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Abstract 

This paper presents measurements on six OPS5 production system programs running at C M U . The 

measurements contribute to the study of static and run-time characteristics of production system programs. 

In particular, the measurements will enable us to explore the possibility of using parallelism in executing 

production system programs. The complete set of measurements is divided into three parts. The first part 

consists of measurements on the textual structure of the production system programs. The second part 

consists of measurements on the compiled form of the productions, and the third part consists of run-time 

measurements on the production system programs. Along with the data, a number of examples arc given to 

show how the data may be used to evaluate parallel implementations of production systems. 
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1 . Introduction 
Production Systems (or rule-based systems) arc widely used in Artificial Intelligence for modeling intelligent 

behavior [10,8], and building expert systems [9 ,11 , 7 , 6 , 1 ] . Although several large production system 

programs arc now in existence, there has been little publication of data concerning the structure and 

execution characteristics of these systems. Charles Foigy presented some measurements in his Ph.D. thesis 

[2] in early 1979, but die spectrum of production system programs (in terms of their size and the applications 

addressed) available for measurement has significantly changed since then. Furthermore, the emphasis of 

measurements at that time was to aid in the design of algorithms for uniprocessors, while our current 

measurements arc aimed at exploring the possibility of exploiting parallelism in executing production 

systems. 

This paper presents data on the static and dynamic characteristics of production systems implemented using 

the OPS5 language [3]. By static characteristics we refer to those features of production systems that can be 

measured without executing the production system. The static measurements include measurements on the 

text form of the production system programs, and measurements on the static data structures constructed by 

the OPS5 interpreter to execute the programs. By dynamic measurements we refer to the run-time statistics 

gathered on the data structures and the operations performed by die OPS5 interpreter. 

The following are the six production system programs 1 for which data are presented: 

• R l [9]? a program for configuring VAX computer systems. It consists of 1932 productions. 

• XSEL, a program which acts as a sales assistant for VAX computer systems. It consists of 1443 
productions. 

• P T R A N S [5], a program for factory management. It consists of 1016 productions. 

• H A U N T , an adventure game program. It consists of 834 productions. 

• DA A [7], a program for VLSI design. It consists of 131 productions. 

• SOAR [8], an experimental problem solving architecture implemented as a production system. It 
consists of 103 productions. 

These programs were chosen because they were easily available (all of them were developed at CMU) , and 

also because they represent a wide spectrum of applications. 

Jn"^™^*™ ° u l y a / U b S C t °f]hC
 P r o d u c t i o n s > ' s t e m P r°g<™ was measured because of problems with the LISP garbage 

collector. Die number of productions given for each program corresponds to the number in the program actually measured. 
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2. Background 
Before we present the measurements, it is necessary to understand the computational model underlying 

production systems and the algorithms used to implement the required computation. This knowledge is 

necessary to understand the results of the measurements (most of which arc algorithm specific), and also to 

abstract implications concerning the execution of production systems. In the following paragraphs we first 

describe the syntax and semantics of OPS5, and then describe the Retc algorithm that implements the OPS5 

language. 

2 . 1 . 0 P S 5 

A production system is composed of a set of if-then rules called productions that make up the production 

memory, and a database of assertions called the working memory. The assertions in the working memory are 

called working memory elements. Each production consists of a conjunction of condition elements 

corresponding to the / / pa r t of the rule (also called the left hand side of the production), and a set of actions 

corresponding to the then part of the rule (also called the right hand side of the production). The actions 

associated with a production can add, remove or modify working memory elements, or perform input-output. 

Figure 2-1 shows an OPS5 production named p i , which has three condition elements in its left hand side, and 

one action in its right hand side. 

( p p i ( C I t a t t r l <x> * a t t r 2 1 2 ) 
(C2 t a t t r l 15 t a t t r 2 < x > ) 

- ( C 3 t a t t r l < x > ) 
—> 

( r e m o v e 2 ) ) 

Figure 2-1: A Sample Production 

The OPS5 interpreter executes a production system program by performing the following operations: 

© M A T C H : In this first phase, the left hand sides of all productions are matched against the 
contents of working memory. As a result we obtain a conflict set, which consists of instantiations 
of all satisfied productions. An instantiation of a production is an ordered pair. Its first element 
identifies the production, and its second element is an ordered list of working memory elements 
that satisfies the left hand side of the production. At any given time, the conflict set may contain 
zero, one, or more instantiations of a given production. 

• C O N F L I C T R E S O L U T I O N : In this second phase, one of the production instantiations in the 
conflict set is chosen for execution. If no productions are satisfied, the interpreter halts. 

• ACT: In this third phase, the actions of the production selected in the conflict resolution phase 
are executed. These actions may change the contents of working memory. At the end of this 
phase, the first phase is executed again. 



3 

2 . 1 . 1 . Working Memory Elements 

A working memory element is a parenthesized list consisting of a constant symbol called the class of the 

clement and zero-or more attribute-value pairs. The attributes arc symbols that are preceded by the operator 

t . The values arc symbolic or numeric constants. For example, the following is a very small working memory 

element of class C I , having the value 12 for attribute a t t r l and the value 15 for attribute at tr2. 

( C l t a t t r l 12 t a t t r 2 1 5 ) 

2 . 1 . 2 . The Left Hand Side of a Production 

The condition elements in the left hand side of a production are parenthesized lists similar to working 

memory elements. They may optionally be preceded by the symbol - . Such condition elements are called 

negated condition elements. For example, the production in Figure 2-1 contains three condition elements, 

with the third one being negated. Condition elements arc interpreted as partial descriptions of working 

memory elements. When a condition element describes a working memory clement, die working memory 

element is said to match the condition element. A production is said to be satisfied when: 

• For every non-negated condition element in the left hand side of the production, there exists a 
working memory element that matches it. 

• For every negated condition element in the left hand side of the production, there does not exist a 
working memory clement that matches it. 

Like a working memory element, a condition element contains a class name and a sequence of attribute-

value pairs. However, the condition element is less restricted than the working memory element; while the 

working memory element can contain only constant symbols and numbers, the condition element can contain 

variables, predicate symbols, and a variety of other operators as well as constants. Only variables and 

predicates will be described here since they arc the most important of the operators. A variable is an identifier 

that begins with the character "<" and ends with ">"—for example, <x> and <status> are variables. The 

predicate symbols in OPS5 are: 

< > <= >= <> < = > 

The predicates have their usual meanings for numerical and symbolic values. For example, the first predicate 

in the list, "<", denotes the less-than relationship, the second predicate, " = ", denotes equality, and the last 

predicate, "< = >", denotes of the same type relationship. The following condition element contains one 

constant value (the value of a t t r l ) , one variable value (attr2), and one constant value that is modified by the 

predicate symbol <> (attr3). 

( C l t a t t r l n i l t a t t r 2 <x> t a t t r 3 <> n i l ) 

A working memory clement matches a condition element if the object types of the two match and if the 

value of every attribute in the condition clement matches the value of die corresponding attribute in the 

UNIVERSITY LIBRARIES w 
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working memory c l emen t The rules for determining whether a working memory element value matches a 

condition clement value are: 

• If the condition clement value is a constant, it matches only an identical constant. 

• If the condition clement value is a variable, it will match any value. However, if a variable occurs 
more than once in a left hand side, all occurrences of the variable must match identical values. 

