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Two Soar Studies 

The Soar project is attempting to build a system capable of general intelligent behavior. We seek to 

understand what mechanisms are necessary for intelligent behavior and how they work together to 

form a general cognitive architecture. Our knowledge about this enterprise is reflected in the 

evolving assumptions embedded in the Soar architecture (Laird, 1985). The body of this report 

consists of a pair of papers (lightly edited from their original published form) reporting on 

investigations with Soar into two components of general intelligence: learning, and performance in 

knowledge-intensive tasks. 

The first paper is titled Towards Chunking as a General Learning Mechanism (Laird, Rosenbloom, & 

Newell, 1984). Chunks have long been proposed as a basic organizational unit for human memory. 

More recently chunks have been used to model human learning on simple perceptual-motor skills. In 

this paper we describe recent progress in extending chunking to be a general learning mechanism by 

implementing it within Soar. By implementing chunking within a general-problem solving 

architecture we take significant steps toward a general problem solver that can learn about all 

aspects of its behavior. We demonstrate chunking in Soar on three tasks: the Eight Puzzle, Tic-Tac-

Toe, and a part of the R1 computer-configuration task. Not only is there improvement with practice, 

but chunking also produces significant transfer of learned behavior, and strategy acquisition. 

The second paper, titled R1-Soar: An Experiment in Knowledge-Intensive Programming in a 

Problem-Solving Architecture (Rosenbloom, Laird, McDermott, Newell, & Orciuch, 1984), presents an 

experiment in knowledge-intensive programming in Soar. In Soar, knowledge is encoded within a 

set of problem spaces, yielding a system capable of reasoning from first principles. Expertise 

consists of additional rules that guide complex problem-space searches and substitute for expensive 

problem-space operators. The resulting system uses both knowledge and search when relevant. 

Expertise knowledge is acquired either by having it programmed, or by a chunking mechanism that 

automatically learns new rules reflecting the results implicit in the knowledge of the problem spaces. 

The approach is demonstrated on the computer-system configuration task, the task performed by the 

expert system, f?f. 
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TowardsChunklng as a General Learning Mechanism1 

John E. Laird, Paul S. Rosenbloom and Allen Newell 2 

Chunking was first proposed as a model of human memory by Miller (Miller, 1956), and has since 

become a major component of theories of cognition. More recently it has been proposed that a 

theory of human learning based on chunking could model the ubiquitous power law of 

practice (Newell and Rosenbloom, 1981). In demonstrating that a practice mechanism based on 

chunking is capable of speeding up task performance, it was speculated that chunking, when 

combined with a general problem solver, might be capable of more interesting forms of learning than 

just simple speed ups (Rosenbloom & Newell, 1983). In this paper we describe an initial investigation 

into chunking as a general learning mechanism. 

Our approach to developing a general learning mechanism is based on the hypothesis that all 

complex behavior — which includes behavior concerned with learning — occurs as search in 

problem spaces (Newell, 1980). One image of a system meeting this requirement consists of the 

combination of a performance system based on search in problem spaces, and a complex, analytical, 

learning system also based on search in problem spaces (Mitchell, 1983). An alternative, and the one 

we adopt here, is to propose that all complex behavior occurs in the problem-space-based 

performance system. The learning component is simply a recorder of experience. It is the experience 

that determines the form of what is learned. 

Chunking is well suited to be such a learning mechanism because it is a recorder of goal-based 

experience (Rosenbloom, 1983; Rosenbloom & Newell, 1983). It caches the processing of a subgoal 

in such a way that a chunk can substitute for the normal (possibly complex) processing of the subgoal 

the next time the same subgoal (or a suitably similar one) is generated. It is a task-independent 

mechanism that can be applied to all subgoals of any task in a system. Chunks are created during 

performance, through experience with the goals processed. No extensive analysis is required either 

during or after performance. 

'This research was sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA Order No. 3597, 
monitored by the Air Force Avionics Laboratory Under Contract F33615-81-k-1539. The views and conclusions contained in 
this document are those of the authors and should not be interpreted as representing the official policies, either expressed or 
implied, of the Defense Advanced Research Projects Agency or the US Government. 
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The essential step in turning chunking into a general learning mechanism is to combine it with a 

general problem-space problem solver. One candidate is Soar, a reflective problem-solving 

architecture that has a uniform representation and can create goals to reason about any aspect of its 

problem-solving behavior (Laird, 1983). Implementing chunking within Soar yields four contributions 

towards chunking as a general learning mechanism. 

1. Chunking can be applied to a general problem solver to speed up its performance. 

2. Chunking can improve all aspects of a problem solver's behavior. 

3. Significant transfer of chunked knowledge is possible via the implicit generalization of 
chunks. 

4. Chunking can perform strategy acquisition, leading to qualitatively new behavior. 

Other systems have tackled individual points, but this is the first attempt to do all of them. Other 

work on strategy acquisition deals with the learning of qualitatively new behavior (Langley, 1983; 

Mitchell, 1983), but it is limited to learning only one type of knowledge. These systems end up with 

the wandering bottle-neck problem — removal of a performance bottleneck from one part of a system 

means that some other locale becomes the bottleneck (Mitchell, 1983). Anderson (Anderson, 1983) 

has recently proposed a scheme of knowledge compilation to be a general learning mechanism to be 

applied to all of cognition, although it has not yet been used on complex problem solving or reasoning 

tasks that require learning about all aspects of behavior. 

1. Soar — A General Problem-Solving Architecture 
Soar is a problem solving system that is based on formulating all activity (both problems and 

routine tasks) as heuristic search in problem spaces. A problem space consists of a set of states and 

a set of operators that transform one state into another. Starting from an initial state the problem 

solver applies a sequence of operators in an attempt to reach a desired state. Soar uses a 

production system 3 to implement elementary operators, tests for goal satisfaction and failure, and 

search control — information relevant to the selection of goals, problem spaces, states, and 

operators. It is possible to use a problem space that has no search control, only operators and goal 

recognizers. Such a space will work correctly, but will be slow because of the amount of search 

required. 

In many cases, the directly available knowledge may be insufficient for making a search-control 

A modified versions of OpsS (Forgy, 1981), which admits parallel execution of all satisfied productions. 
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decision or applying an operator to a state. When this happens, a difficulty occurs that results in the 

automatic creation of a subgoal to perform the necessary function. In the subgoal, Soar treats the 

difficulty as just another problem to solve; it selects a problem space for the subgoal in which goal 

attainment is interpreted as finding a state that resolves the difficulty. Thus, Soar generates a 

hierarchy of goals and problem spaces. The diversity of task domains is reflected in a diversity of 

problem spaces. Major tasks, such as configuring a computer will have a corresponding problem 

space, but so also will each of the various subtasks. In addition, problem spaces will exist in the 

hierarchy for performing tasks generated by problems in the system's own behavior, such as the 

selection of an operator to apply, the application of an operator to a state, and testing for goal 

attainment. With such an organization, all aspects of the system's behavior are open to problem 

solving when necessary. We call this property universal subgoaling (Laird, 1983). 

