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Abstract

Learning from experience involves three distinct components — generating behavior, assigning credit, and
modifying behavior. We discuss these components in the context of learning search heuristics, along with the
types of learning that can occur. We then focus on SAGE, a system that improves its search strategies with
practice. The program is implemented as a production system, and learns by creating and strengthening rules
for proposing moves. SAGE incorporates five different heuristics for assigning credit and blame, and employs
a discrimination process to direct its search through the space of rules. The system has shown its generality by
learning heuristics for directing search in six different task domains. In addition to improving its search
behavior on practice problems, SAGE is able to transfer its expertise to scaled-up versions of a task, and in
one case transfers its acquired search strategy to problems with different initial and goal states.
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1. Introduction

The ability to search is central to intelligence, and die ability to direct search down profitable paths is
what distinguishes the expert from the novice. However, since all experts begin as novices, the transition from
one to the other should hold great interest for Artificial Intelligence. In this paper, we examine the process by
which general but weak methods are transformed into powerful, domain-specific search heuristics. As the
reader proceeds, he should be able to detect two main themes. In the early sections of the paper, we have
attempted to classify the types of heuristics learning that can occur, as well as the components that contribute
to such learning. After these preliminaries have been completed, we explore a particular learning system —
SAGE.2 - in some detail, both in terms of its structure and in terms of its behavior in different domains. We
close with a discussion of some directions in which the system should be extended.

Within any system that improves its search strategies with experience, we can identify three distinct
components. First, such a system must be able to search, so that it can generate behaviors upon which to base
its learning. Second, the system must be able to distinguish desirable from undesirable behaviors, and to
determine the components of the system that were responsible for those behaviors; in other words, it must be
able to assign credit and blame. Finally, the system must be able to use this knowledge to modify its search
strategies, so that behavior improves over time. Since so much AI research has revolved around the notion of
search, it is not surprising that the first of these components is the best understood. Many alternative search
strategies have been explored, ranging from very general but weak methods, like depth-first and breadth-first
search, to much more powerful methods that incorporate knowledge about specific domains. It is precisely the
transition between weak, general methods and specific, powerful methods with which we are concerned.
Thus, it is appropriate that a strategy learning system start with some weak search scheme that can be applied
to many different domains. However, it is also important that the search control can be easily modified to take
advantage of domain-dependent knowledge that is acquired with experience. The areas of credit assignment
and modification are less well understood, and we discuss them in some detail in later sections. However,
before turning to these matters, let us consider the problem of learning search heuristics in the context of a
simple puzzle.

Over the years, the Tower of Hanoi puzzle has been used as a testbed for many different AI systems. We
have chosen this task for our example because it is so well-known to the AI community, and because it poses a
challenging problem to humans despite its small search space. In this puzzle, one is presented with three pegs
on which are placed N disks of decreasing size. Initially, all disks are placed on a single peg, and the goal is to
get all of these disks onto one of the other pegs. This task would be trivial except for two constraints on the
types of moves that are allowed. First, one can only move the smallest disk from a given peg. Second, one
cannot move a disk onto another peg if a smaller disk is already resting on that peg. Taken together, these
restrictions considerably constrain the set of legal moves, and make for a challenging problem.

Figure 1 presents the state space for the three-disk Tower of Hanoi problem, originally formulated by
Nilsson (1971), while Figure 2 shows two of these states in more detail. Note that although only 27 states exist
in the space, the number of connections between these states is very large. One result of this high density of
connections is that loops are very easy to generate.1 Another result is that while many paths to a goal are
possible, only a few are optimal. In other words, within the state space for the three-disk problem,
considerable search may be necessary to find an optimal solution path. Suppose SI is given as the initial state
(in which all disks are on a single peg), and the goal is to reach either state S20 or state S27 (in which the disks

Loops are possible because all moves are reversible For example, oae can mow from State S2 to SI as easily as front SI to S2»
though longer k»ps caa also occur.
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arc all on another peg).2 Further assume that we employ a very general but weak search strategy such as
depth-first or breadth-first search to solve this problem. Given such weak search control, many non-optimal
moves will be considered before the best set of moves is discovered. For example, a breadth-first search
scheme would consider moving from state S2 to S3, as well as the optimal move from S2 to S4. The goal of a
strategy learning system is to discover a set of heuristics that will propose moves lying on the solution path,
while avoiding those leading off the path. In the following sections, we consider some of the ways in which
such search heuristics can be acquired.

S20 S21 S22 S23 S24 S26 S26 S27

Figure 1. State space for the three-disk Tower of Hanoi puzzle.

2. Types of Strategy Learning

Throughout the history of science, the first step in understanding a set of phenomena has involved the
construction of taxonomies or classification schemes. Thus, the early chemists formulated classes such as
adds, alkalis, and salts before they began to discover quantitative laws for reactions. Similarly, in biology the
acceptance of the liiinaean classification system preceded Darwin's recognition of similarities between classes
and his explanation of their evolutionary relations. By analogy, it would seem useful to attempt to categorize
the various types of strategy improvement, before attempting to explain the processes responsible for than.

Ohkson (1982) has distinguished between improvement, in which search decreases on a single practice
problem, and transfer, in which practice on one set of problems leads to a reduction in search on a second set
of problems. Building upon this distinction, it is possible to subdivide the class of transfer learning, stiU
further. One type of transfer involves the scaling up of simple problems into more complex ones. We have
seen that for puzzles such as the Tower of Hanoi, one can draw a state space diagram representing the possible
states and the moves connecting them. The slate space for the four-disk puzzle is very similar to that for the
ampler problem, and can be generated by replacing each state in Figure 1 by a triangle of states. Given this
similarity of structure, one slight eipect that heuristics teamed for solviag the three-disk problem would
transfer lo the fbur*di&k problem. However, more steps are involved in Teaching a solution, so this problem is

^EB mm versiots of this usl , the pal tevofres moving all disks to t single peg; we will discuss the reason for allowing multiple
solutions later k the pii«r*
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a scalcd-up version of the three-disk problem.3

A second type of transfer occurs when one practices on one problem, and then is presented with another
problem that involves the same state space, but has a different initial state or a different goal state. For
example, one might learn a set of heuristics for moving from state SI to S20 or S27 in the three-disk problem,
and then be asked to find a path between state S7 and S14. In general, this type of transfer would appear to be
more difficult that scalcd-up transfer, since one must take goal information into account while constructing
one's heuristics.

In domains such as algebra and integration, the state spaces for different problems bear little similarity
to one another, since only a few of the many possible operators come into play on a given problem. However,
the goals always have very similar forms — to simplify an expression or to solve for some variable. As a result,
the above two types of transfer seldom occur in such domains. In these cases, one usually practices on one set
of problems, and is then tested on a different set of problems that, while they differ in the structure of their
state spaces, have approximately the same complexity. This type of transfer constitutes the third member in
our classification scheme.

n
I I

state S1 state S2
Figure 2. Moving disk-1 from peg-A to peg-C on the Tower of Hanoi puzzle.

Finally, one may sometimes attempt to use knowledge learned in an area that is only loosely related to
the current situation. In such cases, only some of the operators used earlier may be applicable to the space
currently being searched, and others that were not applicable before may come into play. Still, one may be
able to take advantage of some of the heuristics that were acquired in the first class of problems and apply
them to the task at hand; this form of transfer is usually called learning by analogy. Taken together, these four
classes would seem to cover the ways in which transfer of learning can occur, though one might propose
alternate divisions based along other dimensions.

While we do not have the space to review earlier research on strategy learning in detail,4 it will be useful
to classify the existing work in terms of our categories. For instance, Anzai (1978) focused on improvement
within the three-disk Tower of Hanoi task, but did not address the issue of transfer. In contrast, BrazdiTs
(1978) concern with arithmetic has led him to explore transfer to scaled-up problems and to problems of
equal complexity, and Neves (1978) has also examined the latter in the context of algebra learning. Mitchell,
UtgofF, and Banerji's (1983) research on symbolic integration and Anderson's (1981) work on geometry
theorem proving have also been concerned with the latter type of transfer. Langley's SAGE.1 (1982,1983) —
the predecessor of the current system - showed both improvement on a single problem and transfer to
sealed-up problems, while Ohlsson's UPL2 (1982) showed both improvement and some ability to transfer to
problems with different initial states and goals. RcndclTs (1983) PLSl system was able to transfer its heuristics

T h e difficulty of a problem can sometimes be altered in multiple ways. For example, one can formulate a variation of the Tower of
Hanoi puzzle that involves three disks and four pegs. In fact, this- problem can be solved in fewer steps than the standard version, but the
point is that difficulty can sometimes be affected in more than one way.

The interested rt&det is directed to Keller (19S2) and Langley (1983) for reviews of some recent work in the area.
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to both scalcd-up problems and to those with different initial and goal states. Like Anzai, Hagcrt (1982) has
focused on improvement on the Tower of Hanoi task, while Korf s (1982) macro-operator learning program
was able to transfer its expertise to problems with different initial states. Finally, both Carboncll (1983) and
Anderson (1983) have studied learning by analogy, in which knowledge gained in solving one problem is
applied to direct search in a quite different problem. We summarize this information in Table 1.

Later in the paper, we will examine the behavior of a particular strategy learning system called SAGE,2.
To anticipate our results, we will find that SAGE is capable not only of improvement, but that it is also
capable of transfer to scalcd-up tasks, and to problems of equal complexity. We will also find that the current
system has difficulty in transferring its expertise to problems with different initial and goal states, but that the
potential for this form of transfer does exist. Finally, learning by analogy appears to lie beyond the methods
employed by the program. Hopefully, the reader now has a better understanding of the types of transfer that
can occur, and those types we will focus on in the following pages. Now, let us move on to the components of
the strategy learning process.

3. Approaches to Credit Assignment
As we have seen, the first step in learning is to distinguish desirable from undesirable behaviors, and to

determine the parts of the system responsible for those behaviors. This has been called the credit assignment
problem, and has been explored in a number of domains, ranging from puzzle solving to chess playing. We
have arrived at a number of heuristics for assigning credit and blame that appear to be quite general, some of
which we have borrowed from other researchers. All of these methods involve the same basic idea — that
steps lying along optimal solution paths should be preferred to those leading off those paths. However, the
various methods make judgements about preferable moves in quite different ways. Below we discuss these
heuristics in the context of the Tower of Hanoi puzzle and a few other simple tasks.

