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Abstract

Optimal control and cstimation problems arc currently solved by embedding a differential equation solv
1to the optimization strategy. The optimization algorithm chooscs the control profile, or paramect
stimates, and requires the differential equation routine to solve the cquations and evaluate the objective ar
onstraint functionals at cach step. Two popular mcthods for optimal control that follow this strategy a
“ontrol Vector Iteration (CVI) and Control Vector Parameterization (CVP). CVI requires solution of
‘uler-Lagrange cquations and minimization of the Hamiltonian while CVP iuvolves repeated differenti

quation solutions driven by direct search optimization [1].

Both methods can be prohibitively expensive cven for small problems because they tend to converge slow
nd require solution of differential cquations at cach iteration. We introduce a mcthod that avoids tt
equircment by simultancously converging to the optimum while solving the differential equations. To «
his, we apply orthogonal collocation to the system of differential cquations and convert them into algebrz
mnes. We then apply an optimization strategy that does not require satisfaction of cquality constraints at ca
ieration. Here the method is applied to a small initial value optimal control problem, although we are by 1

neans restricted to problems of this type.






I. Method Development

Unlike finite difference ODE solvers, orthogona collocation applies a polynomial approximation to th
iifferential equation and requires satisfaction of the equation at discrete collocation points, the zeros t
>rthogond polynomials [2]. The polynomial solution is thus a continuous function of t that is often i
iccuratc as a finite difference solution us ng many more points. For example, the polynomia approximate
or initid vaue problems defined over a finite interval is:

R
Yn = Yot I aliy(0) (
i=1
vhere
a - unknown coefficients

Py - (i-1) order Legendrc polynomial.
[Tie coefficients ax in (1) can be found by substituting y,(t) into the initial vaue problem:" $ =f(yj)\ y(Q)=
/ /(>VO=0. at discrete points /- which arc the roots of P,(t)=0. This system can k
;olved by Gaussi;;w eimination iff{t,y) is linear or by Newton's method iff(t,y) is nonlinear. In either <

>4 and solving: N

he system of ODF/s is converted into agebraic equations.-

Recently, optimization techniques have been developed [3, 4] that solve agebraic equality constrainc
Jroblems without requiring satisfaction of the equations at each iteration. Among the most promising ¢
hese is the Successive Quadratic Programming (SQP) [4] algorithm. Loosely speaking, this method linearize
nequality and equality constraints and constructs a convex quadratic objective function from gradients of th
)bjectivc and constraint functions. The resulting quadratic program (QP) can be solved using any standan
Inite-step QP agorithm [5, 6]. Solution of the QP determines the search direction while a one-di mension;
ninimization aong this direction locates the next point. Here, only the linearized sets of equality constrain
ire solved by the QP. As SQP converges to the optimum, the solution of the Iinearizéd sets converges to th
»olution of the equality constraints. If no degrees of freedom are present for optimization, the SQP algorithi
educes to Newton's method.

Because we no longer need to solve the collocation equations at each iteration, this Simultaneoi



Min  Fly(ip, u(tp. q. 1) (
{u(.q}

dy _
S.t. = SOuq)
h(y,u,q.H=0

e uq) =0

vhere

u(t) - continuous control variables
y(t) - statc variables

q - constant control parameters

h - algebraic cquality constraints

g - algebraic incquality constraints
F - objective functional

t - fixed final time

f
N
We can substitute polynomial approximations y, =y, + ¢ Z a;P;-, for y(t) and include the cocfficients

.. . . c. i=1 . . . .
s decision variables in the optimization problem. However, it is difficult to provide bounds and startin
oints for these cocfficients because they have no physical significance, thus no apriori estimatced ranges. T

emedy this, an equivalent formulation is found by writing the approximation as a Lagrange interpolatio

olynomial:
n n
yd)= D yilitr) where I(0)= []e=1)/0=1). (
i=0 j=o0
JF#i

leret = 0 and t, 1 = 1, nare zeros of an nth order Legendre polynomial defined from 0 to te- Choosing

=y (¢.) as dccision variables for the optimization problem, it is now much casicr to supply meaningfi



This formulation easily accomodates algebraic inequality and equality constraints, g and h, which are ofte

lifficult to handle with control vector iteration [7].

Having defined the set of decison variables x = [y U (], we write the ODFs as agebraic equalities at
alocation points. If additional constraints g, h at other pointsin time t, are present, these arc included in tr

lonlinear program also. By substituting equations (3) and (4) into (2), the approximated problem no'

>E00Mes.
Min F{ynltp) upltphtsq)
{r;u,qt
st. re= dy,(tj)/ di -j\ypust, @)= 0 /=1,n
h(tp,Yn(tp),Un(lp).0) = O
g ydtplu(tlg) <= O
Y £yisy,
{
>requivalently:
Min  F(x)
st. rGc)=10
Mxy=0
9(x)<0
XjX<X,
(!

