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Abstract

The subject of this paper forms part of a broader effort to model the mechanics of grasping and fine-
manipulation for robots. Grasping is the act of acquiring and holding (gripping) an object. Fine-
manipulation is an extension of grasping to include control of the object using an end-effector such as a
gripper or a hand. A mechanical model of grasping and manipulation forms the basis for controlling grippers
and paves the way for robots that can make independent judgments about how to pick up and handle the
objects they encounter. In this paper a procedure is developed for computing physical properties with which
a grasp may be described. Among these properties arc grip strength, stability, compliance and mobility. The
results depend strongly on the interaction between the gripping surfaces and the object. For example, a grasp
may be unstable when the fingertips are pointed, but stable for rounded fingertips. The analysis suggests that
particular kinds of sensory information are especially useful in controlling a grasp and supports the notion
that gencral grasping "rulcs of thumb” can be identificd for use by robots.




1. Introduction

What is the best way to hold an object given a particular gripper and a particular task to perform? If we
look 1o natural examples of gripping we find that the answer to this question is a function of many things
including friction, the softness of the object, the fragility of the object, and how well the object "fits" the
geometry of the gripper. For example, all other things being equal, human beings will favor gripping
positions that comfortably fit the size and shape of the hand. We avoid gripping positions that require us to
stretch or to cramp our fingers, unless other considerations predominate. Over years of experience, we seem
to acquire a database of suitable gripping configurations which we apply to the world at large. We choose
gripping positions without much conscious thought until we are faced with a completely unfamiliar object
shape (especially if the object is also slippery or heavy). '

For the current generation of industrial robots there is little need tc calculate suitable gripping positions.
Today’s robots are play-back machines repeating sequences of instructions; they may be programmed to
assemble various shapes or to load them into machine tools but they never have to decide how to grasp an
object. The grasp is chosen for them when they are programmed and is part of the information associated
with the task. This approach is adequate as long as robots continue to perform a narrow range of tasks with a
limited selection of parts, but it becomes impractical if robots are to work under less structured circumstances.
For example, a robot working on the occan floor, or in a nuclear power plant, would be more effective if it did
not have to ask for instructions about how to pick up every new object it encountered. This goal prompts us
to ask whether a suitable grasp is something that can be determined analytically and expressed to the robot in
terms of an algorithm. But first, we need a model that describes different grasps and predicts how a grasp will
respond to forces and motions applied to the object as the robot proceeds with a task.

The present paper draws upon previous work on the kinematics of an object being manipulated by a
gripper and develops a procedure for determining mechanical properties which may be used to characterize
grips and to discriminate between them. The result is a linearized model of how a grasp will behave in
response to task-induced forces and motions. Using the grasp model, the paper considers the importance of
gripper contact surfaces, frictional properties and gripping forces in determining the overall behavior of the

grasp.

1.1 Previous Investigations on Prehension

Recently, a few works have appeared that cover grasping kinematics, gripper control and related topics.

Asada [1] begins by describing the force balance for an object held by a gripper with several fingers. He
assumes that the gripper has k, actuators each driving / fingers of which m are actually touching the held
object at a particular time. Thus there are a total of k,Xm fingers in contact with the object, of which k, are
independent. He next assumes that each finger has a small contact area so that the contact between each




finger and the object can be treated as a point contact. With this assumption the force exerted by each finger
can be resolved into forces perpendicular and tangential to the object surface. The assumption is a limiting
one because it removes the possibility that a single finger can apply a torquc about its own axis and ignores
rolling or rocking motion between the fingertip and the object. However, it is often a rcasonable
approximation for grippers with small gripping surfaces made of hard materials (a pair of tongs, for cxample).
Generally, the point-contact approximation results in an overestimate of the gripping force required to
maintain equilibrium. Salisbury [2] and Okada [3, 4] make similar assumptions in describing the forces
excrted by their three-fingered hands, although Salisbury discusses the effects of having a "soft” finger that

can apply moments, twisting about its central axis.

Having described the equilibrium requirements for an object held by several fingers, Asada addresses the
problem of choosing a suitable finger configuration. He treats the held object as a rigid body and models the
fingers as clastic members with one degree of freedom, along a specified trajectory or locus. He simplifies the
grasping model by ignoring friction at the contact points between the fingers and the object. With this model
he is able to construct a potential function, based on the shape of the object, which indicates the relative
stability of different finger configurations. In the absence of friction, an object held in a stable grasp will
return 1o its original position if displaced slightly. The theory works well for slippery objects and whenever
the chief concern is that the object should not be dropped (when we wash dishes we hold them in a stable
grasp.) Unfortunately, the utility of the mode! for industrial robots is very limited. Friction is an important
consideration and is often used to advantage. According to Asada’s theory there is no satisfactory way for a
two-fingered gripper to grip many shapes. For example, there is no "stable™ configuration for a two-fingered
gripper grasping a sphere. In practice, people depend on friction when they design grippers and when they
program robots to grasp and manipulate objects. A stable grip guarantees that the gripper will not drop an
object, but often a great deal more is required. It may be required that none of the fingers of a gripper should
slip with respect to an object while it is manipulated because if they do, the object will not return to the same
equilibrium position.? Industrial robots are often programmed based on a precise knowledge of the position
and orientation of a grasped object with respect to the robot coordinate system. As soon as any of the fingers
slip, this information is lost.

Salisbury [2, 5] and Okada [4, 3] are concerned with developing control laws for multi-jointed three-finger
grippers. The hand designed by Okada can perform a variety of manipulation tasks such as screwing a nut
onto a bolt and manipulating a match box in three dimensions. When the motions of the manipulated object
are not very small it becomes necessary to treat the fingertips not as points but as surfaces of finite radius. The
fingertips roll with respect to the manipulated object and the kinematic description of the fingertip locus
becomes extremely complicated.

Salisbury [2, 5] draws upon his earlier work in manipulator control [6] in which he discusses how o
determine the correct servo stiffnesses for the joints of a robot to achieve some desired set of stiffnesses

L1 the absence of friction the object would return to its original, stable position.



