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ABSTRACT

We have developed a method of inspection which does not require reference points

or accurate fixturing. This inspection system reports world coordinate positions of

points along the edge of a part. Where these points lie on the part is unknown,

except that they are on the edge, and they form a space curve which is similar to

the ideal part described by a Computer Aided Design database. The two point sets

are, however, referenced to different coordinate systems and contain points at

different positions along the curve. First, corresponding points are formed between

the databases by using the coordinate independent measures of perimeter length and

curvature. The coordinate transform between the two databases is then determined

by singular value decomposition. Finally, a comparison of the two databases

determines out-of-tolerance points.



1 INTRODUCTION

The object of this paper is to introduce a method of part location and shape

inspection. This requires the comparison of a standard piece with a test piece to

determine congruency of shape. Once the latter is found to be reasonably congruent

to the former, the displacement between the two, a combination of rotation and

translation, can be found. Obviously, if the congruency is insufficient, no reasonable

definition of the translation and rotation that are supposed to produce congruency is

possible.

Currently, automated shape inspection systems use a set of gauging points, or

surfaces, to first locate the part, then to inspect it. A gauging point is a point

whose x,y,z position is known in all relevant coordinate systems, a gauging plane is

the planar equivalent. Suggested in this paper is an alternate method where the

location and inspection of the part are performed simultaneously, without the use of

gauging points. Two databases are assumed, one being a description of the shape of

the ideal part (the ideal CAD database) and the other being a description found by a

robotic inspection system (the inspector database). By matching these databases, the

transform between the two coordinate systems can be obtained without having to

utilize gauging points.

If each database contains a list of points describing a space curve (e.g., an edge),

then the difficulty with performing the task is that the ideal database points do not

correspond to the inspector database points. In general, an inspection system which

records the position of discrete points will not contain the position of the same

points found in the ideal database, but points somewhere between them. Thus, one

cannot simply find the transform between matching points (a relatively simple task).

A strategy to accomplish this task is developed for surfaces with edges.

Comparing the ideal database with the inspector database can be defined and

accomplished independently of any coordinate system by using scalar geometric

invariants. This is particularly feasible for space curves. Although surfaces have

geometrically invariant properties, the invariants are not necessarily scalar and are

not as easily accessible. In principle, however, the strategy proposed can be

extended to surfaces without edges, i.e., egg-shaped or geoid shaped parts.

Once the part description has been reduced to the behavior of scalar invariants

along the space curve, the problem is reduced to finding the phase shift of a scalar

signal between the standard and the test piece. Human/optical recognition prefers



points of infinite curvature, i.e., corners (Attneave 1954), whereas we try to find the

phase shift from a Fourier fit along the parameter (Brill 1968; Zahn and Roskies 1972).

Unlike the authors quoted and cognitive scientists in general (Pavlidis 1977, 1978;

Kovalevsky 1980), we do not stress optical recognition, but our emphasis is to

extract quantitative data on congruency and location in a manufacturing environment.

The strategy is in line with recent developments of pattern recognition where

topological (Pavel 1983), or field theoretical (Machuca and Phillips 1983) methods are

used. In particular, the idea of using geometric invariants has been proposed before

(Kasvand and Otsu 1982; Wallace, Mitchell and Fukunaga 1981).

2 DIFFERENTIAL GEOMETRY

Suppose we have a space curve, say the front edge of the hood in an automobile.

Its location in space is given by the coordinates z(x) and y(x). This would have to

be compared with the coordinates of the standard piece z(x) and y(x). An

examination of congruency would then require the homogeneous transformation by

rotation R and translation T of our. set of vectors x(x,y,z) into another set of vectors

x(x,y,z) so that

R x + T -» x (2.1)

Alternatively, the space curve could be described by the dependence of the three

space coordinates on one scalar parameter, say the arc length s

x(s) y(s> z(s), (Z2)

but this still requires a comparison according to (2.1). We try to profit from the fact

that the concept of congruency is coordinate independent. According to differential

geometry (Laugwitz 1960; Struik 1961), the change of the vector x with components K

y and z with ds is the unit tangent vector t

t = dx/ds (23)

Since the tangent can be thought of as the limit of the secant, the tangent passes

through two consecutive points on the curve. One can find the osculating plane

through three consecutive points on the curve, and then draw a circle through these.

The radius p of this osculating circle is related to the change of the tangent vector

along the curve by



- n = *n = dt/ds = d t/ds (2.4)
P ~

where K is called curvature and the unit vector n is called the principle normal. The

center c of the osculating circle to x lies at

c = x + pn (2.5)

The principle normal n and the tangent vectors t, are normal to each other. Since

the former lies in the osculating plane, the cross product of the tangent vector and

the normal is itself the normal of the osculating plane, called the binormal (see Fig.