Figure 1-1 shows a small example of how these subgoals are used in Soar. This is the 

subgoal/problem-space structure that gets generated while trying to take steps in a task problem 

space. Initially (A), the problem solver is at Statel and must select an operator. If search control is 

unable to uniquely determine the next operator to apply, a subgoal is created to do the selection. In 

that subgoal (B), a selection problem space is used that reasons about the selection of objects from a 

set. In order to break the tie between objects, the selection problem space has operators to evaluate 

each candidate object. 
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Figure 1 -1: Eight Puzzle subgoal/problem space structure. 
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Evaluating an operator, such as Operatorl in the task space, is a complex problem requiring a new 

subgoal. In this subgoal (C), the original task problem space and state (Statel) are selected. 

Operatorl is applied, creating a new state (State2). The evaluation for State2 is used to compare 

Operatorl to the other operators. When Operatorl has been evaluated, the subgoal terminates, and 

then the whole process is repeated for the other two operators (Operator^ and Operator^ in D and E). 

If, for example, Operator^ creates a state with a better evaluation than the other operators, it will be 

designated as better than them. The selection subgoal will terminate and the designation of 

Operator2 will lead to its selection in the original task goal and problem space. At this point 

Operator*? is reapplied to Statel and the process continues (F). 

2. Chunking in Soar 
Chunking was previously defined (Rosenbloom & Newell, 1983) as a process that acquired chunks 

that generate the results of a goal, given the goal and its parameters. The parameters of a goal were 

defined to be those aspects of the system existing prior to the goal's creation that were examined 

during the processing of the goal. Each chunk was represented as a set of three productions, one 

that encoded the parameters of a goal, one that connected this encoding in the presence of the goal 

to (chunked) results, and a third production that decoded the results. These chunks were learned 

bottom-up in the goal hierarchy; only terminal goals — goals for which there were no subgoals that 

had not already been chunked — were chunked. These chunks improved task performance by 

substituting efficient productions for complex goal processing. This mechanism was shown to work 

for a set of simple perceptual-motor skills based on fixed goal hierarchies (Rosenbloom, 1983). 

At the moment, Soar does away with two of the features of chunking that existed for psychological 

modeling purposes: the three production chunks, and the the bottom-up nature of chunking. In Soar, 

single-production chunks are built for every subgoal that terminates. The power of chunking in Soar 

stems from Soar's ability to automatically generate goals for problems in any aspect of its problem-

solving behavior: a goal to select among alternatives leads to the creation of a production that will 

later control search; a goal to apply an operator to a state leads to the creation of a production that 

directly implements the operator; and a goal to test goal-satisfaction leads to a goal-recognition 

production. As search-control knowledge is added, performance improves via a reduction in the 

amount of search. If enough knowledge is added, there is no search; what is left is a method — an 

efficient algorithm for a task. In addition to reducing search within a single problem space, chunks 

can completely eliminate the search of entire subspaces whose function is to make a search-control 

decision, apply an operator, or recognize goal-satisfaction. 
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The conditions of a chunked production need to test everything that was used in creating the 

results of the subgoal and that existed before the subgoal was invoked. In standard problem solvers 

this would consist of the name of the goal and its parameters. However, in Soar there are no fixed 

goal names, nor is there a fixed set of parameters. Once a subgoal is selected, all of the information 

from the prior goal is still available. The problem solver makes use of the information about why the 

subgoal was created and any of the other information that it needs to solve the problem. 

For each goal generated, the architecture maintains a condition-list of all data that existed before 

the goal was created and which was accessed in the goal. A datum is considered accessed if a 

production that matched it fires. Whenever a production is fired, all of the data it accessed that 

existed prior to the current goal are added to the goal's condition-list. When a goal terminates (for 

whatever reason), the condition-list for that goal is used to build the conditions of a chunk. Before 

being turned into conditions, the data is selectively variablized so that the conditions become tests for 

object descriptions instead of tests for the specific objects experienced. These variables are 

restricted so that two distinct variables can not match the same object. 

The actions of the chunk should be the results of the goal. In traditional architectures, a goal 

produces a specific predefined type of result. However, in Soar, anything produced in a subgoal can 

potentially be of use in the parent goal. Although the potential exists for all objects to be relevant, the 

reality is that only a few of them will actually be useful. In figuring out the actions of the chunk, Soar 

starts with everything created in the goal, but then prunes away the information that does not relate 

directly to objects in any supergoal. 4 What is left is turned into production actions after being 

variablized in accordance with the conditions. 

At first glance, chunking appears to be simply a caching mechanism with little hope of producing 

results that can be used on other than exact duplicates of tasks it has already attempted. However, if 

a given task shares subgoals with another task, a chunk learned for one task can apply to the other, 

yielding across-task transfer of learning. Within-trial transfer of learning can occur when a subgoal 

arises more than once during a single attempt on a task. Generality is possible because a chunk only 

contains conditions for the aspects that were accessed in the subgoal. This is an implicit 

generalization, by which many aspects of the context — the irrelevant ones — are automatically 

ignored by the chunk. 

Those that are pruned are also removed from memory because they are intermediate results that will never be used again. 
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3. Demonstration 
In this section we describe the results of experiments on three tasks: the Eight Puzzle, Tic-Tac-Toe, 

and computer configuration (a part of the R1 expert-system implemented in Soar (Rosenbloom, 

Laird, McDermott, Newell, & Orciuch, 1984)). These tasks exhibit: (1) speed ups with practice; (2) 

within-trial transfer of learning; (3) across-task transfer of learning; (4) strategy acquisition (the 

learning of paths through search spaces); (5) knowledge acquisition in a knowledge-intensive system; 

and (6) learning of qualitatively different aspects of behavior. We conclude this section with a 

discussion of how chunking sometimes builds over-general productions. 

3.1. Eight Puzzle 
The states for the Eight Puzzle, as implemented in Soar, consist of different configurations of eight 

numbered tiles in a three by three grid; the operators move the blank space up (U), down (D), left (L) 

and right (R) (Laird, 1983). Search-control knowledge was built that computed an evaluation of a 

state based on the number of tiles that were moved in and out of the desired positions from the 

previous state.5 At each state in the problem solving, an operator must be selected, but there is 

insufficient search-control knowledge to intelligently distinguish between the alternatives. This leads 

to the selection being made using the set of selection and evaluation goals described in Section 1. 

The first column of Figure 3-1 shows the behavior of Soar without chunking in the Eight Puzzle 

problem space. All of the nodes off the main path were expanded in evaluate-operator subgoals 

(nodes on the main path were expanded once in a subgoal, and once after being selected in the top 

goal). 6 

When Soar with chunking is applied to the task, both the selection and evaluation subgoals are 

chunked. During this run (second column of Figure 3-1), some of the newly created chunks apply to 

subsequent subgoals in the search. This within-trial transfer of learning speeds up performance by 

dramatically reducing the amount of search. The third column in the figure shows that after one run 

with learning, the chunked productions completely eliminate search. 

To investigate across-task learning, another experiment was conducted in which Soar started with 

a learning trial for a different task — the initial and final states are different, and none of the 

To avoid tight loops, search-control was also added that avoided applying the inverse of the operator that created a given 
state. 

