
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-CS-83-162

* * ™ U Ö . Ä ' a n d . , n t o ' - « » » « n e Search Using Dynamic Programming

Yuichi Ohta
Takco Kanade

Computer Science Department
Carnegie-Mellon University

Pittsburgh, PA 15213

October 1983

Abstract

This paper presents a stereo algorithm for obtaining an optimal matching surface in a three dimensional
search space. Our approach is purely computational. When a pair of stereo images is rectified so that the
epipolar lines are horizontal scan lines, we can search for a pair of corresponding points in right and left
images within the same scan lines. We call this search intra-scanline search. This intra-scanline search can be
treated as the problem of finding a matching path on a two dimensional (2D) search plane whose axes are die
right and left scanlines. The intra-scanline search alone, however, docs not take into account mutual
dependency between scanlines in an image. Inter-scanline search is necessary to find the consistency among
scanlines.

Therefore, die problem of finding a correspondence between pair of stereo images can be cast as that of
finding a matching surface (i.e., a set of matching paths) in a three dimensional search space, which is a stack
of the 2D search planes. Vertically connected edges provide the consistency constraint across the 2D search
plane. Thus, stereo involves two searches: one is inter-scanline search for possible correspondence of
connected edges and the other is intra-scanline search for correspondence of every edge under the constraint
given by connected edges. We utilize dynamic programming for both searches and they proceed
simultaneously.

The algorithm has been tested with images including urban aerial images, synthesized images, and block scenes.

1

1 . Introduction

Stereo is a useful method of obtaining depth information without using active sensors. Many researchers

are currently studying edge-based stereo techniques [Grimson and Man* 79] [Baker and Binford 81]. Edge-

based stereo is usually classified as a feature-based technique, but it can produce a relatively dense depth map

as compared to typical feature-based techniques [Moravec 79] [Herman, Kanade, and Kuroe 83]. Edges

usually have a higher density than the feature points by the Moravec's interest operator or the junctions at the

corner of man-made objects. Feature points with high density produces a dense depth map, but on the other

hand, they cause ambiguities in finding the correspondences in the right and the left images.

Therefore, one of the key problems in edge-based stereo is to find the correspondence of edges. Basically,

the problem of finding the correspondence of edges in the right and the left images involves the search in the

two dimensional image. We refer to this as the image-to-image correspondence problem. When we know the

camera model, we can simplify the image-to-image correspondence problem into a set of scanline-to-scanline

problems. That is, when a pair of stereo images is rectified so that the epipolar lines are horizontal scanlines,

we can search for a pair of corresponding edges in right and left images within a pair of scanlines [Barnard

and Fischler 82]. We call this search intra-scanline search. This intra-scanline search can be treated as the

problem of finding a matching path on a two-dimensional search plane whose vertical and horizontal axes are

the right and left scanlines. A dynamic programming technique can handle this search efficiendy [Baker and

Binford 81]. The intra-scanline search alone, however, does not take into account mutual dependency

between scanlines in an image. Inter-scanline search is necessary to find the consistency among scanlines.

By considering both intra- and inter-scanline searches, the problem of finding a correspondence between

pair of stereo images can be cast as that of finding a matching surface (Le., a set of matching paths) in a three

dimensional search space, which is a stack of the 2D search planes and whose axes are left-image column

position, right-image column position, and the row position of image. The cost of the matching surface is

defined as the sum of the costs of the intra-scanline matches on the 2D search planes. Vertically connected

edges provide the consistency constraint across the 2D search plane (inter-scanline constraint). Our stereo

algorithm tries to find an optimal set of paths which minimizes the matching cost under the inter-scanline

constraint It involves two searches: one is inter-scanline search for possible correspondence of connected

edges and the other is intra-scanline search for correspondence of edges under the constraint given by

connected edges. Dynamic programming is used for both searches and they proceed simultaneously. It

reduces the computation to a feasible order.

Our main task domain is urban aerial photographs which contain tall buildings, roads, and trees. Images in

other domains are also used to show the performance of our stereo technique.

3

2. The Problem

In an edge-based stereo system, vertically connected edges across the scanline offer the consistency

constraint among scanlines. Suppose a connected edge u in the right image matches a connected edge v in the

left image on scanline / as shown in figure 2-1. Then they should also match on other scanlines. If they do

not match on scanline /, they should not match on others, either. This constraint helps to get correct matches

near the corners where many edges come together as on the scanline / + 1 in the figure. It is also effective in

distinguishing noisy edges from real ones as illustrated on scanline / - 1 .

l e f t image r i g h t image

r<T~^
V 1 î u

1

t - 1

t

t + 1

Figure 2-1: Constraint provided by vertically connected edges

The problem is, then, how to combine the inter-scanline consistency constraint with the intra-scanline

search scheme. Henderson [Henderson, et al. 79] sequentially processed each pair of scanlines and used the

results obtained to guide searches in succeeding scanlines. However, in this scheme the matching process at

any given scanline is significantly affected by the errors in the preceding scanlines. This is more serious when

the scanlines are processed in top-to-bottom or in bottom-to-top order, because in many cases we should

decide the correspondence of connected edges near the ends where other connected edges may appear closely,

as in figure 2-1, and where the ambiguity is larger than in other areas.

