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Abstract

One approach to pattern classification is to match a structural description of a pattern to models which
describe the structural properties of pattern classes. The centra problem in structural pattern matching is to
determine the correspondence between the symbols which comprise a model and symbols which describe a
pattern. The difficulty of determining this correspondence depends criticaly on the representation that is
used to describe patterns.

This paper presents a probabilistic representation for structural models of pattern classes. Both pattern
descriptions and models for pattern classes arc based on symbols which represent gray-scale information at
multiple resolutions. A pattern description is given by a tree of symbols with attribute values. Structura
models are represented by a tree of symbols with probabilistic attributes. The position and scae (resolution)
of the symbols, as well as other "features,” arc represented by these attributes.

An agorithm is presented for determining the correspondence between symbols in a description of a pattern
and symbols in amodel of a pattern class. This algorithm uses the connectivity between symbols at different
scaes to constrain die search for correspondence.  An interactive training program for learning models of
pattern classes is described, and some conclusions from the work are presented.



1 Introduction

This paper describes a system for classifying two dimensional gray scale patterns which is based on
sructura pattern matching using a multiple resolution representation. The mathematica basis for this
representation is the "Difference of Low Pass' (DOLP) transform [3] The DOLP transform is defined,
folowed by the definition of a symbolic structure which Is used to represent patterns. A matching algorithm
is described which exploits the multiple resolution structure to efficiently match amodel for a pattern class to
an observed pattern. A training agorithm for deriving pattern models from observation sets is aso presented.

11 The Structural Pattern Recognition Problem

Hie purpose of a pattern recognition system is to label a pattern as an instance of a predefined class. One
approach to pattern classification is structural pattern matching. In this approach, a structural description of a
pattern is matched to a set of models which describe predefined pattern classes. A smilarity measure is
computed for the match for each pattern class. The pattern is then classified as an instance of the class for
which the similarity measure is maximized.

The most important aspects in the design of a structural pattern matching system are

* the representation which isused for the pattern and models,
* the matching algorithm, and
* the similarity measure.

This paper describes the use of a multiple resolution representation for pattern descriptions and object
models. It then presents a matching algorithm which uses the results of matching at low resolution to guide
and smplify the matching at higher resolutions. A similarity measure is presented based on the logarithm of
the probability that each symbol in the description is an instance of the corresponding symboal in the model.

1.2 Summary of Solution

A structural description for patterns typicaly has the form of a network of symbols. In the system describes
below each symbol has an associated set of attributes. We call such a description an "attributed graph” [12].
This paper describes an attributed graph representation for image patterns in which the symbols are derived
from peaksand ridgesin the Difference of Low Pass (DOLP) transform [3].

A structural model of a pattern represents the ensemble of descriptions of patterns in the training set Thus,
while a model has the same form as a description, symbols in the model are assigned a probability of
occurrence and the symbol attributes are described by probability distributions. In its general form, such a
pattern model is a "probabilistic graph model."* In this paper we describe techniques for learning and
representing probabilistic graph pattern models from examples of multiple resolution descriptions of patterns.
These technique are restricted to a subset of the multiple resolution representation described in [3], given by
local peaks. This subset has the form of a multiple resolution tree. Thus, in this paper we will describe a
structural modeling technique based on a "Probabilistic Tree Model "

'Kim ailed « "Random Gnph Motel"
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Matching a pattern description to a modd is a problem of determining die most likely correspondence
between symbols in the pattern description and symbols in each model. One of the properties of a multiple
resolution representation is that it permits the matching process to be decomposed into a sequence of very
smdl matching problems, That is, matching may begin with a smal number of low resolution symbols. The
connectivity of symbols at adjacent resolutions permits die correspondence at low resolutions to be used to
congrain the possible correspondences at higher resolutions. This paper describes such a matching algorithm.

The mogt likdly correspondence provides the basis for a smilarity measure. In this paper we describe a
similarity measure based on the log likelihood that the most likely corresponding symbol is an instance of die
modd symbol. The sum of the log likelihoods is used as agloba smilarity measure for the match between
the description and the model. The pattern is assigned the labd of the class for which the match produces the
largest Smilarity measure above athreshold

1.3 The Multiple Resolution Representation of Patterns

Earlier papers[3] have described a representation for shape based on peaks and ridges in the DOLP
transform. A description of apattern expressed in this representation was shown to retain its structure despite
changes in size or orientation, and such a description was shown to degrade gracefully when boundaries are
blurred and when the image is corrupted by various forms of image noise[2]. Experiments have been
performed in matching motion stereo images using the DOLP transform. An agorithm for matching rows
from co-planar stereo images has recently been described using a one dimensiona form of DOLP transform
[4]. A fast computation technique for the DOLP transform has dso been defined [5].

The representation presented in this paper is based on connected sequences of peaks called "Peak Paths'
and on connected sequences of ridges caled "ridge paths." This paper described a matching algorithm that
only makes use of Pesk Paths. Extending this agorithm to use ridge paths is believed to be straight forward.
Each such symbol has a set of attributes associated with it These symbols are connected through the
resolution leves by connectivity relationswhich give it the form of atree. Using these higher level symbols
further decreases the complexity of the pattern description, and thus smplifies the matching problem.

2 The Difference of Low-Pass Transform

This representation is based on areversible transform referred to as the "Difference of Low-Pass' (DOLP)
transform pj. The DOLP transform is areversible transform which converts an image (or signd) into a set of
band-pasimages (or signals). Each band-pass image is equivalent to a convolution of the original image with
a band-pa® filter, b Each band-pass filter is formed by a difference of two size scaled copies, of a low-pass
filter, gn and g"

%k = %-; ~ %
Each low-pass filter gy is a copy of the low pass filter g scaled laiger in size. These band-pass images
comprise a three space (the DOL P space) in which the third dimension is scale (or resolution).

The DQLP transform expresses the mage information at a discrete set of resolutions in @ manner which
preserves dl of the toiage Information. This transform separates loca forms from more globa forms in a
manner that makes no assumptions about the scaes at which dgnificant information occurs. The DOLP filters
overlap in the frequency domain; thus there is asmooth variaion from each band-pass level to the next This




"smoothness' makes size-independent matching of forms possible and makes it possble to use the symbols
from one band-pass level to constrain the correspondence of symbols at the next ( higher resolution ) level.

