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Abstract

Scientific discovery is a complex activity involving many different components. Our interest in discovery has
led us to construct four Al systems that address different facets of this process. BACON.6 focuses on j
discovering empirical laws that summarize numerical data. This program searches a space of data and a space
of numerical laws, and includes methods for postulating intrinsic properties and noting common divisors.
GLAUBER is concerned with discovering laws of qualitative structure, such as the hypothesis that acids react
with akalis to form salts. It searches the space of qualitative laws, using evaluation functions to focus attention
on laws covering the greatest number of observed facts. STAHL attempts to determine the components of
substances involved in reactions, and has been used to model the reasoning that led to the phlogiston theory,
This system searches through the space of componential models, using heuristics to make plausible inferences.
The final system, DALTON, is concerned with formulating structural models of chemical reactions. It
searches the space of possible models, considering simple models before more complex ones and using a
conservation assumption to constrain possibilities. While each of these discovery systems is interesting in its
own right, we are aso exploring ways in which the systems can interact to help direct each other's search

processes.
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1. Exploring the Scientific Process

Scicnce is a multi-faceted process, concerned with both the collection of data and its explanation.
Within these two basic componcnts, we find additional subdivisions. The first process ranges from
exploratory data-gathering to the design of specific experiments to test explicit hypotheses. Similarly, the
explanatory process ranges from the induction of simple empirical laws to the formulation of complex
structural and process models. These components are not independent, since the relation between data and
theory is all-important in science. Still, the relations among the various components are complex, and if we
ever hope to understand the scientific process, we must resort to powerful methods.

In this paper, we apply the methods of Artificial Intelligence (Al) to explore the processes of scientific
discovery. Our goal is not to explain historical details, though the history of science is fascinating and we will
certainly draw upon it in our efforts. Rather, we hope to understand the processes by which scientific
discoveries could have been made; our goal is to develop methods that are sufficient for making such
discoveries. To this end, we will draw upon the Al technique of implementing theories as running computer
programs. Thus, we will devote much of the paper to describing particular Al programs and their behavior in
specific domains.

One of the central insights of Al is that intelligence involves the ability to search, and the ability to
direct that search in profitable directions. Search involves the exploration of some space of possibilities, which
Newell and Simon [1] have called a problem space. A problem space is defined by two components: (1) one or
more initial states from which search begins; and (2) one or more operalors for generating new states from
existing ones. Taken together, these components determine a set of states that can be systematically searched.
In order to search such a space, one also needs some scarch control scheme — which directs search down one
path or another — and some test — which determines when the goal state has been reached. The notion of
problem spaces is important for each of our discovery systems, and we will describe each system in terms of its

We have organized the paper around four Al systems that address different aspects.of the discovery
process. First we describe BACON, a system that is concerned with discovering empirical laws of a
quantitative nature. We will begin with BACON since it is the first discovery system we constructed, and
many readers may have some familiarity with it. More important, our recent work has been largely motivated
by BACON’s limitations, so a consideration of the system’s capabilities and limits will lay a solid foundation
for the rest of the paper. After this we describe GLAUBER, a system that is also concerned with empirical
laws, but in this case, laws having a qualitative form. Next we examine STAHL, a program that infers the
components of substances from reactions, followed by DALTON, a system that constructs simple structural
mdck.SmMad&mmprnmwaspmofmedmmpmmwecMeby
some possible interactions between the s, and the possibility of constructing an integrated
system.
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2. Discovering Quantitative Empirical Laws
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These three discoveries provided the foundation for a quantitative theory of chemical reactions, and
ultimatdy led to the determination of reative atomic weights. To some extent, Dalton's and Guy-Lussac's
laws were motivated by an atomic hypothesis, but there were strong empirical components to the discoveries
as wdll. Although Proust's lawv might be dealt with using traditional curve-fitting techniques, the other laws
involve more complex relations. Thus, the history of early chemistry provides a challenging domain for testing
Al methods for empirical discovery. Bdow we describe a discovery system that focuses on quantitative
discovery, and examine its approach to finding these chemical laws, as wdl as other laws from the history of

‘science

Table 1. BACON's method viewed as search through a data space.

Initia state: the null combination| ]
God state: acomplete experimental combination of independent values
Intermediate state: apartial combination of independent values

Operators:
Specify-value: Specifies the value of an undetermined independent value

HeuristicsEvaluation functions:
None: Search isexhaudtive

Search control: Exhaustive depth-first search with backtracking; generates all goa states

2.1. Searching the Space of Data

We have explored the process of quantitative discovery through BACON.6, the sixth in a line of
programs named after Sir Francis Bacon (1561-1626). The system is given a sat of independent and
dependent varigbles, and based on data it gathers, the program generates empirical laws that relate these
variablesto each other. In order to achieve thisgoa, BACON varies one of the independent variables, looking
for relations between that variable and the dependent variables. Once a functional relation has been found,
the parametersin that function are given the status of dependent variables at a higher level of description. The
system then repeats this process with a different vaue for the second independent variable, arriving a anew
st of parameters. When al vaues of die second independent variable have been considered, BACON hasa

set of higher level dependent values (based on the parameters) associated with each of the independent * - -

values. The sysem finds a numeric relation between these variables, and again the parameters become“: '
dependent values at the next higher level of description. This process continues until al the independent * - .
variables have been incorporated into acomplex quantitative relationship. -

BACON can be viewed as searching two distinct problem spaces — the space of data and the space of 2
laws. These searches interact in acomplex manner, but before we examine this interaction, let us examine,

each of the search schemes independently, starting with search through the data space. As we have noted, .

BACON is provided with £ set of independent variables, aong with possible values for each variable. Usng -
these vdues, the system generates a complete factorid design involving all combinations of independent_"

velues, and then examines the vaues of the known dependent variables for each combination. BACON'S

generation of al independent combinations can be viewed in terms of search, with states containing partidly
specified experimental combinations. The initia state has no independent values specified, while goa state



have values for al of the independent terms. The operator for moving through this space inputs a partialy
specified experimental combination, and decides on the value for one of the unspecified variables. Search
control is depth-first, but since many combinations must be generated, the syssem must backtrack and explore

many different paths.
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Figure L BACON'S search through the space of data.

For instance, suppose BACON is given three independent variables — the pressure P on a gas, the
temperature T of that gas in degrees Celsius, and the quantity N of the gas - aong with the sngle dependent
variable V, the volume of the gas. Further suppose that BACON is told to examine N with values 1, % and 3,
T with values 10,20, and 30, and P with values 1QQ0, 2000, and 3GQ0. In order to generate an experimental
combination, the system begins with an initial state in whidi no values have been specified, whidi we may
representas| \ Next, the SPECIFY-VALUE operator applies, generating a new state in which the value of
N is determined, say [N=1J. Upon its next application, the operator generates athird state in whidi the vaue
of Pisgiven, say IN=1, T=10]. When BACON applies the operator athird riine, the complete experimental
combination [N=1, T=10, P=1000] is generated, and the program can examine the volume associated with
this combination.

However, if BACON isto gather sufficient data on which to base its lavs® it must continue the seaidL
Acxordiiigly, the system backs up to the previous state [N=1» T=10] and applies the operator with different
arguments, generating the second goa combination, |N =1, T= 10, P=2000]. This alows a second vaue of
the volume to be observed and associated with an experimental combination. At this point, the system again



backtracks to [N=1, T=10], and then generates a third goal state, [N =1, T=10, P=3000], thus gathering a
third observation of the volume. Having exhausted the potential vaues of T, BACON then proceeds to back

up two stepsto [N =1]. From here it generates the states [N = 1, T=20] and findly [N =1, T=20, P=1000]

another complete experimental combination. BACON continues in this fashion until it has generated all

experimental combinations of the independent vaues it was given, and observed the volumes associated with

each combination. Figure 1 shows the tree that results from this search through the space of data; the
" numberson each state represent the order in which that state isgenerated.*

Table 1 BACON'S method viewed as search through the space of laws.

Initia states: sets of parameters condgting of 1,0, and -1
God date: aset of parameters that maximdly predict the observed data
Intermediate states: sets of parameters that account for some of the data

Operators:
Add/Subtract: Adds or subtracts from one parameter value

Evduation function:
Sdect dates that lead to higher correlations, thus better predicting the data

Search control: Hill-climbing using abeam search

2.2. Searching the Space of Laws

Now let us turn to BACON.6s method for searching the space of numeric laws. Given a set of
independent vaues and a corresponding set of dependent values, the system attempts to find one or more
laws that predict the observed vaues as accurately as possible. In order to achieve this goal, BACON requires
some information about the form that plausible lavs may take. For instance, for the independent varigble x
and the dependent variable y, the user may tdl the program to consider laws having the formy = ax® + bx
+ ¢, aswdl as those with the form dn(y) = ax + b. Theseforms define the space of laws that BACON will
explorein its attempt to summarize the observed data.”

Given a set of fonns, BACON generates a set of initia states from which to begin the search. Thisis
done by inserting the abstract parameters in each form with the vaues 1, 0, or -1. For smplicity, let us .
congider only theformy = ax + b and examine the resulting initial states. In this case, there 3% = 9 possible
initid states: [a=I, b=I1], [a=I, b=0], [a=I, b=-1], [a=0, b=1j, [a=0, b=0], [a=0, b=-1], [a=-I, b=lj, -
[a=-1, b=0], and[a=-I, b=-1]. These parameters are chosen because they are evenly distributed throughout
the space of parameters, so that the best st of parameters should be near one of them. Starting from these
idedlized parameters, BACON attempts to determine the optimum state through a process of successive
approximation.

1An earlier verson of BACON [2] was cagpable of modifying this seerch based on discoveries it had made. The current sysem does not
i&dudethisahility.

2
TEaiier feméms of BACON were redtricted to particular fonns. For instance, BACON.5[2} only considered laws of the form )/‘ = ax2
+ bx + c. wherei took mameE integra vaues, and thuswas less flexible than the current system.
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BACON.6 employs a single opcrator for moving through the space of parameters. This operator accepts
one of the current scts as input, and gencrates a ncw parameter combination by adding or subtracting some
number from onc of the existing values. The amount that is added or subtracted decreases as the system’s
scarch progresses. For instance, the system begins by adding/subtracting 0.5 from the various values. On the
second step, this amount is reduced to 0.25, and so on. BACON’s strategy for exploring the parameter space is
best described as a beam-search version of hill-climbing. At the outset, the N best states are sclected for
further attention, and the remainder are abandoned. The addition/subtraction operator is then applied to
these N states in all possible ways, generating a new set of M states. Of these N + M states, the N best are
selected (some of the originals may be retained), and the process is repeated. When none of the new states
show any improvement over the preceding states, the scarch is terminated.

In selecting some states in favor of others, BACON considers the ability of each parameter set to predict
the observed values. In order to estimate this ability, the parameter values are substituted into the form of the
law, and the corrclation between the observed independent and dependent values is computed. A high
corrclation means that the parameters predict the data well, while a low correlation implics that the state’s
predictive ability is poor. Since corrclations are insensitive to absolute values, only the relative values of the
parameters are important. It is for this reason that the initial values of 1, 0, and -1 were able to "cover” the
space of parameters. In any case, this evaluation function is used to direct search towards sets of parameters
that account for as much of the data as possible. -

Since this search strategy only uses the data to zest hypotheses, and not to generate them, it is robust
with respect to numerical noise. BACON.6 is guaranteed to find some law that summarizes regularity in the
data, even if this regularity is only partial. Of course, when the data are very noisy, thcere may not be one set of
paramecters (or even one form of law) that is clearly superior to its competitors. In such cases, the program
returns a number of laws. One of BACON’s interesting features is that the system carries out the same amount
of search regardless of the amount of noise in the data.

2.3. Relation Between the Search Methods _

Now that we have examined BACON’s two search schemes in isolation, it is time to consider their
relation to one another. Basically, the system’s search for laws is embedded within its search for data. To
understand this statement, let us return to Figure 1, which presents the order in which BACON gathers its
data. Consider the N leftmost terminal nodes, [N=1, T=10, P=1000}, [N=1, T=10, P=2000], and [N=1,
T=10, P=3000]. For each of these combinations, the system observes some value of the dependent volume
V. When all three values have been noted, BACON attempts to find a law relating them to the three values of
the pressure P, using the search strategy just described. The result of this search is one or more parameters (let
us assume that one law is obviously better than all others), and these are stored at the next higher state in the
data search tree. For instance, for P = 1000, 200, and 3000, the obscrved values for V would be 2.36, 1.18, and
0.78. For these data, the form V1 = aP + b gives the best fit, with the parameter values a = 0.000425 and b
= 0. The value for a is stored with the state [N=1, T=10] for future use; however, the system treats 0 as a
special value, so the result for b would not be stored.

