ] is always parallel with

2- ^ca rJ i s Para l le l t 0 [Zo]; and

3. The end of link 2 is coincident with the origin of [Xcam,Ycam,Zcam]

The robot is modeled as a two linkage arm, with nonlinear and coupled dynamics. The

actuators are armature controlled DC motors with negligible aramature inductance. It is

assumed that gravity acts in the Z direction so that gravitational effects are abscent.

4.2.3. Configuration 3: 3 DOF with nonlinear kinematics, and linear and uncoupled

dynamics

This visual servoing task consists of servoing a three-dimensional object (described in

Section 4.5.2.2) relative to a stationary camera. The object is placed on a 3 DOF linear

kinematic manipulator consisting of the set of X-Y translational stages, described in

Configuration 1, and an additional rotational stage mounted on top (Figure 4-3).

The camera is mounted relative to the X-Y-0 stages so that:

1 • [Xcam] is parallel to [Xo];

2, The plane defined by [Z,, . ¥„ 1 is coplanar with the plane defined by [Z .YJ ;
Ccim Cum o o

and
3. The plane defined by [x

t u r n»Y
t u r n ] i s coplanar with the plane defined by [XQ,YJ.

The dynamics of this system are simplified by assuming that the inertial coupling and

centrifugal forces caused by the load are negligible. This assumption is justified when the

load does not shift the center-of-mass away from the center of the turntable. The center-of-

mass will remain in the vicinity of the turntable center when the load is centered on the

turntable or has a weight much smaller than that of the turntable platter. The manipulator is

then modeled as a dynamically linear and uncoupled system.

The evaluation of this configuration, in Chapter 7, focuses on the feature selection process,

by evaluating system performance as a function of the coupling index D(JW ) for various

candidate feature subsets. Since D(JW ) is the measure of overall system coupling, system

performance is evaluated at the joint level (i.e., performance of the X-Y-fl axes). The 3 DOF
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Figu re 4-3: Configuration 3



configuration can be viewed as a Cartesian robot with the turntable, or 0-stage, acting as the

final link (or gripper). The object, which sits on the turntable, is viewed as a tool held by the

gripper. The camera is stationary relative to a world reference frame. The motion of the

object is not uncoupled relative to the world, because radial points on the #-stage, upon

which the objects rests, are coupled to both X and Y world coordinates. Therefore, J^ Jfeat»

and this is not a "look and move" system with respect to the object's frame.4 While the final

position and orientation of the object relative to the world can be controlled, the object path

may not correspond to the X-Y table trajectory, unless the object is centered on the #-stage. It

is of practical importance to be able to control the X-Y-0 stage trajectories since their motion

must ultimately be constrained within the boundaries of a physical workceil environment.

4.3. Plant Modeling for Translationa! and Rotational Stages

The X-Y-0 stage dynamics are modeled in this section. By neglecting dynamic interactions,

each stage can be modeled independently. Newton's Second Law leads directly to the

dynamic equations of motion.

4.3.1. Rotational Stage

The rotational stage (in Configuration 3) consists of a turntable platter driven through a

gear-box by a DC motor with negligible aramture inductance. An equivalent diagram is shown

in Figure 4-4.

The following assumptions are made to develop the mathematical model:

1. Ideal gearing (i.e., negligible backlash, friction, and inertia);

2. Negligible turntable bearing friction;

3. No motor voltage off-sets; and

4. Amplifier (amp) bandwidth (BW) is large in comparison with the motor/turntable
mecahanical BW; thus, the amplifier dynamics can be neglected in the modeling.

The transfer function G (s), from the applied voltage e (t) to the motor shaft displacement
m a

0m(t) is [Kuo 82]

4.

'This configuration would represent a "look and move" system if the task were configured such that the camera
was mounted and centered on the 0-stage, while observing a stationary object.
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ea(t)
amp.

R a

a
eb(t)

T

'L
Kb
K.

applied control signal voltage
unity gain, high B.W., high impedance amplifier
armature-winding resistance
armature current
back E.M.F.
angular displacement of motor shaft
motor torque
armature moment of inertia'
motor viscous-friction coefficient
gear ratio N2/N1

angular displacement of turntable
turntable torque
moment of inertia of turntable + load
back emf constant
motor torque constant

(volts)
(volts/volt)

(ohms)
(amps)
(volts)

(radians)
(oz-in)

(oz-in-sec2)
(oz-in/rad/sec)

(motor/turntable)
(radians)

(oz-in)
(oz-in-sec2)

(volts/rad/sec)
(oz-in/amp)

Figu re 4-4: Rotational Stage Model

K
m (4.1)

where the equivalent motor gain constant Km is

K
(4.2)

and the equivalent motor time constant T is

(4.3)

and the equivalent inertia, I , referenced to the motor shaft is
eq



4.3.2. X-Y Stages

A translational stage (in Configurations 1 and 3) translates the load through a lead-screw

mechanism. An equivalent diagram is shown in Figure 4-5.

Ra

I V W
Amp

ea(t)
amp.

Ra

eb(t)

'm

•LS

P
y

w

applied control signal voltage
unity gain, high BW amplifier
armature-winding resistance
armature current
back E.M.F.
angular displacement of motor shaft
armature moment of inertia
Lead-screw moment of inertia
motor-viscous friction coefficient
lead-screw pitch
linear displacement
net load weight

(volts)

(ohms)
(amps)
(volts)

(radians)
(oz-in-sec2)
(oz-in-sec2)

(oz-in/rad/sec)
(threads/in)

(in)
(lbs)

Figu re 4-5: Translational Stage Model

The following additional assumptions are made to develop the model:

1. The lead-screw mechanism has zero backlash and negligible friction; and

2. Stage bearing friction is negligible.

The inertial equivalent, lw , of the load referenced to the motor is [Electro-Craft 80]
W(lbs) 0

lw = —5—X .0010417 (oz-in-sec2)w p^
p

When the equivalent inertia, I =l + I ,G
GQ m Lo

, is substituted into (4.3), the transfer function

model structures for the tnanslational stages are equivalent to the rotational stage model. The

transfer functions Gm.x(s) and Gm (s), from the applied ararnature voltages ea(t) to the X and

Y axes motor shaft displacements, respectively, are

K
Gm.v(s) = ~ m —7 (4.4)



and

Gm(s) = -- E— (4.5)
m y s ( V y 8 + 1 )

4.3.3. X-Y-Theta Stage Parameters

The X-Y-0 stage model parameter values are based on commercially available products

such as the AEROTECH stages used in the Robotics Institute Flexible Assembly

Lab [Sanderson 83b]. The system includes a model 316 rotational (Table 4-3), and two model

416 translational stages (Table 4-2). Each stage is driven by a motor which is equivalent to an

ELECTRO-CRAFT E-508 (62 oz in) DC motor (Table 4-1).

lm = 0.0015oz-in-sec2

am = 0.00095 oz-in/rad/sec

R =3.36 0
a

Kb = 0.037 volts/rad/sec

Kt = 5.20 oz-in/amp
Volts(max) = 40

Table 4-1 : Electro-Craft E-508 DC MOTOR

Net-weight = 50 lbs

Platter weight = 10 lbs

Lead-screw type = Steel Ball-screw

Lead-screw pitch = 7 threads/in

Lead-screw dimension = 16 x .55 in
Table 4-2: Aerotech 416 Translational Stage

Net-weight = 29lbs

Platterweight = 10lbs

platter diameter = 10 in

gearratio (17) = 108:1
Table 4-3: Aerotech 316 Rotational Stage

It remains to calculate the equivalent inertial values for each stage. It is assumed that the

load inertia equals the turntable platter's inertia. This assumption is not critical because of

the linear and uncoupled assumption and the large gear ratio (TJ = 108).

The equivalent inertia for the #-stage is
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turntable-nlatter+ load

The platter is modeled as a thin disc so that

W(lbs)r2(in) . 2
ltumtable-platter = ^ (OZ-.n-sec )

10x(5)2

5.208 (oz-in-secr)
48

load ~ turntable-platter'

I mB = 0.0015 + (1 /108)2(2x5.200) = 0.0024 oz-in-sec2 (4.6)

The equivalent inertia for the Y-stage is calculated according to

The lead-screw inertia is

ILS = D4(in)xlength(in)x(0.0011667)

= (,55)x16x(0.0011667)= 0.0017 oz-in-sec2

For a 10 Ib. load, the net load on the Y-stage is 49 pounds [i.e., #-stage(29) + Y-platter(IO) +

load(10)]. Thus,
1

l 05

= 0.001 oz-in-

Therefore,

I v a 0.0015 + 0.0017 + 0.001 = 0.0042 oz-in sec2 (4.7)
eq- T

The net load on the X-stage is 99 pounds [i.e., 0-stage(29) + Y-stage(SO) + X-platter(IO) +

load(10)]. Thus, the equivalent inertia of the X-stage is,
1

l 0

= 0.0021 oz-insec2

Hence,

I x = 0.0015+ 0.0017+ 0.0021 =0.0053 oz-in-sec2 (4.8)

Upon substituting (4.6), (4.7), and (4.8) into (4.3), the equivalent model parameters become

Tm Q = 0.041 sec
rm.y= 0.072 sec
rm.x= 0.091 sec

and Km = 26.586 rad/sec/volt, for all stages.



4.3.4. Computer Simulation Of Uncoupled Linear Models

In this section, the computer simulation model of the linear uncoupled robots under digital

computer control are derived. The discrete control signal u(kT) is fed to the motor by a

digital-to-analog converter (DAC). Thus, the motor input is held constant over each sampling

period T (Figures 4-6 and 4-7).

4-
), Wr a(t0)

DAC

Vsat

-Vsat

Saturation
Noniineari ty

e a ( t }
s

Km

» C T . S + 1 )

e,,(t)
V

e ( t )

( ra i l s ) '

JL6D.
2TT

Figure 4-6: Rotational Plant Block Diagram

DAC
u(t)

Vsat

-A "Vsat

Saturation
Noniinearity

Km

sCrmS+ l )

© ( t ) X ( t )

( in )

Figure 4-7: Translational Plant Block Diagram

Saturation in the DAC (and equivalently current limiting to the motor amplifier) is included in

the simulation. Over the interval [ kT < t < (k + 1 )T ], the motor voltage is
u(kT) for lu(kt)l<Vsal

Vcat for u(kT)>Vsat (4.9)

sat for u(kT)<-Vsat

In the model, V is set at the maximum motor driving voltage (40 Volts),
sat

A discrete model of the analog process, which specifies the output at the sampling instants,

is appropriate for the computer simulation. However, it is important to be able to examine the

output between sampling intervals. Thus, the analog output, <?m(t), over the interval
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[t < t < t + T], to a constant step input of magnitude V (volts) applied at t , with initial

conditions #m(t ) and <*>m(t ), is derived. The motor speed, <om(t), is also derived so that the

initial speed can be determined at the start of each sampling period.

The transfer function in (4.1) represents the differential equation

which can be written as two sealer state-space equations:

where the input e (t) = Vfort <t<t +T. The solution to the system in (4.10) and (4.11) is
a O O

*mW " W + rm[«(t0)-KmV]( i - e ^ V ^ m ) + KmV(t-t0) for tQ<t<t + T

and

"«,<« " »Me{tV/Tm + KmV(1 - a * V '

If the motor displacements for the turntable, X-stage, and Y-stage are 0m^t 0m x, and ̂ m ,

respectively, then

X(t) =

Y(t) =

0(t) =

1

i ^ p m•>

360.0<?

27Tt} m

(t) inches

inches

degrees

4.4. Plant Modeling for 2 DOF Robot Arm

A 2 DOF articulated robot arm is modeled in this section. The arm is actuated by DC servo

motors which are mechanically coupled to the link joints by gearing mechanisms. (Figure 4-8)

The motor for link 2 is mounted at the rear of link 1 to act as a counterweight. The motor for

link 1 is mounted in the stationary base.

The following assumptions are made to derive the dynamic model:



Motor for Link 1

Motor for Link 2

Link 2

Link 1

Stat ionary Base

Figure 4-8: 2 DOF Robot Arm

1. Links 1 and 2 are modeled as thin rigid rods of lengths r1 and r2, and mass mr1

and mr2, respectively;

2. Any payload (including a camera) is modeled as a point mass, m 2, at the end of
link 2;

3. The gear box coupling for link 2 is modeled as a point mass, m , at the end of
link 1;

4. The counter-weight (motor) is modeled as a thin rigid rod, of length r^/k5 and
mass nri , at the rear of link 1;

c

5. There are no off-sets between links;

6. All gearing is ideal; and

7. All bearing friction is negligible
This simplified geometric arm model facilitates development of the mathematical model. The

The counter-weight length is defined as a fraction (1/k) of the link length to facilitate derivation of the dynamic
equations in Appendix B.



model results in a nonlinear dynamic system which exhibits the Coriolis, centrifugal,

gravitational, and inertial coupling torque components present in a real arm.

4.4.1. Kinematic Equations

The arm kinematic equations describe the motion of the arm in Cartesian space. These

equations are required to derive the arm dynamics and image transforms.

A coordinate frame diagram of the arm is shown in Figure 4-9.

Figure 4-9: Arm Coordinate Frames

Each link, including the base, is assigned a Cartesian coordinate frame in accordance with

the Denavit-Hartenberg convention [Denavit 55], The coordinate frame associated with the

reference base, [Xo,YQ,Zo], serves as the world coordinate frame. The frames associated

with links 1 and 2 are [X^Y^Z^ and [X2,Y2,Z2].

The position of the end of link 2 with respect to the world frame is derived. Let

T. = homogeneous transformation describing the position



Thus,

of link j relative to the world frame, and

A. = homogeneous transform describing the position
of link i relative to link M (where link 0
corresponds to the reference base).

For the two DOF arm,

• s , C1
0 0
0 0

0
1
0

where

C.±cos(0.)
S.=sin(0.)

Thus,

T1=A1

T2=A1A2 =

0
1

C 2
S 2
0
0

S 2
C

2

0
0

0 i
0 i
1
0

r2
'2S

0
1

C 1 2 -S 1 2 0 r ^ + r^

'12 ^12 0 rnS,rt + r S ,
0 0 1
0 0 0

'2^12 r i1~1
0

where

From (4.12), the rrobot positions are

X(t) = r2cos(/91(t) + ̂ 2(t) ) + r 1

Y(t) = rosi

(4.12)

(4.13)

4.4.2. Rigid Body Dynamics

The dynamic equations for the manipulator are developed, in Appendix B, using the

Lagrangian formulation. The dynamic models for the two revolute joint angles 0 are:

(4.15)



1U1

where
i <. m i o rm

r m
D2 =gr2S | 2Lmp 2 ^

In the simulations, the gravity torques, D1 and D2, are set equal to zero.

4.4.3. Actuator Dynamics

The link torques F1 and F2 are related to the actuator dynamics. The DC motor actuator for

the ith link is modeled Figure 4-10.

The motor torque F . driving link i is

so that the link torque F. is

In terms of the link displacement, 0. = 8m/vv the link torques are

and

a2



amp.

ai
ebj(t)

i

applied control signal voltage
unity gain, high B.W., high impedance amplifier
armature-winding resistance
armature current
back E.M.F.
angular displacement of motor shaft
motor torque
armature moment of inertia
motor viscous-friction coefficient
gear ratio N2/N1

angular displacement of link
link torque
back emf constant
motor torque constant

Figure 4-10: Robot Actuator

(volts)

(ohms)
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(volts)
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(oz-in-sec2)
(oz-in/rad/sec)

(rev. motor/rev, turntable)
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(oz-in)
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(oz-in/amp)

4.4.4. Robot Arm Parameters

In this section a manipulator is designed for the model structure assumptions specified at

the outset of this section. The mechanical structure is assumed to have the following

dimensions and weights;

• Maximum payload = 5 lbs. (1 pound of which is the camera)

• Link lengths r1 = r2 = 17 in.

• Weight of link 1 = 7 lbs

• Weight of link 2 = 5 lbs

• Weight of gear-box = 1 Ib

The motors and gearing are selected according to the design criteria:

1. Maximum individual link speed = 180deg/sec = IT rad/sec
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2. Maximum individual link acceleration = 1800deg/sec2 = 10TT rad/sec2

3. Minimize motor energy dissipation while keeping the gear ratio r\ small enough to
reduce gearing backlash and friction.

The design steps are outlined below, and are performed for each individual link, under the

assumption of negligible dynamic coupling:

STEP 1 : Find the torque (T ) required to achieve the maximum specified acceleration
max-ftcc

for the maximum payload at the maximum link inertia.

STEP 2: Find the maximum torque (T ) required to hold the maximum payload against
nicix-g

gravity.
STEP 3: Specify motor torque requirements:

1. The peak motor torque, Tpeak = (Tmax.acc + Tmax.QVv

2. The continuous motor stall torque, TstaJj = Tmax /y\

3. The peak motor speed as 180*?] deg/sec = 30#i] RPM

STEP 4: To select the gearing, choose a motor (which is anticipated to satisfy the torque

requirements in Step 3) and set

where Djj..nomjna| is chosen as a nominal value of the link inertia. This selection for t\ minimizes

the energy dissipation in the motor and maximizes the power transfer to the link. For this

design, choose Djj_nomina| as the average of D.. evaluated at the maximum five pound load and

no load operating points. To evaluate D1V it is assumed that #2 = 45(deg). If rjj is too large

(e.g.,i)>35)), then it can be reduced by a third with only a 17% increase in motor

dissipation [Electro-Craft 80]. Finally, check if this motor/gear combination satisfy the motor

torque requirements in Step 3.

While ther are numerous motor/gear combinations which will satisfy the stated

requirements, the following additional guidelines are used:

1. Maintain T]<35 to minimize backlash, friction, weight, and cost: and

2. If possible, allow for a safety margin in the peak and stall torque ratings.



Before proceeding, the weights are converted to mass according to
m = W/g

The units for g and W are selected so that the torques are specified in units of oz-in. Thus,
W(lbs)16(oz/lb)

m ss ^ —

32(ft/sec2)12(in/ft)

W(lbs)

24
and

(oz/in/sec )

mr1 =0.29167
mr2 = 0.20833
m ^0.04167
m* = 0.20833 (with 5 Ib. load)
mp2 = 0.04167 (with 1 Ib. load)
nri = (to be determined in motor selection process)

c

The motor selection process proceeds backward from the last link.

4.4.4.1. Motor 2 Selection
Step 1 :

D22 = (m r2 /3 + rnp2)r2
2

Doo mftv = 80.27 oz«in-sec2

and

max-acc ~ 22-max max

= 2522 oz-in

Step 2:

Tg = D2 = 9r2S12(mp2 + m r 2 / 2 )

= 2040 oz-in (with a 5 Lb. load)

Step 3:
2040)Aj2= 4562/rj2 oz-in

o z" i n

TJ X peak motor speed = TJ2
 a30 RPM

Step 4: Before calculating the gear ratio, it is noted that the effective inertia of motor 2

includes the armature inertia and the non-negligible inertia of the motor-to-gear shaft
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coupling. This shaft is modeled as a 17x3/8 in round steel shaft. Assuming the density of

steel is .28 Ib/in3, the shaft weighs .52 lbs (which is assumed to be included in the net weight

of link 2). Thus,

'shaft = <5mshaftrshaft

= 0.00038 oz-in-sec2

To meet these requirements, ELECTRO-CRAFT 660-E motor is selected (Table 4-4).

lm = 0.032 oz-in-sec2

a = 0.0065 oz-in/rad/sec

Ra = 2.15S

K. = 0.24 volts/rad/sec
D

Kt = 34.19 oz-in/amp

Volts(max) = 43

Weight = 6 Ib. 2 oz. (nri = 0.2552 oz/in/sec2) •
c

length = 5.5
Table 4-4: D. C. Motor E-660

This motor is over-rated for the peak and stall torque requirements, but a smaller motor would

require a significantly larger gear ratio. This motor is chosen to achieve a reasonable gear

ratio, while its added weight serves as a counter-weight.

The link inertia with no load is

D22 = 20.07 oz-in-sec2

and, the nominal link inertia is

(80.27 + 20.07)/2 =

The nominal gear-ratio is

T)2 = (50.17/.0323

and, reduced by 33% is

(80.27 + 20.07)72 = 50.17 oz-in-sec2

= (50.17/.03238)1/2 = 39.36

4.4.4.2. Motor 1 Selection

Step 1:

3̂

and



Step 2:

= 2723 oz-in

Step 3:
T

Deak = < 1 3 3 2 2

T

oz* i n sec2 (at 6 = 45deg)

Step 4:

D!!-no-loadI = 1 6 6 0Z" i n SeC" ( a t ° = 4 5 d e 9 )

thus

To satisfy these requirements, Electro-Craft motor E-701 is selected (Table 4-5).

Kt = 40.77 oz-in/amp
Kb = .288 v/rad/sec

I =0.1 oz-in-sec2

m
am = 0.048 oz-in/rad/sec
Volts(max) = 46.8
Table 4-5: D.C. Motor E-701

The nominal gear ratio is

T)1 = (269/0.1 )1/2 = 51.86

and reducing by 33%
^ = 3 5

4.4.5. Computer Simulation of the Robot Arm

The differential equations (4.14),(4.15),(4.16), and (4.17) define a fourth order coupled

nonlinear dynamic system. The simulation uses the IMSL [IMSL 82] Fortran library routine

"DVERK" to numerically solve these equations. The routine is a sixth order Runge-Kutta

algorithm with an automatic variable integration step size.

To implement the algorithm, the dynamic equations are represented as the system of first-

order differential equations X. = F(Xj, where X1 = [X1 ,X2,X3,X4] are the state-variables. DVERK



produces estimates of X.(t + T. ) from X(t ). In the simulation, T. is set to T/n. (n. = integer)
i o inc o inc K K

to exhibit the output between sampling instants. (The integration step-size is typically much

smaller than T. and is automatically adjusted in DVERK to minimize the estimation error.)
inc

The system is represented in state-variable form according to the following assignments:

Thus,

From (4.14),(4.15),(4.16), and (4.17)

F = D X +D .X +D 9 X9
2 + D (4-19)

"a2

To simplify the notation let

and

a2

where ea is defined in (4.9). Equations (4.18),(4.19),(4.20), and (4.21) become
a

Z " <D22 + l m2^ 2 ) X 4 + D12X2 + D 2 1 1 X
2

2 + D222 + l m2^) X 4 + D12X2 + D 211 X
2
 + D2 <4-23)

Upon solving (4.22) and (4.23) for X2 and X4> the state model is:

X1 = X2 (4.24)

1eu2eu12 U2e

4 (4.26)

^1e^2e 12 W1e

where



D. =

During hierarchical control either links 1 or 2 can be braked. These cases are simulated as

follows:

Case 1: link 1 - free and link 2 - braked

Equations (4.

and

1 ~ m

so that

1 Q.D

x3 = o

x .=o

18) and (4.20) reduce to

(,V
X2

1

Case 2: link 1 -braked and link 2-free

The state-space model becomes

x 1 = o

x2 = o

x3 = X4

• Z D 2

4 D2e

The computer simulation of the robot arm is depicted in Figure 4-11.

