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Abstract

This paper presents measurements on six OPSS production system programs runnirg at CMU. The
measurements contribute to the study of static and run-time characteristics of production system programs,
In particular, the measurements will cnabile us to exaplore the possibility of using paratlelism in executing
production system programs. The complete sot of measurements is divided into three parts. The first part
consists of measurements on the textual structure of the production system programs. The second part
consists of measurements on the compiled form of the productions, and the third part consists of run-time
measurements on the production system programs. Along with the data, a number of examples are given to

show how the data may be used to evaluate paraliel implementations of production systems,
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1. Introduction

Production Systems (or rule-based systems) arc widely used in Artificial Intelligence for modecling intelligent
behavior [10, 8], and building experr systems[9.11,7.6,1).  Although scveral large production system
programs are now in existence, therc has been little publication of data concerning the structure and
exccution characteristics of these systems. Charles Forgy presented seme measurements in his Ph.D. thesis
[2} in carly 1979, but the spectrum of production system programs (in terms of their size and the applications
addressed) available for measurement has significantly changed since then. Furthermore, the emphasis of
measurements at that time was to aid in the design of algorithms for uniprocessors, while our current
measurements are aimed at exploring the possibility of exploiting parallelism in exccuting production

systems.

This paper presents data on the static and dynamic characteristics of production systems implemented using
the OPSS language [3]. By static characteristics we refer to those features of production systems that can be
measured without exccuting the production system. The static measurements include measurements on the
text form of the production system programs, and measurements on the static data structures constructed by
the OPSS interpreter to exccute the programs. By dynamic measurements we refer to the run-time statistics

gathered on the data structures and the operations performed by the OPS5S interpreter.

The following are the six production system programs’ for which datu are presented:

* R19], a program for configuring VAX computer systems. It consists of 1932 productions,

e XSEL, a program which acts as a sales assistant for VAX computer systems. It consists of 1443
productions.

¢ PTRANS [5], a program for factory management. It consists of 1016 productions.
® HAUNT, an adventure game program. It consists of 834 productions.
® DAA[7], a program for VLSI design. It consists of 131 productions,

¢ SOAR [3], an experimental problem solving architecture implemented as a production system. It
consists of 103 productions,

These programs were choscn because they were easily available (all of them were developed at CMU), and
also because they represent a wide spectrum of applications.

In some cases only a subset of the complete production system program was measured because of problems with the LISP garbage
colivetor. The number of productions given for cach program eorresponds to the number in the frogram actually measured.



2. Background

Before we present the measurements, it is necessary to understand the computational model underlying
production systems and the algorithms used to implement the required computation. This knowledge is
necessary to understand the results of the measurements (most of which are algorithm specific), and also to
abstract implications concerning the exccution of production systems. In the following paragraphs we first
describe the syntax and semantics of OPSS, and then describe the Rete algorithm that implements the OPS5

language.

2.1.0PS5

A production system is composed of a set of if-then rules called productions that make up the production
memory, and a database of assertions cailed the working memory. The assertions in the working memory are
called working memory elements. Fach production consists of a conjunction of condition elements
corresponding to the if part of the rule (also called the left hand side of the production), and a sct of actions
corresponding to the then part of the rule (also called the right hand side of the production). The actions
associated with a production can add, remove or modify working memory elements, or perform input-output.
Figure 2-1 shows an OPS5 production named pl, which has three condition elements in its Ieft hand side, and

one action in its right hand side.

(p pl (C1 rattrl <x> tattr2 12)
(C2 rattrl 15 tattrz <x>)
= {C3 . rattrl <x>)
-=>
{remove 2))

Figure 2-1: A Sample Production

‘The OPSS interpreter executes a production systcm program by performing the following operations:

o MATCH: In this first phase, the left hand sides of all productions are matched against the
contents of working memory. As a result we obtain a conflict set, which consists of instuntiations
of alt satisfied productions. An instantiation of a production is an ordered pair. Its first element
identifies the production, and its second ciement is an ordered list of working memory elements
that satisfies the left hand side of the production. At any given time, the conflict sct may contain
zero, one, or more instzntiations of a given production.

o CONFLICT RESOLUTION: In this second phase, one of the production instantiations in the
conflict set is chosen for execution. If no productions are satisfied, the interpreter halts,

e ACT: In this third phase, the actions of the production sclected in the confiict resolution phase
are exceuted. These actions may change the contents of working memory. At the end of this
phase, the first phase is exccuted again.



2.1.1. Working Memory Elements
A working memory clement is a parenthesized list consisting of a constant symbol called the class of the
clement and zero or more aifribute-value pairs. The attributes are symbols that arc preceded by the operator
+. The values are symbolic or numeric constants. For example, the following is a very small working memory
clement of class C1, having the value 12 for attribute attrl and the value 15 for attribute attr2,
g (C1 rattrl 12 tattr2 15)

2.1.2. The Left Hand Side of a Produclion

The condition clements in the left hand side of a production are parcnthesized lists similar to working
‘ memory elements. They may optionally be preceded by the symbol —. Such condition clements are called
negated condition elements. For cxample, the production in Figure 2-1 contains three condition clements,
with the third one being negated. Condition elements are interpreted as partial descriptions of working

memory clemenis. When a condition element describes a working memory clement, the working memory

e For every non-negated condition clement in the left hand side of the production, there cxists a

i
]
|
i ‘element is said w match the condition element. A production is said to be satisfied when:
i
|
' working memory element that matches it.

e For every negated condition element in the left hand side of the production, there does not exist a
l working memory clement that inatches it

Like a working memory element, a condition element contains a class name and a sequence of attribute-
value pairs. However, the condition element is less restricted than the working memory clement; while the
working meimory element can contain only constant symbols and numbers. the condition element can contain

variables, predicate symbols, and a variety of other opcrators as well as constants. Only variables and

predicates will be described here since they are the most imporiant of the operators. A variable is an identifier
that begins with the character "¢" and ends with ">"—for example, <x> and <status> are variables. The
predicate symbols in OPSS are:
< = > <= >= 194 <=>

The predicates have their usual meanings for numerical and symbolic values. For example. the first predicate
in the list, "<", denotes the less-than relationship, the sccond predicate, "=", denotes equality, and the last
predicate, "<=>", denotes of the same iype relationship. ‘The following condition element contains one
constant value (the valuc of attrl), one variable value {attr2), and one constant value that is medified by the

predicate symbol <> (attr3).
(c1 tattrl nil tatir2 <x> tattrd <> nil)

A working memory clement matches a condition element if the object types of the two match and if the

value of every attribute in the condition element matches the value of the corresponding attribute in the
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working memory clement. The rules for determining whether a working memory clement valuc matches a

condition clement value are:

e If the condition clement value is a constant, it matches only an identical constant,

o If the condition element value is a variable, it wil! match any value. However, if a variable occurs
more than once in a left hand sidc, all occurrences of the variable must match identical values.

o If the condition clement value is preceded by a predicate symbol, the working memory clement
valuc must be related to the condition clement vatuc in the indicated way.