Upon observing a second set of values, BACON attempts to find a second law. For the experimenta
combinations [N=1, T=20, P=1000], [N=1, T=20, P=2000}, and [N =1, T=20, P=23000}, the system finds
the value 2.44, 122, and 0.81 for the volume. Again the form V? = aP + b proves useful, this time with the
values a = 0.000410 and b = 0, and again these values are stored at a higher state, in this case [N=1, T=20},
Very similar events occur when the value of T is 30, giving the parameter values a = 0.000396 and b = 0,
which are stored with [N=1, T=30]. At this point, BACON has three sets of values for the higher level
dependent terms a and b. Moreover, these values are stored with the abstracted combinations [N=1, T=10],
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[N=1, T=20], and [N=1, T=30]. Given the values 10, 20, and 30 for T, the valucs 0.090425, 0.000410, and
0.000396 for a, the program attempts to find a law relating thesc two terms. In this case, it finds th.c forma =
¢T + d to best summarize the data, with ¢ = 8.32 and d = —2271.4. These values are stored with the next
higher state in the data tree, [N =1], for future use.

1 v=236

4 2
a=0.000425 V=1.18

V=0.78

Bl c-8a2

d=2271.4

40 ["o_ga2 8| .-1664
122714 d=45427

*e e

L N ]

c=24.96
| d=6814.1

c=eN a=cT+d V'laP observed

d=iN

Figure 2. BACON's rediscovery of the ideal gas law.

This process is continued as more data are gathered. First BACON finds three additional laws relating
the variables P and V. Based on the resulting parameter values, the form a = ¢T + d is again found to be
useful, this time with ¢ = 16.64 and d = —4542.7. These higher level dependent values are stored with the
state [N =2]. Similar steps lead to three more laws of the form V' = aP + b, and then to a third law of the
form a = ¢T + d. This time BACON finds the best fit with ¢ = 24.96 and d = —6814.1, and stores these
values with [N=3]. Now the system has three values of N, along with three associated values of both ¢ and
d. For each of these dependent terms, BACON searches the space of laws, arriving at the two laws ¢ = eN
andd = fN, with ¢ = 8.32 and f = —2271.4. These two parameter values are stored at the initial data state
[ 1 and represent invariant parameters that are not conditional on any independent terms. By substituting




these values into the forms found at each level in BACON's search, we arrive at the relation V! = (8.32NT -
2271.4N)']P. This expression can be transformed into PV = 8.32NT — 2271.4N if we divide through by P
and invert the equation. If we then factor out 8.32N on the right side of the relation, we arrive at PV =
8.32N(T — 273), which is the standard form of the ideal gas law. Note that in some scnse, BACON has
determined that the Celsius temperature scale is insufficient for describing the relation between the four
terms, and has effectively introduced the Kelvin scale by subtracting 273 from the observed Celsius values.

From this example, we see that BACON carries out as many searches through the law space as there are
non-terminal states in the data space. Figure 2 summarizes the paramecter values resulting from each of these
searches, along with the data states at which they are stored. The number next to cach state represents the
order in which that law was discovered. Note that this order is different from the order in which the data
space itself was searched. In an important sense, the search for data provides structure to BACON’s search for
laws, since it provides both direct observations and a place to store parameters so they can be used as data at
later stages. This process is somewhat similar to Rosenbloom’s model of the chunking process [3]. In this
cognitive simulation, a goal hierarchy provides the top-down control that determines the fypes of chunks that
should be formed. However, a data-driven learning mechanism determines the particular chunks that are
acquired from the bottom up. Thus, BACON’s search through the data space can be viewed as providing
top-down constraints on the types of laws that will be discovered (e.g., which variables are related), while the
system must still search through the resulting law space to determine the particular laws that best summarize
the data.

We should mention in passing that once BACON discovers that a particular form of law is useful in one
context, it uses that information to constrain search in similar contexts. For instance, when the system finds
that only the form V! = aP + b is useful when [N=1, T=10], it considers only this form when [N=1,
T=20}, [N=1, T=30], and so forth. In addition, since it found b = 0, this parameter was removed from the
form, leaving the simplified expression V1 = aP. In other words, BACON redefines its problem space (i.e.,
the space of laws) in the light of its previous experience, so that considerably less search results. Now that we
have examined BACON’s basic methods for discovering empirical laws, let us examine some additional
methods that let it deal with the chemical domain.

2.4. Intrinsic Properties and Common Divisors

While BACON’s basic methods are useful for discovering relations between numerical terms, they
cannot be used to relate nominal or symbolic independent terms to numeric dependent variables, and this is
precisely the problem that confronted the early chemists. For instance, the independent variables in Proust’s,
Dalton’s, and Gay-Lussac’s chemical experiments were the elements or compounds involved, while -the
dependent variables were numerical measures such as weight or volume. In such cases, BACON defines
intrinsic properties that take on numeric values, and then associates these properties with the nominal terms.

Let us consider the role of intrinsic properties in BACON’s rediscovery of the early chemical laws.
Given control over the substances entering and resulting from a reaction, as well as the weight of the first
substance that is used, the system gathers data like those shown in Table 3. Upon varying the amount of
oxygen used to form nitric oxide (NO), the program discovers that the two weights W, and w, are linearly
related with a slope of 1.14 and an intercept of zero. Upon varying the output of the reaction, BACON.6 then
examines the weight relations for the compound nitrous oxide (N,O). In this case, the law is also linear, but
the slope has changed to 0.57. A similar result is obtained when the system examines the values for nitrogen
dioxide, and in this case the slope is 2.29.
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The slopes that BACON.6 finds in these experiments are closely related to the weight ratios found by
Proust. Having found thesc ratios, the program stores its results at a higher level of description, as shown in
Table 4, and trcats these summaries as data. The table also includes the results obtained for two reactions of
oxygen and carbon. In this casc, the system finds three nominal independent variables and a single numeric
dependent variable, so it defines an intrinsic property (say p) whose values are associated with the three_,w
nominal values under which they occur. Thus, the value of p for the triple nitrogen/oxygen/nitric oxide
would be sct to 1.14, the value for nitrogen/oxygen/nitrous oxide would be 0.57, and the value for
nitrogen/oxygen/nitrogen dioxide would be 2.29. As stated, these intrinsic values simply store an alrcady
known fact, and in this sense they are tautological. However, they can be retrieved in future experiments
involving the same chemicals, and used to make predictions or to discover necw empirical laws.

Table 3. Dctermining the combining weights for reactions.

ELEMENT, ELEMENT, COMPOUND v W, W/W,
NITROGEN OXYGEN NO 10 114 114
NITROGEN OXYGEN NO 20 228 14
NITROGEN OXYGEN NO 30 342 1M
NITROGEN OXYGEN N,0 10 057 057
NITROGEN OXYGEN N,0 20 114 057
NITROGEN OXYGEN N,0 30 171 057
NITROGEN OXYGEN NO, 10 228 228
NITROGEN OXYGEN NO, 20 456 228
NITROGEN OXYGEN NO, 30 634 228

As we have seen, Proust’s insight about combining weights laid the groundwork for Dalton’s law of
multiple proportions. This law states that in cases where two clements combine to form different compounds,
the ratios of their combining weights were always small integer multiples of one another. BACON includes a
method that lets it discover just such a relation in the data from Table 4. This method, which operates
whenever the system defines a new intrinsic property, examines the values of the new property to see if they
(or their inverses) have a common divisor. This technique is especially useful when intrinsic values are
associated with multiple nominal values, as often occurs in chemistry. We have described both the intrinsic
property and common divisor methods at length in earlier papers [4, 5].

In this case, BACON notes that 1.14, 0.57, and 2.28 have the common divisor 0.57, and would replace
these intrinsic values with their corresponding integers 2, 1, and 4. In addition, the program defines a higher
level intrinsic property based on the divisors it finds in different situations, and associates the divisors with
those cases. Thus, the common divisor 0.57 would be associated with the nitrogen/oxygen pair, while the
divisor 1.33 would be associated with carbon and oxygen. These relations are formally equivalent to Dalton’s
law of multiple proportions. BACON takes a similar path in discovering Gay-Lussac’s common divisors for
combining volumes, and has even arrived at the correct relative atomic weights for hydrogen, oxygen, and
nitrogen from data similar to those in Table 3. Thus, BACON’s discovery mechanisms account for the major
quantitative laws found by chemists in the early 19th Century. Note that neither the intrinsic property method
nor the common divisor method involve any significant search themselves. Rather, their role is to transform
symbolic data into numeric data, so that BACON’s law-finding method can be used to discover relationships.



2.5. Comments on BACON.6

In the preceding pages, we have described BACON's methods for gathering data, discovering numeric
laws, and postulating new properties. All in al, BACON provides an interesting and useful account of the
discovery of quantitative empirical laws. However, the system leaves some important questions unanswered.
For example, how do scientists decide which variables to employ in their experiments? Similarly, how do they
use their newly discovered laws once they have been found? In BACON, the relevant variables are provided
by the programmer, and the laws are smply printed on a terminal screen. One can imagine a version of
BACON with an improved user interface, serving as a scientist's aide in analyzing data, and fulfilling a useful
function while dill requiring its user to design its input and interpret its output. This is one direction in which
the system might be extended, and such an interactive version could be very useful in some areas of science.

Table 4. Noting common divisors for chemical reactions.

ELEMENTA ELEMENT, COMPOUND Wolw P wW/W,p
NITROGEN OXYGEN NO - L14 2 057
NITROGEN OXYGEN N,O 0J7 1 057
NITROGEN OXYGEN NO, 128 4 057
CARBON OXYGEN co L33 1 L33
CARBON OXYGEN o, 166 2 L33

However, if one's goal is to understand the nature of scientific discovery, then a deeper answer to the
above questions is required. For instance, we know from the history of science that empirical laws eventually
lead to theories and explanations, and BACON has little to say about such aspects of discovery. We aso know
that even vague theories can have important impacts on the data one gathers. This suggests that we will find
answers to both questions only by studying other facets of the discovery process. Although constructing Al
models of these components would undoubtedly be interesting even in isolation, the true advantage will come
from exploring the interrelations among different forms of discovery. Our long-range goal, then, should be to
understand components of the discovery process whose outputs can be used as BACON's inputs, and to
uncover other components that can employ BACON's outputs as their inputs. In the remainder of the paper,
we focus on three different models of discovery that we have constructed to this end, and we close with some
speculations on possible interactions among the various systems.

3. Discovering Qualitative Empirical Laws

In the history of science we find that the discovery of quantitative laws is generdly preceded by the
discovery of quaitative relations. Thus, early physicists noted that colliding objects tended to change
velocities before they determined the exact form of this relationship. Similarly, plant and animal breeders
knew that certain traits were passed on to offspring long before Mendel formulated the quantitative principles
of inheritance. One of the best examples of this trend may be found in the history of chemistry, where early
scientists discovered qualitative laws of reaction decades before numeric relations were determined. In
particular, the history of the theory of acids and bases provides us with useful insights into the discovery of
qualitative empirical laws,

By the 17th and 18th Centuries, chemists had made considerable progress in cassfying substances on
the basis of qualitative properties. During this period, researchers focused on features such as the taste and
texture of substances, as well as their interactions with other substances. Thus, they knew that the substance
we now cal hydrochloric acid had a sour taste, and that it combined with ammonia to form NHACl (though
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the structure of this compound was not known). Morcover, they knew that sulfuric acid also tasted sour, and
that it also combined with ammonia to form (NH 4)2804. From such facts as these, the carly chemists defined
classes such as acids, alkalis, and salts, and formulated laws involving thesc terms, such as "acids taste sour"
and "acids react with alkalis to form salts”. Eventually, they came to view both alkalis and metals as special
cases of the more abstract concept of a base, and arrived at the more general law that "acids react with bases to
form salts”. Although some exceptions to these statcments were known, chemists found the laws sufficiently
general to use in making predictions, as well as in classifying ncw substances. We shall see that the two
processes — defining classes like acid and alkali, and formulating laws involving these classes — play a central
role in the qualitative discovery process.