At two points in the search the correct operator had to be selected manually because the evaluation function was 
insufficient to pick out the best operator. Our purpose is not to evaluate the evaluation function, but to investigate how 
chunking can be used in conjunction with search-control knowledge. 
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Figu re 3-1: With in-trial transfer and speed-up with practice in the Eight Puzzle, 

intermediate states were the same (the second column in Figure 3-2). The first task was then 

attempted with the productions learned from the second task, but with chunking turned off so that 

there would be no additional learning (the third column). The reduced search is caused by across-

task transfer of learning — some subgoals in the second trial were identical in all of the relevant ways 

to subgoals in the first trial. This happens because of the interaction between the problem solving 

only accessing information relevant to the result, and the implicit generalization of chunking only 

recording the information accessed. 

3.2. T ic -Tac-Toe 
The implementation of T ic -Tac-Toe includes only the basic problem space — the state includes the 

board and who is on move, the operators make a mark on the board for the appropriate player and 

change who is on move — and the ability to detect a win, loss or draw (Laird, 1983). With just this 

knowledge, Soar searches depth-first through the problem space by the sequence of: (1) 

encountering a difficulty in selecting an operator; (2) evaluating the operators in a selection subgoal; 
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Figure 3 -2 : Across-task transfer in the Eight Puzzle. 

(3) applying one of the operators in an evaluation subgoal; (4) encountering a difficulty in selecting an 

operator to apply to the resulting state; and (5) so on, until a terminal state is reached and evaluated. 

Chunking in Tic -Tac-Toe yields two interesting results: (1) the chunks detect board symmetries, 

allowing a drastic reduction in search through within-trial transfer, (2) the chunks encode search-

control knowledge so that the correct moves through the space are remembered. The first result is 

interesting because there is no knowledge in the system about the existence of symmetries, and 

without chunking the search bogs down terribly by re-exploring symmetric positions. The chunks 

make use of symmetries by ignoring orientation information that was not used during problem solving. 

The second point seems obvious given our presentation of chunking, however, it demonstrates the 

strategy acquisition (Langley, 1983; Mitchell, 1983) abilities of chunking. Chunking acquires strategic 

information on the fly, using only its direct experience, and without complex post-processing of the 

complete solution path or knowledge learned from other trials. The quality of this path depends on 

the quality of the problem solving, not on the learning. 
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3.3. R1 
Part of the R1 expert system (McDermott, 1982) was implemented in Soar to investigate whether 

Soar can support knowledge-intensive expert systems (Rosenbloom, Laird, McDermott, Newell, & 

Orciuch, 1984). Figure 3-3 shows the subgoal structure that can be built up through universal 

subgoaling, including both subgoals that implement complex operators (heavy lines) and subgoals 

that select operators (thin lines to Selection subgoals). Each box shows the problem-space operators 

used in the subgoal. The actual subgoal structure extends much further wherever there is an ellipsis 

(...). This subgoal structure does not pre-exist in Soar, but is built up as difficulties arise in selecting 

and applying operators. 

|Configure backplan 

Configure backplane 

Configure all modules X^" 

En ^ 

Place modules in BP • 

Order backplane 

K3et BP from order 

>lace BP in box 

[Cable backplace 

^Select instantiation 

ICompare objects 

iPrune worse object 

Evaluate object 

3 lace modules in BP 

Place mod. boards in BP 

IGet next module 

-Select . . . 

-Place BP in box 

Order box 

IGet box from order 

|Go to next box section 

Put BP in current slot 

valuate instantiation 

[Configure backplane"" 

^Place module boards in BP 

K3o to next slot 

|Go to previous slot 

IPut board in current slot 

-Select. . . 

-Select . 

Configure backplane. 

Select... 

Figure 3 -3 : Subgoal Structure in Rl-Soar. 

Table 3-1 presents statistics from the application of R1 -Soar to a small configuration task. The first 

three runs (Min. S-C) are with a minimal system that has only the problem spaces and goal detection 

defined. This base system consists of 232 productions (95 productions come with Soar, 137 define 

R1-Soar). The final three runs (Added S-C) have 10 additional search-control productions that 

remove much of the search. In the table, the number of search-control decisions is used as the time 

metric because decisions are the basic unit of problem-solving.7 

The first run shows that with minimal search control, 1731 decisions are needed to do the task. If 

chunking is used, 59 productions are built during the 485 decisions it took to do this task. No prior 

chunking had occurred, so this shows strong within-trial transfer. After chunking, rerunning the same 

On a Symbolics 3600, Soar usually runs at 1 second per decision. Chunking adds an overhead of approximately 15%, 
mostly to compile new productions. The increased number of productions has no affect on the overall rate if the chunked 
productions are fully integrated into the existing production-match network. 
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Run Type 
Min. S -C 
Min. S -C with chunking 
Min. S -C after chunking 

Initial Prod. Final Prod. Decisions 
232 232 1731 
232 291 485 
291 291 7 

Added S-C 
Added S-C with chunking 
Added S -C after chunking 

242 
242 
254 

242 
254 
254 

150 
90 
7 

Tab le 3 -1 : Run Statistics for R1-Soar. 

task takes only 7 decisions. 

When Soar is run with 10 hand-crafted search-control rules, it only takes 150 decisions. This is 

only little more than three times faster than Soar without those rules took when chunking was used. 

When chunking is applied to this situation — where the additional search control already exists — it 

still helps by decreasing to 90 the number of decisions for the first trial. A second trial on this task 

once again takes only 7 decisions. 

3.4. Over-generalization 
The within-trial and across-task transfer in the tasks we have examined was possible because of 

implicit generalization. Unfortunately, implicit generalization leads to over-generalization when there 

is special-case knowledge that was almost used in solving a subgoal. In Soar this would be a 

production for which most but not all of the conditions were satisfied during a problem-solving 

episode. Those conditions that were not satisfied, either tested for the absence of something that is 

available in the subgoal (using a negated condition) or for the presence of something missing in the 

subgoal (using a positive condition). The chunk that is built for the subgoal is over-general because 

it does not include the inverses of these conditions — negated conditions for positive conditions, and 

positive conditions for negated conditions. During a later episode, when all of the conditions of a 

special-case production would be satisfied in a subgoal, the chunk learned in the first trial bypasses 

the subgoal. If the special-case production would lead to a different result for the goal, the chunk is 

over-general and produces an incorrect result. 