• If the condition clement value is preceded by a predicate symbol, the working memory element 
value must be related to the condition clement value in the indicated way. 

Thus the working memory element 

( C I t a t t r l 12 t a t t r 2 1 5 ) 

will match the following four condition elements 

( C I t a t t r l 12 t a t t r 2 < x > ) 

( C I t a t t r 2 1 5 ) 

( C I t a t t r 2 > 0 ) 

( C I t a t t r l <x> t a t t r 2 <> < x > ) 

but it will not match die condition element 

( C I t a t t r l <x> t a t t r 2 < x > ) . 

2 . 1 . 3 . The Right Hand Side of a Production 

The right hand side of a production consists of an unconditional sequence of actions which can cause 

input-output, and which are responsible for changes to the working memory. Three kinds of actions are 

provided to effect working memory changes. Make creates a new working memory clement and adds it to 

working memory. Modify changes one or more values of an existing working memory e l emen t Remove 

deletes an clement from the working memory. As an example of a make, the action 

( m a k e CI t a t t r l 1 2 ) 

will add the working memory element 

( C I t a t t r l 1 2 ) 

to working memory when it is executed. As an example of a modify, the action 

( m o d i f y 1 t s t a t u s s a t i s f i e d ) 

will change the working memory element matching the rule's first condition element, substituting ''satisfied" 

for the prior value of the status attribute. As an example of remove, the action 

( r e m o v e 2 ) 

will cause the working memory element matching the second condition element in the instantiation of the 

production to be deleted from working memory. 
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2 . 2 . The Rete Algorithm 

T h e most time consuming phase in the execution of production systems is the match, where die left hand 

sides of all productions arc matched against the complete working memory. F o r example, consider a 

production system with 1000 working memory elements and 1000 productions, where each production has 

three condition elements. In a naive implementation each production will have to be matched against all 

permutations of size three from the working memory, leading to over a trillion match operations for each 

execution cycle. More complex algorithms, however, can achieve the same result with only a small fraction of 

the work above. The Retc match algorithm [4] is one such algorithm. 

T h e Retc algorithm uses an augmented discrimination network compiled from the left hand sides of the 

productions to perform the match. To generate the network for a production, the network compiler proceeds 

first with the individual condition elements in the left hand side. For each condition element it chains 

together test nodes that check: 

• If the attributes in the condition element that have a constant as their value are satisfied. 

• If the attributes in the condition element that are related to a constant by a predicate are satisfied. 

• If two occurrences of the same variable within the condition element arc consistently bound . 

Each node in the chain performs one such test. (The three kinds of tests above are called intra-condition tests, 

because they correspond to individual condition elements.) Once the network compiler has finished with the 

individual condition elements, it adds nodes that check for consistency of variable bindings across the 

multiple condition elements in the left hand side. (These tests are called inter-condition tests, because they 

refer to multiple condition elements.) Finally the compiler adds a special terminal node to represent the 

production to which this par t of the network corresponds. 

Figure 2-2 shows such a network for productions p i and p2 which appear in the top part of the figure. In 

this figure, lines have been drawn between nodes to indicate the paths along which information flows. 

Information flows from the top node down along these paths. The nodes with a single predecessor (near d ie 

top of the network) are the ones that are concerned with individual condition elements. The nodes with two 

predecessors are the ones that check for consistency of variable bindings between condition elements. T h e 

terminal nodes are at the bot tom of the figure. Note that when two left hand sides require identical nodes, the 

compiler shares part of the network rather than building duplicate nodes. 

T o avoid performing the same tests repeatedly, the Rete algorithm stores the result of the match with 

working memory as state within the network. This way, only changes made to the working memory by the 

most recent production firing have to be processed every cycle. Thus, the input to the Rete network consists 

of the changes to the working memory . These changes filter through the network, and where relevant, the 
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(p p1 (C1 tattr l <x> tattr2 12) (p p2 (C2 tattr l 15 tattr2 <y>) 

(C2 tat tr l 15 tattr2 <x>) (C4 tat tr l <y>) 
• (C3 tat tr l <x>) ..> 

y (modify 1 tat tr l 12)) 
(remove 2)) 

t-const 
nodes 

Add/Delete 
p1 from conflict-set 

Add to Working Memory 

1.(C1 tat tr l 12tat t r2 12) 

2. (C2 tat t r l 12 ta t t r215) 

3. (C2tat t r1 15 ta l t r212 ) 

4. (C3 ta t t r l 12) 

Figure 2-2: The Rete Network 

state stored in the network is updated. The output of the network consists of a specification of changes to the 

conflict s e t 

The objects that are passed between nodes in the network are called tokens, which consist of a tag and a list 

of working memory elements. The tag can be either a + , indicating that something has been added to the 
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working memory, or a indicating that something has been removed from it. (No special tag for working 

memory element modification is needed because a modify is treated as a delete followed by an add.) The list 

of working memory elements associated with a token corresponds to the permutation of those elements that 

the system is trying to match or has already matched against a subsequence of condition elements in the left 

hand side. 

The discrimination net produced by the Retc network compiler consists of a number of different types of 

nodes: 

• Root Node: This node forms the root of the discrimination n e t It broadcasts tokens 
corresponding to any change in the working memory to all its successor nodes. In Figure 2-2, the 
root node is shown at the top. 

• T-Const Nodes: These nodes are used in the network to perform intra-condition tests, for 
example, to check if condition element attributes that have constant symbols or numbers as their 
values are satisfied. Each t-const node checks for one feature. Whenever the token arriving at the 
input of a t-const node satisfies the associated test, it is passed on to the successors of the t-const 
node. If the token docs not satisfy the test, it is not passed on to the successors. In Figure 2-2, the 
nodes towards the top of the network are t-const nodes. Since the second condition clement of 
production p i is similar to the first condition element of production p2, t-const nodes "Class 
= C 2 " and "a t t r l = 15" are shared in the network for p i and p2. 

• a-mcm Nodes: If a working memory clement satisfies all intra-condition tests for a condition 
element (note it may not, as yet, satisfy all the inter-condition tests), the working memory clement 
is said to partially watch the condition element. Tokens corresponding to working memory 
elements that partially match a condition clement are stored in the a - m c m node for that condition 
element. When a token arrives at an a -mcm node with a + tag, the token is stored in the a -mcm 
node and a copy of the token is passed to the node's successors. If the tag is —, a corresponding 
token with a 4- tag must already exist in the a -mcm. The corresponding token is deleted from 
the a - m e m node, and the incoming token is passed down to the successors of the a -mcm node. If 
two condition elements, in the same or different productions, have exactly the same tests for a 
successful partial match, the network compiler generates a shared a - m e m node for die two. This 
sharing of an a - m e m node can be seen in Figure 2-2. 

• /?-mem Nodes: Just as a - m e m nodes store tokens that partially match individual condition 
elements, so /?-mcm nodes store tokens that partially match two or more condition elements in the 
left hand side of a production. The list of working memory elements in /?-mcm tokens has length 
two or more. The response of /?-mem nodes to arrival of tokens at their inputs is exactly the same 
as that of a -mem nodes. The /?-mem nodes form the left input of and-nodes and not-nodes. 