Mason [9 invedtigates the effects of friction on basic operations in which a robot grasps an aojedt or
pushes it into place. He points out that the role of friction in smple tasks performed by manipulators has not
been adequately studied. The few investigators who have considered friction have been content to use the
modd developed by Coulomb in 1781. For tasks involving grippcrs and objects with hard, flat surfaces, the
Coulomb modd gives accurate results. Using it, Mason derives analytic solutions predicting, for example, the
direction and the rate of rotation of an object pushed along a flat surface.

For grippers with soft fingers (and particularly the human hand) the Coulomb modd of friction may nat

accurately describe what we observe from experience:;
"When there is a possibility of the object dipping over the skin, a resistance, namdy friction,
intervenes which is proportional to the area of the surfaces in contact ..Sweat glands, by
moistening the skin, tend to increase friction and make the skin more adhesive." [10]

At light pressures, adheson contributes greetly to the tangential force that a contact can sustain without
dipping. The adhesion is not directly related to the normal force, but depends on surface chemigtry, sufece
roughness, and the past higtory of norma forces. As an illustration, a compliant elastomer, once it has bem
pressed againg the surface of an object, can often resist tangential loads even &fter the norma pressureis
reduced to zero. The Coulomb coefficient of friction in this case would be infinite.

1.2 Current Investigation

In the following sections a procedure is given for determining mechanical properties with which agip
may be described. In the andyss, the arrangement of the fingers upon the object, and the diffness ad
kinematic design of each finger are assumed to be known. The object is given arbitrary smal displacements
and the resulting motions and changes in forces are computed From these, the overal diffhess of the gip,
the ability of the grip to resst dipping and the ability of the grip to recover equilibrium in the presence of
disturbances may be established. The, procedure is initidly illustrated with some two-dimensiona examples
Itis shown that the results may contain not only stiffness terms of the kind discussed by Sdisbury [2] but dso
terms due to differentia changesin the grip geometry. Unlike the stiffness terms, the geometric terms mey
mike the grip unstable. A concept of grip stability is then devel oped which includes friction. A robot mey
choose between competing grips by sdecting one which is stable in the presence of disturbances, which is
mogt able to resist dipping and which matches the stiffnesses of the fingers to the compliance requirements of

thetask.

The andyss is extended to three-dimensiona examples and explicit consideration is pad to fie
importance of the interaction between the fingertips and the object Different contact conditions invoMug
pointed, curved, soft and hard fingertipsare modeled. A summary of the contact typesis shown in Table 6-1
The point-contact modd used in earlier andyses sometimes gives mideading results, especidly when the
object is snail compared to the hand and when compliant gripping surfaces are employed. Findly, the reits
of the analys's are discussed in tenns of designing and controlling dextrous hands or grippers. The re&ls
suggedt that certain kinds of sensory information will be especialy useful for grasp control and that a Blunter
of grasping "rules of thumb™ may be argued on mechanica grounds. For example, an argument can bemde
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Nomenclature for Section 2

f = scalar magnitude of force applied by the it finger

a;p; = acting coefficient of friction at the " finger (0 < a;<1)
Bi = cocfficient of friction at the i finger (from surface properties)
n; = unit normal vector at the i finger

l; = unit vector tangential to the object at the ith finger

T = vector from origin fixed in the object to the it finger

f, = external force taken at the origin

m, = external moment taken at the origin

dn; = normal component of displacement of i? finger

8l = tangential displacement of ith finger

Bi = angle between unit normal and r; for i finger

kyi = normal stiffness of i finger

ky; = tangential or lateral stiffness of ith finger

q = a unit vector in an arbitrary dii'ec:ion

b, = angle between q and the x axis.

8q = small displacement of the object in the q direction

84 = small rotation of the object

kg = translational stiffness of the grip in direction q

kg = rotational stiffness of the grip

Jo = restoring torque due to finger stiffnesses

Jog = grasp torque due to rotation
(see also Figure 2-2)




2. Determining Mechanical Properties of a Grasp

In this scction the concepts of grip stiffness, strength and stability are discussed and the general procedure
is described for determining the force/displacement characteristics of a grip. The concepts are illustrated at
the end of the section with some simple, two-dimensional examples.

2.1 Grasping Model and Assumbtions

A gripper may be modeled as a device with several fingers in contact with an object. The "fingers™ need
not resemble human fingers. They may be contact points on the jaws of a standard commercial gripper. If,
for the moment, we adopt the Coulomb model of friction the static equilibrium cquations become:

fo= Zfi(‘“i) +apfi) = A=+ al)
1=1 i=1

m m
m, = Z rixf}(—ni) + rixaill'l'jl:(li) = Z_f; [n,-Xr,- + aip.,-(r,-xl,-)]
=1 i=1 :

(see Nomenclature and Fig 2-1 for explanation of terms)

The problem described by the above cquations is in general statically indeterminate. The values f; and
«;p;l; are the unknowns. In the above equations a; is taken as a variable parameter between 0 and 1, so that
0 < a;p; < p;, where p; is the standard coefficient of friction determined from surface properties. The unit
vector ]; is tangential to the surface of the body but its direction is otherwise unspecified. Until the object
starts to slip with respect to the fingers, I; and a; cannot be further defined. We can require that the above
equations have at least one solution such that all a; < 1 but this is not particularly useful. It eliminates absurd
finger arrangements (eg. all fingers on the same side of the object).

The presence of friction means that there are generally many grasps that will satisfy static equilibrium and
it is possible to choose between them to find the one best suited for a given task. In fact, when we pick up
objects with our own hands the grip we choose often depends more on what we intend to do with the object
than on its shape or surface properties. For example, if we are asked to pick up a tall, thin candle that is lying
on a table we may grasp it near the middle so that it balances in our hand; but if we want to push the candle
into a candlestick holder we usually hold the candle near the base. Similarly, if we pick up a pen to hand it to
somebody the grip we choose is entirely different from the one we use for writing.