Table 5. GLAUBER viewed in terms of search concepts.

Initial state: a list of facts containing only constants
Goal state: a list of laws relating classes, along with definitions of those classes

Intermediate states: a list of laws relating some classes, along with definitions of classes; some facts remain

Operators:
Form-law: defines a class and substitutes it into facts
Determine-quantifier: specifies existential or universal quantifiers

Heuristics:
For Form-law: select the object occurring in the most analogous facts
For Determine-quantifier: quantify universally if the data justify it

Search control: Depth-first with no backtracking

3.1. The GLAUBER System

In our efforts to understand the process of scientific discovery, we have also implemented GLAUBER,?
an Al system that formulates qualitative empirical laws. The program is named after Johann Rudolph
Glauber (1604-1670), a 17th Century German chemist who played an important role in developing the theory
of acids and bases. Table 5 summarizes GLAUBER in terms of search concepts. The system accepts as input a
set of qualitative facts, which are represented in terms of a simple schema. Each fact contains a predicate that
specifies the type of fact it is, along with one or more attribute-value pairs. For example, the fact that HCl
reactswiﬂlNH to form NH,Cl would be stored as (reacts inputs {HCl1 NH } outputs {NH CI}) Here the
predicate is rmots,me ambunesarempumand outputs, and the sets {HCl NH } and {NH Cl} are the values
for these attributes. The } knowledge that HCI tastes sour would be stored as (has—quahty object {HC1} taste
{sour}). In this case the valuwmmclosedmbmckets for consistency with other predicates (such as reacts),
which may have multiple symbols as values.

1E‘hef.:!;u'mnww.:im:nafGL&UBER differs from the earlier version described by Langley, Zytkow, Simon, and Bradshaw [6]. Although
the state descriptions are very similar in the two systems, both the operators and the search control differ considerably.

GLAUBERknuwsthatmeorderofsymbokmnmnadmamdmsmtmw sottm(mctsmpms{NH HC1} wtpms{NH4CI}}
would be considercd identical to the above fact. For the convenience of the reader, wewﬂluseﬁmmwnpomrydmm!md
substances. From GLAUBER s viewpoint these are simply arbitrary labels with no decodable internal structure.
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GLAUBER’s goal is to transform these facts into a sct of qualitative laws having the same form as the
original facts, but in which specific substances have been replaced by abstract classes, such as acid and alkali.
In addition, cach class must have an associated list of members; for instance, HCl and HZSO A would be
examples of acids, while NaOH and KOH would be members of the alkali class. Taken together, the
qualitative laws relating classes and the extensional definitions of thesc classes let one predict the original
facts, along with other facts that have not yet been observed. '

GLAUBER’s two operators are concerned with transforming the original data into such laws and
classes. The first of these opcrators, FORM-LAW, inputs a sct of facts having the same predicate and at least
one common argument; it replaces these with a single law in which some arguments have been replaced by a
class name, and defines each of the new classcs in terms of thcir members. For example, given the two facts
(reacts inputs {HCl NaOH} outputs {NaCl}) and (reacts inputs {HNO, NaOH} outputs {NaNO,}), the
FORM-LAW opcrator would define two classes, say x and y, and replace the facts with the law (reacts inputs
{x NaOH} outputs {y}). The operator would also note that HCI and HNO, arec members of the newly created
class x, while NaCl and N.aNO3 are members of the y class. Finally, the FORM-LAW operator iterates
through the current set of facts and laws, and replaces occurrences of thesc substances with their class names.
For instance, if the facts (has-quality object {HCI} taste {sour}) and (has-quality object {HNO3} taste {sour})
were known, they would be replaced by the law (has-quality object {x} taste {sour}).

When GLAUBER formulates a new sct of laws, the system must decide the appropriate level of
generality for each law. To this end, the second operator (DETERMINE-QUANTIFIER) iterates through the
set of laws, and determines whether each class mentioned in a law should be existentially or universally
quantified. If an existential quantifier is settled on, then the law is interpreted as holding for only a single
member of the class. If a universal quantifier is selected, the law is interpreted as holding for all members of
the class. If a single class is introduced, then this class is universally quantified in the resulting law; in this
case, the level of quantification is not an issue, since this is tautologically determined by the manner in which
the class was defined. However, if N classes are introduced, then N versions of the law result, each containing
one universally quantified class and with the quantifiers for the remaining classes undetermined. For instance,
in the above example, two variations on the reaction law would be formulated — Vx?y (reacts inputs {x
NaOH} outputs {y}) and Vy?x (reacts inputs {x NaOH} outputs {y}).? The first of these states that all
members of class x react with at least one member of the class y; the second states that all members of class y
can be formed by at least one member of x in reaction with NaOH. The first quantifier in each law follows
from the class definition, but the second quantifier must be determined empirically.

A similar issue arises when the FORM-LAW operator generates additional laws by replacing substances
with classes in other facts. In these cases, all of the quantifiers must be tested against observations. For
example, the law (has-quality object {x} taste {sour}) might hold for all members of x, or for only a few
members of this class. Thus, the DETERMINE-QUANTIFIER operator examines the known facts, and
decides on the appropriate quantifier. If more than one class is involved, the possibility of multiple forms of
the law must be considered. Thus, if a law were formed by substituting both x and y for members of these
classes, GLAUBER might decide on a single law in which both were universally quantified, a single law in
which both were existentially or two laws involving both existential and universal quantifiers.

Once GLAUBER has applied the FORM-LAW and DETERMINE-QUANTIFIER operators, it has a
revised set of facts and laws to which these operators can be applied recursively. The FORM-LAW operator

slnthismpu'.amusiomofthemVxP(x)areinmdedas forbngerupress.imsoﬂheﬁormVy[yexP(y).whaexis
a class name and y is a member of that class. Expressions of the form Jx P(x) should be interpreted in a similar fashion.




may apply to laws as well as to facts, provided thesc laws have identical quantifiers. For example, given the
two laws Vx:‘ly (reacts inputs {x NaOH} outputs {y}) and Vx:‘]y (reacts inputs {x KOH} outputs {z}), this
operator would generate the more abstract law Vxdw (reacts inputs {x u} outputs {w}). In addition, it would
define the class u to have the members NaOH and KOH, and define the class w with the classes y and z as
subscts. DETERMINE-QUANTIFIER would then procced to decide on the gencrality of this law, and the
process would be repeated on the revised set of facts and laws. GLAUBER continues this alternation
between finding laws and determining their generality until the goal state has bcen recached — a set of
maximally general laws that account for as many of the original facts as possible.

Using its two operators, GLAUBER carries out a depth-first search through the space of possible laws
and classes. The system’s search control does not include backup capability, since its evaluation functions are
sufficiently powerful to direct search down acceptable paths. In determining which law to formulate (and thus
which classes to define), GLAUBER considers all substances and classes, and selects the symbol that occurs in
the largest number of analogous facts. Thus, if two facts having the reacts predicate were found to include
NaOH in the inputs slot, then NaOH would receive a score of two, unless it occurred in some other set of facts
more often. In the case of laws, GLAUBER uses the total number of facts covered by those laws. GLAUBER
indexes its facts and laws in terms of their arguments, so these scores are easily computed for each substance
and class. Once this has been done, the system applics the FORM-LAW operator to those facts containing
the highest scoring symbol, with the constraint that existentially quantified classes are not

In determining the placement of universal and existential quantifiers, GLAUBER cxamines the facts (or
lower level laws) on which the current law is based. The system. generates all of the laws/facts that would be
produced by a universal quantifier for a given class, and if enough of these have been observed (or inferred),
then the universal quantifier is retained for that class; otherwise an existential quantificr is used. Thus, the
system can be viewed as looking ahead one step in order to determine which move is most desirable. A certain
percentage of the predicted facts must be observed for GLAUBER to generalize over a class; this percentage
is specified by the user. The program interprets missing facts as unobserved; the current system cannot handle
disconfirming evidence, such as ~ Jsalt (reacts inputs {HCI HNO,} outputs {salt}).

3.2. Rediscovering the Concepts of Acids and Alkalis

Now that we have described GLAUBER in the abstract, let us examine its behavior given a particular
set of facts as input. These facts are presented at the top of Table 6, and are very similar to facts known by
17th Century chemists before they formulated the theory of acids and bases. As we shall see, GLAUBER
arrives at a set of laws and classes very similar to those proposed by the early chemists. The data in the table
are intentionally simplified for the sake of clarity. However, we have tested the system on larger sets of data,
as well as sets with less regularity.

Given the twelve facts as inputs, GLAUBER begins by examining the symbols used as arguments in the
propositions, and determining which of these occur in the greatest number of analogous facts. It notes that the
symbols HCI, HNOs, NaOH, and KOH are each arguments of the inputs slot for two facts involving the
reacts predicate. Similarly, the symbols sour and bitter each occur as arguments of the taste slot in two
has-quality facts. However, the highest scoring symbol is salty, which occurs in four has-quality facts as the
value for taste. As a result, these four facts are replaced by the law (has-quality object {salt} taste {salty}),
which has the same form as the original propositions, but in which the diffcring values of the object slot have
been replaced by the class name salt. In addition, the four substances NaCl, KCl, NaNO,, and KNOs are
stored as members of the new class.

=
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Table 6. States gencrated by GLAUBER in discovering acids and alkalis.

Initial state S1I.

(reacts inputs {HC1 NaOH} outputs {NaCl}) (has-quality object {NaCl} taste {salty})
(reacts inputs {HCl KOH} outputs {KCI}) (has-quality object {KCl} taste {salty})
(reacts inputs {HNO, NaOH} outputs {NaNO ) (has-quality object {NaNQ,} taste {salty})
(reacts inputs {HN O KOH} outputs {KNO }) - (has-quality object {KNO, i taste {salty})
(has-quality object {HCI} taste {sour}) (has-quality object { NaOH} taste {bitter})
(has-quality objcct {HNO3} taste {sour}) (has-quality object {KOH} taste {bitter})

FIND-LAW and DETERMINE-QUANTIFIER lead to state S3:
sALTs: {NaCl, KCl, NaNO,, KNO }

Jsalt (reacts inputs {HCl NaOH} outputs {salt}) (has-quality object {HCI} taste {sour})
Jsatt (reacts inputs {HCl KOH} outputs {salt}) (has-quality object {HNO3} taste {sour})
Jsalt (reacts inputs {HNO3 NaOH} outputs {salt}) (has-quality object {NaOH?} taste {bitter})
Jsalt (reacts inputs {HNO3 KOH} outputs {salt}) (has-quality object {KOH} taste {bitter})

Vsalt(has-quality object {salt} taste {salty})

FIND-LAW and DETERMINE-QUANTIFIER Icad to state S5:

sALTs: {NaCl, KC], NaNO,, KNO,}

AcIDs: {HC), HNO }

Vacid Jsalt (reacts mputs {acid NaOH} outputs {salt}) (has-quality object {NaOH} taste {bitter})
Vacid Jsalt (reacts inputs {acid KOH} outputs {salt}) (has-quality object {KOH} taste {bitter})
Vsalt(has-quality object {salt} taste {salty})

Vacid (has-quality object {acid} taste {sour})

FIND-LAW and DETERMINE-QUANTIFIER lead to final state S7:
SALTS: {NaCl, KC], NaNO KN03}

AcIDs: {HCl1, HNO

ALKALIS: {NaOH, I%OH}

ValkaliV acid Isalt (reacts inputs {acid alkali} outputs {salt})
Vsalt(has-quality object {salt} taste {salty})

Vacid (has-quality object {acid} taste {sour})

Valkali (has-quality object {alkali} taste {bitter})