• And-Nodes: The and-nodes are the first of the two-input node types. The primary function of an 
and-nodc is to check for consistency of variable bindings between the partially matched tokens it 
receives on its left and right inputs. The right input of an and-nodc always comes from an a - m e m 
node, while its left input can come from an a -mcm or a /?-mcm node. Whenever a token arrives 
at the left input of an and-nodc, the and-node compares the incoming token to each token stored 
in the mcm-nodc connected to its right i n p u t to check if they are consistent. For every right-
token which is consistent with the left-token, a new token is constructed and sent down to the 



8 

successor nodes. The new token has the same tag as that of left-token, and die list of working 
memory elements is the concatenation of the working memory clement lists for the left and right 
tokens. The case when a token arrives at the right input of an and-nodc is processed exacdy as 
above, widi left and right interchanged. 

• Not-Nodcs: The not-nodes arc the second of the two-input node types. They also have a left and 
a right input. rITie not-nodes are used by the network to implement the semantics of negated 
condition elements. Their functionality differs from that of and-nodes only in minor ways—they 
additionally keep reference counts with tokens in left memory to find when there arc no tokens in 
the right memory that arc consistent with them. 

• P-Nodes: These arc the terminal nodes in the network, and there is one such node associated with 
each production. Whenever a token with a + tag flows into a p-node, it adds an instantiation 
(corresponding to die token) of the associated production into the conflict set. The arrival of a 
token with a — tag leads to the deletion of die corresponding production instantiation from the 
conflict s e t 

• Other Nodes: Other than the node types mentioned above, the network uses two more node 
types. These are the two-nodes and the any nodes. The two-node is used as a place filler in some 
circumstances, and the any-nodc is used when the value of an attribute is to be one of a number of 
alternatives. Although measurements for these two node types are presented in die later sections 
for die sake of completeness, they have largely been omitted from the analysis. 

T o conclude this section we present an example of performing match using the Rote algorithm. The 

example corresponds to the two productions and the network given in Figure 2-2. We now go dirough the 

match process, as the four working memory elements shown in the bot tom left corner of Figure 2-2 are 

sequentially added to the working memory. 

When the first working memory element is added, token a tok -1 , 

< + , ( C I t a t t r l 12 t a t t r 2 1 2 ) > 

is constructed and sent to the root node. The root node broadcasts the token to all its successors. T h e 

associated tests fail at all successors except at one which is checking for "Class = C I " . This t-const node 

passes the token down to its single successor, another t-const node, checking if "attr2 = 12". Since this is so, 

the token is passed on to the a - m e m node, which stores the token and passes a copy of the token to the 

and-node below it. The and-nodc compares the incoming token on its left input to tokens in its right memory 

(which at this point is empty), but no pairs can be formed. At this point, the network has stabilized: in other 

words no further activity occurs, so we go on to the second working memory e l e m e n t 

The token for the second working memory element, a tok-2, 

< + , (C2 t a t t r l 12 t a t t r 2 1 5 ) > 

is constructed and sent to the root node, which broadcasts the token to its successors. The token passes the 

"Class = C2" test bu t fails the "a t t r l = 15" test, so no further processing takes place. 
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The token for the third working memory clement, a tok-3 , 

< + , (C2 t a t t r l 15 t a t t r 2 1 2 ) > 

passes through die tests "Class = C2" and "a t t r l = 15", and is stored in the a -mcm node below them. The 

a -mcm node passes a copy of the token to the two successor and-nodes below it. The and-nodc on the right 

finds no tokens in its right memory, so no further processing is done there. The and-nodc on the left checks 

the token for consistency against token, a tok -1 , stored in its left memory. The consistency check is satisfied as 

the variable <x> is bound consistently. The and-node creates a new token, /?tok-l , 

< + , ( ( C I t a t t r l 12 t a t t r 2 1 2 ) , (C2 t a t t r l 15 t a t t r 2 1 2 ) ) > 

and passes it down to the /?-mcm node below, which stores it. The /?-mcm node now passes a copy of the 

token to the not-node below it. The not-nodc finds that its right memory is empty, which implies tiiat diere 

arc no working memory elements which consistently bind the left token /?tok-l . (Recall that this corresponds 

to the semantics of satisfaction of production p i . ) As there arc no matching tokens in the right memory, a 

reference count of zero is stored with token /?tok-l in the not-node. The not-node passes a copy of token 

/?tok-l to the p-node below it, which then inserts an instantiation of production p i in the conflict s e t 

On addition of the fourth working memory clement, token atok-4, 

< + , ( C 3 t a t t r l 1 2 ) > 

is sent to the root node, which broadcasts it. The token passes die test "Class = C 3 " and passes on to the 

a -mem below it. The a -mem node stores the token and passes a copy of the token to the not-node below it. 

The not-node checks for consistent bindings in the left memory and finds that the newly arrived token, 

atok-4, is consistent with token /?tok-l stored in its left memory. The not-node increments the reference 

count stored with /?tok-l by 1. Since the change in the reference count is from 0 to 1 (recall that a reference 

count of zero implies that a token was sent down below the not-node with a + tag), a token exactly the same 

as /J tok-l , but with the tag set to —, is sent by the not-node to its successors. On receiving this token, the 

p-node for production p i deletes the instantiation of production p i from the conflict-set. This is the final 

state of the network and conflict set following the addition of the four working memory elements. 

3. Surface Measurements on Production Systems 
Surface measurements refer to measurements on the textual features of production system programs. 

Examples of such features are—the number of condition elements in the left hand sides of productions, the 

percentage of productions which have one or more negated condition elements, the number of attributes per 

condition e lement 

In the following subsections we present the set of measured features, with a brief description of how the 

measurements were made. Data about the same features of different production systems are presented 
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together, and have been normalized to permit comparison^. Along with each data graph die average, the 

standard deviation, and the coefficient of variance* for the data points arc given. 

3 . 1 . Condition Elements per Production 

Figure 3-1 shows the number of condition elements per production for the six production system programs. 

The number of condition elements per production includes both positive elements and negative ones. rlTic 

curves for die programs arc normalized by plotting percent of productions, instead of number of productions, 

along the y-axis. To help compute absolute numbers from the normalized numbers, the total number of 

productions for each of the programs is provided in Table 3-8. 

A XSEL 
o R1 
• PTRANS 
O HAUNT 
• DAA 
• SOAR 

Avg. 3.84, S tdDev . 
Avg. 5.58, S tdDev . 
Avg. 3.12, S tdDev. 
Avg. 2 .41 , S tdDev . 
Avg. 3 .91 , S tdDev . 
Avg. 5.80, S tdDev . 

1.76, C V 0 . 4 6 for XSEL 
2.94, C V 0 . 5 3 fo rR1 
1.81, CV 0.58 for PTRANS 
3.76. C V 0 . 4 0 for HAUNT 
3.49, CV 0.89 for DAA 
2.62, CV 0.45 for SOAR 

10 12 14 
Number of Conditions 

Condition Elements per Production 

Figure 3-1: 

^ e limits of the axes of the graphs are adjusted to show the main portion of the graph clearly. In doing this, however, in some cases a 
few extreme points could not be put on the graph. For this reason, the reader should not draw conclusions about the maximum values of 
trie parameters in question from the graph. 