4.4.5.1. Linear Model

During initial analysis of IBVS, it is useful to model the arm dynamics as an uncoupled linear

system. The MRAC controller's ability to adjust to the nonlinear feature gains can then be

evaluated independent of the nonlinear dynamics. An uncoupled linear model is obtained by

assuming that all the coupling terms in (4.14) and (4.15) are zero, while Di{ is evaluated at the

operating point. (D. is set to zero since gravity is not modeled in these simulations.)
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DAC

"ma

~~ M

Saturation

DAC

X = F ( X )

(Runge-Kutta)

Saturation

Figu re 4-11: Arm Simulation Block Diagram

Equations (4.14),(4.15),(4.16), and (4.17) reduce to

To apply the linear model routines developed in Section 4.3, the displacement of the ith link,

#., is converted to a motor displacement according to, and 0. = 0 Jr\.
1 1 mi i

ai

The corresponding transfer function Gmj(s), from the applied voltage to the motor shaft, is

where

T

DH-eoRai

and

D.. =1 .-
u-eq mi
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4.5. Modeling Picture Taking and Feature Measurement

In this section, a model for the vision system described in Chapter 2 is developed. The

transduction process (or camera and image) are modeled by defining image transformations

which map 3-dimensional object coordinates into 2-dimensional image points. The image

intensities are assumed to be binary, and image point coordinates are considered to be

analog. Image feature measurements are then derived from the image point coordinates. The

dynamics of the transduction-to-feature extraction process are modeled by a unit delay (i.eM

n = 1 Section 3.3). Various time delay durations, and thus sampling periods T, are simulated

to evaluate the effect of different sampling-to-bandwidth ratios. A measurement noise model

(which can represent transducer quantization, thresholding effects, and lighting noise) is also

included.

4.5.1 . Image Transformations

The camera is modeled by defining a transformation which maps 3-dimensional object

coordinates into 2-dimensional image coordinates. To perform this transformation, the

camera is modeled as a pinhole lens, with an image plane lying at a distance F behind'the

lens [Duda 73]. To produce a non-inverted image, a frontal image plane, defined by [Xcam,Z

„_ 1 is assumed to lie at a distance F in front of the lens. Thus, [Y ] defines the optical axis.
Ccim c«m

This camera model defines the perspective transformation,

T -
n "~H

1
0
0
0

0
1
0

1/F

0
0
1
0

0
0
0
1

For a three-dimensional object point (X |SY |fZ () measured in the camera coordinate frame,

the corresponding two-dimensional image or picture coordinate (X . ,Y . ) is specified by the
pic pic

homogeneous perspective transformation

1
0
0
0

0
1
0

1/F

0
0
1
0

0
0
0
1

Xre«
Yrel
Zre .

1
=

Xre.
Yre.
Zre<

L1+Yre/FJ
Thus,

Xrel

1 + Y r e / F

and



Z . = EBl (4.28)
^ 1+Y r e | /F

The picture points are normalized to the dimensions of the image plane so that the features

(derived in Section 4.5.2.1) are dimensionless. If it is assumed that the image plane (e.g., film,

or ccd chip) is a square with sides of length equal to 'ret'6, then (4.28) becomes

The focal length, F, is adjusted so that the largest object dimension occupies approximately

25 to 33 percent of the image in the desired view. This allows for a margin of motion of the

object within the image during control.

4.5.2. Feature Transformations

Image features are derived from the idealized non-distorted two-dimensional image points

(X . ,Z . ). Image distortions, which can arise from the numerous factors noted in Chapter 2,
pic pic

are difficult to model and vary widely with lighting conditions, transducer resolution and

linearity. These distortions are manifested as measurement noise and limit the system

accuracy, dynamic performance, and relative stability. To evaluate characteristics of IBVS

control under noisy conditions, simulations are performed in Chapter 5 using additive

measurement noise. Noise modeling is included in Section 4.5.2.3.

4.5.2.1. Two-Dimensional Line

Two features are derived for the line in space simulations (for Configurations 1 and 2).

According to the configuration specification, the perceived angle of the line's image remains

constant, and only two features can be obtained from such a binary image:

1. length of line -1 tn; and

2. X center-of-gravity of line - X^,,
COQ

These features are derived as follows. The position of the center of the line (Figure 4-1)

relative to the image plane is (Xf VY j). The end-points of the line (Figure 4-12), measured in

the camera coordinate system, are

In the simulations, ret = 0.25 inches (e.g., approximating the dimension of a typical CCD device such as the
FairchildCCD211).



(4.29)

From (4.28) and (4.29), the perceived line length is

I = X X
ength pic-1 pic-2

4 F l o (F + Y r
a (dimensionless) (4.30)

and, the perceived center-of-gravity is

y , y
X ^ oic-1 "*" Apic-2

cog 2

ret
~2—rM (dimensionless) (4.31)

It remains to calculate Xre(S Yre|, and #rej as a function of the object and robot positions. For

the Cartesian system (Figure 4-1):

X,e,<t>-Xoh|-X(t)

(4.32)

For the articulated arm (Figure 4-2), coordinate transformations are used. The basic

transformation is

where

T2Tcam
Tre,=Tobi

T2 = end of arm relative to world
T = image plane relative to end of arm
Trej = line relative to image plane
Tob. = line relative to world

From (4.33)

Trel ~ Tcam T 2 Tobj (4.34)

T o is specified by the assumptions of Section 4.2.2 to be a rotation about the Z axis of the

arm. Thus,

cam

C12 S12
'S12 C12

0
0

0 0
0 0
1 0
0 1

(4.35)
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Figure 4-12: Line-Image



and

T 1

cam
,2

0
0

0 0
0 0
1 0
0 1

Since T9 is defined in (4.12),

c ] 2 - s 1 2 o
s 1 2 c1 2 o
0 0 1
0 0 0

0
1

Since

Tobj ~

X

0
0

1
0

obj
obi
0

then according to (4.34)

T r e . =
0
0

1
0

2
0
1

Hence

(4.36)

During the simulation experiments, three conditions are evaluated to assure that the derived

features are valid. The conditions determine if the line is:

1. In front of the camera (or image plane);

2. In the field of view; and

3. Not hidden (it is assumed that only one side of the line is visible)

If any of these conditions are violated, then the experiment is terminated. The conditions are

evaluated as follows:

Condition 1: true if (Yn or Y J > 0; else false



Condition 2: true if IXpic_1I or IX jc 2I < ret/2; else false

Condition 3: true if #reJ < arctan(YreJ,Xre|); else false.

4.5.2.2. Polyhedral Objects

(4.37)

The third configuration uses convex polyhedral objects for the control tasks. Each object is

defined by:

1. Labeling it's constituent vertices and identifying their coordinates in the object
coordinate system; and

2. Defining the object planes by assigning to each an ordered listing of the
bounding vertices.

Three objects (a cube, pyramid, and wedge) are shown in Figure 4-13.

Zob j
Z obj

Yobj
( 0 . 0 . 1

( 0 , . 8 6 6 . 0 )

-> x obj

Yobj

(1.1.0)

( - .5 ,0 .0) ( .5 ,0.0) (0.0.0) (1.0.0)

(Units are in inches )

X obj

Figure 4-13: Objects

For each visible object plane, two features are obtained:

1. Perceived area of the i th plane - Area .; and

2. Perceived X center-of-gravity (or centroid) of the i th plane - Xco .

These features are typical of those extracted from binary images, in commercially available

systems, following image segmentation. It has been suggested that such features, which are

based on integral or summation operations, are preferable for visual servoing applications,

since these operations attenuate signal noise [Hasegawa 77], Feature selections, which can

include both linear and nonlinear combinations of the extracted features, are presented in

Chapter 7.

Each object vertex is transformed into the image plane as follows: A point defined in the

object coordinate system is defined by



And it's position relative to the frontal image plane is

rel"~ * rel ' rel' reV '

Then,

(4.38)

V - T « T «V
vrel 't 'obj obj

v/here the homogeneous transformation Tt defines the position of the turntable coordinate

system [Xhi rn,Y tu rn,Zhjm] l relative to the camera's coordinate system [Xcam,Ycani,Zcam]. The

position of the object coordinate system, relative to the turntable coordinate system, is

defined by T fa.. Then, T{ is found by the following transformation:
X,x(t)

T =TRANS[Y,R]«ROT[X,«]«TRANS X,y(t) «ROT[Z,/9(t)]
2,-h

C0(t) S0(t) 0 x(t)
S0(i)Ca C0(i) -Sa y(t)Ca
S0(t)Sa C0(\)S8 Ca y(t)Sa-hCa

0 0 0 1

If the object frame is referenced to the turntable by translations in the X-Y-Z directions

corresponding to (P ,P ,P ) and oriented according to the Euler convention by (<pte,^) [Paul
x y z

81], then

Tobj ~
-SeC<p

0

CcpSe
•S<pCeSip + CcpCxp S<pSe

ScSq? Ce
0 0

Finally, Vre| is mapped into homogeneous image points V via the perspective transformation,

T , according to

V = T
p ' t obj

Hence,

In addition, the image points are normalized to the image plane size ('ret1) according to

:
pic

Once the object planes are mapped into object image planes (by finding the perceived

vertices), the features are calculated. The image plane is either a quadrilateral or triangle

(Figure 4-14). The area and centroid of the triangle are [Kindle 50]



( X 3 Z 3 )

A ( X , , Z t )

D ( X 4 Z 4 )

B ( X z . Z z )

C ( X 3 Z 3 )

and
rea

Xcog ""

X 2 Z 3

Figure 4 - 1 4 : Image Planes

The area of the quadrilateral is given by

rea
X 2 Z 3 + X 3 Z 4

The centroid of the quadrilateral can be determined by the following algorithm [Marks 78]:
The quadrilateral is divided into two sets of triangles by means of the diagonals

(Figure 4-14). Find the centroid of the four triangles belonging to the same set. The
intersection of these lines will be the centroid of area. Thus, in the figure, O, Or

O2, and O3 are, respectively, the centroids of the triangles ABD, ABC, BDC, and
ACD. The intersection of CXCL with O00 give the centroid.



In accordance with the line example, the three conditions in (4.37) are evaluated for each
;thplane, during the simulations, to assure that the features are valid. If the i plane image

th

features are sought, the conditions are:

Condition 1: true if YreJ (for all vertices comprising the i
plane) > 0 ; else false

Condition 2: true if IX . I and IY . ! (for all vertices
picth pic K

comprising the i plane) < ret/2 ; else false
Condition 3: Each object plane is defined

by assigning to it an ordered listing of the bounding
vertices. Specifically, the vertex labels are specified
in a clockwise ordering. In 3-dimensional space, when
two connected edge vectors of a plane, whose head and
tails are defined in a clockwise fashion, are cross
multiplied then the magnitude of the resultant vector
has a positive sense according to the "right-hand"
rule. If the plane containing these edge vectors are
rotated or translated out of the field of view, then the
perceived sense of the original defining vertices
would be counter-clockwise and the vector cross-product
of the perceived edge- vectors would have a negative
sense.

4.5.2.3. Noise Signal Modeling

Single DOF simulation studies (in Chapter 5) include additive feature measurement noise.

The noise signal is modeled as zero-mean white-noise having a uniform random distribution

(Figure 4-15), which is scaled by the factor a to produce a specified signal-to-noise ratio

(SNR).

P(x)

t/o<

-0.5 0.5«<

Figure 4-15: Scaled Distribution

The noise signal, n(k), is generated according to

= a[RAN(k)-.5]

where RAN(k) is the TOPS-20 Fortran library routine which generates independent samples
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from the uniform random distribution: To determine a, the SNR is specified with respect to the

average power of a step function signal:

s2 = (reference signal - initial value)2

Thus,

SNR = 10 log—2 (4-39)

where ax
2 is the variance of the noise, and for a uniform distribution

Hence, for a specified SNR, the scale-factor is

4.6. Summary

In this chapter, visual servoing tasks are defined for evaluation in subsequent chapters.

Mathematical models of robot kinematics and dynamics, picture taking, and feature

transformation, which are required for task simulations, are also developed. The tasks vary

from control of 1 DOF to 3 DOF systems, and are summarized in Table 4-6. The task

configurations are selected to facilitate the IBVS evaulation of progressively complex

dynamics, kinematics, and image feature transformations, and will help to understand the

relative contributions of each to the control issues. While these configurations have limited

degrees-of-freedom, which may be useful for some practical tasks, their models may be

considered representative of more general configurations. It is believed that the results

obtained with these examples may then be applied to more general cases.



Name

Configuration 1

(Figrue 4-1)

Configuration 2

(Figrue 4-2)

Configuration 3

(Figrue 4-3)

Robot Type/Task

*2 DOF with linear uncoupled
dynamics and kinematics
(evaluated in Chapter 6), or
1 POF by constraining motion
to one axis
(evaluated in Chapter 5)

•Control position of a mobile
camera (fixed to robot end-effector)
relative to a fixed line in space

*2 DOF with nonlinear coupled
dynamics and kinematics
(evaluated in Chapter 6)

•Control position of a mobile
camera (fixed to robot end-effector)
relative to a fixed line in space

*3 OOF with linear uncoupled
dynamics, and a combination of 2
planar Cartesian with 1 rotational
[)0F

•Control position of a mobile
polyhedral object (fixed to robot)
relative to a stationary camera

Model Derivation

Configuration Definition: Section 4.2.1

Robot Model: Section 4.3.2

Feature Measurement: Sections 4.5.1,
4.5,2, and 4.5,2.1

Configuration Definition: Section 4.2.2

Robot Model: Section 4.4

Feature Measurement: Sections 4.5.1,
4.5.2. and 4.5.2.1

Configuration Definition: Section 4.2.3

Robot Model: Section 4.3

Feature Measurement: Sections 4.5,1 ,
4.5,2. and 4.5.2.2

Table 4-6: Configuration Summary



Chapter 5
Evaluation: One DOF Systems

5.1. Overview

The purpose of this chapter is to evaluate SP MRAC adaptive control of one DOF linear and

nonlinear systems. The evaluation analyzes examples which are relevant to the two and three

DOF visual servoing tasks evaluated in Chapters 6 and 7. While single DOF IBVS systems may

be useful for specific robotic applications, these results serve to help understand MRAC

control of nonlinear IBVS systems, and as a guideline for implementing and evaluating higher

degree-of-freedom systems required for visual servo control.

The chapter is organized as follows. In Section 5.2, MRAC is introduced for the control of a

simple motor positioning system. These examples are then used for:

• Verification of the basic FP and SP MRAC algorithms developed by Morris and
Neuman [Neuman 80] for constant linear systems, and

• Verification of the algorithms which include a measurement delay (Section 3.3)

In Section 5.3, IBVS feature feedback is introduced, and

• Extends SP MRAC control, with delay, to include a constant feature sensitivity
gain, and

• Demonstrates the superior noise filtering performance of the fixed LMFC
controller relative to MRAC control.

In Section 5.4, control is extended to include a nonlinear feature sensitivity gain, and

© Demonstrates the stability of SP MRAC control for this nonlinear system,

• Evaluates position response when the controlled signal is nonlinearly related to
position, and

• Includes a performance comparison of MRAC vs. Fixed LMFC control, which
demonstrates superiority of the adaptive approach at smaller system bandwidth's
and the superiority of the fixed approach at smaller sampling-to-bandwidth ratios.



5.2. Baseline MRAC

The purpose of this section is to verify the SP and FP MRAC algorithms (derived in Chapter

3), for systems with and without measurement delay, by simulating a simple motor positioning

control task. The position of the Y-translational stage (Figure 4-7), which is measured

directly, is the variable under control. The examples included in this section focus on the SP

MRAC, since this controller is used for aH subsequent IBVS control. While the FP MRAC

exhibits faster tracking of the reference signal (without a delay), the SP MRAC is selected for

IBVS control for the following reasons:

1. Relative to the FP reference model, a SP reference model reduces the high
frequency gain of the feedback path, reducing the noise amplification.

2. In contrast to the FP MRAC's deadbeat response characteristic to recovery from
control signal saturation, the SP MRAC is not susceptible to deadbeat.

3. While the relative stability of the FP MRAC is susceptible to control signal
saturation, the SP MRAC is not as sensitive.

4. The SP MRAC requires a smaller control penalty with measurement delay.

The Y-translational stage dynamics represent a constant linear SISO system. For this type of

system, the MRAC algorithms are verified by showing that the identifier (3.4), (3.5), and

(3.6) can perfectly identify the plant parameters, and by showing that:

1. For FP MRAC, without measurement delay, there is perfect modeling following,
when e|D(k) = 0, according to (A.14). It is also verified that relative stability with
this type of control is susceptible to control signal saturation.

2. For SP MRAC, without measurement delay, the FP error is a filtered identification
error according to (A.23). Slower tracking of the reference model occurs when
identification errors exist. The SP MRAC, however, is not as sensitive to
saturation.

3o For FP MRAC, with measurement delay, a control penalty is required for absolute
stability according to the root-locus analysis in Figure 3-6.

4. For SP MRAC (with measurement delay), a control penalty is required for relative
stability according to the root-locus analysis shown in Figure 3-8.

The discrete open-loop plant model is calculated below for comparison with the parameters

estimated by the identifier. The open-loop system gain (in Figure 4-7) is

K = K • *SF = K = (26.58) ( )(100) = 60.43
m

 2TTP
 V27r7y



when the scale factor SF (Section 3.6.3) is set equal to 100. The analog model (4.5) of the

process under control becomes

60.43
G(s)=-

s(.072s+1)

and the corresponding discrete model of is

where

a^i+e"1 7 7" ; T = .O72
a^-e^
b1 = -(Kr2)(1-T/r-e"T/T) ; K = 60.43
b2= (KT2)(1-e-T/T-T/re"T/r)

Since the plant dynamics has real poles (i.e., at z= 1 and z = .632), there is no upper-bound

constraint on the sampling period selection. The sample period is selected as T = 0.033 (sec)

to correspond to the period used in initial IBVS simulations. For this sampling period, the

actual parameter vector (A. 10) becomes

£[=[.3945 .3387 1.63235 -,63235]T

5.2.1 . MRAC Without Measurement Delay

In the first set of experiments, the MRAC algorithm for systems without delay (i.e., nd = 0) is

verified. The controller parameters, listed below, are empirically selected (according to the

guidelines in Section 3.6) and the controller algorithm is implemented according to:

1. Control signal (A.12).

2. The identifier, (A.15),(A,16), and (A.17), uses second order-estimators (i.e., for a
second-order plant) with a weighting factor \ = 0.85 . In the first trial of each
experiment, the estimated parameter vector is initialized to

j8(0) = [1010 1.1 -.1]T

which represents large gains and fast poles so that the system is not forced to
start out too fast, causing overshoot. The adaptive gain matrix is initialized to

P(0) = DIAG[10 10 80 80]
and reset with a threshold of

A

Each experiment is repealed, for a second trial, with £(0) and P(0) initialized to
the steady-state values of /? and P learned in the first trial.
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3. SP reference model (A.22). The reference model bandwidth, or the closed-loop
system bandwidth, is specified by (3.29). With a performance margin PM = 10
(Section 3.6.2.2), the bandwidth is

= 9.52 sec'1n 10T

This bandwidth corresponds to a rise-time tr = .7 (sec) according to (3.26), and a
sampling-to-bandwidth ratio of fs

/fBW
 = 2 0 according to (3.28)= The open-loop

reference model time constant, Tmodej = 0.048, is chosen to achieve this
bandwidth according to the methods outlined in Section 3.6.1. Discrete model
parameters are then generated according to the method outlined in Appendix A.

The unit-step response of the SP MRAC is displayed in Figure 5-1. In the first trial, the

identification error goes to zero in .4 sec. Unlike an FP MRAC, the FP error does not

immediately go to zero due to the model filtering effect predicted by (A.23). In the second

trial, e..(k)~G for all k, which results in perfect model following. The estimated parameter

vector, at the end of the first trial, does not correspond to the actual vector This can be

expected since the control signal may not be sufficiently rich in frequency content [Yuan 77]

to identify a physical model. However, by at the end of the second trial there is perfect

parameter identification. While saturation does not occur in this experiment, the examples in

subsequent sections, which exhibit saturation, do not display the deadbeat response

associated with an FP MRAC.

The simulations verify the the baseline MRAC algorithms. The next section includes an

evaluation of these algorithms extended to include a measurement delay.

5.2.2. MRAC With Measurement Delay

In this section, a measurement delay is included by setting nd = 1. The controller is

implemented according to:

1. Control signal (3.10).

2. The identifier, (3.4),(3.5), and (3.6), is initialized as in Section 5.2.1.

3. SP reference models (A.22). The reference model bandwidth remains at <o = 9.52
sec"1. The open-loop reference model time constant becomes Tmodel = 0.036
according to the methods outlined in Section 3.6.1. And, the discrete model
parameters are generated according to the methods outlined in Section 3.3.3.

4. Control penalty (3.12). (The controller pole bound, y, will be specified for each
experiment).
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The root-locus in Figure 3-8 predicts that the SP MRAC should be stable for all 7r(k). In the

simulation displayed in Figure 5-2, the controller pole bound is initially set to y = 1 . After the

initial learning trial, the system responds with a rise-time .7 (sec), with a decaying small

amplitude oscillation superimposed. By the end of this trial there is perfect identification.
A A

Since Ib2/b1l<y , then 7r(k) = 1, and the dominant closed-loop poles at (.099±.931j) predict

the observed asymptotic oscillation frequency. Since the angle between the poles and the real

axis is

then these poles correspond to a frequency of

tan'1 (.931/.099)
f 12TTT

= 7 Hz.

The magnitude of oscillation can be attenuated by decreasing the pole bound to y ~ 0.8 , thus

increasing the control penalty. The oscillation is suppressed at the expense of a larger

rise-time, t r~0.8 (sec). While increasing control penalty improves stability, it produces results

equivalent to reducing the system bandwidth, and leads to larger tracking errors.

These experiments summarized here verify the basic SP and FP MRAC algorithms by

demonstrating adaptive control of a simple positioning system. While fixed controllers can be

designed for this system, based on a'priori knowledge of the plant, the adaptive controller

required minimal a'priori information. Next, the SP MRAC is extended to control a linear

image-based system. The SP MRAC is selected for IBVS control since it is less susceptible to

saturation and noise, and requires smaller control penalties required for measurement delays.

5.3. Linear IBVS

One DOF IBVS systems are simulated using Configuration 1 (Figure 4-1), and restricting

relative motion to either the X or Y directions. When motion is in the X direction, either the

length (4.30) or center-of-gravity (4.31) features can be used for control. For each case, the

feature sensitivity sealer, Jf , becomes either

Yre|)
2-(losin0rel)

2

or

rel /g 2)
Yrel)

2-(losin0rel)
2

If #re| = 0 or 77 radians, then 9'enc th/3X re | = ° a n d (5.2) degenerates to zero. The center-of-
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Figure 5-2: SP MR AC With Measurement Delay



gravity feature is thus selected for one DOF control of the X-axis. Since this system has linear

kinematics and the camera is mounted with the image plane's axis parallel to the translational

stage axis, the arm jacobian sealer is J = 1. The sensitivity (2.7) becomes
arm

J = " Jarm Jfeat = " Jfeat

Since J fea t is independent of Xfe|I the system under control is linear. The discrete open-loop

model parameters are obtained from Section 5.2 by including the feature sensitivity J in the

gain K:

1
K = JK

m
• S F

The value selected for SF depends upon the sampling-period and the feature sensitivity

magnitudes (since the discrete gains decrease with sampling-period and sensitivity). For all

IBVS examples in Chapters 5 and 6, the scale factors are empirically determined to be:
SFT=.033
SFT=.013 = 5 0 0 0

SFT=.003 = 1 0 0 0 0

The SP MR AC control parameters are initialized according to Table 5-1.

T(sec)

0 .033

0.013

0.003

P ( 0 ) PThresh .£(0)

Diag [10

Diag [

Diag [.1

10

1 1

. 1 .

80

1

01

8 0 ]

1]

.01]

2500

100

10

[±10

[±1

[±1

•tio

hi

•hi

1.

1.

»•

1

5

5

- 0 . 1 ] T

- 0 . 5 ] T

- 0 . 5 ] T

Table 5-1: Identifier Parameter Initialization (1 BOF)

In Table 5-1, the initial estimated parameter vectors, £(0), represent large gains and fast

poles so that the system is not forced to start out too fast. In practice, more accurate initial

guesses can be made to achieve faster convergence of the identifier. As T decreases, the

gain terms {b.J decrease, and open-loop poles move closer to the unit circle. The initial

estimated parameter vector is varied with T to reflect these changes. In the initial
A A

experiments, the the estimated gain terms {b1(O),b2(O)}5 are initialized to the incorrect sign to

demonstrate MRAC sign sensitivity. This sensitivity becomes an important aspect of

independent MRAC control of coupled systems, and is discussed in Chapter 6, When

Y = 0.85, the linear IBVS systems still exhibit a decaying very low amplitude and frequency



oscillation. By further reducing the controller pole bound to y = 0.65, a smoother response is

obtained.