2.1 Definition of the DOLP Transform

The DOLP transform expandsan N = M x M image signa p(x.y) into K band-pass images, *&(x,y). Bach
band-pass image is equivalent to a convolution of the image p(x.y) with a band-pass impulse response RJx.y).

<&Jxy) = p(xy) * hd(xy) (@]

For k=0, the band-pass filler is formed by subtracting a circularly symmetric low-pass filter go(x,y) from a
unit sample positioned over die center coefficient at the point (0,0).

bo(x.y) = S(Xy) - Go(XY) %)

The filter bo(Xyy) gives a high-pass image, “$>(xxy). Thisimage is equivalent to the result produced by the
edge detection technique known as "unsharp masking" [10].
Bo(xy) = p(xy) * (5(xy) - Go(Xy)) 3
= Pxy) - (p(xy) * go(xY))

For band-passlevels 1 < k < K the band-pass filter is formed as a difference of two size-scaled copies of the
low-pass filter.

b(xy) = awxy) - orfxj) 4

In order for the configuration of peaks in a DOIP transform of a form to be invariant to the size and
orientation of a form, it is necessary that each low-pass filter, gJx,y) be a copy of the circularly symmetric
low-pass filter go(x,y) scaled larger in size by a scale factor raised to the k “*power. [2]. Thus for each k, the
band-pass impulse response, b*x.y), is a sSze scaled copy of the band-pass impulse response, by(x,y). For
two-dimensional circularly-symmetric filters which arc defined by sampling a continuous function, size
scaing increases the density of sample points over a fixed domain of the function. The change in scde
between filter g{cx,y) and filter 8+/**>") is denoted by the the scale factor, denoted S,. For Gaussian filters,
Ss is the ratio of the standard deviations for the k* and die (k+if* filters.

Ss=0p11/0}

It is possible to define a DOLP transform with any scae factor for which the difference of low-pass filter
provides a useful pass band. Marr, for example, argues that a scae factor of §; = 16 is optimum for a
difference of Gaussian filters [9]. We have found that a scale factor S, = \/2* yields effectively the same
band-pass filter and provides two other interesting properties[2].

In principle the DOLP transform can be defined for any number of band-pass levels K. A convenient vaue
ofKls

K="Logs(N)—Ra {5)

Where RQ is the radius of go(xy). With a scde factor of S;, IMgg,N) is the levd a which the original

distance between filter samples becomes equal to the width of the image. Subtracting J© gives the levd a
which the filter gg(Xsy) becomes larger than the image.
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The DOL.V transform is reversible which proves (hat no information is lost. The origina image may be
recovered by adding al of the band-pass images, plus a low-pass residue. This low pass residue, which has not

been found to be useful for describing the image, is the convolution of the lowest frequency (largest) low-pass
filter, i-?h (\\y) with the image.

wxy) - (p(xy) * oixyj) + ]k'[_,<'kax.}J (6)
-0

2.2 Fast Computation Techniques: Resampling and Cascade Convolution

A full DOLP transform of an image composed or N samples, produces K = Logs(N) band-pass images of
N samples each, and requires O(N?) multiplies and additions. Two techniques can be used to reduce the
computational complexity of the DOLP transform: "resampling” and "cascaded convolution with expansion”
[3]. Combining these two techniques gives an algorithm which will compute a DOLP transform of an N

sample signa in O(N) multiplies, producing 3N sample points.

2.3 An Example of a DOLP Transform

Figure I: A simpled DOI.I* transform of an image with tvm holts

Figure ! shem a DOhf ttrv*hnn of jn linage of two h»\u that was produced using ihc fast comput;«ion
twhniqucs de*ubftj above. In this figure titt m™\~ at i\v: bwci rijht is the high frajuenty image, i"Jxyi
‘The upper left cower shimstjc 2evd ! haul »ai®iuwi\ '&{%\% %inle i\v< upjvr right liainl 4 orner contains
the level 2 hanJ-pjss mugc, A%, jA i juier\\mi ibc kui 1 fivnd pass hn:"c jorc knets 3 and 4, ihen 5 and 6,

etc.




Figure 2. An enlargement of band-pass levels 5 through 11

Figure 2 shows an enlarged view of band-pass levels 5 through 13. This enlargement illustrates the unique
peeks in the low frequency images that occur for each gray-scale form. Examples will be given beow using
the symbolic description which was produced from this image.

3 A Multiple Resolution Representation for Gray Scale Patterns

The amount of information required to represent the structure of a pattern may be greetly reduced by
encoding a symbolic description of the DOLP band-pass images. We have developed two levels of symbalic
representation for patterns based on the peaks and ridges from the DOLP transform. The first leve is
composed of symbols derived directly from the individual DOLP samples. These are DOLP samples which
arc found to be locad positive maxima or negative minima in one, two or three dimensions within a DOLP
band-pass image. The second level symbols exploit a connectivity between pesk and ridge samples which is
inherent in the DOLP transform. Sequences of connected peaks and ridges arc grouped to form symbols
caled "Pesk Paths' and "Ridge Paths." fTiee two levels of symbols are described below.

3,1 Definition and the Symbols Set

The "locd neighborhood" of a DOLP sample includes ihc nearest eight neighbors on the sample grid at its
band-pass level A "peak" (or P-nodc) is a locd positive maximum or negative minimum within a two-
dimensiona band-pass image. A "ridge-node" (or R-nodc) is aloca one-dimensional positive maximum or
negative minimum within a two-dimensional band-pass image.
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The 1)01 P shape representation is based on four types ofsymbols. Two of these arc detected in each 1)01 P
Band-Passimage. These are:

R-nodcs: 1)01.P samples which are on a ridge (1-D maxima or negetive minima within u band-pass
image).
P-nodcs. DOI/P samples which are locd 2-D maxima or negetive minima within a band-pass image.

These are R-nodcs which are amaxima in every direction.

The other two symbols arc detected within the three dimensiona space (x, y, k) defined by the DOLP
transform.

M-nodes: P-Nodcs which have a DOLP sample of larger magnitude than P-nodcs at adjacent
positions in adjacent band-pass images.