To proceed further with a mechanical analysis it is necessary to adopt a force/deflection model for the
gripper and the object. This is analogous to the use of Hookes’ stress/strain relations in solid mechanics in
which a model for the material provides the necessary additional equations. The force/deflection model used
in the following sections incorporates a number of simplifying assumptions which are listed below.




o The fingers arc modcled as clastic structures and the object as a rigid body. This is usually a good
approximation for robots assembling parts or holding tools since the servoed joints in the robot
arm and fingers make them considerably less stiff than the grasped object. For robots handling
such materials as textiles, foamed plastic or rubber, the elasticity of the object would have to be

taken into account.

e The analysis is static. There is no consideration of dynamic terms and no explicit treatment of
slipping motion. However, the model can predict when a finger will start to slip upon the object
and different grips may be compared by finding the one which will resist the largest task-related
force or torque before slipping occurs.

e The analysis does not attempt to solve for the optimum grip for a given task but provides a
mechanism for evaluating mechanical properties such as the stiffness, stability and resistance to
slipping of a grip. Competing grips may be comparcd on the basis of such properties.

o The analysis is not concerned with geometric constraints, such as whether a gripper is actually able
to achieve a given grip, or whether it is possible to place the fingers underncath an object that will
be picked up from a flat surface. These are important considerations and a number of them are
addressed in[1], 12, 13], but they are beyond the scope of this analysis. Basically, it is assumed
that the grips under consideration have already met such criteria.

e The analysis is concerned only with small motions about an initial position. The small-motion
assumption permits linear force and displacement transformations. The results of the analysis are
invalid if the fingers make large motions with respect to the object, for example if they are used to
turn a nut onto a bolt or to flip an object over in the hand. However, there are many tasks in
which a grip is chosen and then the fingers make small motions with respect to the object. When
tools such as wrenches or screwdrivers are used, the fingers usually make small motions with
respect to the tool, while larger motions are accomplished with the wrist. As another example,
when assembling parts, an initial grasp is chosen and then the fingers make small adjustments as
the mating parts are slid 2 '

o Only motions with respect to the hand are considered. The interaction of the hand and the robot
arm is not considered. This is not a severe restriction, however, since the compliance (inverse of
stiffness) of the arm can always be added to the compliance of the hand when determining the
overall force/deflection characteristics. - For small and relatively low speed movements of the
fingers there is little concern that dynamic coupling between hand and the arm will cause
difficulti

2.2 Stiffness, Strength and Stability of a Grasp

Stiff

The first criterion that might be considered for evaluating a grip is the stiffness of the grip in response to
externally imposed loads. The grip stiffness is a function of the stiffnesses of the fingers and of their
arrangement about the object. Given a variety of possible grips, it may be useful to find the one that is stiffest
with respect to torsional or translational loads. A stiff grip is useful when manipulating objects at high speeds.
It helps to ensure that the displacements caused by inertial forces and torques will be small and that the
natural frequency or bandwidth of the gripper/object ensemble will be high.




R I - -1

-2 - =N -]

r; = vector from origin to contact
n; = unit normal at contact surface
) 1, = unit tangent at contact surface

Figure 2-1: A two dimensional object held by three fingers

Robots moving freely in space are generally position-servoed and under these conditions the stiffest grip is
often the best, but when a robot interacts with other objects, as during an assembly task, it becomes useful to
control the mechanical impedance of the arm and the grip [14, 15]. Impedance control is especially well suited
to servoing the fingers of the gripper or hand [6]. At low speeds, dynamic effects become negligible and
impedance control reduces to stiffness control. For example, the robot hand can be made stiff in directions
which are not constrained by contact with fixtures and compliant in the directions which are. In terms of
choosing a grip, the best grip is the one which best matches the requirements of the task to the achievable
range of finger stiffnesses. '
Resistance to slipping

A second way 1o discriminate between grips is to find the one that, for a given combination of servo
stiffnesses, grasping forces and fingertip geometries, can resist the greatest possible applied force or torque
before any of the fingers slip. This again is desirable when manipulating objects at high speed. For tasks
involving contact forces and torques the same analysis may be used to find the grip for which the fingers are
least likely to slip in response to the expected range of forces and torques.



Stability

10

A third criterion is grip stability. Since the analysis is lincarized and only small motions are considered it
is only possible to determine whether a grip is infinitesimally stable, that is, whether the grip will return to its
original position if the object is displaced by an arbitrary small amount. This amounts to determining
whether the changes in the forces on the object that result from disturbing it will tend to opposc or to increase

the disturbance.

o

i

N .
Finger

(=1

lateral finger stiffness
normal finger stiffness

vector from origin to contact
unit vector in arbitrary direction
unit tangent vector at contact
unit normal vector at contact Origin X
angle between unit normal and r

Figure 2-2: Detail of a single two-dimensional finger from Figure 2-1

2.3 Procedure for Establishing Grip Properties

The procedure used in determining the above grip properties is outlined below.
1. Displace the object an arbitrary, small amount.

2. Determine the resulting motions of the fingers. These will depend on the finger geometries,
contact types and stiffnesses.

3. Determine the in the forces at the finger/object contact areas that result from the motions
of the object and fingers. There are two contributors to these changes. The first are restoring
forces that result from the stiffnesses of the fingers. The second result from changes in the grip.
The fingers and the object do not move together as a rigid ensemble and the resulting
modification of the grip geometry changes the way in which the finger forces act upon the object.
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4 Compare the new forces at the finger/object contact arcas with the maximum forces that the
contacts can sustain without slipping. Also determine whether the normal forces would become
negative at any of the fingers (meaning that they would lose contact with the object).

5. Compare the new resultant forces and torques on the object with the original forces and torques
and with the displacement of the object to determine the stiffness and infinitesimal stability of the

grip.

In later sections, particular attention is paid to the interactions between different kinds of fingertips and an
object. Curved, soft, and pointed fingertips are discussed and their effects on the grip are investigated. It is
shown that the point-contact model adopte1 in earlicr analyses is only accurate when the fingertips are small
compared to the object being held. Thus, if we hold a large cardboard box or a basketball, a point-contact
model of our fingertips is fairly accurate, but when we hold a matchbox or a golf ball it is not.

2.4 Two-Dimensional Examples

The concepts of grip stiffness, stability and resistance to slipping can be illustrated with some short
examples. In these two-dimensional examples, the forces and motions are broken into scalar components, but
a matrix notation will be used for the three-dimensional analysis in later sections. Figure 2-1 shows a rigid
body held by three fingers which are assumed to have some characteristic stiffness. The actual stiffness of
cach finger need not be prescribed; only the relative stiffness with respect to the other fingers is required. In
the following two-dimensional cxamples, the finger stiffnesses may be resolved into components &,; and k;,
perpendicular and paraliel to the surface of the object. As before, the fingers need not resemble human
fingers but may be the contact areas of an industrial gripper. It is required only that their stiffness and friction
characteristics be known. Figure 2-2 shows the coordinates and stiffnesses for a single finger.