3 . 1 . Complete Solution Paths

One option for distinguishing desirable from undesirable behavior is to wait until a complete solution
path has been found for a problem. Moves leading to states on the solution path are desirable, since they led
to a solution, while moves going off the path are undesirable, since they led elsewhere. Mitchell, Utgoff, and
Bancrji (1983) have employed this approach in their LEX system, while Langley (1983) has used a very similar
approach in his SAGE1 program, Brazdil (1978) and Rendell (1983) have also employed the complete
solution path heuristic. Sleeman, Langley, and Mitchell (1982) have discussed the generality and limitations of
this approach to credit assignment

Let us consider how this technique can be applied to the Tower of Hanoi puzzle. Figure 1 presents the
state space for the three-disk puzzle, with the two solution paths connecting the top vertex to the two bottom
vertices* Given the legal operators for solving the puzzle, many problem solving systems can discover the
solutions by searching this space. Once the solution paths have been discovered, they can be used to assign
credit and blame. For example, since both moves from the initial state SI lie on the solution path,, both would
be labeled as good moves. Three moves are possible from each of the resulting states S2 and S3. The moves
leading to slates S4 and S5 also lie on the solution path, and so would be marked as good moves. However,
the moves leading to states S3 and S2 ie off the solution path, as do the two moves leading back to the initial
state, Thus, all of these moves would be labeled as undesirable.

This approach is very general, since it can be used to assign blame and credit to any problem that can be
solved by search. However, this method is guaranteed to work only if al! of the shortest solution paths are
available. Since some search techniques find only a siagle solution path, difficulties can arise. For example, a
system that solves problems using a form of depth-first search might find one of the solutions shown in Figure
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1, but not the other. Given such incomplete knowledge, our credit assignment heuristic would mistakenly
label one of the initial moves as undesirable. Mitchell, Utgoff, and Bancrji (1983) have dealt with this
problem by carrying out additional search before deciding that a move is bad. Another problem is that while
almost any problem can in principle be solved purely by search, there are many problems with search spaces
so large that some other route must be taken. In these cases, other credit assignment heuristics that do not
require complete solution paths must be employed to enable learning to occur while the problem is being
solved, so that the search process can become directed enough to reach the goal state. Below we discuss a
number of heuristics that allow credit assignment during the search process, and which open the way to
learning while doing.

Table 1. Types of learning addressed in earlier research.

ANZAI

BRAZDIL

NEVES

MITCHELL

LANGLEY

OHLSSON

RENDELL

HAGERT

KORF

ANDERSON

CARBONELL

IMPROVEMENT

X
X
X
X
X
X
X
X
X
X
X

SCALED-UP

X

X

X

DIFF. GOALS

X
X

X

EQUAL COMP.

X
X

X

X

ANALOGY

X
X

3.2. Noting Loop Moves

When one is attempting to solve a problem in as few steps as possible, returning to a previously visited
state (or looping) may be safely considered undesirable. Thus, when a move leads to a state through which the
problem solver has already traveled, that move can be labeled as less desirable than another move that does
not complete a loop. For example, suppose one is at state S4 in the three-disk Tower of Hanoi problem, and
considers moving to states S2, S6, and S7. Since the first of these leads back to the previously visited state S2,
it can be labeled as less desirable than the last two moves. Note that this form of credit assignment is relative
rather than absolute, as was the case when complete solutions were known. There is no guarantee that the
move leading from S4 to S7 will ultimately be deemed desirable (as in fact it will not, since it leads off the
solution path). However, one can say that this move is more desirable than the one leading back to previously
reached state, and this information may be useful to the modification component of the system. Anzai (1978)
has used a loop move detector to good effect in modeling learning on the Tower of Hanoi, but it is clear that
this approach can be applied to any domain in which loops can occur during search. Ohlsson (1982) has
employed a similar credit assignment technique in his UPL system.

3.3. Noting Longer Pa ths

In general, shorter paths to a goal are more desirable than longer ones. Thus* if a problem solver notes
that he has reached some state by two different paths, he can infer that the last move in the longer path should
have been avoided. For example, in the three-disk Tower of Hanoi puzzle* suppose one has moved from state
S4 to state S7f as well as from S4 to S6. Further suppose that on the next move, one moves from S6 to S7, as
well as from S6 to S10. Since the state S7 has been reached by two paths, the last move in the longer path
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(from S6 to S7) may be judged undesirable. The alternate move from S6 to S10 cannot immediately be
deemed good in any absolute sense (though later it would be found to lie on the solution path), but it can be
judged as more desirable than the move from S6 to S7. Thus, this is another case where the assignment of
credit and blame takes on a relative aspect. The shorter path heuristic is closely related to the loop move
method, and appears to be another quite general technique for assigning credit during the search process.
Anzai (1978) has applied a very similar technique to learning on the Tower of Hanoi task.

3.4. Dead Ends

In solving a problem, a path must be found from the initial to the goal state. However, some paths lead
to dead ends from which no steps can be taken except to back up, and it is desirable to avoid these cul de sacs
if possible. Another generally useful credit assignment heuristic labels as bad the last move in a path that has
led to a dead end. For example, suppose in solving the three-disk Tower of Hanoi problem, one has moved
from state S4 to S7. Also suppose that after this, one has tried moving from S7 to S4, from S7 to S6, and from
S7 to S8. If the first of these moves is labeled as bad by the loop move heuristic, and the second two are
marked as bad by the shorter path heuristic, then the state S7 may be classified as a dead end. As a result, the
move from S4 to S7 may be judged as undesirable, and the move from S4 to S6 may be judged as a better
move, since it does not lead to any undesirable state. Again, this heuristic cannot decide that the S4 to S6
move is absolutely desirable (though it does lie on the solution path), but it can determine that this move
should be preferred to its alternative.

3.5. Failure to Progress

We have so far referred to the initial search strategy only in the abstract However, some search
strategies are more powerful than others, and this power can be used in assigning credit and blame before a
complete solution has been found. For example, search methods such as means-ends analysis and hill-
climbing employ an evaluation function which tells whether one is closer to the goal after a move has been
made than he was before. Let us consider a simple example from the domain of algebra. In solving algebra
problems in one variable, simplifying the expression will take one closer to the goal (in which the variable is
on one side of the equation and a number is on the other). Thus, if a step is taken which does not simplify the
expression, this may be judged as an undesirable move. Another move made from the same state that does
kad m a amplification may be judged as more desirable, though (in principle at least) it might not be the best
move possible. Neves (1978) employed such a credit assignment principle in his ALEX system, enabling it to
learn algebra heuristics before a complete solution had been achieved. The implementation of such a
principle might be quite general, as in Ohlsson*s (1982) UPL2 system, which used a form of means-ends
analysis, or it might be relatively specific, as in knowing that algebra expressions should always be simplified.

3.6. Illegal States

A final, heuristic for the determination of credit and blame revolves around the notion of illegal states.
In some cases, the problem solver may attempt to' make moves which he later recognizes as violating some
task constraint For example, in the Tower of Hanoi puzzle, one might attempt to move the largest disk, even
though one or more anailer disks were resting on it Of course, such a move is undesirable; and any move
from the same state that does not violate a constraint may be judged as better. This is yet another case in
which the desirable move is only relatively good* and that move may be judged as undesirable at some later
point k the search process, In principle, (his heuristic may be applied to any task that involves sdme form of
constraints* However, problem solvers often incorporate such constraints into their operators, and so avoid
Illegal moves from the outset Still this type of intake occurs among human problem solvers sufficiently
often for it D IKS included in the psychological literature (Simon, 1976), so we shall keep it on oar 1st of
methods for solving the credit assignment problem. Now that we have considered approaches to the first step
in the strategy learning process, it is time to move on to the second stage - the modification of behavior.
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4. Approaches to Altering Search Behavior

There exist two rather different approaches to controlling search in an intelligent fashion. In the first
scheme, some numerical evaluation function is used to rank states, and those with the highest scores are
selected for further expansion. This method is commonly used in game-playing programs. The alternative is
to employ heuristics with symbolic conditions to direct search, and this approach has often been applied to
puzzle-solving tasks and mathematical domains. As one might expect, both of the methods lead to associated
techniques for altering search behavior, and both approaches to learning have been explored in the literature.
Below we summarize these approaches to strategy acquisition.

4.1. Discovering Evaluation Functions

The approach to learning through discovering evaluation functions is an attractive one, and was
examined early in the history of Artificial Intelligence. Samuel (1959) constaictcd a checker-playing program
that chose its moves on the basis of a linear evaluation function. The system experimentally introduced new
terms from a set of predefined features and altered the weights of existing terms, and then noted the result in
its playing ability. In this way, Samuel's system eventually progressed to master level checkers play. Rendell
(1983) has explored an alternate approach to finding evaluation functions. His PLS1 program first solves a
problem (such as the eights puzzle) using breadth-first search. Once a solution has been found, this
information is used to assign a score to each state in the search tree. Using various curve-fitting techniques,
Rendell's system generates a function that predicts these scores in terms of a set of predefined features. This
function can then be used as an evaluation function for directing the search process. While such techniques
are useful in domains where numeric evaluation functions are appropriate, other methods must be used to
acquire heuristics that can only be stated in symbolic terms,

4.2. Generalizing Conditions

One technique for learning symbolic conditions begins with very specific rules and generalizes as more
information is gathered. In this incremental approach, the hypothesized conditions arc usually initialized to
the first positive instance. When a new positive instance is encountered, it is compared to the current
hypothesis and one or more revised hypotheses are generated, based on the features held in common by the
two structures. If some of these hypotheses become overly general, they eventually lead to the incorrect
classification of negative instances as positive ones, and are rejected. Since more than one hypothesis may
result from this comparison, some method for controlling search through the rule space is required Winston
(1975) has explored depth-first strategies for searching the rule space, while Hayes-Roth (1976) and Vere
(1975) have employed breadth-first search strategies. Since most generalization-based methods search for
features held in common by all positive instances, they have difficulty in learning rules with disjunctive
conditions. However, Iba (1979) has used an extension of the depth-first scheme to successfully learn
disjunctive rules,

4.3. Discriminating Conditions

An alternate approach starts with an overly general rule, and generates more specific versions through a
process of discrimination. This occurs when one of the current hypotheses leads to an error, providing
evidence that it is too general. The context in which the faulty rule matched the negative instance is compared
to the last context in which the same rule matched a positive instance. During this comparison, differences
between the positive (desirable) instance and negative (undesirable) instance are found. For each difference, a
more specific hypothesis is constructed that matches against the positive instance but not the negative one.
Since multiple hypotheses can result some search control is required. Brazdil (1978) has used depth-first
search to direct the discrimination process, while Anderson and Kline (1979) and Langley (1982b) have



employed more complex strategics involving notions of strengthening and weakening. Since the
discrimination method does not attempt to find features common to all positive instances, (the method
compares instances to instances, rather than comparing instances to hypotheses), it has no difficulty in
learning rules with disjunctive conditions.