Baker [Baker 82] first processed each pair of scanlines independendy. After all the intra-scanline matching

was done, he used a cooperative process to detect and correct the matching results which violate the

consistency constraint The problem of this method is that the inter-scanline constraint is not used in the

search. Thus, the result from the cooperative process is not guaranteed to be optimal. Baker suggested the

necessity of a search which finds an optimal result satisfying the consistency constraint in a 3D search space.

But a feasible method has been an open problem.

A straightforward way to achieve a matching which satisfies the edge continuity constraint is to consider all

4

matching between connected edges in the right and left images. However, since the typical number of

connected edges is several hundred in each image, a brute force method is infeasible.

Dynamic programming is one method for solving this problem. It solves an N stage decision process as N

single stage ones. This reduces the computational complexity to the logarithm of the original one. In order to

apply dynamic programming to a decision process, the process should satisfy the following two requirements.

First, the decision stages must be ordered so that every stage whose results are needed at a given stage is

processed before the given one. Second, the decision process should be Markovian: at any stage the behavior

of the process depends solely on the current state and does not depend on the previous history. These are not

at all obvious in the correspondence problem of connected edges, but we clarify them in the following

sections.

Our search space is a 3D space which is a stack of 2D search planes for intra-scanline matching. In the 3D

search space we obtain a set of matching paths which gives the optimal correspondence of edges under the

inter-scanline consistency constraint Actually the scheme involves two searches as shown in figure 2-2. One

is for the correspondence of all connected edges in the right and left images, and the other is for the

correspondence of edges on the right and left scanlines under the constraint given by the former. The score

(cost) of the connected edge correspondence is supplied by the latter one. We employed dynamic

programming for both searches and they proceed simultaneously.

i n t e r - s c a n l i n e i n t r a - s c a n l i n e
c o n s t r a i n t

m a t c h i n g of

c o n n e c t e d e d g e s

m a t c h i n g of
a l l e d g e s
on s c a n l i n e p a i r

s c o r e (c o s t)

dynamic p rogramming dynamic p r o g rammi ng

s i m u l t a n e o u s l y

Figure 2-2: Two searches involved in stereo matching

5

3- Correspondence Search Using Dynamic Programming

3 . 1 . In t ra -scanl ine search on 2D plane

The problem of obtaining a correspondence between edges on the right and left scanlines can be solved as a

path finding problem on a 2D plane. Figure 3-1 illustrates this 2D search plane. The vertical lines show the

positions of edges on the left scanline and the horizontal ones show those on the right scanline. We refer to

the intersections of those lines as nodes. Nodes in this plane correspond to the stages in dynamic

programming where a decision should be made to select an optimal path to that node. In the intra-scanline

search, the stages must be ordered as follows: When we examine the correspondence of two edges, one on the

right and one on the left scanline, the edges which are on the left of these edges on each scanline must already be

processed For this purpose, we give indices for edges in left-to-right order on each scanline: [0:M] on the

right and [Q:N] on the left. Both ends of a scanline are also treated as edges for convenience. It is obvious

that the condition above is satisfied if we process the nodes with smaller indices first The path is a

consecutive set of straight line segments from node (0,0) to node (M,N) on a 2D array [0:A/,0:JV]. It goes

from the upper left to the lower right corners monotonically, if we assume the no-reversal constraint in edge

correspondence: that is, the order of matched edges has to be preserved in the right and left scanlines. A

path has a vertex at node m=(m,fl) when right edge m and left edge n are matched.

The cost of the path is defined by equation (3-1). Let D(m,k) be the minimal cost of the partial path from

node k to node m. We denote D(mM) as D(m) when k is (0,0). D(m) is the cost of the optimal path to node m

from the origin (0,0). A primitive path is a partial path which contains no vertices and it is represented by a

straight line segment as shown on figure 3-1. The cost of a path is the sum of those of its primitive paths. Let

d(m,k) be the cost of the primitive path from node k to node m. Obviously, d(m,k) > D(m,k) and on an

optimal path d(m,k) = D(m,k). Our definition of d(m,k) will be given in section 4.2.

D(m) can be defined recursively as:

D(m) = min{d(m,m-i) + D(m-i)}

A 0) = 0

here m = (m,n), i = (ij)9 0 < / < n% 0 <j< n, i+jy£ 0.

Vector / represents a primitive path coming to node m. When /=0 , the primitive path is horizontal, such as

(3-1)

6

Figure 3-1: 2D search plane for intra-scanline search.
Intensity profiles are shown along each axis.

The horizontal axis corresponds to the left scanline
and the vertical one corresponds to the right scanline.

Vertical and horizontal lines are the edge positions
and path selection is done at their intersections.

.; _:;rch.

7

is shown at (a) in figure 3 - 1 . It corresponds to the case in which a visible part in the left image is occluded in

the right image. Wheny=0, the primitive path is vertical, such as is shown at (b). When z>l and/or j>l, the

primitive path goes beyond / — 1 and/or j — 1 edges on the right and/or left scanlines. This means those / — 1

and/or j — 1 edges are to be ignored in the matching, as is shown at (c) in the figure. Such a path corresponds

to the case where some edges have no corresponding ones on the other scanline because of noise.

The iteration starts at m=(0,0) and computes D(m) for each node m in ascending order of m. At each node

the primitive path i that gives the minimum is recorded. The sequence of primitive paths which gives D(M)

at node M = (M,N) is the optimal path.