L-nodcs: DOLP samples which are on a ridge across levels (i.e. in the three space (x,y,k)). These are
R-nodcs which arc larger than their neighbors a adjacent band-pass levels above and

below in die DOLP space.

The symbol set provides the basis for structurd representation of gray-level shapes in images. To complete
the representation, each symbol, P, M, L, R, retains four attributes, (x,y,k,d):

xy) the image coordinates of the symbol;
k the bandpass levd of the symbal;
d the intendity of the 1)01 P image at the sample.

These attributes attach quantitative information to each symbol. The attributes are used to impréve the
effidency of matching by congtraining possble structural correspondences, as wdl as |mprovement in
matching accuracy and reiability. :

Let us define the the firg levd symbols asalist of nodes { vj, which arc connected between levels by a set
of links, {c‘}. A nodeconssts of atype fromthe set {P, R, M, L} and as&t of attributes{x, y, k, d} .
Aink, cuismade between node v, at level k and nodevj at leve k-1 if and only if

L \ and vl. have DOLP vaues of the same 9gn, and

2.\, and y. arc at adjacent band-pass levels and arc within a predefined distance of each other. The
neighborhood ske is gpproximately equd to the inner postive lobe of the larger DOLP filter.

We have implemented peak linking with an dgorithm that starts at the highest resolution level (1), and
steps up through the baml-pav* images to the lowest resolution level (K-1). For each peak at level k, asearch
is made over a5 by 5 sample region in levd k-f 1. The pesk a Ic\cl k is linked to the nearest peak et leve
k+1 within this region. '

The node types of R and I* AIC assigned based on the \;iluc of a IX'MP sample relative to its locd
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Figure 3: Subset relations of node types

neighborhood. A DOLP band-pass sample which is a locd 1-D positive maximum or negative minimum
within an band-pass image is labeled as an R. A node of type R which is a positive maximum or negative
minimum in al four directionsin an image is labeled asaP.

The node types of L and M are assigned based on the relative values of the DOLP sample attributes to
linked nodes of type R or P. A node at level k of type R may be labeled asa nade of type L if it is connected
to nodes at level k4-1 of type R which have a smaller DOLP sample, and it is not connected to a node at level
k-1 of type R with alarger DOLP sample. Similarly, a node of type P may be labeled as a node of type M if it
is connected to nodes at level k +1 of type P which have asmaller 130LP sample, and it is not connected to a
node at level k-1 of type P with alarger DOLP sample.

Thus the node types can be grouped into subsets, based on context, asshown in figure 3. All nodes arc type
R. Some nodes of type R can be type L. Some nodes of type R or L can aso be type P. Some nhodes which are
both type P and type L can dso be type M.

Figure4:. Circle representation of the negative peaks from levels 11 through 4
of the larger bolt from figure |. Darker circles represent
M -nopl%, lighter circles represent P-nodes.

An example of the use of peaks to represent a gray scale pattern isgiven in figures4 and 5. Figure 4 shows
the negative peaks from band-pass levels 11 through 4 for the larger bolt in the DOLP transform image shown




Level
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<105 -105 P
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-106 M
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4> (62, 94) (104, 92) (80, 158) (94, 158)

Figure5: The negative peaks from levels of 11 through 4 which
describe the larger bolt from figure 1

infigures1 and 1 For smplicity, only negative P-nodes over this bolt at the low resolution levels are shown.
Figure 5 shows some of the attributes of these peaks. At the top of each symbol, the DOL P sample vaue, and
the symbol type (M or P) are shown. In the second row, the coordinates are shown in parentheses as (X, y).
L-nodes and R-nodes, and the opposite signed pesks are not shown in these figure.

3.2 Peak Paths

In general, when a DOLP filter has a high correlation with an image pattern, a peak node will occur at
gmilar locations in the set of adjacent band-pass images. These peaks will be assigned a connectivity as
described above. Except in rare cases, the magnitude of DOLP sample attributes of these peaks will rise
monotonca Sy through die levelslo alocd maximum and then decrease. It ispossible to use this regularity to



group collections of connected peaks into a second level symbol cdled a Pesk Path. ‘Hiis second level
encoding can gregtly reduce the complexity of p;ittcrn description.

A connected set of P-nodcs form a tree which spans from low resolution to high resolution. Pesk Paths
represent branches in this tree. A connected set of P-nodes from level i to level j (i >j) arc grouped into a
Peak Path whenever:

» aP-node at leve j isalocd minimum along a Pesk Path, or

» aP-nodc at level j has more than one P-nodc at level j-1 attached to it

When a Peak Path is formed by cutting a connected set of peaks with one of these rules, die top (low*
resolution) Peak Path Is said to be a Parent Peak Path, while the bottom (high resolution) Pesk Path is said to
be a child T?cak Path. Pegk Paths formed in this manner retain their connections. These connections are the
basisfor the tree structure of both the shape descriptions and probabilistic models described in this paper.

A Pesk Path, Py, is defined by

if avector of attributes,

/ a set of connections to the parent and children Peak Paths, if they exist

The attributes for a Peak Path arc the set
a'= {top, x, ¥, k, d, t,1 ¢}

These attributes are sometimes referred to as ag through a. As defined above, every Pesk Path contains an
M node. The M-node playsacrucia role in defining the attributes of a Pegk Path. The attributes (X, y, k4 d)
are smply the attributes of the M-node. The attributest and 1 reflect the length of the Pesk Path, while the
attribute ¢ describes the number of children.

Top A boolean which is true if the Peak Path is not the child of alower resolution Pegk Paih.
x,y) The image coordinates of the M-node of the Peak Path.

k The band-pass level of the M-node.

d The DOL P amplitude of the M-node.

t The distance (in band-pass levels) from the top most node in the Peak Path to the M-node.
1 The number of band-pass levels spanned by the Peak Path.

c The number of children Peak Paths which descend from this Pesk Path.