4.4. The Version Space Approach

Mitchell (1977) has explored the version space approach, which incorporates aspects of both the
generalization and discrimination methods. This technique begins with a very specific hypothesis, and
generates more general hypotheses (S) that act as an upper bound on the rule being learned. As with
generalization methods, this is done by finding common features between the current hypotheses (S) and each *
new positive instance. The version space method also also begins with a very general hypothesis, and produces
more specific versions (G) that act as a lower bound on the rule being learned. At first glance, this approach •
seems to be simply a combination of the generalization and discrimination methods. However, instead of
testing the first set of hypotheses (S) against negative instances to see if they are overly general, it tests them
against the second set (G). Similarly, more specific versions of the second set (G) are found by comparing
negative "instances to members of the first set (S). Mitchell employed a breadth-first strategy to direct search
through the space of hypotheses. As more instances are gathered, this bi-directional search converges (by
moving the upper and lower bounds together) on the hypothesis best suited to summarize the data. Since
Mitchell's method also finds features held in common by all positive instances, it has the same difficulty with
disjunctive rules as most generalization-based learning systems.

4.5. Implications for Search Behavior

Note that the direction taken in searching for conditions has implications for the performance
component of a strategy learning system. For example, if the system moves from specific to general
hypotheses through a generalization process, then the associated performance system will be conservative. The
system will begin by making no bad moves and missing some good moves, but as the system nears the correct
hypothesis, its errors of omission will decrease. In contrast, if the system moves from general to specific
hypotheses through a discrimination process, then the associated performance system will be a rash one,
omitting few desirable moves but considering many undesirable ones as well, though the latter will decrease
as the correct hypothesis is approached.

While a conservative strategy is useful when a benevolent tutor is available to present positive and
negative instances (as in the paradigm of learning concepts from examples), it is less adaptive in learning
search heuristics, where a system must generate its own behavior in order to accumulate positive and negative
instances of various rules. In this case, the price of commission errors is small, since the only result is added
search. However, the price of omissions is great, since learning is impossible in the absence of behavior. Thus,
in the context of learning search strategies, the reckless discrimination approach seems superior to the more
conservative generalization approach.5 The version space approach is capable of conservative or rash
behavior, depending on whether one uses S or G in the match process. However, in this paper we will limit
our attention to discrimination-based approaches to strategy learning.

Howcter, QhbsoQ (19S3) has ttewsed a gmemlatita-beetl xhtmt that sidesieps the problems associated with most such
approaches Ii§ CPJL2 system begins with a set of overty gen-crtl rales which tad to search: based on good moves, the program creates
specific EI!I» mi general to them when possible Although LT*L prefers to use such learned rules, it retains the original rate, and so can
Ml bade m them i the acquired rules Ml to propose any move.
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5. SAGE.2: A System That Learns Search Heuristics

Having considered the three components involved in strategy learning, we can now examine a particular
strategy learning system in some detail. We will focus on SAGE.2, the second in a line of programs (Langley,
1982a, Langley, 1983) that we have constructed to study the process of strategy acquisition. SAGE stands for
Strategy Acquisition Governed by Experimentation. Like most other strategy learning programs, SAGE is
implemented as an adaptive production system. In other words, it is stated as a set of relatively independent
condition-action rules or productions, and learning occurs through the addition of new productions. The
program is implemented in PRISM (Langley, 1981), a production system language designed to explore
learning phenomena. Below we consider the components of SAGE, starting with its representation of states
and operators. After this, we discuss the system's initial search strategy, its credit assignment heuristics, and its
mechanisms for altering its search strategy in the light of experience.

5.1. Representing States and Operators

Any problem solving system must have some representation upon which to work. For a given problem,
it must be able to represent the states that constitute the problem space being searched, and to represent the
operators that enable the system to move between those states. As we have stated, SAGE.2 is implemented as
a production system. Others have argued-for the advantages of production system formalisms (Newell, 1972,
Anderson, 1976), and we do not have the space to recount those arguments here. However, the choice of
production systems leads to a natural style for representing states and operators, and it is appropriate to spend
some time discussing that style.

A program that is stated as a production system consists of two main components — a set of condition-
action rules or productions, and a working memory against which those productions are matched. The
working memory tends to be declarative in nature, and changes contents fairly rapidly. In contrast, the
production memory tends to express procedural knowledge, and changes only slowly, when learning occurs.
During problem solving, new states are generated quite often, while new search procedures are added only
occasionally. Therefore, it is quite natural to represent states as elements in working memory, and it is equally
natural to represent operators for moving between those states as productions.

Given these design decisions, a question remains as to the precise manner in which states and operators
are to be stored. For example, states might be represented as single working memory elements, as with
(in-state S2 (peg-A contains disk-2 disk-3) (peg-B contains disk-1) (peg-C contains)) for the Tower of Hanoi.
Alternately, they might be stored as a number of separate elements, such as (disk-1 is-on peg-B in-state S2),
(disk-2 is-on peg-A in-state S2), and (disk-3 is-on peg-A in-state S2). Since most production system languages
have limited pattern matching capabilities, the latter of these two schemes is desirable, since it lets one express
finer distinctions. In fact, this is the representation for states used in SAGE, and it has worked extremely well
for our purposes,6

Since production system formalisms require a close correspondence between the form of elements in
working memory and the form of productions, the choice of representation for states places strong constraints
on the representation for operators. For example, the following rule is a natural statement of the conditions
under which a disk can be legally moved in the Tower of Hanoi task:

Anzai (1978) employed a representation very much like the first one shown above, and certainly managed to implement a roxsniag
system, However, this approach required that he build considerable knowledge into his learning mechanisms about the paatkuhr
representation he was using. In our opinion, this was oae of the reasons wtiy Anxm n e w managed to get his ^rsiem to l a m in mam than
a angle domain.
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TOH
If you have disk on current-peg in current-state,

and you have some other-peg different from current-peg,
and in current-state there is no other-disk on current-peg that is smaller than disk,
and in current-state there is no third-disk on other-peg that is smaller than drs&,

then consider moving fi?/s& from current-peg to other-peg.

The meaning of this production is self-explanatory, but the correspondence between conditions and working
memory may not be so clear. For this rule to be applied, each line must match against some element in
working memory. For example, at the outset of the problem, the first line might match against against the
elements (disk-1 is-on peg-A in-state SI), (disk-2 is-on peg-A in-state SI), or (disk-3 is-on pcg-A in-state SI).
Similarly, the second condition would match against the elements (peg-b is-a peg) and (peg-c is-a peg). The
remaining negated conditions would match against elements like (disk-1 is-on peg-A in-state SI) and (disk-1
is-smallcr-than disk-3). Italicized terms in the above rule stand for variables which can match against any
symbol; in addition to matching within individual conditions, variables must bind consistently across
conditions for the production as a whole to match. In cases where the negated conditions arc successfully
matched; they keep the production as a whole from matching. Thus, they can be used to keep this rule from
proposing illegal moves, such as moving a disk when a smaller one is resting on it.

Note that the above rule proposes a move, but docs not actually carry it out; we will call such rules
proposers. Each proposer contains the legal conditions on an operator, while the operator itself is implemented
in a separate rule. This division of labor has two main advantages. First, since we are concerned with
improving search strategies, our system need only alter the conditions under which actions are proposed. This
means that we can ignore the actions involved in an operator, and focus on the conditions. Second, as we shall
see later, SAGE learns by creating variants of proposers like TOR. In some cases, variants of the same original
production fire in parallel, proposing the same action. By introducing an additional step between the move
proposal and its implementation, we give the system time to recognize the identity of these proposals and to
avoid unnecessary effort

When a proposal is actually carried out, an operator trace is deposited in working memory. These traces
refer to the operator that was applied, as well as to the arguments that were passed to it, as in the working
memory element (move-1 was move disk-1 from peg-A to peg-B). Information is also stored about the state at
which the operator was appjied, and the state that resulted from its application, as in the element (move-1
led-flrom SI to S2). Such trace information is used once a solution has been found, allowing SAGE to chain
back up the path, marking traces lying on that path as desirable. The system's other credit assignment
heuristics also take advantage of these traces, using them to infer moves leading to undesirable states and to
back up to earlier states. SAGE also considers such trace in formation when it is searching for conditions on its
proposers, and can incorporate knowledge of previous moves into the productions it generates, The need for
seme farm of trace data in strategy learning has been emphasized by Nechcs (1981) and by Langley, Necfaes*
Neves, and Aazai (1980)* and w*1* experience with the current system has- reinforced our belicfe on this matter,

5.2. The Initial Search Strategy

In order to understand SAGR2*s initial search strategy, and the manner in which this strategy changes
over time, we must consider some more details about the nature of production systems. A given rale may
match against the elements in working memory in more than one way; each such match Is called an
instantiation. Given a set of instantiations, a production system program must have some means of
determining which should be applied, and which should be saved for later application; this process is called
mfiflici resolution. SAGE employs three conflict resolution principles, which are applied in turn* First,
instantiations which have been applied before are never selected again; this process of refraction keeps the
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same move from being proposed by the same production, while allowing prior states to be retained in case
some other move must be made from them. Second, instantiations matching against more recent states are
preferred to those relating to older states; this focuses attention on new states, so that the system continues to
explore promising paths. Third, each production has an associated strength, and rules with high strengths are
preferred to weaker ones; since rules are strengthened each time they are relearncd, this number can be
viewed as a measure of each rule's success, with preference being given to more successful rules.

If two or more rules have equal strength, or if multiple instantiations of a single rule match against
elements of the same recency, then more than one move may be proposed at a time. This is the standard
situation when SAGE first attempts to solve a problem, since its proposers generally begin with identical
strengths, or because it starts with only one such rule. In this case, the system carries out a breadth-first search
through the problem space defined by its operators, and the program continues in this exhaustive fashion
until credit can be assigned and learning can occur. Once new move proposing rules have been generated, and
the strengths of the old rules have been altered, search becomes more selective. Although still preferring more
recent states, SAGE begins to prefer productions that have been learned many times, and to shun those that
have led-to errors in the past. However, it retains the ability to consider multiple paths, as long as these paths
are generated by rules with the same strengths. For example, it would still be able to find both solutions to
the Tower of Hanoi puzzle, since these are perfectly symmetrical. In summary, the system starts by carrying
out a blind breadth-first search, and using information it gathers along the way, it ends (perhaps after a
number of runs) with the ability to direct its search toward the goal states.

The system must also know when it can stop searching. This is the responsibility of a separate
production that recognizes when the goal state has been reached, and adds information to working memory to
this effect. For example, the goal-recognizing rule for the Tower of Hanoi puzzle notes when all disks are
resting on the same goal peg, and adds to memory the names of the states that satisfy this condition. This
information is used later in determining the complete solution path. Separate goal-recognizing productions
must be provided for each task domain, since the conditions for the solutions differ. However, the same rule
can generally be used for scaled-up versions of a problem; for instance, the goal production for Tower of
Hanoi does not refer to the number of disks on the goal peg, and so can be used for the four-disk and
five-disk tasks, as well as for the simpler three-disk problem.