3 . 2 . Computat ional cost for in t ra -scanl ine search

The number of primitive paths which should be examined on a 2D search plane to compute D(M) by

equation (3 - 1) is 0(M2ff): the number of nodes in the search plane is O(MN) and at each node we should

examine 0(MN) primitive paths. Actually, we can limit the maximum disparity allowed in the matching.

When the range is dxltfVo of the width of the image, the number of nodes to be examined becomes

dxMxN. Furthermore, we can limit the number of edges which can be ignored by a primitive path; it is

unusual to skip many edges at a time. When this limit is /, the number of primitive paths examined at each

node is about I2. Thus, the number of primitive paths to be examined is dxMxNxI2. In the stereo images

we have used in the experiments, d is about 0.05~0.2, M and N are about 5-90 in average, and / is set to 5.

Thus, the number of primitive paths examined on each scanline ranges from about 70 for our simplest images

to 7 x l 0 3 for our most complicated ones.

As we can see in figure 3 - 1 , our matching scheme is based on the intervals between edges rather than on the

edges themselves as is Baker's [Baker 82]. This difference is mainly reflected in the difference of the

definition of the cost function </(). As will be described in section 4.2, our cost is based on the similarity of

the intensities on right and left intervals, while Baker's is defined based on the similarity of edges such as

contrast and orientation. As far as we discuss on the ability of the representation scheme for the search plane,

there are no essential differences between the two; both can handle the cases for occlusions and/or noise

edges. However, by using intervals as the matching unit, it is not necessary to treat an edge as a doublet to

cope with occlusions; an interval is equivalent to a facing pair of half edges. When there are N edges, there

are only JV— 1 intervals while doublets give 2xN half edges. This simplifies the representation of the search

plane and has an advantage when dealing with complex images.

8

3 . 3 . In ter -scanl ine search in 3 D space

The problem of obtaining a correspondence between edges under the inter-scanline consistency constraint

can be viewed as the problem of finding a set of paths in a 3D space which is a stack of 2D planes for

intra-scanline search. Figure 3-2 illustrates this 3D space. The side faces of this space correspond to the right

and left stereo images. We obtain an optimal set of paths satisfying the inter-scanline constraint. An optimal

set is the one with minimal cost which is the sum of the costs of the individual paths in the set A pair of

connected edges in the right and left images make a set of 2D nodes in the 3D space when they share scanline

pairs. We refer to these 2D nodes as a single 3D node. The optimal path on a 2D plane is obtained by

iterating the selection of an optimal path at each 2D node. Similarly, the optimal set of paths in a 3D space is

obtained by iterating the selection of an optimal set of paths at each 3D node. Connected edges, 3D nodes,

and sets of paths between 3D nodes are illustrated in figure 3-2.

As described in section 2, the decision stages must be ordered in dynamic programming. In the intra-

scanline search, their ordering was straightforward; it was done by ordering edges from left to right on each

scanline. A similar consideration must be given to the inter-scanline search in 3D space. The decision stages

are the 3D nodes. A 3D node is actually a set of 2D nodes, and the cost at a 3D node is computed based on

the cost obtained by intra-scanline search on each 2D search plane. This leads to the following condition:

When we examine the correspondence of two connected edges, one in the right and one in the left image, the

connected edges which are on the left of these connected edges in each image must already be processed A

connected edge u is said to be on the left of u^ if all the edges in u on the scanlines which ^ and u2 share are

on the left of those in u^ The "left-of' relationship is transitive; if there is a connected edge u^ and u^ is on the

left of u^ and u^ is on the left of u^ then ^ is on the left of u^ Figure 3-3 illustrates this concept. The order of

two connected edges which do not satisfy both the relations in figure 3-3 may be arbitrarily specified. We

assign an ordering index from left to right for every connected edge in an image. This ordering is possible

without contradiction when a connected edge never crosses a scanline more than once and when two

connected edges never intersect each other. The edge linking process must be performed, therefore, so that it

does not make such connected edges.

Suppose we assign indices [0: U] to connected edges according to the ordering in the right image, and [0: V]

in the left The left and right ends of an image are treated as connected edges for convenience: the left ends

are assigned index O's.

Let n = (a, v) be a 3D node made by a connected edge u in the right image and a connected edge v in the left

image. Let C(u) be the cost of the optimal set of paths which come up to the 3D node «. C{u) is computed

as follows:

9

Figure 3-2: 3D search space for intra- and inter-scanline search.
This may be viewed as a rectangular solid seen from above.

The side faces correspond to the right and left stereo images.
Connected edges in each image form sets of intersections (nodes)

in this space. Each set is called a 3D node.
Selection of a set ofpaths is done at every 3D node.

10

Figure 3-3: Connected edge u± is on the left of

e{u)
C(i i)=min {D(l(uu)J(u-i(t);t)+C(u-i(l);t)}

1 , 1 '=*(«) (3 - 2)
C(0)=0, i.e. C(0; /)=0 for all /

here H = (K , V) , i (/)=(/ (/) l / (0) . 0<i(t)<u, 0</(/)<v, i(i)+j(t)^0.