In addition to proposing this law, the FORM-LAW operator generates four additional laws by
substituting the symbol salt for members of this class into other facts. Thus, the facts (reacts inputs {HCl
NaOH} outputs {NaCl}) and (reacts inputs {HCl KOH} outputs {KCI}) are replaced by the laws (reacts
inputs {HC1 NaOH} {salt}) and (reacts inputs {HCl KOH} outputs {salt}). Similarly, the facts
(reacts inputs {HNO, NaOH} outputs {NaNO,}) and (reacts inputs {HNO, KOH} outputs {KNO,}) are
raplaoed by (reacts mpms {HNO, NaOH} outputs {salt}) and (rcacts inputs {HNO KOH} outputs {salt}).
Although mfeﬁmwtbesehwsmguamteedwbeumversanyquanuﬁedby&xenmnermwhmhmesak

as defined, the generality of the other laws must be determined empirically. For example, if the law

(reacm mpms {HCI NmOH} outputs {salt}) were universally quantified over the class of salts, then four facts

wonldbepredmwd&memlyomofmwepredmonshasbemob@ewed, GLAUBER employs an

existential quantifier rz than a universal one. The same decision is made for the other laws formed by
tion leadmgmﬂwhwsmdfactsshownmmesecondsectmnofthembk.
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Given this new state of the world, GLAUBER again determines which of the known symbols occur in
the most analogous facts. In this case, the set of alternatives is dightly different from that on the earlier cycle,
since the class name salt has replaced the individual members of that class. Given the current set of facts and
laws, sx symbols tie for the honors - NaOH, KOH, HC1, HNOg, sour, and bitter. For example, the first of
these occurs in the laws 3salt (reacts inputs {HC1 NaOH} outputs {salt}) and 3salt (reacts inputs { HNCL
NaOH} outputs {salt}), while the second occurs in the laws 3salt (reacts inputs { HC1 KOH} outputs {sdt}
and 3salt (reacts inputs { HNO; KOH} outputs {salt}). The salt symbol actually occurs in al four of these
laws, but the class is not considered, since it is existentialy quantified in these laws. Since al of the viable
options involve two laws (each based on one fact apiece), GLAUBER selects one of them at random. Let us
follow the course events take when the system chooses the pair of facts involving the symbol NaOH.

Based on these facts, the FORM-LAW operator generates the law (reacts inputs {acid NaOH} outputs
{sdlt}), and defines the new class acid as containing the elements HC1 and HNO”. Two additional laws result
from substitution - (reacts inputs {acid KOH} outputs {salt}) and (has-quality object {acid} taste {sour}) -
each replacing two directly observed facts. After substitution, GLAUBER has four laws and two facts in
memory. However, the system must ill determine the generality of these laws. The DETERMINE-
QUANTIFIER operator proceeds to consider the predictions made by each law when universally quantified
over the new class of acids. Since al of the predicted facts have been observed, the universal quantifier is
retained for each of the new laws, giving the set of facts and laws shown in the third section of the table.

At this point, only five symbols remain to be considered - NaOH, KOH, bitter, and the classes salt and
acid. Thefirst two occur only in single laws, while the third occurs in two analogous facts. The class name salt
appears in two analogous laws, but is ignored due to its existential quantifier. However, the class name acid
occurs in two analogous laws that are based on two facts apiece, giving acid ascore of four. As aresult, the twe
laws are passed to the FORM-LAW operator and a higher level law — (reacts inputs {acid akali} outputs
{sdt}) — is formed on this basis. In addition, the class alkali is defined as having the members NaOH and
KOH. A second law - (has-quality object {alkali} taste {bitter}) — is formed by substitution, and both laws
are universally quantified over the new class, the first by definition and the second empirically'. At this point,
GLAUBER has reached its goa of specifying a maximally general set of laws that summarize the original
data. The final laws are shown in the fourth section of Table 6, and are very similar to those proposed by the
early chemists. When GLAUBER is given reactions involving metals as well as alkalis, it defines the broader
class of bases (containing both metals and alkalis as members), and arrives at the central tenet that acids
combine with bases to form salts.

3.3. Comments on GLAUBER

In its present form, GLAUBER has some important limitations, which should be remedied in future
versions of the system. The first difficulty relates to the system's evaluation function for directing search
through the space of classes and laws. The current version iterates through the set of known symbols, and
selects that symbol which occurs in the greatest number of analogous facts. This leads GLAUBER to prefer
large classes to small ones, which in turn leads to laws with greater generality, in the sense that they cover
more of the observed facts. However, recall that once GLAUBER defines a new class on the basis of some
law, it then creates additional laws by substituting the class for its members in other facts. This suggests a
broader definition of generality, including all facts predicted by any law involving the new class. This anaydis
leads to two methods for preferring one class over another. The most obvious approach involves computing
the percentage of predictions that are actually borne out by observations; we shall call thisthe predictivepo®m
of aclass and its associated laws. The second method involves computing the total number of facts predicted
by aclass and itsrelated Iéws; we shall call thisthe predictivepotential of the class.
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Obvioudy, a set of laws that predicts a few observations but predicts many unobserved ones is
undesirable; this suggests that predictive power should be used to weed out grossly unacceptable classes.
However, given roughly equal scores on this dimension, sets of laws with greater predictive potential should
be preferred, since these lead to many predictions which, if satisfied, will lead to an increase in predictive
power. One difficulty in implementing this scheme is that GLAUBER would have to generate the potential
dasses and their associated laws in order to determine their predictive power and potential. Moreover, it
would have to consider whether these laws should be existentially or universaly quantified in order to
compute their scores. In other words, the system would have to apply the FIND-LAW operator in al possible
ways, and then apply the DETERMINE-QUANTIFIER operator in all possible ways in order to determine
the best path to follow. Since this is equivalent to doing a two-step lookahead in the search tree, it would
involve considerably more computation time than the current simple strategy. The details of this scheme
remain to be elaborated, but the basic idea of defining classes that account for the most data seems aplausible
approach.

A second limitation involves the possibility of alternate divisions of substances into classes. In some
cases, two or more branches in the search tree may lead to equally (or near-cqually) good descriptions of the
data. These competing paths may ultimately lead to the same state, or they may lead to completely different
organizations of knowledge.. In the latter case, one would like the system to discover both frameworks.
However, since the current verson of GLAUBER carries out a depth-first search without backup, it must
sdect one of the paths at random, thus ignoring what may be an equally useful summary of the data. Future
versons of the system should be able to consider multiple aternatives while sill using evaluation functions to
keep search to aminimum. ’

In order to understand the last of GLAUBER'S limitations, we must review some related work on
machine learning. Wolff [7] has explored an approach to grammar learning that incorporates methods very
dmilar to those used in GLAUBER. Wolffs system begins with a sequence of letters, and based on common
sequences of symbols, defines chunks in terms of these sequences. For example, given the sequence
"thedogchasedthecatthecatchasedthedog...”, the program defines chunks like the, dog, cat, and chased.
Whenever achunk iscreated, the component symbols are replaced by the symbol for that chunk. In this case,
the sequence "the-dog-chased-the-cat-the-cat-chased-the-dog™ would result In addition, when a number of
different symbols (letters or chunks) are found to precede or follow a common symbol, a digunctive classis
defined in terms of the first set For instance, in the above sequence we find the subsequences “the-dog-
chaseCT and "the-cat-chased)". Based on this regularity, Wolffs program would define the digunctive class
noun » {dog, cat}. The symbol for this new class is then substituted into the letter sequence for the member
symbols. In this case, the sequence "the-noun-chased-the-noun-the-noun-diascd-the-noun*" would be
generated. These two basic methods are applied recursively, so that chunks can be defined in terms of
digunctive classes, and vice versa. Thus, given the last sequence, the chunk sentence =
thenoun-chased-trre-noun would be defined, giving the final sequence "sentence-sentence”.

From this description we see that Wolffs learning system employs two operators - one for forming
digunctive classes such as noun, and another for defining chunks or conjunctiveclasses, such asdog. The first
of these is identical to GLAUBER'S operator for forming disjunctive classes like acid and alkali® The main
difference between the two systemslies in the heuristics for forming such diguncts. Wolff employs adjacency
criteria well-suited to the language acquisition domain, while GLAUBER uses the notion of shared

GBM we should say that GLAUBER'S operator is identical to Wolffs operator, stace Wolffs mttk pra*ded our own by many
years. Although the origind version of GLAUBER was developed independently of Wolffs approach, the current sysem borrows
consderably from his results in the domain of grammar learning.
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arguments, which are more appropriate for relational domains. In contrast, the second operator in Wolffs
method has no analog in GLAUBER’s repertoire, and this suggests a gap in our discovery system’s
capabilities. Upon reflection, onc would like GLAUBER to note recurring relations between conjunctions of
facts, as well as thosc involving isolated propositions. Let us consider an example from the domain of genetics
that requires this form of reasoning. Supposc the system observed (as did Mendel) that when certain green
garden peas were self-fertilized, they produced only green offspring, but that when other green peas were
self-fertilized, they produced both green and yellow offspring. In this case, we would like GLAUBER to
divide the green peas into two classes based not on their own directly observable features (since these are
identical), but bascd on the features of their offspring. Thus, in looking for patterns, the system would have to
cxamine not only single facts, but pairs of facts, triples of facts, and so forth. Such a strategy, though much
more expensive than the current one, would enable the program to note that some green peas have only green
offspring, while others have mixed offspring, and to classify them on this basis. This would be equivalent to
defining chunks based on co-occurring facts, and can be viewed as a relational version of the chunking
mcthod used in Wolff's system.

We should also consider briefly some other discovery systems with similar concerns. First, Michalski
and Stepp [8] have studied the task of conceptual clustering, in which one forms a hierarchical taxonomy for
classifying objects. Since GLAUBER also divides objects into classes, it can be viewed as carrying out a form
of conceptual clustering, even though its methods differ significantly from those uscd by Michalski and Stepp.
GLAUBER also bears some resemblance to Brown’s [9] discovery system, which also generated abstract laws
covering a set of facts. However, this early system’s search methods also differed considerably from those in
GLAUBER, and it did not define new classes in the process of stating laws. Finally, we should mention some
recent work by Emde, Habel, and Rollinger [10] that also involves the discovery of qualitative laws. In this
case, the focus is on determining whether predicates obey certain relations, such as transitivity or inversivity.
Although this approach leads to laws very similar to those found by Brown, the model-driven discovery
method contrasts with the data-driven approach used in the other systems. To summarize, we find that
GLAUBER bears some relation to other systems for qualitative discovery, but is most similar to Wolffs
grammar learning system in both spirit and method.

4. Determining the Components of Substances

We have already seen that early chemists were concerned with both qualitative and quantitative
descriptions of chemical reactions. However, another one of their primary goals was to determine the
components of various substances, and information about chemical reactions proved quite useful in this
regard. The goal of determining such components became an important aspect of the atomic theory, in that it
postulated primitive building blocks for the observed substances, even though no stance was taken on
whether these building blocks were particulate or continuous in nature. Thus, the formulation of
componential models embodied a simple form of explanation that is clearly distinct from the descriptive
summaries generated by BACON and GLAUBER.

During the 18th Century, chemists developed models of many substances, but they devoted
considerable attention to explaining combustion and related phenomena. As a result, two different
componential models were eventually proposed to account for this process. The first assumed that
combustion involved the decomposition of two substances, and was known as the theory of phlogiston. The
second assumed that combustion involved the combination of two substances, and was called the oxygen
theory. Although the phlogiston theory was eventually rejected in favor of its competitor, we will see that it
provided a plausible account of the known reactions, and was well-respected for decades. This suggests an
important constraint on computational models of scientific discovery: such models should be able to arrive at
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plausble laws or models even if they were ultimately rejected in favor of others. This makes the area of
combustion reactions an ideal test for systems concerned with formulating componcntial models, since we
know two models that can usefully account for the observations.

Table7. STAHL viewed in terms of search concepts.