Thus the working memory clement

(C1 tattrl 12 tattr2 15)
will match the following four condition clements
(Ct tattrl 12 tattrz <x2)
(C1 tattrz 15)
{C1 tattrz > 0)
{C1 rattrl  <x> tattr2z O <x>)

but it will not match the condition clement
{Ct tattrl (x> tattr2  <{x>).

2.1.3. The Right Hand Side of a Production
The right hand side of a production consists of an unconditional sequence of actions which can cause

iuput-output, and which are responsible for changes to the working memory. Three kinds of actions are
provided to effect working memory changes. Aake creates a new working memuory clement and adds it to
working memory. Modify changes one or more values of an existing working memory element. Remove
dzletes an clement from the working memory. As an exanple of a make, the action

(make C1  tattrl 12) |
will add the working memory element

(C1  tattrl 12)
to working memory when it is executed. As an example of a modify, the action

(modify 1 tstatus satisfied)
will change the working memory element matching the rule’s first condition element, substituting “'satisfied”
for the prior value of the status attribute. As an cxample of remove, the action

(remove 2)
will cause the working memory element matching the second condition element in the instantiation of the

production to be deleted from working memory,



2.2. The Rete Algorithm

The most tinic consuming phase in the execution of production systems is the match, where the left hand
sides of all productions arc matched against the complete working memory. For cxample, consider a
production system with 1000 working memory clements and 1000 productions, where cach production has
three condition elements. In a naive implementation cach production will have to be matched against all
permutations of size three from the working memory, leading to over a trillion match operations for cach
execution cycle. More complex algorithms, however, can achicve the same result with only a small fraction of

the work above. The Reie match algorithm [4] is one such algorithm.

The Rete algorithm uses an augmented discrimination network compiled from the left hand sides of the
productions to perform the match. To generate the network for a production, the network compiler proceeds
first with the individual condition clements in the left hand side. For cach condition clement it ¢hains

together test nodes that check:

e ]f the attributes in the condition element that have a constant as their value are satisfied.
e If the attributcs in the condition clement that are related to a constant by a predicate are satisfied.

¢ If two occurrences of the same variable within the condition ¢lement arc consistently bound.

Each node in the chain performs one such test. (The three kinds of tests above are calied intra-condition tests,
because they correspond to individual condition elements.) Once the network compiler has finished with the
individual condition elements, it adds nodes that check for consistency of variable bindings across the
multiple condition elements in the left hand side. (These tests are called inter-condition tests, because they
refer to multple condition elernents.) Finally the compiler adds a special terminal node to represent the

production to which this part of the network corresponds,

Figure 2-2 shows such a network for productions pl and p2 which appear-in the top part of the figure. In
this figure, lines have been drawn between nodes to indicate the paths along which information flows.
Information flows from the top node down along these paths. The nodes with a single predecessor (near the
top of the network) arc the ones that are concerned with individual condition clements. The nodes with two
predecessors are the ones that check for consistency of variable bindings between condition clements. The
terminal nodcs are at the bottom of the figure. Note that when two left hand sides require idendcal nodes, the
compiler shares part of the network rather than building duplicate nodes.

To avoid performing the same tests repeatedly, the Rete algorithm stores the result of the match with
working memory as staze within the network. This way, only changes made to the working memory by the
most recent production firing have to be processed every cycle. Thus, the input to the Rete network consists

of the changes to the working memory. These changes fiiter through the nctwork, and where relevant, the



(PPt {(C1raltrl GO taitr2 12) (PP2  (C2+taltr1 15 tattr2<y>)
{C2 +attr1 15 tattr2 x>} (C4 tattr1 <y>)
- (C3 1attrt <) >

{modify 1 taitr1 12))
{remove 2})

root

Class = C1 Class = C2

t-const
nodes
attr2 = 12 attr1 = 15
Class = C4

alpha-mem alpha-mem
aipha-mem

left:attr1 left:attr2
= right:atir2 \and = right:atirt
p
Add/Delete

g2 from confliict-set

left: 1:attrl
= right:attr1

Add/Delete
p1 from conflict-set

Add to Working Memaory

1. (C1 1ottr1 12 1aitr2 12)
2. {C2 ratlr1 12 *attr2 15)
3, (C2 tattri 15 rattr2 12)
4, (C3+attr1 12)

Figure 2-2: The Rete Network
state stored in the network is updated. The output of the network consists of a specification of changes to the

conflict set.

The objects that are passed between nodes in the network are called tokens, which consist of a fag and a list

of working memory elemenis. The tag can be either a +, indicating that something has been added to the



working memory, or a —, indicating that something has been removed from it. (No special tag for working
memory clement modification is needed because a modify is treated as a deleie followed by an add.) The list
of working memory clements associated with a token corresponds to the permutation of those clements that
the system is trying to maich or has alrcady maiched against a subsequence of condition clements in the left
hand side.

The discrimination net produced by the Rete network compiler consists of a number of different types of

nodes:

o Root Node: This nede forms the root of the discrimination net. It broadeasts tokens
carresponding to any change in the working memory (o ail its successor nodes. In Figure 2-2, the
root node 1s shown at the top.

e T-Const Nodes: These nodes are used in the netwerk to perform intra-condition tests, for
examplc, to check if condition clement attributes that have constant symbols or numbers as their
valucs arc satisfied. Each t-const node checks for one feature. Whenever the token arriving at the
input of a t-const node satisfics the associated test, it is passed on to the successors of the t-const
node. If the token does not satisfy the test. it is not passed on to the successors. In Figure 2-2, the
nodes towards the top of the network are t-const nodes. Since the second condition clement of
preduction pl is similar to the first condition clement of production p2, t-const nodes "Class
=C2" and "attr]l = 15" arc shared in the network for pl and p2.