1)

b = t x n (2.6)

For non-planar, or twisted curves, b changes along the curve and

db/ds = - rn (2.7)

where r is called the torsion. Together with a third equation that can be easily

derived, (2.4) and (2.7) are the formulae of Serret-Frenet

6tJ6s = *n

dn/ds * - *l + rb (2.8)

db/ds = - rn

The basic theorem of differential geometry states that the two functions

*{s) and r(s) (2,9)

define a space curve. Any two curves which can be described by the functions (2.9)

are said to be congruent though they may be displaced by a rotation and translation

with respect to each other. We benefit from this by measuring K and r along the

edges of automotive parts and judge their congruency according to this criterion.

Any combination or function of * and r is another invariant and can be used to

describe the curve. Following the geometric representation of the above, one can

ask for the sphere that goes through four consecutive points of the curve, the

osculating sphere. The center d of the osculating sphere to x Is uniquely determined

by



dp
d = x + />n + r (—) b (2.10)

~ ds ~

where

R2 = p2 + r2 {—)2 (2.11)
ds

is the square of radius of the osculating sphere.

Consider a point x on the curve. The following Taylor expansion, in terms of the

arc length, follows from Frenet's formulae

Cx(AS) - x(0)l AS AS3

1 6

Ex(AS) - xft»] • - AS2 * -^ AS3 (2.12)
n 2 6

CXCASJ - x(0}]^ * — AS3

b 6

This can be used to find the linear and quadratic apprpximAtion to the arc length

between two points x and x „ on the curve %
n n+1 .

or, Inverted,

AS • L {2.14}

in the linear, and

« 2, 2
AS « •—• 1 - 1 - ——- 12.151

*= 3

in the quadratic approxtmatioa



In numerical work, the use of equations (2.4) and (2.7) requires numerical

differentiation if K and r are to be found. The alternative is to find K and another

invariant, the radius of the osculating circle, by constructing the circle through three

points, and constructing the sphere through four consecutive points, respectively.

This geometric approach uses (2.5) and (2.10) and avoids numerical differentiation.

3 GEOMETRIC INVARIANTS

The new data needed for evaluation can be obtained by tactile scanning or by laser

scanning. It is not necessary to obtain coordinates along the edges of a part,

coordinates along any prominent feature line should be sufficient- To illustrate the

strategy proposed, we assume that the x coordinates of a set of N unequally spaced

points

P n = 1,...,N • (3.1)
n

have been measured along a space curve. A circle is constructed through each triplet

P . , P , P _ , and the radii are attributed to P , as shown in Fig. 2. In a similar

way, spheres are constructed through the quadruples P . , P , P _,_, , P o, and

their radii are assigned to P . This provides a listing of the two following sets of

invariants.

p (x ) and R (x ) n = 1,...,N {3.2}

The next task is to compute the arc lengths between P and P , either in the linear

or quadratic approximation, equations (2.13) and (2.14), respectively. These are added

to obtain the invariant descrrptions

p (S ) and R (S ) n = 1 W N (3.3)
rn n n n

where

S = > AS. (3.4)

It should be noticed that the complete description of the part in question has been

reduced to the dependence of two scalar functions.



4 FINDING THE PHASE SHIFT BETWEEN THE IDEAL DATABASE AND THE INSPECTOR
DATABASE

4.1 A FOURIER METHOD

Once the strategy of finding the invariant descriptions

p(s) and R(s) (4-1)

has been executed for the test curve, it remains to be seen if they can be made
congruent to the invariant descriptions

}is) and R(s) (4.2)

of the standard piece. The examination of congruency no longer requires a
homogeneous transformation of vectors x on the test piece into vector x on the
standard piece, because by now it has been reduced to finding an optimum scalar
shift s so that

o

Ms + s ) -» R(s)
(4.3)

If the data on the standard piece (4.2) are essentially given In form1 of pfecewise

continuous functions, finding a shift scalar s to fulfill f4,3> i« merely a least square
fit problem.