In the simulations presented in this section, the sampling period is set to T = 0.033 (sec), and

the specified close-loop bandwidth remains <on = 9.53 sec"1, so that the sampling-to-

bandwidth ratio is fs/fBW = 20. Two control tasks, labeled Tasks A and B in Figure 5-3,

represent time-invariant linear IBVS systems.

Q r - 1 = 45

( 0 . 0 )

Desi red
Position

(.5,0) (5,0)

(F=36mm) (F=5mm)

Figure 5-3: Linear Time-Invariant Tasks

For each task, a picture is taken when the camera is in the desired position and the extracted

Xco feature value is used as the reference step-input. The simulation of Task A is displayed

in Figure 5-4. The FP output and identification errors are expressed in terms of the scaled

feature. For this configuration, the actual parameter vector is

& = [-3.8984 -3.4550 1.6958 -.6958]

when T = 0,033, r = 0.091, and J = -0.4849 . In the initial trial, b,(0) = bo(0) =+10, and the

system-starts off in the wrong direction due to the incorrect sign of the initial estimated gain

terms. As the system learns, the estimated gain becomes negative and the table reverses

direction. After this learning trial, the system starts out in the correct direction in the second

trial. By the end of the second trial, the estimated parameter vector equals the actual

parameter vector. The system rise-time has increased to tr = .9 (sec), and there is a larger FP

output error due to the increased control penalty. The sensitivity of the MRAC controller to
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the sign of the gain term is an important aspect of adaptive control. For SISO control of

multi-DOF systems, it is shown in Chapter 6 that sign sensitivity can degrade path trajectory

response.

Task B is specified to force control signal saturation resulting from the longer distance that

must be traveled. The position response and control signals are displayed in Figure 5-5.

5.0

4.0

3.0

2.0

1.0

.0

1sj trial (from TASK A)
2nd t r i a l

1.0 1.5 2.0 2.5 3.0
time

§ -5.0
o -10.0
^ -15.0
S -20.0
*S -25.0

-30.0
-35.0

.5 2.0 2.5 3.0
time

1.0 1.5

1BVS.TASKB

Figu re 5-5: IBVS with Control Signal Saturation

The camera focal length, F, is reduced so that the line does not go out of field of view (OFV).

Therefore, the feature sensitivity is reduced to 3Xcog/3Xre, = -0.0773, thus decreasing the

plant gain. The first trial uses parameter and adaptive gain values initialized to the values

learned from the Task A simulation. While there is control signal saturation, no deadbeat

response results. This experiment demonstrates the ability for the same adaptive controller to

operate equally well with different plant sensitivities.



5.3.1. Noise Performance: Fixed vs. Adaptive Control

A potential drawback of any identification and feedback control strategy is susceptibility to

measurement noise. The control algorithm and measurement system must be designed to

reduce noise. Fixed controllers are inherently less susceptible since they do not include

on-line identification. In computerized vision measurement systems, image pre-processing

becomes the primary mechanism for noise reduction. Post-processing, or filtering, of the

estimated positions or features may be required for further noise reduction. The MRAC

algorithm provides inherent means for minimizing noise effects. Morris [Morris 79] has

demonstrated that:

• The SP reference model has superior noise performance, relative to the FP
reference model.

• The control penalty enhancement attenuates the gain of the feedback path, and
thus noise amplification.

• The gain of the feedback path can be further attenuated by reducing the closed-
loop system bandwidth (i.e., by specifying a slower reference model).

• The least-squares weighting factor \ provides a noise filtering effect for the
estimation process.

In the next series of experiments, the relative noise performance of the LMFC and MRAC are

compared for two values of A. Fixed controllers are implemented by fixing the gains of the

MRAC controller, and turning-off the adjustment mechanism. Fixed gain values are derived

by fixing the estimated parameter vector to the actual parameter values.

Task A (Figure 5-3) is simulated with added measurement noise. The focal length has been

reduced, to F = 25 (mm), to keep the line in the field of view when smaller SNRs are used.

Noise performance is evaluated at five noise levels, including infinity (i.e., no noise), 80, 60,

44, and 30 dB. For example, the SNR = 44 dB corresponds to quantization noise due to pixel

resolution for a 512 X 512 CCD array without further pre-processing. For each SNR, an

experiment consists of five trials. The first two correspond to successive adaptive trials with

A = 0.85, the next two correspond to A = 1, and the final trial corresponds to a fixed LMFC with

the estimated parameter vector set equal to the actual parameters:

£(k)<-£= [-2.88458 -2.55645 1.69584 -.69584]T

Each trial uses the same noise sequence. The simulation results are shown in Figures 5-6 and



5-7 for noise levels of 44 and 30 db, respectively. The X-stage starts off in the wrong
A

direction, for SNR = 30 db and X = 0.85, since the estimated gain b1 term is positive at the end

of the first trial. At 20 dB, the line would not stay in the field of view.
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Figure 5-6: MRAC vs. LMFC Noise Performance (SNR -44db)

The relative noise performance is evaluated by defining the error index (E) according to

which is a measure of steady-state error7. The error-index vs. SNR is plotted in Figure 5-8 for

the second learning trial at each \ . The fixed controller, which exhibits a performance which

is linearly related to the noise level, performs better than the MRAC controller when \ = 0,85 .

When X = 1, the LMFC and MRAC have similar performance. However, X is set to less than

one when controlling the nonlinear systems described in the following sections. While other

approaches have been noted for noise reduction, such as larger control penalties and smaller

bandwidths, it appears that independent noise filters, operating on the measurement signals,

would be required to achieve suitable responses, at lower SNRs.

Without noise, the full-parallel error is essentially zero after 2 seconds. The error index, E, is thus calculated for
kT>2 sec, so that that E, calculated without noise, approaches minus infinity, and is the reference level



~s .9
c .8
^ .7
5 -6
x .5

.4

.3

.2

.1

.0
-.1 1.0

— 2ncj adaptive trial (\ = .B5)
- 2ncj adaptive trial (\ = 1.)
- fixed

1.5 2.0 2.5

<D
100.0

.0
o -100.0
\ -200.0
^ -3OO.O
U. -400.0
W -500.0
* -600.0
O-700.0

IBVS:TaskA
Figure 5-7: MRAC vs. LMFC Noise Performance (SMR = 30db)

no noise
o o adaptive (\ = 1.)
A — A adaptive (\ ~ .85)
o G fixed

Figure 5-8: Error Index vs. SNR



5.4. Nonlinear IBVS

When motion is restricted to the Y direction, the sensitivity J fea t become

3Y ~ ret

and

3Xcoa 4F

When Xre| = 0 and 0rel = O, then 3Xcog/3Yre| =0 and (5.4) is degenerate. Therefore, length is

chosen as the feature for depth control. Since J fea t is a function of YreJ, the system under

control has linear dynamics and nonlinear gains. For example, in Figure 5-9, the camera

moves along a trajectory specified by Task The corresponding feature transformation, (5.4),

and the corresponding feature sensitivity, (3'ength/3Y), are plotted in Figure 5-10 for various

values of line angle (0Qbj). These plots demonstrate that the gains can change rapidly and

dramatically, especially as the camera approaches the object. For these systems, stable

adaptive performance is expected (if the identifier is fast enough to track the gain changes),

with responses similar to the linear cases, with the following exceptions:

• Since the variable under control, feature length, is nonlinearly related to the plant
variable, Y, the time response of Y does not match the time response of the
feature.

• Since the process under control is nonlinear, there is no reason to expect that the
estimated plant parameters will converge to the to the physical parameters.

• Larger values of sampling-to-bandwidth ratios and smaller values of \ will be
required to track time-varying gain terms.

To study the behavior of these systems, the simulations of Tasks C and D (Figure 5-9) are

repeated for various values of 0Qbj. Tasks are simulated in both the approach direction (i.e.,

camera approaches the line as indicated by the arrow in Figure 5-9), and in the backing away

trajectory. Task C represents a relatively small motion task, with a sensitivity that changes by a

factor of 2.2 over the trajectory. Task D represents a large motion trajectory, with sensitivity

that changes by a factor of 90. With respect to the identifier requirements, both cases can be

considered as extreme examples because the gains change very rapidly as the camera comes
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in close proximity with the line. If the tasks had been specified so that the camera were

further away from the line, but with a larger focal length (F) to increase the magnification, the

sensitivity changes would not be as large. The relationship between the sensitivity and the

focal length and relative distance (Yfe|) is given by (5.4). For example, with #rej = 0, (5.4) is

9 U t h . _.
9Yre, '

As F and Yre| increase, the sensitivity decreases.

(5.6)

For the initial studies, the SP MRAC is implemented according to the aforementioned linear

examples (Section 5.2.2), with A = 0.85, <on = 9.5 sec*1, and T = 0.033 . The following

observations emerge from specific simulation studies. In all simulations, the performance is
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Figure 5-10: Task D Feature Characteristics

stable and the steady-state identification error goes to zero. Transient identification errors

always remain. Both type 0 and type I estimated plants result. Since type 0 plants may be

estimated, a signal bias (Section 3.4.1) must be used to the reduce steady-state errors to zero.

When type I plants are estimated, the estimated poles do not match the actual poles. In many

cases, non-minimum phase zeros are estimated. Thus, a control penalty is required,

irrespective of the penalty required for feedback delay.

As the least squares weighting factor \ is reduced, the controller becomes too sensitive to

tracking rapidly changing gains, especially for tasks where the camera approaches the object

over large distances. The controller tries to decelerate too quickly as it estimates rapidly

increasing gains. This can cause temporary reversal of table direction. Conversely, as X

increases, smoother responses result, but with possibly small underdamped target overshoots

and longer settling times. The author has found that the value \ = .85 provides an acceptable

tradeoff. In applications where small overshoots can be tolerated, larger values can be used.

However, the most effective way to track rapidly changing parameters is to increase the

sampling-to-bandwidth ratio.

When the feature signal is nonlinearly related to position (e.g., Tasks C or D), the feature

and position lime responses will be different. Since control of position is the goal, it is

important to understand the relationship between position and feature time-domain
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responses. To investigate this relationship, the the time response of forward and reverse

trajectories are analyzed below, since the observed responses exhibit the following

interesting relationships:

1. When approaching the object, feature rise-times are smaller than feature rise-
times when backing away from the object.

2. When approaching the object, position rise-times are less than the corresponding
feature rise-times.

3. When backing away from the object, position rise-times are greater than the
corresponding feature rise-times.

4. Consequently the position rise-times associated with approach trajectories are
smaller than the backing away position rise-times.

The explanation for these observations are discussed in conjunction with the specific

examples which follow.

First, Task C is simulated with 6Qb. =45 degrees. The response, which is displayed in Figure

5-11, includes the initial and subsequent trials in the forward direction. The third trial, which is

in the opposite direction, uses the estimated parameter vector and adaptive gain matrix

initialized to values learned from the second trial. The rise times for this example are
Approach Feature Rise-Time: t ~ 0.9 sec (2nd trial)
Backaway Feature Rise-Time: tr = 1.5 sec
Approach Position Rise-Time: tr = 0.83 sec (2nd trial)
Backaway Position Rise-Time: tr = 1.55 sec

Since the feature signal is controlled directly, it is expected that the approach and backing

away feature rise-times would be identical. In the approach trajectory, the feature rise-time

matches that of the linear IBVS example Task A, however in backing away, the rise-time is

much larger. The explanation for these results requires evaluation of the gain change with

time. The gain change, dJ/dt, which must be tracked by the identifier, is evaluated according

to

dJ 3J dY

dt 3Y dt
(5.7)

where 3J/9Y is the second derivative of the feature transformation (5.4). The gain change

(5.7) for Task C is plotted in Figure 5-12 for both approach and reverse trajectories. The

maximum rate of gain change is larger when backing away since the camera starts in a region

where 3J/3Y is large, and during the initial part of the critically damped feature response

dY/dt is large. Upon approaching the line, the initial 3J/3Y is smaller, and during the final
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part of the trajectory dY/dt decreases. Since dJ/dt is larger for backing away, the transient

identification error is larger during the time when most of the motion occurs. A longer time is

required to recover from identification tracking errors, and the rise time increases.

Analysis of the relationship between feature and position response follow. It is shown below

that the predicted position approach times (i.e., the response that would occur for perfect

model following, or epp(k) = 0.0 for all k) are smaller than in a reverse trajectory, irrespective of

tracking errors due to sensitivity changes. While this analysis provides insight into IBVS, it

may have potential implications for task planning to minimize cycle times. To derive the

position signal as a function of the feature signal, the expression for the length feature

(4.30) is solved for YreJ, with Xrej = 0:

<4 F]2-(4 F SF cos F] -(ret length sin 0J = 0 (5.8)

For each sampling period, (5.8) is solved for YreJ(k) as a function of the length feature

reference model signal 'enqth_ref(k). This analysis is used to predict the position response if

perfect model following were achieved. (Actual response will lag behind the predicted

response due to control penalties, transient identification errors, and possibly control signal

saturation). From (5.8) for Task C, the predicted position rise-time in a forward trajectory is

0.69 seconds, and 0.79 seconds in the reverse direction. While the position excursion is the



same, the sensitivity change differences account for the position time response differences.

These predicted results are explained as follows. The position approach rise-time is smaller

than the corresponding feature rise-time since 3Y/3lenf th decreases as the camera

approaches the line. Thus, Y can be close to it's final value, while the length feature can

change by larger amounts to reach to it's final value. Upon backing away from the object,

3Y/3len th increases, and larger changes in Y are required for the same changes in the length

feature.

The effect of the sampling-to-bandwidth ratio fs/fBW on system performance is evaluated

below. Task C is simulated for 9 . varying between 0 and 80 degrees, using a sampling-to-

bandwidth ratio of f</fBW~2(^ (which is the same value used for the linear IBVS control in

Section 5.3). The simulations all exhibit good stability, and the approach position rise-times

remain essentially constant (tr = .83 sec), while the feature rise-times increase with increasing

^ob* M°ti°n s o v e r ' a r 9 e r distances, and thus larger gain change, require larger sampling-to-

bandwidth ratios to achieve equivalent performance. Performance with movement over a

distance of 18 inches, represented by Task D (Figure 5-9), is displayed in Figure 5-13. Rise-

times become larger because of control signal saturation. The oscillation in position is due to

larger identification errors, as a result of larger gain changes (Figure 5-10). It was noted, at

the outset of this section, that decreasing X to reduce eJD makes the system too sensitive to

the rapidly changing gains. An effective means to smooth this response is to increase the

sampling-to-bandwidth ratio. For example, Figure 5-14 compares the response for three

ratios, which are varied by fixing the bandwidth at wn = 9.5 sec'1, and changing the sampling

period according to

1. T = 0.033 (fs/fBW = 20)

2.T = 0.013(fs/fBW = 50)

Overall time responses are comparable, but become smoother as the sampling-to-bandwidth

ratio increases. At the highest ratio, the identification error becomes negligible, in the next

section, it is shown that an advantage of fixed control is that it can exhibit superior stability at

the lower ratios.



20.0
18.0
16.0
14.0
12.0
10.0
8.0
6.0
4.0
2.0

.0

— • 1st trail (forward)
. . - - • 2ncj trial (forward)
- — 3r(j trial (reverse)

1.0 1.5 2.0 2.5 3.0
time

4O.O
3O.O
2O.O
10.0

.0
-10.0

-20.0

-30.0

-40.0

2.0 2.5 3.0
time

60.0
40.0

) 2O.O
.0

-20.0
-4O.O
-60.0
-80.0

-100.0
-120.0

»• 1

• • r

- 4ifL -5 1
w v i\Jr 2.if HJ

0 2. 5 3
time

600.0
5OO.O
400.0
300.0
200.0
100.0

.0
-100.0
-200.0
-300.0
-400.0

IBVS: TASK D

Figure 5-13: IBVS With Large Gain Changes



~s 20.0
c 18.0
^ 16.0
3 14.0
* 12.0

10.0
8.0
6.0
4.0
2.0

.0

yY
yY/Y//^/ Y

YyY

f /f — °n

fs
/ f BW = 5 0

VfBW = 220

.5 f .O 2^0 2.5
f/me

^ 3000.0

^ 2500.0

$2000.0

? 1500.0

1000.0

500.0

.0

• • .-*"

1.0 1.5 2.0 2.5 3.0
time

5

60.0
4O.O
2O.O

.0
-20.0
-40.0
-60.0
-80.0

-1OO.O
-120.0

f . 5 2 . 0 2 . 5 3.0
time

-200.C .5 1.0 1.5 2.0 2.5 3.0
time

IBVS: TASK D

Figu re 5-14: IBVS With Varying Sampting-to-Bandwidth Ratios



144

5.4.1. Adaptive Control Vs. Fixed

A performance comparison of adaptive versus fixed control, for the nonlinear IBVS system,

is presented here. Fixed controllers are implemented by fixing the gains of the MRAC
A

controller. Fixed gain values are derived from the estimated parameter values (i which are

identified from initial adaptive learning trials. The studies include the effects of varying the

range of motion (and thus the change in feature gain), bandwidth, sampling-to-bandwidth

ratio, and the strategy for initial model parameter estimation. The results of these experiments

suggests the following:
* For a specific task, and at a sufficiently large bandwidth, a fixed controller can be

tuned to achieve a time response comparable to the adaptive controller. As the
bandwidth decreases, fixed control performance becomes sluggish relative to the
adaptive response.

• A fixed controller tuned for a specific task cannot perform as well for another
task. Adaptive controllers can perform well over a wide range of tasks,

• Fixed control performance is smoother than adaptive performance (i.e., improved
stability) at lower sampling-to-bandwidth ratios.

Each task in Figure 5-9, including tasks at intermediate distances, are simulated at two

reference model bandwiclths; wn = 9.5 sec°1 and con-4.4 sec"1. In both cases, the sampling

period is set to T-0.033 (sec). For each task, at each bandwidth, three control modes are

evaluated:

1. Adaptive;
A

2. Fixed Control; where /? is fixed to the values learned in the initial adaptive run;
and

A

3. Fixed Control; where £ is fixed to the values learned from adaptive control of Task
C.

Task performance, which is summarized in Figures 5-15 and 5-16, is evaluated by the

measured position rise-times. At the higher bandwidth, the adaptive controller and the fixed
A

controller (with /£ learned over the entire trajectory) have comparable performance. When the

fixed system is tuned for a high gain region (i.e., Task C), it performs sluggishly when required

to track gain changes in lower gain regions. Other initial learning strategies are possible.

However, if learning is biased to the low gain region, the fixed controller becomes

underdamped, and possibly unstable, as it approaches the target. At the lower bandwidth,

fixed control performance degrades, relative to adaptive control, as AJ increases. One of the
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primary purposes for using feedback control is to reduce the sensitivity of a closed-loop

system to open-loop parameter variations. This sensitivity, to the closed-loop bandwidth, is



explained as follows. A plant KW(z ) is controlled with a fixed feedback controller (Figure

5-17), where the gain term, K, varies with time. The feedback compensators are C(z'1) and

Figure 5-17: Fixed Feedback Control

The closed-loop transfer function, M(z"1),

C(z"1)KW(z"1)
(5.9)

UC(z"1)H(z1)KW(z"1)

is the same form as the LMFC represented in Figure 3-7. Over the frequency range of interest,

the transfer function (5.9) approaches

1
M(z*1)- V'1) (5.10)

independent of the plant gain. Therefore, as the closed-loop bandwidth increases, the system

becomes less sensitive to gain variations [Kuo 82],

At the higher bandwidth (Figure 5-15), the adaptive response degrades as AJ and the

distance traveled increase, as a result of control signal saturation and larger transient

identification errors. At the lower bandwidth (Figure 5-16), the adaptive performance remains

essentially constant because the sampling-to-bandwidth ratio has increased, thus reducing

e]D(k), and because saturation is reduced for the smaller required velocities.

At the outset of this section, it is noted that, for small excursions and relatively small

changes-in J, the adaptive response is smooth. As the distance traveled increases, and AJ

increases, small oscillations result unless fs/fBW is increased. Fixed control results in a

smooth response even at the lower fs/fBW ratios. For example, Figure 5-18 compares the

adaptive versus fixed responses for Task D, with T = 0.033 sec. and con = 9.5 sec*1. An



advantage of fixed control is that it exhibits superior stability at lower sampiingto-bandwidth

ratios. This becomes an important consideration when the hardware used in an actual

implementation constrains the sampling period.
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5.5. Summary

The experiments included in this chapter verify the simulation of the fviRAC adaptive

controllers (Chapter 3), for SISO systems. The SP MRAC is selected for IBVS control since it

less sensitive to control signal saturation, has improved relative stability with measurement

delays, and has superior noise performance.

The analysis shows that for IBVS control, the system under control exhibits nonlinear open-

loop gains (or sensitivities) which can change dramatically over the task trajectory, A

contribution of this dissertation is that MRAC control of such nonlinear systems (with

measurement delay) produce dynamically stable closed-loop systems, in simulation, without

directly interpreting actual positions. Achievement of acceptable stability then requires

attention to the following details:

1. A least squares weighting factor of A = 0.85 provides a suitable trade-off between
tracking feature sensitivity changes and over-reaction to those changes. Larger
values may be used to improve noise response.

2. The sampling-to-bandwidth, fs/fBW ratio must be selected in terms of the
magnitude and slope of feature sensitivity change. For example, as the required
distance of travel increases, larger sensitivity changes result, which require larger
ratios. While fs/fBw~2Q is suitable for a small motion task (e.g., with a 1 inch
travel, where the sensitivity changes by a factor of 2.2), the ratio must be
increased to f / f R W -50 for an 18 inch excursion task, in which the sensitivity
changes by a factor of 90. The specific sampling-to-bandwidth ratios also depend
on the features used for control and relative object orientations.



3. A controller pole bound of y = 0.65 is suitable for damping out oscillations due to
measurement delays. The control penalty is also required for stability since the
identifier can estimate non-minimum phase zeros arising from the nonlinear gain
terms.

It is straightforward to design a fixed control law for a linear system when the control

engineer has detailed knowledge of the open-loop system. The adaptive controller is

implemented with minimal a'priori knowledge. When the plant is nonlinear, or has unknown

parameters (e.g., for the 'teach-by-showing' strategy), it is a formedable engineering task to

design a suitable fixed control law. A contribution of this dissertation is to evaluate an

approach for implementing fixed controllers for such nonlinear system. The steady-state

estimated plant parameters, derived by MRAC control, are used to specify a fixed LMFC

controller. Comparison of the adaptive and fixed control approaches suggests the following:

1. While the stabity of an adaptive controller is highly susceptible to measurement
noise, especially as A decreases, a fixed controller exhibits superior noise
performance.

2. A fixed controller exhibits a better transient response than the MRAC as the
sampling-to-bandwidth ratio decreases. An adaptive approach has superior time
responses at lower closed-loop bandwidths.

3= A fixed controller tuned for one task may not be suitable for another task. A single
adaptive controller can be suitable for many tasks.

The following chapter extends the evaluation of adaptive MRAC and fixed LMFC to the

independent control of multiple DOF coupled systems.



Chapter 6
Evaluation: Two DOF Systems

6.1. Overview

This chapter Includes an evaluation for IBVS control of both linear and nonlinear kinematic

two DOF configurations. The linear kinematic configuration (Section 4.2.1) is modeled with

uncoupled linear robot dynamics. The kinematic structure of this configuration is uncoupled

in a Cartesian frame, permiting the camera to be mounted so that the robot's degrees-of-

freedom coincide with the camera's reference frame (i.e., the translational X and Y axes are

parallel to the image plane's frame of reference). The articulated arm configuration (Section

4.2) displays nonlinear and coupled kinematics and dynamics. In this configuration, the

articulated degrees-of-freedom (i.e., 0 x and #2) are nonlinearly related to the camera's frame.