5.3. SAGE.2's Credit Assignment Heuristics

In an earlier section, we distinguished two basic approaches to altering search behavior. The first of
these involved the discovery of evaluation functions, while the second involved the determination of the
symbolic conditions under which moves should be proposed. Since we are working within a production
system framework, the symbolic approach is most appropriate. As we indicated before, SAGE employs a
discrimination mechanism (as opposed to a generalization or version space method) to determine the heuristic
conditions for applying its operators. Since this method inputs a positive and negative instance of some rule, it
is appropriate to first consider the manner in which the system assigns credit and blame, and thus
distinguishes desirable moves (or positive instances) from those which should be avoided (or negative
instances).
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Tablc 2. Credit assignment heuristics based on complete solution paths

ON-THE-PATH
If move led from state to good-state,

and state lies along the solution path,
and good-slate lies along the solution path,

then retrieve the rule and instantiation that proposed move,
and store that instantiation as a positive instance of the rule.

OFF-THE-PATH
If move led from state to bad-state,

and state lies along the solution path,
and bad-state does not lie along the solution path,

then retrieve the instantiation and rule that proposed move,
as well as the last good instantiation of the same rule;
weaken the rule and call on the discrimination process using

the last good instantiation as the positive instance
and the current instantiation as the negative instance.

SAGE can operate in either of two modes. It can assign credit based only on complete solution paths, or
it can attempt to learn during the search process. Since the program's credit assignment heuristics arc stated as
independent condition-action rules, they can be added or removed without affecting the system's ability to
search, though of course this does affect the manner in which learning occurs. Let us begin by focusing on the
method relying on complete solution paths. Table 2 shows two productions, ON-THE-PATH and OFF-THE-
PATH. The first of these matches against traces of moves that lie along the solution path; upon application, it
retrieves the instantiation responsible for proposing the move and stores it as a positive instance of the rule
that was matched7 The second production matches against traces that originated on the solution path but led
off that path when the move was made; upon firing,-this rale retrieves the responsible instantiation and marks
it as a bad instance of the rule that led to the move. In addition, it weakens the responsible rule so that it will
be less likely to apply in the future, and calls on the discrimination learning mechanism. This retrieves the last
positive instance of the faulty rule and compares it to the current negative instance in search of differences.
Since this heuristic retrieves the most recent positive instance of a rale, SAGE may lose information when
more than one correct move is made in a row. However, it would be impractical to compare all positive
instances to all negative instances* and retrieving the last positive instance seems a plausible compromise,

SAGE's other credit assignment rules avoid this issue by more completely specifying the instances that
should be compared. Table 3 presents three of the system's rules for assigning credit during the search
process. The First of these, MARKE3D-BAD, matches when some operator trace has been labeled as
undesirable, and some other operator trace originating from the same state has, not been so labeled la this
case, SAGE retrieves- the rule that fired in each case. If the same rale was applied in both situations, the
discrimination mechanism is called with the first move as a negative instance and the second as a positive
instance, la addition* tie strength of the offending rule is decreased. If the good and bad moves were
proposed by different rules, then the discrimination process cannot be applied, but die rule leading ID the
undesirable state Is still weakened.

The trices mitcfaett by tfeese rules ire based on move infonrotxm laid dowzt by the various operators upon application;
SGiiitSoB s found, SAGE efaias frtck up fee solution JM&S, marling move luces that &U on these patls.
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Tablc 3. Credit assignment heuristics for learning during search.

MARKED-BAD
If bad-state is the current state,

and bad-move led from prior-state to bad-state,
and bad-move was undesirable,
and good-move led from prior-state to good-state,
and good-move is not marked as undesirable,

then weaken the rule that proposed bad-move,
and if the same rule proposed good-move,

discriminate using the instantiation for bad-move as a negative instance,
and using the instantiation for good-move as a positive instance,

NOTE-LONGER
If current-state is the current state,

and move led from prior-state to current-state,
and current-state has been visited earlier,

then make prior-state the current state,
and label move as undesirable.

DEAD-END
If current-state is the current state,

and move led from prior-state to current-state,
and no moves arc possible from current-state

that have not already been made,
then make prior-state the current state,

and label move as undesirable.

The remaining productions interact with MARKED-BAD, providing the labeling of states it requires
for application. One of these, NOTE-LONGER, matches when the system reaches some state that was visited
earlier. It marks the move that led to the revisited state as bad, and backs up, focusing attention on the state
from which this move originated. Note that as this rule is stated, it will match against loops as well as against
unnecessarily long paths, since a loop can be viewed as the longer of two paths to a state, where the shorter
path has length zero. Thus, while these two situations can be separated conceptually, there is no reason to
distinguish them as far as the implementation is concerned, as Anzai (1978) has done. The third rule in Table
3, DEAD-END, applies when a state is found from which no moves can be made; it marks the move leading
to that state as undesirable, and shifts attention back to the previous state. We have not shown rules for noting
illegal states or failure to make progress, since these must be implemented for specific domains individually.
However, while the conditions of such rules differ from those of NOTE-LONGER and DEAD-END, their
actions have the same effect These actions mark a specific move as undesirable, causing MARKED-BAD to
select a better move leading from the same state, and to evoke the discrimination process with the good and
bad moves as arguments.

5.4. Learning Conditions Through Discrimination

As we have seen, once a strategy learning system has distinguished the positive from the negative
instances of an operator, it must have some means of altering the conditions under which that operator is
applied In implementing SAGEL2, we chose to employ a discrimination learning process that begins with
overly general rules for proposing moves, and generates variants of these rules with additional conditions as
experience is gained. This mechanism is presented with a single positive Instance of a rule and a single
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negativc instance of the same rule (in terms of their variable bindings), along with the state of working
memory in each case. Bundy and Silver (Bundy, 1982) have called the variable bindings and state of memory
during the good application the selection context, and the variable bindings and state of memory during the
faulty application the rejection context. The discrimination process compares these two contexts, searching for
differences which will allow it to distinguish one from the other.

The simplest form of difference involves a working memory element that was present in one context but
not in the other. For example, if the trace of a previous move were present in the selection context but not in
the rejection context, SAGE would create a variant of the overly general proposer that included this fact (with
certain terms replaced by variables) as an additional condition. This variant would never match against the
initial problem state, since no such trace would be present at the outset of the problem. Similarly, if an
element were found to be present in the rejection context but not the selection context, this fact would be
included as a negated condition in a variant on the original rule. The resulting rule would only match if this
fact (or a similar one) were not present in memory.

Table 4. Selection and rejection contexts for the TOH rule.

Selection context: Rejection context:

Variable bindings:
disk-> disk-2
current-peg-* peg-A
other-peg-* peg-B
current-state-* S2

disk-* disk-1
current-peg-* peg-C
other-peg-* peg-A
current-state-* S3

Elements in working memory:
(move-1 led-frorn SI to S2)
(movc-1 was move disk-1 from peg-A to peg-Q
(disk-1 is-on peg~A la-state SI)
(disk-2 is-on peg-A in-state SI)
(disk-3 is-on peg-A in-stale SI)
(disk-1 is-on peg-C in-state S2)
(dislc-2 is~on peg-A iiretate S2)
(dfck-3 is-on peg-A in-state S2)

(move-2 led-from SI to S3)
(move-2 was move disk-1 from peg-A to peg-B)
(disk-1 is-on peg-A in-state SI)
(disk-2 is-on peg-A in-state SI)
(disk-3 is-on peg-A in-state SI)
(disk-1 is-on peg-B in-state S3)
(disk-2 is-on peg-A in-state S3)
(cfck-3 is-on peg-A in-state S3)

More complex differences can be stated as conjunctions of elements, that were present in one context but
sot in the after. Such differences are generated by a path-finding process that travels through symbols shami
by working omnoxy dements. An example will clarify the process. Table 4 presents bom a selection context
and a rejeetioa eoatext for the TOH rale. The first of these proposes the move from state S2 to state S4 shown
in Figwe lf wMle the second leads to the move from state S3 to state SL The two contexts are expressed in
terms of the bindings between variables (in Italics) and the symbols against which these variables matched
Thus, m the selection context, the variable current-state was bound to state S2, disk to disk-2, current-peg to
peg-A, and otherpegto peg-B» leading SAGE to consider moving disk-2 from peg-A to peg-B. This move faDs
oa the solution path, since it removes an obstruction (disk-2) from the largest disk (disk-3). In the rejection
context, lie variable current-state was bound to state S3, disk to disk-1, current-peg to peg-B, and other peg to
peg-A, leading to the action of moving disk-1 from peg-B to peg-A, Since this move takes the system bad. w
the original state, it is undesirable;
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Table 4 also shows the elements that were present in memory during each context,8 and from which
new conditions arc generated. The path-finding process starts from analogous symbols in the two sets of
bindings (such as disk-2 and disk-1), and attempts to find some path through the "good" elements that has no
analogous path through the "bad" elements. Thus, if a path consisting of three elements was present in the
selection context but not in the rejection context, a variant of the TOH rule would be based on this difference.
This rule would include the three elements (with some constants replaced by variables) as positive conditions,
so that it would match in the selection context, but not the rejection context.

The path-finding process also searches for paths through the "bad" elements that have no analogous
path through the "good" elements. Let us trace the method's discovery of such a difference in the elements in
Table 4. Starting from the "bad" symbol S3 and the "good" symbol S2, the path-finding process considers
bad elements and good elements that contain these symbols. Since both contexts contain an element
indicating that an earlier move led to the current state — (movc-2 led-from SI to S3) and (movc-1 led-from
SI to S2) - SAGE must extend these (length one) paths by considering additional elements in its search for
differences. Thus, the analogous symbols move-2 (for the bad element) and move-1 (for the good clement) are
marked, and other elements containing these symbols are considered.9

For example, the bad path can be extended to include the element (move-2 was move disk-1 from
peg-A to peg-B), since this also contains the symbol move-2. At first glance, there appears to be an analogous
extension to the good path, using the element (move-1 was move disk-1 from peg-A to peg-C). However,
note that the symbol disk-1 is already bound to the variable disk in the rejection context, while this is not true
of disk-1 in the selection context. Similarly, peg-A is already bound to other-peg in the rejection context, while
peg-C is unbound in the selection context. As a result, these two elements cannot be considered analogous,
and the path-finding process has found a difference between the two contexts. Based on this difference,
SAGE constructs the following variant:

TOH-1
If you have disk on current-peg in current-state,

and you have some other-peg different from current-peg,
and in current-state there is no other-disk on current-peg that is smaller than disk*
and in current-state there is no third-disk on other-peg that is smaller than disk,
and it is not the case that:

prior-move led-from prior-state to current-state, and
priormove was a move of disk from other-peg to currmtpeg*

then consider moving disk from current-peg to other-peg.

In addition to the original conditions, this rule (let us call it TOH-1) includes the elements (move-2 led-from
SI to S3) and (move-2 was move disk-1 from peg-A to peg-B), with the specific disk and pegs replaced by
variables, embedded within a single negated condition. This rule will match if either of the negated conditions
is matched, but not if both are matched simultaneously. As a result, it will still match against the selection
context in Table 4, but not against the rejection context, which is precisely the goal of the discrimination
method. Effectively, the new conditions prevent SAGE from reversing the last move it has made.