Ne now smply apply the SQP method to (6). At each iteration, k, SQP sets up and solves the QP:

Min  V F(xX9Td+ \d"B“d
4



1

o determine the scarch direction, d, for the next iterate x**1 Here the B* matrix is constructed fros

rradient information at previous iterations.

This approach yields an implicit orthogonal collocation solution to the ODFE’s, is casy to apply an
onverges to the optimum superlinearly. To illustrate performance of this method, consider the followir

yptimal control problem [1].

2. Example
A batch reactor opcerating over a onc hour period producces two products according to the parallel reactic
nechanism: A — B, A — C. Both reactions are irreversible and first order in A, and have rate constan
iven by:
k, =k, pxp{-Ei/l{T} i=12

vhere
— 1n6
k10 = 10°/s

_ 11
kyg = 5.107/s
E]_ = 10000 cal/gmol

E, = 20000 cal/gmol
'he objective is to find the temperature-time profile that maximizes the yield of B for operating temperature
elow 282°F. Therefore, control problem is:
Max B(1-0)

st %= —(k+ k)4
48 = 1,4

A0) = 4,



Max yz(l.O)

}./1= —-(u+ 142/2)y1
»=

w0 =1 p(0)=0

0<ux<s ‘ a

Note that the control variable u(t) is the rate constant kl and dircctly corresponds to tempcerature. This insigl

liminates the cxponential terms and simplifies the structure of the problem.

The simultanious optimization and collocation (SOCOL.1.) mcthod was compared to the two tradition:
nethods for solving optimal control problems: control vector iteration (CVI) and control vectc

yarameterization (CVP). With CVI, the Hamiltonian:

s maximized with repect to u(t). Given an initially guessed control profile, the algorithm first integrates th
tate equations forward in time to get y, then the adjoint equations (A = — 0 H/ 0 y) backward in time t
btain A. The control profile, u(t), is then updated using 9 H/ 9 u. Here we abply the conjugate gradier
lgorithm of Lasdon et. al. [8], with the method of Pagurek and Woodside [9] used to handle control bound
"he CVP method was much more straightforward; the control profile was defined by feedback terms in y
hatisu =b_ + bl y; + b, y%. Optimal values for b; were found by applying the Complex method of Bc
10] to the optimization problem. Both CVI and CVP uscd the DGEAR subroutine [11], a version of Gear
nethod for stiff initial value problems, to solve the ODE's. For this problem the converged solution to C\
an be made arbitrarily accurate by specifying tolerances for the ODE solver and the optimality condition
All tolerances in this study were sct to 10®.) With CVP, the final control profile is optimal only with respe

0 a lincar combination of basis functions and can never be better than with CVI.



.utivvigvu IAJ wpuiiiai iMuiiito. 111V jvyvAvV/LVviN invuiuuo wv.iv mutu lativi anu UJVIl diia/vuiia, ao J iux®w&ds
ipproach the optimum obtained with CVI from above. Note that the 5 point SOCOLL solution is withi
).5% of the CVI optimum, although CVI required from 2.5 to 87 times as much computational effort.

Surprisingly, the CVP method did not require excessve computational effort. This is due to the sme
lumber of decison variables and the ease in solving the equations with DGKAR. It should dso &
ncntioncd that three additional runs of the CVP method were needed in order to establish judicious bounc
br vaues of bj. 'ITiese arc not shown in Table 1. Often, these methods can be prohibitive because dire
search methods are dow to converge, especidly for large problems, and the bounds on bj cannot be specified
priori. The CVP optimum is 0.8% lower than the CVI maximum even though CVP solved the differenti
eguations as CVI did. Moreover, the CVP objective can never reach the CVI optimum because the function
;hoice for u(t) isincomplete. Since the SOCOLL approximation approaches the true optimum as n increase
ts results arc not as redtrictive as CVFs.