Figure 3-4 contains an example of how the problem solving and chunking in Soar can lead to 

over-generalization. Consider the situation where O is to move in state 1. It already has the center 

(E), while X is on a side (B). A tie arises between all the remaining moves (A, C, D, F, G, H, I) leading 

to the creation of a subgoal. The Selection problem space is chosen in which each of the tieing 

moves are candidates to be evaluated. If position I is evaluated first, it leads to a line of play resulting 



Chunking Page 11 

in state 2, which is a win for 0 because of a fork. On return to the Selection problem space, move I is 

immediately chosen as the best move, the original tie-subgoal terminates, move I is made, and 0 goes 

on to win. When returning from the tie-subgoal, a chunk is created, with conditions sensitive to all 

aspects of the original state that were tested in productions that fired in the subgoals. All positions 

that have marks were tested (A, B, C, E, I) as well as those positions that had to be clear for O to have 

a fork (G, F). However, positions D and H were not tested. To see how this production is over-general 

consider state 3, where O is to move. The newly chunked production, being insensitive to the X at 

position D, will fire and suggest position I, which leads to a loss for O. 
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X 
B 

X 
C A 

0 
B 

X 
c 

D oE F D o E oE 
F 

G H I G H o' H I 

1 2 3 
Figure 3 -4 : Over-generalization in Tic-Tac-Toe. 

Over-generalization is a serious problem for Soar if we want to encode real tasks that are able to 

improve with experience. However, over-generalization is a problem for any learning system that 

works in many different environments and it leads to what is called negative-transfer in humans. We 

believe that the next step in handling over-generalization is to investigate how a problem solver can 

recover from over-general knowledge, and then carry out problem-solving activities so that new 

chunks can be learned that will override the over-general chunks. This would be similar to 

Anderson's work on discrimination learning using knowledge compilation (Anderson, 1983). 

4. Conclusion 
In this paper we have taken several steps towards the establishment of chunking as a general 

learning mechanism. We have demonstrated that it is possible to extend chunking to complex tasks 

that require extensive problem solving. In experiments with the Eight Puzzle, Tic-Tac-Toe, and a part 

of the R1 computer-configuration task, it was demonstrated that chunking leads to performance 

improvements with practice. We have also contributed to showing how chunking can be used to 

improve many aspects of behavior. Though this is only partial, as not all of the different types of 

problem solving arose in the tasks we demonstrated, we did see that chunking can be used for 

subgoals that involve selection of operators and application of operators. Chunking has this 
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generality because of the ubiquity of goals in Soar. Since all aspects of behavior are open to problem 

solving in subgoals, all aspects are open to learning. Not only is Soar able to learn about the task 

(chunking the main goal), it is able to learn about how to solve the task (chunking the subgoals). 

Because all aspects of behavior are open to problem solving, and hence to learning, Soar avoids the 

wandering bottle-neck problem. 

In addition to leading to performance speed ups, we have shown that the implicit generalization of 

chunks leads to significant within-trial and across-task transfer of learning. This was demonstrated 

most strikingly by the ability of chunks to use symmetries in Tic-Tac-Toe positions that are not evident 

to the problem solving system. And finally, we have demonstrated that chunking, which on first 

glance is a limited caching function, is capable of strategy acquisition. It can acquire the search 

control required to turn search-based problem solving into an efficient method. 

Though significant progress has been made, there is still a long way to go. One of the original goals 

of the work on chunking was to model human learning, but several of the assumptions of the original 

model have been abandoned on this attempt, and a better understanding is needed of just why they 

are necessary. We also need to understand better the characteristics of problem spaces that allow 

interesting forms of generalization, such as use of symmetry to take place. We have demonstrated 

several forms of learning, but others, such as concept formation (Mitchell, 1978), problem space 

creation (Hayes and Simon, 1976), and learning by analogy (Carbonell, 1983) still need to be covered 

before the proposal of chunking as a general learning mechanism can be firmly established. 
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R1-Soar 
An Experiment in Knowledge-Intensive Programming 

in a Problem-Solving Architecture 1 

Paul S. Rosenbloom, John E. Laird, John McDermott, Allen Newell & Edmund Orc iuch 2 

Repeatedly in the work on expert systems, domain-dependent knowledge-intensive methods are 

contrasted with domain-independent general problem-solving methods (Hayes-Roth, Waterman, & 

Lenat, 1983). Expert systems such as Mycin (Shortliffe, 1976) and R1 (McDermott, 1982) attain their 

power to deal with applications by being knowledge intensive. However, this knowledge 

characteristically relates aspects of the task directly to action consequences, bypassing more basic 

scientific or causal knowledge of the domain. We will call this direct task-to-action knowledge 

expertise knowledge (it has also referred to as surface knowledge (Chandrasekaran & Mittal, 1983; 

Hart, 1982)), acknowledging that no existing term is very precise. Systems that primarily use weak 

methods (Laird & Newell, 1983a; Newell, 1969), such as depth-first search and means-ends analysis, 

are characterized by their wide scope of applicability. However, they achieve this at the expense of 

efficiency, being seemingly unable to bring to bear the vast quantities of diverse task knowledge that 

allow an expert system to quickly arrive at problem solutions. 

This article describes R1-Soar, an attempt to overcome the limitations of both expert systems and 

general problem-solvers by doing knowledge-intensive programming in a general weak-method 

problem-solving architecture. We wish to show three things: (1) a general problem-solving 

architecture can work at the knowledge-intensive (expert system) end of the problem-solving 

spectrum; (2) such a system can integrate basic reasoning and expertise; and (3) such a system can 

perform knowledge acquisition by automatically transforming computationally-intensive problem 

solving into efficient expertise-level rules. 

Our strategy is to show how Soar, a problem-solving production-system architecture (Laird, 1983), 

can deal with a portion of R1 — a large rule-based expert system that configures Digital Equipment 

1 Th is research was sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA Order No. 3597, 
monitored by the Air Force Avionics Laboratory Under Contracts F33615-81-K-1539 and N00039-83C-0136, and by Digital 
Equipment Corporation. The views and conclusions contained in this document are those of the authors and should not be 
interpreted as representing the official policies, either expressed or implied, of the Defense Advanced Research Projects 
Agency, the US Government, or Digital Equipment Corporation. 

John McDermott and Allen Newell are at the Carnegie-Mellon University Computer Science Department. Most of this work 
was done while Paul Rosenbloom and John Laird were also at CMU CSD. Paul Rosenbloom is now at the Stanford University 
Departments of Computer Science and Psychology. John Laird is now at the Xerox Palo Alto Research Center. Edmund 
Orciuch is at Digital Equipment Corporation. 
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Corporation VAX-11 and PDP-11 computer systems. A base representation in Soar consists of 

knowledge about the goal to be achieved and knowledge of the operators that carry out the search 

for the goal state. For the configuration task this amounts to knowledge that detects when a 

configuration has been done and basic knowledge of the physical operations of configuring a 

computer. A system with a base representation is robust, being able to search for knowledge that it 

does not immediately know, but the search can be expensive. 

Efficiency can be achieved by adding knowledge to the system that aids in the application of 

difficult operators and guides the system through combinatorially explosive searches. Expertise 

knowledge corresponds to this non-base knowledge. With little expertise knowledge, Soar is a 

domain-independent problem solver; with much expertise knowledge, Soar is a knowledge-intensive 

system. The efficient processing due to expertise knowledge replaces costly problem-solving with 

base knowledge when possible. Conversely, incompleteness in the expertise leads back smoothly 

into search in the base system. 