3CoefFiricnt of Variance = Standard Deviation / Average 
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3 .2 . Actions per Production 

Figure 3-2 shows the number of actions per production. The number of actions reflects the complexity of 

executing the right hand side of a production. A large number of actions per production also implies a greater 

potential for parallelism, because then a large number of changes to the working memory can be processed in 

parallel, before the next conflict resolution phase is executed. 

Number of Actions 

Actions per Production 

Figure 3-2: 

3 .3 . Negative Condition Elements per Production 

The graph in Figure 3-3 shows the number of negated condition elements in the left hand side of a 

production versus the percent of productions having them. It shows that almost 30 percent of productions 

have one or more negated condition elements. Since negated condition elements denote universal 

quantification over the working memory, the percentage of productions having them is an important 

characteristic of production system programs. The measurements are also useful in calculating die number of 

not-nodes in the unshared Rete network. 

3 . 4 . At t r ibutes per Condition Element 

Figure 3-4 shows the distribution for the number of attributes per condition element. The class of a 

condition element, which is an implicit attribute, is counted explicitly in the measurements. The number of 

attributes in a condition element reflects the number of tests that are required to detect a matching working 
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Number of negConditions 
negConditions per Production 

Figure 3-3: 

memory c lement 

3 .5 . Tests per Two Input Node 

TTiis feature is specific to die Rete match algorithm and refers to the number of variable bindings that are 

checked for consistency at each two-input node (and-node or not-node). A value of zero indicates that no 

variables are checked for consistent binding, while a large value indicates that a large number of variables are 

checked. For example, if die number of tests is zero, for every token that arrives at the input of an and-node, 

as many tokens as there are in the opposite memory are sent to its successors. This usually implies a large 

amount of work. Alternatively, if the number of tests is large, then the number of tokens sent to die 

successors is small, but doing the pairwise comparison for consistent binding now takes more time. The graph 

for the number of tests per two-input node is shown in Figure 3-5. 

3 .6 . Var iables per Production 

The distribution for the number of variable occurrences (not the number of distinct variables) in die left 

hand side of a production is shown in Figure 3-6. The values indicate the number of variables that are either 

bound or tested for consistent binding in the left hand side of a production. 
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Number of Attributes 
Attributes per Condition Element 

Figure 3-4: 

Number of Tests 
Tests per Two Input Node 

Figure 3-5: 
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Avg. 3.68, S tdDev. 
Avg. 9.00, S tdDev. 
Avg. 6.68, S tdDev . 
Avg. 0.16, S tdDev . 
Avg. 10.5, S tdDev . 
Avg. 9.86, S tdDev . 

4 .67, CV 1.27 for XSEL 
8.76. C V 0 . 9 7 f o r R 1 
7.53, CV 1.13 for PTRANS 
0.42, CV 2.67 for HAUNT 
8.06, CV 0.77 for DAA 
6.90, C V 0 . 7 0 for SOAR 

5 10 

Variables per Production 

Figure 3-6: 

15 20 
Number of Variables 

3 .7 . Var iables Bound and Referenced 

Figure 3-7 shows the number of distinct variables which are both bound and referenced in die left hand 

side of a production. Consistency tests are necessary only for these variables. Beyond the a - m e m nodes, all 

processing done by die two-input nodes requires access to the values of only these variables; values of no 

other variables or attributes are required. This implies that the tokens in the network may only store the 

values of these variables instead of storing complete copies of working memory elements. Fo r parallel 

architectures, this can lead to significant improvements in the storage requirements and in the communication 

overhead associated with tokens. 

3 .8 . Var iables Bound and Not Referenced 

Figure 3-8 shows the number of distinct variables which are bound but not referenced in the left hand side 

of a production. (The bindings are probably used in the right hand side of the production.) This indicates the 

number of variables for which no consistency checks have to be performed. 
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A XSEL 
O R1 
• PTRANS 
O HAUNT 
• DAA 
• SOAR 

Avg. 1.09, S tdDev. 1.46, CV 1.34 for XSEL 
Avg. 2.67, S tdDev. 2 .71 , CV 1.01 for R1 
Avq. 1.84, S tdDev. 1.91, CV 1.04 for PTRANS 
Avg. 0.16, S tdDev. 0.42, CV 2.67 for HAUNT 
Avg. 2.47, S tdDev. 2.96, CV 1.20 for DAA 
Avg. 3 .43, S tdDev. 2 .45, CV 0.72 for SOAR 

6 8 10 
Variables Bound and Referenced 

Variables Bound and Referenced 

Figure 3-7: 

XSEL 
R1 
PTRANS 
HAUNT 
DAA 
SOAR 

Avg. 1.13, S tdDev. 1.95, CV 1.73 for XSEL 
tdDev. 3 .21 , CV 1.31 fo rR1 

Avg. 2 .15, S tdDev . 4.50, CV 2.09 for PTRANS 
Avg. 0.26, S tdDev . 0.55, CV 2.11 for HAUNT 
Avg. 5.05, S tdDev. 3 .53, CV 0.71 for DAA 
Avg. 1.20, S tdDev . 1.40, CV 1.16 for SOAR 

8 10 ' 12 
Variables Bound but not Referenced 

Variables Bound but not Referenced 

Figure 3-8: 
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Number of Occurrences 
Occurrences of Each Variable 

Figure 3-9: 

3 . 1 0 . Var iables per Condition Element 

Figure 3-10 shows the number of variable occurrences (not necessarily distinct) within a condition e l emen t 

If this number is large it usually implies that the selectivity of the condition element is small: in other words a 

large number of working memory elements will match that condition e l e m e n t 

3 .9 . Var iable Occurrences in Left Hand Side 

Figure 3-9 shows the number of times each variable occurs in the left hand side of a production. Both 

positive and negative condition elements are considered in counting die variables. Our measurements also 

show diat variables almost never occur multiple times within the same condition clement (average of 97.7% 

over all systems). Under diis assumption, the number of occurrences of a variable also represents the number 

of condition elements within a production in which the variable occurs. 
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A XSEL 
O R1 
• PTRANS 
O HAUNT 
• DAA 
* SOAR 

Avg. 0.96, S tdDev. 1.36, CV 1.42 for XSEL 
Avg. 1.61, S tdDev. 1.65, CV 1.02 for R1 
Avg. 2.14, S tdDev. 2.92, CV 1.36 for PTRANS 
Avg. 0.24, S tdDev. 0 .51 , CV 2.12 for HAUNT 
Avg. 2.69, S tdDev. 2.17, CV 0.81 for DAA 
Avg. 1.70, S tdDev. 1.33, CV 0.78 for SOAR 

1 2 3 4 

Variables per Condition Element 

Figure 3-10: 

5 6 
Number of Variables 

3 . 1 1 . Condition Element Classes 

Tables 3-1, 3-2, 3-3, 3-4, 3-5, and 3-6 list the seven condition element classes occuring most frequently for 

the production system programs. The tables also list the total number of attributes, the average number of 

attributes and its standard deviation, and die average number of variable occurrences in condition elements of 

each class. 4 The total number of attributes for a condition element class gives an estimate of the size of the 

working memory c l emen t This information is important because it indicates the communication overhead in 

transporting working memory elements amongst multiple memories in a parallel architecture. It also has 

implications for space requirements for storing the working memory elements. If we subtract the average 

number of variables from the average number of attributes for a condition element class, we obtain the 

average number of attributes which have a constant value for that class. This number in turn has implications 

for the selectivity of condition elements of that class. 