¢ a-mem Nodes: I a working memory clement satisfics all intra-condition tests for a condition
element (note it may not, as yet, satisfy all the inter-condition tests), the working memory element
is said to partially match \he condition element. Tokens corresponding to working memory
clements that partially match a condition clement are stored in the a-mem node for that condition
clement. When a token arrives at an a-mem node with a +- tag, the token is stored in the x-mem
node and a cepy of the token is passed 1o the node’s successors. If the tag is —, a corresponding
token with a + tag must already exist in the a-mem. ‘The corresponding tken is deleted from
the a-mem node, and the incoming token is passed down to the successors of the g-memn node. If
two condition elements, in the same or differcnt productions, have cxactly the same tests for a
successful partial match, the network compiler gencrates a shared a-mem node for the two. This
sharing of an &-mem node can be seen in Figure 2-2.

f-mem Nodes: Just as a-mem nodes siore tokens that partially match individual condition
elements, so #-mem nodes store tokens that partially match two or more condition clements in the
left hand side of a production. The list of working memory clements in 8-mem tokens has length
two or more. The response of 8-mem nodes to asrival of wkens at their inputs is exactly the same
as that of «-mem nodes. The B-mem nodes form the left input of and-noces and not-nodes,

¢ And-Nodes: The and-nodes are the first of the two-input node types. The primary function of an
and-node is to check for consistency of variable bindings between the partially matched tokens it
receives on its left and right inputs. The right input of an and-node alwzys comes from an a-mem
node, while its left input can come from an e-mem or a 8-mem node. Whenever a token arrives
at the left input of an and-node, the and-node compares the incoming token to cach token stored
in the mem-node connected 1o its right input, to check if they are consistent. For cvery right-
token which i consistent with the lefi-token, a new tken is constructed and sent down to the



successor nodes. The new token has the same iag as that of left-token, and the list of working
memory clements is the concatenation of the working memory clement lists for the left and right
tokens. The case when a token arrives at the right input of an and-node is processed exactly as
above, with left and right interchanged.

o Not-Nodes: The not-nodes are the second of the two-input node types. They also have a left and
a right input. The not-nodes are used by the network to implement the semantics of negated
condition clements. Their functionality differs from that of and-nodcs only in minor ways—they
additionally keep reference counts with tokens in left memory to find when there are no tokens in
the right memory that are consistent with them.

o P-Nodes: 'Thesc are the terminal nodes in the network, and there is one such node associated with
each production. Whenever a token with a + tag flows into a p-node, it adds an instantiation
(corresponding to the token) of the associated production into the conflict set. The arrival of a
token with a = tag Icads to the deletion of the corresponding production instantiation from the
conflict set.

¢ Other Nodes: Other than the node types mentioned above, the network uses two morc node
tvpes. These are the two-nodes and the any-nodes. The two-nodc is used as a place filler in some
circumnstances, and the any-node is used when the valuc of an attribute is to be one of a number of
alternatives. Although meusurements for these two node types are presented in the later scctions
for the sake of completeness, they have largely been omitted from the analysis.

To conclude this section we present an example of performing match using the Rete algorithm. The
example correspords to the two productions and the network given in Figure 2-2. We new go through the
match process. as the four working memory clements shown in the bottom left corner of Figure 2-2 are

sequentially added to the working memory,

When the first working memory ciement is added, token atok-1,
<+, (C1 rattrl 12 tattr2 12) >
is constructed and sent to the root node. The root node broadcasts the token to ail its successors. The
associated tests fail at all successors except at one which is checking for "Class = C1". This t-const node
passes the token down 1o its single successor, another t-const node, checking if “attr2 = 12", Since this is so,
the token is passed on fo the a-mem node, which stores the token and passcs a copy of the token to the
and-node below it. The and-node compares the incoming token on its left input to tokens in its right memory
(which at this point is cmpty), bui no pairs can be formed. At this point, the network has stabilized: in other

words no further activity occurs, 5o we 2o on to the second working memory element.

The token for the second working memory element, atok-2,
< + , (C2 tattrl 12 tattr2 16) >
is constructed and sent to the root node, which broadcasts the token to its successors. The token passes the
"Class = C2" test but fails the "atir]l = 15" test, so no further processing takes place.



‘The token for the third working memory clement, atok-3,

<+, (C2 tattrl 15 tattr2 12) >
passes through the tests "Class = C2" and “attrl = 15", and is stored in the a-mem node below them. The
a-mem node passes a copy of the token to the two successor and-nodes below it. The and-node on the right
ﬁnds no tokens in its right memory, so no further processing is done there. The and-node on the left checks
the token for consistency against token, artok-1. stored in its left memory. The consistency check is satisfied as
the variable <x> is bound consistently. The and-node creates a new token, Stok-1,

<+, ({C1 trattrl 12 tattr2z 12), (C2 tattrl 15 tattr2 12}) >
and passcs it down to the B-mem node below, which stores it. The 8-mem node now passcs a copy of the
token to the not-node below it. The not-node finds that its right memory is empty, which implics that there
arc no working memory clements which consistently bind the left token Btok-1. (Recall that this corresponds
to the semantics of satisfaction of production pl.) As there are no matching tokens in the right memory, a
reference count of zero is stored with token Btok-! in the not-node. The not-node passcs a copy of token

Btok-1 to the p-node below it, which then inscrts an instantiation of production pl in the conflict sct.

On addition of the fourth working memory clement, token atok-4,
<+, (C3 rattrl 12) >
is sent to the root node, which broadcasts it. The token passes the test "Class = 3" and passes on to the
a-mem below it, The a-mem node stores the token and passes a copy of the token to the not-node below it,
The not-node checks for consistent bindings in the Jeft memory and finds that the newly arrived token,
atok-4, is consistent with token Btok-1 stored in its left memory. The not-node increments the reference
count stored with Btok-1 by 1. Since the change in the reference count is from 0 to 1 (recall that a reference
count of zero implies that a token was sent down below the not-rode with a + tag), a token exactly the same
as Btok-1, but with the tag set to —, is sent by the not-node to its successors. On receiving this token, the
p-node for production pl deletes the instantiation of production pl from the conflict-set. This is the final

state of the network and conflict sct following the addition of the four working memory elements.

3. Surface Measurements on Production Systems
Surface measurements refer to measurements on the textual features of production system programs.
Examples of such features are—the number of condition elements in the Icft hand sides of productions, the

pereentage of productions which have one or more negated condition elements, the number of attributes per
condition element,

In the following subsections we present the sct of measured features, with a bricf description of how the

measurements were made. Data about the same features of different production systems are presented
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together, and have been normalized to permit comparisonz. Along with cach data graph the average, the

standard deviation, and the coefficient of variance® for the data points are given,

3.1. Condition Elements per Production

Figure 3-1 shows the number of condition clements per production for the six production system programs.
The number of condition elements per production includes both pusitive elements and negative ones. The
curves for the programs are hormalized by plotting percent of productions, instcad of number of productions,
along the y-axis. To help compute absolute numbers from the normalized numbers, the total number of

productions for cach of the programs is provided in Table 3-8.
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Figure 3-1:

7‘The limits of the axes of the graphs are adjusted to show the main portion of the graph clearly. In doing this, however, in some cases a
few cxtreme points coutd not be put on the graph. For this reason, the reader should not draw conclusions about the maximum vatues of
the parameters in question from the graph.