Looking first at torsional loading, if a force is externally applied to the object, (perhaps by a wrench at the
x,y origin in Figure 2-1), the object will be rotated by a small amount, §¢. Each fingertip in contact with the
object must move 88 Xxr; along with the object surface. The finger motions can be resolved into components
parallel and perpendicular to the surface of the object.

Blli = (80xr;)-n,- = -—r,-80 Sinﬂi

8n; = (80)(1’1)'1‘; = —-r;80 COSﬂi

We can equate the potential energy stored in rotating the body with the energy stored in the fingers to express
the rotational stiffness of the grip in terms of the finger stiffnesses.

m
kg8 = > Lkudn+ 1ky817
i=1
Substituting for 8n; and 81,

m

kg = 3 rilky sin’B;+ ky cos’B;)

i=1

The stiffest grip for torsional loading is that for which kg is greatest.
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Tofind the grip that will resist the greatest torsional load without slipping we firgt look at each of the gips
under congderation and discover which finger (or fingers in a symmetrical grip) is nearest to dipping for a
given goplied moment, m, at the origin. As the body is rotated 5*, tlic changes in the forces at each firge

ae
8fi=Kn8ni and  «/*=*/5']-

From the discussion earlier in this section, f, = a/fi*,- for the Coulomb law of friction, where dipaing
will occur as a—*1. Then, for example, if initidly f, = 0, slipping will occur when

ki 81> pifyi

Thus, for a given rotation, 50, the finger nearest to dipping will be the one for which aisdosest to 1, or
for which
o = a8l meki(=ricosBy)
Y pifu kg 1biS i
isgreatest

Having found the "worgt case” finger for each grip we chose between grips by finding the one for witk
nigis greatest before a = 1 at the finger.
o = - XeBim
o kyr; cos By
(wheref is the subscript of the "worst case” finger)

We do not haveto worry that cos/?- will approach zero sinceit will never be zero for thefinger dost s0
dipping unlessalJ fingersare equally likdly to dlip.

For mation in an arbitrary direction, g, the angle at each finger between g and n; is < = ff—fa - §
(where g, n B, /? and ff, are shown in Figure 2-2 for atypical finger). Equating potential energies dlons&
trandationa Hiffiess to be expressed in terms of the finger stiffnesses.

Kk, = ﬁkm‘ cos’p; + ky sin’,
=1

Following the procedure used for the rotational case, we can choose between gripsto find the one to i£
withstand the largest force, te, in agiven direction, g, before any of the fingers dlip. The "worst case* fingers
the onefor which ‘

- kydl; foky sin g,
L Vifm kopif
isgritest The best grip is then the one for which fe can be greatest before the "worst case” finger will sp*

kopifu

fomex =



1
2
3
4
finger
-typﬁ
5

Figure 2-3: Five ways to grip a rectangle with four fingers

2.4.1 Choosing between five grips: an example

Figure 2-3 shows five grips on a rectangular block. Grips 1, 4 and 5 share the same configuration, but with
different finger spacings. We can use the above results to discriminate between the grips. To simplify the
computation we assume that the fingers are all identical and that their stiffness components, k,; and kj, are
independent of the orientation of the finger. This is a reasonable approximation for long fingers with several
joints.
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The highest rotational stiffness is achicved cither with grip 1 or grip 2, depending on whether k,; or &; is
greater. If it is most important that none of the fingers slip when a moment is applicd to the rectangle, then
grips 1, 4 or 5 should be chosen. Grip 1 offers the best combination of rotational stiffness and resistance to

slipping.

For translations the picture is a bit more complicated since the stiffness and the resistance to slipping vary
as the direction of q varies. Intuitively, onc might suggest that Grip 3 is the safest choice. Figures 2-4 and 2-5
show plots of the stiffness and the maximum force without slipping as a function of angle, 8 ¢ For these plots,
ky,; was arbitrarily taken twice as large as ky. Actual valucs of k,; and k; might be quite different, but the
piots provide an example of how grip stiffness varics as a function grip geometry. In this case, the stiffness of
grip 3 is constant, regardless of the direction of f,. Grip 3 also offers the most nearly constant resistance to
slipping and is therefore the safest choice for arbitrary loads, although other grips offer more stiffness or
resistance to slipping when the object is pulled in a single direction.

2.4.2 An unstable example

The foregoing discussion has focused on determining whether the stiffness of a grip is suitable and on
determining when the fingers slip. The next question is whether the grasp will be stable if perturbed slightly.
A potentially unstable grip is shown in Figure 2-6. If the grasp forces are large, and if the fingers are not stiff
enough in the lateral direction, the rectangle will continue to rotate when disturbed by a small angle, §8,
instead of returning to the initial position. The same effect can be seen by gripping a coin on edge between
two opposed fingers. If one squeezes too hard, the coin "collapses” to a more stable position in which one’s
fingers are pressing against the faces. In general the coin will also slip with respect to the fingers when this
occurs, but before slipping occurs it is possible to determine whether the grip is stable.

As the rectangle in Figure 2-6 is rotated by a small angle, 88, the lateral stiffnesses of the two fingers
produce a restoring torque, fp,
Sor=2k; 288

At the same time, due to the rotation of the body, a torque is generated by the grasp forces,

fog = Yur 86
The net change in the torque upon the object is
ém, = (f; — kyr)2rd6

The grip is unstable if the change in the torque is positive for a positive rotation, §§. Thus, for the grip to be
infinitesimally stable it is required that f, < k;r. Evidently, for a given rectangle size and finger stiffness,
pressing harder makes the grip less stable. This result appears again in later examples and provides an
incentive for not gripping harder than necessary because for a given grip geometry, the stability of the grip
decreases with increased gripping force. Another result is that for a given finger stiffness and gripping force,
the grip is more stable for a longer rectangle (one for which ris large).
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restoring torque: 2k 1256
grasp torque: 2fn 186
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kn

Finger Schematic -typ.
Figure 2-6: Instability of a rectangle held by two fingers

These effects can be demonstrated by pressing a pencil lengthwise between the index fingers of each hand.
As one presses harder the grip is likely to collapse unless one also tenses (stiffens) one’s arm and finger
muscles. If the experiment is repeated for an old, short pencil and for a new, long one it will be seen that the
grip collapses more easily for the short one.