More Interesting and difficult is the case where both data, basts I4»tl and {4.2} are

in the form of points spaced at irregular Intervals, One possibility is to interpolate

one set by splines and fit the other set to this spline In principle the s obtained

does depend on the spline shown. This drawback can be avoided by using a Fourier
transform technique. By some rough matching, for example by examination of the
ranges of p, *p> R and R a common interval for all four ^Mtw sets is chosen. On this
support of length t, Fourier series are computed, which Is possible even for oddly
spaced points, This gives

M

p(s) * ] T A sin 2 f̂c ! • B. cos 2wk !
L k L (4.4)

and



M s s
R(s) = y C sin 2fl-k - + D cos 2jrk - (4.5)

k=0 L L

where at most M < N/2 coefficients are computed. Similar fits are found for />(s)

and R(s) with coefficients A, B , C and D. The task of finding a suitable shift s

so that (4.3) is fulfilled, becomes, in terms of the Fourier coefficients

(s + s ) (s + s )
A, sin 2irk ^ + B, cos 2*k 2-

s s
sin 2^k — + B cos Ink - (4.6)

L k L

Combining with identities:

sin(a + b) = sin{a) cos(b) + cos(a) sin(b)

cos(a + b) = cos(a) cos(b) - sin(a) sin(b)

results in the matrix expression

s s
cos Ink - ^ - sin Ink - ^ A. A

L L fc ^
(4.7)

sin 2wk - ^ cos ^*if -£
s

L K K

for all k. In ttoe two dimensional AfB plane one has to find a phase angle 2«rk s /L -
o

C so that a rotation by the angle ( being denoted by

\ \

for all k, or

2*k s /L = kC « arctg(|/A) - arctg(Bt/Aj, mod 2» (4.9)



This provides M values of s for each of the two invariants. Ideally they should all

be the same, but this will not be the case in practice.

4.2 A HILL-CLIMBING METHOD

if the curves are similar in shape, there should be a shift of one (periodic) curve

which would align it with the other such that there would be nearly zero area

between them. Thus, another method of determining the shift between the two,

periodic curvature versus length plots, is that of minimizing the area between the two

curves with respect to trial shifts. The area between the two curves for a postulated

shift x is computed then the areas for (x + *) and (x - *) are computed. One of the

three areas will be smaller than the other two. If it is the postulated shift, x, then a

smaller perturbation * is tried and the two areas are calculated again. However, if it

is one of the perturbed shifts, then this becomes the postulated one and the

procedure starts again. This can be carried out until the perturbation becomes small

enough that an accuracy limit is reached.

This method has several problems associated with it. Notably, local minimal areas

which do not represent the true shift may be found (the wrong hill may be climbed).

Hence, this method should only be used once a good starting guess is achieved that

will not lead to the wrong minimum. It is, however, very powerful for getting very

accurate curve matching when a good initial guess is used.

5 LOCATION

Once the shift between the ideal and the inspector data is found, there are different

strategies possible for the location. At this stage, s values on the test piece and

s values on the standard piece have been correlated up to an offset of s" . This
o

reduces the location of the part to the identification of a number of points P on
m

the test piece with corresponding points on the standard piece. Even though the

measured points on both the standard and the test piece will not correspond to each

other, corresponding points can be obtained either by interpolation or by repeated

measurement. All that remains to be done is to find the rotation R and the

translation T so that
Rx + T -* x

for these N points. The minimization of the square distance between {Rx + T) and

x for ail N points requires minimization of



10

Rxk + T - xk | Rxk + T - J k \
(5.1)

with respect to R and x, the superscript k is the summation index. The "bra-ket"

notation <a | b> is used for the inner product of two vectors a and b. Minimization

with respect to T is achieved from

N

= ^ T ^ Rxk + T - xk | = 0 (5.2)
k=1

with the solution

N
N / T | « - R V / / h > < x * I (5.3)

With the center of gravity coordinates

N

N"1 ^ T / xk | = y (5.4)

N"1 2 < xk I = y . (5.5)
k=1

the shift T is merely the shift between the centers of gravity

T | = - Ry + y (5.6)

and with new coordinates counted from the center of gravity

xk - y = t *5-7)

xk - y - f {5.8)

there remains only an equation for minimization with respect to R:

N
fiRi - X"* / R/^ - 7* I R/* - 5* \ is 9)