In Table 3-4, for a few entries, the average number of variables is more than the average number of attributes. This apparent 
disagreement is due to the use of vector-valued attributes in DAA. 

UNIVERSITY UBRARIR 
CARMGIE-MELIOW UNIVERSITY 

PITTSBURGH, PttlfSYLVANIA 15213 
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Table 3-1: R 1 : Condition Klcmcnt Classes 

Class Name # of CEs(%) Tot-Attr Avs-Attr SD-Attr Ave-Vars 
component 2597(24%) 152 5.04 2.03 2.24 

context 1996(18%) 8 2.23 0.53 0.24 
peon 1337(12%) 100 4.76 1.98 2.19 

datum 1262 (11%) 53 2.96 1.07 1.26 
computation 875 (8%) 110 3.90 1.38 1.63 
set-attribute 757(7%) 59 4.89 2.01 2.64 

template 533 (4%) 27 3.61 1.09 1.97 

Total number of condition clement classes is 31 

Tabic 3-2: XSEL: Condition Element Classes 

Class Name # of CEs(%) Tot-Attr Ave-Attr SD-Attr Ave-Vars 

context 1382(24%) 3 2.11 0.36 0.07 
interaction 920 (16%) 21 2.66 0.98 0.66 
line-item 917 (16%) 27 3.43 1.82 1.70 

component 752(13%) 106 3.29 2.20 1.71 

local 354(6%) 17 2.14 0.96 0.64 

discr-iist 174(3%) 5 1.90 0.94 0.41 

datum 147 (2%) 15 2.71 0.93 0.52 

Total number of condition element classes is 36 

Table 3-3: P T R A N S : Condition Element Classes 

Class Name # of CEs<%) Tot-Attr Ave-Attr SD-Attr Ave-Vars 

task 587 (18%) 4 1.86 0.71 0.79 

arg 521(16%) 4 2.94 0.27 1.85 

line-item 170(5%) 47 4.55 3.49 3.44 

call 125 (3%) 16 3.68 1.52 1.90 

order 123 (3%) 64 3.60 6.60 3.03 

period 120(3%) 13 3.44 1.42 2.61 

wip 119 (3%) 32 3.82 4.39 2.98 

Tabic 3-4: H A U N T : Condition Element Classes 

Total number of condition element classes is 81 

Class Name # of CEs(%) Tot-Attr 
location 499(24%) 12 

input 497(24%) 0 
object 327(16%) 15 

X 237 (11%) 1 
status 197 (9%) 13 
place 76(3%) 4 
time 43 (2%) 9 

Ave-Attr SD-Attr Ave-Vars 
1.85 1.34 0.22 
0.00 0.00 0.33 
2.25 0.80 0.44 
1.00 0.00 0.00 
0.85 0.44 0.10 
1.45 0.50 0.04 
1.67 0.86 0.98 

Total number of condition element classes is 23 
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Tabic 3-5: DAA: Condition Element Classes 

Class Name # of CF.s(%) Tot-Attr Avfi-Attr SI>At t r Avc-Vars 
context 132(25%) 4 3.58 0.72 3.64 

port 121(23%) 5 2.10 0.54 1.95 
module 64 (12%) 6 3.36 1.53 2.19 

link 57(11%) 6 3.44 1.82 3.44 
lists 38 (7%) 3 1.82 0.39 2.16 

outnode 27 (5%) 6 2.63 0.67 2.33 
operator 25(4%) 10 5.20 2.77 5.00 

Total number of condition clement classes is 20 

Table 3-6: SOAR: Condition Element Classes 

Class Name # of CF,s<%) Tot-Attr Ava-Attr SD-Attr Avc-Vars 
current 273 (45%) 2 1.96 0.20 0.71 
att-val 98 (16%) 3 2.83 0.47 1.84 
context 54(9%) 8 3.48 1.83 3.07 
choice 51 (8%) 8 5.43 1.35 3.37 

operator 34(5%) 6 3.65 0.94 2.79 
applied 25 (4%) 5 3.68 0.84 3.16 
state-op 20(3%) 5 2.80 0.60 1.90 

Total number of condition clement classes is 12 

3 . 1 2 . Action Type Table 

Table 3-7 gives the distribution of actions in the right hand side into classes make, remove, modify, write, and 

other for the production system programs. The only actions diat affect the working memory are of type make, 

remove, or modify. While each make and remove action causes only one change to the working memory, a 

modify actions causes two changes to the working memory. This data then gives an estimate of the percentage 

of right hand side actions that change the working memory. 

Table 3-7: Action Type Distribution 

Action Tvne R l X$EL P T R A N S H A U N T DAA SOAR 
M A K E 34% 31% 22% 10% 34% 7 1 % 

M O D I F Y 25% 35% 15% 19% 7% 12% 
R E M O V E 13% 8% 7% 25% 26% 0% 

W R I T E 9% 3% 10% 44% 17% 17% 
O T H E R S 17% 20% 44% 2% 13% 7% 
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3 . 1 3 . Summary of Surface Measurements 

Tabic 3-8 gives a summary of the surface measurements for the production system programs. It brings 

together the average value of die various features for all six programs. The features listed in the table are 

condition elements per production, actions per production, negated condition elements per production, 

attributes per condition element, variables per condition clement, and tests per two-input node. 

Table 3-8: Summary of Surface Measurements 

Feature E l XSKL PTRANS HAUNT DAA SOAR 
Productions 1932 1443 1016 834 131 103 

CEs /P rod 5.58 3.84 3.12 2.41 3.91 5.80 
Actions/Prod 2.90 2.41 3.64 2.51 2.86 1.83 

nCEs/Prod 0.50 0.50 0.44 0.03 0.30 0.59 

A t t r / C E 4.73 3.64 4.11 2.08 3.89 3.78 
Vars /CE 1.61 0.96 2.14 0.24 2.69 1.70 

Tests /2inp 0.85 0.52 1.22 0.11 - 1.03 1.09 

4. Measurements on the Rete Network 
In this section we present measurements made on the Rete network constructed by . the OPS5 network 

compiler. The measured features include—die number of nodes of each type in the network, the amount of 

sharing that is present in the network, and the average branching factor for the various node types. 

4 . 1 . Number of Nodes in the Network 

In Table 4-1, we present data on the number of nodes of each type in the network for the various 

production system programs. These numbers reflect the complexity of the network that is constructed for the 

programs. Table 4-2 gives die normalized number of nodes: tiiat is, the number of nodes per production. 

The normalized numbers arc useful for comparing the average complexity of the productions for the various 

production system programs. 5 

In Table 4-3, we present the number of nodes per condition element for the production system programs. 

As we can see from the table, the numbers are all very close to 1.9 nodes per condition clement. This number 

can thus be used to predict the number of nodes in other production system programs, for which no 

measurements have been made. The number 1.9 nodes per condition element is small because there are a lot 

of nodes shared between condition elements. In case no sharing is allowed, this number j u m p s up two to 

three fold, as is shown in Table 4-4. 