C{u\t) is the cost of the path on scanline / in the optimal set; that is, C(u) is the sum of C{u\t): C (n) = 2

C(ir,f). D{m,k,t) is the cost of the optimal 3D primitive path from node k to node m on the 2D plane for

scanline /. A 3D primitive path is a partial path between two 3D nodes on a 2D search plane and it has no

vertices at the nodes belonging to a 3D node. So a 3D primitive path is a chain of 2D primitive paths and an

intra-scanline search is necessary to obtain the optimal 3D primitive path on a 2D plane between given two

3D nodes. The function l(u\t) gives the index of a node belonging to the 3D node u on the 2D plane for

scanline /. The numbers s(u) and e(u) specify respectively the starting and ending scanlines between which

the 3D node u exists. The cost C(u) is minimized on the function i(/). A 3D node «—1(0 gives the start

node of the 3D primitive path on scanline /. The inter-scanline constraint is represented by / (/) . For

example, if *(/) is independent of /(/—1), there are no constraints between scanlines and the search

represented by equation (3-2) becomes equivalent to a set of intra-scanline searches which are performed

independently on each scanline. Intuitively, i(t) must be equal to /(/—1) in order to keep the consistency

constraint

The iteration starts at u =(0,0) and computes C(u) for each 3D node u in ascending order of u. At each 3D

11

node the i(/)*s which give the minimum are recorded. The sequence of (2D) primitive paths which forms the

3D primitive path is also recorded on each scanline. The set of paths which gives C{U) at the 3D node

U=(U,V) is obtained as the optimal set U is the 3D node formed by the right ends of stereo images. It

should be noted that when there are no connected edges except for the right and left sides of the images, the

algorithm (3-2) works as a set of intra-scanline searches repeated on each scanline independently. In this

sense, the 3D algorithm completely contains the 2D one.

3 .4 . Computat ional cost for in ter -scanl ine search

The number of 2D primitive paths which should be examined in the 3t> search space to compute C(U) by

equation (3-2) is 0(Tlfl^M2f^): the number of 3D nodes in the search space is 0(UV\ at each 3D node

we should examine 0(UV) sets of 3D primitive paths, each set has 0(T) paths, and each 3D primitive path

requires 0(M2N2) computation for intra-scanline search. T is the number of scanlines in the image. This

means the search in 3D space requires ifx V1 times the computation of the 2D search. Although this still

seems to be a prohibitive amount of computation, the situation is much better for four main reasons.

First, a connected edge is much shorter than T for most cases. Let the average length be axT, then the

average number of connected edges crossing a scanline is ax U in the right image and ax V in the left image.

The number of 2D nodes which are made by those edges is a2xUx V. Because we have 7 scanlines, the total

number of 2D nodes which belong to a. 3D node is cfxUxVxT. Second, we can set the disparity range

allowable in the matching as in the intra-scanline search. This reduces the number of nodes to

dxdx UxVxT where d is the fraction of disparity range to the width of the image. Third, in order to find the

best / (/) , we can use beam search [Lowerre 76]; On the first scanline, Le. scanline s(n), we should examine

every 3D primitive path and select W paths from the best On many of the succeeding scanlines we need to

examine only W paths because /(/) is usually equal to /(/—1), and the average will come to W. The total

number of 3D primitive paths examined in the 3D search space is dxa2x Ux Vx Tx W.

The final reason is that the search plane for each 3D primitive path is usually much smaller than the whole

2D plane for intra-scanline matching. When there are M (or N) edges on a scanline and axU{or axV) of

them belong to connected edges, the average number of edges between two neighboring connected edges is

M/aU (or N/aV). Most 3D primitive paths are searched on this small area. The number of 2D primitive

paths examined in it is (AfxNxI2)/(a2xUxV), where I is the limit for edge ignorance. Thus, the total

number of 2D primitive paths to be examined is estimated as dxTxWxMxNxI2. This is only W times that

of the 2D search shown in the previous section and Wis typically set to 5. We always took the lower bounds

in the estimation above and the actual value will be higher. But, the estimation suggests the search can be

12

performed with a feasible amount of computation even in the 3D search algorithm.

3 . 5 . Consistency constra ints in in ter -scanl ine

Using the term 3D node defined in the previous section, we can describe the inter-scanline consistency

constraints as follows: For any 3D node, either all corresponding 2D nodes are the vertices on the set of paths in

the 3D search space or all are not the vertices on the set of paths. We need to represent this constraint as the

relation between /(/) and 1) in equation (3-2). Consider the example in figure 3-4. Suppose we are

trying to obtain a set of 3D primitive paths which come up to node «. In order to satisfy the consistency

constraints above, all the starting points of these paths should be the same 3D node; that is #(/)= i(t— 1). The

cases when the starting point may be a different 3D node are shown as case2 and case3 in the figure. In case2,

a new 3D node appears at scanline / and the starting point changes to the new one. Of course, it is possible

that the starting point does not change to the new 3D node. This will happen if the cost of the paths having

vertices on the 3D node is higher than the cost of the paths not having vertices on it. In case3, the 3D node

u — /(/— 1) disappears on scanline t and the starting point is forced to move elsewhere.

case 1 case 2 case 3

Figure 3-4: Three cases for consistency constraint

Let us denote the 3D node « — w h i c h is the starting point of the 3D primitive path coming up to 3D

node uon scanline u as Jrm{u\t). Then the following rules should be satisfied in each case.

easel: ^ (i r , /) = / n n (i r , / — 1)

case2: Jhn(Jhn(uu)U)=Jm(uU~l)

case3: fhn(uU)=fhn(Jhn(uV-l)V-l)

(3 - 3)

13

The rules in case2 and case3 require that the decision at 3D node u depend on decisions at preceding 3D

nodes. Unfortunately, a decision system with such a property is not Markovian as described in section 2, and

therefore there is no guarantee of obtaining an optimal solution by using dynamic programming. This means

if we search for a solution using dynamic programming with those rules, the result might be poorer than that

of the 2D algorithm.