Actually, SAGE amskkis only those dements which describe the current stale, or which describe parents to the current state. Since
other states considered in parallel can have no effect on the current move, they are ignored. Thus, the ^ate of working memory after
SAGEs initial moves can be found by taking Hie union of the two sets shown in Table 4, together with state-independent dements such
»(peg-A fe-a peg) and (dlsk-3 fe-iargerthan disk-lX

9
Alternate paths arc followed through oilier analogous symbols, such as peg-B and pcg-C» peg-A and peg-A, and disk-1 and disk-L

Noe that a symbol may be mapped onto itself, provided it occurs in analogous positions in the two elements.



- 1 6 -

In some cases, only a single difference exists between the selection and rejection contexts. Winston
(Winston, 1970) has called these situations near misses, and they considerably simplify the learning process,
since only one variant need be considered. Unfortunately, near misses seldom occur in the task of learning
search heuristics, and a robust system must be able to handle the general case in which many differences exist
(Bundy and Silver (1982) have called these far misses), SAGE deals with far misses by finding all paths up to
length N (in our runs, we have set N to 4), and constructing a variant based on each of these differences, some
with new negated conditions like TOH-1, and others with new positive conditions. These conditions may
involve descriptions of the current state, previous states, previous moves (as in TOH-1), or any combination of
them. This leads to a significant search problem, and we discuss the system's response to this problem below.
However, let us first consider the notion of difference in more detail.

In searching for differences, the discrimination process must know which symbols should be used in
determining significant differences, and which differences should be ignored. For example, it makes sense to
distinguish between working memory elements including the symbol was (which describes move traces) and
those including led-from (which temporally connect these move traces), since they represent different types of
information. In contrast, there is no reason to distinguish between internally generated symbols like the states
SI and S2, since these are only the "connecting tissue" used to link together the descriptions of each state and
the temporal relations between states. Thus, when it is searching for differences, the discrimination routine
never considers two elements as analogous if one contains was in the Nth position and the other contains
led-from in the same position. However, if one contains SI and the other contains S2 in the same position,
then the two elements will be considered analogous, unless some other (significant) difference exists, or unless
one of these symbols has already been associated with some other symbol (such as S3) during the path-finding
process. When a variant is constructed, significant terms are retained, while insignificant terms are replaced by
variables in a consistent manner.

The case is less clear for the names of operators and their arguments. These symbols are not generated
internally, yet if the variants are ,to retain any generality, some of them must be replaced by variables. Since
one seldom wants to generalize across the operators themselves, SAGE treats operator names as significant
However, the arguments of these operators (e.g., objects and their positions) are treated as insignificant, and
are replaced by variables when a variant is constructed. Note that such decisions are not inherent aspects of
the discrimination process; rather, they are parameters that are input to the learning method, and can be easily
modified. Later we will reconsider this decision, and its implications for SAGE's learning behavior. For now,
though, let us continue with our examination of the current system.

5,5. Directing Search Through the Rule Space

Most condition-finding methods, including the standard generalization approach and Mitchell's version
space technique, find conditions that are held in common by aH positive instances of a concept or operator. As
a result, these methods are limited to acquiring conjunctive rules* In contrast, SAGR2*s discrimination
process compares a single positive instance to a single negative instance. Because of this, it is capable of
discovering disjunctive rules as well as, conjunctive ones, and this ability can be very important in some task
domains* In order to acquire disjunctive rules, the disoriinination mechanism must search a larger space of
rules than methods based on finding common features, and it must have some means of directing this search.
For this reason, SAGE compares newly learned rules to those it has constructed earlier. If the new rale is
identical to one of the eiisting variants, that variant is strengthened Since the strength of a rule plays a major
role in whether it is selected for application, rales that have been learned more often will tend to be preferred.
Thus, strength measures the success rate of each variant, and SAGE can be viewed as carrying out a heuristic
search through the spare of rules, selecting those rules that have proven most successful.
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In domains involving only a single operator, it would be sufficient to simply strengthen variants
whenever they were relcarncd, since they would eventually come to be preferred to the rules from which they
were generated. However, some tasks involve multiple operators, and require that one of these operators be
preferred to another. Given the role of strength in selecting rules, the natural response to such situations is to
weaken rules when they propose an undesirable move. In addition to letting SAGE learn to prefer some
operators over others, this strategy also decreases the chance that a faulty variant will be selected for
application.

Although the combination of discrimination, strengthening, and weakening will eventually lead to
useful search heuristics, many spurious variants will be created along the way. Since the matching process is a
major component of programs stated as condition-action rules, we should briefly consider how SAGE handles
the potential combinatorial explosion in the matcher. First, the system's condition-action rules are stored in a
discrimination network that takes advantage of structure that is shared between rules. Since variants of the
same proposer tend to be quite similar to one another, the expense involved in matching many variants of a
rule is not much greater than that involved in matching the original rule. However, other components of the
system (such as conflict resolution) are also slowed by the presence of many variants, so some further response
is required. In addition, SAGE incorporates a thresholding principle. Variants below the threshold are not
even incorporated in the discrimination network, and so have no effect on either the match process or conflict
resolution (though they are retained for comparison with rules that are learned later). The strengths of new
variants are set to a fraction of the rule from which they were spawned, and it is only when a variant comes to
exceed its parent in strength that it is considered for application, Since few spurious variants ever become
stronger than their parent rules, this method has worked quite well in directing SAGE's search through the
space of proposers.

6. An Example of SAGE.2 at Work

Our overview of SAGE.2 is now complete, but to give the reader a better understanding of how the
system learns search strategies, we must examine its workings in specific domains. Below we discuss SAGE*s
learning sequence on the Tower of Hanoi puzzle, comparing its behavior when using only complete solution
paths to its behavior when learning during the search process. We have chosen this task as our main example
because it is familiar to many readers, and because most of the credit assignment heuristics discussed earlier
come into play. However, since generality is an important criterion for judging learning systems, we will later
examine the program's behavior in five other task domains in somewhat less detail.

6.1. Learning From Solution Paths

Since we have already discussed the Tower of Hanoi puzzle and its associated problem space, we shall
begin by discussing the system's behavior on this problem when using the first credit assignment strategy —
learning from complete solution paths. SAGE.2 was presented with a standard three-disk problem: the three
disks were placed on a single peg, and the goal was to get all three disks on either of the other two pegs. In
other words, the system started at state SI in Figure 1, and was asked to reach either state S20 or S27 (or both
of them). Starting with a breadth-first search strategy, the program first moved to states S2 and S3, and from
there considered six moves: from S2 to S4S from S3 to S5, from S2 to SI, from S3 to SI, from S2 to S3, and
from S3 to S2. While the system noted that the last four of these moves led to previously visited states, it did
not attempt to learn from this knowledge, and simply abandoned these undesirable paths. From the two
remaining states S4 and S5, SAGE moved to states S6, S7, S8, S9f S2, and S3. The last two of these moves
were identified as loops, so only the first four states were retained for expansion. This search process
continued until the program reached the two solution states S20 and S27.
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At this point, the complete solution path heuristic was applied. SAGE chained back up the solution

path, marking the traces of moves that lay on the path. Once this was completed, it worked its way back down

the marked path, letting the rules ON-THE-PATH and OFF-THK-PATH apply when they matched. The first

of these circumstances occurred at states S2 and S3, when four moves were made that led off the solution

path. One of these moves led to a loop from S2 back to SI, the original state. Comparing the good move from

this point (from S2 to S4) to the bad move, SAGE'S discrimination mechanism generated the variant TOH-1

that we considered earlier. The selection and rejection contexts for this learning situation were identical to

those we have examined, except that SAGE compared two moves from state S2, rather than comparing one

move from state S2 and another from state S3. As a result, the same differences were discovered, and the

variant TOH-1 was constructed. The reader will recall that this rule contains a negated conjunction that

prevents it from proposing a move that will reverse the move SAGE has just made. Some four other

differences were found, leading to four additional variants, but TOH-1 was the only rule that ever became

strong enough to apply. An identical set of variants were created when the context for the move from S3 to

SI was compared to that for the move from S3 to S5, since these situations are completely symmetrical; this

led each of the existing variants to be strengthened.

A different set of three variants resulted when the good move from S2 to S4 was compared to the bad

move from S2 to S3 (and when the symmetrical moves were examined). In this case, the rule we are interested

in is subtly different from the variant we described earlier:

TOH-2
If you have disk on current-peg in current-state,

and you have some other-peg different from current-peg,
and in current-state there is no other-disk on current-peg that is smaller than disk,
and in current-state there is no third-disk on other-peg that is smaller than disk,
and it is not the case that:

prior-move led-from prior-state to current-stale, and
prior-move was a move of disk from any peg to current-peg,

then consider moving disk from current-peg to other-peg.

The new negated conjunction on this variant of TOH is nearly identical to that on TOH-1, but the difference
is significant. TOH-2 states that it is acceptable to move a disk from its current peg to a new peg, provided on
the previous move one did not move from any peg to the current peg. An example should help clarify this
difference. Suppose we have disk-1 on peg-b, and since disk-1 is the smallest of the disks, we can move it to
either peg-a or peg-c without violating any of the task constraints. Further suppose that on the previous step,
we moved disk-1 from peg-a to peg-b, so that TOH-1 will not propose moving the smallest disk back to peg-a
(which would result in a loop). However, this variant would propose moving disk-1 to peg-c. In contrast,
TOH-2 would not propose moving disk-1 to either peg-a or peg-c, since its negated condition forbids a move
of the same disk twice in a row. Thus, the second variant is more conservative than the first, and as a result, it
constrains the search process to a greater extent

Upon comparing different moves from state S49 SAGE produced another set of variants on its initial

proposer. When the discrimination process compared the context in which the desirable move from S4 to S6

was proposed to fee context that led to the move from S4 to S7, some six new productions resulted. In this
case, two of the rules are of interest:
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TOH-3
If you have disk on current-peg in current-state,,

and you have some other-peg different from current-peg,
and in current-state there is no other-disk on current-peg that is smaller than disk,
and in current-state there is no third-disk on other-peg that is smaller than &A,
and it is not the case that:

prior-move lcd-from prior-state to current-slate, and
earlier-move lcd-from earlier-state to prior-state, and
dzs£ was on other-peg in earlier-state,

then consider moving <#s& from current-peg to other-peg.

and

TOH-4
If you have <#$& on current-peg in current-state,

and you have some other-peg different from current-peg,
and in current-state there is no other-disk on current-peg that is smaller than &Jt,
and in current-state there is no third-disk on other-peg that is smaller than <//s£,
and it is not the case that:

prior-move lcd-from prior-state to current-state, and
earlier-move lcd-from earlier-state to prior-state, and
earlier-move WAS a move of disk from other-pegto current peg,

then consider moving tf/s& from current-peg to other-peg*

In addition to helping direct search down profitable paths, these rules arc interesting because they are
syntactically different, but semantically equivalent The first refers to the slate occupied two steps before the
current state, while the second refers to the move made at that point. Yet both rules effectively keep one froip.
moving a disk back to the position it was in two moves before, avoiding such non-optimal moves as that from
S4 to S7 and that from S5 to S8. Because of the structure of the task domain, these rules are always guaranteed
to match together, and whenever one is learned the other will also be learned. The possibility for syntactically
distinct but scmantically identical rules causes some extra search through the space of possible rules, but other
than this no harm is done.