Since R is orthogonal

< R^ I Rf > - < 4 U > (5-10>

and (5.9) is equivalent to maximizing



k=1

in index notation, with sums over i and j. If the bracket is diagonalized by a singular

value decomposition with orthogonal matrices U and V,

utsujS ( Z W

where

" Ujs ( Z W ) VJL
k l
Z
k = l

is diagonal and

Op = V -R U (5.14)
£s rvc nt ts

is orthogonal so that

0 O = i (5.15)
ns nt st

The last condition can be multiplied by a Lagrangian matrix

0 = (0 O - 6 )LP (5.16)
ns nt st tL

and finally the function

h(R> = g(R} + 0 = 0 ^ ( 0 ^ + O
ns°nt

Ltl " Ls£} ( & 1 7 >

has to be made an extremum. Differentiation with respect to L gives

0 = 3h/3L = D fO 0 2 5P - D #5 3. (5.18)
xy s41 ns nt tx Xy &H sx .̂y

which Is solved by

0 * 1 {a 191

Differentiation of (5.17) with respect to 0 gives

0 = 3 h / 3 O ^ D A s & p ^ & S O L. * 0 i a L . 1 (5.20)
xy sL L sx -Cy nx sy nt XJL ns nx ty tC J

which, with {5.19} has the solution
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(5.21)

1

The solut ion (5.19) can be inserted into (5.14) to f ind the original rotat ion:

R i j = V i s U
j S <5-22>

A dif ferent derivation of this result can be found in Hanson and Norris (1981).

6 EXAMPLES

In the following two sections, the methods described above are performed for an

ideal space curve, an oblong ellipse, and for a realistic sample from the automotive

industry, an automobile hood.

6.1 OBLONG ELLIPSE

The egg shaped curve shown in Figure 3:

y = cos(theta)

x = 10 x sin(theta) 0° £ theta < 180°

x = 2 x sin(theta) 180° < theta < 360°

was chosen because it is closed and not periodic in curvature (as an ellipse would

be). Ninety points were distributed at even intervals in theta (theta = Q, 4, 8,_,356)

thus creating a series of line segments of unequal length to form a CAD database

for the ideal space curve.

Each point was assigned a radius of curvature by fitting a circle through it and its

two adjacent points. Curvature was assigned to each point by inverting the radius of

the circle described above. Each point was also assigned a delta length which was

the distance between the previous point and itself, using the Euclidean norm. Length

was assigned as the sum of the delta lengths from s = 0 to the given point. Each

point thus had a position (x,y), radius of curvature, curvature, delta length, and length

associated with it. From this data, the curvature can be plotted as a function of

length. This is also shown in Figure 3.

If a robot or other automated inspection system were to measure the position of



13

points along the space curve, a similar database could be formed. It wou

however, have three major differences. One, some error (noise) would be introduc

in the measurement of position- Two, the points measured by the inspector wot

not correspond to the points of the Ideal database. It for example, the edge of

ruler were the space curve in question, the ideal database might give the positions

the Inch marks while the inspector might find the positions of every other half in

mark. Thus the number of points the inspector might find would most likely i

different from the number of points in the ideal database. And third, the point whi<

the ideal data-base considers to be the beginning of the database Is most likely n

going to be the point the robot inspector first finds. Thus, the point at s • 0 In or

database might not be anywhere near the point where s * 0 in the other database.

In order to simuJat* a database produced by the robot inspector, the Ideal databas

wee copied into the snsptctor database and the following three operations performec

1, Fluctuation (see F?gyr# 4); Each point was randomly moved along the
space curva, using linear interpolation between the points, within a
window dtsignattd fi&duMion* The window was normalized to the length
of the nearest point Thus if lite fluctuation window were 0,5, a point
coyftl be movtd halfway to the nearest point if random chance so elected™
Pfttctyatfon was kept between 0.0 and 0,49 for simulation purposes since
points could overlap when fluctuation was 0.5.

2* Motse *see Figure 51c Each point WB$ movtcJ to a random location within a
box of width, designated noi$$$ in the two dimensions Ix and y}« This
differs from fluctuation in that the movement Is not restricted along the
space curve. The box size was normalized to the distance to the nearest
pnmt Simulating the accuracy of measurement systems (where accuracy is
proportional to volume}. Thus rf noise were set to 1%, and the nearest
point were 10 cm away, the point would b# randomly r«iocat«d in a box 1
mm mi$% m * and 1 mm witf© in yf centered about the point's original
position.

3* $hrft 'ssi? ? gn*e C?: The po;nr con$idtrtd to be the beginning of the
iptcs z&)te :% * ^ mz% altered to th« one n#*r#sl a given valy« $Mft
Tn.f ^jts ro e?*ec! cr t f t psstt.on of the points, but ctusts only a shift

The p-sfc-'ft'tt •.$ irnr ?o Mt€f^r-rt8 Â nere in lha ideal database woyld the first point