In order to assure optimality in dynamic programming, the rules are modified as follows,

easel: Jhn(uu)=fim(u;t-1)

case2: fhn(u\t)>jhn(urj-l) (3 - 4)

case3: Jftn(u;k)<frm(u;t-1)
k<t & ke{scanlines on 3D nodeJhn(u;t)}.

The new rule for case2 requires the new 3D node on scanline / should be on the right of the 3D node that is

the starting point on scanline / - 1 . For case3, the starting 3D node on scanline / should be on the left of that

on scanline f—1, and all starting points of the 3D node u should never be on the left of it. The new rules are

always satisfied when the rules in equation (3-3) are satisfied. But the converse is not true! Thus under the

new rules, the consistency constraint might not be satisfied at all places. In other words, the constraints

represented by the rules in equation (3-4) are weaker than those of equation (3-3). However, since we can

expect to obtain an optimal solution in dynamic programming, we can expect better results by the 3D search

algorithm than by the 2D search algorithm.

14

4. Implementation

4 . 1 . Detect ion, l inking, and order ing of edges

The edge based stereo algorithm requires that edge detection and linkage be performed on the images

beforehand. We will give a brief outline of the algorithm we adopted for completeness of the description, but

the algorithm may be replaced with another one.

Edges running across the scanlines are useful for obtaining correspondence in stereo. The positions of edges

are detected by using an intensity profile along a scanline, whose first derivatives are computed. The peaks

and valleys in it whose absolute values exceed a threshold are extracted as edge locations. We use several

operators with different sizes to compute the first derivatives, as shown in figure 4-1, and the results obtained

by these operators are combined. Because the smaller operators can locate edges more accurately than larger

ones, edge positions located by smaller operators are given priority. That is, edge positions extracted by a

larger operator are adopted only when no edges are extracted by smaller ones within the range covered by the

operator. This prevents an edge from being detected more than once at slightly different positions by

operators of different sizes.

E m

-2 1-2 1-2 1-2

Figure 4-1: Operators for edge detection.
Results of different size operators are combined \ pich.

The linking process links the edge positions into connected edges. However, an edge running nearly

horizontally is detected as a set of positions which are apart on consecutive scanlines. This is inconvenient for

linking them into a connected edge. Thus we detect edge positions by using operators rotated 90 degrees

from those in figure 4-1 and the linking process uses both results to obtain connected edges. We adopt only

the connected edges which are longer than a threshold, while the others are kept as isolated ones. Both are

used in the stereo matching.

15

Ordering of connected edges is done by the following four processes. First, connected edges which run

across the same scanline are locally ordered from left to right. This is done independently on every scanline.

Figure 4-2 (a) illustrates this ordering. Second, a graph representing this local order is generated as shown in

(b). Nodes in the graph are the connected edges and directed arcs show the local ordering between them.

Third, for each node, the maximum number of arcs from the leftmost node to that node is assigned. The

numbers are shown on the left shoulder of each node in the figure. If a connected edge crosses a scanline

more than once or if two connected edges cross each other, loops are formed in the graph and the maximum

goes to infinity. Our linking process was designed, therefore, not to make such connected edges. Finally, the

maximum numbers are used to impose a global ordering on the connected edges. The ordering among the

connected edges which are given the same number is arbitrary, and we have assigned smaller indices to those

which are found earlier when scanning the image from top to bottom. The ordering indices assigned in this

way are shown with circled numbers in figure 4-2 (b).

U > U >M>
u — > u — > w
u — > x — > w
u > t f — > x — > z
u — > y — > x — > z

(a) connected edges and their local orders

(b) global ordering

Figure 4-2: Ordering of connected edges

16

4 . 2 . Metr ics for similar i ty m e a s u r e

The computation of cost in our search algorithm is based on the cost of a primitive path on the 2D search

plane. We define the cost of a 2D primitive path as the similarity of a right and a left interval on a scanline

pair. Let a ... ak and bx... b[be the intensity values of the pixels which comprise the two intervals. Then

the mean and variance of all pixels in the two intervals are computed as:

(4 - 1)

In the definition above, both intervals give the same contribution to the mean m and variance a 2 even when

their lengths are different The cost of the primitive path which matches those intervals is defined as follows:

cost = <r2x(k2+l2f2 (4 - 2)

Intuitively, the meaning of this cost definition can be explained as follows: The pixels in two intervals

which matched each other are assumed to have come from a homogeneous surface in the 3D scene and must

have similar intensities. That is, their variance should be small. If we consider those pixels forming a cluster

in a feature space, the variance may be called within-class variance. As described in section 3.1, some edges

may be ignored in the matching process. Ignoring an edge means that two intervals divided by that edge are

merged. So the intra-scanline search simultaneously tries to find the best segmentation of a scanline pair and

the best matching between those segments to form an optimal set of clusters which minimizes the sum of

within-class variances.