The connections, 1, include a connection to a parent Peak Path if It exists, and a connection to each of the
children Peak Paths.
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It is dso possble to define path structures for R nodes and for L nodes. A ridge path, "R-Path is a
sequence of ridges of the same dgn from adjacent locations in the same band-pass image. R-Paths are
characteristic of boundary segments at a given resolution level R-paths were used in the shape matching
technique described in [2]. An "L-Path™ is a connected sequence of L-Nodes of the same sign connected to
adjacent locations at the same or adjacent band-pass levels. L-Paths are characteristic of elongated shapes.
An L-Pah usudly terminates in an M-Nodc. In the near future we will extend die training and matching
techniques described below to include L-paths. Inclusion of L-paths into descriptions and models will create
a network structure between the branches of the Peak Path trees.

Figure 6: A circle representation of the M-nodes of the
Pesk Paths for the larger bolt in figure 1.
The scale of the M-Nodc is represented by the radius of the
circle. Theradiusis chosen to approximate the radius of
the inner positive lobe of the Difference of Gaussian filter.
The position of the M-node is represented by the position
of the circle.

106 n <9
(88,112)

-67 M <7> -78 M <8> 91 M <8
(64, 100) (96, 104) (88. 144)

-57 M <5> -56 M <5>
(88, 158) (92, 156)

figure 7:  The M-node attributes of the lowest resolution negative
Peak-Pathsin the larger bolt shown in figure 5

Figures 6 and 7 diows the Pegk Pate that result from the peaks shown in figure 5. Figure 6 shows acircle
repre«Etaiioft from the M-nodes from the low resolution Pesk Paths. Figure 7 shows the connectivity
between Pesk Paths and the attributes of DOI.? sample intensity and level for the M-node, and the locations
of the M-nodes. Only the negative Pesk Petlis at the lower resolution levels (levels 11 through 4) are shown.
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4 Probabilistic Models of Gray Scale Patterns

A pattern model serves as a definition for a class of patterns. In structural pattern recognition, die pattern
mode defines the symbols, attributes and connectivity that have been observed in an ensemble of training
samples. In most cases the members of a training set will exhibit some variability in structure. This variability
may be expressed in a pattern model by attaching a probability of occurrence to each symbol, and expressing
the attributes of each symbol as a probability distribution.

The probability of occurrence and the attributes for each symbol are learned by "training” on a sample set
for each class. In those cases where the structure of the training samples arc the same, the probability of
occurrence for the symbols will be high, and the attributes will be expressed by a narrow probability
distribution. In those cases where the structure varies, the probability of occurrence for each symbol will be
decreased and the attributes will be expressed by probability distributions with a large variance. A training
process for multiple resolution probabilistic graph models is described in section 6. This section defines a
technique for representing a probabilistic graph model based on Pegk Paths. The extension of thisto L paths
has not been performed as of this writing, but is thought to be straight forward.

4.1 Definition of Model Symbols

A multiple resolution probabilistic graph model, M, is composed of a position transformation (or "pose™) :I",
and a ligt of labeled Peak Paths, *s, forn = 1, ..., N, with probabilistic attributes and with connections to
other Pedk Paths. Each Peak Path, w,, contains:

L alabel from theset {PP, TP, CP} (described below),
2. aprobability of occurrence, PC") ,‘
3. aset of attribute probabilities, En and,

4. aconnection to aparent Peak Path (if it exists) and a set of connections to children Pesk Paths X_..

Each attribute probability is represented by a Gaussian probability density function. The mean and
standard deviation of the density function are determined incrementally during training. In principle, the
connections, Xﬂ, can be implemented with a probability attribute. In die techniques described in this paper
thisis not done.

It is desirable to be able to represent classes of objects which can undergo transformations such as scaling,
trandation, rotation, various forms of stretching, and articulation of rigid components. The probabilistic
models defined here are designed to accommodate such transformations. This is accomplished by defining
the position, orientation and scale of each symbol relative to a parent symbol Only aroot symbol, called the
"Principal Peak Path" has attributes in absolute coordinates. For other Peak Paths in the model the absolute
attributes at a particular pose are obtained by following the tree structure from the Principal Peak Path.

Thus, for example, in the training samples when a part of a pattern occurs scaled or rotated with respect to
the rest of the pattern, the probability distributions for position or scale of the lowest resolution symbol which
describes that part is given alarger variance, but the distributions for higher resolution children symbols are
kept small Defining attribute probabilities relative to parent symbols requires die definition of labels for
Pesk Paths-



4.2 Peak Path Labels in a Model
Peak-Paths arc divided into three classes according to their position in the model:

* Principa Peak-Paths (PP) contain the lowest resolution M-Node in the model. It is the only Pesk
Path whose attribute probabilities arc expressed in absolute coordinates.

* Top Pegk-Paths ('IP), other than the Principa Pesk Path, have no parent peak-paths (i.e., are not
children). Attribute probabilities of TP symbols are defined with respect to the PP.

* Child Pegk-Paths (CP) arc directly connected to lower-resolution "parent” Pesk Paths. The
attribute probabilities arc defined with respect to the attributes of the parents.

4.3 Attribute Probabilities and Likelihoods

Matching a description to amode requires finding the correspondence mapping which maximizes thejoint
Bayesan probability that each description symbol is an instance of the corresponding model symbal. In the
techniques below, the matching dgorithm is designed to maximize the sum of the log likelihood of the
conditional probability [6].

The probability that an observed description Pesk Path, Pp is an instance of model Pegk Peth, 7r,, isgiven
by Bayeslaw to be

P(-&‘Ifn)P(wn)
P(P)
Hie probability of the description Pegk Peth, 1\ Pj\ is constant for all possible model Peak Paths, and thus
may be ignored in a search for a maximum. The probability that a model symbol' exists, Pin® is the

probability of occurrence. Thus, the modd symbol which has the highest probability of being an instance of a
description symbol may be found by finding the model symbol, 7in, for which similarity, Syyy ismaximized.

P("’nipj)z

Sia= Plwy) P(P]wy)

The expression P(Pj\vy)) may be evauated as the probability of obtaining the attribute vector, 3 of P;
given the the attribute probabilities, a, ; of the model Pesk Paths w*

|
S =P ) p P(ayfe).
=]

This equation assumes that each of the attributes are independent While this may not be drictly true, it
dgnificantly smplifies the implementation of the probability calculations, without serioudy affecting the
performance of the system.