Because of the kinematic and dynamic distinctions, these configurations are evaluated

separately. While the evaluations focus en image-based control, enhanced SP MRAC joint-

level control of the nonlinear dynamic robot is also evaluated.

The chapter is divided into two parts. The first part (Section 6.2) includes the evaluation of

the linear kinematic configuration. In the second part (Section 6.4), the nonlinear and coupled

kinematic and dynamic configuration is evaluated, along with the enhanced SP MRAC joint-

level controller. (The controller parameters are summarized in Appendix C.) The evaluations

include an analysis of the sensitivity matricies, and compare the control system performance

of both uncoupled £idaptive and fixed controllers. Potential performance advantages of a

coupled controller are suggested by isolating specific problems associated with independent

control.

The chapter includes detailed explainations and interpretations of the responses observed

in the simulations. The predominant observations are:

o Adaptive IBVS control achieves dynamically stable systems for both
configurations. The system performance exhibits good transient response, and
zero steady-state errors. This performance is achieved without explicit a'priori



« For these two degree-of-freedom systems, predicted paths (i.e., those paths
which would result if perfect feature reference model following were achieved)
are nearly straight line trajectories. It is encouraging, for future implementations
of more general systems, that these paths do not exhibit tortuous trajectories.

• The "teach-by-showing" strategy provides a convenient means for specifying
visual servoing tasks when stringent path control is not required. For example, it
may be used for small motion precision positioning (e.g., in precision assembly,
for parts aquistion and mating alignment), and for gross positioning when smooth
motion is acceptable and the work area is free of obstacles.

• Independent controllers produce deviations from the predicted path. Typical
deviations are relatively small, with the exception of large motion nonlinear
kinematic tasks. In these cases, large deviations increase the risk of obstacle
collisions, and make it difficult to keep the observed object in the field-of-view.
Thus, independent controllers may not be suitable for such tasks.

© Another limitation of the independent control strategy is accentuated by the
kinematic coupling of the nonlinear kinematic configuration. !n this configuration,
there is a requirement for a feature/joint reassignment strategy. In contrast, a
fixed feature/joint assignment is suitable for the linear kinematic configuration.

• The enhanced SP MRAC controller, with delay, yields stable systems, with good
transient response, when used as a joint-level controller. To the best of the
author's knowledge, this is the first simulation demonstration of an enhanced
MRAC (i.e., SP MRAC, with control penalty and measurement delay) for robot
control.

© An MRAC can be used to derive a fixed LMFC control law. ThE fixed controllers
have better relative stability at lower sampiing-tc-bandwidth ratios, and tend to
exhibit faster rise:times. Relative to the MRAC, however, they produce larger path
deviations, and are only suitable for small motion tasks which have smaller
sensitivity changes. A single fixed controller cannot achieve uniform performance
over a broad range of tasks.

6.2. Linear Kinematics and Dynamics

This section includes an evaluation for the linear kinematic and dynamic system

represented by Configuration 1 (Figure 4-1). The adaptive control approach is demonstrated

to exhibit dynamically stable responses, and zero steady-state feature and position errors.

Predicted position trajectories (i.e., the predicted pathes if perfect reference modeling were

achieved) are smooth and approximate straight-line trajectories. Actual position trajectories

deviate from the predicted response, however, typical deviations are relatively small. The

MRAC time response lags the specified reference model rise-times. The fixed LMFC, which

does not include an on-line identifier, produces larger path deviations, and faster rise-times.



151

Larger path deviations limits the LMFC to tasks requiring small motions. Potential

performance advantages gained from a coupled controller are suggested by isolating specific

problems associated with the independent adaptive controllers.

6.2.1. Sensitivity Analysis

The sensitivity matrix, J(X.). is

- enr"h(5.2) S
3X 3

and the transfer function matrix, for the robot, is

ax ax
£23(5.1) SfiQ(5.5)

ax , 9Y .
rel rel

(5.4)

(6.1)

Wp(s) -

K
m

s ( V x s + 1 ) 2 * p

(6.2)

s ( T
m . y S + 1 ) 2 7 r p

The sensitivity matricies are evaluated to address the following questions:

1. Are the elements in (6.1) continuous and non-degenerate according to condition
(2.6)?

2. If the controller could achieve perfect model following of the reference features
(i.e., eFp(k) = 0 for all k), what would be the predicted Cartesian path?

3. What is the diagonal dominance organization of JW , which determines the
feature/joint coupling, and over what boundaries does this organization
remained fixed?

To answer these questions, numerical maps of J were made for three line angles (0 b. - 0, 45,

75 degrees) and over the range of relative positions

~4 < x < 4 (in.) and 0 < Y < 25 (in.) in 1 in. increments
re!

(The range of angles and positions correspond to those used in the simulation examples

evluated in Section 6.2.2.). A typical map of - J , AX ,) is shown in Figure 6-1; The matrix is
leal F6i

not evaluated at points where the line is hidden or is out of the field-of-view (OFV). These

points are indicated by a " * " on the maps. Under these conditions, the matrix elements are
continuous and non-deaenerate.
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6.2.1.1. Predicted Path

Evaluation of control performance includes both time and path performance. Path

performance is evaluated relative to the predicted path, or trajectory, that would result if the

controller could achieve perfect model following. The predicted pathes are calculated in this

section. Two approaches are available for deriving these pathes. One method is based on

numerical evaluation of the inverse of the sensitivity matrix according to:

dX. = J*1df

A second approach is to analytically solve the feature-to-Cartesian space mapping (i.e., the

interpretation transformation). Since the analytic equations for the Cartesian-to-feature

space mapping (i.e., the inverse interpretation transformation) have been derived (in Section

4.5), the later approach is used here. The feature transfonnation equations (4.30) and

(4.31) are rewritten as:

[V-(0.5l sin# J 2 ] x r n + ("(0.51 sin# J2$\n0 .costf . ] } (6.3)
•— o r e ! - J cog *-x o rel rel re!-1 J fre!~vLp#SF L ^ o"M7re!' JMcogT L^^o^'^rel ' " '""rer" re!

and

v3 i + v 2

v 'ength + v

re.[o™,ra(eo0oI/] » 0 (6.4)

where

lo=1 (inch) andV~F o + Yre|

For each sampling period, (6.3) and (6.4) are solved for Xre|(k) and Y |(k), as a function of the

feature reference model signals, Xco _ref(k) and I th.ref(k). The cubic equation (6.4) is solved

numerically for V, and the resulting YreJ is substituted into (6.3) to obtain X ^ The Cartesian

path is then:

X(k) = X ,.-X .(k)and Y(k) = Y ..-Y ,(k)v ; obj relx l v ' obj rer '

The relative complexity of this interpretation process for even this 2 DOF system illustrates the

potentiality for error and computational complexity which would be required in a position-

based system.

The visual servoing tasks evaluated in this section are represented in Figure 6-2. For each
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task, the predicted path (in a forward trajectory) is displayed in Figure 6-3. The analysis

demonstrates that, for this limited degree-of-freedom system, the predicted paths are smooth

and exhibit nearly straight-line trajectories. Such motion is satisfactory for many applications.

Had this 2 DOF system yielded paths with tortuous trajectories, then it would not be very

promising to expect better behavior from more general sSysterns.

6.2.1.2. Feature/Joint Assignment

Selection of the feature/joint assignment (Section 2.5.2.1) is based on the column

arrangement of the transfer function matrix JW which minimizes D(JW ). The following

derivation illustrates this proceedure. The robot transfer function matrix in (6.2) is written as

W (S) =
0

) o

K22(s)

and the feature sensitivity in (6.1) is written as

J =

'21 '22

The overall transfer function matrix can be wriiten as either

JW -
J2:,K22(s)

(Case 1)

or

j w p =
J2iK,,(s)

(Case 2)

The feature changes 5f = [5Xco ,<5len ( h ] T , with respect to the control signal changes

5u = [5u, ,5u2]
T, become

^'ength
P

CM
_t
5E 1

= JW*
P

c

8

ASE

" 2

2

8 In Figure 6-3, predicted paths for Tasks i and L are straight lines, and the paths for Tasks E and F have path
deviations from the Y-axis of is 0.002 and 0.026 inches, respectively.



For Case 1, the feature/joint assignment would be Xco ^-X-axis and len th<— Y-axis. For Case

2, the assignment would be Xco <—Y-axis and length*-X-axis. The assignment decision is

based on the column arrangement which minimizes the coupling; i.e.,

if D(JW )<D(JW*) then select assignment in Casei; (6.5)
else choose Case 2

Condition (6.5) leads to

Case 1

Case 2
iiny

Maps of feature/joint assignment are derived from sensitivity maps. An assignment map,

which corresponds to the sensitivity map of Figure 6-1, is displayed in. Figure 6-4.9 For

example, the control structure for the assignment at Xre| = {^ r e ,^ r n |}
T = {0,3}T is represented

in Figure 6-5. Figure 6-4 indicates that the feature/joint assignment may require switching

during a control task. However, upon inspection of these maps, it is observed that the

feature/joint assignment remains fixed over large regions of space, and there are no

"islands" where the assignment changes, but there is a distinct switching boundary. Further,

over most of the space, X is assigned to the X-axis, and I h to the Y-axis. For 0Qb. equal

to zero, the assignment remains constant over all space. As 0Qb- increases, the boundary

shifts to the left, but Xco remains assigned to the X-axis over most of the region. These

observations are in contrast to those for the nonlinear kinematic configuration (in Section

6.3.2.1) for which the assignments do not remain constant over large regions of space.

When the sensitivity matrix is organized in a diagonally dominant fashion, the coupling (or

off-diagonal) elements, can change by a larger percentage over space than the main diagonal

elements. For example, if the camera were forced to move along a straight line trajectory

(represented by Task H in Figure 6-2), then the corresponding percentage change in each of

the elements is plotted in Figure 6-6, where

IJ(-1,3)-J(X | fY .)!
%change=— ^-^—«sL x 100%

IJ(-1.3)1

9
It is noted that the sensitivity matrix did not, in general, satisfy the classic definition of dominance in (2.8). For

example, at X, j - {1,3} , classical dominance does not hold.
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For other tasks, changes in sensitivity can be even larger (e.g., in Task J, J(2,2) chai

477% or by a factor of 5.77). The significance of this observation is that it is expec



even larger sampling-to-bandwidth ratios will be required for identification and control of

these coupled image-based systems. When using independent controllers, the coupling

elements can be viewed as external disturbances. Thus, the sampling rate must be high

enough to reject the apparent rapidly changing disturbances.

In most of the simulations presented in this section, the feature/joint assignment is fixed to

X «— X-axis, irrespective of diagonal dominance changes. In some examples, performance
COCJ

is evaluated when the feature/joint assignment is switched at the boundary of diagonal

dominance changes. In these examples, control is halted at the boundary and the feature

assignment is switched. When the assignment is switched, the identifier parameters must be

reset or initialized to the values used for that particular coupling. Control is then restarted

with reference model reinitialization. In these examples, D(k) is measured during control

using analytic derivations of J(X ) and assuming that {X ,Y } is known.

6.2.1.3. Path Constraint

A path constraint strategy, for this configuration, would not appear to be required since the

predicted paths, in Figure 6-3, approach straight-lines. Such weil behaved paths may not

result in more general and higher DOF systems. Even for this simple system, perfect model

following is not expected because of transient identification errors due to rapidly changing

gains, measurement delays, and use of independent controllers. Thus, evaluation of a path

constraint strategy is a practical exercise.

A path constraint approach, based on the hierarchical control strategy presented in Chapter

2, is evaluated. The hierarchy is represented in Figure 6-7, where

%AX = —ss
cog ^ X

cog-max

and the percentage feature error e is chosen experimentally to be e = 10% . The maximum

feature change, aXco x, is unity, since the image coordinates are normalized to the image

boundaries. For these simulations, Y-axis motion is constrained by braking. In the figure, it is

assumed that the XcQ( feature is dominated by movement along the X-axis (i.e., all areas

marked with "o" on the feature/joint assignment maps).
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6.2.2. Control Evaluation

The visual servoing tasks to be evaluated are represented in Figure 6-2. Figure 6-2 also

indicates the sensitivity matrices in the initial and desired views, and the associated coupling

index10. Tasks are simulated for both the forward (or approach) and reverse (or backing-

away) directions. The tasks are selected so that, in the desired view, the camera is in close

proximity to the object, as if the robot were going to acquire the object. This is a worse case

arrangement since J changes rapidly as the camera approaches the line.

Each task is simulated at two sampling-to-bandwidth ratios by fixing the bandwidth to

wn = 9.5 sec"1, and setting the sampling period to either T = 0.033 or 0.013 seconds11,

corresponding to

For this configuration the magnitude of W , used to calculate D(JW ), are the translational stage DC gains
K/2-zrp (Sections 4.3.3 and 4.4.4). Since the gains are identical for both stages, and W is diagonal, D{JW ) = D(J)

Due to open-loop reference model time constant round-off, the closed-loop bandwidth is co =9.4 sec " , when
T = 0.013 n
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and

fs / fBW = 2 0 ) w h e n T = 0 < 0 3 3 s e C l

fs/fBW = 51, when T = 0.013 sec.

The controller paramters are summarized Appendix C. After each initial adaptive learning trial,

a fixed LMFC is implemented using the steady-state estimated plant parameters identified

from the initial adaptive trial. The resultant approach trajectories, at the larger sampling-to-

bandwidth ratio and with the fixed feature/joint assignment, are shown in Figures 6-8, 6-9,

and 6-10. Each plot shows the adaptive control on the second trial, the fixed LMFC, adaptive

control with the path constraint hierarchy, and the predicted path. Each plot indicates the

rise-time as the maximum of 'the X-axis and Y-axis position rise-times. Each task is simulated

for 3 seconds.

The following observations emerge from the performance evaluation of the adaptive

controller:

1. Stability : At the higher sampling-to-bandwidth ratio (fs/fBW = 51) anc* for the the
fixed feature/joint assignment, all simulations are stable, with acceptable
transient response, and zero steady-state feature and position errors.

At the lower ratio (f /f(?w = 20), which was suitable for the 1 DOF.configuration,
transient response degrades when the tasks are run in the reverse directions, and
when crossing boundaries of diagonal dominance changes. Problems
associated with independent adaptive control of coupled systems are
accentuated, including not switching the feature/joint assignment at boundaries
of diagonal dominance changes, and MRAC sign sensitivity. The MR AC sign
sensitivity causes momentary changes in the sign of the controller gain, which
causes momentary reversals in table directions. Examples of feature/joint
reassignment and MRAC sign sensitivity are presented in Section 6.2.3.

2. Parameter Estimation : When the line stays in the field-of-view, steady-state
identification errors go to zero. The transient identification-errors approach zero
before steady-state positions are reached (i.e., while the camera is still in motion),
which indicates that equivalent SISO models of the coupled plant can be
identified. Sufficiently large sampling-to-bandwidth ratios are then required to
track dynamic changes. Transient identification-errors remained for all examples.

Type 0 plants were identified in the steady-state, and some of the estimated zero's
are non-minimum phase. This demonstrates the need for a control penalty and
signal biasing.

At the higher sampling-to-bandwidth ratio, adaptive performance in the second
trial is not significantly improved (relative to the initial trial) due to the higher
sampling-to-bandwidth ratio, and better initializations of the parameter vector.
Examples of the first trial performances are displayed in Figure 6-11.
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In the second trial trajectories, the object remains in a stationary position
between successive trials. If the object is allowed to assume random positions,
should the identifier be reset between successive trials? To examine this
question, Tasks J, H and I are run successively without resetting the identifier,
and with the identifier initialized to the values learned in Task E. This is equivalent
to the object being in random positions between successive trials. The results are
displayed in Figure 6-12. The responses are not as smooth as if the controller
had been reset between trials. This suggests that, for a margin of safety, the
controller may be reset between successive trials.
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BW"
tasks requiring small corrective motions. Actual paths deviate from the predicted
trajectory, and the maximum path deviations are summarized in Table 6-1.

Path
/ \ Deviat ion

(inches)
0.006 0.03

TASK

H

0.04
.14
(net)

0.05 0. 10.23 0,23 0.83

M

0,3

(after recovery from

sicjn sensitivity)

Table 6-1 : Maximum Path Deviations

The tasks requiring relatively large distances of travel (e.g., Tasks F, M, and N)
show the largest deviations, since control signal saturation and larger
identification errors occur in these cases. In most of the smaller motion
examples, deviations are relatively small. Tasks L and K exhibit relatively larger
deviations, since the sensitivity, J, changes by a relatively large amount, which
leads to larger identification errors, in addition, the initial view coupling index
(indicated in Figure 6-2) for Tasks L and K are large relative to values for the other
cases. (The result observed here is consistent with a systematic study of
performance, as a function of the coupling index, in Chapter 7.) In Task H, the
initial path oscillation results from sign-sensitivity, and is discussed in Section
6.2.3.1.

Actual position trajectories are not always monotonic. If smooth motion
trajectories are acceptable for path performance, then monotonic smooth motion
trajectories are desirable. For example, when independent controllers are used,
then non-monotonic motions generally result when initial relative displacement is
in only one degree-of-freedom. In these cases, there can be initial feature errors
for both axes, so that initial motion is forced in both axes (e.g., Tasks E, I, L, and
F). Path deviations can be reduced by using larger sampling-to-bandwidth ratios,
but typically with only marginal improvement. For example, when Task I is
simulated with an extremely large ratio of fs/fBW = 213 (T = 0.003 sec and a)n = 9.8
sec'1), the maximum deviation is 0.03 inches, compared with a deviation of 0.05
inches at the lower sampling-to-bandwidth ratio. Thus, S1SO control of feature
coupled systems tend to have path errors at the start of the trajectory
(independent of the sampling-to-bandwidth ratio), which accounts for the
observed transient identification errors. An M1MO controller would, in theory,
produce superior path performance.

4. Rise-Times: Position rise-times are sluggish relative to the predicted response
times. For example, while the predicted rise-time is typically t r ~ 0.7 sec for the
smaller motion tasks, actual times ranged from 0.84 to 1,27 seconds (except for
Task L). Saturation, control penalties, and transient identification-errors (which
appear to over estimate the gains) produce transient response errors. To
illustrate the error due to control penalty, Tasks E and J are simulated without
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measurement delay (i.e., nd = 0) so that the controller pole bound can be
increased to y = 0.99 . The rise-times deceased to 0.81 seconds, and the
remaining time-domain error arises from transient identification error.

With measurement delay included, a larger control penalty (Le., smaller pole
bound) is required. While no attempt is made to optimize y for the examples
included in the dissertation (i.e., y = .65 for all examples and for all fo/fQW), it is
observed, that as 'S/ 'BW increases, y can also be increased. For example, if Task
J is simulated with y = 0.75, and with nd = 1, the rise-time decreases to 0.82
seconds, without degradation of path.

It appears that Task L exhibits exceptionally poor time response (i.e., tf = 2.11 sec
for adaptive control, compared with a predicted rise-tme t = .73 sec) as a result of
the relatively large changes in 3'en(lh/3Y and 3Xco /3X and large value of
coupling. For example, in Task L, the initial view coupling index is D = .95, and
J(2,2) changes by a factor of 8.9. In Task E, for which the adaptive and predicted
rise-times are .9 seconds and .68 seconds, respectively, the initial view coupling
is D = .0008, and J(2,2) changes by a factor of 2.2.

Finally, the time response, when moving toward the line, is faster than when
moving in the opposite direction. This observation is consistent with the
predicted path rise-times.

5. Path Constraint; During hierarchy level transitions, the MRAC controller gains, for
each MRAC, are fixed (i.e., run as LMFC) to their current values for 6 sampling
periods following the transition. It is observed that this approach could improve
the transient response during the transitional interval. It appears that by
permitting the additional DOF (i.e., the Y-axis) to accelerate, before identification
proceeds, feature changes, and thus gain estimates, are not dominated by the
axis already in motion. The number of fixed cycles is determined experimentally.

The hierarchical strategy minimizes trajectory deviations when initial relative
displacement is predominantly in the X direction. At the opposite extreme, there is
no effect in cases like Task E where initial displacement is only in the Y direction.
In intermediate cases, such as in Tasks M,N,J, and H, the hierarchy degrades the
path relative to the predicted path, but at least drives it in a controlled monotonic
fashion toward the X-axis. In Task G, where the object is not centered in the
image, the hierarchy accentuates the path deviation required to drive the feature
center-of-gravity error to zero.

In general, arbitrary use of the this hierarchy may or may not minimize path non-
monotonic trajectory deviations. However, if the object is centered in the image,
then a smooth path, biased toward the X-axis, is expected.

Figures 6-8, 6-9, and 6-10 also display the fixed LMFC response. (The fixed controller is only

run at the higher sampling-to-bandwidth ratio f /fBW = 51.) The following observations

emerge:



1. Stability: With the exception of Task M, the fixed controllers are stable, with good
transient responses, and zero steady-state feature and position errors. In Task M,
the line goes OFV, and control stops. In this Cc\se, the LMFC is not adequate even
with the relatively large bandwidth. This suggests that a fixed control strategy may
not be suitable for tasks requiring large motions where the sensitivity, J, changes
by large amounts.

2. Path: Each task exhibits smooth path motion. With the exception of Task H, the
LMFC produces deviations from the predicted path which are larger than the
MR AC path deviations. Task H, which is discussed in Section 6.2.3.1, exhibits an
overall LMFC response that is superior to the MRAC, since the fixed controller is
not sign-sensitive.

An additional experiment is conducted in which Tasks L, J, H and I are
implemented with the same fixed controller. The fixed controller gains are learned
in Task E, and the results are displayed in Figure 6-13.

Task J( 1.01 sec)
Task H( 1.29 sec)

- - Task I (1.05 sec)
Task L (1.17 sec)

-1.0 -.8 -.6 -.4 -.2 .0 .2 A .6 .8 1.0
X

Fixed From TASK E

Figu re 6-13: Single Fixed Controller for Multiple Tasks

In these examples, path deviations are larger than those resulting when
individually learned LMFCs were used (e.g., in Figure 6-13, the deviation for Task
L is 0.35 inches, compared with 0.15 inches for the same task in Figure 6-10 and
in). This suggests that a single fixed controller cannot achieve uniform response
over a broad range of tasks.

3. Rise-Times: Generalizations cannot made concerning LMFC vs. MRAC rise-
times. The LMFC rise-times are faster than the MRAC in seven out of ten trials.
The adaptive controller tends to be slower than the fixed controller due to
transient identification errors.
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6.2.3. Independent Adaptive Control Problems

In the path performance summary in Section 6.2.2, it was explained why transient

identification errors will generally occur for SISO control of coupled systems. In this section,

other problems associated with independent adaptive control of a feature coupled system are

clarified. These problems, which can affect transient response performance, include:

• Adaptive Controller sign-sensitivity; and

• Feature/joint assignment.

A coupled controller would not exhibit similar problems. Algorithms for coupled controllers,

and their relative computational complexities, are advanced in Chapter 8 for future research

evaluation.

6.2.3.1. Sign-Sensitivity

It is demonstrated, in Section 5.3, that the MRAC controller is sign-sensitive. That is, the

identifier sets the sign of the estimated gains to ensure a stable negative feedback system

(assuming control of a SiSO process). In a coupled system, the SISO identifier sets the gain

signs, of estimated equivalent SISO models, to drive each identification-error to zero. It is

shown below that, momentary changes in sign can degrade performance by causing an axis

to reverse direction and/or decelerate. When the estimated sign switches again, it takes time

for the system to recover from the axis reversal due to its momentum in the opposite direction.