So far, we have considered only the initial cases in which the above variants were constructed. However,
each of these was releamed many times throughout the course of the first run. For example, the non-backup
variant TOH-1 is releamed and strengthened at each step along the way, since SAGE foolishly considered a
backup at every point in its initial search tree. Similarly, the TOH-2 variant was strengthened whenever an
attempt had been made to move the same disk twice in a row (other than simple backups). Thus, the bad
moves from S2 to S3, from S6 to S7, and from S12 to S13 all resulted in an increase of this rale's strength,
along with the analogous faulty moves on the symmetrical path. Finally, the last two useful variants, TOH-3
and TOH-4, were learned whenever SAGE had considered moving a disk back to the position it had occupied
two states earlier. Thus, the bad moves from S4 to S7, from S10 to S13, and from S16 to S21 all reinforced
these rules, increasing their likelihood of selection on the next run.

On the second run, the system's performance improved considerably, since TOH-Ts strength had cerae
to exceed that of the initial proposer. As a result, no backup moves were considered and the search process
was considerably more directed. Unfortunately, neither this rule nor any of the other variants were sufficient
by themselves to completely eliminate SAGE*s search on the Tower of Hanoi problem, so more learning was
required Again the system chained back up its solution path, marking traces that led to the goal states, m&
began to compare the contexts of positive and negative instances in its search for useful variants. The learning
process on this ran was quite similar to the first, except that variants of TOH-1 were created (since only it had
been applied), instead of variants of the original rale.



- 2 0 -

As one might expect, TOH-1 made exactly the same errors as its predecessor, except for the backup
moves which its additional condition forbid. Thus, when at state S2, it considered moving to S3 as well as to
S4, and when at state S4, it moved to S7 as well as to S6. As a result, the discrimination process generated
variants of this production that were very similar to those created for its more general ancestor. When
comparing the contexts that led from S2 to S4 and from S2 to S3, SAGE created a rule containing a "don't
move the same disk twice in a row" condition, as well as the "don't backup" condition that was already
present Similarly, when comparing the moves from S4 to S6 and from S4 to S7, it constructed two variants
with a "don't move a disk back where it was two states before" condition (again, these were syntactically
different but would always match against the same state of memory). These rules were relcarncd and
strengthened at each of the points where their analogs were learned during the first run.

Since the new variants were more conservative than TOH-1, and since they had surpassed this rule in
strength during the second learning run, they began to further direct the search process on the third pass. In
fact, the "don't move the same disk twice in a row" variant (let us call it TOH-4) achieved the highest
strength, so it was applied at each stage on this run. This rule avoided errors such as moving from S2 to S3,
and from S6 to S7. However, it continued to make mistakes such as moving from S4 to S7, since it lacked the
condition (contained in TOH-3) that would keep it from making such moves. Fortunately, once the solution
paths had been found and the learning stage had begun, two (structurally different but semantically
equivalent) variants of TOH-4 were constructed that contained the "don't move a disk back to where it was
two states before" condition. Once these two rules exceeded the strength of TOH-4 (as they had by the end of
the run), SAGE had available to it a search heuristic that proposed moves lying on the solution path, but that
ignored moves that would take it off that path. Indeed, when the system was presented the three-disk problem
a fourth time, it successfully solved the problem without taking any false steps.
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Figure 3. Learning curve for the three-disk Tower of Hanoi task.

Figure 3 presents fee learning curve for SAGE2 on the Tower of Hanoi task. The figure graphs the
Btimber of sates considered during the search process against the number of times the problem had
previously been attempted As can be seen, the system show a distinct improvement over time, until it
eventually solves the task in the minimum number of Steps. In addition, since the problem spaces for the
four-disk and five-disk puzzles have the same basic structure as the simpler three-disk space, the leamed
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hcuristics were also useful in these more complex tasks. In fact, when presented with the standard four-disk
and five-disk versions of the puzzle (in which all disks must be moved from one peg to a different peg), SAGE
applied its heuristics to solve these problems without search as well. Thus, we can conclude that for this
domain at least, the system is capable of transfer to scaled-up versions of a problem on which it has practiced.

While SAGE was able to transfer its acquired knowledge to other standard versions of the Tower of
Hanoi task, the program would not have fared so well if it had been given a non-standard problem. The
heuristics that the system learns for this task are very good at directing search when all disks start on one peg
and must be moved to another peg, but they arc not adequate for moving from one arbitrary configuration to
another. Later, we will have more to say about this type of transfer, and what would be required to
accomplish it. However, let us first turn to the topic of learning while doing.

6.2. Learning While Doing

Although SAGE.2 is capable of learning from complete solution paths, it is not limited to this method.
As we have seen, the system also includes heuristics for learning from longer paths and loops, from dead ends,
from illegal moves, and from a failure to make progress. The first two of these techniques10 can be applied to
the Tower of Hanoi puzzle to acquire search strategies identical to those described in the previous section.
Let us consider this process of learning while doing, and its relation to learning from complete solution paths.

As before, SAGE began the three-disk problem by carrying out a breadth-first search, moving from
state SI to states S2 and S3. Since these moves led to new states, and since other moves could be made from
them, none of the blame assignment heuristics applied at this point. Since the two solution paths are
symmetrical, we will focus on the left half of the space shown in Figure 1. From the state S2, three moves
were possible — SAGE could move to S4, to SI, and to S3. The first of these was a new state, but SI and S3
had been visited before. The move from S2 to SI led to a loop, while the move from SI through S2 to S3 was
a longer path than that from SI directly to S3. However, the NOTE-LONGER production does not make
such distinctions, being concerned only with avoiding revisited states, so this rule applied, marking the moves
from S2 to SI and S3 as undesirable.

Given the information that these two moves should not have been made, the rule MARKED-BAD was
applied to each in turn, calling on the discrimination mechanism. In both cases, it focused on the move from
S2 to S4 as the positive instance, since this was the only move from S2 that was not labeled as an error. Upon
comparing this move to the one from S2 to SI, SAGE constructed the variant TOH-1 that we saw before,
along with four other variant productions that never become strong enough to apply. When the move from S2
to S4 was compared to that from S2 to S3, the variant TOH-2 was created (along with two other rules). Thus,
up to this point, SAGE had assigned credit in precisely the same manner that it did when the complete
solution path was available.

Next, having abandoned the revisited states, SAGE applied its initial proposer (which was still stronger
than any of the variants) to the state S4. From this position, three moves were again possible — from S4 to S6,
from S4 to S2, and from S4 to S7. The second of these led back to the previous state, and was labeled as
undesirable by NOTE-LONGER. Given this judgement, MARKED-BAD applied twice, comparing this
move both to that from S4 to S6 and to that from S4 to S7, since neither had been marked as bad. In both
cases, the variant TOH-1 was recreated and strengthened, along with a number of other rules. Since SAGE

In fact, the roles NOTE-LONGER and DEAD-END weie used even in the run described above, ia which credit was assigned after a
solution had been found. However, their role in this ran was only to tell SAGE when it had readied untenable positions, so the system
could abandon search down certain paths and focus on others. Since the production MARKED-BAD was not present the program could
not Jctra using the information added to memory by these rules.
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did not yet have any reason to suspect that the move from S4 to S7 was undesirable, it considered moves from
both this state and from S6, which lay on the solution path.

Three moves were possible from S6, and all were carried out; these included a move from S6 to SIO,
from S6 to S4, and from S6 to S7. The last two of these operations led to revisited states, so NOTE-LONGER
was applied in each case. MARKED-BAD compared each of these moves to that from S6 to SIO, regenerating
TOH-1 in one instance and TOH-2 in the other, along with a number of additional variants. Three moves
could also be made from S7, to the states S6, S4, and S8. However, each of these states had been visited
before, the last from the symmetrical search in the right side of the space. NOTE-LONGER was applied and
marked each of the moves from S7 as undesirable, but since there were no good moves origkiating from S7
with which they could be compared, MARKED-BAD could not be applied. Meanwhile, NOTE-LONGER
had also refocused SAGE's attention on S7, marking it as one of the states currently under consideration for
expansion. Since no other moves could be made from this state, the rule DEAD-END applied, marking the
move that led from S4 to S7 as undesirable. With this knowledge in hand, MARKED-BAD applied, calling
on the discrimination routine to compare the good move from S4 to S6 to the recently determined bad move.
Two of the resulting variants were TOH-3 and TOH-4, which avoid moving a disk back to the position It
occupied two states earlier.

By this point, SAGE's credit assignment heuristics had begun to lose ground to the strategy of learning
from complete solution paths. Although NOTE-LONGER continued to notice revisited states and to lead
MARKED-BAD to strengthen both TOH-1 and TOH-2, the dead-end noticing rule never had another
chance to apply. As a result, the moves from SIO to S13 and from S16 to S21 were never classified as
undesirable, and the two variants TOH-3 and TOH-4 were not relearncd until the complete solution path was
marked, and ON-PATH and OFF-PATH came into the picture. This did eventually occur, and the resulting
events were identical to those described in the previous section, save that many of the variants already existed,
and so by the end of the run they were considerably stronger than in the other case. After this, SAGE was
given a second chance to solve the three-disk task, and events followed much the same route, except that
backups were missing, so NOTE-LONGER was applied much less often. By the fifth run, the system was able
to solve the problem without search, and to transfer its expertise to the four-disk puzzle, The learning curve
for these runs was very similar to that shown in Figure 3. However, slightly less search was carried out in the
early mas, since the useftil variants were able to mask their predecessors before the run was complete,

6.3. The Importance of Goals

In our treatment of the Tower of Hanoi puzzle, we assumed two goal states and two symmetrical
solution paths to these goals. It is much more common to formulate the problem with a single goal peg,
resulting in only one optimal solution path, and our use of multiple goals deserves some discussion. In the
'early stages of constructing SAGE2, we made two design decisions that led us to state the Tower of Hanoi
puzzle as we have done. First, we decided to treat the arguments of operators as insignificant during the
discrimination process, as we described earlier. As a result, the system has difficulty in learning heuristics for
moving disks towards one peg rather than another, and we dealt with problem by including two goal pegs. If
we had chosen Instead to treat pegs as significant symbols, SAGE would have learned more specific rules, but
ai least the system would have been able to acquire heuristics for moving disks to a specific peg. However, a
more general and attractive alternative exists.