In Soar, expertise can be added to a base system either by hand crafting a set of expertise-level 

rules, or by automatic acquisition of the knowledge implicit in the base representation. Automatic 

acquisition of new rules is accomplished by chunking, a mechanism that has been shown to provide a 

model of human practice (Newell & Rosenbloom, 1981; Rosenbloom, 1983), but is extended here to 

much broader types of learning. 

In the remainder of this article, we describe R1 and Soar, present the structure of the configuration 

task as implemented in Soar, look at the system's behavior to evaluate the claims of this work and 

draw some conclusions. 

1. R1 and the Task for R1 -Soar 
R1 is an expert system for configuring computers (McDermott, 1982). It provides a suitable expert 

system for this experiment because: (1) it contains a very large amount of knowledge; (2) its 

knowledge is largely pure expertise in that it simply recognizes what to do at almost every juncture; 

and (3) it is a highly successful application of expert systems, having been in continuous use by 

Digital Equipment Corporation for over four years (Bachant & McDermott, 1984). Currently written in 

Ops5 (Forgy, 1981), R1 consists of a database of over 7000 component descriptions, and a set of 

about 3300 production rules partitioned into 321 subtasks. The primary problem-solving technique in 

R1 is match — recognizing in a specific situation precisely what to do next. Where match is 

insufficient, R1 employs specialized forms of generate and test, multi-step look-ahead, planning in an 

abstract space, hill climbing, and backtracking. 



R1-Soar Page 3 

Given a customer's purchase order, R1 determines what, if any, modifications have to be made to 

the order for reasons of system functionality and produces a number of diagrams showing how the 

various components on the order are to be associated. In producing a complete configuration, R1 

performs a number of relatively independent subtasks; of these, the task of configuring unibus 

modules is by far the most involved. Given a partially ordered set of modules to be put onto one or 

more buses and a number of containers (backplanes, boxes, etc), the unibus configuration task 

involves repeatedly selecting a backplane and placing modules in it until all of the modules have been 

configured. The task is knowledge-intensive because of the large number of situation-dependent 

constraints that rule out various module placements. R1-Soar can currently perform more than half 

of this task. Since R1 uses about a third of its knowledge (1100 of its 3300 rules) in performing the 

unibus configuration task, R1-Soar has approximately a sixth of the knowledge that it would require 

to perform the entire configuration task. 

R1 approaches the unibus configuration task by laying out an abstract description of the backplane 

demands imposed by the next several modules and then recognizing which of the candidate 

backplanes is most likely to satisfy those demands. Once a backplane is selected on the basis of the 

abstract description, R1 determines specific module placements on the basis of a number of 

considerations that it had previously ignored or not considered in detail. R1-Soar approaches the 

task somewhat differently, but for the most part makes the same judgements since it takes into 

account all but one of the six factors that R1 takes into account. The parts of the unibus 

configuration task that R1-Soar does not yet know how to perform are mostly peripheral subtasks 

such as configuring empty backplanes after all of the modules have been placed and distributing 

boxes appropriately among cabinets. R1 typically fires about 1000 rules in configuring a computer 

system; the part of the task that R1-Soar performs typically takes R1 80 - 90 rule firings, a twelfth of 

the total number. 3. Since an order usually contains several backplanes, to configure a single 

backplane might take R1 20 - 30 rule firings, or about 3 - 4 seconds on a Symbolics 3600 Lisp 

Machine. 

2.Soar 
Soar is a problem-solving system that is based on formulating all problem-solving activity as 

attempts to satisfy goals via heuristic search in problem spaces. A problem space consists of a set of 

states and a set of operators that transform one state into another. Starting from an initial state the 

problem solver applies a sequence of operators in an attempt to reach a state that satisfies the goal 

3 T h i s task requires a disproportionate share of knowledge — a sixth of the knowledge for a twelfth of the rule firings — 
because the unibus configuration task is more knowledge-intensive than most of the other tasks R1 performs. 
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(called a desired state). Each goal has associated with it a problem space within which goal 

satisfaction is being attempted, a current state in that problem space, and an operator which is to be 

applied to the current state to yield a new state. The search proceeds via decisions that change the 

current problem space, state, or operator. If the current state is replaced by a different state in the 

problem space — most often it is the state generated by the current operator, but it can also be the 

previous state, or others — normal within-problem-space search results. 

The knowledge used to make these decisions is called search control. Because all problem solving 

in Soar must take place in a problem space, search control must be computationally limited in that it 

can not involve problem solving. As long as the computation required to make a decision is within the 

limits of search control, and the knowledge required to make the decision exists, problem solving 

proceeds smoothly. However, Soar often works in domains where its search-control knowledge is 

either inconsistent or incomplete. When this happens, Soar's universal subgoaling 

mechanism (Laird, 1983) automatically creates a subgoal whose purpose is to obtain the knowledge 

which will allow the decision to be made. For example, if more than one operator can be applied to a 

state, and the available knowledge does not prefer one over the others, a subgoal will be created to 

find information leading to the selection of the appropriate one. Another example is when an operator 

is selected and its implementation requires problem solving. A subgoal is created to build the state 

that is the result of the operator. 

A subgoal is attempted by selecting a problem space for it, with goal attainment interpreted as 

finding a desired state in that problem space. Should a decision be problematic in this new problem 

space, a new subgoal would be created to deal with it. The overall structure thus takes the form of a 

goal-subgoal hierarchy. Moreover, because each new subgoal will have an associated problem 

space, Soar generates a hierarchy of problem spaces, as well as a hierarchy of goals. The diversity 

of task domains is reflected in a diversity of problem spaces. Major tasks, such as configuring a 

computer, have a corresponding problem space, but so also do each of the various subtasks, such as 

placing a module into a backplane or placing a backplane into a box. In addition, problem spaces 

exist in the hierarchy for many types of tasks that often don't appear in a typical task-subtask 

decomposition, such as the selection of an operator to apply, the implementation of a given operator 

in some problem space, and a test of goal attainment. 

Figure 2-1 gives a small example of how these subgoals are used in Soar. This is a 

subgoal/problem-space structure that gets generated while trying to take steps in many task problem 

spaces. Initially (A), the problem solver is at Statel and must select an operator. If search control is 

unable to uniquely determine the next operator to apply, a subgoal is created to do the selection. In 
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that subgoal (B), a selection problem space is used that reasons about the selection of objects from a 

set. In order to break the tie between objects, the selection problem space has operators to evaluate 

each candidate object. 

Task goal 

Select and apply 

Operator2 to Statel 

Task goal 

|State3 

|Operator1 

|Operator2 

pperator3 

Select Operator 

KOp1,Op2, Op3} 

ICompare objects 

Prune worse object 
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Operator3 

/ 
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/ 
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/ Operator2 / Operator3 / 
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Figure 2-1: A Soar subgoal/problem-space structure. 

Evaluating an operator, such as Operatorl in the task space, is a complex problem requiring a new 

subgoal. In this subgoal (C), the original task problem space and state (Statel) are selected. 