I'm mta5^.*fTt*r* s-ii*.*** »& ^o^ra- ?M$ stuff m $, between the ideal databaaa

tn§ ' f^p^r^t ^3?*£3^e. s.cn'2 a-'ci^ u$ to form corresponding points to¥

^te^po §* T r«r/.«e^ :^» ^tstz^t^ D^^!$ to the ideal points. Once corresponding

»'<jcrt» *••* *r;'w.*: **•* r ; ; : f f f ;:•* *-*iid*irg tn# coordinati ir«niform between the
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To find the shift, both the Fourier coefficient method and the minimized area

between the curves method were used. First, the median value of the first ten shifts

produced by the Fourier coefficient method was used on the radius of curvature plot

{inverse of curvature). Note that clipping the value of the length of the total curve

was used to avoid near infinite values at straight line sections. The shift reported

here was accurate to within one percent of the total length. The hill-climbing method

of Section 4.2 was then used to achieve higher accuracy, and for the example shown

with 10% noise (unreasonably high), and 0.5 fluctuation, an accuracy of 0.0081% of

the total length was found for the shift shown. Figure 7 shows the plot of the

shifted results on top of the ideal data.

With this shift, translation and rotation between the ideal and inspector database is

determined by the methods described in Section 5 (Location). After performing their

transformation, the accuracy of the process is determined by calculating the shortest

distance from each inspector database point to the closest line segment on the

inspector database.

One hundred and sixty trials were run to determine the average accuracy of the

algorithm. Four values of fluctuation were tried against four values for noise, with

ten trial shifts for each combination. The resulting accuracy is shown in Table 1.

The curve was 25.156 units long, and for 1% noise with 0.3 fluctuation (much worse

than the measurements will hopefully be) the average error was 0.0033 units. To

determine the effectiveness of this strategy in an actual manufacturing environment,

the simulation of the next example will produce error measurements in millimeters.



FLUCTUATION
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ELLIPSE ERROR NORMALIZED TO LENGTH EXPRESSED IN PERCENT

0.46.

O.JO .

O.iO

©.00

0.0107

0.00*0

O.Oi*.

o.c

O.Oll 0.0i«0

O.OIJ4

o.

o.oo OvfO 0 . 1

Table 1: Ellipse error based on ten trials for each parameter
pair.

6.2 AUTOMOBILE HOO©

A CAD database of an automotive hood was obtained as shown in Figure 8. The
perimeter lines were extracted to form the ideal database for the space curve of the
edge. The 5.719 meter long edge was described by the three dimensional coordinates
of 218 points around the edge with concentration of points roughly proportional to
curvature.

Once again, curvature and length were assigned to each point and plotted as shown
in Figure 9. A mock inspector database was also formed by taking each ideal point
and fluctuating it adding noise, and shifting the s « 0 point (as described in the
previous example). The resulting curvature plot is shown in Figure 10.

As In the previous example, 160 trials were run to determine the average error for
different values of fluctuation and noise* The results (see Table 2) are surprisingly
good, especially considering the second derivative nature of curvature. For high
values of noise and fluctuation {1% and 0.5), the error is one-fifth of a millimeter.
This Is well within the tolerances used by the automotive industry during hood
inspection of piys or minus one-half a millimeter along the critical edges.
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FLUCTUATION
CAR HOOD ERROR NORMALIZED TO LENGTH EXPRESSED AS PERCENT

0.3O .

0. 10 .

0.00 .

0.0O92

0.0062
10.Ji M.I

•*

0.0O25
10.1* M.l

0.0000

0.0123

O.OOBi
I«.M M.I

0.0O33
(0.10 M.I

0.0OO2
10 01 mm.\

0.OOS6
ie.«t M.)

o'.ooei
IO.» M.I

o.ooso
iO. 17 M.I

0.0012

0.23i«
tia.x M.I

0.0036
10.JO M.I

0.0023
tO.U M.I

0.0022
IO.lt M.I

0.00 O.iO 0.90 1.00

Table 2: Average automobile hood error over ten trials for each
parameter pair.
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Figu re 1: The tangent vector t and the normal vector n lie in the
osculating plane with normal b.

•U-t

Figu re 2: The three consecutive points P n, Pn and Pn +1

fie in the osculating plane with normal £T. Within these 3 points
the osculating circle with radius pn is constructed.
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Figure 3: Ideal database for obtong ellipse.
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SPACE CURVE
(90 LINE SEGMENTS)
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S*0

CURVATURE VERSUS LENGTH PLOT
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Figure 5: After adding noise (10%) to the fluctuated database.
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Figu re 6: After shifting the noisy, fluctuated database.
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FIgu re 7: The best fit of the inspection database to the ideal
database.
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Figu re 8: CAD database for automobile hood.
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Figure 9: Curvature plot for ideal hood database.
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Figure 10: Curvature plot for inspection database.