Initial state: alist of reactions relating substances
Godl state: the components of each compound substance
Intermediate states. components of some substances, modified reactions

OperatorsXHcurigtics:
Infer-composition: decides on the components of a substance
Reduce: cancdls substances occurring on both sides of a reaction
Substitute: replaces a substance with its componentsin areaction
| dentifycomponents. identifies two components as the same
Identify-compounds: identifies two compounds as the same

Search control: Depth-first search with no backtracking

4.1.The STAHL System

Our interest in componential models has led us to construct a third Al system that infers such models
from a set of known reactions. The program is named STAHL, after G. E. Stahl (1660 - 1734), one of the
principa formulators of the phlogiston theory. Like GLAUBER, this program accepts quditative information
as input, and generates qualitative statements as output. However, since STAHUs conclusions relate to the
interna structure of substances, they can be viewed as simple explanations rather than descriptive summaries.
The system'’s initial state consists of a set of reactions, represented in the same schemarlike format used by
GLAUBER. For instance, the reaction of hydrogen and oxygen to form water would be represented as (reacts
inputs { hydrogen oxygen} outputs {water}). STAHL's goal is to determine the components of al non-
elemental substances involved in the given reactions. Thisinformation is represented in the same formalism as
the initial reactions. Thus, the conclusion that water is composed of hydrogen and oxygen would be stated as
(components of {water} are {hydrogen oxygen}). Intermediate states consist of inferences about the
components of some substances, along with transformed versions of the initial reactions.

STAHL incorporates four operators for moving through the space of possible componentia models.
These operators are closdy linked to the heuristics that propose them, so they are best discussed together. The
mogt basic of these operator/heuristics deals with simple synthesis and decomposition reactions, and lets the
system infer unambiguously the components of acompound. It can be stated:

INFER-COMPOSITION
If A and B react to foom Q
or if C decomposesinto A and B,
then infer that C is composed of A and B.

An obvious example of this rule's use involves determining the components of water. Given the information
that hydrogen reacts with oxygen to form water, STAHL would infer that the latter substance is composed of
the first two. Note that STAHL docs not draw any conclusions about the amount of hydrogen and oxygen
contributing to water, but only that they contribute something. Of course, the INFER-COMPOSITION rule
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is not limited to reactions involving pairs of clements, but can also deal with cases in which three or more
substances unite to form a single compound.

If all chemical reactions were of the form shown above, STAHL’s task would be simple indeed.
However, more complex reactions are common in chemistry, so STAHL includes additional operators for
dealing with these more complex situations. The purpose of these operators is to transform complex reactions
into simpler forms, so they can eventually be matched by the INFER-COMPOSITION rule shown above.
One such operator is responsible for "canceling” out substances occurring on both sides of a reaction; the
reduction heuristic which proposes this operator can be paraphrased:

REDUCE

If A occurs on both sides of a reaction,

then remove A from the reaction.
This heuristic leads directly to a simplified version of a reaction. For instance, if STAHL is told that "A, B,
and C react to form D and C", the REDUCE rule would apply, giving the simplified reaction "A and B react
to form D". This revised relation would then be used by the INFER-COMPOSITION rule to infer that D is
composcd of A and B. One can imagine cases in which this approach would lead to errors, as when different
amounts of a substance are observed before and after a reaction. However, one can also imagine more
conservative versions of the heuristic that require equal amounts of the canceled substance to occur on each
side.

STAHL incorporates a third operator that initially leads to more complex statements of reactions, but

may make it possible for the REDUCE rule to apply. The heuristic for proposing this operator draws on
information about the components of a substance that have been inferred earlier; it can be stated:

SUBSTITUTE
If A occurs in a reaction,
and A is composed of B and C,

then replace A with B and C.
For instance, the system may know that X is composed of Y and Z, and that "X reacts with W to form V and
Z". In this case, the SUBSTITUTE rule would rewrite the second relation as "Y, Z, and W react to form V
and Z". Given this formulation, the REDUCE rule would lead to "Y and W react to form V", and the
INFER-COMPOSITION rule would lead to the conclusion that V is composed of Y and W. As before, the
SUBSTITUTE rule is not restricted to substances composed of two elements, but works equally well for more
complex structures.

A final operator is responsible for postulating that two substances that were originally thought to be

different are in fact identical. Two separate heuristics propose when to apply this operator; the first of these
rules may be stated:

IDENTIFY-COMPONENTS
IfAis wmposed oEB de,

This heuristic matches when STAHL learns that a compound can be decomposed in two different ways, but
the decompositions differ by a only single substance. The second heuristic is very similar, except that it
applies when two apparently different compounds are found to have the same components. It can be
paraphrased:
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IDENTIFY-COMPOUND
If A is composed of C and D,

and B is composed of C and D,
then identify A with B.

The history of chemistry abounds with cases in which a new substance was discovered in two different

contexts, was originaly thought to be two distinct substances, and was eventually combined into a single
concept. We will see an example of such identification shortly.

STAHL can be viewed as carrying out a depth-first search through the space of componential models,
relying entirely on its heuristics to select the appropriate path. In general, these heuristics are sufficiently
powerful that the system need never backtrack, though we will discuss some dtuations later where
backtracking is required. In some cases, more than one heuristic (or more than one instantiation of the same
heuristic) can be applied to the current state. When this occurs, one instantiation is selected at random. In the
runs we have carried out, this random selection has not significantly affected the find inferences made by the
system, though it does affect the intermediate states that are generated

Table 8. Inferring the composition of lime and magnesia.

Initia state SI: :
(reacts inputs {lime} outputs { quick-lime fixed-air})
(reacts inputs { quick-lime magnesia} outputs {lime calcined-magnesia}),

INFER-COMPOSITiON leads to state S2:
(components of {lime} are { quick-lime fixed-air})
(reacts inputs { quick-lime magnesia} outputs {lime calcined-magnesia}).

SUBSTITUTE leadsto state S3:
(components of {Iime} are { quick-lime fixed-air})
(reacts inputs { quick-lime magnesia} outputs { quick-lime fixed-air calcined-magnesia})

REDUCE leadsto state $4:
(components of {lime} are { quick-lime fixed-air})
(reactsinputs { magnesia} outputs {fixed-air cakined-magnesia})

INFER-COMPOSITION leadsto final state S5:
{(components of {lime} are { quick-lime fixed-air})
(components of { magnesia} are {fixed-air calrined-magniesiaB

One of STAHUSs interesting features is the manner in which its heuristics interact. Note that the
substitution rule regquires knowledge of a substance's composition, so that some inferences about composition
must be made before it can be used. However, we have also seen that complex reactions must be rewritten by
the reduction and substitution rules before some composition inferences can be made. This interdependence
leads to a "bootstrapping” effect, in which inferences made by one of the rules enable further inferences to be
made, these alow additional inferences, and so forth, until as many conclusions as possible have been drawn.
This process generally begins with one or more simple reactions, but after this the particular path taken
depends on the dataavailable to the system.

Let us consider STAHL's heuristics in operation on the relatively simple tak of inferring the
©cmpodtios of lime and magnesia. In order to formulate model s of these two substances, the system requires
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two initid reactions. (reacts inputs {lime} outputs {quick-lime fixed-air}) and (reacts inputs {quick-lime
magnesiat outputs {lime cadcincd-magnesiat). Given this information, the INFER-COMPOSITION rule
appliesfirgt, leading to the inference that lime (CaCOj3) is composed of quick-lime (Ca0) and fixed-air (CO@
This result enables the SUBSTITUTION heurigtic to match, leading to a temporarily more complex verson
of the second reaction, (reects inputs {quick-lime magnesia} outputs {quick-lime fixed-air cacined-
magnesiat). However, snce the substance quick-lime occurs in both sides of the modified reaction, the
REDUCTION mle applies, trandforming it into the simpler form (reacts inputs { magnesia} outputs {fixed-ar
cdcincd-magnesiat). Findly, this reduced form alows the INFER-COMPOSITION rule to infer that
magnesiais composed of the substances fixed-air (CO,) and calcined-magnesia (MgO). At this point, Snce no

" more of its heurigtics seem gpplicable, STAHL concludes that it has formulated as many componentia

modes as the data dlow, and hats its operation. The system's behavior on this example is summarized in
Table 8. Now that we have presented an overview of STAHL's inference methods, let us examine ther
application to ahigoricdly more interesting example — discovering the phlogiston theory. .

4.2. Discovering the Phlogiston Theory

The theory of phlogison originated early in the 18th Century, and after undergoing severd
transformations, was widdy accepted until the 1780's. This theory adopted the ancient view that fire, heat,
and light are different manifestations of a common principle that leaves a body during combustion.
Therefore, any reaction involving combustion was viewed as a decomposition; for instance, burning cod wes
interpreted as decomposing into the matter of fire (another term for phlogiston) and ash.” Early phlogistians
were not able to isolate phlogiston, but the disengagement of fire during combustion seemed to be a good
observationa reason for admitting the disengagement of a substance ffom the burning body. Later, as the
notion of phlogiston proved useful in explaining many additiona reactions, the existence of this substance
was supported by a substantia body of evidence.

After they began to sudy combustion within closed vessds, chemigts redlized that air wes necessary for
combustion to occur. However, they did not assume that air changed its chemica identity during this process
Rather, they decided that air played an auxiliary role, smilar to that played by water in reactions involving
acids, dkalis, and sdlts. Thus, even garting with empirically more complete descriptions of combustion, such
as "in the presence of air, carbon burns to release phlogiston and to form ash”, they employed the reduction
heurigtic to remove air and dmplify the relation. Given such data, STAHL makes smilar "errors' in
reasoning, so that it provides a Smple explanation of the process by which chemists developed phlogiston-
based models of combustion reactions.  Such confusions are common in the history of chemisiry, and a
dgmilar error led the followers of Lavoiger (around 1810) to believe that sodium was acompound of soda and
hydrogen.

Let us examine the path taken by STTAHL in arriving at one version of the phlogiston theory. We
present the system with two facts (reactsinputs{cod air} outputs { matter-of-fire ash air}) and (reacts inputs
{ calx-of iron coal air} outputs{iron ash air}).2 One may question the exact representation of these facts, but
dearly something very much like them was believed during the period in which the phlogiston theory was
developed. Given thisinformation, STAHL immediately appliesits REDUCE operator to the firg fact, giving
the revised reaction (reacts inputs {cod} outputs { matter-of fireash}). The system then applies the same

7Sa/erd decades Lder, in the second half of the 18th Century, fixed air (carbon dioxide) was discovered, and recognized as the product
«f burning caai in place cf ash,

aCak of i n» was the carnal name for iron oxide; we have used the origina terminology,because the modem tenn is btsed m £t
oxygen theory developed by Lavoider.
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operator to the sccond fact, giving the reduced reaction (rcacts inputs {calx-of-iron coal} outputs {iron ash}).
After this, the first of these revisions, combined with the INFER-COMPOSIT TON rule, leads to the inference
that coal is composed of matter-of-fire (or phlogiston) and ash, which was one tenet of the early phlogiston
theory. Having arrived at this conclusion, STAHL applies the SUBSTITUTE rule, generating the expanded
relation (reacts inputs {calx-of-iron ash matter-of-fire} outputs {iron ash}). At this point, the REDUCE rule
is used to remove ash from both sides of the equation, giving (reacts inputs {calx-of-iron matter-of-fire}
outputs {iron}). Finally, the INFER-COMPOSITION operator leads STAHL to infer that iron is a
compound composed of calx-of-iron and the matter of fire. Table 9 summarizes the states visited by the
system in arriving at these conclusions, along with the operators used to gencerate them.

Table 9. STAHL's steps in formulating the phlogiston model.

Initial state S1:
(reacts inputs {coal air} outputs {matter-of-fire ash air})
(reacts inputs {calx-of-iron coal air} outputs {iron ash air})

REDUCE leads to state S2:
(reacts inputs {coal} outputs {matter-of-fire ash})
(reacts inputs {calx-of-iron coal air} outputs {iron ash air})

REDUCE leads to state S3:
(reacts inputs {coal} outputs {matter-of-fire ash})
(reacts inputs {calx-of-iron coal} outputs {iron ash})

INFER-COMPOSITION leads to state S4:
(components of {coal} are {matter-of-fire ash})
(reacts inputs {calx-of-iron coal} outputs {iron ash})

SUBSTITUTE leads to state SS5:
(components of {coal} are {matter-of-fire ash})
(reacts inputs {calx-of-iron matter-of-fire ash} outputs {iron ash})

REDUCE leads to state S6:
(components of {coal} are {matter-of-fire ash})
(reacts inputs {calx-of-iron matter-of-fire} outputs {iron})

INFER-COMPOSITION leads to final state S7:
(components of {coal} are {matter-of-fire ash})
(components of {iron} are {calx-of-iron matter-of-fire})

mmwpposewemwmsymmefo!hwmg |
outputs {vitriol-of-iron inflarmmable-air water}) and (mmm %mpm {Mm sulfuric-a
{vitriol-of-iron water}).? memfm,smmmmmmﬁmmmmm
REDUCE operator. This sufficiently simplifies the second reaction so that it can apply the INFER
COMPOSITION rule, inferring that vitriol-of-iron is composed of calx-of-iron and sulfuric-acid. This fact is

mable air is hydrogen.