Operatorl is applied, creating a new state (State2). If an evaluation function exists for State2, it is 

used to compare Operatorl to the other operators. When Operatorl has been evaluated, the subgoal 

terminates, and then the whole process is repeated for the other two operators (Operator2 and 

Operator^ in D and E). If, for example, Operator^ creates a state with a better evaluation than the 

other operators, it will be designated as better than them. The selection subgoal will terminate and 

the designation of Operator2 will lead to its selection in the original task goal and problem space. At 

this point Operator2 is reapplied to Statel and the process continues (F). 

Soar uses a production system architecture — a modified version of Ops5 (Forgy, 1981) that 

admits parallel execution of all satisfied productions — to realize its search-control knowledge and to 

implement its simple operators (more complex operators are encoded as separate problem spaces 

that are chosen for the subgoals that arise when the operator they implement has been selected to 

apply). Each production rule elaborates the current objects under consideration for a decision (e.g., 

candidate operators or states) with knowledge about the objects, including preferences relative to 
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other candidate objects. There is a fixed decision process that integrates these preferences and 

makes a selection. Each decision corresponds to an elementary step in the problem solving, so a 

count of the number of decisions is a good measure of the amount of problem solving performed. 

To have a task formulated in Soar is to have a problem space and the ability to recognize when a 

state satisfies the goal of the task; that is, is a desired state. The default behavior for Soar— when it 

has no search-control knowledge at all — is to search in this problem space until it reaches a desired 

state. The various weak methods arise, not by explicit representation and selection, but instead by 

the addition of small amounts of search control (in the form of one or two productions) to Soar, which 

acts as a universal weak method (Laird & Newell, 1983a; Laird & Newell, 1983b; Laird, 1983). These 

production rules are responsive to the small amounts of knowledge that are involved in the weak 

methods, e.g., the evaluation function in hill-climbing or the difference between the current and 

desired states in means-ends analysis. In this fashion, S o a r is able to make use of the entire 

repertoire of weak methods in a simple and elegant way, making it a good exemplar of a general 

problem-solving system. 

The structure in Figure 2-1 shows how one such weak method, steepest-ascent hill climbing — at 

each point in the search, evaluate the possible next steps, and take the best one — can come about if 

the available knowledge is sufficient to allow evaluation of all of the states in the problem space. If 

slightly different knowledge is available, such as how to evaluate only terminal states (those states 

beyond which the search cannot extend), the search would be quite different, reflecting a different 

weak method. For example, if State2 in subgoal (C) cannot be evaluated, then subgoal (C) will not be 

satisfied, and the search will continue under that subgoal. An operator must be selected for State2, 

leading to a selection subgoal. The search will continue to deepen in this fashion until a terminal 

state is reached, leading to an exhaustive depth-first search for the best terminal state. If no 

evaluation information is available, that is, desired states can be recognized but not evaluated, a third 

weak method results: depth-first search for the first desired state to be found. 

In addition to the kinds of knowledge that lead to the well-known weak methods, additional search-

control knowledge can be added to any problem space. The knowledge can be in the form of new 

object preferences, or additional information that leads to new preferences. As more knowledge is 

added, the problem solving becomes more and more constrained until finally search is totally 

eliminated. This is the basic device in Soar to move towards a knowledge-intensive system. Each 

addition occurs simply by adding rules in the form of productions. Theoretically, Soar is able to move 

continuously from a knowledge-free solver (the default), through the weak methods to a knowledge-

intensive system. It is possible to eliminate entire subspaces if their function can be realized by 
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search-control knowledge in their superspace. For instance, if a subspace is to gather information for 

selecting an operator, then that information might be encodable as search control in the higher 

space. Similarly, if a subspace is to apply an operator, then specific instances of that operator might 

be carried out directly by rules in the higher space. 

Knowledge acquisition in Soar consists of the creation of additional rules, by hand coding or by a 

mechanism that automatically chunks the results of successful goals (Laird, Rosenbloom, & Newell, 

1984). The chunking mechanism creates new production rules that allow the system to directly 

perform actions that originally required problem solving in subgoals. The conditions of a chunked 

rule test those aspects of the task that were relevant to satisfying the goal, while its actions generate 

the information that actually satisfied the goal. New rules form part of search control when they deal 

with the selection among objects (chunks for goals that use the selection problem space), or they 

form part of operator implementation when they are chunks for goals dealing with problematic 

operators. Because Soar is driven by the goals automatically created to deal with difficulties in its 

performance, and chunking works for all goals, the chunking mechanism is applicable to all aspects 

of Soar's problem-solving behavior. 

3. The Structure of R1-Soar 
The first step in building a knowledge-based system in S o a r is to design and implement the base 

representation as a set of problem spaces within which the problem can be solved. As displayed in 

Figure 3-1, R1-Soar currently consists of a hierarchy of ten task problem spaces (plus the selection 

problem space). These spaces represent a decomposition of the task in which the top space is given 

the goal to do the entire unibus configuration task; that is, to configure a sequence of modules to be 

put on a unibus. The other nine task spaces deal with subcomponents of this task. Each subspace 

implements one of the complex operators of its parent's problem space. 

Each configuration task begins with a goal that uses the Unassigned Backplane problem space. 

This space has one operator for configuring a backplane that is instantiated with a parameter that 

determines which type of backplane is to be configured. The initial decision, of selecting which 

backplane to use next, appears as a choice between instances of this operator. Unless there is 

special search-control knowledge that knows which backplane should be used, no decision can be 

made. This difficulty (of indecision) leads to a subgoal that uses the selection problem space to 

evaluate the operators (by applying them to the original state and evaluating the resulting states). To 

do this, the evaluation operator makes recursive use of the Unassigned Backplane problem space. 

The initial configuration of a backplane is accomplished in the five problem spaces rooted at the 
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F igure 3 -1: The task problem-space hierarchy for R f - S o a r . 

Configure Backplane space by: putting the backplane in a box (the Configure Box space); putting into 

the backplane as many modules as will fit (the Configure Modules space); reserving panel space in 

the cabinet for the module (the Reserve Panel Space space); putting the modules' boards into slots in 

the backplane (the Configure Boards space); and cabling the backplane to the previous backplane 

(done by an operator in the Configure Backplane space that is simple enough to be done directly by a 

rule, rather than requiring a new problem space). Each of these problem spaces contains between 

one and five operators. Some of the operators are simple enough to be implemented directly by rules, 

such as the cable-backplane operator in the Configure Backplane space, or the put-board-in-slot, 

go-to-next-slot, and go-to-previous-slot operators in the Configure Boards space. Others are 

complex enough to require problem solving in new problem spaces, yielding the problem-space 

hierarchy seen in Figure 3-1. 