5All the numbers listed in Tables 4-1 and 4-2, are for the case where the network compiler is allowed to share nodes. 
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Table 4-1: Number of Nodes 

Node Tvne Hi XSEL PTRANS H A U N T DAA SOAR 
T-const 3193 1916 1616 874 118 154 
a -mem 2366 1432 920 623 91 120 
/3-mem 3866 1824 738 367 206 295 

and 5282 2762 1353 1012 285 377 
not 1760 608 403 21 34 60 
two 1700 576 386 20 27 60 
any 204 322 69 53 13 7 

E 1931 1443 1016 §34 131 103 
Total 20302 10883 6501 3805 915 1176 

Table 4-2: Nodes per Production 

Node Tvoe El XSEL PTRANS H A U N T DAA SOAR 
T-const 1.65 1.32 1.59 1.04 0.90 L50 
a -mem 1.22 0.99 0.90 0.74 0.69 1.16 
/?-mem 2.00 1.26 0.72 0.44 1.57 2.86 

and 2.73 1.91 1.33 1.21 2.17 3.66 
not 0.91 0.42 0.40 0.03 0.26 0.58 
two 0.88 0.40 0.38 0.02 0.20 0.58 
any 0.11 0.22 0.07 0.06 0.10 0.07 
E 1.00 1.00 1.00 1.00 LQQ 1.00 

Total 10.50 7.52 6.39 4.54 6.89 11.41 

Table 4-3: Nodes per Condition Element (with sharing) 

Node Tvne El XSEL PTRANS H A U N T DAA SOAR 
Total CEs 10780 5541 3169 2009 512 597 

Total Nodes 20302 10883 6501 3805 915 1176 
N o d e s / C E 1.88 1.96 2.05 1.89 1.79 1.97 

Table 4-4: Nodes per Condition Element (without sharing) 

Node Tvoe El X$EL P T R A N S H A U N T DAA SOAR 
Total CEs 10780 5541 3169 2009 512 597 

Total Nodes 55990 29272 13523 9178 1978 2545 
N o d e s / C E 5.19 5.28 4.27 4.57 3.86 4.26 

Avg. Sharing 2.76 2.69 2.08 2.41 2.15 2.16 

4 . 2 . Network Sharing 

The OPS5 network compiler exploits similarity in the condition elements of productions to share nodes in 

the Rete network. Such sharing will not be possible if a parallel implementation of die production system is 

desired, where each production is placed on a separate processor. To estimate the extra computation required 
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due to loss of sharing, we present the ratios of the number of nodes in the unshared Retc network to the 

number of nodes in the shared Retc network in Table 4-5. The ratios do not directly give the extra 

computational requirements, because they arc only a static measure, and the actual numbers will depend on 

the dynamic flow of information (tokens) through the network. Note that in the unshared Rete network, 

nodes arc not shared between the networks for different productions, bu t they may be shared within the 

network for the same production. Also note that the reported ratios correspond to the amount of sharing or 

similarity exploited by die OPS5 network compiler, which may not be the same as the maximum exploitable 

similarity available in the production system program. 

Table 4-5: Network Sharing 

Node Tvoe El XSEL P T R A N S H A U N T DAA SOAR 
T-const 8.76 7.00 3.80 5.45 6.69 6.32 
a - m c m 4.05 3.50 2.84 2.16 3.92 4.60 
ft-mcm 1.39 1.36 1.42 1.29 1.27 1.17 

and 1.28 1.22 1.26 1.14 1.20 1.15 
not 1.17 1.20 1.10 1.00 1.15 1.01 
two 1.20 1.26 1.15 1.05 1.44 1.01 
any 3.08 1.98 1.35 1.15 1.30 2.00 

4 .3 . Network Branching 

In constructing die Rete network for two similar condition elements, the network compiler shares nodes as 

long as the test nodes required by the two elements are same. When the compiler gets to a point where tests 

can no longer be shared, the network branches, and distinct paths having distinct nodes arc constructed. 

Table 4-6 shows data about the average branching factor for the various node types. The branching factor for 

nodes in die network is necessary to develop models for flow of information through die network. The 

branching factor for the root and t-const nodes can also be used to determine when hashing is a good 

technique for visiting the successors of those nodes selectively. 

Table 4-6: Network Branching 

Node Tyoe El XSEL P T R A N S H A U N T DAA SOAR 

root 31 36 81 23 20 12 

T-const 1.78 1.9 1.7 1.9 1.9 1.8 

a -mem 3.2 2.8 2.4 2.6 4.1 4.1 

/3-mem • 1.20 1.20 1.25 1.23 1.09 1.07 

and 1.03 1.05 1.04 1.03 1.01 1.02 

not 1.02 1.02 1.02 1.00 1.12 1.01 

two 1.03 1.05 1.04 1.05 1.26 1.00 

any 1.31 1.27 1.08 1.11 1.15 1.28 
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4 . 4 . Summary of Rete Network Measurements 

In Subsection 4.1, we presented the number of nodes found in the Rete networks for the different 

programs. We showed that the total number of nodes in the network correlates very well with the number of 

condition elements in the production system program, and on an average there are 1.9 nodes per condition 

clement in the shared network. The number of nodes per condition clement is more than doubled for an 

unshared Rete network. 

The data in Subsection 4.2 characterizes die sharing of nodes in Rete networks. The main conclusion is that 

sharing is large only for t-const and a - m c m nodes, and small for all other node types. This information is 

useful in determining the processing requirements for unshared Rete networks. Examples of such use are 

presented in the next section. 

In Subsection 4.3, we present data about branching in Rete networks. We hope to use this information to 

construct probabilistic models of flow of information in Rete networks, and also to determine when indexing 

will win over linear search algorithms in evaluating the successors of root and t-const nodes. 

5. Measurements on the Run-time Behavior of the Rete Algorithm 
In this section, we present data on the run-time characteristics of production system programs. The 

measurements are useful to identify operations frequently pcrfonned by the inteipreter and to explore 

available parallelism in its implementat ion 6 . Although the reported measurements are only for the Rete 

algorithm, a number of general conclusions can be drawn from the measurements. 

5 . 1 . T-const Nodes 

In Table 5-1, we present run-t ime statistics for t-const nodes. The first line of the table, labeled 

"visits/action", refers to the number of t-const node visits (activations) for each change made to the working 

memory. Note that "action" in this context refers to the single insertion or deletion of an element from the 

working memory, and not to "actions" as present in the right hand side of a production. 

In die second line of the table, we present the number of t-const activations as a fraction of the total number 

of node activations. Although t-const node activations constitute a large fraction (57% on average) of the total 

node activations, a relatively small fraction of the total match time is spent in processing them. This is 

because the processing associated with a t-const node is very simple compared with other nodes like a - m e m 

nodes, or and-nodes. 

Note: The measurements correspond to run-time behavior of shared Rete networks, i.e., where sharing of nodes in the Rete network 
is allowed. 
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In the third line of the table, labeled "success", we report die percent of t-const node activations tiiat have 

their associated test satisfied. As the numbers show, this is a very small percentage. This suggests that by 

using hashing, many t-const node activations that do not result in satisfaction of die associated tests can be 

avoided. This is especially true for the t-const nodes immediately below the root node. The tests made by the 

t-const nodes immediately below the root-node check for the class of the working memory clement (see 

Figure 2-2), and since a working memory clement has only one class, all but one of these t-const nodes fail 

their test. Our calculations show that by using hashing at this top-level, we can reduce the total number of 

t-const node activations by 42% (average over all systems). 