Unfortunately, if we return to the example of gripping a coin between two fingers of one hand, a problem
appears. If the fingers are now pressing against the faces of the coin instead of the edges, the grip should,
according to the above equation, become /ess stable. This is clearly incorrect and demonstrates that the
point-contact fingertip model gives inaccurate results for human fingers pressing against the faces of a coin. If
we repeat the example, using ball-point pens instead of our fingers to press against the faces of the coin, we
find that the grip is indeed very unstable. The problem is resolved if we model the finite curvature and
deformation of our fingertips. Thus, in the following sections, a framework is established in which examples
like those above can be extended to three dimensions and in which fingers with pointed, curved and soft
contacts are considered.
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Nomenclature for Three-Dimensional Analysis

0 = origin of (x,),z) system

bp = origin of (}/m,n) system and contact point on object
)/ = contact point on fingertip

f - = origin of (a.b,¢) system

'y = 3x1 vector from (x,,z) origin to (1 m,n) origin

e = 3x1 vector from (a,b,¢) origin to (] m,n) origin

dp = vector of small translations and rotations of the object in (x, ), z) coordinates
dpp = vector of small translations and rotations of the object in (m,n) coordinates
de = vector of displacements transmitted through the contact

drp = vector of small finger translations and rotations in (//n,n) coordinates
de = vector of small finger translations and rotations in (g, b,¢) coordinates
dq = vector of small finger translations and rotations in joint coordinates
O = vector of forces and torques on the object in (x,y,2) coordinates

9bp = vector of forces and torques on the object in ([ m,n) coordinates

9c = vector of forces transmitted through the contact

9tp = vector of finger forces and torques in ([ m,n) coordinates

g = vector of finger forces and ¢ in (@ b,c) coordinates

9q = vector of ﬁager forces and torques in joint coordinates

[Jb] jacobiz

(371

[Ja]

[ifq] = nfxﬁpmdwof[.]f] and [Jq]

] mﬂw of [Jfq]

P"] = non-singular partition of [Jfq]

[Xq]

[xf]

[Kx]

[xb]

[cr]

(A1

[R]

(1]

]

L1

{
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= set of nfindependent clements in dyp

= 3x1 unit tangent vector on fingertip

= 3x1 unit tangent vector on object

=number of degrees of frcedom of finger
=number of force or displacement components transmitted through contact
= arclength along fingertip or object surface

= magnitude of radius of curvature of fingertip
= outer radius of contact area

= modulus of elasticity

= shear modulus

= contact area

= jj moment or product of inertia

= polar moment of inertia

= stress in 7 direction

= ij shear stress

= scalar stiffness component

= scalar force component ‘

=width
=thickness

|
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3. Extension to Three-Dimensional Problems

3.1 Forward Force and Displacement Relations

In the general case, the gripper fingers and the object may have up to three translational and thret
rotational degrees of freedom. It becomes convenient to use matrix equations to express the grip stiffnes
strength and stability. In the following discussion, force vectors, g or f, include force and momen
components and displacement vectors, d, include small translation and rotation components:

ft f

[f,. f.f,.f

ax’ @Gy’ f&z]

yl
t =
¢ = [d,. dy‘ d;» dgyo dﬂy’ dg.]

The goal of this analysis is to express the interaction between grasping forces and small motions of th
object. If gy, is the resultant grasp force on the object and d,, is a vector of small motions of the object ther

the desire is to determine

agb =9
30,

Since dy, is a small quantity this may be approximated by the linear relationship
Agp = [?]dy

where [?] is a matrix that must be determined. To do this it is necessary to first establish how the forces
applied by the fingers, g¢, determine the grasp force, gy, and to establish the relationship between a smal
motion of the object, dy, and the resulting motions of the fingers, d¢. If gy, and d,, were scalars, §fand dx,
the relationship between them could be written
—g—‘—g—- =k or 8f=kéx
Under certain circumstances, for example if the fingers do not move relative to the object when the objet
moves slightly, an equivalent stiffness expression can be written for forces and displacements of the object
gp = [Kb]dy
where [Kb] is a symmetric stiffness matrix. More commonly, the fingertips and the contact areas will shi
with respect to the grasped object as it moves and new terms are added to the above stiffness relationship
Such terms are discussed later in this section.

In Figure 3-1, the coordinate systems are shown for a fingertip touching an object. The fingertip may b
the last segment of a multijointed finger or it may be a contact surface on the jaw of an industrial grippe:.
The global coordinate system, (x,,z), is embedded in the object at 0. The (ab,¢) coordinate system i
embedded in the fingertip at fand, like the (x,,z) system, may be chosen with any convenient position as{
orientation. The ([ m,n) coordinate system is shared by the fingertip contact area, fp, and the object coata
area, bp. The n axis is perpendicular to both the object and fingertip surfaces and the [m axes B in ¢
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Figure 3-1: Coordinate systems for a finger touching an object
common tangent plane. The finger joint coordinates are not shown in Figure 3-1 since they will be different

It is assumed that the position and orientation of the (e 4,¢) coordinate system can be determined with
respect to (x,,z) from the geometry of the gripper and knowledge about the initial position and orientation of
the object. Salisbury [2] has shown that the position and orientation of the tip of a multijointed finger may be
established in the same way that the position and orientation of the end link of a manipulator are determined
from the joint angles. The result is often expressed as a 4x4 transformation matrix, [T], [16]. The elements
of [ T] are given in Appendix A.

Usually, the fingertip will have less than 6 degrees of freedom and the compliance of the fingertip will be
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negligible in one or more directions. For example, a finger with nf<6 joints is often considered to have nf
degrees of freedom since the structural compliance of the finger links is negligible in comparison to the
compliance of the servoed joints. In this case, the displacement vector of the finger in joint coordinates, dg

will be an nfx1 vector.