The probability distribution for each attribute «.,is represented by the mean, j .t and the variance, o\ ofa
Gaussan digribution* Thus, given the aswmptlon that the attributes have a covarlance which is the |dent|ty
matrix, the probability of observing an attribute vaue, &, given a probabiligtic attribute, cr, isgiven by
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Note that -n in tliisequation refersto the well known constant

Representing these probabilities with a Gaussian distribution provides the opportunity to replace the
caculation of a probability for each attribute, with the calculation of a computationally cheaper log
likelihood.

a; =Bl 1
(IJ Bin) T IH( _

I Pag;| agn))=—
20}.!1 0’,",,'\/2'}7

The term

(—=)
a,-,,,\/Zw
scales the probability distribution of each attribute so that it has an area of one. This term is constant for a
given mode Peak Path attribute, and is not needed when searching for the description Pegk Path with the
highest likelihood of correspondence. It is, however, needed for the global similarity measure.

Thus, the likelihood, 17, that an observed description Peak Path, Pj, is an instance of amode Pegk Path wyy
\sgiven by

: I
Lin= ISy = P+ 3 C By ()],
=1 20'3"” G’fﬂ\/‘Zﬂ'

This fonnula replaces the use of true probabilities widi a log likelihood measure which returns a negative
vaue near O for attributes near the mean and a more negative number for less likely vaues. Because the
logarithm is a monotonic function, the sorted order and the maximum of the log likelihoods will be the same
asfor probabilities. Thelog likelihood is also considerably less expensive to compute.

4.4 Probabilistic Attributes in the Model
For Principal Peak Paths, the attribute set is identical to those used for description, except that each
attribute has a random variable with an associated probability distribution in place of avalue.
For TPand CP Peak Paths, the attribute probabilities used in the model divide into two classes:
1. attributes which are dependent on the parent Peak Path,

2 attributeswhich are Independent of the parent Pesk Path*
Thedependent attributesare:

& 6: the angle of the vector from the parent Peak Path. The Principal Pesk Path is the parent
for Pesk Paths of type TP.
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& R the distance from the parent Pesk Path

oy Ak: the difference of levd from the parent Pesk Path

a, Ad: the ratio of the DOLP sample intengity of die M node of this Peek Path to the parent Pesk -
Path

Modd independent attributes have been defined by

& the number of levels between the M node and the top-most pesk in the path,
& L the number of levels between the top most and die bottom-most peak in the path,
& C the number of children Pesk Peths.

4.5 The No-Match Likelihood

A lower bound on the log likelihood measure, caled the "no-match” likelihood, Ln noger is provided by the
probability of occurrence of amodd Peek Path. This is the likelihood that will be used in a globd similarity
measure if no correspondence is found For amodd Pegk Peath.

me = In(l.0- Xz )+ 8,
The term fiy is a constant determined from the attribute distributions in order to scale, likelihoods of
observed and unobserved symbals.

4.6 Model Transformation

Except for the Principal Pesk Path, each caculation of alog likelihood function requires that description
Peek Path attributes which correspond to modd dependent attributes be converted to a "relative" coordinate
system. The attributes of digtance, R, scde, Ak, and intengity, Ad, can be computed relative to the attributes
of aparent Pesk Path. However, orientation requires additional information. This information is supplied by
the "pose" of the modd.

During matching, the pose of the modd is given by a "transformation/* T, which is hypothesized to
trandate, scae, and rotate the modd Pesk Paths s0 that they can best correspond to description Pegk Paths.
Thefirst step in maiching is to determine the posgtion, 'scae and intengity parts of T from the Pegk Path in the
description which is hypothesized to meich to the Principal Pesk Path in the model. The second step Is to
determine an estimated orientation from the correspondence of the model Pesk Paths of type IP to the
description Pesk Paths of type | P.

5 Multiple Resolution Probabilistic Matching

Matching a probabilistic graph or tree modd to a structural description is a problem of Finding a
contspondencc relation between the symbols In the model and the symbols In the description which
maximizes some global smilarity messure. In the algorithm described here, the globa smilarity measure is
the sum of the log likelihoods of the individua Peal Path correspondences.
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This agorithm uses the hierarchical structure of the multiple resolution description and modd to
successvely constrain possible correspondences. Thus the algorithm assumes that the lowest resolution Peak
Path can be rdiably found in the data. This may not be an appropriate assumption in situations where the
2-D image of a 3-D object can have a significant variation in form due to changes in 3-D orientation or
photometric effects.

The matching algorithm consists of the following steps:
1. Determinean initia "Pose" which trandates, scales the model onto the d&ecripﬁon.

2. Determine a correspondence between the list of Peak Paths of type TP in die modd and the Peak
Paths in the description. This correspondence provides die orientation part of the pose.

3. Determine the correspondence for the list of Peak Paths of type CP.

As each new correspondence is obtained, alikelihood estimate is updated. This partial estimate may be used
to halt the matching if "reasonable" correspondences are not being found.

5.1 Finding the Pose

The matching process begins with a hypothesis that alow resolution Pesk Path, Pj> in a description is an
ingance of the Principal Peak Path, TJl\, from the model. The smilarity measure, Se, is initidized by
evaluating the absolute attributes of Pj with the sum of die log likelihoods for the Principal Pesk Path, <w,, for
the set of attributes i = 2 to |. The orientation attribute, a, is not meaningful for the Principal Pesk Path.

I _ N '
S,=—Z(a“ aﬁ)+In( 1 )
=1 g\ a; V2w

Ifthisinitid estimate isabove athreshold, then matching may continue.

Accepting the hypothesis for the Principal Pesk Path specifies an estimate of the position, intensity, and
scae for matching. It does not provide any information about the orientation. In our initia matching
algorithm die orientation estimate is determined from the correspondence for a Second Pesk Path. In the
section below we describe an algorithm in which a set of possible orientations are hypodiesized as die first
dage in asearch for the best correspondence mapping.

The Pesk Paths of type TP in the model are sorted by probability of occurrence, resolution level, and
distance from the Principal Peak Path. Our initiadl matching agorithm, uses the Peak Path at the top of this
list to determine the orientation of the Pose. This Peak Path is sometimes referred to as the "Second Pesk
Pah*" The log likelihood similarity measure for the Second Pegk Path is computed for each Peak Path of
type TP in the description, using attributes a, through ar The Pesk Path that maximizes this similarity
measure is chosen as the corresponding description Peak Path. The pose orientation is determined by the
difference in angle of the vector to this Peak Path in the model and in the description.