The second design decision involved assuming a procedural representation for the goal state, rather than
a declarative one. The reader will recall that SAGE includes a production for recognizing when it has solved a
problem, and which stops the search process when this occurs. Since goal information is not available for
inspection by the discrimination mechanism, It cannot discover conditions that refer to the goal state. As a
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result, the search heuristics it learns are incapable of directing search down different paths depending on the
goal. Note that this is not a limitation of the discrimination method itself, but is rather a limitation in the
information accessible to the learning system. If we had chosen to include explicit information about the goal
state in working memory, SAGE should have been able to learn rules that would move toward a single goal,
and still treat the arguments of its operators (such as pegs and disks) as insignificant symbols. The system
would have been able to detect relations between desirable moves and the goal state, and incorporate these
relations into the variants it learned.

In addition, this approach opens the way for learning heuristics for solving non-standard versions of the
Tower of Hanoi puzzle, in which both the initial and goal states are arbitrary configurations of disks. Once
the discrimination method has access to the goal state, it might well be able to acquire rules that would
transfer between different initial and goal states, leading to a much more robust system. Although we have not
yet tested SAGE in this manner on the Tower of Hanoi, we will later examine another task in which this
approach does lead to the predicted forms of transfer. Since goals arc so obviously important to problem
solving, it may seem odd that we did not include declarative knowledge of goals at the outset of our research.
Such judgements are all too easily made with the aid of hindsight. In defense, we can only note that very little
of the other work on learning search heuristics deals with goals in this manner, so that SAGE is far from alone
on this dimension.

7. Applying SAGE.2 to Other Domains

One important dimension on which AI systems are judged is their generality, and the most obvious test
of a program's generality is to apply it to a number of different domains. In this section, we summarize
SAGE.2*s behavior on five additional tasks. Some of these are puzzles similar to the Tower of Hanoi task, but
others have quite different characteristics. In each case, we describe the problem or class of problems,
consider the rules the program learns in the domain, and discuss the types of transfer that occur. After this, we
examine the generality of the individual learning heuristics employed by the system.

7.1 . The Slide-Jump Puzzle

In the Slide-Jump puzzle, one is presented with N quarters and N nickels placed in a row. The quarters
are on the left, the nickels are on the right, and the two sets of coins are separated by a blank space. Legal
moves include sliding into a blank space or jumping over another coin into a blank space. In addition, quarters
can be moved only to the right, while nickels can be moved only to the left The goal is to exchange the
positions of the quarters and the nickels, so that the former occur on the right side of the blank and the latter
occur on the left. For instance, given the initial state Q Q Q - N N N , one would attempt to generate the goal
state N N N — Q Q Q. Like the Tower of Hanoi problem, the Slide-Jump puzzle has a relatively small search
space, yet it is quite difficult for human problem solvers to master. Also like the Tower of Hanoi, it has two
symmetric solution paths; however, since moves are not reversible, loops do not come into play in this task.

SAGE.2 was initially presented with the four-coin version of this puzzle, in which the positions of two
quarters and two nickels must be exchanged. The program was given two initial proposers — one for
suggesting slide moves and the other for suggesting jumps. After an initial breadth-first search in which both
optimal solutions were found, the system attempted to leam from these paths. After some three runs through
the problem, SAGE had generated (and sufficiently strengthened) the following variant of the initial slide
rule:
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SLIDE-1
If a type-of-coin is in current-position in current-state,

and adjacent-position is blank in current-state,
and adjacent-position is to the left-or-right of current-position,
and type-of-coin can move to the left-or-right,
and prior-move Icd-from prior-stale to current-state*
and prior move was a jump of lype-of-coin from adjacent-position to other-position.

then consider sliding type-of-coin from current-position to adjacent-position.

This rule contains two (underlined) conditions that were not present in the original slide-proposing
production. These conditions allow the variant to propose sliding a coin only if another coin of the same type
was just jumped from the adjacent position. Five other variants of the original slide rule were constructed and
contributed to directing the search process, while some 14 variants were based on spurious features of the
problem, and were not learned enough times to affect behavior. One variant of the jump rule was also
constructed, which avoided jumping one coin over another of the same type (which leads to to a dead-end).
However, this rule was learned only once before a stronger variant of the slide rule caused SAGE to avoid this
particular error.

In the learning while doing runs, the system proceeded in a very similar manner, except that some credit
and blame was assigned during the search process- In this task, two credit assignment heuristics contributed to
learning. The DEAD-END rule produced a variant that avoided sliding the same type of coin twice in a row,
while NOTE-LONGER generated the jump variant mentioned above. When SAGE was presented with the
six-coin Slide-Jump puzzle, it successfully solved this problem without search, again indicating that the
system can handle scaled-up transfer. Although the normal statement of the puzzle does not allow reversible
moves, alternate initial and goal states can be formulated if they are allowed. However, in its current form,
the program would not have been able to transfer its expertise to an arbitrary problem of this type, for the
same reasons as the Tower of Hanoi version,

7.2. Tiles and Squares

Ohlsson (1982) has described the Tiles and Squares puzzle, in which one is presented with N tiles and N
+ 1 squares on which they are placed. Each square is numbered from 1 to N 4- 1, and each tile is labeled
with a unique letter. Only one legal move is possible: moving a tile from its current position to the blank
square. The goal k simple: get all the ties from the initial positions to some explicitly specified end position.
For example, the initial configuration might be B C ~ At while the goal configuration might be A — C
B. Since any tile may be moved into die blank space, the moves are much less constrained than in most
puzzles. One of the Interesting features of this task is that while the branching factor of the search space is
quite high (3 for Ihree tile tasks, 4 for four tile tasks, etc.), two simple heuristics are sufficient to avoid search
entirely. Indeed; one might even question whether the task is challenging enough to be caled a puzzle. We
have included it here primarily to clarify 8AGE*s ability to acquire disjunctive rules.

SAGE2 was presented with the above problem, as well as a single rale for proposing legal moves. Based
on the two optimal solution paths it discovered for this task, the system generated (and sufficiently
strengthened) seven variants far directing the search process* along with seme 73 less useftil rules. Two of the
useful variants** may be paraphrased as:

Hie other five useftil variants were seoasticsily equivalent to TS-2, and proposed the smt moves in sE cases.
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TS-1
If you have a tile on current-square in current-state,

and other square is blank in current-slate,
and in the final goal vou want tile in other-sauare*

then consider moving tile from current-square to other-square.

and

TS-2
If you have a rife on current-square in current-state,

and other-square is blank in current-state,
and in the final goal vou want other-tile in current-square.
and it is not the case that:

prior-move led-from prior-state to current-state, and
prior move was a move of //fe from other* square to current-square.

then consider moving //fe from current-square to other-square.

Note that these rules arc disjunctive, in that they cover different situations that arise in the problem. For
example, the first variant is useful in suggesting that C be moved to the third position at the outset of the
above problem, leading to the state B - C A. Once this has been done, the second rule is useful in proposing
that cither B or A be moved into the second square, leading to the states - BCA and B A C —. At this point
the first rule again comes into play, proposing the move of A into square 1 or B into square 4, and finally, this
same rule proposes moving B to 4 or A to 1, reaching the goal state. The point here is that neither of the above
heuristics is sufficient to completely direct the search process by itself, but taken together they eliminate
search. Thus, the ability of SAGE's discrimination process to consider disjunctive heuristics shows Its
potential in the Tiles and Squares puzzle.

Another interesting characteristic of this problem is that SAGE incorporated information about the goal
state in the conditions it discovered This was possible because the goal description was present in working
memory, and so was considered during the condition-finding process. As a result, the heuristics the system
learned from the above problem can be applied not only to more complex problems with longer solution
paths, but to other problems in the same space with differing initial and goal states. Thus, SAGE*$ behavior
on ttie Tiles and Squares task shows that the system is capable of acquiring goal-sensitive heuristics* as we
proposed earlier, provided information about the goal state is present in workiag memory.

In addition to learning from complete solution paths, the credit assignment heuristic for noting bops
and longer paths was also applicable to this domain. The detection of longer paths led to TS-1, the first
variant which moves a tile into its goal square whenever possible. Similarly, the detection of loops led tB an
initial version of TS-2 that contained only the no-backup condition. However, none of the learning while
doing heuristics were sufficient to learn the TS-2 condition "in the final goal you want other-tile fax
current-square. This resulted from the fact that whenever TS-2 was applicable, all of the legal moves (otfier
than backtracking moves) lay along optimal solution paths of equal length. Since the learning while doing
rule MARKED-BAD only compares instances originating from the same state, and since there were no bad
moves from such states, SAGE could never master the complete form of TS-2 during the search process. As a
result, the system fell back on its complete solution path strategy to learn the final version of this variant,

7 , 3 . The Mattress Factory Puzzle

Like the Slide-Jump problem, the Mattress Factory puzzle requires two operators for moving through
its search space. In this task, one is told that N employees are working at a mattress factory. Due fo losses, the
factory roust be closed down, and so all the workers must be fired. However, union regulations require that
hiring and firing follow certain rules. The least senior worker may be hired or fired at any time; this
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corrcsponds to the first operator. However, other workers may only be hired or fired if the person directly
below them in seniority is currently employed, and furthermore, provided that no other person below them is
also employed. This complex rule corresponds to the second operator. Since each of these operators is
reversible, one can always immediately undo an action that was just taken. Thus, this task shares an
abundance of possible loop moves with the Tower of Hanoi. Although this problem has an even smaller space
than the Tower of Hanoi, it also gives human problem solvers considerable difficulty. Cahn (1977) has
studied human learning on the Mattress Factory problem.

SAGE.2 was initially presented with the three-person version of the problem, along with rules for
proposing the two types of moves described above. After finding the single solution path, it generated and
sufficiently strengthened a straightforward variant of the original lowest worker rule:

MF-1
If you have a worker mth current-status \n current-state,

and worker \s not senior to any other-worker,
and current status is the opposite of other-status^
and it is not the case that:

prior-move led-from prior-state to current-state, and
prior move was a change of worker from other-statusto current-status.

then consider changing worker from current-status to other status.

In this production, the variables current-status and other-status match against the possible states in which a
worker can find himself — either employed or unemployed. The additional negated conjunction on this rule
simply prevents one from undoing the previous move. Together with a similar variant of the second operator,
this production is nearly sufficient for directing search on the Mattress Factory puzzle.