In addition to containing operators, each problem space contains the knowledge allowing it to 

recognize the satisfaction of the goal for that problem space. Several kinds of goal detection can 

occur: (1) recognition of a desired state; (2) satisfaction of path constraints (avoiding illegal 

sequences of operators); and (3) optimization over some criterion (such as maximizing the value of 

the result or minimizing its cost). All these different forms of goals are realized by appropriate 

production rules. For example, the Configure Backplane space simply has the following goal 
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detection rule: if the modules have been placed in the backplane, and the backplane has been placed 

in a box, and the backplane has been cabled to the previous backplane (if there is one), then the goal 

is accomplished. In a more complicated case, the task of putting the boards from a module into slots 

in a backplane (the Configure Boards space) could be considered complete whenever all of the 

module's boards are associated with slots in the backplane. However, a two-board module can be 

configured by putting one board in the first slot and one in the last slot, or by putting the two boards 

into the first two slots, or by any one of the other combinatorial possibilities. For most modules it is 

desirable to put the boards as close to the front as possible to leave room for later modules (though 

there is one type of module that must go at the end of the backplane), so completed configurations 

are evaluated according to how much backplane space (first to last slot) they use. The goal is 

satisfied when the best completed configuration has been found. 

In addition to the constraints handled by evaluation functions (such as using minimum backplane 

space), many other constraints exist in the configuration task that complicate the task of a problem-

solving system. These include possible incompatibilities between boards and slots, the limited 

amounts of power that the boxes provide for use by modules (a new box may be required if more 

power is needed), components that are needed but not ordered, restrictions on the location of a 

module in a backplane (at the front or back), and limits on the electrical length of the unibus (for 

which a unibus repeater is required). R1-Soar pursues this complex configuration problem by 

searching for the best configuration that meets all of the constraints, and then trying to optimize the 

configuration some more by relaxing one of the constraints — the ordering relationship among the 

modules. This relaxation (occurring in the four spaces rooted at the Reconfigure Modules space) 

may allow the removal of backplanes that were added over and above those on the initial order. 

When possible, the modules configured in these backplanes are removed (the Unconfigure Modules 

space), placed into unused locations in other backplanes (the Reconfigure Boards space), and the 

extra backplanes are removed from their boxes (the Unconfigure Box space). 

As described so far, R1-Soar forms a base-reasoning system, because its representation and 

processing is in terms of the fundamental relationships between objects in the domain. The main 

mode of reasoning consists of search in a set of problem spaces until the goals are achieved. One 

part of this search can be seen clearly in the Configure Boards space. Given a module with two 

boards of width 6, and a nine-slot backplane with slot-widths of 4-6-6-6-6-6-6-6-4, a search proceeds 

through the problem space using the gd"-to-next-slot and put-board-in-slot operators. The search 

begins begins by making the easy decision of what to do with the first slot: it must be skipped 

because it is too narrow for either board. Then either one board can be placed in the second slot, or 
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the slot can be skipped. If it is skipped, one board can be placed in the third slot, or it can be skipped, 

and so on. If instead a board is placed in the second slot, then it must go on to the third slot and 

decide whether to place the other board there or to skip the slot, and so on. All complete 

configurations are evaluated, and the path to the best one is selected. This is clearly not the most 

efficient way to solve this problem but it is sufficient. 

R1-Soar becomes a more knowledge-intensive system as rules are added to guide the search 

through the problem space and to implement special cases of operators — even though the complete 

operator is too complex for direct rule implementation, special cases may be amenable. Most of the 

hand-crafted knowledge in R f - S o a r is used to control the search. In the Configure Boards space all 

search is eliminated (at least for modules that go in the front of the backplane) by adding three 

search-control rules: (1) operators that configure boards of the same width and type are equal; (2) 

prefer the operator that configures the widest board that will fit in the current backplane slot; and (3) 

prefer an operator that puts a board into a slot over one that goes to the next slot. These rules 

convert the search in this problem space from being depth-first to algorithmic — at each step the 

system knows exactly what to do next. For the example above, the correct sequence is: go-to-next-

slot, put-board-in-slot, go-to-next-slot, put-board-in-slot. 

4. Results and Discussion 
In this section we evaluate how well R f - S o a r supports the three objectives given in the introduction 

by examining its performance on four configuration tasks. 

1. There is one two-board module to be put on the unibus. 

2. There are three modules to be put on the unibus. One of the already configured 
backplanes must be undone in order to configure a unibus repeater. 

3. There are six modules to be put on the unibus. Three of the modules require panel space 
in the cabinet. 

4. There are four modules to be put on the unibus. Three of the modules will go into a 
backplane already ordered, and one will go into a backplane that must be added to the 
order. Later this module is reconfigured into an open location in the first backplane, 
allowing removal of the extra backplane from the configuration. 

Most of the results to be discussed here are for tasks 1 and 2, which were done in earlier versions of 

both Soar and R f - S o a r (containing only the Unassigned Backplane, Configure Backplane, 

Configure Box, Configure Modules, and Configure Boards spaces, for a total of 242 rules). Tasks 3 

and 4 were run in the current versions of Soar and R f - S o a r (containing all of the problem spaces, 
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for a total of 266 rules 4). Table 4-1 gives all of the results for these four tasks that will be used to 

evaluate the three objectives of this paper. The first line in the table shows that a system using a base 

representation can work, solving the rather simple task 1 after making 1731 decisions. 

Task Vers ion Before Learning During Learning After Learning 

Base 1731 485 [59] 7 

1 Partial 243 111 [U] 7 

Full 150 90 [12] 7 

Partial 1064 692 [109] 16 

CM
 

Full 479 344 [53] 16 

3 Full 288 143 [20] 10 

4 Full 628 

Tab le 4 -1: Number of decisions to completion for the four unibus configuration tasks. The base 
version (task 1) contains 232 rules, the partial version (tasks 1 and 2) contains 234 
rules, and the full version contains 242 rules (tasks 1 and 2) or 266 rules (tasks 3 and 
4). The number of rules learned for each task is shown in brackets in the during-
learning column. 

The first objective of this paper is to show that a general problem-solving system can work 

effectively at the knowledge-intensive end of the problem-solving spectrum. We examine three 

qualitatively different knowledge-intensive versions of R1-Soar. (1) where it has enough hand-crafted 

rules so that its knowledge is comparable to the level of knowledge in R1 (before learning on the full 

version); (2) where there are rules that have been acquired by chunking (after learning on the base 

version); and (3) where both kinds of rules exist (after learning on the full version). The hand-crafted 

expertise consists solely of search control (operator selection) rules. The chunked expertise consists 

of both search-control and operator-application rules. In either case, this is expertise knowledge, 

directly relating knowledge of the task domain to action in the task domain. 

4 T h e difference in number of task rules between these two versions is actually higher because a number of the default 
(non-task) rules needed by earlier versions of Soar are no longer necessary. 
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Table 4-1 shows the number of decisions required to complete each of the four configuration tasks 

when these three versions of R1-Soar are used. With hand-crafted search control, all four tasks 

were successfully completed, taking between 150 and 628 decisions. In the table, this is before 

learning on the full (search control) version. With just chunked search control, task 1 was 

accomplished in 7 decisions (after learning on the base version). A total of 3 of the 7 decisions deal 

with aspects outside the scope of the unibus configuration task (setting up of the initial goal, problem 

space, and state). Soar takes about 1.4 seconds per decision, so this yields about 6 seconds for the 

configuration task — within a factor of 2 of the time taken by R1. It was not feasible to run the more 

complex task 2 without search control because the time required would have been enormous due to 

the combinatorial explosion — the first module alone could be configured in over 300 different ways. 