At the lower sampling-to-bandwidth ratio, it takes a longer time to recover since the axis can

travel further and gain more momentum during the longer sampling interval. At the higher

ratios, the system recovers faster from subsequent identification-errors.

Sign-sensitivity effects system performance in Task H. In this example, the Y-axis starts out

in the correct direction, but then momentarily reverses its motion. The trajectory and the
A

estimated gain for the length feature, b1 len th(k), are displayed in Figures 6-14 and 6-15 for

the two sampling-to-bandwidth ratios. At the lower sampling-to-bandwidth ratio (T = 0.033 sec

and f /fQW = 20), the effects of sign-sensitivity are accentuated. During the initial phase of

control, both axis start out in the correct direction (i.e., in such a away as to reduce the

feature errors). Over the initial sampling interval, the axes move by

AX~ : 0.025 inches and A Y ~ 0.01 inches

The change in the length feature, as specified by the sensitivity map in Figure 6-1 becomes:
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Since AY>0 and Al t}1
<^' a t ^ a t *nstant , b1 is forced to be negative, driving the Y-axis in

the opposite direction.

Strategies which can be used with the independent MRAC controller to counter these

effects, include:
A

• Clamp sign: experiments are conducted where the sign of the gain term b1 is
forced to that of the corresponding sign of the diagonal term of the sensitivity
matrix. This leads to smooth and stable performance, but the generality of this
strategy needs further investigation.

© Higher sampling-to-bandwidth ratios: the higher the ratio, the faster the recovery;
and

# Fixed control: sign insensitive.

6.2.3.2. Feature/Joint Reassignment

Trajectories which cross boundaries of change in diagonal-dominance correspond to Tasks

K and L. In these cases, a fixed feature joint assignment (i.e., X-axis<— Xco , Y-axis<—ien lh)

produce stable systems with acceptable transient responses, at the higher sampling-to-

bandwidth ratio (T = 0.013 sec and fg/^yy^SI). At the lower sampling-tobandwidth ratio

(T = 0.033 sec and ^ ' ^ = 51), Poor transient response can cause the line to go OVF. The

effects of switching the feature/joint assignment at the boundaries of predicted reassignment

are examined in this section. The experiments demonstrate that potential improvements in

performance can be gained by assigning features to minimize D(k), and thereby reduce

coupling. If a trajectory crosses a boundary of change in diagonal-dominance, without

reassignment of features, path performance can degrade and the system can be unstable,

especially at lower sampling-to-bandwidth ratios. The effects are more pronounced for

systems with nonlinear kineamtics (in Section 6.3), independent of the sampling-to-bandwidth

ratio.

The feature/joint reassignment simulations are implemented using the analytic derivations

of J(X.re|)» and assuming that X.rel is known. A fixed feature/joint assignment corresponding to

X-axis^ I th, Y-axis+—X is also evaluated.

The response for Task K, at the lower sampling-to-bandwidth ratio (T = 0.033 sec and

f/L.A/=:2Q) and with the fixed feature/joint assignment, (corresponding to X-axis<—X ,
S fcJ V V C O Q

Y-axis+-l th), is shown in Figure 6-16. The system is unstable with the fixed the feature/joint
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assignment. The line goes OFV in the initial trial, and in second trial (not shown) exhibits even

poorer response (i.e., oscillation) before the line goes OVF. Figure 6-16 also includes the

response for the second trial of an experiment for which feature/joint reassignment is

implemented at the switching boundary. In this experiment, control is halted when the camera

reaches the boundary (and it is assumed that control can be stopped instantaneously by

manual braking). At this point, the current state of the identifier, including the estimated

parameter vector and gain matrix, are held for subsequent use. The feature/joint assignment

is then switched, and the identifier is reinitialized, since the dynamics associated with each,

feature from the first part also switch. Control then proceeds until the completion of the task.

At the end of the task, the identifier state is again held for use on subsequent trials in this

region. The task is run again, but with the identifier initialized to the previously heid states.

With this strategy, the line stays in the field-of-view, the system is stable, and the trajectory

exhibits acceptable transient performance. By switching the feature/joint assignment, the

coupling in the desired view decreases from D - 0.95 to D - 0.39 . The improved stability is a

result of the feature/joint reassignment, and not just the stop and then start-up again action.

This is verified by stopping the system at the boundary of change of diagonal dominance and

then restarting it, without switching the feature/joint assignment. In this example the line still

goes OFV. Improved performance is thus achieved by the apparent reduction in coupling

gained by the feature/joint reassignment.

The feature/joint reassignment experiment was also implemented at the higher sampling-to-
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Figure 6-17: Feature/Joint Reassignment (T-0.013 sec and fs/fBW = 51)

bandwidth ratio (see Figure 6-17). There is improvement in path performance, but the rise-

time is larger due to model reinitialization at the switching point.

Task K is also evaluated vyith the opposite Fixed feature/joint assignment corresponding to

This assignment forces D = 1.62 in the initial view, which isX-axis*—I , Y-axis
^ .

almost two orders of magnitude larger, than for the opposiie assignment. This system is

unstable, even at the higher sampling-to-bandwidth ratio (fs/fBW). It could be stabilized by

running it at a very high sampling-to-bandwidth ratio, by reducing the sampling period to

T = 0.003 and fs/fBW = 220, but the transient response is poor (i.e., oscillation).

Task L is also evaluated using the feature/joint reassignment strategy. While the path

deviation is slightly larger, the rise-time decreases. A fixed assignment corresponding to

X-axis*—I, Y-axis*— Xnn is also implemented. The system is stable, but the transient response
COQ

is poor (i.e., oscillation).

While the switching strategy used in these experiments is static, in the sense that control is

halted at the switching boundary, the potential advantage of reducing coupling by

feature/joint reassignment is demonstrated. A method for online estimation of J or JW is

proposed, in Chapter 8, for feature/joint reassignment strategies.

This concludes the evaluation of the 2 DOF linear kinematic and dynamic configuration. The
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second part of this chapter extends this evaluation to the nonlinear kinematic and dynamic

robot.

6.3. Nonlinear Kinematics and Dynamics

The purpose of this section is to evaluate IBV3 control for the nonlinear kinematic and

dynamic system of Configuration 2 (Figure 4-2). The articulated robot arm places additional

demands on the controller, including nonlinear and coupled kinematics and dynamics. For

the control algorithm to be suitable for an image-based system, the controller must be

adequate as a joint-level controller. The first part of this section evaluates the enhanced SP

MRAC algorithm at the joint-level, and demonstrates its ability to acvhieve stable systems with

good transient response.

The image-based control system yields performances which are comparable to the linear

kinematic system when tasks are limited to smal! motions. The performance differs from the

linear kinematic system in two key respects:

• For tasks requiring large motions, independent control, of the kinematically
coupled system, can produce relatively large path deviations; and

• For the linear kinematic configuration, a fixed feature/joint assignment is
adequate. In contrast, the nonlinear kinematic configuration requires a
feature/joint reassignment strategy for general implementations, except when the
required task motion is small.

6.3.1. Control of Nonlinear Dynamics

Investigations by other researchers (Section 2.3.1 *3) have demonstrated the ability of

independent adaptive controllers to perform at the joint level. These studies have not payed

attention requirements for physical implementation, including computational complexity,

controller saturation, noise, and measurement and computational delays. Morris and

Neuman [Morris 81] developed the SiSO hyperstable SP MRAC taking account of these

requirements. They evaluate.this algorithm for one DOF linear systemss with slowly varying

parameters (without measurment delay), and suggest that this controller can be extended to

control a nonlinear and coupled robot [Morris 81]. Before proceeding with the evaluation

image-based control, this algorithm is illustrated as a joint level controller (with measurement

delay included). Exhaustive testing and evaluation of joint-level control, which is not included

in this dissertation, remains a subject for future research.
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Joint level control of the 2 DOF robot arm is represented in Figure 6-18. Wit

measurement delay, the independent controller algorithms are implemented according

outline in Appendix C, with the exception that the scale factors are given by:

SFT,0.033=100

and

and, the identifier is initialized according to Te\ble 6-2.
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Table 6-2: Identifier Initialization: Joint-Level Control

Some of the experiments are implemented without the measurement delay. For

controller is implemented according to:

« Control Signal: (3.10)



# Identifier: (3.4),(3.5), and (3.6)

© Control Penalty: (A.21) with y = 0.99

• SP Reference Model: Appendix A.1

There are simulation errors because of the numerical integrations which comprise the

computer simulation of the nonlinear dynamics. The relative magnitudes of error are

evaluated by simulating the step-response of each joint, with the other joint locked in a

stationary position. In this experiment, each joint acts as a constant linear system, and the

estimated parameter vector should equal the actual vector for the linear systems derived in

Section 4.4.5.1. This experiment is run at two sampling periods, T = 0.033 sec and T = 0.003

sec. The results are shown in Table 6-3, where the estimated vector is given as its steady-state

value after two consecutive learning trials. The percentage error is:
A

%error= (LAss) x 100%

While the errors are relatively small, the experiments in Chapter 5, for which the dynamics are

simulated by analytic equations, produce zero error.

6.3.1.1. Joint-Level Control Examples

While exhaustive testing and evaluation of joint-level control is not performed, initial

experimentation, using random arm configurations, produce stable systems with good

transient response. An example is presented which demonstrates Ihe ability of ihe MRAC to

achieve satisfactory performance under demanding conditions which include:

1. High joint velocities and accelerations;

2. Control signal saturation; and

3. Measurement delay.

The experiment is set-up as follows:

• Sampling Period: The sample pericd, T = 0.003 sec, corresponds to the value
used in present state-of-art robots.

« Reference Model Bandwidth: A large bandwidth, co =44,5 sec"1, produces high
joint speeds (for step-inputs), and produces control signal saturation. This
bandwidth corresponds to a sampling-to-bandwidth ratio of fs/fBW ~ 47.

« Task: Run four consecutive adaptive trials (i.e., without reinitialization of the
identifier between trials), with step-inputs and varying pay loads according to:
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Payload (lbs.) £, f (deg) £2. re f (deg)

Trial 1:
Trial 2:
Trail 3:
Trial 4:

2.5
5.0
5.0
2.5

-21
44
-21
44

->44
->-21
->44
— • - 2 1 "

155->90
90->155
155->90
90-4 155 (6.6)

This particular set of sampling periods, bandwidth, and arm configurations are also useful

since they correspond to values which are evaluated, in Section 6.3.3, under imaged-based

control.

The position responses are displayed in Figure 6-19, and the control signals and torque
1 9

components for the second and third trials are displayed in Figures 6-20 and
6-21 respectively. The components of torque are defined in Section 4.4.2 as:

Joint 1

D ^ ^ : Inertial

D12^2: Inertial Coupling

^112^1^2 : Coriolis

D12202
2: Centrifugal

Joint 2

I Coupling

D2110^ : Centrifugal

The torque plots verify that the dynamics include non-negligible coupling and nonlinear

components. Examples for two trials are shown to demonstrate the different contributions

which arise from arm configuration dependence. In the second trial, the inertial coupling

terms contribute significantly to the net torque during the initial accelerations. As d2

increases, D12 (Section 4.4.2) decreases with the the cosine of $2. Thus, during the final

deceleration, there is a smaller contribution of inertial coupling. The opposite effects are then

observed in the third trial. The Coriolis and centrigual torques are non-negligible in both

cases.

Each is run for 3 seconds, but only 0.5 or 1 second of data are shown for clarity and detail.
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Figu re 6-19: Joint Level Nonlinear Dynamic Control

In these examples, the full-parallel errors exhibit large transient tracking errors. The

maximum errors are summarized in Table 6-4 for these and similar experiments which are

discussed below. In Case 1, the large error is due primarily to saturation and control penalty,

since identification errors are relatively small. The experiment is run again (Case 2), but at a

smaller bandwidth (cjn = 9.81 sec*1) to reduce the total time of saturation. The error is reduced

by half, and most of the remaining error results from the large control penalty required by the

measurement delay, it is observed that larger pole bounds, and thus smaller penalties, could

be used for these joint level controllers. The effects of the control penalty are demonstrated

by running the experiment without any measurement delay (i.e., nd = 0), and with the pole

bound set to y = 0.99 . In this example (Case 3), there is a dramatic decrease in the full-

parallel error. Momentary saturation remains, and small identification errors remain. To

reduce further controller saturation, two experiments are run with smaller motions. At the

larger bandwidth (Case 4), saturation remains, and at the smaller bandwidth, there is.no

saturation. The identification errors are thus responsible for the remaining tracking error.

The small errors suggest that, for high precision tracking, further compensation (e.g.,

feedforward control) may still be required.

A fixed LMFC is also simulated for the four consecutive tasks in (6.6). Each task is run with

the identifier fixed to the estimated parameter vector learned in Trial 3. The LMFC
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performance (not displayed) is negligibly different from the MRAC. Performances may be

comparable since saturation occurs for a significant percentage of time for both the MRAC

and LMFC. Since the control signal is the same for each controller during this period, the

position response must also be the same during the saturation interval. To evaluate the

contribution of controller saturation, a smaller motion task is simulated (with 01: 40- >45 deg

and 0-95—>90 deg) to reduce saturation effects. The identifier is fixed to values learned from

the first adaptive trial in this configuration. In this case there is only momentary saturation,

but both fixed and adaptive performances are still comparable. Another possibility for

comparable performance is that, at the high bandwidth, the sensitivity of the fixed controller

to apparent external disturbances and parameter variations is small. To evaluate this, the

small motion task is run again, at the smaller bandwidth <on = 9.81 sec"1. The identifier is fixed

to values learned from the first adaptive trial in this configuration, and at the smaller

bandwidth. The position responses, displayed in Figure 6-22, show that the MRAC performs

better at the lower bandwidth, consistent with the results of Chapter 5. The LMFC still exhibits

good transient response and the overall performance is not significantly poorer than that of

the MRAC. Another factor accounting for to the satisfactory LMFC response may be

attributed to the heavy gearing, which attenuates the changes in torque reflected back to the

motor, although it does not change their relative contributions.

While further research is required for conclusive evaluations of adaptive and fixed joint-level

control, these limited experiments have the following significance:
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1. Consistent with work by other researchers, these experiments suggest that
independent adaptive controllers can identify equivalent SISO plants and achieve
stable systems, with acceptable transient responses, when the plant dynamics
contain non-negligible dynamic coupling and nonlinear torque components.
While gearing reduces the magnitudes of change of torque components reflected
back to the motor, their relative contributions remain the same. To the best of the
author's knowledge, this the first demonstration of an enhanced MRAC (i.e., SP
MRAC, with control penalty and measurement delay) for robot control.

2. The robot arm is controlled without a'priori knowledge of the physical system
(making this an attractive approach for industrial applications). MRAC provides a
means to derive a fixed control law which displays good stability. Typically, fixed
control law implementations require manual tuning to achieve suitable
performance.

3. While the adaptive controller can achieve smooth and fast responses, transient
full-parallel tracking error could not be driven to zero. Tasks which require high
precision tracking capabilities (e.g., seam welding) will require further control
signal augmentation, supplied by a feedforward controller. It remains to
determine whether a coupled adaptive control law can achieve superior
performance.



6.3.2. Sensitivity Analysis

The sensitivity matrix, in (2.7), for the nonlinear kinematic configuration is

and the feature sensitivity matrix, J f ea t , is defined in (6.1). The arm jacobian, J in (2.5), is

arm

3X

30,

3Y

30,

3X

302

3Y

2

From (4.13), the direct kinematic solution, K(d_) in (2.5) is
+ 02) +

and includes the tool or camera mounting transform.

Maps of the sensitivity matrix are made for the visual servoing tasks which are presented in

this section. The tasks, represented in Figure 6-23, are equivalent to linear kinematic

examples with respect to both the initial and desired relative Cartesian coordinates. The

feature sensitivity map for the smaller motion tasks (i.e., all except Tasks V and W) is

displayed in Figure 6 24. For this set of tasks, the matrix elements are continuous and

nor.degenerate. When the arm is in other configurations, which are kinematically degenerate

(i.e, det[J rm] = 0 ), the system is degenerate. For example, when the arm is fully extended

(i.e., 8O-Q ), det[Jarm] = 0, which indicates the transition from the "elbow-ups" to "elbows-

down" joint configurations. At the joint level, these represent non-unique solutions, but not

affect the final Cartesian task coordinates. With respect to effects on dynamic control, such a

system cannot (in general) be uncoupled, even when using a coupled controller. Control

evaluation of tasks which might traverse such boundaries are not presented in the

dissertation

For the smaller motion tasks, sensitivity changes are similar in magnitude to the equivalent

linear kinematic examples. Over larger distances (e.g., Tasks W cind V), the changes are

significantly greater in the nonlinear kinematic configuration, as illustrated in Table 6-5, which

compares these changes for Task W and the equivalent linear kinematic Task N. The table

indicates the change in sensitivity from the initial to the desired view, and compares it both as

a percentage and ratio. By either measure, the nonlinear kinematic configuration exhibits

significantly larger changes. It is therefore expected that even higher sampling-to-bandwidth

ratios will be required for control of large motion nonlinear kinematic tasks.
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( M o n i i n o a r K i no inat i c s )
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Table 6-5: Nonlinear vs. Linear Kinematic Sensitivity Change

6.3.2.1. Feature/Joint Assignment

The nonlinear kinematic configuration is dynamically nonlinear, and a transfer function

matrix W can be only be obtained by linearizing the dynamics about a nominal trajectory, or

by estimating equivalent linear input-output transfer functions. For the purpose of calculating

a coupling index, a linear model is generated by neglecting the Coriolis and centrifugal

torques, and assuming the inertias are constant for any particular arm configuration. For

small motion tasks, the Coriolis and centrifugal torques are shown (in Section 6.3.3.1) to be

negligible. For large motion tasks, neglecting these terms is not an issue since the SISO

controllers are shown to be not acceptable (in Section 6.3.3.2) even for control of linear

dynamic models. The transfer function matrix, from (4.14), (4.15), (4.16), and (4.17), is:

J\V
A(s)

K i i ( T M S + 1 > K12(r12s+1)

K2J(T21S+1) K22 (T22S + 1 )

where

M21

i A
JJ2122Z
- A

M21

11"

i A
J2221Z

J n A 2 2

T * i — - -

T12~
i 2 P 11 + ' i 2 A 13- ' i 1 D 12
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21 — : A 22""

r\..7]. 2 / t h' \ 2

it""" p ' i2~" 'i ^ p \* ' i3~~" mi 'i
ai ai

and the characteristic polynomial A(s) is
^2

11A21

To calculate the coupling index D(JW ), the magnitude of JW is derived using the DC gains

K.,, K1O, KO), and Koo. This is justified since the maximum time constant of the characteristic

equation (6.7) for the arm configurations in Figure 6-23 is 51 msec, while the observed

position rise-times range from 0.18 to 0.28 seconds. (While the feature rise-times are not

recorded, feature rise-times are even larger, according to the analysis in Section 5.4.)

The feature/joint assignment map is also displayed in Figure 6-24. For these examples, the

specified assignments are:

and

over the entire displayed region, and this assignment also holds for all line angles (#ob). In

contrast to the linear kinematic configuration, this assignment does not hold over large

regions. For other arm configurations, the opposite assignment is observed. For example, in

the sensitivity and assignment maps displayed in Figure 6-25, there is a boundary where the

assignment becomes

cog *""" 2

and

As the line angle decreases, the later assignment holds over the entire displayed space. In

contrast to the linear kinematic configuration, a fixed feature/joint assignment is not

predicted for large regions of control. The performance when crossing such a boundary, and

its effect on implementation using independent adaptive controllers, is discussed in Section

6.3.3.3.
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s © © •-« ̂ - • • • *

« <r* • • •

Figure 6-25: Sensitivity With Diagonal Dominance Changes



6.3.2.2. Path Constraint

Implementation of a path constraint strategy for the nonlinear kinematic configuration

requires sensitivity analysis of the arm jacobian according to Section 2.5.3 . This analysis

shows which joint leve! degrees-of-freedom dominate motion in Cartesian space.

The path constraint strategy is analyzed for the tasks represented in Figure 6-23. A map of

the arm jacobian and of the Cartesian/joint assignment is displayed in Figure 6-26 for the

closer range motions. This assignment map is derived by organizing J to minimize D (i.e.,

in (2.9), JW is replaced with J ). For this particular arm configuration, 0A dominates X, and
p 3rm i

from the feature sensitivity analysis of J f ea t , X dominates Xco . The hierarchy for this

configuration is shown in Figure 6-27.

6.3.3. IBVS Evaluation

The visual servoing tasks evaluated are represented in Figure 6-23. The smaller motion

tasks (i.e., all except Tasks V and W) are discussed (in Section 6.3.3.1), seperateiy from the

larger motion examples (in Section 6.3.3.2), since significantly different results are observed

in each. Examples of tasks which have trajectories that cross boundaries of diagonal

dominance are discussed (in Section 6.3.3.).

Preliminary simulations, which are implemented with a reference model bandwidth of

w =9.5 sec*1 and T-0.033 sec (or fs / fBW-20), are stable, but exhibit poor transient

response. In contrast, when the equivalent linear kinematic tasks are implemented with these

values, smooth trajectories result (in the forward trajectory and across regions where fixed

feature joint assignment is predicted). The problem is isolated to insufficient sampling-to-

bandwidth ratio required for suitable identification, and it appears that the added kinematic

coupling is responsible. To demonstrate this, the following experiments are simulated for

Task S:

1. To verify that the nonlinear dynamics are not the source of the problem, direct
Joint-level control of the robot arm (in this configuration and with the same
bandwidth and sampling period) exhibits accepatble transient response.

2. To assure that the combination of nonlinear dynamics and kinematics do not
cause the problem, the visual servoing task is simulated with uncoupled and
linear dynamics according to Section 4.4.5,1 . The response exhibits poor
transient response.

3. A fixed LMFC, which does not include an on-line identifier, is implemented using
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Figure 6-27: Hierarchy for 2 DOF Nonlinear Kinematic Configuration

the steady-state parameter vector learned from an initial adaptive trial. The results
are shown in Figure 6-28. While the adaptive system displays a poor transinet
response, in both the first and second trials (second trial shown), the LMFC
produces a dramatically improved response (i.e., reduced oscillation, and close
to monotonic motion).

4. It is verified that the sampling period, T = 0.033 sec, is not too small relative to the
robot dynamics (i.e., the time constants associated with the characteristic
equation (6.7) are 18.1 msec and 48.9 msec, at #2 = 90.2 deg), and that the
sampling-to-bandwidth ratio is the important parameter. The task is run with the

n
 1, so

43. This results in an acceptable transient response.
nonlinear dynamic simulation, and with a smaller bandwidth <on = 4.39 sec
that fg/fBW 3 Thi l i bl i

The significance of these experiments is that a sampling-to-bandwidth ratio of at least

f / fB W~ 45 is required for adaptive control with nonlinear kinematics. In addition, these

experiments suggest that a fixed controller is more suitable for control when physical

ratios.implementation requires smaller f /f,BW
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6.3.3.1. Small Motion Trajectories

This section includes a summary of the control performance for the small motion

trajectories represented in Figure 6-23. The evaluation is based on simulations using T = 0.003

sec and o>n = 44.51 sec"1 (fs/fBW = 47). The smaller sampling period permits a larger banwidth

to be specified, which leads to faster speeds and accelerations. This accentuates the

magnitudes of the coupled and nonlinear dynamics, testing the MRAC's ability to operate

under these demanding conditions. The fixed feature/joint assignment for this configuration

is described in the sensitivity analysis in Section 6.3.2.1. The experiments conducted for each

task match those for the linear kinematic configuration. That is, after each initial adaptive

learning trial, a fixed LMFC is implemented using the steady-state estimated parameter vector.

The path constraint strategy is implemented with the controller fixed for 6 sampling periods

during the level transitions (Section 6.2.2.). The resultant trajectories are displayed in Figures

6-29 and 6-30.The torque components for the adaptive control of Task P are displayed in

Figure 6-31.13 This representative example demonstrates that there is significant inertial

coupling, but the Coriolis and centrifugal torques are negligible for these shorter excursion

tasks.