The fingertip is also assumed to have known stiffncss propertics, represented by the nfxnfstiffness matrix
[Kq] in joint coordinates. Salisbury [2] has shown that the stiffness matrix for the tip of a multi-jointed
finger, valid for small motions, may be derived from the finger kinematics and joint servo gains.’

Frequently, the fingertip may be treatea as a rigid body so that small displacements of the finger in joint
coordinates may be related to displacements in the (g 5,¢), which in turn, may be related to displacements in
the ([ m, n) system with the linear transformations:

d¢ = [Jqldq (where [Jq] = a ¢ defines a Jacobian) (KR
q v

dfp = [Jf} df (3.2)

dep = [Ifqldy where [Jfq] = [3f][Jq] (33)

(nfx6)  (6x6) (nfx6)
The fingertip displacement vector, d¢p, Will contain 6 elements of which nf will be linearly independent.
A set of nf linearly independent elements within d¢p, is called ¢;.

The object is treated as a rigid body and consequently, a small motion, db,ofmeobjectinme(x,y,z)
system produces a displacemen tofmecmﬁacatma, % in the ({ m,n) system.

dpp = [Jb]dy (G4

For generality, dy, and dy, mt&mas“ﬁemmmrs (possibly with some zero elements). A number of
identities ﬁmﬁxﬁmgwenm Appendi

juating virtual work, ﬂm&t 1l displacements and forces transfos
m Grp. at the ﬁngemp contact area is known then the equivalen
quating ﬂmmkdonemdmpiamngtheﬁngempbydfpammﬁﬁm
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qg= [Jalt g¢ ' (36)
and

gp = [Ib]* gpy- (3-7)

3.2 Summary of Forward Transformations

The forward displacement and force transformations are summarized in Figure 3-2.

Starting at the lower left corner with a displacement, dy, of the object in (x,y,2) coordinates, and following
the arrows, the displacements transmitted through the contact are determined as d.. Then, starting with the
contact forces, g., on the object in (Im,n) coordinates, and. following the arrows, one computes the forces
upon the object

Starting at the lower right corner with displacements of the finger joints, dg, the displacement of the

fingertip, di, ca be determined- Finally, if the contact forces, gs,, are known for the finger, following the
arrows gives the forcesin the fi nger joints, g".

Object force Finger joint torques

t
Jig
) (nfx)

9, | | I____—_|‘""

t t t
‘jb J; ; Jq
(6x6) (6x6) oo | |
Jy Jy Jq
{Bx6} (GxB) G}
‘. | %
® | | g )
! | (6xnf)
(x.y,2) | (Lm,n) I (ab,0) I (joint coordinates)
Object motion Finger joint motions

Figure 3-2: Fow chart for forward force and displacement tramfoimatioBS
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The forward displacement relations provide transformations starting with the object or the finger ang
working towards the common contact. The forward force relations start with the contact and work outward
toward the object or the finger. Unfortunately, these relations are not sufficient to complete steps 2 and 3 of
the proccdure outlined in Scction 2.3. Once d. has been determined, an inverse relationship giving dq in
terms of d. must be used. The solution depends on the type of contact and the number of degrees of freedom
of the finger, and is discussed in Section 3.3. Once dq has been determined, another inverse relation i
required to determine the change in g¢p. This solution also depends on the contact and the finger, and &
discussed in Section 3.4. A forward force transformation can then be used to determine the change in g
from the change in g¢p.

3.3 Finger Motions and Constraints

The mobility of an object represents the number of degrees of freedom with which the object can make
arbitrary motions. The mobility is subject to constraints imposed at each contact point which may prevex
motions in certain directions and couple the motions of the object in others. Generally, the mobility of th
object decreases as the number of contact points increases.

The determination of mobility involves first finding the constraints imposed at cach contact point and
then determining how the different contacts interact to limit the mobility of the object. In this section, th
emphasis is on characterizing the constraints and contact conditions for a single contact so that vario
fingertips may be compared.

Once the constraints at each finger have been identified, the way in which they combine to constrain-
object is discussed in previous analyses [2, 7]. For such an analysis it is convenient to adopt the termmolngy
wrenches and twists in which the magnitudes of the components of the force and displacement vectors, ¢
and dy,;, are considered separately their directions. The number of degrees of freedom of the obj
depends on the intersection over all contacts of the degrees of freedom from each [7]. The mumber:
independent forces that may be applied to the object by the hand increases as the union over all contacts:
the forces that each can apply. When more than one contact can apply forces in the same directions,
becomes possible to specify internal forces on the object [2, 7. These may be set to ensure that all fing
in contact with the object..

3.3.1 Constraints at a Contact

At each contact point, the constraints depend on how many degrees of freedom are transmitted thro
the contact and on how many degrees of freedom the finger has. Basically, there are three categories. In-
first case a motion of the object exactly determines the motion of the finger (this is the simplest case, in w*
apart of [Jfq] is simply inverted for the inverse displacement and force relations). In the second case
motion of the finger is under determined and in the third case the motion of the finger is over determined.

Forces and motions at the fingertip-object contact area are transmitted through a coupling matrix, [
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The clements of [M] depend on the contact gcometry (see Figure 4-1) and friction conditions. These are
discussed further in Scction 4. If there is complete coupling in six degrees of freedom between the object and
the fingertip (as in the case of a soft, sticky finger adhering to the object) [M] becomes a 6x6 identity matrix.
The clements of d¢, that arc transmitted to the finger form the vector d and the clements of the grasp force,
g+p, that are transmitted to the object form the vector g which has nc components.

de = [M]dpp dec = [M]tgfp (3.8)

The contact constraints are found by comparing the elements of d with the independent members of d¢,.
As mentioned in the last scction, nf elements of d¢, will usually be lincarly independent for a finger with nf
joints. A set of nf independent elements within dyp, is called gpand, for the purposes of describing the contact
constraint, there are three conditions:

L. A set of independent clements in d¢p can be found such that d. = g; and nc = nf. In this case
arbitrary motions of the object at bp are possible and the motion of the fingertip is completely
determined. Similarly, the joint torques of the finger completely determine the set of forces, g,
that can be transmitted through the contact to the object.