5.2 Matching Top Peak Paths

Given a pose, the matching problem becomes a problem of finding a correspondence mapping for the Top
(type TP) Pesk Paths that maximizes some global measure of similarity. This is perhaps the most important
and most difficult stage of the matching process. The similarity function for a correspondence between an
individual model Peak Path and a description Peak Path is measured by the log likelihood of obtaining the
description Pesk Path's attributes given the model Peak Path and the current pose. A normalized sum of such
likelihoods is used as aglobal similarity measure.

If there arc Ny model Top Pesk Paths and Np description Top Peak Paths then there arc as many as
NwNp log likelihoods to be evaluated. Such a correspondence problem has become a classic problem in
machine vision, for which a variety of approaches have been investigated and reported. Some examples
include the maximal cliques algorithm [1], relaxation labeling [15], pose clustering [13], hypothesis of rigid
transformation [8] and [7] and heuristic search [14]. Most of these algorithms could be adapted for this task,
although in some cases it would be difficult or expensive to incorporate a generalized similarity measure.

A crucial aspect in the application of any correspondence matching algorithm is the representation in which
the information is expressed. We initidly believed that the expressive power of the Peak Path representation
would permit us to determine the best correspondence without backtracking. In particular we sought to use
die lowest resolution Pegk Paths to determine the pose transformation for the model, instead of using a long
search process. Thus we implemented a very simple correspondence matching matching algorithm which we
have come to call the "greedy algorithm/'

The greedy algorithm is sequential, and does not guarantee an optimal match. The algoritiim is based on the
idea of forming the list of Ny Np possible correspondences and sorting this list based on the likelihood value
for each pair. Correspondences arc then assigned in the order of the likelihoods with no possibility of
multiple matches. To keep the problem small, we only include Top Peak Paths within 6 resolution levels (a
factor of 8 in scale) of the Principal Peak. For our bolts images, this typically limited the number of Top Peak
Paths to less than 10.

Stated more precisely, the greedy algorithm operates as follows:

1. For all model Peak Paths of type TP, irg, for n = 1 to N, and for al description Peak Paths, P,
form = 1 to M, construct the triple (n, m, L™ ), where L” , is the likelihood that w, is an
instance of P,.

1 Sort this list of triples on the field L

m -

3. Starting with the top of the sorted ligt, retrieve the triple, (n, m, L._m,l

a If the correspondence for v, or for Py has been found, then discard this triple and advance
to the next

b. If neither correspoadcice has been found, then mark both symbols and save the
concsfmnitmt*

¢ Adid the likelihood to the partial similarity estimate, Lee S = S + L
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d. If at least one moded symbol remains with no correspondence, and at least one description
symbol remains with no correspondence, and the mogt recent likelihood measures retrieved
from the sorted list is above a threshold, then continue retrieving triples from the list

4. Ifthe partial estimate S, is below a threshold, halt

The principal benefit of the greedy algorithm is that it is fast; it has a computational complexity of
O(NymNp Log(NuNp)), Itisaso very easy to implement

Although, the greedy agorithm has been found to work well in most cases, there are some situations in
which it fails. Mogt of these situations fdl into the following three categories:

The comb effect: If a pattern contains a sequence of identical smdl patterns spaced at close regular intervals,
then if die correspondence for one is not correctly assigned, die correspondence for dl its
neighbors is aso affected.

Noise Effects. If there are spurious Pegk Paths of type TP in the description, these can sometimes block
the correspondence of amodel Pesk Path to the correct description Pesk Path. In this case,
there is usudly no correspondence or a very poor correspondence for the children Pesk
Paths in the model, and the overal likelihood is severdy degraded. The biggest source of
noise was middle resolution photometric effects (highlights and shadows).

Low Resolution Photometric Effects:
The position attributes of the Peak Paths of type TP arc specified with respect to the
principal peak path. If-highlights or shadows arc large enough and severe enough to
interfere widi the Principal Peak Path in a description, then die pose transformation will be
incorrect In this situation, the log likelihoods for al the TP Pesk Peths will be distorted
and frequent mismatches will occur.

Most of our experience with this matching algorithm was obtained with an interactive training agorithm
described below. With this training program, each match was displayed graphically, and we were able to
intervene by hand to reject an incorrect correspondence. The most frequent error (-5%) m our training
examples, was an incorrectly chosen correspondence for the Second Peak Path which results in an incorrect
model orientation. Given the fact that the matching can fal completely if the wrong orientation is sdlected*
we now believe that this orientation part of the pose is best determined by evaluating the correspondence of
Top Peak Paths at a set of hypothesized model orientations.

The consequences of both noise in the description Peak Paths and the Comb Effect can be minimized by
only seeking a match for the modd Peak Paths, and by permitting more than one modd Pesk Path to
correspond to die same description Peak Path. This prevents an error in one correspondence from creating
errorsin other correspondences. Alternatively it is possible to determine the set of correspondences which are
globaly best using a heuristic search agorithm.

The problems caused by low resolution photometric effects are fundamental to using one or two lowest
resolution Pesk Paths to define the model transformation or pose. Any error in the position or scae of the
Principal Pesk Path will degrade the correspondence likelihoods for all the Pesk Paths of type | P, anil thus
increase the possibility of mismatch- We could avoid this problem only by abandoning Gre use of a "Principal
Peek Path" and using one of the other matching techniques listed above.
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5.3 Determining the Pose by Pairwise Search

The comb effect and the effects of middle resolution noise can be minimized by only seeking a match for
eech model Pesk Path and by permitting more than one model Peak Path to correspond to the same
description Pesk Path. The catastrophic results of an incorrectly chosen Principal Peak path or Second Peak
Path can be avoided by hypothesizing a set of possible pose transformations based on pairs of Top Peak Paths.
Thisideais a generalization of the "hypothesis of rigid transformations" technique used by [7] and [8]. These
two ideas are embodied in an agorithm which hypothesizes rigid transformations for the Top Peak Paths in
the model based on the correspondences of pairs of Peak Paths, and then evaluates the global similarity for a
subset of "most likely" transformations. Such an algorithm would work as follows.