3Coeﬂ'1cicnl of Variance = Slandard Deviation / Average
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3.2. Actions per Production

Figure 3-2 shows the number of actions per production. The number of actions reflects the complexity of
exccuting the right hand side of a production. A large number of actions per production also implies a greater
potential for paraliclism, because then a large number of changes to the working memory can be processed in

parallel, before the next conflict resolution phasc is executed.
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Figure 3-2:

3.3. Negative Condition Elemenis per Production

The graph in Figure 3-3 shows the number of negated condition elements in the left hand side of a
production versus the percent of productions having them. It shows that almost 30 percent of productions
have one or more negated condition elements. Since negated condition elements denote universal
quantification over the working memory, the percentage of productions having them is an important

characteristic of production system programs. The measurements are also useful in calculating the number of
not-nodes in the unshared Rete network.

3.4. Attributes per Condition Element
Figure 3-4 shows the distribution for the number of attributes per condition c¢lement. The class of a
condition element, which is an implicit attribute, is counted explicitly in the measurements. The number of

attributes in a condition element reflects the number of tests that are required to detect a matching working
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memory clement,

3.5. Tests-per Two Input Mode

This feature is specific to the Rete match algorithm and refers to the number of variable bindings that are
checked for consistency at each two-input node (and-node or not-node). A value of zero indicates that no
variables are checked for consistent binding, while a large value indicates that a large number of variables are
checked. For example, if the number of tests is zero, for every token that arrives at the input of an and-node,
as many tokens as there are in the oppositc memory are scnt to its successors. This usually implies a large
amount of work. Alternatively, if the number of tests is large, then the number of tokens sent to the
successors is small, but doing the pairwise comparison for consistent binding now takes more time. The graph

for the number of tests per two-input node is shown in Figure 3-3.

3.5. Variables per Production
The distribution for the number of variable occurrences (not the number of disrinct variables) in the left
hand side of a production is shown in Figure 3-6. The valucs indicate the number of variables that are cither

bound or tested for consistent binding in the left hand side of a production,
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3.7. Variables Bound and Referenced

Figure 3-7 shows the number of distinct variables which are both bound and referenced in ihe left hand
side of a production. Consistency tests are necessary only for these variabies. Beyond the a-mem nodes, all
processing done by the two-input nodes requires aceess to the values of only these variables; vatues of no
other variables or attributes are required. This implies that the tokens in the network may only store the
values of these variables instead of storing complete copies of working memory clements. For parallel
architectures, this can lead to significant improvements in the storage requircments and in the communication

overhead associated with tokens.

3.8. Variables Bound and Not Referenced
Figure 3-8 shows the number of distinct variables which are bound but not referenced in the left hand side
of a production. {The bindings are probably used in the right hand side of the production.) This indicates the

number of variables for which no consistency checks have to be performed.
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3.9. Variable Occurrences in Left Hand Side

Figure 3-9 shows the number of times cach variable occurs in the left hand side of a production. Both
positive and negative condition clements are considered in counting the variables. Our measurcments also
show that variables almost never occur multiple times within the same condition clement (average of 97.7%
over all systems). Under this assumption, the number of occurrences of a variable also represents the number

of condition clements within a production in which the variable occurs.

« 60,
2
£
I
L~
g 50, A XSEL
b 9 c R1
-2 o PTRANS
& HAUNT

S 40t ® DAA
o » SOAR
o Avg. 1.66, StdDev. 0.82, CV 0.49 for XSEL

30l Avg. 1.76, StdDev. 0.95, CV 0.54 for R1

Avg. 1.67, StdDev. 0.94, CV 0.56 for PTRANS
4 Avg. 1.39, StdDev. 0.51, CV 0.37 for HAUNT
Avg. 1.40, StdDev. 0.63, CV 0.45 for DAA
20t Avg. 2.13, StdDev. 1.02, CV 0.48 for SOAR
10}
o ; ) \6— — ;
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Figure 3-9:

3.10. Variables per Condition Element
Figure 3-10 shows the number of variable occurrences (not necessarily distinct) within a condition element.
If this number is large it usually implics that the selectivity of the condition element is small: in other words a

large number of working memory elements will match that condition clement,
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3.11. Condition Element Classes
Tables 3-1, 3-2, 3-3, 3-4, 3-5, and 3-6 list the seven condition element classes occuring most frequently for
the production system programs. The tables also list the total number of attributes, the average number of

attributes and its standard deviation, and the average number of variable occurrences in condition elements of

4

cach class,” The total number of attributes for a condition element class gives an estimate of the size of the

working memory ¢lement. This information is important because it indicates the communication overhead in
transporting working memory elements amongst multiple memories in a paratlel architecture. It also has
implications for space requirements for storing the working memory elements. If we subtract the average
number of variables from the average number of attributes for a condition element class, we obtain the
average number of attributes which have a constant value for that class. This number in turn has implications

for the sclectivity of condition elements of that class.

In Table 3-4, for a few entries, the average number of variables is more than the average number of attributes. This apparent
disagreement is due to the use of vector-valued attributes in DAA.