The definition in equation (4-1) cannot be applied to horizontal or vertical primitive paths which

correspond to occlusions. As illustrated in figure 4-3 a horizontal or vertical path means to leave the interval

marked with x unmatched and it can be considered as the consequence of avoiding the two paths drawn with

dotted lines. Therefore its cost should be defined as a function of the costs of those two paths. Let and

a 2

2 be the variances defined in equation (4-1) for those paths. The cost of a vertical (horizontal) primitive

path is defined as follows:

cost = kxA{o^+o2)/2\th) (4 - 3)

17

Here & is the length of the primitive path, th is a threshold, a n d / i s a function as shown in figure 4-4. When

(a j 2 + <r 2

2)/2 is small, the function/gives a high cost and when (o* + a2

2)/2 is large, the function /gives a

low cost The minimum limit of / i s determined by th.

X

\
\

\

\
\

\
\ \

\
\

\
\

\
\

\
X

\
Figure 4-3: Primitive paths for occlusion.

Cost of horizontal/vertical path is defined based on those of dotted paths.

0 th

Figure 4-4: Mapping function for the cost of horizontal/vertical path.

18

5. Experimental Results

We have applied our stereo algorithm to images from various domains including synthesized images, urban

aerial images, and block scenes.

5 . 1 . Synthes ized images

We first applied our stereo algorithm to the synthesized stereo image pair shown in figure 5-1 which is from

Control Data Corporation, and which has been used by Baker [Baker 82]. The image size is 256x206 pixels.

We extracted every position where the intensity changes as edges. Figure 5-2 shows the edges thus extracted.

Some edges in this image have very weak contrast; that is, the difference of intensity is only one grey level,

and it is impossible to distinguish them from pseudo edges which arise from digitization. Our stereo

algorithm can ignore the pseudo edges when they do not correspond into anything in the other image.

Actually, however, we found that almost all pseudo edges in the right and left images do match because the

images are synthetic. Figure 5-3 displays the connected edges obtained from figure 5-2. The number

attached to each connected edge indicates its ordering index.

Figure 5-4 illustrates a typical matching path obtained on a 2D search plane for scanline 207. The

representation scheme of the plane is almost the same as in figure 3-1. The positions of connected edges are

indicated by thicker lines and their indices are attached. The thinner lines indicate isolated edges. The path

shown by dotted lines is obtained when we do not use the inter-scanline constraint Note that using the

constraint in the 3D search space results in vertices at the two nodes belonging respectively to the 3D nodes

(41,42) and (50,44).

Figure 5-5 is a perspective view of edges which are matched in the 3D search space. Figure 5-6 shows the

disparity map. The map is registered in the coordinates of the right image; that is, each pixel position in the

right image is assigned its disparity value. The higher the elevation, the darker the tone is shown in the

disparity map. The black mat shows regions where the disparity cannot be obtained because of occlusion.

For those points which do not correspond to edges, the disparity is assigned by interpolation. The following

simple interpolation scheme is used here. On each scanline, a linear interpolation is done between

neighboring edge positions where the disparity is obtained. That is, the linear primitive paths which run from

corner to corner on the 2D search plane shown in figure 3-1 or figure 5-4 illustrate the interpolation scheme.

It should be noted that we did not apply any smoothing operation to the disparity maps which are displayed

in this paper. Figure 5-7 is an isometric plot of the disparity map.

1 9

Figure 5-1:
left image

The "cdc" synthesized stereo image pair.

20

left image
Figure 5-2: Edges extracted on images in figure 5-1.

Only the edges extracted by horizontal operators are displayed

21

left image

Figure 5-3: Connected edges obtained from figure 5-2.
The numbers attached are ordering indices.

22

. 132

. 133
L134

Figure 5-4: A typical matching path on a 2D search plane.
Scanline 207 on images in figure 5-1.

5 . 2 . Urban aer ia l images

The stereo pairs used here are aerial images of the Washington, D.C. area. The first one is "pentagon" and

the second one is "white house". They are rectified based on camera models computed by Gennery's

program [Gennery 79] using manually selected point pairs.

Figures 5-8, 5-9, and 5-10 are the original stereo pair, edges, and connected edges, respectively. The image

size is 512x512 pixels and the intensity resolution is 8 bits. The number of edges extracted is about 40,000 in

each image. The number of connected edges is about 400 in each image. Figure 5-11 (a) and (b) show the

disparity maps obtained by 2D search and 3D search, respectively. These maps are registered in the left

image coordinates. We can see that the detailed structures of the roof of the building and the bridge over the

highway are clearly extracted. Figure 5-12 displays an isometric plot of the disparity map.

23

Figure 5-5: A perspective view of matched edges obtained from figure 5-2.
Viewed from lower left corner.