For Top Pesk Paths in the model, the pose dependent attributes (a_ through «,), which were previously
computed with respect to a Principal Peak Path, are each augmented with a list of attribute vectors, computed
for a set of other Top Peak Paths. This set can be kept small by only computing relative attributes for Top
Pesk Paths with a probability of occurence of 10 and by restricting each list to the closest N, Peak Paths.

Matching then begins by forming a list of possible correspondences between pairs of Peak Paths from the
Model and pairs of Peak Paths from the description. Each correspondence of pairs defines a pose hypothesis.
For each such correspondence, the log likelihood is computed using the appropriate attribute vector, as well
as the pose independent attributes. The list of pair-wise correspondences arc sorted by log likelihood, Ilie
members at the top of the list provide a set of "most likely" poses. A subset of the "best N" or "all above a
threshold tolerance" can be selected as candidates. The model Peak Paths of type TP are then rigidly
transformed by the each hypothesized pose and aglobal similarity is computed.

For each hypothesized pose, the algorithm computes a global similarity as follows. For each model Peak
Path of type TP» a list is made of the likelihood of correspondence for each description Peak Path of type TP,
given the pose. The best log likelihood is selected for inclusion in the global similarity. If the best log
likelihood is more negative than the "no-match" likelihood, Ln‘ I then the no-match likelihood is used in
its place. For each pose, the sum of the best log likelihoods are computed. The pose which yields the highest
sum of log likelihoods will provide both the pose and the correspondence mapping for Peak Paths of type TP.

The computational complexity for this algorithm need not be prohibitive. If each model Peak Path is
restricted to a list of Np pairwise attribute vectors, then the total number of pairwise combinations in the
model will be N\ N, Pairing each description Peak Path with its nearest N, neighbors will give NpN , pairs.
Thus the number of log likelihoods to be evaluated in -this stage is Ny N"Nf‘; For each pose hypothesis,
computing a global similarity requires NAN likelihoods. If we restrict the search to the N best poses, then
the total number of likelihoods to be computed N is

= 2 2
Ne = N NN+ N N2,

5.4 Watching Children Peafc Paths

If the partial estimate remains above a threshold after finding the best correspondence for the model Peak
P«hs of type TP, then matching continues for the children Pesk Paths (Peak Paths of type CP). Finding the
correspondence for the Peal Paths of type CP is organized as a hierarchical sequence of correspondence
matelies among a very small number of candidates. The organization of this process stems directly from the
structure of the Peal Path hierarchy. Thai is, a model Peak Path can only correspond to a description Peak
Path if their parents correspond.
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Each step in the matching process for child Pesk Paths starts with the correspondence of a mode Pesk Path,
Tr, to a description Pesk Path, Pn,. This correspondence provides a list of children from both the modd and
the description. The log likelihoods For dl possible correspondences are then computed. For N model Pesk
Padis and M description Pesk Paths, this gives MN likelihoods. As M and N are smdl (typicdly 2, and
maximum 4), it is not unreasonable to consider al possble sats of correspondences. The set of
correspondences for which die sum of likelihoods is maximum is selected. Any correspondence in this st for
which the likelihood fdls below a threshold are rejected.

For each accepted correspondence, the global similarity measure is updated by adding the likelihood.
%e =% + km-

For each modd Pesk Path for which no correspondence was found, or for which the best correspondence
was below the no-match likelihood, the global similarity is updated by adding the no-match likelihood,
Se " Se+ I"n»none

The matching algorithm is then applied recursively to each of the correspondences above the reection
threshold.

Matching of Child Pesk Paths proceeds through the Top Pegk Path in the mode in sorted order. For each
Top Pesk Path, the matching proceeds recursively "depth" first If the partiad smilarity measure ever
becomes |ess than the rgjection threshold, the processis halted.

5.5 Similarity Measure

The find result of matching is acorrespondence list and a numerical measure of the amilarity of the model
and the description. The log likelihood values arc rarely exactly zero. Hence every Pesk Path in the model
decreases the overall log likelihood, even if it has a close match. The log likelihoods for different models can
not be compared unless they are normalized to remove this effect We normalize the model smilarity by
dividing by, N, the total number of correspondences included in the similarity measure. Thus the Smilarity
of model of apattern class to a description of a pattern is given by

S
Sy =—.

N
6 Training

The probabilistic graph models described in section 4 are learned by a training process. An ensemble of
observations, caled the "training set,” is used to derive the structural components and attributes for a
"composite’ model of the training samples. Training is performed on a set of "clean” images; that is, the
images contain only an example of the pattern class to be learned. The presence of spurious forms in the
training Images is minimized. This helps to assure that only the "important” Pesk Peths are found in the
mode.
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6.1 The Training Algorithm

The training process begins with an empty modd and repeats the following stages for each sample image in
the training set:

1.'ITie next image from the training set is expressed as a tree of Pesk Paths in absolute image
coordinates.

2. A "pose* is obtained which places the modd at the position, orientation, and scae of the pattern
in the sample image. This pose is hypothesized by the sysem and confirmed by the human

SUpervisor.

3. For each model Pegk Path of type TP, the correspondence to the mogt likely Peak Path in the
description is determined and displayed. In our experimenta implementation, the human
supervisor may intervene and examine the log likelihoods of alternate matches.

4. As each correspondence is found, the mean and standard deviation of the probability distributions
for the attributes are incrementaly determined, and the probability of occurrence for the Peak
Peth is updated. :

5. The mogt likdy correspondences are then found for the Pesk Paths of type CP, and their
probability distributions and probability of occurrence are dso updated.

6. Any Pesk Path in the description for which there was no corresponding Peak Path in the modd,
and which is within the appropriate bounds of resolution and position, is added to the moddl asa
Pesk Path of type TP. When anew Pesk Path is added to the modd, the value of each &ttribute is
assigned to the mean, and a default value is assigned to the standard deviation.

7. The Pesk Paths of type TP are sorted with the following precedence: probability of occurrence
(highest to lowest), average leve of the M-node (lowest resolution to highest), average distance
from the Principa Pesk Peth (furthest to closest).

6.2 The Training Program

Trainiag is currently done with an interactive program that uses a raster graphics monitor. Our philosophy
has been to begin with a program in which the user must verify each step, and to incrementally automate the
training process as confidence and experience are gained with each stage.