UNIVERSITY LIBRARIFS
CARMEGIE-MELLON UMIVERSITY
PITTSBURGH, PERRSYLYARIA 15213



componcni
context
pcon
datum
computation
sct-attribute
template

Total number of condition clement classes is 31

Class Name
context
intcraction
line-item
component
local
discr-jist
datum

Total number of condition element classes is 36

Class Name
task
arg
jinc-item
call
order
period
wip

Total number of condition element classes is 81

Class Name
location
input
object
X
status
place
iime

Total number of condition element classes is 23

Table 3-1;
£ of CEs(%) Tot-Attr
2597 (24%) 152
1996 (18%) 8
1337 (12%) 100
1262 (11%) 53
875 (83%) 110
757 (1%) 59
533 (4%) 27

18

R1: Condition Llement Classecs

Avg-Attr
5.04
2.23
476
296
3190
4.89
361

SD-Attr
2.03
0.53
1.98
1.07
1.38
201
1.09

Table 3-2: XSEL: Condition Flement Classes

# of CEs(%)
1382 (24%)

920 (16%)
917 (16%)
752 (13%)
354 (6%)
174 (3%)
147 2%)

Tot-Attr
3
21
27
106
17
5
15

AvpeAttr
211
2.66
343
3.29
2.14
1.0
271

0.36
0.98
1.82
2.20
0.96
0.94
0.93

Table 3-3; PTRANS: Condition Elemeat Classes

# of CEs(%)
587 (18%)
521 (16%)
170 (5%)

125 (3%)
123 (3%)
120 (3%)
119 (3%)

Tot-Attr
4
4
47
16
64
13
32

Avp-Attr
1.86
294
4.55
3468
3.60
144
3.32

SD-Attr
0.71
0.27
349
1.52
6.60
1.42
4,39

Table 3-4: HAUNT: Condition Element Classes

# of CEs{%)

499 (24%)
497 (24%)
327 (16%)
237 (11%)
197 (9%)
76 (3%)
43 2%)

Tot-Attr

12
0
15
1
13
4
9

Avg-Attr
1.85
0.00
225
1.00
0.85
1.45
1.67

SD-Attr
1.34
0.00
0.80
0.00
0.44
0.50
0.86

2.24
0.24
2.19
1.26
1.63
2.64
1.97

Avg-Yars
0.07
0.66
1.70
1.71
0.64
041
0.52

Ave-Vars
0.719
1.85
344
1.90
303
2.61
298

Avg-Vars
0.22
0.33
0.44
0.00
0.10
0.04
098
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Table 3-5: DAA: Condition Element Classes

Class Nome # of CEs(%) Tot-Attr Avg-Attr SD-Atte Avg-Yars
context 132 (25%) 4 3.58 0.72 164
poit 121 (23%) 5 2.10 0.54 1.95
module 64 (12%) 6 136 1.53 2.19
link 57 (11%) 6 144 1.82 344
lists R (%) 3 1.82 0.39 2.16
vutnode 27 (5%) 6 2.63 0.67 233
operator 25 (4%) 10 5.20 2.77 5.00

Total number of condition clement classes is 20

Table 3-6: SOAR: Conditicn Element Classes

Class Name £ of C¥s(%) Tot-Attr Avg-Attr SD-Attr Avg-Vars

current 273 (45%) 2 1.96 .20 0.71

att-val 98 (16%) 3 2.83 047 1.84
context 54 (9%) 8 348 1.83 3.07

choice 51 (8%) 8 543 1.35 3.37
operator 34 (5%) 6 3.65 0.94 2.79
applied 25(4%) 5 168 0.84 3.16
state-op 20(3%) 5 2.80 0.60 190

Total number of condition clement classes is 12

3.12. Action Type Table

Table 3-7 gives the distribution of actions in the right hand sidc into classes make, remove, modify, write, and
other for the production system programs. The only aclions that affect the working memory are of type make,
remove, or modify. While cach make and remove action causes only one change to the working memory, a
modify actions causes two changes to the working memory. This data then gives an estimate of the percentage

of right hand side actions that change the working memory,

Table 3-7: Action Type Distribution

Action Type Rl XSElL PTRANS HAUNT DAA SOAR
MAKE 34% 31% 22% 10% 34% 1%
MODIFY 25% 35% 15% 19% 7% 12%
REMOVE 13% 8% 1% 25% 26% 0%
WRITE 9% 3% 10% 44% 17% 17%

OTHERS 17% 20% 44% 2% 13% 7%
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3.13. Summary of Surface Measuremants

Table 3-8 gives a summary of the surface measurements for the production system programs. It brings
together the average value of the various features for all six programs. The features listed in the lable are
condition elements per production, actions per production, negated condition clements per production,

attributes per condition element, variables per condition element, and tests per two-input node.

Table 3-8: Summary of Surface Mcasurements

Feature - Rl X5EL PTRANS HAUNT DAA SOAR
Productions 1932 1443 1016 834 131 103
CFEs/Prod 5.58 3.34 312 241 391 5.80
Actions/Prod 2.90 241 3.64 2.51 2.86 1.83
nCEs/Prod 0.50 0.50 0.44 0.03 0.30 0.59
Attr/CE 4.73 3.64 4.11 2.08 3.89 378
Vars/CE 1.61 0.96 2.14 0.24 2.69 1.70
Tests/2inp 0.85 0.52 ‘ 1.22 011 . 1.03 1.09

4, Measurements on the Rete Network
In this scction we present measurements made on the Rete network constructed by the OPS5 network
compiler. The micasured features include—the number of nodes of cach type in the network, the amount of

sharing that is present in the network, and the average branching factor for the various node types.

4,1. Number of Nodes in the Network

In Table 4-1, we present data on the number of nodes of each type in the network for the various
production system: programs. Thesc numbers reflect the complexity of the nctwork that is constructed for the
programs. Table 4-2 gives the normalized number of nodes: that is, the number of nodes per production.
The normalized numbers are useful for comparing the average complexity of the productions for the various
production system progr:-,uns.5

In Table 4-3, we present the nuinber of nodes per condition element for the production system programs.
As we can see from the table, the numbers are all very close to 1.9 nodes per condition clement. This number
can thus be used to predict the number of nodes in other production system programs, for which no
measurements have been made. The sumber 1.9 nodes per condition element is small because there are a lot
of nodes shared between condition elcments. In case no sharing is allowed, this number jumps up two to

three fold, as is shown in Table 4-4,

5 All the numbers listed in Tables 4-1 and 4-2, are for the case where the network compiier is allowed to share nodes.



Nede Type
T-const
a-mem
B-mem

and
not
two
any
D
Total

Node Type
T-const
a-mem
B-mem

and
not
two
any
D
Total

Node Tvpe
Total CEs
Total Nedes
Nodes/CE

Mode Tvpe
Total CEs
Total Nodes
Nodes/CE
Avg. Sharing

Rl
3193
2366
3866
5282
1760
1700

204
1931
20302

Rl
1.65
1.22
2,00
273
0.91
0.38
0.11
1.00
10.50

Rl
10780
20302

1.88
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Table 4-1: Number of Nodes