13While each trial is run for 3 seconds, only 0.4 seconds are shown.
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Observed performance of the small motion trajectories qualitatively match those of the

linear kinematic configuration. In summary, these observations are:

1. Stability: All tasks simulations are stable, with accepatble transient response, and
zero steady-state feature and positional errors.

2. Parameter Identification: Steady-state identification errors go to zero. Transient
errors approach zero before the steady-state positions are reached.

3. Path: In each case, smooth trajectories are achieved, which deviate from the
predicted path. Path deviations are not consistently smaller or larger than for the
equivalent linear kinematic configuration.

Tasks Z and R exhibit relatively large deviations, which result from the nonlinear
kinematics (and not the nonlinear dynamics or the combination of nonlinear
dynamics and kinematics). To verify this, Task Z is simulated with a linear and
uncoupled dynamic plant model according to Section 4.4.5.1 (with r =0.058 sec
and r = 0.027 sec) with similar results.

4. Rise-times: The adaptive rise-times are sluggish, relative to the predicted



response. As noted for the linear kinematic trials, no attempt was made to
optimize the controller pole-bound, y, which is kept constant throughout the
experimentation. In practice the control penalty can be reduced as the sampling-
to-bandwidth ratio increases, resulting in faster rise-times.

5. Path-Constraint: When the object is centered in the image, the path constraint
strategy produce smooth controlled motion toward the X-axis. While this
technique is useful for this particular set of arm configurations, more exhaustive
testing is required to determine its application in other configurations and
geometries. Limitations of this strategy are accentuated in the larger motion
studies.

For the fixed LMFC control:

1. Stability: With the exception of Task Q, the LMFC systems are stable, with good
transient response, and zero steady-state errors. In Task Q, there is a small
oscillation toward the end of the trajectory.

2. Path: Maximum path deviations exceed the adaptive path deviations.

3. Rise-times: No generalizations can be made concerning fixed vs. adaptive rise
times. Consistent with the linear kinematic examples, the LMFC tends to be faster
that the MRAC in most of the trials.

6.3.3.2. Large Motion Travel

The experiments presented in this section demonstrate that IBVS control of nonlinear

kinematic configurations, for tasks requiring large motions, may not be suitable unless

coupled controllers and extremely large sampling-to-bandwidth ratios are used.. The

evaluations also show that fixed control and the path constraint hierarchy strategies are not

suitable for such tasks. With the exception of the fixed controller applicability, these

conclusions oppose those for the linear kinematic configuration. What are the possible

differences between these configurations which account for these observations? With

respect to the linear kinematic configuration, the nonlinear kinematic configuration:

1. Exhibits significantly larger changes in sensitivity over the longer distances
(Table 6-5);

2. Has nonlinear and coupled dynamics; and

3. Is kinematically coupled.

Of these differences, it is shown below that the coupled kinematics ultimately limit the use of

independent controllers in an IBVS system.

Tasks V and W were simulated with values of fo/fQW and T used for the small motion studies.
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The simulation of Task V produces a smooth stable motion, with a deviation from the

predicted path of 1.21 inches on the first trial (and 1.01 inches on the second trial). However,

in Task VV, the line keeps going OFV due to poor stability. For both examples, the predicted

feature/joint assignment is verified to be fixed at Xco *—0v using analytic measurements

along the trajectory. The ability to control Task V may be attributed to

1. Its change in J21, which is two orders of magnitude smaller than in Task W; and

2. Its smaller coupling in the initial view (i.e., DTask v = -0.002 vs. DTask w = 0.657 .
(Chapter 8 includes a systematic study of performance as a function of coupling.)

In neither task would a fixed LMFC keep the line in the field of view.

Further evaluation of Task VV isolates kinematic coupling as a source for independent

control, it is verified (in Section 6.3.1.1) that the nonlinear dynamics, for this arm

configuration, can at least be controlled at the joint level. Next, it is verified that the

combination of nonlinear dynamics and kinematics is not a problem. Task W is simulated with

linear and uncoupled dynamic plant models (with rm-1 = rm 2 = 0.1 sec in Section 4.4.5.1.), and

the line still goes OFV. The sampling-to-bandwidth ratio f /fBW is increased to 415 by keeping

T = 0.003 sec and decreasing the bandwidth to con = 5.03 sec"1. The resulting trajectory, on the

second trial, is displayed in Figure 6-32.14 The trajectory exhibits a relatively large deviation

from the predicted path. The deviation is due partly to the presence of control signal

saturation in the first joint, but not the second. Thus, 6 v which dominates motion in the X

direction, cannot drive the camera toward that axis. However, it is verified that the

contribution of saturation to this deviation is minimal, by simulating the task at a lower

bandwidths. At the lower bandwidths, saturation does not occur, but the camera's path still

exhibits a relatively large deviation from the X-axis of 5.3 inches (compared with 5.8 inches at

the higher bandwidth).

The hierarchical approach could not be used to offset these large path deviations. Failure of

the hierarchical strategy in the nonlinear kinematic configuration results from the inherently

poor trajectory performance. Over the larger distance of travel, the constrained joint (82)

tended to be cyclically activated, and then braked, to keep AXco within the error bounds.

Frequent switching, back and forth, between levels of the hierarchy results in jerky motion.

Such motion cannot be tolerated in a practical robot because of the vibrations and

The first trial goes OFV since the parameter vector initialization is too large, and P(0) is increased to
Diag[1 1 1 1]. The net time indicated for this trajectory (3 seconds) corresponds to the maximum time that the
simulator can run at T = 0.003 sec.
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mechanical resonances which would result. (In the smaller motion tasks, there is only a single

transition between levels.) Further, in these large motion examples, it is difficult to select a

combination of controller parameters (e.g., P(0), e, and the number of fixed transition cycles)

which would even produce a stable response under these frequent switching conditions.

These experiments demonstrate that, independent IBVS control of nonlinear kinematic

configurations, which requirie large motions, can produce large path deviations. While path

deviations may be tolerable for for tasks requiring small motions, over larger regions of

control there are increased risks of collisions with other obstacles in the region, and it is more

difficult to keep the object within the camera's field-of-view. Implementations of IBVS control

of nonlinear kinematic robots will require coupled controllers, using relatively large sampling-

to-bandwidth ratios. Alternatively, independent controllers may be used if the robot

kinematics are first uncoupled by using a dynamic image-based "Look & Move" structure.

6.3.3,3. Feature/Joint Reassignment

Analysis and evaluation of the 2 DOF linear kinematic configuration suggest that a fixed

feature/joint assignment is satisfactory for control of such a system. In contrast, the

sensitivity analysis in Section 6.3.2, and the example presented in this section demonstrates

that, when individual degrees of freedom do not coincide with the camera's frame (e.g. a



nonlinear kinematic configuration), a fixed feature/joint assignment is not generally suitable.

The sensitivity analysis shows that the arm jacobian dominance, and therefore overall

sensitivity dominance, changes with the arm configuration. This section evaluates motion

across a boundary of diagonal dominance change. The experiments suggest that, when

crossing such boundaries, a fixed feature/joint assignment can only be used if the required

motion is relatively small.

A task which requires crossing a boundary of change in diagonal dominance is represented

in Figure 6-33. The task is simulated with three strategies:15

1. Fixed feature/joint assignment : 02*~"*co ( c o r r e sP° n c i s t 0 assignment predicted
in desired view);

2. Feature/joint reassignment: at boundary of diagonal dominance change; and

(corresponds to assignment predicted3. Fixed feature/joint assignment :
in initial view).

obj

(12.31)
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The resulting trajectories for the first two strategies are displayed in Figure 6-34. The

feature/ jo int reassignment trajectory exhibits a smaller path deviat ion. In the third strategy

(not displayed), which is satisfactory for the conf igurat ions evaluated in Section 6.3.3.1, the

15These simulations use the controller parameters specified for the small motion tasks in Section 6.3.3.1.
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line goes OFV due to large path deviations. For all cases, the fixed LMFC causes the line to

go OFV due to large path deviations.

It would not have been suitable to implement this task using a feature/joint assignment

based on the sensitivity in the initial view, since the line goes OVF. In practice without an

on-line estimation of JW , the sensitivity in the initial view is all that can be determined from

measurements preceeding the start of control. This issue is discussed in Chapter 7. If the

required motion is even smaller (e.g., small corrective tasks), measurement of JWp

preceeding the start of control may be satisfactory. For example, the task in Figure 6-33 is

redefined so that the initial and final arm posjtions are separated by only 0.3 inches (i.e., #2

47—>46 degrees, and 61 is 43 degrees in both initial and final views respectively.) When this

task is simulated with #1*~Xco , the resulting trajectory, which still crosses the diagonal

dominance boundary, is stable and displays an approximately straight line motion.

6.4. Summary

The purpose of this two part chapter is to evaluate independent adaptive control of coupled

two DOF systems. Visual servoing, of a line in space problem, uses two basic configurations:

1.A linear and uncoupled kinematic and dynamic robot, for which the robot's
degrees-of-freedom coincide with the camera's reference frame; and

2. A nonlinear and coupled kinematic and dynamic robot.
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While image-based control is emphasized, preliminary evaluation of joint-level control of the

nonlinear and coupled plant dynamics is also included. To the best of the author's knowledge,

this is the first demonstration of an enhanced MRAC (i.e., SP MRAC, with control penalty and

measurement delay) for robot control.

The main conclusion which emerges from this evaluation is that an image-based "teach-by-

showing" strategy, using an adaptive control approach, can be used to control robots. Since

this approach cannot be used to control path, it appears to be best suited for precision tasks

which require small corrective motions (e.g., precision assembly, for parts aquistion and

mating alignment). However, predicted postion trajectories, for at least this simple line in

space problem, are smooth and approach straight-line. This motivates continuing future

research to evaluate more general configurations.

While independent control of the coupled systems achieve stable performance, with

acceptable transient response, and zero steady-state error, potential limitations of this

approach include:

• Independent controllers produce deviations from the predicted path. While
steady-state errors go to zero, deviations arise from transient identification-errors
occuring during the intiai phases of control. Path deviations are relatively small,
with the exception of the large motion nonlinear kinematic tasks. For these tasks,
indepenent control is judged not to be suitable due to increased risks of obstacle
collison, and the requirement of extremely large sampiing-to-bandwith ratios
(which may not be suitable for a practical implementations.)

Independent joint-level control of a dynamically nonlinear and coupled robot,
using an enhanced SP MRAC and with measurement delay, is stable with
acceptable transient response. The control problem associated with the large
motion nonlinear kinematic tasks is then isolated to the nonlinear kinematics (and
not to the dynamics).

• Independent control requires a feature/joint reassignment strategy for a general
system. While a fixed assignment is adequate for the linear kinemati configuration
(using a sufficiently large fs/fBW)i the articulated arm configuration requires a
reassignment strategy, unless motion is constrained to small movements.
Boundaries of feature/joint reassignment are successfully predicted by
minimizing the coupling index D (2.9).

• Since the MRAC is sign-sensitive, independent control of a coupled system can
cause momentary large reversals in the axis direction. Large sampling-to-
bandwidth ratios can minimize those effects.

These limitations suggest potential performance advantanges which can be gained by using

coupled controllers.



Evaluation of a path constraint hierarchy shows that arbitary use of this hierarchy may or

may not minimize nonmonotonic path deviations. This strategy produces a smooth controlled

path biased toward the X-axis, except for the large motion, nonlinear Kinematic tasks. For this

configuration, the large path deviations could not be offset because it is difficult to select a

combination of controller parameters which would yield a stable system under the frequent

switching conditions, and the motion is too jerky for practical systems.

Finally, the MRAC is used to derive fixed LMFC controllers. Relative to the adaptive

approach, the fixed controllers exhibit better transient response at lower sampling-to-

bandwidth ratios, and tend to have faster rise-times. They produce larger path devaitions; are

only suitable for small motion the tasks which have small sensitivity changes; and, a single

LMFC is not suitable for a broad range of tasks.

Only two control features were available for the 2 DOF configuration. In Chapter 7, IBVS

control is extended to a three DOF system, and control is evaluated for multiple candidate

features. Evaluation of a single tank, with different control features, provides a consistent and

systematic study of performance as a function of the coupling index D(JW ).



 



Chapter 7
Evaluation: Three DOF

7.1. Overview

The purpose of this chapter is to evaluate adaptive image-based SISO control of the 3 DOF

configuration described in Section 4.2.3. The simulations described extend adaptive image-

based control to a multi-DOF system which models a real configuration. The evaluation

focuses on the feature selection process described in Section 2.5.2. The diverse path and

time performances, resulting from using different feature subsets, emphasize the importance

of feature selection. The coupling index D(JW ) is demonstrated to be a suitable discriminant

function for selecting among candidate feature subsets. By selecting features which minimize

this index, improved system performance (including both path and time response) is achieved

as D(JW ) decreases. These results are consistent with those observed in Chapter 6 for the

related issue of feature/joint assignment, which uses D(JW ) to minimize apparent system

coupling. The suitabilty of using this index as a measure of coupling becomes an important

aspect for implementations of general image-based systems, which will have to select and

assign features.

The evaluation also illustrates the hierarchical and fixed control strategies. The hierarchical

approach not only constrains path motion, but also facilitates the use of SiSO adaptive

control by making performance less sensitive to coupling. Adaptive learning trials can be

used to synthesize SISO fixed controllers, whose performance begins to degrade as changes

in sensitivity become larger.

This chapter is organized as follows. In Section 7.2, the candidate features are defined, and

measurement of the system sensitivies is described. The small-signal evaluation, in Section

7.3, uses tasks requiring small motions so that changes in the magnitudes of the feature

sensitivity, J, and thus changes in the coupling index, D(JW ), are also small over the

trajectory. This provides a convenient task for analyzing and evaluating adaptive control



performance as a function of coupling since D(JW ) remains essentially constant. Larger

motion tasks, with significant chages in J, are evaluated in Section 7.4 to investigate the

suitabilty of selecting features based on coupling in the initial view, and also to show

examples of fixed and hierarchical control. The controller parameters, for the simulations

described in this chapter, are summarized in Appendix D.

7.2. Candidate Control Features

The feature selection process (in Section 2.5.2) asks: How should a subset of n control

features be selected (n = 3), from a set of m features, where m>n? In Section 2.5.2, it was

proposed that the selection may be based on minimization of D(JW ). in this section, m

candidate features (where m = 7) are defined for the control evaluation in Sections 7.3 and

7.4. Measurement of the corresponding sensitivities is then discussed.

The cube (in Figure 4-13) is sitting in a stable position on top of the turntable (i.e., one of the

cube's sides is flat), and its image is displayed in Figure 7-1.

Figu re 7-1: Cube Image

In the figure, each plane or node , is referenced by the displayed number (e.g. node 6, 4, or

1). It is assumed that the vision system can distinguish the image regions associated with

each node (i.e., connected regions [Agin 79]). The vision system can extract the image area,

A., and centroid, (X .,Y .), of each ith node. Combinations of these features, such as

relative areas:

16'The origin of node is related to a graph structure representation of the image [Sanderson 82]
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and sums of areas:

l + | I J

can also be considered'for selection. It is initially assumed that the features from only nodes 4

and 1 are available, and the candidate features are:

r A 2 ' Arel-1,2> Are!-2,1' A 1+2 ' Xcog-1' a X cog-2

There are thus p(7,3) = 210 candidate subsets of ordered features. To limit the number of

combinations which are evaluated in the dissertation, feature subsets are selected which

include one of each type feature: a center-of-gravity, an area or sum of areas, arid a relative

area feature. This combination is chosen because the 2 DOF evaluation (in Chapter 6) has

already demonstrated that the COG and length of a line, analogous to the centroid and area of

a plane, can be used to control depth and position. The relative area feature is added in

consideration of the additional orientation DOF. Feature/joint assignment is described (in

Section 7.2.2) after the discussion of sensitivity measurements (in.Section 7.2.1).

7.2.1. Sensitivity Measurements

Preceding the start of control, it is straightforward to measure the magnitude of JW (i.e.,

IJW I) in the initial perceived image. With this measurement, the coupling index, D(JW ), can

be calculated for selection and assignment of an initial feature subset. The magnitude of JW

can be measured by independently evaluating J and IW I. The robot transfer function matrix

is

—ffl 0 0

W (s) = 5* L o

0
Km 360

(7.1)

The magnitude of W is evaluated by assuming that the the open-loop plant time constants,
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r , are small relative to the closed-loop time constants. This-is justified since the closed-loop

position rise-times, observed in the simulation examples, range from 0.16 to 1.4 seconds17,

while the plant time constants range from 0.041 to 0.091 seconds. When, IW I is

approximated by its low frequency gain characteristics:

K ,

IWp(jco)l ^i Q}

/ in \

2TTP volt

0

0

(7.2)

This assumption simplifies the calculation of IW I when the exact dynamic model is not

known. In this case, each term in (7.2) can easily be be measured as the magnitude of the

impulse response for each joint. For the experiments presented in this chapter, the values

used for K , p, and TJ, were derived in Chapter 4. In (7.2), since to*1 is a common factor, the

evaluated radian frequency is set to <o = 1. For higher closed-loop bandwidth systems, it

would be appropriate to evaluate (7.1) at the closed-loop bandwidth <on.

The sensitivity matrix is

J =

9 Xcoa
3X

3A

ax

ax

9 Xcoo
3Y

3A

3Y

3Y

9 Xcoc
dQ

3A

9 A re .

and is determined by sequentially moving each DOF by a small displacement and then

measuring the accompanying feature changes:

17.The feature control variable rise-times, while not recored, are even larger according to the analysis in Section
5.4
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The magnitude of the joint displacements (Ax,Ay,A#) are selected by succesive iterative

reduction until successive values of each element of J satisfies

J.
100% < 0.01 %

In (7.3), the dimensions of each element are functions of only the joint variable, since the

features are normalized to the screen and are dimensionless. Each element of IJW I thus has

the same units (volt *1). This is imperative to be able to compare the relative magnitudes of the

sensitivities.

Since the magnitude of the sensitivities can change from the initial to the final image, so can

D(JW ), and the selected feature subset can change along the trajectory. Ideally, it would be

convenient if the relative relationships between the coupling index of each subset remained

constant along the trajectory. Then, only off-line measurements of the sensitivities, made

preceding the start of control, would be sufficient. The 2 DOF evaluation has already

demonstrated that feature/joint assignment can change during control for a nonlinear

kinematic system. The 3 DOF evaluation shows that the selected features may also change.

Thus, in a completely general image-based system, IJW I might be estimated on-line. To

evaluate the use of D(JW ) to discriminate among several feature candidates, small motion

tasks will be specified so that J and D(JW ) do not change significantly over the trajectory.

Thus, measurement of the intial view couplings are suitable. The use of intial view coupling

measurements for larger motion tasks are evaluated in Section 7.4 .

7.2.2. Feature/Joint Assignment

All simulations are implemented using fixed feature/joint assignments corresponding to

A <—Y-axis
Are|<-0-axis

(7.4)
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For each candidate feature subset evaluated, it is verified that these are the assignments

predicted according to minimization of D(JW ). A case where these assignments do not hold

will also be discussed.

The evaluation in Chapter 6 demonstrated that minimization of D can provide a suitable

feature/joint assignment for a 2 DOF system. For three and higher DOF systems, the question

arises: If JW is organized to minimize D(JW )t but partitioned (2x2) matrices of JW are not

each minimized independently, can control problems arise? For the particular 3 DOF

simulations, evaluated in this dissertation, such organizations do not occur. That is, it was

verified that the three partitioned matrices, which result by canceling one DOF and the

corresponding feature on the diagonal of the IJW I matrix, each exhibit a minimum in

coupling. The partitioned matrices are:

ax 1<x av
3A

3X
Kx

3A
y (7.5)

K
3X x

3Ae)

K

dO

do
(7.6)

3A

3Ar

3A

dO

(7.7)

where

K =K =
x y

K
(in/volt) and

360K
(deg/volt)

Future research must verify whether minimization inconsistencies between the entire

sensitivity matrix and partitioned (2x2) sections will occur for other configurations. And, if so,

will these limit the use of independent controllers?



7.3. Small Signal Evaluation

In this section, a task requiring small motions is specified so that changes in the magnitudes

of the sensitivity, J, and thus coupling index, D(JW ), are also small over the trajectory. The

task is specified to have a net displacement of AX = AY = 0.1 inches for the translational

stages, and A# = 1 degree for the rotational stage. In these examples, the coupling index

D(JW ), for each candidate subset, varies from 0.01 to 2 percent from the initial to desired (or

final) view. Thus, calculation of D(JW ), using measurements of UW I in the initial view, can

be used to evaluate performance of the different candidate feature subset selections.

The system performance is evaluated by comparing both path performance and time

response. It was shown in Section 2.5.2.2, that if J is constant, the predicted path (i.e., that

which occurs if perfect model following were achieved) of the translational stages is straight-

line motion. For the examples included in this section, changes in sensitivity are typically less

than 1 percent. The predicted path can therefore be approximated by a straight-line. As

D(JW ) decreases, we anticipate improved model following capabilities of the SISO

controllers, and thus closer to straight-line motion. Path performance will be evaluated by

comparing D(JWp) versus the actual distance traveled, where a straight line path

corresponds to 0.144 inches.18 Time domain performance is evaluated as a function of largest

position rise-time of the three axes.

The task simulations utilize a cube, with its desired image displayed in Figure 7-1, as the

control object. The configuration parameters in Table 7-1 are defined in Figure 4-3.

Focal Length F= 35 mm
u= 45 degrees
R = 30 inches
h = .5 inches

Tobj= [-.5 0 0(in.), 0 0 0 (Euler-angles)]
Desired X-Y-0 stage positions = -.5 (in), 0. (in), 30. (deg)

Initial X-Y-0 stage positions = -.4 (in), .1 (in), 31. (deg)
Table 7-1: Small Motion Task Configuration

The image of the object in the initial view is not displayed since it appears essentially the same

as in the desired view,

1 8(Ax2 + Ay2 )0 '5 =0.144
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A modification of the aforementioned configuration will be used to discuss a case for which

the feature/joint assignment specified in (7.4) does not hold, in this example (which is

dicussed below), the cube is placed on one of its edges by setting
Tobj= [,5,0,0,0,45,0]

The camera angle and position are modified to a = 0 and h = 0. The remainder of the

parameters remain as in Table 7-1. The image of the cube in this position is displayed in

Figure 7-2.

Figure 7-2: Cube on Edge

Results of adaptive control simulations, using a representative set of feature subsets, are

summarized in Table 7-2. Discussion of these results will follow explanation of the table

entries.The table includes the feature subset and the performance on the second adaptive

trial using that subset. It was verified, for each trial, that the actual distance traveled are

smooth paths and do not oscillate about a trajectory. The #-axis trajectories all exhibited

smooth motions with negligible overshoots varying between 0.01 to 0.4 percent. Displays of

sample trajectories will be included with the discussion. The table indicates the coupling

index associated with each feature subset. Additionally, the coupling indices for each of the

partitioned (2x2) matricies, (7,5), (7.6) and (7.7), are calculated. The maximum value for each

subset is indicated, in the table, by Do o . The significance of this index will follow in the

discussion of the results. Except for the final experiment, all examples refer to the image

displayed in Figure 7-1. These 17 candidate feature subsets are representative of the 108

possible combinations. Of these, the first 12 correspond to all possible combinations if

features from only two nodes (i.e., nodes 1 and 4) were available. The remainder are examples

of combinations using features from all three nodes.
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Table 7-2: Small Motion Task Summary

The last example, which uses the image of the cube on its edge (Figure 7-2), presents a

situation for which the feature/joint assignment specified by (7.4) does not hold for all of the

image's candidate feature subsets. This example is included to clarify the feature/joini

assignment issue. In this case, the feature/joint assignment for the feature subset specified in

Table 7-2, f = [X _ r A r A (-4 1 ] , corresponds to (7.4). However, if the candidate subset had

been f = [X r A v A r e M 5 ] , then the sensitivity becomes

SX
5A(

5A

cog-1

cog-1

1

rel-4,5

3.97E-3 2.91 E-5 -1.78E-4
-1.30E-5 -3.78E-5 -1.50E-4

0. 1.69E-8 0.
3uy

8u9

which shows that the relative area feature, A , must be coupled to the Y-axis. The column

organization of J , which minimizes D(JW ), for this case is

SA
5A

cog-1

1

rel-4,5

3.97E-3 -1.78E-4 2.91 E-5i
•1.30E-5 -1.50E-4 -3.78E-5

0. 0. 1.69E-8 Su



The important observations which emerge from the small-signal evaluation are:

1. Stability: The simulations provide further verification of the extension of SISO
adaptive controllers to achieve stable dynamic control of coupled systems. The
systems are stable, with acceptable transient responses, and zero steady-state
positional errors. For example, Figure 7-3, shows three representative
trajectories. The diverse path and time performances, as a result of using
different feature subsets, emphasize the importance of feature selection.