However, one additional piece of information is required. If one avoids backups, then only two legal
paths can be traversed in this problem space, and these paths are entirely determined by whether one initially
fires the least senior worker or his immediate superior. In the three-worker problem, the correct choice is to
fire the lowest person. SAGE acquires this strategy by weakening the variant on the second operator, so that
the MF-1 rule shown above is preferred. This strategy transfers to scaled-up problems concerning five, seven,
or any odd number of workers, but not to problems concerning even numbers of employees. If we had been
willing to add to SAGE's memory the parity of the number of workers* this could conceivably have been
learned as- a condition across problem types*

A significant feature of this class of problems is that teaming from complete solution paths does not
provide any more accurate credit assignment information than does learning while doing. In the latter case,
the majority of credit Is assigned by the NOTE-LONGER rale in response to die large number of loop moves
that are made* In addition although SAGE explores both of the paths leading fram the initial state, me of
these eventually leads to a dead-end At this point, the DEAD-END rule chains back up the search free*
marling each stale along the way as undesirable. However, no learning can occur until It reaches the two
moves made from the initial slate, since it requires both a positive and negative instance before learning can
oacur. Skice different operators were applied at this point, no discriminations can result, but the role
proposing the siowe down the dead-end path is weakened, giving preference to the other operator.

7.4* Algebra

We have also presented SAGE2 with algebra problems in one variable* such as 4x - 5 = 3. The goal
here i$ to simplify the express!©©, arriving a£ an equation with (he variable on one side and a number on the
other, such as x = 2, For this do-main* the system was given a single operator for adding, subtracting,
multiplying, or dividing both sides of aa equation by the same number. Moreover, the initial proposer for this
operator required that any numeric arguments to these fractions occur somewhere within the cuntat
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cxprcssion. In addition, SAGE was provided with a domain-specific credit assignment heuristic; this informed
the program that expressions which were not simpler in form that the previous expression were no closer to
the goal, and so were undesirable.

Given this information, the system's behavior when learning while doing was identical to that when
learning from complete solution paths. During both runs, SAGE arrived at a variant of its original proposer
that would always direct it to an optimal solution. This rule can be stated as:

ALGEBRA-1
If you see a number as the argument of junction in current-state,

and other-Junction is a function,
and function is the inverse of other- function.
and function occurs at the top level of the expression in current-state.

then consider applying other-function to both sides with number as its argument.

This production contains two conditions beyond those in the initial rule, both of which are underlined. The
first of these constrains attention to functions that arc the inverses of functions occurring in the expression.
For example, given the expression 4x — 5 = 3, ALGEBRA-1 would consider adding a number (since
addition is the inverse of subtraction) or dividing by a number (since division is the inverse of multiplication),
but not subtracting or multiplying. The second condition further constrains the function that is selected.
SAGE represents such expressions as trees or list structures with forms like (= (- (*4x)5)3). Since
subtraction occurs at the top level of this structure, it would bind against the variable Junction, so that adding
5 to both sides would be suggested.

Since algebra problems such as the above always assume similar goals, transfer to problems with
different goals is not appropriate for this domain. However, scaled-up transfer is possible, and the variant
SAGE generated for the above problem can be used to solve more complex problems, such as (3 (x + 1) -
5)/2 = 2. Obviously, it can also be used to solve different problems of the same complexity involving
different functions. In principle, we could have given SAGE four different proposers at the outset - one for
addition, one for subtraction, and so forth. If we had not given the system information about the inverses of
functioES, it would still have been able to learn not to add unless subtraction occurred in an expression, aad
analogous rules with similar conditions. However, given a problem like 4x - 5 = 3 on which to practice, the
system would then have only partial transfer to a problem like 2x + 1 = 7, in which there occurred only one
of the operators with which it had experience. This form of transfer is similar to that studied by MiteheH
Utgoff, and Banerji (1983) in their work on symbolic integration.

7.5. Seriation

Seriation behavior has been widely studied by developmental psychologists, starting with Kagfit (1952X
and production system models, of children's behavior on this task have been constructed by Young (1976) and
by Baylor, Gascon, Lqnoyne^and Pother (1973), In one version of this task, the child is presented with a set
of blocks in a pile, and is asked to line them up in order of descending height {say from left to right), As
simple as this may sound, yorag children have considerable difficulty with this sorting task, and many adults
do not solve the problem very efficiently. Since this class of problems was somewhat different from Hie others
SAGE had been given, we ftlt It would be useful to include it in otur mis of the system.

In this case, the program was given a single operator for moving a block from the pile to toe end of the
current line for to the fiist position in the line if none existed). Also, SAGE was given a ionain-spaiic rule
for determining illegal slates. This stated that if a taller block had been set to the right of a shorter block, the
move that led to this state was undesirable. For example, suppose fee system were presented with four blocks
- A, B, Q and D - where A is the tallest and D Is the shortest Further suppose that on the first move.
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SAGE moved D into the line. On the next move, the program could move any of A, B, or C next to D, but
each of these moves would immediately be classified as illegal.

SAGE.2 was presented with four blocks and given the goal of ordering them according to height.
Learning from complete solution paths (and using only the illegal move detector to constrain the initial
search), the system generated one useful variant, along with some 67 others. This production exceeded the
original rule in strength after a single learning run, and led to perfect behavior on the second time through the
problem; it can be stated as:

SERIATE-1
If you have a block in the pile in current-state,

and it is not the case that:
there is some other-block in the pile in current-state.
and other-block is taller than block.

then consider moving block to the end of the line.

This production contains a single new condition that is stated as a negated conjunction. Effectively, it says that
one should move a block only if there is no other block in the pile that is taller than that piece. This constraint
is related to conditions in the illegal state detector, since the SERIATE-1 variant will never place a taller block
to the right of a shorter one. However, one can imagine a rule that would never propose illegal moves, and yet
would still start off down the wrong path, say by placing the smallest block in the line first. Such a variant was
generated during the seriation run, but did not become as strong SERIATE-1, which never makes this
mistake. Thus, the negated conjunction in SERIATE-1 incorporates both the test for illegal states and look-
ahead information, enabling the rule to avoid moves that will lead to dead-ends.

SAGE.2 was also capable of learning during the initial search on this task. In addition to the rule for
noting illegal states, the DEAD-END heuristic also came into play. Consider again our example from above,
in which block D is placed first in the line. In this situation, the system attempted moving each of A, B, and C
next to the smallest block, and each move was marked as illegal. However, since no other moves were possible
from this state, the DEAI>END rule applied, marking the initial D move as undesirable. Since the three
other moves considered at the outset were still acceptable (the B and C moves did not lead to dead ends until
later), the D move was compared to each of these moves by MARKED-BAD. The resulting call on
discrimination led to the SERIATE-1 rule shown above. Later dead-ends led to similar comparisons, and this
rule was strengthened, until it came to efficiently direct the search process even before an initial solution had
been found.

8. Discussion
Now that we have examined SAGE and its behavior on a number of tasks, we can begin to evaluate the

program. In the case of a learning system, one of the most important dimensions is generality. One way to test
a system's generality is to run it in a number of domains, and as we have seen, SAGE fares well on this
criterion. However, one could in principle construct a program that employed one heuristic for one domain, a
different heuristic for another domain, and so forth. In other words, one must also test the components of a
system for generality. On this dimension, SAGE's discrimination/strengthening strategy pass.es with flying
colors, since it played a central role in each of the runs described above. However, the situation with respect to
the credit assignment heuristics is more complex, so let us consider it in more detail

Table 5 presents the six credit assignment rules used in SAGE.2, along with the six task domains in
which the system was tested. As can be seen from the table, and as has been apparent throughout the paper,
the complete solution path heuristic is very general, and was (or could have been) applied on each of the
tasks. The other heuristics were less useful, but still showed evidence of generality. Both the loop move/longer
path rule and the dead-end rule led to learning in four of the six problem classes.
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Tablc 5. Generality of SAGE.2's credit assignment heuristics.

TOWER OF HANOI

SLIDE-JUMP

TILES AND SQUARES

MATTRESS FACTORY

ALGEBRA

SERIATION

SOLUTION

X
X
X
X

X
X

LONGER

X
X
X
X

DEAD ENDS

X
X

X

X

ILLEGAL

X

NO PROGRESS

X

The illegal state detector was stated in a domain-specific manner and was used only in the seriation task.
However, one can imagine versions of the Tower of Hanoi, Mattress Factory, and Slide-Jump puzzles in
which the conditions for legal moves must be learned along with the conditions for good moves. It might even
be possible to state these constraints as elements in SAGE's working memory, so chat a quite general illegal
state detector could be implemented. Finally, the no progress rule was used only in the algebra domain, but
one can imagine a version of SAGE that always computed the distance between the current state and the goal
state, and a very general no progress heuristic that matched off the results of this computation.

Another issue relates to the form of the acquired heuristics. As we have seen, the discrimination
approach is in principle capable of learning disjunctive rules, and this potential proved useful on the Tiles and
Squares task. Since disjunctive heuristics are likely to occur in a significant fraction of task domains, the
ability to acquire them is certainly desirable, and SAGE shows promise along this dimension. On the other
hand, we found that on most tasks, SAGE was not able to learn heuristics that incorporated information about
the goal state. Such rules are important, since they would let the system to transfer its acquired expertise to
problems with different initial and goal states from those on which it practiced.

The one area in which the system did achieve such transfer was the Tiles and Squares problem, and the
key in this case was the explicit representation in working memory of the goal state toward which the system
was working. Since this information was available for inspection by the discrimination mechanism^ it could be
included m the conditions on variants spawned by this process. As a result, variants containing such
conditions could direct the search in different directions, depending on the particular goal that was being
sought Presumably, before SAGE can be expected to manage similar transfers for other domains, its
representation for these tasks must be augmented to include explicit representations of their goal states.
Whether web to addition will be sufficient or merely necessary is a question that can best be answered

A moomd natural extension relates to the search strategy that SAGE employs. Many problems (such as
winning a chess game) are so complex that they can only be solved by breaking the task up into manageable
components, ' Ope sucfe approach involves setting up subgoals, each of which must be solved before the
supergoal is accomplished. If SAGE*s search control were augmented to allow the introduction of subgoals*
then the heuristic for assigning credit based on complete solution paths could undergo an importaat but
subtle alteration. Rather than requiring solutions to an entire problem, the method could be applied
whenever a particular subgoal had been achieved. Variants learned from this path would be specific to that
subgoal; that is, they would Include a description of Ate current subgoal as an extra condition, in addition to
the other conditions found through discrimination. Even If SAGE later determined that this subgoal was not
particularly desirable in the current context, the rules that had been learned might still prove useftil in
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satisfying the subgoal in some other situation at a later date. This approach would also require the system to
learn the conditions under which various subgoals should be set, but this could be handled by the existing
mechanisms for learning the conditions on operators.

In summary, the existing version of SAGE has a number of desirable features, but our understanding of
the strategy learning process is far from complete, and more work remains to be done. In our future research,
we plan to restructure the system's problem solving and learning methods to take advantage of information
about goals, as we outlined above. In addition, SAGE has so far been tested only on problems with relatively
small search spaces, and we are now ready to explore the system's behavior on more complex tasks.
Undoubtedly, our experiences in these domains will lead to additional insights into SAGE's limitations, and
to further revisions that, hopefully, will lead to a more powerful and robust system for learning search
heuristics.
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