XSEL
191
1432
1824
2762
608
576
k)
1443
10883

PTRANS
1616
920
738
1353
403
386

69
1016
6501

HAUNT
874
623
367
1012

21
20
53
834
3805

Table 4-2: Nodcs per Production

XSFEL
1.32
0.99
1.26
191
0.42
0.40
0.22
1.00
7.52

5541
10883
1.96

PTRANS

1.59
0.90
0.72
1.33
0.40
0.38
0.07
1.00
6.39

PTRANS

3169
6501
2.05

HAUNT
1.04
0.74
0.44
121
0.03
0.02
0.06
1.00
4.54

Table 4-3: Nodes per Condition Eleinent (with sharing)

XSFEL, HAUNT

2009
3805
1.89

DAA

118
91
206
285
34
27
13
131
915

DAA
0.90
0.69
157
217
0.26
0.20
0.10
1.00
6.89

DAA
512
915
179

Table 4-4: Nodes per Condition Element (without sharing)

R1 XSEL PTRANS HAUNT DAA
10780 5541 3169 2003 512
55990 29272 13523 9178 1978

5.19 5.28 4.27 4.57 3.86

2.76 2.69 2.08 241 2.15

4.2. Network Sharing

SOAR

154
120
295
377
60
60

103
1176

SOAR
1.50
116
2.86
3.66
0.58
0.58
0.07
1.00
1141

597
1176
197

SOAR
597
2545
4,26
2.16

The OPS5 network compiler cxploits similarity in the condition elements of productions to share nodes in

the Rete network. Such sharing will not be possible if a parallel implementation of the production system is

desired, where cach production is placed on a separate processor. To cstimate the cxtra computation required
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duc 1o Joss of sharing, we present the ratios of the number of nodes in the unshared Rete network to the
number of nodes in the shared Rete network in Table 4-5. The ratios do not dircctly give the extra
computational requirements, because they are only a static measuie, and the actual numbers will depend on
the dynamic flow of information (tokcns) through the network. Note that in the unshared Rete network,
nodes arc not shared between the networks for different productions, but they may be shared vﬁthin the
network for the same production. Also note that the reported ratios correspond to the amount of sharing or
similarity exploited by the OPSS network compiler, which may not be the same as the maximum exploitable

similarity available in the production system program.

Table 4-5: Network Sharing

Node Type R1 XSEL PTRANS HAUNT DAA SOAR
T-const 8.76 7.00 3.80 5.45 6.69 6.32
a-mem 4.05 3.50 2.84 2.16 392 4.60
B-mem 1.39 1.36 1.42 1.29 1.27 1.17

and 1.28 1.22 1.26 1.14 1.20 1.15
not 117 1.20 1.10 1.00 115 1.01
WO 1.20 1.26 115 1.05 1.44 1.01
any 3.08 1.98 1.35 115 1.30 2.00

4.3. Network Branching

In constructing the Rete network for two similar condition clements, the network compiler sharcs nodes as
long as the test nodes required by the two clements are same, When the compiler gets to a point where tests
can no longer be shared, the network branches, and distinct paths having distinct nodes are constructed.
Table 4-6 shows data about the average branching factor for the various node types. The branching factor for
nodes in the network is necessary to develop models for flow of information through the nctwork. The
branching factor for the root and t-const nodes can also be used to determine when hashing is a good

technique for visiting the successors of those nodes selectively.

Table 4-6: Network Branching

Node Type R1 XSEL PTRANS HAUNT DAA SOAR

root . 3l 36 81 23 20 12

T-const 1.78 1.9 1.7 1.9 1.9 1.3

a-mem 32 28 24 2.6 4.1 a1

B-mem - 120 1.20 1.25 1.23 1.09 1.07
and 1.03 1.05 1.04 1.03 1.01 1.02
not 1.02 1.02 1.02 1.00 112 1.01
two 1.03 1.05 1.04 1.05 1.26 1.00

any 131 1.27 1.08 L1l 115 128
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4.4, Summary of Rete Network Measurements

In Subsection 4.1, we presenied the number of nodes found in the Rete networks for the different
" programs. Wc showed that the total number of nodes in the network corretates very well with the number of
condition clements in the production system program, and on an average there are 1.9 nodes per condition
clement in the shared network. The number of nodes per condition clement is more than doubled for an

unshared Rete network.

The data in Subsection 4.2 characterizes the sharing of nodes in Rete networks. The main conclusion is that
sharing is large only for t-const and a-mem nodes. and small for all other node types. This information is
useful in determining the processing requirements for unshared Rete networks. Examples of such usc are

presented in the next section,

In Subsection 4.3, we present data about branching in Rete networks. We hope to use this information to
construct probabilistic models of flow of information in Rete networks, and also to determine when indexing

will win over linear search algorithms in evaluating the successors of root and t-const nodes.

5. Measurements on the Run-time Behavior of the Rete Algorithm ,

In this section, we present data on the run-time characteristics of production system programs. The
measurements are uscful to identify opcrations frequently perforined by the tnterpreter and to explore
available parallelism in its implementation®. Although the reported measurements are only for the Rete

algorithm, a number of general conclusions can be drawn from the measurements.

5.1. T-const Nodes

In Table 5-1, we present run-time statistics for t-const nodes. The first line of the table, labeled
"visits/action", refers to the number of t-const node visits (activations) for each change made to the working
memory. Note that "action” in this context refers to the single inscrtion or deletion of an element from the

working memory, and not to "actions” as present in the right hand side of a production.

In the second line of the table, we present the number of t-const activations as a-fraction of the total number
of node activations. Although t-const node activations constitute a large fraction (57% on average) of the total
node activations, a relatively small fraction of the total match time is spent in processing them. This is
because the processing associated with a t-const node is very simple compared with other nodes like a-mem
nodes, or and-nodes.

6 . . . .
Note: The measurements correspond to run-time behavior of shared Rete networks, i.e., where sharing of nodes in the Rete network
is atlowed.
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In the third line of the table, labeled "success”. we report the percent of t-const node activations that have
their associated test satisfied. As the numbers show, this is a very small percentage. This suggests that by
using hashing. many t-const node activations that do not result in satisfaction of the associated tests can be
avoided. This is especially true for the t-const nodes immediaicly below the root node. The tests made by the
t-const nodes immediately below the root-node check for the class of the working memory clement (see
Figure 2-2). and since a working memory clement has only one class, all but onc of these t-const nodes fail
their test. Qur calculations show that by using hashing at this top-level, we can reduce the total number of

t-const node activations by 42% (average over all systems).