Table 5-1: T-const Nodes 

Feature Si XSEL PTRANS H A U N T DAA SOAR 
visits/action 122.29 94.04 119.43 80.96 35.39 25.97 

% of total 62% 63% 70% 58% 54% 32% 
success (%) 14% 15% 10% 6% 10% 15% 

5 .2 . Alpha-mem Nodes 

An a -mem node associated with a condition element stores tokens corresponding to working memory 

elements that partially match the condition element: that is, tokens that satisfy all intra-condition tests for the 

condition c lement These nodes arc the first significant nodes diat get affected when die working memory 

changes. It is only later that changes filter through a -mem nodes to and-nodes, not-nodes, /?-mem nodes, and 

p-nodes. 

T h e first line of Table 5-2, labeled "visits/action", gives the average number of a - m e m nodes that are 

activated for each change made to die working memory. This number is significant in a number of ways: 

First, the number of node activations (along with the average cost associated with each activation) indicates 

the amount of emphasis that should be placed on optimizing the execution of a -mem nodes. Second, the 

number of activations multiplied by the dynamic sharing factor, 7 gives the number of condition elements that 

partially match a working memory e l emen t Under the assumption that each of the affected condition 

elements belongs to a different production, the number above gives the number of productions affected by a 

working memory e lement The number of productions affected by a working memory element, in turn, has 

implications for the amount of parallelism that can be successfully exploited when each production is 

allocated a separate processor. 

In the second line of Table 5-2, we report die average number of tokens present in an a - m e m node, when it 

7 Note that the numbers in Table 4-5 give the static sharing factor and not the dynamic sharing factor. They can, however, be used as 
rough estimates of the dynamic sharing factor. 
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Tabic 5-2: a -mcm Nodes 

Feature 
visits/action 
avg. tokens 
S D . 8 tokens 
max. tokens 

El 
9.29 
56 
61 

500 

XSEL 
6.26 
13 
10 
82 

P T R A N S 
7.20 
17 
2.4 
51 

H A U N T 
3.20 
2.0 

0.77 
32 

DAA 
2.00 
51 
32 

346 

SOAR 
2.58 
15 
11 

105 

is activated. This number indicates die complexity of the processing performed by an a - m c m node. When an 

a -mcm node is activated by an incoming token with a — tag, the node must find a corresponding token in its 

stored set of tokens, and then delete that token. If a linear search is done to find the corresponding token, on 

average, half of the stored tokens will be looked up. Thus the complexity of deleting a token from an a - m e m 

node is proportional to the average number of tokens. On arrival of a token with a + tag, the a -mcm node 

simply stores the token. This involves allocating memory and linking the token, and takes a constant amount 

of time. In case hashing is used to locate the token to be deleted, the delete operation can be done in constant 

time. However, then we have to pay the overhead associated with maintaining a hash table. Hash tables 

become more economical as the number of tokens stored in the a -mcm increases. The numbers presented in 

the second line are useful for deciding when hash tables (or other indexing techniques) are appropriate. 

In the tiiird and fourth lines of Table 5-2, we report the approximate standard deviation and the maximum 

number of tokens found in an a - m e m node for the various programs. The data shows that there is a large 

variance ir. the number of tokens found in an a - m e m node. This in turn implies a large variance in the 

processing time for a - m c m nodes (if die linear search scheme explained in the previous paragraph is used). 

In the model where each active node is allocated to a separate processor, a large variance in the processing 

time of nodes, implies less speed-up in parallel processing of nodes. The data above are also essential in the 

design of hardware associative memories to hold the tokens. 

5 .3 . Beta-mem Nodes 

T h e data for /?-mem nodes is given in Table 5-3. /?-mem nodes are very similar to a - m e m nodes, and data 

for them can be interpreted in the same way as that for a - m e m nodes. There arc, however, a few exceptions. 

First, the number of /J-mcm node activations docs not correlate in the same way to the number of 

productions that are affected by a working memory e lement Second, v/hile all activations of a - m e m nodes 

can be processed in parallel, it is not so for /?-mem nodes. T h e reason is that, while all activations of a - m e m 

nodes are independent of each other, the activations of /?-mem nodes are not. The activation of one /?-mem 

node can cause the activation of another /?-mem node via an intermediate and-node activation. This 

n*he numbers given for standard deviation arc not exact They are calculated from a lumped distribution of the data points, and give 
lower bound of true standard deviation. 
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dependence reduces die amount of parallelism that can be exploited in evaluating p-mcm nodes. 

Table 5-3: p-mcm Nodes 

Feature El XSEL F P R A N S H A U N T DAA SOAR 

visits/action 3.03 2.41 3.51 9.28 1.99 8.49 

avg. tokens 12.4 1.4 54.5 9.8 37.0 6.7 

SD. tokens 7.6 0.7 39.4 1.6 54.7 4.7 

max. tokens 92 14 281 32 870 132 

5.4 . And-Nodes 

The run-time measurements for and-nodes arc given in Table 5-4. Each line in die table consists of a pair of 

numbers for each of the production system programs. The numbers on the left are data for activations of 

and-nodes from die left, and the numbers on the right are data for activations from the right. The distinction 

between left and right activations of and-nodes is important. The right activations of and-nodes, which are 

caused by activations of the a - m e m nodes, can always be processed in parallel. The left activations of 

and-nodes, which are primarily caused by the activations of ft -mem nodes, cannot be processed in parallel. 

The reason is that all a - m e m node activations can be processed in parallel, but all /?-mem nodes activations 

can not be processed in parallel (explained in the previous subsection). 

The first line of Table 5-4 gives the number of and-node activations for a single change to the working 

memory. The data shows that on average 77% of the activations are from the right. This indicates substantial 

potential for parallel execution of and-nodc activations. 

In the second line of Table 5-4, die number on die left is the percentage of left activations of and-nodes for 

which no tokens were found in the associated right memory node. T h e number on the right gives the 

percentage of right activations with an empty left memory. For example, for die R l program, the first line in 

the table shows that there are 34.3 activations from the right. Of the 34.3 right activations, 33.6 (98% of 34.3) 

have an empty left memory. Recall that an and-node activation for which there are no tokens in the opposite 

memory requires very little processing. Thus, evaluating the majority of the and-node activations is very 

cheap, and most of the processing effort is going into evaluating the small fraction of activations which have 

non-empty opposite memories. This also means that if all and-node activations are evaluated on different 

processors, then the majority of the processors will finish very early compared to the remaining few. This 

large variance in the processing requirements of and-nodes reduces the effective speed-up that can be 

obtained by evaluating each and-node activation on a different processor. 