%The formuta for vitiol of iron s FeSO,, while the modern name for inflam
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substituted into the first reaction, giving (reacts inputs {iron sulfuric-acid} outputs {calx-of-iron sulfuric-acid
inflammable-air}). After using thc REDUCE opcrator to eliminate sulfuric-acid from both sides of this
expression, STAHL infers that iron consists of calx-of-iron and inflammable air. However, the system knows
from the other reactions described carlier that iron can also be decomposed into calx-of-iron and phlogiston.
Using the first of its identification heuristics (IDENTIFY-COMPONENTS), the system infers that
inflammable-air and phlogiston are identical. Both the reasoning and conclusions of STAHL in this example
are very similar to those of Cavendish and other phlogiston theorists during the 1760’s.

4.3. Comments on STAHL

Earlier we mentioned one case in which STAHL'’s heuristics might lead to erroncous inferences, but did
not pursue the matter. In fact, there are a number of ways in which the system’s heuristics can lead it astray,
and we are currently cxtending the system to deal with these cases. One situation involves the notion of
infinitely recursing componential models. For instance, given certain reactions involving mercury, calx-of-
mercury, and oxygcn,10 STAHL eventually makes two inferences: .(components of {mercury} are {calx-of-
mercury phlogiston}) and (components of {calx-of-mercury} are {mecrcury oxygen}). Taken together, these
two inferences imply that mercury is composed of itself, and this seems an undesirable characteristic for an
explanatory model.

Ultimately, such infinite recursions must be due to the faulty description of one or more reactions.
Given trace information about which heuristics proposed which inferences, an extended version of STAHL
should be able to track down the responsible reaction and call it into question. Historically, chemists
introduced conceptual distinctions to explain such inconsistencies. For instance, to avoid the difficulty
mentioned above, they formulated the concept calx-ofmercury-proper as distinct from calx-of-mercury. In
some sense, this is similar to BACON’s introduction of new intrinsic properties when it encounters a situation
in which its numeric methods fail to apply. As with BACON, such concepts may appear tautological when
first introduced, but become respectable to the extent that they prove useful in dealing with other situations
besides the one leading to their introduction.

STAHL’s heuristics can lead to other forms of inconsistency as well. For instance, the system may infer
that A consists of B and C, and later infer that A also consists of B, C, and D. Alternately, the program may
reduce a reaction to the form (reacts inputs {X} outputs { }), which contains inputs but no outputs. In both
cases, an extended version of STAHL should be able to trace back through its chain of inferences to
determine the source of the problem, and either reject the offending observation or restate it using a new
concept. This process can be viewed as a form of backtracking through the search space, though not in any
simple sense. It is better described as rejecting the current state and moving sideways through the problem_
space to another state at approximately the same depth. In any case, such backtracking methods would make
STAHL a more robust discovery system in spite of its occasionally misleading heuristics. Moreover, it would
improve the system’s status as a historical model, since such reformulations occurred many times in the early
days of chemistry.

5. Formulating Structural Models

As an area of science matures, researchers progress from descriptions to explanations. Although the
dividing line between these forms of understanding is fuzzy, some examples clearly lie at the explanatory end
of the spectrum. For instance, the kinetic theory of heat provides an explanation of both Black’s law and the
ideal gas law. A simpler example, though no less impressive at the time it was proposed, is Dalton’s atomic
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theory. Both examples involve some form of structural modecl, in which macroscopic phenomena are
described in terms of their inferred components. Although this is not the only form of scientific explanation,
the notion of structural models seems significant cnough to explore in some detail. Let us review the history
of the atomic theory as a prelude to our computational analysis of this aspect of discovery.

We have seen that a portion of the atomic hypothesis was implicit in componential modcls such as the
phlogiston theory, but the full version of the atomic model was first proposed by John Dalton in 1808. In his
attempt to explain the law of multiple proportions, Dalton assumed that substances were composed of
particles called atoms, and focused on the numbers of particles making up each substance. Following his lead,
chemists adopted the design of such atomic models as one of their centrai concerns. Dalton employed his rule
of greatest simplicity to apply the atomic theory to specific cases, and though this heuristic worked in many
cascs, it led him to incorrect conclusions in others. For instance, it led him to conclude that water was
composcd of a single hydrogen atom and a single oxygen atom. In contrast, Avogadro (1811) employed
Gay-Lussac’s data on combining volumes, along with the assumption that cqual volumes of gases contained
equal numbers of particles. Using this information, he inferrcd diatomic models for hydrogen and oxygen and
a different structure for water. Although we accept Avogadro’s hypothesis today, it was rejected by his
contemporaries, since they believed that different atoms of the same element would repel, rather than attract,
each other; hence, that diatomic molecules of elements were impossible. This is another case in which two
hypotheses provided plausible accounts of phenomena, making the area an ideal one for testing a discovery
system concerncd with formulating structural models.

Table 10. DALTON viewed in terms of search concepts.

Initial state: a list of reactions and the component of the substances involved

Goal state: a model of each reaction, specifying the number of molecules
and the number of particles in each compound

Intermediate states: partials models of some reactions

Operators:
Determine-molecules: specifies the number of times a compound occurs in a reaction
Determine-atoms: specifies the number of atoms of a given type in a molecule
Conserve-particles: determines remaining numbers based on conservation principle

Heuristics:
For Determine-molecules: consider only multiples of the combining volumes
For Determine-atoms: select simpler models first

Search control: Depth-first search with backtracking

5.1.The DALTON System

Our interest in structural models led us to construct a fourth discovery system concerned with this issue.
Since John Dalton was one of the earliest proponents of such models, we have named the system DALTON.
The system accepts a set of reactions as input, along with information about the components of the substances
involved in these reactions. For instance, DALTON would be told that hydrogen reacts with oxygen to form
water, and that hydrogen reacts with nitrogen to form ammonia. Along with this information, the system
would be told that water has hydrogen and oxygen as its components, while ammonia has hydrogen and
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nitrogen as its components.11 Finally, it would be informed that hydrogen, oxygen, and nitrogen are clements,
implying that they have no components other than themselves.

DALTON knows that two quantities arc important in a reaction — these are the number of molecules of
each substance that take part (in the simplest form of the reaction), and the number of particles (atoms) of
each type in a given molecule.!? The system’s goal is to devise a model for each reaction that specifies the
number of molecules and particles for each of the substances involved. Given this goal, the reactions from
which DALTON begins its search are best viewed as very abstract models in which these numbers have not
yet been specified. In its search through the space of models, the program generates intermediate states in
which some amounts have been specified but others have not. Table 10 summarizes the program in terms of
search concepts.

The system incorporates three operators for instantiating these models, and thus moving through the
problem space. The first operator inputs a reaction in which the number of molecules for a particular
substance is unknown, and outputs a revised reaction in which this number is specifiecd. For instance, this
routine must hypothesize the number of oxygen molecules involved in the water reaction. A second operator
is responsible for specifying the number of times a given component occurs in a particular substance. For
example, given the information that oxygen is one of the components of sulfuric acid, this operator would
hypothesize the number of oxygen atoms in the acid. A final operator also determines the number of atoms in
a substance, but in a much more efficient manner. This routine assumes that for each element taking part in a
reaction, the total number of particles is conserved. The operator is given the number of molecules on both
sides of a reaction, along with the number of particles on one side of that reaction. From this information, it
determines whether the conservation assumption can be satisfied, and if so, it specifies the number of particles
on the other side of the reaction necessary to balance the equations. If conservation cannot be satisfied under
the existing assumptions, it returns this information instead.

Using these three operators, DALTON carries out a depth-first search through the space of possible
models. The system focuses on one reaction at a time, first determining the number of molecules and then the
number of particles in each molecule. Simpler models are considered before more complex ones. Thus, a
model involving one molecule for some substance would be proposed before one specifying two or three
molecules. Similarly, models ircorporating one occurrence of an element (monatomic models) would be
considered before models involving two occurrences of that element (diatomic models). The conservation
assumption is employed as soon as the model for a reaction is sufficiently constrained for it to be used. Since
some partial models cannot be instantiated in any way that will satisfy the conservation constraint, DALTON
must be able to backtrack and consider other paths to a complete model.

One additional constraint makes the process of constructing models challenging. Consistency requires
that the model for a substance be the same for all reactions in which it occurs. For example, if hydrogen is
assumed to be monatomic for the water reaction, it must also be monatomic in the ammonia reaction. In
general, this assumption will simplify the search process, since models completed earlier will constrain those
dealt with at later points. However, it is possible that the model for a substance results in a conservation-
consistent model for one reaction, but leads to difficulties for another reaction. In such cases, DALTON must
revise its earlier model in order to construct a consistent explanation for both reactions. This involves a form

lll'hm.DAL’rONmpusasthmmewpedmfmmmﬂmWsmmmmmMmmu
could be easily linked together. We will discuss this possibility in a later section.

urhismnsxhatﬂ)eDALTONpmyambeginswithabetmmod‘theuuesiuuﬂonmadidi!snm&ke. since John Dalton did



-25—

of backtracking, though not the simple form discussed above, since some cxisting models may be retained.
We will see an example of this backup method shortly.

5.2. A Monatomic Model of the Water Reaction

Now that we have examined DALTON's problem space and search control in the abstract, let us
consider their use in an example. Suppose the systcm is asked to construct a model of the water reaction,’
given the information that water is composed of hydrogen and oxygen, and that hydrogen and oxygen are
primitive clements (and thus composed of themselves). In this case, the program must determine the number
of hydrogen, oxygen, and water molecules, and the number of atoms of each type in the various molecules. As
we have scen, DALTON begins with a very abstract model in which no commitments are made, and
successively refines this model as it proceeds. Let us cxamine what happens at each stage in the search
through the space of models.

(HO->W)
((H) O»wW) (H) H)O>wW)
((H) (O)»W) ((H) (H) (O)>W)
((H) (©)> (W) ((H) (H) (O)» (W) (W))
((h) (O)» (W) ((h) (h) (O)» (W) (W)
((h) (0)» (W) : ((h) (h) () »(W) (W)) ((h) (h) (0 0) > (W) (W)
{(h) ()= (h o)) ) ViOLlATES ((h) (h) (0 ©) »(h 0} (h o))
CONSERVATION

Figure 3. DALTON’s search for a model of the water reaction.

Starting with an abstract model of the form (H O — W), the program first considers the number of
hydrogen molecules involved. Lacking any theoretical bias, the system chooses the simplest hypothesis and
assumes a single hydrogen molecule is required. If this choice later causes difficulty, the model-builder can
back up and try another path. Similar initial choices are made for oxygen water, so that the partially
specified model includes one molecule each. This is represented by the proposition ((H) (O) = (W)), in
which each molecule is enclosed in parentheses.