Figure 5-13 emphasizes the difference between the two disparity maps obtained by 2D search and 3D

search. We can see that many local mismatches on the roof of the building in figure 5-11 (a) are corrected in

(b). We also counted the number of positions where the consistency constraint, described in equation (3-4), is

not satisfied. It is 372 in the 2D search and 27 in the 3D search. These numbers quantitatively show a

significant improvement achieved by the 3D search algorithm. The reason why the inconsistency is not zero

in the 3D case is that we used "weaker" rules for the constraint

The image in figure 5-14 is the "white house" stereo pair. This example is interesting because it includes

both buildings and highly textured trees. Figures 5-15 and 5-16 show the edges and connected edges,

respectively. As we may expect many connected edges are obtained around the building while few are

obtained in the textural part The disparity maps obtained by the 2D and 3D search algorithms are shown in

figure 5-17. The maps are in the right image coordinates. Therefore, the disparity values for pixels on the

right wall of the central building, which is visible in the right image but occluded in the left, are

undetermined. Figure 5-18 shows the differences between the two maps. Considerable improvements can be

observed at the boundaries of buildings. In the textural part the two algorithms provide approximately the

same results. The number of inconsistencies in the result of the 3D search is 32 while that in the 2D search is

436. Figure 5-19 shows an isometric plot of the disparity map in which the buildings and the trees are

24

Figure 5-6: Disparity map for figure 5-1.
This map is registered in the right image coordinates.

Higher elevation is displayed darker.
For the black mat area disparity was not obtained

Figure 5-7: An isometric plot of the disparity map.

25

Figure 5-8:
left image

The "pentagon" stereo pair of urban aerial images.

26

/v isb/yxo/38011 -2/pentagon/right.imgE

right image
/v isb/yxo/38011 -2/pentagon/left.imgE

left image

Figure 5-9: Edges extracted on images in figure 5-8 .

left image

Figure 5-10: Connected edges obtained from figure 5-9.

28

(a) result of 2D search

(b) result of 3D search

Figure 5-11: Disparity map obtained for figure 5-8.
Both are in the left image coordinates.

Notice the detailed structures of the roof of the building
and the bridge over the highway (upper left corner).

29

Figure 5-12: An isometric plot of the disparity map.
Viewed from lower left corner.

Figure 5-13: Difference of figure 5-11 (a) and (b).

30

extracted well.

5 .3 . Block scenes

We also applied our program to block scenes (obtained by courtesy of the University of Southern

California). Actually, these images are not exacdy rectified; there are discrepancies of a few scanlines

between corresponding point pairs, but we ignored them in the following experiments.

Figures 5-20 through 5-22 show an original image pair, their edges, and connected edges. The image size is

512x512 pixels. Figure 5-23 displays the perspective view of the matched edges. The disparities of the edges

on the sphere in front of the blocks and on the small block behind the arch are correctly obtained.

Figures 5-24 through 5-26 show another block scene whose image size is also 512x512 pixels. The disparity

range for this image is about 20% of the image width. The numbers of edges and connected edges are

respectively about 5,000 and 90 in each image. The numbers are much smaller than in the aerial images.

However, the number of inconsistencies in the result of the 2D search is 269 which is almost the same as that

in the aerial images. Most inconsistencies occurred at the Rubik cube where repetitive patterns cause many

ambiguities. In the 3D search, the inconsistencies are reduced to 36. Figure 5-27 displays the perspective

view of the matched edges.

5 .4 . Summary of the exper iments

Table 5-1 summarizes the stereo images used in the experiments. It shows the image size, the number of

edges extracted in each image, the number of connected edges obtained in each image, the disparity range

used in the search, the number of inconsistencies that occurred in the 2D and 3D search, and the CPU time of

VAX11/780 required to obtain the whole disparity map.

The CPU time varies from one image to another. Perhaps the most complicated image pair is the

"pentagon", where left image has an average of 90 edges on each scanline. It takes 52 min for the 2D search

algorithm and 858 min for the 3D search algorithm to obtain a disparity map. The "rubik" image pair has the

largest disparity range. It is about 20% of the width of the images. The simplest image pair "arch", which is

still fairly complicated, requires only 2 min for the 2D search or 7 min for the 3D search.

3 1

left image

Figure 5-14: The "white house" stereo pair of urban aerial images.

32

left image
Figure 5-15: Edges extracted from the images in figure 5-14.

33

left image
Figure 5-16: Connected edges obtained from figure 5-15.

34

(b) result of 3D search
Figure 5-17: Disparity map obtained for figure 5-14.

Both are in the right image coordinates.

35

Figure 5-18: Difference of figure 5-17 (a) and (b).

whouseR3.img(viewl)

Figure 5-19: An isometric plot of disparity map of "white house".
View from lower left corner.

36

left image

Figure 5-20: The "arch" stereo pair of block scene.

37

/visb/yxo/usc/arch/right.imgÊ

right image

/visb/yxo/usc/arch/left.imgE

left image
Figure 5-21: Edges extracted on images in figure 5-20.

38

left image
Figure 5-22: Connected edges obtained from figure 5-21.

39

View from lower right corner

Figure 5-23: Perspective views of matched edges for figure 5-21.

40

left image

Figure 5-24: The "rubik" stereo pair of block scène.

41

/viab/yxo/ioc/rubik/rightimgE

right image

/viab/yxo/utc/rubik/Wt.imgE

left image

Figure 5-25: Edges extracted on images in figure 5-24.

42

left image
Figure 5-26: Connected edges obtained from figure 5-25.

43

View from lower left corner

View from lower right corner

Figure 5-27: Perspective views of matched edges for figure 5-25.