2. Feature Selection: The coupling index, D,(J W ) is a suitable discriminant function
for selecting candidate feature subsets to improve system performance. Plots of
coupling index versus path and time performance, for each experiment listed in
Table 7-2, are displayed in Figure 7-4. Minimizing D(JW ) over all potential
candidates produces a fast, straight-line response. The feature subset which
maximizes D(JW ) yields the slowest response, with the largest path deviation.
As D(JW ) decreases, both path and time performance improve. Local
inconsistencies are observed, with non-significant differences in performance.
Order of magnitude decreases in coupling yield substantial performance
improvements.

Further analysis reveals that the coupling index of the overall sensitivity matrix,
D(JW ), reflects the dominant internal couplings. Plots of D2x2 m are displayed
in Figure 7-5. Plots of D(JW ) and D2x2 are similar. Using either coupling
measures would have predicted the same selections. The significance of this
observation is that for other configurations and tasks, one of these measures may
turn out to be a more sensitive discriminant function. Future research
investigations should include evaluations based on both measures to determine
which is ultimately more significant.

The small-signal simulations and evaluations show the importance of feature selection, and

the suitability of the coupling index to accomplish this. The following section, which includes

examples requiring larger motions of travel, extends these results to tasks for which variations

in J are significantly larger.
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7A. Large Motion Evaluation

The small-signal simulations provide a convenient means for analysis and evaluation of the

suitability of minimizing D(JW ) to select features. In practice, actual tasks may require larger

motions which result in time-varying sensitivities. Significant changes in D(JW ) can

therefore occur, from the initial to the final view. Selecting features based on minimizing

D(JW ) in the initial view may not assure that these are the best selections along the

trajectory. The alternative is to estimate D(JW ) on-line and then implement an on-line feature

reselection strategy (i.e., analogous to the feature/joint reassignment procedure in Chapter6).

This becomes a more complex strategy. The evaluation included in this section uses

examples of large motion tasks to investigate the suitability of selecting features based only

on coupling in the initial view. This section also includes examples of the fixed and

hierarchical control strategies.

The evaluation uses examples based on two task configurations. One configuration, which

uses the cube as the control object, is represented by the images displayed in Figure 7-6. This

task requires net trajectory displacements of AX = 2.5 in., AY = 2 in., and A# = 30 degrees.

These magnitudes are typical of those that observed in the Flexible Assembly

Laboratory [Sanderson 83b] when the 3 DOF configuration is used in a static "look and
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move" mode to locate and orient random electronic components. A second task, which uses

the pyramid (Figure 4-13) as the object, is represented by the images in Figure 7-7.
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Figure 7-7: Large Motion Task Images (Cases E and F)



Although such a large trajectory (i.e. AY = 20 in.) is not anticipated for applications with this

type of configuration, it is useful to show examples which further accentuate sensitivity and

coupling changes.

The evaluation does not include calculation of the predicted path, since compact analytic

equations for the feature transformations become complex to derive for higher DOF systems

with solid objects. Future investigations could derive predicted paths by numerical

integration methods, using estimates of J measured along small increments. For the

examples presented, it is anticipated that, as D(JW ) decreases, there will be relative

improvements in time response, and path deviations from a monotonic trajectory will be

reduced. That is, if J were diagonal (i.e., D= -co) and a single valued function of position

along the trajectory (i.e., J..^0), then for critically damped features, the path must be

monotonic. A summary of system performance for the two tasks is shown in Table 7-3. The

table lists performances of both the initial and second (i.e.subsequent) adaptive trials, and for

fixed and hierarchical control. The fixed controller is implemented by fixing the adjustable

gains identified in the first adaptive trial. The hierarchical performance is indicated for the

second adaptive hierarchical trial. Sample plots for two cases are displayed in Figures

7-8 and 7-9.
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Table 7-3: Large Motion Task Performance Summary

Comparison of the coupling indices for the first two cases, A and B, reveals that the feature

subset, which minimizes the coupling, can change from the initial to the desired views. If the

feature selections were limited to these two candidates, then an on-line feature reseiection

strategy may be useful. A completely generalized image-based system, using SISO

controllers, may therefore require this capability. For cases A and B the magnitudes of
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D(JWp) are relatively large in all views. If more potential candidates are available, then the

possibility of finding a subset with relatively small coupling values, over the trajectory,

increases. If D(JW ) remains small, then reselection strategies may not be crucial. The cases

listed do not produce examples with both small couplings and predicted reselections. These
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evaluations do suggest that feature subsets, which have initial view couplings that are an

order of magnitude smaller than for other candidates, show significant improvements in

performance.

The performance features for each control strategy are summarized as:

1. Adaptive Control: Adaptive control yields stable system performance when the
object stays in the field of view. The cube goes OVF in both the first and second
trials of Case A. This feature subset has relatively large values of coupling. For
Case C, where the coupling is smaller, the cube goes OVF only in the first trial,
but with improved second trial response.

The controller which uses the feature subset with the smallest initial view
coupling (i.e., Case D for first task, and Case F for second task), produces the
best performance for each task. They exhibit the fastest rise-times and the
shortest distances of travel. Their trajectories also approach straight-line
motions. The deviations from a straight path are on the same order of magnitude
observed for the 2 DOF linear kinematic configuration. Further, their first and
second adaptive trial performances are virtually identical. The cases with larger
coupling show significant changes between these two trials.

Rise-times associated with the second task (i.e., pyramid examples) are much
larger due to control signal saturation in the Y-axis controller. This also affects
the initial part of the trajectory and may partly account for the absence of a
straighter path there.

These examples reinforce the suitability for using D(JW ) as a feature selection
discriminant function. These results also suggest that the selection may be based
on the initial view coupling, if potential candidates have relatively small coupling
values (e.g., D(JWp)<0.)

2. Hierarchical Control: This strategy produces system performances exhibiting two
important characteristics. First, the path is constrained, for each case, regardless
of the magnitude of D(JW ). After most of the relative X-axis motion is achieved,
the turntable begins the orientation phase. Then, after most of the orienting
motion is achieved, the depth control begins. This strategy prevented the object
from going OVF.

Second, both the time and path performances of each case are virtually identical.
This characteristic does not result from the trajectories being forced to pass
through regions with reduced coupling. It was verified that the coupling values, at
the positions where each controller becomes active in the hierarchy, are not
significantly smaller than in the initial or desired views. This strategy does
however tend to cause changes in any feature to be dominated by only one DOF.
That is, as each controller becomes active, the majority of motion for the
previously activated controller has already taken place. This facilitates the SISO
identification.
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3. Fixed Control: Fixed control performance is not significantly different than for the
adaptive approach. However, the larger motion task begins to accentuate fixed
controller inadequacy for larger gain changes. For example, the rotational stage
response for case F exhibits large overshoot (Figure 7-9).

Fixed control of the smaller motion task is adequate since the sensitivity changes
associated with the these cases are relatively small. For example, in Case D, the
percentage change of 3Xco /9X is only 4 percent from the initial to the final view,
in comparision with the 40 percent change for the 2 DOF example represented in
Figure 6-6. The reduced gains for the 3 DOF configuration result from larger
focal lengths and larger relative depths between the camera and object.
Considering the relatively small gain changes and large closed-loop bandwidths,
it is not surprising that the fixed and adaptive responses are similar. For the larger
motion pyramid task, for which gain changes are an order of magnitude larger
than for the cube task, fixed performance begins to degrade.

7.5. Summary

The 3 DOF evaluation provides further verification of the extension of SISO adaptive control

to achieve stablity, with acceptable transient response, of feature coupled systems. The

coupling index, D(JW ), is demonstrated to be a suitable discriminant function for selecting

among several candidate feature subsets. The evaluation shows that significant

improvements are achieved in both time and path performance as D(JW ) decreases. For

small-signal tasks, the predicted path is straight-line. For larger motion examples, which have

time-varying sensitivities, the observed paths approached straight-lines as D(J W ) decreased.

The generality of achieving straight-line paths, for other tasks and configurations, remains to

be evaluated in future research.

The hierarchical approach not only constrained the path, but also facilitated the use of SISO

controllers for even large coupling values. Thus, the hierarchical approach becomes a

conservative and safe strategy for IBVS implementations.

Classical control theory does not provide an effective means to synthesize fixed SISO

controllers for coupled and time-varying systems. The adaptive approach provides a means

for synthesizing the fixed SISO controllers. Fixed controllers achieved performances similar

to the adaptive approach. As gain changes become larger, fixed performance begins to

degrade.



 



Chapter 8
Conclusions

8.1. Overview

In this chapter, the author summarizes the research and contributions of the dissertation.

Future directions for research are suggested, including MIMO control, implementation issues

(including higher DOF), and comparative evaluation of position versus image based control

approaches. Preliminary investigations into some of these areas are described.

8.2. Conclusions

This dissertation provides insight and analytic tools for the analysis, design, and evaluation

of vision based dynamic robot control systems. These goals are achieved by:

1. Organizing and categorizing previously impiemented and proposed visual servo
control systems into well-defined classical control structures; and,

2. Analyzing, designing, and evaluating a control system for the image based
approach.

The control requirements for the IBVS "teach-by-showing11 strategy (including

nonlinearities, coupling, unknown parameters, delay, noise, saturation, path control, and

feature selection) are analyzed in Chapter 2. An independent MRAC adaptive controller, a

coupling index, and a path constraint hierarchy are proposed to satisfy these requirements.

The SISO enhanced SP MRAC adaptive controller is derived for systems with delay in

Chapter 3. Fixed controllers are synthesized by fixing the adjustable gains of the adaptive

controller. Guidelines for selection of controller parameters are provided. Fixed versus

adaptive control is evaluated (in Chapters 5 through 7), using computer simulations, for

systems with increasing complexity to determine the relative contributions (to system

performance characteristics) of delay, noise, kinematic and dynamic coupling, and feature

coupling.



SiSO adaptive control of coupled nonlinear IBVS systems is shown in simulation to be

stable, with acceptable transient response, and zero steady-state errors. System

performance (including time response and path deviations) improve when features are

selected and assigned by minimizing the coupling index D. When the feature sensitivities are

constant and coupled, the predicted position trajectories are straight-lines. The predicted

trajectories for the 2 DOF configurations are either straight-line or approach straight-lines.

For the 3 DOF configuration, the observed trajectories approach straight-line as the coupling

index decreases. The generality of such observations must be evaluated in future research.

Deviations from the predicted paths are acceptable for both small and large motion tasks,

which use a robot with linear uncoupled kinematics. For large motion tasks, with an

articulated arm, kinematic coupling leads to unacceptahly large path deviations. The

hierarchical path constraint strategy is used to guide the robot in a predictable fashion in

Cartesian space (i.e., moving first in a centering X direction, then moving in the depth Y

direction). The generality of this hierarchical approach remains a topic for future research.

Since path cannot be controlled directly, with the "teach-by-showing" IBVS approach, the

author recommends that IBVS can be used for tasks for which exact path is not critical (e.g. in

precision assembly, for parts acquisition and mating), and could also be useful to increase the

accuracy of position-based approaches.

Fixed LMFC controllers are stable, with acceptable transient response. Comparative

evaluation of fixed vs. adaptive control shows:

1. A fixed controller, tuned for one task, may not be suitable for another task. A
single adaptive controller is suitable for a range of tasks.

2. Fixed controllers are suitable for tasks with small sensitivity (or gain) changes
(e.g., small motion tasks). Adaptive controllers are capable of tracking large
sensitivity changes.

3. Fixed control exhibits superior noise performance, and superior stability at lower
sampling-to-bandwidth ratios. Fixed control performance becomes sluggish as
the specified bandwidth decreases.

The contributions of the dissertation are:

1. Formalization of dynamic visual servo control of robots, by organizing and
categorizing them into well-defined classical'feedback control structures. These
structures are classified as either position-based or image-based, and control
either open-loop robots or incremental kinematic robot systems (with internal
joint-level compensation, and kinematic decoupling). The formalization facilitates



the control system design by showing the role of computer vision as a feedback
transducer (thus affecting closed-loop system dynamics, and requiring a visual
servo controller), and stating the static and dynamic characteristics (of the robot
and vision) which must be compensated. The categorization, of different visual
control approaches, provides a common framework for future comparative
evaluations.

2. Introduction and demonstration (by simulation) of a novel "teach-by-showing"
image-based approach. In this approach, the visual servoing task is specified by
taking a picture of an object in the desired relative position, and extracting the
image features in this view. Explicit knowledge of object positions, relationships
between features and positions, and robot dynamics are not required. This
simplified approach could facilitate the integration of computer vision into factory
environments, and increase feedback accuracy (required for precision assembly)
by eliminating inaccuracies associated with feature interpretation.

3. To the best of the author's knowledge, the analysis, design, and evaluation of
IBVS is the first in-depth study of dynamic robot control using visual feedback.
Previous studies, appearing in literature, have been limited to ad-hoc control or
single DOF systems.

4. The important contributions resulting from the IBVS analysis, design, and
evaluation are:

a. The extension of an enhanced SP MRAC to control of systems with
measurement delay and nonlinear gains. For such systems, the delay
requires a control penalty enhancement to achieve acceptable stability.
The control penalty is also required to assure a locally stable controller,
since the hyperstable identifier can identify non-minimum phase zeros
resulting from the nonlinear gains. Reference signal biasing is required to
drive steady-state full-parallel errors to zero, since the identifier can identify
type 0 plants when controlling type I plants with nonlinear gains.
Sufficiently large sampling-to-bandwidth ratios are required to track
nonlinear gain changes.

b. To the best of the author's knowledge, the dissertation includes the first
demonstration (by simulation) of the enhanced SP MRAC for direct joint-
level control of a robot arm. Similar algorithms have appeared in literature
to control simulations of nonlinear coupled robot dynamics, but have not
utilized the enhancements and stability viewpoints required for
implementation issues of saturation, noise, and delay.

c. Identification of limitations and applicability of SISO control of coupled
systems, including:

• Introduction of an index to measure system coupling. The ability of
the SISO controller to track the reference signals degrade (and path
deviations and rise-times increase) with increasing values of the
index. This index is shown to be a suitable discriminate function for
selecting and assigning features for control.



• Identification of a sign-sensitivity (Section 6.2.3.1), which degrades
transient response. Large sampling-to-bandwidth ratios are required
to minimize this sensitivity.

• Observation that steady-state identification and tracking errors
approach zero, but path deviations, for IBVS, and tracking errors, for
joint-level robot control, will always occur with SISO control of
coupled systems. Transient errors are reduced (but not driven to
zero) by increasing the sampling-to-bandwidth ratio.

d. Demonstration of the adaptive approach as a means to synthesize fixed
controllers for nonlinear and coupled systems. Fixed controller design is a
formidable engineering task, for such systems.

e. Preliminary analysis of the relationships between path trajectory and
feature based control. This analysis encourages future evaluation of more
general systems by showing that (for critically damped reference feature
signals, each with the same time constant):

• For constant and coupled feature sensitivity (i.e., Jacobian of the
features with respect to positions), the predicted paths are straight
lines, irrespective of the number of DOF.

• For the 2 DOF line-in~space configuration tasks (for which the feature
sensitivities are not constant and change dramatically over the
trajectories), the predicted paths are straight lines or approach
straight line motion.

« For the 3 DOF configuration, the observed path deviations from a
straight-line decrease as features are selected to reduce the coupling
index.

Using a path constraint hierarchy, path motion can be constrained along
selected DOF, but the generality of this approach remains a topic for future
research.

The image-based "teach-by showing" approach is analogous to the basic robot control

"teach-mode" operation. In the author's experience, the "teach-mode" strategy for robot task

definition has greatly facilitated the incorporation of robots into the industrial environment by

providing a simple means for task training. Similarly, the author hopes that the "teach-by

showing" approach will have the potential of simplifying applications of visual servoing.



8.3. Suggestions for Future Research

The purpose of this section is to suggest directions for future research, including MIMO

control, physical implementation (including higher DOF), and comparative evaluation of the

position and image based approaches. Preliminary investigations into some of these issues

are also described.

8.3.1 . MIMO vs. SISO Adaptive Control

The dissertation isolates problems of SISO control of coupled systems, including sign-

sensitivity, feature/joint assignment, and transient tracking errors. An MIMO controller may

not exhibit similar problems, and may reduce transient tracking errors. Analysis, design, and

evaluation of MIMO control is a fruitful area for future investigations. While the major

implementation trade-off between MIMO and SISO control is computational complexity, the

author believes that a basic problem of MIMO control will be the additional complexity of

selecting and initializing the controller parameters, which must be empirically chosen. In this

section, an enhanced MIMO MRAC controller is proposed, and related issues of on-line

estimation of J and JW (for SISO feature/joint assignment) are described.

The mathematical foundation for an adaptive MIMO controller can be found in [Borison 79],

and parallels the development of the SISO controller in Chapter 3. For MIMO control, the

model of the plant under control, described by the (m x m) transfer matrix H(z"1), with n.

output measurement delays, is

The system, H(z"1), is identified by applying the hyperstable adjustment mechanism [(3.4),

(3.5), and (3.6)] m times to estimate m parameter vectors. For MIMO control, the dimension of

the information vector and parameter vectors increases to (2nm x 1). The information vector

and each parameter vector are used to predict each ouput [Borison 79]. Calculation of the

control signals require matrix inversion operations to invert the vector of identified outputs.

And, calculation of the control penalties requires evaluation of the characteristic polynomial

of an inverted matrix of estimated gains.

The computational complexity of MIMO versus m independent SISO controllers is

summarized in Figure 8-1. The purpose of the comparison is to show that MIMO control

requires more computations than the SISO approach. For MIMO control, the computational



complexity of the adjustment mechanism increases by a factor of m2 as a result of the

increased length of the information and parameter vectors. The number of computations

indicated in Figure 8-1 for matrix operations is a conservative estimate, and does not account

for the possibility of more efficient matrix fTianipuiation algorithms. The salient feature is that

complexity of MIMO control is order m3n2, versus mn2 for SISO control. As computer

hardware becomes faster and less expensive, the computational differences between these

approaches will become less significant. The SISO approach may still remain attractive for

factory environments due to its modularity.
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8.3.1.1. On-Line Sensitivity Estimation

For linear kinematic robot configurations, it appears that off-line measurement of JW (prior

to the start of control) is sufficient for calculation of the coupling D, to select and assign

features. General implementations of SISO control, of coupled systems, will require on-line

estimation of JW for selecting feature/joint assignment. In the dissertation, a a low-
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frequency assumption is made to evaluate W (jco) (for the purpose of calculating the coupling

index D). Since the low-frequency robot gains can be measured off-line, only J need be

estimated on-line.

The author suggests that either J or JW can be measured on-line using the MIMO

hyperstable adjustment mechanism, described in Section 8.3.1., with the parameter matrix

(i.e., the matrix of the m estimated parameter vectors: /^[/ijl....!/?^]) replaced with /?<— J or

/?<— JW . For estimation of J, the information vector becomes the robot joint displacement

changes *«—Afl (n x 1), and jST is (n x 1). For estimation of JW , the information and

parameter vectors remain (2nm x 1).

8.3.2. Implementation

The evaluation of computer simulated IBVS control (Chapters 5, 6, and 7) demonstrates the

feasibility of this approach, and encourages hardware implementations. The 3 DOF

configuration (in Chapter 7) can be implemented with hardware currently available in the

Robotics Institute Flexible Assembly Laboratory [Sanderson 83b]. The author is currently

developing hardware and software to implement an automated PC board insertion task

(depicted in Figure 1-2), using IBVS control. To image the lead tip, a specially configured

fiber optic sensor [Agrawal 83] is being fabricated (to replace the CCD camera), to achieve

high sampling rates, high resolution, and low noise, . This system will use a 3 DOF Cartesian

robot.

IBVS implementations, using real robots and sensors, raise control issues relating to robot

mechanical structure, sensor resolution, and extension of IBVS control to higher DOF. These

issues are discussed below.

8.3.2,1. Robot Mechanical Structure

Physical characteristics of the robot (and actuators), which may place additionctl constraints

on the sampling period selection (Section 3.6.2), include structural resonances, dynamics

which are characterized by complex poles, and torque off sets required to overcome static

friction at low velocities.

It has been suggested [Paul 81] that to avoid resonant excitation of non-rigid structures

characterized by a structural resonant frequency to , the sampling period should be
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If the robot dynamics exhibit complex poles at «±jo> o , the sampling period of the MRAC
max

discrete time hyperstable identifier is required, by the Nyquist sampling theorem, to be

T^

40 max

If the vision system cannot extract features at a rate fast enough to satisfy the resonance and

Nyquist constraints, the author suggests augmenting the IBVS control with joint-level velocity

feedback controllers, which would sample at higher rates (e.g., using tachometer feedback)

than the main IBVS feedback loop. The velocity controllers (which could be adaptive) would

be tuned to dampen structural resonances and place the poles of the minor loop feedback on

the real axis, to satisfy the Nyquist constraints. High-gain velocity feedback overcomes torque

off-sets (or equivalently actuator voltage off-set) by amplifying the small velocity errors.

8.3.2.2. Sensor Resolution

Spatial resolution of the sensor (e.g., discrete pixel quantization of a CCD camera) is

manifested as measurement noise. Low-pass filtering of the measurement signals can reduce

the noise amplitude. The author suggests the following strategy to further reduce these

effects. When the spatial resolution of the sensor (denoted by R) is less than the distance

traveled during a sampling interval (i.e., R<Vre|T), then fix the MRAC adjustable gains (at their

current value) to create a fixed LMFC controller, since the LMFC is less sensitive to noise.

8.3.2.3. Extension to Higher DOF

The 2 and 3 DOF configurations, evaluated in this dissertation, are practical for specific

tasks. Implementation of more general systems (e.g., with other features and 5 or 6 DOF)

remain to be analyzed for the relationships of feature control to world coordinate paths, and

evaluated for the extension of SISO control to higher DOF.

At the outset of this research, the author conducted preliminary experiments of IBVS control

using simulations of a 5 DOF articulated arm. While this system was not investigated in-depth,

it served to demonstrate IBVS feasibility, and to gain insight into the control issues which are

addressed in this dissertation. The system consisted of:

1.A 5 DOF articulated arm (with kinematic structure similar to the Cincinnati-
Milicron T3), modeled with constant linear uncoupled dynamics.

2. A camera (as modeled in Section 4.5) is mounted to the last joint (or end-
effector).



3. The task is to position the end-effector relative to polyhedral objects (Section
4.5). Extracted features include both areas and centroids.

4. The controller consists of 5 SISO fixed proportional controllers, which are
manually tuned.

5. Feature selection and assignment, and path constraint hierarchies were specified
using empirically (i.e., no coupling index was used).

The controllers could be tuned (using empirical gain adjustments and feature selections) to

achieve stability, with acceptable transient response and zero steady-state positional errors.