Now DALTON must determine the internal structure of each type of molecule, and it decides to
assume initially that both hydrogen and oxygen consist of a single atom (say h and o), giving the model ((h)
(o) = (W)). At this point, the program invokes its conservation-based operator. This routine checks to see if
the model can be finalized in such a way that conservation is obeyed. If this is possible, DALTON outputs the
completed model and haits, but if the conservation principle cannot be satisfied, the system backs up and
considers other possibilities. In this case, the conservation operator tells DALTON that the water molecule
must be composed of one h particle and one o particle, and that the final model must have the form ((h) (o)
= (h 0)). This model is equivalent to the one originally formulated by the human chemist, John Dalton.
Figure 3 presents some of the paths available in the space of molecular models. In arriving at the monatomic
model just described, DALTON takes the left path, and since this leads to an acceptable solution, no
backtracking is required.
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53.A Diatomic Model of the Water Reaction

As we have secn, DALTON?’s basic stratcgy is to carry out a depth-first scarch through the space of
models, ordering the search so that simple models are considered first. However, when enough of the model
has been specificd, a theory-driven heuristic (implcmcnt'mg the conservation assumption) takes over and
finalizes the model. DALTON can also employ theory-driven methods at other Stages in its scarch process,
and these methods can alter the system’s behavior in significant ways. Thus, in the above run, the system had
no theoretical biases other than a belief in conservation of atoms and a desire 10 construct as simple a model
as possible. However, if we give DALTON some additional information about the water reaction, its behavior
changes significantly. Avogadro was awar¢ of Guy-Lussac’s results, and believed that the combining volumes
he observed were related to the number of molecules involved in the reaction. To model this knowledge, we
can add the heuristic:

INFER-MULTIPLFS
1f you want to know the number of molecules of X that are involved in a reaction,
and the combining volume of X was V,

then consider only multiples of V as possibilities.
Given this assumption (and knowledge of the combining volumes: two parts by volume of hydrogen plus one
part of oxygen yiclds two parts of water vapor), the program (let us call it DALTON) instead postulates two
molecules of hydrogen and water (and if this was later found to be unsatisfactory, four and then six), while
retaining the assumption of one 0Xygen molecule. Thus, at the third level in the search tree, DALTON’ has
the partially specified model (H) (H) )W) W)

At this point the revised system moves 0 consider the internal structure of the hydrogen molecule,
assuming it is composed of a single atom (say h), and makes a similar assumption for oxygen. However, for
the resulting model, () () ©)— (W) (W)), there exists no decomposition of water in terms of h and o that
satisfies the conservation assumption, so the program backs up and considers some other alternative.
DALTON’ next hypothesizes the oxygen molecule as composed of two atoms, and since this does allow
conservation to be satisfied, a final model is constructed in which oxygen is diatomic and hydrogen is
monatomic: ((h) (h) (00)— (h o) (h0)). (These two search paths are shown on the right side of Figure 3)
While this model differs from the modern-day one, it is consistent with Guy-Lussac’s data and encounters
difficulty only when other reactions are considered. For example, the assumption that hydrogen is monatomic
does not work for the ammonia reaction.

Like most of the programs we have described, DALTON is stated as a production system. In default
mode, the system uses a few simple rules to formulate simpler models first, and more complicated ones as
pecessary. However, if new condition-action rules are added to the system, they take precedence over the
default rules and can directseatchdownpathsmatuﬁghxomawisenotbeoo idered. Thus, one can insert a
rule that would match if the combining volume of some substance is known, and use this information to
determine the number of molecules used for that substance in the model. The conservation assumption is
implemented in a similar mmwmngenemmammﬂarmmmreofa reaction’s output that uses all

Once DALTON has generated 2 successful model for a reaction, it converts this knowledge into
productions. For instance, having arrived at the diatomic explanation of water given above, the program
would store one rule concerning the molecules of hydrogen involved, another for oxygen molecules, and a
mﬁ‘dfofmewawmdewmﬁmesymm'maskedmexpmmewatamacﬁon at a later date, it will be able
to recall the number of molecules without search. DALTON also constructs productions describing the
internal structure of various molecules, and while this knowledge is useful in re-explaining the water reaction,
it is useful in other cases &S well. For instance, when asked to model the ammonia reaction, the system would
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immediately propose that hydrogen was monatomic, based on the success of this assumption in its model of
water. Nonc of the modecls incorporating this assumption satisfy conservation, so the system would back up,
hypothesize that hydrogen is instead diatomic, and eventually arrive at the correct model for ammonia.

However, DALTON must now also update its model of the water reaction. Since the system knows that
its monatomic hydrogen rule was responsible for leading it astray, it removes this rule from memory and
replaces it with a diatomic rule for hydrogen. It then focuses on the rcaction that led it to construct the
monatomic production, and checks to sce if the replaccment rule works here as well. In this case it does,
producing the structure (h h o) for water, but had it run into difficulty, the process would have been repeated,
with DALTON considering ever more complicated molecular structures (up to a limit), until both the water
and the ammonia reaction had been successfully explained by a single rule.

5.4. Comments on DALTON

Although DALTON’s methods arc concerned with reactions, they are not limited to the chemical
domain. For example, the ficld of elementary particle physics is also concerned with reactions, and with the
formulation of structural models to explain those reactions. The most widely accepted theory in this domain
accounts for the internal structure of protons, neutrons, and other hadrons in terms of a small set of
hypothesized particles called quarks. In its present form, DALTON cannot rediscover the quark theory, but
two relatively simple extensions should enable the system to arrive at the basic tenets of this framework.

First, the current version of DALTON requires knowledge of thc components of a substance, or
knowledge that a substance is elementary, such as hydrogen or oxygen. However, there are no directly
observable "elements” in the field of particle physics, and in order to explain particle intcractions, one must
postulate entirely new substances that have never been scen. For example, the basic proton "molecule” is
viewed as composed not of three proton "atoms", but as composed of two u quarks and one d quark. In order
to regenerate the quark theory, DALTON must be modified to search the larger space of models in which
such decompositions can occur. Alternately, one can imagine a modified version of STAHL capable of
determining the unseen components of hadrons, with DALTON retaining its focus on the number of particles
involved. In any case, the issue of inferred particles must be addressed in one system or the other.

An equally important aspect of the quantum theory involves the conservation of mass and of the various
quantum numbers, such as spin and electric charge. In order to generate these features of the theory,
DALTON must attempt to explain quantitative attributes of directly observable substances (such as protons
and neutrons) in terms of attributes associated with inferred substances (such as quarks). Presumably, these
constraints can be stated as theory-driven heuristics, much as the conservation of particles assumption is
implemented in the current version. Once the system has been given this capability, it may also be able to
rediscover the basic version of the caloric theory, in which the conserved properties of mass, heat, and heat
quantity are used to explain changes in the non-conserved quantity temperature.

A less obvious application of DALTON involves the field of classical genetics. The hereditary rules for
garden peas, first enumerated by Gregor Mendel in 1866, can be viewed as reactions in which characteristics
of the parents are transformed into characteristics of the offspring. Given the first extension described above,
along with a suitable replacement for the conservation assumption (since this does not apply in reproductive
systems), DALTON should be able to arrive at the two-trait model originally formulated by Mendel. For
example, let us suppose that the system is provided with genotypic statements of the result of inbreeding and
crossbreeding, which might be induced by another discovery system (like GLAUBER) from phenotypic
descriptions of these reactions. Then, if we let G stand for green peas that produce only green offspring, Y
stand for yellow peas that produce only yellow offspring, and G’ stand for green peas that produce mixed
offspring, four basic reactions suffice to describe Mendel's observations: GG — G, YY—= Y, GY—> G,
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and G' G' ->GG'Y . Given these reactions, an extended version of DALTON should be able to infer that
two primitive traits (sy g and y) arc required, and to decide that the genotype G can be modeled by the
"molecular pair (g g), that Y can be modeled by the pair (y y), and that G' can bemodeled by the pair (gy).
Aswe envigon it, the system's explanation of these reactions would not involve the notion of dominance, nor
would it predict the proportions in which the various genotypes are observed, but it would account for the
basc qualitative relations between parents and offspring. ‘

Before cdlosing our discusson of DALTON, we should examine briefly itsrelation to DENDRAL [11], a
well-known Al system that was aso concerned with formulating structural models of substances, in this case
complex organic molecules. Rather than using reactions for its basic information, DENDRAL searched for
models that would account for mass spectrogram data. In addition, the system employed considerable
knowledge of organic chemistry to direct its search through the space of possible models. There is no doubt
that this early program could effectively search spaces in which DALTON would be quickly overwhelmed,
and could generate structural models more complex than our system could begin to consider. However, this
observation misses an important point. DENDRAL was concerned primarily with imitating 20th Century
organic chemists who draw upon centuries of accumulated knowledge about chemicals and their reactions. In
contrast, DALTON is concerned with an earlier stage in the discovery process, such as we find with the early
chemigts in their attempt to formulate atomic models with very little available knowledge. Thus, DALTON
and DENDRAL can be viewed aslying at two ends of aspectrum, with the first studying smple discoveriesin
a knowledge-poor environment and the second focusng on more complex discoveries in a knowledge-rich
environment Ultimately, we may understand both approaches as specia cases of a more general method for
creating structural models, but that remains atopic for future research.

6. Towards an Integrated Discovery System

In the preceding pages, we examined four Al systems that address different aspects of the discovery
process. While each of these programs isinteresting in its own right, they should ultimately be combined into
asingle, integrated discovery system. One advantage of this approach is that it will increase our understanding
of the relations among the various forms of discovery. In turn, this understanding will constrain the
component sysems, since the outputs of one program would have to conform to the input requirements of
another. This will lead to revisons of the existing systems, and more robust and plausible discovery programs
will result Another benefit is that the resulting sysem would be more sdlf-contained, relying less on the
programmer and more on its own devices. To the extent this can be achieved, an integrated discovery sysem
would be much less susceptible to the criticism that one is "building in discoveries’ by providing the
necessary inputs.

Since the notion of search iscentra to all four discovery systems, let us explore the role of search in the
proposed integrated system. Clearly, the operators used by each of the systems will remain the same, as will
the heuristics for applying those operators. The initial Sates for each system will be largely the same, but will
no longer be provided by the programmer. Instead, they will be generated by other systems as output Given
aset of operators and rales for applying those operators, the specification of an initial state effectivey defines
aproblem space. Thus, to the extent that discovery syssem A'sinitial stateis created by another sysem B, we
can claim that B has defined the problem space that A will search. This may lead A to specify a new initid
dtate for B, thus defining anew space for it to search. The dream of the Al learning system that V' pullsitself up
by its own bootdrges™ is an old one, and we do not export it to be achieved in the near future. However, we
do believe that it lies in the direction we propose to explore, in which individual learning systems are
combined to form awhole that becomes greater than the sum of its parts*
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In this section, we examine some scenarios in which significant interactions might take place among
BACON, GLAUBER, STAHL, and DALTON. In each case, we will treat the individual sysems as black
boxes, and focus on the relation between their inputs and outputs. Although we are far from actually
combining these programs into a unified system, we hope that these examples will convince the reader that
such a sysem is not only possible but necessary if we ever hope to understand the complex process we call
scientific discovery.

6.1. Designing Experiments and Generalizing Laws

Earlier in the paper, we noted that the discovery of qualitative laws often precedes the discovery of
guantitative relations. This suggests that GLAUBER should be able to contribute something to BACON'S
search for numeric laws. However, the most obvious connection involves the search through the space of data
rather than the space of laws. The reader will recall that BACON relics on the programmer to provide a set of
variables and vaues, leading the system to run particular factoria experiments. Our hope is that GLAUBER
will give BACON enough information to let it design its own experiments. For instance, suppose BACON
were told by GLAUBER that nitric oxide, nitrous oxide, and nitrogen dioxide were dl substances that
resulted "from reactions between nitrogen and oxygen. Given knowledge of this class of compounds, an
extended version of BACON might design an experiment in which the substances entering a reaction (oxygen
and nitrogen) were held constant, while the output of the reaction was varied. If quantitative variables such as
the weights of the substances were examined, the resulting experiment would lead BACON to Dalton's law of
multiple proportions, as described in an earlier section.