The third line shows the average number of tokens found in the opposite memory, on activation of an 
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Table 5-4: And Nodes 

Feature ( L R ) 
visits/action 

null-mem 
tokens 

tests 
pairs 

Ei 
2.58, 34.3 
53%, 98% 

3.0, 1.6 
2.7, 1.2 
1.4. 1.1 

XSKL 
4.8,19.2 

75%, 95% 
3.0, 1.3 
2.4,0.5 
1.4, 1.1 

PTRANS 
4.73, 20.16 
43%, 90% 
18.3,5.7 
18.5,5.7 
1.0,0.67 

H A U N T 
17.08, 18.52 

61%, 77% 
2.7, 3.9 
2.6, 3.0 

1.02,0.86 

DAA 
3.65,16.64 

5%, 9 1 % 
106,6.8 
111,7 

0.71, 0.6 

SOAR 
10.38,25.42 

21%, 72% 
3.4, 5.6 
3.4,5.4 

0.64,0.76 

and-node, when the opposite memory is not empty. (Data about the percentage of times when the opposite 

memory is empty is given in the second line of the table.) This number represents the average number of 

tokens against which the incoming token is matched to determine consistent pairs of tokens. The magnitude 

of this number can be used to determine if hashing or other indexing techniques ought to be used to limit this 

search. 

The numbers in the fourth line of the table indicate the average number of tests performed by an and-node 

when a token arrives on its left or right input, and its opposite memory is not empty. The number of tests 

performed is equal to the product of the average number of tokens found in the opposite memory (given in 

the third line) times the number of consistency tests that have to be made to check if the left and right tokens 

of the and-node are consistent. 

The numbers in the fifth line of the table show the average number of consistent token-pairs found after 

matching the incoming token to all tokens in the opposite memory. For example, for the DAA program, on 

the left activation of an and-node, an average of 106 tokens are found in the right memory. On average, 

however, only 0.71 tokens are found to be consistent with the left token. This indicates that the right memory 

contains a lot of information, of which only a very small portion is relevant to the current context. The 

numbers in the fifth line also give a measure of token regeneration taking place within the network. We 

expect to use this data to construct probabilistic models of information flow within the Rete network. 

5 .5 . Not-Nodes 

Not-nodes are very similar to and-nodes, and the data for them are interpreted in exactly the same way as 

that for and-nodes. The data are presented in Table 5-5. 

Feature ( L . R 1 
visits/action 

null-mem 
tokens 

tests 
pairs 

Ei 
1.62, 8.55 
32%, 93% 

5.9,4.2 
8.0,6.1 

0.25,0.39 

Table 5-5: Not Nodes 

XSEL 
1.34,7.05 
30%, 90% 
10.3,1.2 
12.3,0.4 
0.3,0.46 

PTRANS 
2.12,7.99 
18%, 90% 
19.1,18.2 
29.9,28.8 
0.26,0.17 

H A U N T 
0.70, 0.74 
59%, 58% 

2.8, 1.0 
2.2,0.08 

0.05,0.96 

DAA 
0.20,1.65 
7%, 45% 
78,1.2 
82,0.25 

0.56,0.05 

SOAR 
1.27,2.37 
7%, 46% 
14.7, 8.9 
14.9, 8.6 

0.49,0.88 
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5 .6 . P-Nodes 

Activations of p-nodcs correspond to insertion and deletion of production instantiations from die conflict 

set. The first line of Table 5-6 gives the number of changes to the conflict set for each change made to the 

working memory. The second line gives the number of changes made to the working memory for every 

production firing, and the third line, the product of the first two lines, gives the average number of changes 

made to the conflict set per production firing. The data in the diird line gives the number of changes that will 

be transmitted to a central conflict resolution processor, in an architecture using centralized conflict 

resolution. 

Table 5-6: P Nodes 

Feature 
visits/action 
actions/cycle 
mods./cycle 

X ? E L PTRANS HAL 1 N T DAA SQAR 

0.96 1.74 1.72 1.51 1.98 3.98 

3.82 1.88 2.07 2.74 2.51 3.15 

3.6 3.2 3.4 4.0 5.0 12.6 

5 .7 . Summary of Run-t ime Measurements 

Table 5-7 summarizes data for the number of node activations, when a working memory element is inserted 

or deleted from the working memory. The data shows that a large percentage (56.5% on average) of the 

activations are of t-const node type. T-const activations, however, require very little processing compared to 

other node types, and furthermore, a large number of t-const activations can be eliminated by suitable 

indexing techniques (see Subsection 5.1). To eliminate the effect of this large number of relatively cheap 

t-const activations, we subtracted the number of t-const activations from all other node activations. These 

numbers are shown in the bottom line of Table 5-7, labeled "Tot - T-const". The numbers show that the 

total number of node activations per action is relatively independent of the number of productions. An 

important implication of this is that, the way production system programs are currently written, actions of 

productions do not have global effects, bu t only affect a small number of productions. Fur thermore , the 

number of productions affected is independent of the total number of productions present in the system. It 

also follows diat allocating one processor to each production is probably not a good idea. 

Table 5-8 gives general information about the runs of the production system programs from which data is 

presented in this pape r 9 . The first two lines of the table, give the average and maximum sizes of the working 

memory. The third and the fourth lines give the average and maximum values for the sizes of the conflict s e t 

The fifth and the sixth lines give the average and maximum sizes of die token memory. (The size of the token 

memory at any instant is the total number of tokens stored in all memory nodes at that instant.) T h e last line 

9 The word NA in Table 5-8 means the data for that entry is not available 



29 

Tabic 5-7: Node Visits per Action 

Node Tvoe El XSEL PTRANS H A U N T DAA SOAR 
T-const 122.79 94.04 119.43 80.96 35.39 25.97 
a - m e m 9.29 6.26 7.20 3.20 2.00 2.58 
ft -mem 3.03 2.41 3.51 9.28 1.99 8.49 

and 36.93 24.03 24.91 35.66 20.31 35.83 
not 10.18 8.40 10.12 1.14 1.85 3.65 
any 13.49 11.24 2.67 7.51 0.47 0.57 
two 1.53 1.22 2.11 0.55 0.16 1.29 

P 0.96 1.74 1.72 LSI 1.98 3.98 
Total 198.2 149.34 171.67 139.81 65.15 82.36 

Tot — T-const 75.41 55.30 55.24 58.85 29.76 56.39 

in the table gives the total number of changes made to the working memory in the production system 

from which the statistics for this paper are gathered. 

Table 5-8: General Run-Time Data 

Feature El XSEL P T R A N S H A U N T DAA SOAR 
Avg. W M N A 62 NA 60 708 353 
Max. W M NA 89 NA 63 1191 NA 
Avg. CSet N A 10 NA 2 43 9 
Max. CSet N A 22 NA 6 421 26 
Avg. T M N A 368 NA 473 1904 2413 
M a x . T M N A 559 NA 487 4616 NA 

W M Changes 1247 756 984 559 16839 631 

6 . Conclusions 
In this paper, we have presented measurements on the static structure and the run-time behavior of 

production systems. Along with the measurements, we have given interpretations for some of the data. For 

example, we show that actions of productions do not have global effects, but only affect a small number of 

productions. Furthermore, the number of productions affected is independent of, and does not increase with, 

the total number of productions present in the system. r rhe main purpose of giving the interpretations, 

however, was to serve as illustrations of how the data may be used. They should not be viewed as the only 

interpretations that may be given to the data, or the only interpretations tiiat may be derived from the data. 

The reported measurements form only a subset of all useful measurements that could be made on the 

production system programs. We think, however, that the reported measurements are comprehensive enough 

to form a good starting point for the design of specialized architectures for production systems. We also 

expect to use the measurements to develop probabilistic models of production system programs. These 

models will help us to predict the behavior of production system programs other than the ones we have 
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measured. 
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