The Cartesian paths were not derived (i.e., only the joint motions, and initial and final relative

positions were monitored). The proportional gains suitable for one task were not acceptable

for another task, It was difficult to tune the system for large motion trajectories (i.e., the

response was sluggish for low proportional gains, oscillatory for high gains, and it was

difficult to keep the object in the field of view.) Feature/joint assignments and the path

constraint hierarchy had to changed with varying robot arm configurations.

8.3,2.4. Position vs. Image Based Control

Approaches to visual servo control are categorized (in Chapter 2) into either position or

image based structures. The organization of visual servoing into well defined classical

control structures provides a framework for designing and comparing the different control

approaches. An analysis, design, and evaluation of position based systems, and their

comparative evaluation with image based control, would provide a complete set of design

tools for implementation of dynamic visual servo control systems.

Since each approach will have tradeoffs, the author suggests that they may be used to

augment one another. For example, position based approaches have the advantage of

directly controlling path, while inaccuracies of the required interpretation (i.e., of features to

world-space coordinates) decrease closed-loop accuracy. Augmenting position based

control with IBVS, by

1. Deriving the control signal by adding both position based and image based
control signals; or

2. Initially controlling gross positioning with position-based control; then switching
over to IBVS for fast and accurate fine control

seem to be natural combinations.

The author hopes that the proposed research and implementations will enable IBVS control

to become a practical system for robot control.



 



Appendix A
MRAC Without Measurement Delay

The purpose of this appendix is to explain and present a concise derivation of the MRAC

controller developed by Neuman and Morris in [Neuman 80].

A block diagram for a SISO process under discrete computer MRAC control is shown in

Figure 3-1 [Neuman 80]. An MRAC system comprises three basic components:

1. Analog plant under control;

2. Full-parallel reference model; and

3. Adaptive controller

The reference model transfer function M(z*1) specifies the desired ciosed-lcop response of

the sampled plant output, y(k), to a reference signal r(k). The adaptive controller is a digital

feedback controller. The controller gains are adjusted to drive the closed-loop response of

the system to that of the reference model. The controller uses both plant and model input and

output information to generate the control signal u(k).

At the heart of the MRAC is the controller adjustment mechanism. If the full-parallel (FP)

output error is defined as

ejk)«x(k).y(k), (A.1)

the adjustment mechanism must be designed so that

1. e^p(k) asymptotically approaches zero, and

2. The closed-loop system is stable.

Adjustable controller design is based on the identification-error method [Neuman 80]. The

plant input-output information generates estimates of the plant parameters and are used by

an identifier to predict the plant output. The identification error is
eID(k) = y(k)-t(k) (A.2)



where the identifier output t(k) is the predicted plant output. This error drives the adjustment

mechanism which updates the estimates of the plant parameters. In turn, these estimates are

used to adjust the controller gains. The adjustment mechanism is designed so that e|D(k) is

globally asymptotically stable for a SISO linear system. The controller is then designed to

guarantee the asymptotic stability of the full-parallel error.

A.1 . Reference Model

The discrete time reference model should generate a realizable output, x(k), for an analog

process under computer control. Thus, the model can be specified by the cascade of a

digital-to-anaiog converter (DAC), an analog process, and a analog-to-digital converter (ADC)

with the desired response characteristics.

If the analog process model is mth order, with m1 zeros (m^m), the discrete model transfer

function is [Neuman 79a]

- R(z"1) B (z"1) B (z'1)
M(z 1) = — V ~ ~ mV

 t ~ ml (A.3)
X(z1) Am(z-j) 1-AV)

» 1* , t ' " *om* (A.4)

The sampled data FP model output can thus be characterized by the mth order difference

equation
m m

] [
i = 1 i = 1

where the delay operator q*1 is defined by

(q"i)x(k)=x(k-i).

For example,
1]r(k) = b^Ck-i) + b2r(k-2) + ... + bmr(k-m).

The model is a full-parallel model since (A.3) is recursive.

Reference model structures have typically been specified by critically damped, second

order systems [Landau 79] for a wide variety of adaptive control tasks. The closed-loop model

can be generated by assuming that a type I second-order linear plant, Gmode|(s)» 's under

computer control (Figure A-1), and the proportional gain KRcrJt is tuned to provide critical

damping. The open-loop plant transfer function is



where

Gmodel ( s ) =
 S ( T

Kmodel

K

model0 '

= model gain constantmodel'
Tmodei = m o c 'e ' ^ m e constant (sec)

(A.6)

Figure A-1 : FP Reference Model

Neuman and Morris specified the reference model in the Z-plane. The derivation presented

here differs by first showing an analog plant model in a feedback control structure. This

approach facilitates development of a reference model when measurement delays are

included (in Chapter 3).

The equivalent z-transform model of Figure A-1 is shown in Figure A-2.

r (k )

Figure A-2: Discrete Reference Model

In Figure A-2, the digital transfer function
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models the cascade of the DAC, analog process G(s), and ADC [Neuman 79a]. For the

second-order type I analog model in (A.6),

where, for the sampling period T,

e*T/rmodei

= -e*T/TmodGi

The closed-loop transfer function of Figure A-2 is

w (z-i,---__-J

For critical damping, the gain term Kp must satisfy
p

The difference equation of the closed-loop model becomes

+ (a1-KpcrJtb1)x(k-1) + (a2-Kpcrj{b2)x(k-2)

and, the model parameters for (A.5) are

= Vb1KPcrit

= 2.



A.2. Plant Model Structure

For the identifier to track the plant output, the structure of the plant must be defined. If the

plant under control is assumed to have an equivalent nth order I/O structure (Section 2.3.1.3),

with n} zeros (n.,<n), then the corresponding discrete-time model is the nth order transfer

function

, Y(z1) Bn(z
1)

W(z1) = r = P 1 (A.8)
U(z"1) Ap(z1)

where the {a^ and {bj} are unknown parameters. The sampled plant output, y(k), can

therefore be modeled by the nth order input-output difference equation

(A.9)
i = 1 i = 1

In vector notation, (A.9) is

where

£T~(b1...bna1...an) is the (2n X 1) parameter vector; and (A.10)

*(k-1)=[u(k-1)...u(k-n)y(k-1)...y(k-n)]T is the (2n X 1) information vector

A.3. Controller

A series-fiarallel (SP) identifier with adjustable parameters tracks the plant output. The

identifier output t(k) is calculated according to

A A

where {b.} and {a^ are estimates of the process parameters of an equivalent SISO linear

system.

The identifier is series-parallel since it is non-recursive. A full-parallel identifier produces

unbiased estimates of the process parameters in the presence of noise (assuming a control

signal sufficiently rich in frequency content), but at a slower speed of convergence than for a
A

SP adjustable model. In addition, an FP identifier requires good initial guesses for {b.} and
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A

{a^. In contrast, the SP identifier produces biased estimates of the plant parameters. In

MRAC control, it is shown beiow, all that is required for FP errors to approach zero

asymptotically is an equivalent input/output model which matches the input/output

characteristics of the plant.

In vector notation, (A, 11) becomes

AT
where /? (k-1) is the estimated parameter vector. The identification error becomes

e|D(k) = y(k)-t(k) = [if-/£T(k-1) ] <!>(k-1).
In the next section, an adjustment mechanism is presented to guarantee asymptotic stability

ofejD(k).

When the identification error converges to zero, the identifier becomes an equivalent input-

output model of the plant. The adaptive controller is then constructed by solving for the

control signal u(k) required to force the identifier output t(k + 1) to follow the reference signal

XR(k). By inverting (A.11), the control signal becomes
n
 A

 n
 A

{ M ) ] [ ] T ;
A

 n
 A

7 r ; t ( ) [ l ] b.(k)q-{M)]u(k)-[]T; a.(k)q-(M)]y(k)} (A. 12)
b i ( k ) U2 1=1

It is now shown that true estimates of the plant parameters are not required to produce an

asymptotically stable FP error. True estimates may not occur when:
1. Parameter estimates become biased in the presence of noise;

2. The frequency content of the control signal is poor; and

3. As demonstrated in this dissertation, when the plant being identified is nonlinear,
time-varying, or part of a coupled system.

If the reference model signal is chosen to be the output of the one-step ahead FP model,
m m

XR(k) = x(k + 1 ) = [ ] T b.V(M)]r(k) + [ j ^ ai°q(M)]x(k), (A.13)
i=1 1=1.

then, upon convergence of elD, the identifier becomes

or,

t(k) = x(k),

and the FP error is



= t(k)-y(k)
= -e|D(k) (A. 14)

Thus, the FP output error is asymptotically stable if the adjustment mechanism can assure

asymptotic stability of the identification error, regardless of errors in the true parameter

estimates!

A.4. Adjustment Mechanism

A

The adjustment mechanism used for estimating /£ can be designed from either parametric

optimization or stability viewpoints. Optimization techniques, which are based on cost-

function minimization, were first applied to adaptive control [Whitaker 61]. These include the

gradient descent and least-squares methods. As applied to adaptive control, these methods

have drawbacks which require reliable initial estimates of the plant parameters [Price 70] and

result in low adaptation speeds to guarantee local stability [Kokotovic 66]. In contrast, the

stability viewpoint, which is inherent to the design goals of closed-loop control systems,

guarantees asymptotic stability of e!D and thus ej^at higher adaptation speeds, regardless of

initial parameter estimates. This approach, which includes Lyapanov's second

method [Narendra 74] and Popov's hyperstability theorem [Popov 63], prescribe stability

criteria for nonlinear, time-varying , closed-loop systems. The output eJD of the nonlinear,

time-varying, closed-loop adjustment mechanism drives the parameter update, and is

designed to be asymptotically stable. Landau, who was the first to apply hyperstability to

MRAC [Landau 69], claims that with respect to the Lyapanov approach ".... More general

results were obtained using the hyperstability approach, perhaps, because it is more

systematic." [Landau 74]

The hyperstable adjustment mechanism [Landau 79] specifies the following identifier when

the plant is assumed to be linear with slowly varying parameters:

fi(k)=^(k-1) + -P(k-1)ffe(k-1)s(k) (A.15)
A

s(k) = 7-lQi-i (A. 16)
1 (1/A)<r(k1)P{k1)<!>(k1)

1 1 r s(k) -i
P{k) =-P(k-1)-pj_—-J



where P(k) is a (2n X 2n) adaptive gain matrix, s(k) is the a'posteriori error (which is the error

signal after the parameters are updated at the kth computational cycle), and eJD is the a'priori

error signal. The fading factor X (0<X<1) weighs past values of the input/output samples by

the progression

1,X, X2, Xk.

If X = 1, new information is averaged with all past data, minimizing overreaction to

measurement noise. If X<1, old data is weighed less, and the mechanism can track the

parameter /£ even when the parameters are slowly time-varying.

The adjustment mechanism in (A.15) - (A.17) approximates the optimal recursive weighted

least-squares algorithm which is derived from the minimization of the cost function
k

J(k) = (« /2) ]£ Xje|D
2(k-i)

i = 0

This approach is referred to as the hyperstable least-squares adjustment mechanism.

A.5, Enhancements

Performance of the basic MRAC algorithm can be significantly improved by the addition of

numerous enhancement strategies [Neuman 79b]. Neuman and Morris present a detailed

analysis of enhancement mechanisms [Morris 79], and recommend an enhanced error

identification MRAC algorithm. These enhancements include:

1. Control Penalty;

2. Series-Parallel Reference Model Signal;

3. Augmenting Error Filter; and

4. Auxiliary Fixed Control.

The augmenting error filter must be used with caution since it increases the high-frequency

gain of the feedback controller, thus amplifying noise and reducing the stability margin. To

use the auxiliary fixed controller requires that the system operate around a known and

stationary operating point, which in general does not hold for IBVS systems. Thus, only the

first two enhancements, which are described below, are used in this dissertation

Control Penalty

A control signal penalty is obtained by multiplying (A. 12) by the positive sealer 7r(k)

(0<7r<1). This penalty is introduced to



1. Reduce the magnitude of the control signal and thereby the effect of reduced
marginal stability due to control signal saturation;

2. Reduce control signal noise; and

3. Insure a stable and bounded control signal.

Experimental evaluation of MRAC, by Neuman and Morris, demonstrates that control signal

saturation in the DAC can occur quite often when controlling low-pass systems, such as robot

joint actuators. The feedback path of the FP controller can be characterized as a high-pass

filter when the process under control exhibits a low-pass frequency response. Measurement

noise is amplified and the control signal quality deteriorates.

Guaranteeing the asymptotic stability of e.D does not insure the asymptotic stability of e FP

when a control penalty is used.The identification-error becomes
A

eiD<k) = "eoF P ( k ) + ~ ( 1 • W ) u ( k " 1 >

If e,D(k) goes to zero, the FP error is related to the control signal according to
A

e 0
FP = ——(1-7r)u(k-1) (A.18)

If the control signal becomes unbounded, the FP error is not asymptotically stable. This can

occur if the actual or estimated plant has non-minimum phase zeros lying outside the unit

circle. The computations below illustrate that the poles of the adjustable controller are

determined by the estimated plant zeros. Thus, when the zeros lie outside of the unit circle,

the controller poles become unstable. In addition, the control signal can become quite large if

the plant zeros are not accurately estimated. This often occurs in actual implementations
A

when b1 is underestimated due to measurement and signal transmision delays through the

ADC and DAC converters.

A

To specify the control penalty, a lower bound bLB is placed on the magnitude of b^k) used

to calculate the controller gain. The value of 7r(k) is specified according to

bLB

1 if (

It remains to choose bLB so that u(k) remains bounded. To accomplish this task, the Jury



stability conditions are applied to test the iocation of the controller poles {p.} at each

computational cycle. When pole magnitudes exceed the design parameter y, where 0<y<1,

the value of bLB is increased (thus reducing <n) until the poles lie within a circle of radius y in

the Z-plane.

The controller characteristic equation is determined by taking the Z-transform of (A.12) with

the control penalty enhancement included. The control signal is

and the controller characteristic equation is

(A.19)

Thus, the estimated plant zeros determine the controller poles.

The Jury conditions are applied to (A.19) for a second-order system (n = 2) by expressing

the characteristic equation in positive powers of z as:
A

To test for lpl<y, apply the transformation z = yz to obtain

bo(k)

For this characteristic equation, the Jury condition is:

and the control penalty is calculated according to

1 if Ibg/t^Ky

(A.21)

A A
(b/b2)y if

A A

Series-Parallel Reference Model Signal



Neuman and Morris have shown that increasing the control penalty of the FP MRAC (to

suppress noise and increase the stability margin) can lead to a highly oscillatory closed-loop

response. An enhancement which further reduces the high-frequency gain of the feedback

path (thus reducing noise amplification and producing a closed-loop system which does not

exhibit a highly oscillatory response as the control penalty is increased) is the series-garallel

(SP) reference model signal enhancement. The SP reference model signal, which improves

performance at the expense of slower tracking of the FP model, is implemented by replacing

the recursive component x(k) of (A.13) by a non-recursive filtering of the process output y(k):

] [ a,VM)]y(k). (A.22)

In contrast to the control penalty, this enhancement leads to an asymptotically stable FP

output error

^ • " S <A23>
where

If the FP model specifies the stable filter [ j /A m ( q 1) J » the FP output error is asymptotically

stable if elD(k)is asymptotically stable. Transient identification errors produce slower tracking

of the reference model due to this filtering effect.
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Appendix B
Dynamic Equations for 2 DOF Arm

This appendix presents the derivation of the dynamic equations of motion for the 2 DOF arm

described in Section (4.4). The derivation is based on the Lagrange-Euler formulation for rigid

body structures [Pau! 81]. The Lagrangian function L is first defined as the difference

between the kinetic energy K and the potential energy P of the system:
L=K-P

The dynamic equations are then

3 3L 3L
F. = r- (B.1)1 3t3q. 3q.

where q} and q j are the generalized position and velocity coordinates. F. is the corresponding

force or torque acting on the i th joint. For an articulated robot arm, q.^#., and F. corresponds

to joint torque. If an n DOF manipulator is described by a set of homogeneous transforms

{A.}, then (B.1) becomes

" i 3T. 3TTv
F.« > > TRACEl

n j j P,2T

V V TRACE( L_J.—l) q.q

where

The pseudo-inertial matrix, J., of the ith link is:



ixx + i. +i.
IVV 12
2

ixy

m.x-

'Z 1ixy

i. -i. +
IXX IVV

2

m-y.

'izz

1

1

ixx

m

ivv i2

2

m.x.
i t

m.y.

m.

where the first and second moments are

'xx =

xy

y 2 )dm;2
 + z 2 )dm; l z z

xz ; I =/yzdm;

f f f f
x = y x dm ; my = y y dm ; mz = y z dm m = y

and j r* is the homogeneous vector defining the position of the center of mass of link

to the j t h coordinate frame, g defines the gravitational field. And, m. is the mass of the



Forn = 2, (B.2) is:
T T

F = ( T R A C E ( — I j . — i ) + TRACE(—2j1 3q1 3qt 3q1

and,

3q2 aq1

r / 32T. 3T[x / 32Tg 3TL T . „
[TRACEl 2 - J ,—1) + TRACE! 2 - J o — 2 ) } q,2

L ^ q ^ q , ' 3 q / V3q13q l
 2 3 q / J '

32T.. 3 T ^ / 32TO

^ J 2 ) T R A C E ( 2
r / 32T.. 3 T ^
JTRACEf ^ J 9 — 2 ) + TRACEL V3q,3q2

 2 3 q /

3 To{ / 3 T
TRACEl—-

3q323q2

r22

. m g T _ L i f j . m gT—2 2 f (B.3)
1 3q1

 1 l 3q, l



For the arm in Figure 4-9, the {A.} matricies are:

A i "

where

Thus,

o 1
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0
0
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0
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1

C2 -S2 0 r2C2

S2 C2 0 r2S2

0 0 1 0
0 0 0 1
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C ±
S
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The partial derivatives of the T transforms are:
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30,30,,
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0
0

0
0
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0'
0
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1 2

0
0
0
0
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The J 1 and J 2 matricies are calculated for the links in Figure B-2 and Figure B-1

mr,

Figure B-1: Link # 2

Figure B-2: Link # 1

Since the each link consists of a point mass, located at the orgin of it's coordinate frame, a

a thin rod in the X-direction, all of the interial components in the Y and Z directions are ze
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'XX = !XZ =

The mass of the portion of the link modeled as a thin rod is

where p is the density and V is the volume. If the rod cross-sectional area is A, then
dmr = pAdx

Thus,

2-YY = I2.zz = I *2(im = f°J r» J r
pAx2dx =

and,

mx
f° f° -m r

= / x dm = / pAx dx = —t2_a
J ro J -r,, 2

Thus,

3

0
0

-m Of

o 0

0 0
0 0 0

For J1 (refer to Figure B-2):

i-YY = 'i-zz = / 1 x?(im + / x5

And,

mx =
'1/k

xdm = - (r + - 1
1 2k

2k



Thus,

o rmri
1L 3

C m .

m

0
0

0
0

0 -r

0
0

rm, + — )J

0

The gravitational components are defined next. If gravity acts in the X direction, then

= [g 0 0 0]T

To find the center of mass of the second link, r. , set the first moment

net mass times ro . Thus,

m or

, / xdm, equal to the

m
l 2 . r

and hence

Similarly for link 1

• 1 - e q 1

and hence

' m r1 + m p1 + m c» r i .p1+mc»ri.eq

Equations (B.3) and (B.4) become:

a 2

where





Appendix C
2 DOF Controller Parameters

The independent SP MRAC controller, for the 2 DOF configurations, is outlined in this

appendix. The same controller parameters are used for both the linear and nonlinear

kinematic configurations. Ail simulations and control structures include a measurement delay

(i.e., n. = 1). Independent adaptive and fixed controllers are implemented in Chapter 6

according to:

1. Control signal: (3.10)

2. Identifier: (3.4),(3.5), and (3.6) with \= 0.85 . T£e identifier is initialized according
to Table C-1, and the initial signs of b j(0) and b2(0) are selected according to the
sign of the corresponding diagonal elements of the sensitivity matrix. The values
in Table C-1 are identical to those used in the single degree-of freedom examples
(in Table 5-1), with an exception at the sampling period T-0.003 sec. The gain
matrix initiiization is increased, to yield eicceptable response for the nonlinear
robot configuration.

3. Control penalty : (3.12), with y = .65

4. SP Reference Model : (A.22). The reference model bandwidth ,co , is specified for
each set of examples, while T is varied to evaluate the effects of changing the
sampling-to-bandwidth ratio (fs/fBW)- The open-loop reference model time
constants are selected according to the methods outlined in section 3.6.1., and
the discrete model parameters are generated according to the method outlined in
Section 3.3.3. The same closed-loop bandwidth is specified for each
independent controller.

5. Scale Factors:

T = .013
SFT=.003

6, LMFC : The fixed controller is implemented by fixing the gains of the adjustable
controller to the staedy-state values identified in initial adaptive trials.



P ( 0 ) Plhr esh £(0)

F(sec)

Diag [10 10 80 80]

Diag [1 1 1 1]

X c Feature C o n t r o l l e r

Oiag [ . 1 .1 .01 .01 ]

l eng th Feature C o n t r o l l e r

Diacj ft 1 1 1]

2500

100

10

[ ± 1 0 ±10 1 .1 - 0 . 1 ] T

[ + 1 ±1 1.5 - 0 . 5 ] T

[ + 1 ±1 1.5 - 0 . 5 ] T

0 . 0 3 3

0 . 0 1 3

0.003 - - - - - - - . .

Table C-1: Identifier Parameter Initialization (2 DOF)



Appendix D
3 DOF Controller Parameters

The simulations in Chapter 3 are implemented with the sampling period T = 0.003 (sec) and

a bandwidth <on = 44.51 (sec*1), or fs/fBW = 47, as in the 2 DOF evaluation. The MRAC

controller is implemented according to the outline presented in Section 6.2 with the exception

of the identifier initialization and scaling factors. The identifier is initialized according to Table

D-1.

T(sec)

0.003

P(0)

Xcog & A rei Feature
Cont ro l l e rs

Diag [ . 1 .1 .01 .01]

Absolute Area Feature
Cont ro l le rs

Diag [ .5 .5 .1 .1 ]

Plhresh

10

i(o)

[ ± 1 ± 1 1.5 - 0 . 5 ]

Table D« 1: 3 DOF Parameter Initialization (T = 0.003 sec)

The initial adaptive gains, P(0), for the absolute area identifiers (i.e., Aj or Aj + .) are larger than

for the other features. When all feature identifiers were initialized with the lower gains,

P(0) = [0.1 0.1 0.01 0.01], the area controller would exhibit poor transient response and result
A A

in sgn[b1 ss]
:?isgn[b2s ]. It was observed throughout this research that, when this occurs,

improved transient responses can be achieved by increasing the initial adaptive gains for that

feature, assuming large enough sampling-to-bandwidth ratios.

A A

The initial parameter vector gain initializations [b^O) and b2(0)] were reduced from the

values used for 2 DOF configuration. In the 3 DOF configuration, the camera will be mounted

at a relatively long distance from the turntable, which significantly reduces the magnitudes of

J, and therefore plant gains.
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The scale factors are assigned according to
Feature SF
X

cog
10°

Area (A. or A. + j) 10c

rel

The path constraint hierarchy, described in Section 2.5.3, is represented in Figure

the 3 DOF configuration.

^Control Only X-axis
w/X cog

•Res t r i c t Y &
by Brake

•Control X & e-axis
w/Xcog& A r e l respect ive ly

*Res t r i c t Y-axis by brake

^Control a l l DOF

Figu re D-1: Hierarchy for 3 DOF Configuration



In Figure D-1, the features which dominate each DOF follow from (7.4). During transitions

between levels of the hierarchy, the identifier for each controller is fixed for three sampling

periods according to Section 6.2.3.3.
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