2. A set of independent elements in dg, can be found such that d c ¢;. If d is a subset of g,
arbitrary motions of the object at op are possible but the finger motion is not completely
determined. The remaining undetermined elements of d¢j, or dq may be solved for by requiring
that the finger move so as to minimize its potential energy.

3.d. @ ¢ If d contains elements that are not included in g, the finger and contact limit the
possible motions of the object. At the same time, it is possible that 4; ¢ dg, in which case a
(constrained) motion of the object does not completely determine dr,. If this happens, the
undetermined elements of d¢, must be determined as above.

Methods for solving for the motions of the finger are discussed below for each of the above situations. In
each case, a submatrix, [P], is extracted from [Jfq] that relates the nc elements of d. to the nf clements of
dq: d¢ = [P]dq. The three cases are identified by evaluating the rank of [P ].

3.3.1.1 Case 1: exactly determined

An example for which d. = g;and nc = nf is a finger with three joints, constructed so that the fingertip
can move in three directions, always touching the object at a single point fixed on the object surface. This is
mathematically the most convenient situation and forms the basis of previous investigations on grip stiffness
[2]. The matrix, [P], that is extracted from [Jfq] will be square and non-singular. The relations are:

rank([P]) = nf = nc

dq = [P, (39
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3.3.1.2 Case 2: under determined

When d. C g, the submatrix, [P], that relates the nc members of d¢ to the nf joint variables, dg, will
have rank nc. The motion of the fingertip will minimize the potential encrgy of the finger, subject to the nc
constraint conditions that make up the rows of [P]. The change in the potential encrgy of the finger may be
expressed as

APE. = ggtdq + 3(dqt[Kqldg) (3.10)

in which first term is duc to work donc against the grasping joint torques and the second is due to the
stiffnesses of the finger joints. The second term is what provides the grasp stiffness discussed in previous
investigations [2, 5], but the first term may be of comparable magnitude.

’

To minimize the potential energy, the magnitude of the above expression must be at a maximum. If the
elements of d, were all independent (Le. if there were no coupling between d. and dq) then the maximum
would be found by taking the partial derivative of the above equation with respect to each member of dq and
setting the resulting expressions equal to zero. In the present case, a flexible and systematic approach is to use
Lagrange multipliers. The resulting equation is convenicntly expressed as

2 o

where [L] can be assembled from [P] and [kq] and /is a vector of Langrange multipliers. are
given in Appendix A.1.

Once ail the members of d have been found, the motion of the finger in (1m,n) coordinates is found
using dgp = [Jfq]dy. The restoring forces in the joints are given by Agqy = [Kq]dg. Since [P] is not
square, [P]"* cannot be used as in Case 1 to determine the changes in the forces at the fingertip, 8gep.
However, since d. qfand since dq have been determined subject to the constraints of [P], some columns
may be removed from [P] 50 as to leave a square matrix, [ P*] relating d.. to nc of the nf elements in d,.

3.3.1.3 Case 3: over determined

When d. g, the elements of d become coupled and the object is constrained by the finger and contact.
The submatrix, [P], will have a rank of less than nc. In this case, rows of [P] corresponding to particular
elements of d. may be eliminated to produce a smaller matrix, [P*] that has the same rank as [P]. The
elements of d.. corresponding to [P*] form the vector, d;. If the new submatrix, [P*] has rank nf then it
may be inverted as in Case 1 to determine dg from d¢. All the elements of dg, can then be recovered as
[3fq]dg. Thus, the kinematic coupling between the elements of dy, is defined.

If the rank of [P] is less than nf then the motion of the finger is not completely determined and potential
energy methods must be used as in Case 2 to determine d, from d. Again, the complete motion of the
fingertip is recovered from [Jfq]d,.
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The general method for determining the motions of a finger from the motions of the contact is illustrated
in the left hand portion of Figure 3-4. For the particular casc in which [P] is invertible, the method is
summarized in Figure 3-3.

89
{ncxne) Fq (nc)
pl =
89, (6x6) (6xnc) -
®) Jt: <— M 89, ;'1" — T T 44 K
. Contact L3
- (ncxnc) I {nfxnf)
» B B J Jq
6 H Yt
(6) Jp ==| M d. + -?F‘ (6x6) (6xnf) |
“ o e PR IS T
e fq (af)
l 6) ‘ {6xnf) |
xy,2) l (1,m,n) ] (a,b,c) ‘ (joint coordinates)
Object Finger

Figure 3-3: Flow chart for cases in which [P] is invertible (Case 1)

| d, .

6 ©9 00 e 0, &9 _®m| g
| ) Jiq (nf)
| | e
| l
(xy.2) } (Lm,n) l (ab,c) l (joint coordinates)
Object Finger

Figure 3-4: Flow chart for relationships between displacements and forces (Case 2 or 3)
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3.4 Computing Changes in Grip Force

As mentioned in Scction 2, the changes in the grip forces will be due to two cffects. The first consists of
the restoring forces in the finger joints produced by displacing the fingers. The second stems from relative
motion betwcen the object and the fingers which modifies the grasp geometry so that the grasp forces produce
different forces and torques on the object.

The change in grip geometry can be broken into two parts. The first is due to the contact area shifting
upon the object and the second is due to relative motion between the finger and the object. For the first part,
recalling that the forces upon the object, g, are given in terms of drp bY equations (3.7) and (3.3), the total
change in the forces upon the object becomes

gp = A([IBT*[M]*grp) = A([IDT*[MI%)grp, + [ID]'[M]"Agy,,.

The change in the product of the jacobians above may be expanded to give terms involving A[Jb]* and
A[MI.

A[Jb]*® will be zero if the contact area does not move with respect to the object when the object is
displaced by dy,. This is true for point contacts and for contacts in which a very soft finger adheres to the
surface. For curved finger/object contact surfaccs, the contact area usually moves on the surface of the object
due 10 rolling of the finger and A[ Jb]* cannot be ignored.