Tasks 3 and 4 were also more complicated than task 1, and were not attempted with the base version. 

With both hand-crafted and chunked search control, tasks 1-3 required between 7 and 16 decisions 

(after learning on the full version). Task 4 learning had problems of overgeneralization. It should have 

learned that one module could not go in a particular backplane, but instead learned that the module 

could not go in any backplane. More discussion on overgeneralization in chunking can be found in 

Laird, Rosenbloom, and Newell (1984). 

In summary for the first objective, R1-Soar is able to do the unibus configuration task in a 

knowledge-intensive manner. To scale this result up to a full expert system (such as all of R1) we 

must know: (1) whether the rest of R1 is similar in its key characteristics to the portion already done; 

and (2) the effects of scale on a system built in Soar. With respect to the unibus configuration task 

being representative of the whole configuration task, qualitative differences between portions of R1 

would be expected to manifest themselves as differences in amount of knowledge or as differences in 

problem-solving methods. The task that R1-Soar performs is atypical in the amount of knowledge 

required, but requires more knowledge, not less — 15.7 rules per subtask for R1 -Soar's task, versus 

10.3 for the entire task. The problem-solving methods used for the unibus configuration task are 

typical of the rest of R1 — predominantly match, supplemented fairly frequently with multi-step look 

ahead. With respect to the scaling of R1-Soar up to R1 's full task, Ops5, from which Soar is built, 

scales very well — time is essentially constant over the number of rules, and linear in the number of 

modifications (rather than the absolute size) of working memory (Gupta and Forgy, 1983). Additional 

speed is also available in the form of the Ops83 production-system architecture, which is at least 24 

times faster than Lisp-based Ops5 (on a VAX-780) (Forgy, Gupta, Newell, & Wedig, 1984), and a 

production-system machine currently being designed that is expected to yield a further multiplicative 

factor of between 40 and 160 (Forgy, Gupta, Newell, & Wedig, 1984), for a combined likely speed-up 

of at least three orders of magnitude. 
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The second objective of this article is to show how base reasoning and expertise can be combined 

in S o a r to yield more expertise and a smooth transition to search in problem spaces when the 

expertise is incomplete. Towards this end we ran two more before-learning versions of Rl-Soar on 

tasks 1 and 2: (1) the base version, which has no search-control rules; and (2) the partial version, 

which has two hand-crafted search-control rules. The base version sits at the knowledge-lean end of 

the problem-solving spectrum; the partial version occupies an intermediate point between the base 

system and the more knowledge-intensive versions already discussed. 

Task 1 took: (1) 1731 decisions for the base version; and (2) 243 decisions for the partial version. 

Examining the trace of the problem solving reveals that most of the search in the base version goes to 

figuring out how to put the one module into the backplane. For the 9-slot backplane (of which 7 slots 

were compatible with the module's two boards), there are (7 choose 2) = 21 pairs of slots to be 

considered. The two search control rules added in the partial version have already been discussed in 

the previous section: (1) make operators that configure boards of equal size be equal, and (2) prefer 

to put a board in a slot rather than skip the slot. These two rules reduce the number of decisions 

required for this task by almost an order of magnitude. With the addition of these two search control 

rules, the second task could also be completed, requiring 1064 decisions. 

In summary, the base system is capable of performing the tasks, albeit very slowly. If appropriate 

search control exists, search is reduced, lowering the number of decisions required to complete the 

task. If enough rules are added, the system acts like it is totally composed of expertise knowledge. 

Where such knowledge is missing, as some is missing in the partial version, the system falls back on 

search in its problem spaces. 

The third objective is to show that knowledge acquisition via Soar's chunking mechanism could 

compile computationally intensive problem solving into efficient rules. In Soar, chunks are learned 

for all goals experienced on every trial, so for exact task repetition (as is the case here), all of the 

learning occurs on the first trial. The during learning column in Table 4-1 shows how many decisions 

were required on the trial where learning occurred. The bracketed number is the number of rules 

learned during that trial. These results show that learning can improve performance by a factor of 

about 1.5 to 3, even the first time a task is attempted. This reflects a large degree of within-trial 

transfer of learning; that is, a chunk learned in one situation is reused in a later situation during the 

same trial. Some of these new rules become part of search control, establishing preferences for 

operators or states. Other rules become part of the implementation of operators, replacing their 

original implementations as searches in subspaces, with efficient rules for the particular situations. 
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In task 3, for example, three operator-implementation chunks (comprising four rules) were learned 

and used during the first attempt at the task. Two of the chunks were for goals solved in the 

Configure Boards space. Leaving out some details, the first rule says that if the module has exactly 

one board and it is of width six, and the next slot in the backplane is of width six, then put the board 

into the next slot and move the slot pointer forward one slot. This is a macro operator which 

accomplishes what previously required two operators in a lower problem space. The second rule 

says that if the module has two boards, both of width six, and the current slot is of width four (too 

small for either board), and the two subsequent slots are of width six, then place the boards in those 

slots, and point to the last slot of the three as the current slot. The third rule is a more complex one 

dealing with the reservation of panel space. 

Comparing the number of decisions required before learning and after learning reveals savings of 

between a factor of 20 and 200 for the four unibus configuration tasks. In the process, between 12 

and 109 rules are learned. The number of rules to be learned is determined by the number of distinct 

subgoals that need to be satisfied. If many of the subgoals are similar enough that a few chunks can 

deal with all of them, then fewer rules must be learned. A good example of this occurs in the base 

version of task 1, where most of the subgoals are resolved in one problem space (the Configure 

Boards space). Likewise, a small amount of general hand-crafted expertise can reduce significantly 

the number of rules to be learned. For task 1, the base version plus 59 learned rules leads to a system 

with 291 rules, the partial version plus 14 learned rules has 248 rules, and the full version plus 12 

learned rules has 254 rules (some of the search control rules in the full version do not help on this 

particular task). All three systems require the same number of decisions to process this configuration 

task. 

In summary, chunking can generate new knowledge in the form of search-control and operator-

implementation rules. These new rules can reduce the time to perform the task by nearly two orders 

of magnitude. For more complex tasks the benefits could be even larger. However, more work is 

required to deal with the problem of overgeneralization. 

5. Conclusion 
By implementing a portion of the R1 expert system within the Soar problem solving architecture, 

we have provided evidence for three hypotheses: (1) a general problem solving architecture can work 

at the knowledge intensive end of the problem solving spectrum; (2) such a system can effectively 

integrate base reasoning and expertise; and (3) a chunking mechanism can aid in the process of 

knowledge acquisition by compiling computationally intensive problem solving into efficient 
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expertise-level rules. 

The approach to knowledge-intensive programming can be summarized by the following steps: (1) 

design a set of base problem spaces within which the task can be solved; (2) implement the problem-

space operators as either rules or problem spaces; (3) operationalize the goals via a combination of 

rules that test the current state, generate search-control information and compute evaluation 

functions; and (4) improve the efficiency of the system by a combination of hand crafting more search 

control, using chunking, and developing evaluation functions that apply to more states. 
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