Table 5-1: T-const Nodes

Feature Rl XSELL PTRANS HAUNT DAA SOAR
visits/action 122.29 94.04 119.43 80.96 35.39 25.97
% of total 62% 63% 70% 58% 54% 32%
" success (%) 14% 15% 10% 6% 10% 15%

5.2. Alpha-mem Nodes

An a-mem node associated with a condition clement stores tokens corresponding to working memory
elements that partially match the condition element: that is, tokens that satisfy all intra-condition tests for the
condition clement. These nodes are the first significant nodes that get affected when the working memory
changes. It is only later that changes filter through a-men nodes o and-nodes, not-nodes. JB-mem nodes, and

p-nodes.

The first line of Tasle 5-2, labeled "visits/action”. gives the average number of a-mem nodes that are
activated for each change made to the working memory. This number is significant in a number of ways:
First, the number of node activations (along with the average cost associated with each activation) indicates
the amount of emphasis that should be placed on optimizing the exccution of a-mem nodes. Second, the
number of activations multiplicd by the dynamic sharing factor,’ gives the number of condition elements that
partially match a working memory clement.  Under the assumption that cach of the affected condition
elements belongs to a different preduction, the number above gives the number of productions affected by a
working memory element. The number of productions affccted by a working memory clcment, in turn, has
implications 'for the amount of parallelism that can be successfully exploited when cach production is

allocated a separate processor.

In the second line of Table 5-2, we report the average number of tokens present in an e-mem node, when it

7Note that the numbers in Table 4-5 give the static sharing factor and not the dynamic sharing factor. They can, however, be used as
rough estimates of the dynamic sharing factor.



25

Table 52: a-main Nodes

Feature R1 XSFL PTRANS HAUNT DAA SOAR
visits/action 9.29 6.26 720 3.20 2.00 25
avg. tokens 56 13 17 20 51 15
SD.3 wkens 61 10 2.4 0.77 32 11
max, tokens 500 82 51 32 . 346 105

is activated. This number indicates the complexity of the processing performed by an a-mem node. When an
a-mem nodc is activated by an incoming token with a — tag, the node must find a corresponding token in its
stored sct of tokens, and then delcte that token. If a linear search is done 1o find the corresponding token, on
average, half of the stored tokens will be looked up. Thus the complexity of deleting a woken from an e-mem
node is proporticnal to the average number of tokens. On arrival of a token with a -+ tag, the a-lﬁcm node
simply stores the token. This involves allocating memory and linking the token, and takes a constant amount
of time. In case hashing is used to locate the token to be deleted. the delete operation can be done in constant
time, However, then we have to pay the overhead associated with maintaining a hash table. Hash tables
become more economical as the number of tokens stored in the a-mem incrcasés. The numbers presented in

the second line are uscful for deciding when hash tables (or other indexing techniques) are appropriate.

In the third and fourth lines of Table 5-2, we report the approximate standard deviation and the maximum
number of tekens found in an a-mem node for the various programs. The data shows that there is a large
variance ir. the number of tokens found in an a-mem node. This in turn implics a large variance in the
processing time for a-mem nodes (if the linear search scheme explained in the previous paragraph is used).
in the model where each active node is allocated to a separate processor, a large variance in the processing
time of nodes, implies less speed-up in parallel processing of nodes. The data abiove are-also essential in the

design of hardware associative memorics to hold the tokens,

5.3. Beta-mem Nodes

The data for 8-mem nodes is given in Table 5-3. 8-mem nodes are very similar 0 a-mem nodes, and data
for them can be interpreted in the same way as that for a-mem nodes. There are, howcver, a few exceptions.
First, the number of f-mem node activations does not correlate in the same way to the number of
productions that are affected by a working memory element.  Second, while all activations of a-mem nodes
can be processed in parailel, it is not so for 8-mem nodes. The reason is that, while all activations of a-mem
nodcs are independent of each other, the activations of 8-mem nodes are not. The activation of one B-mem

node can cause the activation of another §-mem node via an intermediate and-node activation. This

8The numbers given for standard deviation arc not exact. They are calculated from a lumped distribution of the data points, and give 2
lower bound of true standard deviation,
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dependence reducces the amount of parallelism that can be exploited in cvaluating B-mem nodcs.

Table 5-3: 8-mem Nodes

Feiture Rl XSEL PTRANS HAUNT DAA SOAR
visits/action 3.03 241 3.51 9.28 199 8.49
avg. tokens 124 14 54.5 938 370 6.7
SD. tokens 7.6 .7 394 1.6 54.7 4.7
max. tokens 22 14 281 2 870 132

5.4. And-Nodes

The run-time measurements for and-nodcs arc given in Table 5-4. Each line in the table consists of a pair of
numbers for cach of the production system programs. The numbers on the left are data for activations of
and-nodes from the left, and the numbers on the right arc data for activations from the right. The distinction
between left and right activations of and-nodes is important. ‘The right activations of and-nodes, which are
caused by activations of the a-mem nodcs, can always be processed in parallel. The left activations of
and-nodes. which are primarily caused by the activations of 8-mem nodes, cannot be processed in parallel.
The reason is that all a-mem node activations can be processed in parallel, but all 8-mem nodes activations

can not be processed in parallel (explained in the previous subscction),

The first tine of Table 5-4 gives the number of and-node activations for a single change to the working
memory. The data shows that on average 77% of the activations are from the right, This indicates substantial

potential for parallel exccution of and-node activations.

In the second tine of Table 5-4, the number on the left is the percentage of left activations of and-nodes for
which no tokens were found in the associated right memory node. The number on the right gives the
percentage of right activations with an empty left memory. For example, for the R1 program, the first line in
the table shows that there are 34.3 activations from the right. Of the 34.3 right activations, 33.6 (98% of 34.3)
have an ecmpty left memory. Recall thaf an and-node activation for which there are no tokens in the opposite
memory requires very little processing.  Thus, cvaluating the majority of the and-node activations is very
cheap, and most of the processing effort is going into evaluating the small fraction of activations which have
non-empty opposite memories. This also means that if all and-node activations are evaluated on different
processors, then the majority of the processors will finish very early compared to the remaining few. This
large variance in the processing requirements of and-nodes reduces the effective speed-up that can be

obtained by evaluating each and-node activation on a different processor.

The third line shows the average number of tokens found in the opposite memory, on activation of an
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Tuble 5-4: And Nodes

Feature (L, R) R XSEL PTRANS HAUNT DAA  SOAR
visits/action 258, 34.3 48,192  473,20.16  17.03,18.52  365.1664  10.38,25.42
null-mem  53%,98%  75%.95%  43%,90%  61% 77% 5%, 91% 21%, 72%

tokens 30,16 30,13 18.3,5.7 27,39 106, 6.8 34,56
tests 21,12 24,05 18.5, 5.7 26,30 111, 7 34,54
pairs 14,11 14,1.1 1.0, 0.67 1.02, 0.86 0.71. 0.6 0.64, 0.76

and-node. when the opposite memory is not empty. (Data about the percentage of times when the opposite
memory is empty is given in the sccond line of the table.) This number represents the average number of
tokens against which the incoming token is matched to determine consistent pairs of tokens. The magnitude
of this number can be used to determine if hashing or other indexing techniques ought to be used to limit this

search.