44

Table 5-1: Summary of the stereo images used in the experiments.

cdc pentagon w-house arch rubik

image size
(columns,rows)

number of edges
(righUeft)

number of connected
edges (righUeft)

disparity range
(pixels, % of width)

206,256 512,512 388,388 512,512 512,512

7809,7678 39719,45809 21867,25381 2657,2611 5221,5497

140,143 398, 356 130,155 36, 32 87,96

35(17%) 20(4%) 35(9%) 51(10%) 97(19%)

inconsistency 86,20
(2D search, 3D search)

372,27 436,32 14,2 269, 36

CPU time (minutes)
(2D search, 3D search)

19,321 52,858 50,739 2,7 11,87

45

6. Conclusion

In this paper, we have described a stereo algorithm which searches for an optimal solution in a 3D search

space using dynamic programming. We have applied the algorithm to various domains including synthesized

images, urban aerial images, and block scenes.

Performance of computational stereo should be evaluated by the results, the clarity of the algorithm, and

the processing time. We obtained reasonably good results in each domain. Perhaps the major reason our

algorithm accepts such a wide domain of images is as follows. For the image portions which contain long

connected edges such as linear structures, our 3D search scheme works effectively to keep the consistency

constraint. For the portions which do not contain long connected edges, our stereo algorithm provides

ordinary 2D search which works effectively for the matching of isolated edges within each scanline pair. In

other words, when inter-scanline constraints are available, our algorithm fully utilizes them, but when they are

not available, our algorithm works as the 2D search. This feature will not be realized by an algorithm such as

the segment-based one [Medioni and Nevatia 83] which depends heavily on the connectivity of edges. For

some images containing a large number of edges, our algorithm requires a relatively long processing time.

However, the processing time can be drastically reduced by implementing the algorithm in hardware.

Hardware implementation is more realistic when the algorithm is simple. Actually, VLSI implementation of

the dynamic programming algorithm is an existing technique in speech recognition [Ackland, Weste, and

Burr 81]. We have started investigating an application of a systolic array processor made of Programmable

Systolic Chips [Fisher et al. 83] for the hardware implementation of our stereo algorithm [Guerra and Kanade

83].

Acknowledgements

Discussions we had with Jim Crowley, Marty Herman, David McKeown, and Steve Shafer during the
course of this research were quite useful as well as their comments on the earlier drafts of this paper: we are
grateful. We also thank Neil Swartz and Steven Thomas for their programming help, Cyndiia Hibbard for
editorial comments, and Kim Faught for drawing figures. Some of the stereo images ("ede", "arch", and
"rubik") were supplied by Gerald Medioni, University of Southern California.

46

References

[Ackland, Weste, and Burr 81]
Ackland, B., Weste, N., and Burr, D J .
An integrated multiprocessing array for time warp pattern matching.
In Proc. 8th Annual Symposium on Computer Architecture, pages pp.197-215. 1981.

[Baker 82] Baker, H . H .
Depth from Edge and Intensity Based Stereo.
Technical Report AIM-347, Stanford Artificial Intelligence Laboratory, 1982.

[Baker and Binford81]
Baker, H.H. and Binford, T.O.
Depth from edge and intensity based stereo.
In Proc. 7 th InternationalJoint Conference on Artificial Intelligence, pages 631-636. Aug.,

1981.

[Barnard and Fischler 82]
Barnard, S.T. and Fischler, M.A.
Computational Stereo.
Computing Surveys 14(4):553-572, Dec., 1982.

[Fisher et al. 83] Fisher, A.L., Kung, H.T., Monier, L.M. and Dohi, Y.
Architecture of the PSC: A Programmable Systolic Chip.
In Proceedings of the Tenth International Symposium on Computer Architecture. June, 1983.

[Gennery 79] Gennery, D.
Stereo-camera calibration.
In Proceedings of Image Understanding Workshop, pages 101-107. DARPA, Nov., 1979.

[Grimson and Marr 79]
Grimson, W.E.L. and Marr, D.
A computer implementation of a theory of human stereo vision.
In Proceedings of Image Understanding Workshop, pages 41-47. DARPA, Apr., 1979.

[Guerra and Kanade 83]
Guerra, C. and Kanade, T.
Systolic Implementation of Stereo Algorithm.
(in preparation), Carnegie-Mellon University, Computer Science Department, Aug., 1983.

[Henderson, et al. 79]
Henderson, R.L., Miller, W.J., and Grosch, C.B.
Automatic stereo reconstruction of man-made targets.
SPIE 186(6):240-248,1979.

[Herman, Kanade, and Kuroe 83]
Herman, M., Kanade, T. and Kuroe, S.
The 3D MOSAIC Scene Understanding System.
In Proc. 8th InternationalJoint Conference on Artificial Intelligence, pages pp.1108-1112.

Aug., 1983.

I

47

[Lowerre 76] Lowerre, B. T.
The HARPY Speech Recognition System.
Tech. Rep., Computer Science Department, Carnegie-Mellon Univ., April, 1976.

[Medioni and Nevada 83]
Medioni, G.G. and Nevada, R.
Segment-based Stereo Matching.
In Proceedings of Image Understanding Workshop, pages 128-136. DARPA, June, 1983.

[Moravec 79] Moravec, H.
Visual mapping by a robot rover.
In Proc. 6th International Joint Conference on Artificial Intelligence, pages pp.598-600.

Aug., 1979.