The screen of the monitor isdivided into three windows. In the upper left is a"model" window, in which a
copy of the first training sample is shown. In the near future we plan to display a"synthesized" image of the
modd in thiswindow. Thissynthesized, image win be created by summing the impulse response of the DOLP
filters for the mean value and location of the M-node of each Pegk Path, The image of the current training
sample is shown in the upper right window. At the bottom of the scrcea a set of text field are maintained that
provide information about taming.

Mog of aaining involves specifying Peak Paths that match. Pesk Paths in both the modd and the
description arc indicated by drawing circdles in the overlay plane, over the the model window or the tralning
images window,. Thesecircle act asacursor. The radius of the cirde Is given by the M-node levd of the Peak
Path. It is the radius of the Inner “positive** lobe for the DGLP filter at that level In the DOLP transform.
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Figure 8: The interactive training program. The upper left window
contains die model image (currently the first training sample).
The upper right window contains the current training sample.
The circles indicate the location and scale of the principa Pesk Peth.
The lower window is used for text messages.

'rhe position of the circle is given by the mean of the position for die M-nodc in the Pesk Path. Examples of
the screen of the training program arc shown in figures 8,9 and 10.

A cursor support mechahisrn permits die user to step the "current” cursor through the description or the
model in a number of ways. The cursor may be stepped through the list of TP Pesk Paths, up or down a Peak
Peth tree, or through the list of siblings at agiven level.

6.3 Correspondence Matching in Training

Aswith structural matching, the basic problem in training is to find a correspondence between symbolsin a
description and symbols in the model The problem is caster than the general structural matching problem
because it is known a-priori that the training sample is an instance of die model, and because restrictions caa
be made about the "cleanness" of the images used for training. 'Hie problem is harder, however, because
during training the model is only partially constructed and may not be usgful in finding the best
correspondence.

"clean," that is, the example of Hie pattern It) be leurned is the only thing in the irmige In this way, the
Principa Pesk Path (PP) and the second TPcan be easly found by finding ihe lowest resolution M node. The



Figure 9: Theinteractive training program. The pose orientation
is determined from the correspondence of the "second" Peak Path,
displayed graphically for approval.

user |s asked to approve this correspondence. The correspondence for the Principal Peak Path specifies the
position and scale of the pose.

Determining the orientation of the pose requires finding the correspondence for a Second Peak Path. The
model Peak Path which acts as the Second Peak Path is che Peak Path at the top of the sorted list A searchis
made for the description Peak Path which is most likely to correspond to this Second Peak Path, based on all
of the attributes except orientation. This search uses the similarity function described in the previous section.
The user is asked to verify this correspondence, |,Tic angle to this Peak Path is then used to determine the
orientation of the pose. An example of determining the Second Peak Path is shown in figure 9.

Given the pose, the training program advances through the list of model Peak Paths of type I|P. The
"current” model Pesk Path is illustrated by a circle drawn over the model image. For each model Peak Path
of type TP, the system locates the description Pesk Path of type TP with the highest correspondence
likelihood, Ilic likelihood calculation |Is based on the mean and standard deviation obtained incrementally in-
previoustraining, Hie description Peak Path with the highest correspondence likelihood is also presented to
the user as a circle over the training sample image. An example of this is shown in figure 10. Tlieuser hasthe
option to accept ihc match, select a different description Peak Path, or abort the search for a match to the
current model Pesk Path, facts time the user indicates the selection of a match, die statistics of the model
Peak Path are updated and the correspondence |Is saved.

After specifying the correspondence for all of the model Pesk Paths of type 'I P, the search is made for the
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Figure 10: The interactive training program.
The correspondence of top level Pesk Paths are
displayed graphically for approval.

correspondence for the model symbols of type CP. This search is made "depth-first," from the children Peak
Paths from each TP Pegk Paths. The matching process proceeds as with model Pesk Peaths of type TP, except
that the user is forbidden to specify a match in a case where the parents do not match. That is, a model Pesk
Path of type CP can only be matched to a description Pesk Path of type CP if their parents were matched.
The mode path of type CP may, however, be matched to a previoudy unmatched description Pesk Path of
type TP.

If amodd Peak Path has children, but the corresponding description Pesk Path does not, then the user is
informed. The user may dect to not match those Peak Paths, or to search among the unmatched model Pesk
Paths of type TP.

After al of the model Pegk Paths have been processed, the description Pesk Paths which remain are added
to the model Each Pegk Path is shown to the user before it is added to the model If a moddl Pegk Path
which has no children is matched to a description Peak Path which has children, these children are added as
children of the model Pesk Path to which their parent was matched

7 Conclusions

This paper has presented a multiple resolution representation technique for gray scde patterns based on the
DOI-P transform. A description in tills representafion has ilie form of a connected tree of symbols with
attributes. Information about the position and scale of a symbol are encoded in die attribute liht dong with
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other features. While the connectivity relation is based on position and scale, this information is not explicitly
encoded in the connectivity.

A representation for a probabilistic model was presented, based on the multiple resolution description. In
the model, the attributes of symbols are replaced by probability distributions. The connectivity structure of
the model has the form of atree of trees. In the implementation described here, the top layer is a tree with 2
levels and a large branching factor. All symbols are encoded relative to a "principal” symbol, given by the
lowest resolution Pesk Path. The "pose dependent" attributes of adl of the second level symbols are relative to
the principal symbol. At the second level esch top level symbol is the root of a strict tree structure of
symbols. At this level, the tree may have an arbitrary depth, but the maximum branching factor is 4.

The connectivity information in the model and the description provides a structure for controlling the
search for correspondence between model symbols and description symbols. In the matching technique
presented here, the correspondences between a model and a description arc found first for the principal
symbol and this correspondence is used to determine.a "pose" for further matching. Correspondence arc
then found for the symbols at the top level, and finally for the tree under each top level symbols.

If the correct "principal™ Peak Path docs not occur in the description, then this matching algorithm fails,
'ITiis weakness can be avoided by structuring the top layer as a graph. However, this introduces a much more
difficult control problem for the search for correspondence. Indeed, one of the interesting aspects of this
representation is that the hierarchical structure greatly simplifies the correspondence matching process.
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