The second use of GLAUBER'S output relates to BACON's generalization process. As it is currently
implemented, BACON initialy associates intrinsic values with all potentialy relevant symbolic conditions,
and generdizes by removing conditions whenever it finds that a set of intrinsic values is usgful in a new
context However, the availability of the classes generated by GLAUBER presents an alternate generalization
method. Rather than removing conditions entirely, one can generalize by replacing the symbol in acondition
with the class containing that symbol. For instance, suppose BACON has stored a set of intrinsic values, with
one condition for retrieval being that one of the substances entering the reaction is HCL Next, suppose that
the system finds the same intrinsic values useful when the substance is HNOj3 instead of HCL Rather than
inferring that this condition is irrelevant, BACON might decide that the intrinsic values should be retrieved
whenever an acid is involved in the reaction (provided that GLAUBER had aready defined this concept).
Thisis amore conservative approach to generalization, and would adlow BACON to express alarger dass of
hypotheses than it currently can. Of course, the system could eventually decide to remove this condition
entirely, should the intrinsic values prove useful for non-acids as weL

This approach to generdization suggests that GLAUBER might find a use for BACON's output as weli
Imagine an alternate scheme for generalizing intrinsic values, in which BACON iterates through &l symbolic
vaues, collecting those for which a set of intrinsic values are useful. Suppose the connection between symbols
and vdues is stored in propositions, such as (intrinsks of {HC1} are {123 176 4.35}) and (Intrindcs of
{HNO3} are {123 Z76 435}). Given such a set of propositions, GLAUBER could define a class (say A)
based on those substances for which the values were useful, and formulate alaw summarizing this knowledge*
such as (intrinsics of { A} are {1.23 Z76 435}). If this class corresponded to another dass, such as acids, so
much the better, Thus, one can imagine GLAUBER aiding BACON's generalization process, or BACON's
generaization method providing data for GLAUBER'S discoveries, depending on which system is allowed to
operatefirgt.
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6.2. Determining the Components of Acids

The fact that both STAHL and GLAUBER are capable of dealing with rcactions between substances
suggests that there is room for interaction between these systems. [f GLAUBER is given reactions such as
(reacts inputs {HC1 NaOH} outputs {NaCl}) as inputs, it generates abstract rcactions like (reacts inputs {acid
alkali} outputs {salt}) as output. If such laws are passed to STAHL as data, the program will attempt to
determine the components of the "substances” involved. In this case, the system would infer that all salts are
composed of an acid and an alkali. This conclusion is not very surprising, though it is an inference one would
like a discovery system to make.

More complex interactions become possible when one realizes that concepts such as HCl and NaOH are
not primitive at all, but are based upon lower level observations much like the higher level concepts of acid
and alkali. For instance, GLAUBER might be given many facts concerning the tastc and color of a large set
of substanccs (let us call them ol, 02, and so forth). Some of these substances would have very similar tastes,
as well as very similar colors. Based on such shared properties, these chemicals would be grouped into the
classes we know as hydrogen (H), chlorine (Cl), and others. If the primitive substances had been involved in
reactions such as (reacts inputs {ol 02} outputs {03}), GLAUBER would rewrite these in terms of the new
classes, giving reaction "laws" like (reacts inputs {H Cl1} outputs {HCI1}). Such laws would then be processed
by GLAUBER to determine still higher level classes and laws. However, they could also be passed as inputs to
the STAHL system.

Given inputs such as (reacts inputs {H ClI} outputs {HC1}), STAHL would apply its rules to infer the
components of the substances involved. In this case, it would immediately infer that HCl is composed of
hydrogen and chlorine. By itself, this inference is not very interesting. However, suppose STAHL then passed
this result back to GLAUBER as additional data. In order to do this, it must represent the inference in
GLAUBER’s terms, but the existing (components of {HCI1} are {H C1}) will serve quite well. Given this fact
and similar facts, such as (components of {HNO3} are {H NO3}), and given examples of reactions involving
acids and alkalis, GLAUBER would formulate the class of acids, and generate by substitution the laws
(components of {acid} are {H Cl}) and (components of {acid} are {H NO3}). Taken together, these laws
would lcad to a new class (let us say acid-components) with members like Cl and NO3, along with the law
(components of {acid} are {H acid-component}). This law (appropriately quantified) states that all acids have
hydrogen as one their components. This conclusion can be reached through a complex interaction in which
GLAUBER affects STAHL’s search through the space of componential models, and STAHL in turn affects
GLAUBER search through the space of classes and qualitative laws. A similar line of reasoning would lead
the GLAUBER/STAHL combination to the conclusion that all metals have phlogiston as one of their
components.

6.3. Building Structural Modeis

As we have seen, STAHL focuses on determining the components of chemical substances, while
DALTON is concerned with the mumber of particles involved in a reaction. Thus, STAHL can be viewed as
laying the groundwork for a detailed structural model, with DALTON being responsible for finalizing the
model. Moreover, DALTON requires knowledge about the components of a substance in testing its
conservation assumption, and it is natural to assume that this information comes from STAHL. In fact, the
coupling between these programs is already sufficiently close to view them as successive stages of a single
system, and we expect to merge them in our future research. Let us explore the form such a combined system
might take,

One can idendfy three distinct stages in the process of building structural models. The first involves
identifying the components of substances, which is the focus of the STAHL system. We have discussed some
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potential extensions of this system, such as providing the ability to postulate unobserved components, but this
would not ater the basic god of the system. The second stage involves determining the number of times each
component occurs in some substance, which is the focus of DALTON. Again, we have discussed some
possible extensions, such as determining numeric attributes of the components, but the basic task remains the
same. The find stage, which we have so far ignored, involves specifying the manner in which the various
components are connected to each other. Early chemists were able to avoid this issue, but the discovery of
organic molecules eventually forced them to deal with the problem. Kekule's insight about the structure of
the benzene ring was essentidly an insight about the connections between the components of that compound.
Search in this stage would involve sdlecting a pair of components to connect, and selecting a type of bond to
connect them.

We envision asngle discovery system that searches the space of structural models, first determining the
components involved, then identifying the number of particles taking part, and findly modeling the
connections between these particles. Starting with completely abstract models, this sysem would successvely
instantiate them until their complete structure had been determined. At each stage in this instantiation
process, the system would employ constraints, such as the conservation assumption, to reject some modelsin
favor of others. Although the space of models would be quite large, search through this space would be
relatively constrained :Although considerable work would be involved in constructing such a program, it
would be an.important step toward integrating the four discovery systems we have described.
6.4."Discovertng the Principles of Inheritance

“Earlier in the paper, we outlined an extended version of GLAUBER that would be able to note patterns
among conjunctions of facts. We discussed the application of this sysem to Mendel's data on heredity,
showing how it could be used to infer genotypic classes (e.g., pure-breeding green peas G, mixed green pess
G\ and pure-breeding yelow peas Y) from observations about phenotypes (e.g., green and ydlow peas). In
another section, we proposed an extended version of DALTON that, given genotypic descriptions of the
offspring resulting from various matings, would be able to infer Mendel's two-trait model to account for those
descriptions.® This suggests a straightforward relation between the two programs that should extend to other
domains ‘besides genetics. We see GLAUBER sarting with directly observed reactions and, based on
regularitiesamong those reactions, rewriting them at a higher level of description. DALTON would then take
the higher level reactions, and devise structural models to account for them. According to this view,
GLAUBER would serve mainly as a preprocessor for DALTON, transforming direct observations into an
initid state that the structural modeler could operate upon.

However, information can flow in the opposite direction as well. Once DALTON has constructed
models for a set of genotypic classes (such as{g g} for G, {y y} for Y, and {g y} for G"), this information
could be passed back to GLAUBER. For instance, suppose GLAUBER begins with the following knowledge,
some of which would be provided by DALTON:

(componentsof { Y} are{yy})
(componentsof { G} are{gg})
(componentsof { G} are{gy})
(has-piopcrty object { Y} color {yellow})
{(has:property object { G} color { green})
(has~propeity object { G*} color {green})

Given this information, our extended version of GLAUBER would note two Mfacts* involving green-

I"’\In feet Has could best bei oam plishied bry the istegrated versioa of STAHL snd DALTON just described.
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colored classes, and that both of these classes (G and G’) has the symbol g as onc of their components. As a
result, the following two laws would be formulated:

VQ 3P (components of {Q} are {g P})
VQ (has-property objcct {Q} color {green})

In addition, the class Q is defined as the union of the classes G and G’, while P is defined as having the
members y and g.14 Taken together, these laws state that all green peas contain at least one instance of g in
their list of components. This example is similar to the earlier case in which GLAUBER noted hydrogen as a
component of acids, but one can interpret it somewhat diffcrently. In the context of genetics, the above law is
stating that g is a dominant trait, since it leads to green plants whenever it occurs as a component. Again, we
have seen that complex feedback between two discovery methods can lead to laws that could not be
discovered by cither method alone.

6.5. Constraining the Search for Structural Models

We have seen how DALTON’s search through the space of structural models can be altered by
heuristics, such as the combining volume rule that led to Avogadro’s model of the water reaction. However,
we have not discussed the origin of the information used by such rules. For instance, Avogadro’s heuristic
must know the combining volumes for a reaction before it can be used to constrain search. Since this
information is numeric, it is natural to consider BACON as a possible source, and upon reviewing BACON’s
chemical discoveries, we find that the system’s common divisor method generates the combining volumes
required by DALTON. Thus, BACON’s output can be used to direct DALTON’s search through the space of
possible models.

We have discussed an extended version of DALTON which determines numeric properties of the
components in its models. For example, the system might estimate the relative atomic weights of elements
taking part in a set of reactions. (This was a major concern of the early chemists.) Given such estimates, one
can imagine DALTON placing additional constraints on its modcls, and using these constraints to reject some
models in favor of others. For example, the system might require that the estimated atomic weights be
consistent across different reactions. However, in order to estimate the relative weights of the components in a
model, DALTON would have to know the combining weights of the substances involved in a sct of reactions.
Again, BACON is the obvious source for such knowledge, since it generates combining weights at the same
time it produces combining volumes. In summary, BACON has the potential to place significant constraints
on DALTON’s search process. It is interesting to observe that data-driven methods, like those used in
BACON, can be such an aid to theory-driven behavior of the type found in DALTON.

6.6. Structure of the Proposed System

The above scenarios provide some idea of the behavior we expect from the integrated discovery system,
but we have not discussed the structure of the proposed system. In particular, we should consider how closely
linked the systems will be to one another. In considering the relation between STAHL and DALTON, we
decided that the coupling should be very close, since these systems can actually be viewed as dealing with
different stages in the same search process. However, it is not clear that the same conclusion holds for
BACON, GLAUBER, and STAHL/DALTON, since these systems seem to address genuinely different
aspects of discovery — the search for quantitative laws, the search for qualitative laws, and the search for
structural models. More likely, the systems should be given access to a common blackboard, and care should
be taken to ensure compatible representations.

Iﬁhmm of the system cannot handle situations in which a substance like g is treated as both a constant and 2 member of
a class. This capability would have to be added before GLAUBER could work as proposed.



-33-

If we assume that the systems should be loosdy coupled, we must dill specify whether interaction
occurs occasionaly or continuously. The first approach assumes that one sysem would begin, run its course,
and then deposit its results on the common blackboard, to be followed by another system which takes
advantage of these results to define its search space. Thisfitsin wel with the current verson of GLAUBER,
which requires dl facts a the outset of a run. An alternate scheme would have the systems running
concurrently, with each depositing results on the blackboard, and with these results dynamically affecting the
paths taken by other systems. This approach is well-suited to the STAHL program, which already uses an
incremental approach to formulating componential models, Although an incremental system like STAHL
(and to some extent BACON) can be provided with al the data at the outset, an all-at-once system like
GLAUBER cannot be run in incremental mode. Thus, if we decide to pursue an incremental version of the
integrated discovery system, GLAUBER will have to be substantially revised in order to fit into this
framework,

6.7. Conclusions

In this paper, we examined four aspects of the diverse activity known as scientific discovery — finding
guantitative laws, generating qualitative laws, inferring the components of substances, and formulating
structural models. Our approach involved constructing Al systems that focused on these different facets of
science, and testing them on their ability to replicate historical discoveries. We drew our examples mainly
from the history of chemistry, since this areaprovided useful tests for each of the systems, and since it alowed
us to explore potential connections between the discovery programs. We found that each of the systems could
be usefully viewed as carrying out search through a space of laws or models, and we examined the operators
and heuristics used to direct search through these spaces. We aso found that each of the systems has some
important limitations, and proposed some extensions that should lead to improved future versions.

Although the four systems - BACON, GLAUBER, STAHL, and DALTON - have each contributed
to our understanding of discovery, we believe that an even greater understanding could result from exploring
the relations among the systems. As a result, we plan to construct an integrated discovery system that will
incorporate the individua systems as components. As we have noted many times, scientific discovery is a
multi-faceted process, and even within such an expanded framework, we must omit many of its important
aspects. For instance, we have not addressed the formulation of mechanistic explanations such as the kinetic
theory of gases, the role of structural analogies as studied by Winston [12] and Gentner [13], or the design of
new measurement devices. Thus, even our goa of an integrated discovery system islimited in some important
respects. However, limiting one's focus of attention is a venerable and useful tradition in the history of
science, and there will be ample time to incorporate these additional fecets of discovery after we better
understand the relations among the four existing systems. i
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