The numbers in the fourth line of the table indicate the average number of tests performed by an and-node
when a token arrives on its Ieft or right input, and its opposite memory is not empty. The number of tests
performed is equal to the preduct of the average number of tokens found in the opposite memory (given in
the third line) times the number of consistency tests that have to be made to check if the left and right tokens

of the and-node are consistent.

The numbers in the fifth line of the table show the average number of consistent token-pairs found after
matching the incoming token to all tokens in the opposite memory. For example, for the DAA program, on
the left activation of an and-node, an average of 106 tokens are found in the right memory. On average,
however, orly 0.71 tokens are found to be consistent with the left token. This indicates that the right memory
contains a lot of information, of which only a very smali portion is relevant to the current context. The
numbers in the fifth line also give a measure of token regeneration taking place within the network. We

expect to use this data to construct probabilistic models of information flow within the Rete network.

5.5. Not-Nodes

Not-nodes are very similar to and-nodes, and the data for them are interpreted in exactly the same way as
that for and-nodes. The data are presented in Table 5-5.

Table 5-3; Not Nodes

Feature (I, R) R1 XSEL PTRANS HAUNT DAA SOAR
visits/action 1.62,3.55 1.34,7.05 2.12,7.99 0.70,0.74 0.20, 1.65 127,237
null-mem 32%, 93% 30%. 90% 18%, %% 59%, 58% 7%, 45% 7%, 46%
tokens 59,42 103,12 19.1,18.2 28,10 78,12 147,89
tests 80,61 12.3,0.4 29.9,28.8 2.2,0.08 82,025 14.9, 8.6
pairs 0.25,0.39 0.3, 046 0.26,0.17 0.05, 0.96 0.56, 0.05 0.49, 0.88
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5.6. P-Nodes

Activations of p-nodes correspond to insertion and detetion of production instantiations from the conflict
set. The first line of Table 5-6 gives the number of changes to the conflict sct for each change made to the
working memory. ‘The sccond line gives the number of changes made to the working memory for every
production firing. and the third line, the product of the first two lines, gives the average number of changes
made to the conflict set per production firing. The data in the third line gives the number of changes that will

be transmitted to a central conflict resolution processor, in an architecture using centralized conflict

resotution.
Table 5-6: P Nodes
Feature Rl XSEL PTRANS HAUNT DAA S0A
visits/action 0.96 1.74 1.72 1.51 1.98 3.98
actions/cycle 3.82 1.88 207 274 2.51 315
mods./cycle i6 32, 34 4.0 5.0 12.6

5.7. Summary of Run-time Measurements

Table 5-7 summarizes data for the number of node activations. when a working memory element is inserted
or deleted from the working memory. The data shows that a large percentage (56.5% on average) of the
activations are of t-const node type. T-const activations, however, require very little processing compared to
other node types, and furthermore, a large number of t-const activations can be eliminated by suitable
indexing technigues (see Subscction 5.1). To eliminate the cffect of this large number of rclatively cheap
t-const activations, we subtracted the number of t-const activations from alil other node activations. These
numbers are shown in the bottom line of Table 5-7, labeled "Tot — T-const”. The numbers show that the
total number of node activations per action is relatively independent of the number of productions. An
important implication of this is that, the way production systcm programs are currently written, actions of
productions do not have global effects, but only affect a small number of productions. Furthermore, the
number of productions affected is independent of the total number of productions present in the system. It

also follows that allocating one processor to each production is probably not a good idea.

Table 5-8 gives general information about the runs of the production system programs from which data is
presented in this papc:r9 . The first two lines of the table, give the average and maximum sizes of the working
memory. The third and the fourth lines give the average and maximum values for the sizes of the conflict set.
The fifth and the sixth lines give the average and maximum sizes of the token memory. (The size of the token

memory at any instant is the total number of tokens stored in all memory nodes at that instant.} The last line

9’I‘he word NA in Table 5-8 means the data for that entry is not available
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Table 5-7: Nodc Visits per Action

Node Type Rl XSEL PTRANS HAUNT DAA SOAR
T-const 122.79 94.04 119.43 80.96 35.39 2597
a-mem 9.29 6.26 7.20 3.20 2.00 2.58
B-mem 3.03 241 351 9.28 1.99 8.49

and 36.93 24.03 24.91 35.66 20.31 35.33

not 10.18 8.40 10.12 114 1.85 3.65

any 13.49 11.24 2.67 7.51 0.47 0.57

two 1.53 122 211 0.55 0.16 129

p 0.96 174 L72 151 1.98 3.98

Total 198.2 149.34 171.67 139.81 65.15 82.36

Tot — T-const 75.41 55.30 55.24 58.85 29.76 56.39

in the table gives the total number of changes made to the working memory in the production system run,

from which the statistics for this paper are gathered.

Table 5-8: Genceral Run-Time Data

Feature Rl XSEL PTRANS HAUNT DAA SOAR
Avg. WM NA 62 NA 60 708 353
Max. WM NA 89 NA 63 1191 NA
Avg. CSet NA 10 NA 2 43 9
Max. CSet NA 22 NA 6 421 .26

Avg. TM NA 368 NA 473 1904 2413
Max,. TM NA 559 NA 487 46016 NA
WM Changes 1247 756 984 559 16839 631

6. Conciusions

In this paper, we have presented measurements on the static structure and the run-time behavior of
production systems. Along with the measurements, we have given interpretations for some of the data. For
example, we show that actions of productions do not have global effects, but only affect a small number of
productions. Furthermore, the number of productions affected is independent of, and does not increase with,
the total number of productions present in the system. The main purpose of giving the interpretations,
however, was to serve as illustrations of how the data may be used. They should not be viewed as the only

interpretations that may be given to the data, or the only interpretations that may be derived from the data.

The reported measurements form only a subset of all useful measurements that could be made on the
production system programs. We think, however, that the reported measurements are comprehensive enough
to form a good starting point for the design of specialized architectures for production systems. We also
expect to use the measurcments to develop probabilistic models of production system programs. These

models will help us to predict the behavior of production system programs other than the oncs we have
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