Table 2 compares values of the optimal control profile for CVI, CVP and 5 point SOCOLL at tt
alocation points. Here the agreement between CVI and SOCOLL is much better than with CVI and CVI
Nigure 1 shows the optimal control profiles for the methods compared above. Here we observe a limitation (
SOCOLL. As with other collocation methods, SOCOLL cannot approximate steep gradients wel unle
ligher order terms or collocation on finite elements are used. Also, constraints on the control trgectory ce
eedly be applied and satisfied at collocation points but may not be satisfied elsewhere (e.g., between 0.95 ar
LO). Again, collocation on finite elements embedded in SOCOLL can handle this limitation. For th
example, however, we can obtain a better solution through some insight into the control trgjectory. We not
hat the value of u is 50 at the last collocation point. Since the trgectory defined by the Lagrang
nterpolation polynomial violates the upper bound on u, between the last collocation point and 10, we merd
‘clip” u(t) by defining it as:

u(y= min (50w (/)
: n

Since u, > 50 only after the last collocation point (0.953), the control profile can be clipped withol

effecting the collocation constraints or continuity and differentigbility (wrt x) of the objective function. W
applied the following clipping procedure:



if Ma(LO) = 50, find /~c [0.9531.0] where "= 5.
Set w(/)= 5 for /e[/c,1]; the variables y(t) and "(/), /€ [/,1] arecalculated by:
yl(r] = yl(rc) exp[—17.5(¢— tc)]

y{1)= yz(tc) +( -S/!?.S)y}(!c) fexp{—17.5(¢— I‘)} -1] (1.

incc the differentia equations arc linear once u is constant. The clipped SOCOLL optimum is within'0.1
)f the CVI optimum. Agreement with CV1 a collocation points is not as good as with the unclippc
JOCOLL method, but its control trgjectory is bounded between 0 and 5 and agrees reasonably well with CV
tnd Figure 1.

These results arc indicative of applications to other initial vaue optimal control problems. The accuracy c
he solution is limited only by the error introduced by the collocation procedure. Once a problcr
brmulation has been chosen which insures that collocation can be applied accurately, then the accuracy c
he solution to the optimal control 'problem is subject only to the tolerance on the optimality conditions.

The implementation of the SQP algorithm used here aso has loca superlinear and global convergen
>roperties. It operates in a much smaller space than the CVI agorithm and will generally be more accura
han the CVP agorithm because it is not as limited by the basis functions for the optimal control profile.

3. Conclusions

A simple method has been described for efficiently solving dynamic optimization problems. For a sme
)ptimal control problem, very good approximate optima can be found with relatively little computation
effort. The formulation presented above can easily be extended to handle collocation on finite elements (fc
itiff systems of ODE's) as well as two point and othér boundary value problems. A key point observed in th
;olution of this small problem is that the system of differential equations is never solved explicitly. Insteac
he optimization agorithm converges simultaneously to solve the set of ODE's and find the optims<



3. The optimization procedure solves the collocation equations only once. It converges to the
optimum and the equation solutions simultaneoudly.

4. The optimal control problem is thus transformed to a nonlinear program. Multiple boundary
conditions and point constraints that cannot be handled eadly with CVI and CVP present no
problem within this framework.

ITierefore, we can expect the SOCOLL method to be an efficient and effective tool for solving a wk
vaiety of dynamic optimization problems. The results given here can be generadized to larger, mc
complicated problems by applying finite element collocation.
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Figure 1: COMPARISON OF OPTIMAL PROFILES
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Tabie 1: COMPARISON OF METHODS

Starting Profile u(t) = 1.

Method CpU Secs.* Optimum No. Itcrations
1 pt. SOCOLL 0.84 0.66667 9

2 pt. SOCOL L. 1.44 0.59438 11

3 pt. SOCOLL 5.64 0.59308 30

4 pt. SOCOLL 11.83 0.57858 41

5 pt. SOCOL.L 17.92 0.57661 44

5 pt. SOCOL.L 14.12 0.57263 30

(clipped)

CVI 45.12 0.57349 20%*
CVP 30.07 ' 0.56910 3T7***

Starting Profilc u(t) = 5.

Method CPU Secs.* Optimum No. Itcrations
1 pt. SOCOLL 1.38 0.66667 21

2 pt. SOCOLL 241 0.59438 20
3pt. SOCOLL 9.69 0.59308 . 52

4 pt. SOCOLL 14.92 0.57858 53

5 pt. SOCOLL 26.06 0.57661 62

5 pt. SOCOLL 32.60 0.57275 66

(clipped)

CVvl 226.35 0.57322 58%*
CVP 18.61 0.56910 _ 21 3%**

* Execution Times, DEC-20 Computer, Carnegic-Mellon Computation Center
** Number of CVI Profile Updates
*** Number of Objective Function Calls



0.0469
0.2308
0.5000
0.7692
0.9531

Table2: OPTIMAL PROFILE AT COLLOCATION POINTS

CvI

0.76702
0.87847
1.15798
1.85941
5.00000

5ptSOCOLL

0.76074
0.84027

" 1.16616

1.66126
5.00000

5ptSOCOLL
(clipped)

0.78692
0.97820
1.04957
2.30851
4.99738

CVvP

0.83969
0.77699
1.11780
2.27606 .
3.34930