A[M]* will be zero provided that the coupling between the finger and the object does not change. This is
true for many contact geometries, although there are a few exceptions, such as a flat-ended finger touching a
flat surface on the object. If the flat finger rocks slightly with respect to the object, the contact changes from a
ﬁnemmm‘ammmﬁmap%mmmmaﬁmmm When this happens the number of
components of force and motion between the fingertip and the object is reduced and some

ditional elements M[M]tbecomem Such transitions, however, are not smooth and continuous and
mnmberepremmdbyamA{N]‘ In the following analysis it will be assumed that that A[M]* is
zero. The case of a flat-tipped finger on a flat object can be regarded as a limiting case in which the radii of
curvature of the fingertip and object approach infinity.

m '&ﬁ:i;r-m‘;@‘w m&@h'ﬁm oiven by
gs = A[Ib]* [M]tgs, + [ID]T[M]* Agy,.

In AW A2, a method is given for d&&rmmin:g the GfA[Jb] for a given translation and

Next, it is necessary to determine the change in gr,. This will be due partly to the relative motion of the
finger with respect to the ([ m,n) coordinate system and partly to the restoring forces in the finger joints.

The motion of the fingertip is dgp, where dy, is determined by the methods of Section 3.3. The motion of
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tiic {Imji) coordinate system is given by dy, and therefore the relative motion is (ds, - dyp). Hie resulting
6-elcment vector is used to determine the elements of A[Jf] "' in the same way that the motion of the
contact point on the object determines the elements of [Jb]*. There may aso be acontribution to Agr, due
to relative motion between the (cuhx) coordinate system and the joint space in which d, is defined. However,
this will depend on the particular finger design and is not considered in the current anaysis.

The restoring forces in the finger joints are given by
Agy = [Kald,

where d, is found using the methods in Sections 3.1 and 3.3. The contribution of these restoring forces to
Agsp may be computed for each of the constraint cases discussed in Section 3.3.

2

For the first case in Section 3.3, in which the motion of the object exactly determines the motion of the
finger, the contribution of Ag, to Ags, follows from equation (3.9).

Age, = [P] tAgq (3.12)

For the second case, the contribution of the restoring forces in thejoints to the change in the forces at the
fingertip is [P*]""tAg'q. It does not matter which columns are removed from [P] provided that the
remaining square matrix, [P*], is non-singular and that the elements of g, corresponding to the eliminated
rows of [ P] are removed from g‘;.

For the third case the problem is saticaly indeterminate and there are not enough equations for the
number of unknowns. If no motion is possible in one of the directions of the (Era/z) coordinate system, the
change in force for that direction may reasonably be set to zero. Thisis equivalent to removing null rows and
columns from the compliance matrix in (Imn) coordinates. If the remaining compliance matrix is still
singular, or in other words, if there are remaining non-zero (but coupled) motions in df, then a useful
technique is to add "virtua joints" to the finger to provide enough equations. The virtua joints can be
chosen in directions orthogonal to the existingjoints. The motion about their axes is zero and consequently,
the change in the torques about their axes will aso be zero.

For the particular case in which fingers with three degrees of freedom are used to hold an object, with
point contact between the fingertips and the object, the relations above reduce to

dq = [P1"1[MI[ID]dy
A[3bT* = [0]

Agy = [JDI*[MI*A[31] "gr + [PT ")

If, in addition, it can be assumed that A[Jf]"* is negligible, the change in the force upon the body
becomes
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Agp = [JbI*[MI*[P] *[KqI[P] ' [MI[Jb]dy
or, letting [P]"1[M][JIb] = [J]
Agy = [I1*[KqI[I]1dy.

For a grip with m fingers, the net change in the grasping force becomes

Agy= D [3;16[KF;1[3;1d
i=1

or Agy = [Kb]dy (.12)

Three Fingered Hand

For a hand with three fingers, each having three degrees of freedom and point contacts at the fingertips,
Salisbury [2] derives an equivalent expression to (3.12). If the finger axes, (a,b.c) are chosen to: parallel to
(x,.2) and their origin, £, is moved to the contact point, fp, then

[PI''[MI[] = [I|R"] = [J] (3.13)
(3x3) (3x6) (3x6)

where [I7] is a 3x3 identity matrix and [R] is given in Appendix A. The jacobians, [J], for each finger
are assembled into a single grasp jacobian (see Figure 3-5). The 6x9 grasp jacobian is augmented by a 3x9
matrix that gives the dot products between the forces exerted by opposing fingers. These "pinch” terms are
related to the magnitude of the internal forces on the object. The resulting 9x9 grasp matrix is [6]7t. The
fingertip displacements are concatenated into a single 9x1 vector d¢ and the vector of resultant. forces, with
respect to equilibrium, on the object becomes fy, = Agy,. The 3x3 finger stiffness matrices are also assembled
into a single, block-diagonal 9x9 matrix, [K]. ‘

(x]

The relationship between displacements of the fingers and the net restoring force upon the body, f}, , may
then be expressed as

fy = [617*[K]1de
and the stiffness of the object computed as

[Kb] = [6]°*[kf][6]!
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_ The relationship between the above expressions and equation (3.12) can be seen by dropping the "pinch”

terms from [G] and fy, and by allowing an arbitrary number of fingers which have arbitrary orientations,
[A,] with respect to the (x.y,2) system:

ALALATL ...7 [KF]| 1 [ A* I[RATY]
RA |RA |RA | | K | A" |[RAT*
| Kf | At |[RAT*
& ' *
B ! -
| kf ]
? Multiplying the partitioned matrices ar\bove gives A
5 m m
3 [Kx,] | > [Kx;1[R, I
j-_-_l +i=1 .
[Kb] = m =
SR IIKxD | Z;[RJ[Kxi][Ri]t
=1 =

(where [Kx,] = [A,J[Kf,J[A,1%)
which is identical to (3.12), when [ J, ] are given by (3.13).
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Grasp Jacobian for Three Fingers:

f, = [G]* fe

]

F
e
=
-4
N

Pl P]P f3

or:
fx [1 0o o011 0 o071 o o] [rix
fy 0 1 0]0 1 0]0 1 0 f1y
fz | 0 0 1]0 0 1]0 0 1| [f1z
tmx ! = 0 -rz ryl] 0 -rz ry] 0 -rz ry| |f2x
my rz 0 -rx|] rz 0 -rx] rz 0 -rx| |(f2y
‘mz -ry rx 0 |-ry rx O |]-ry rx O 1‘fZZ!
p12 r12 [ -r12 |0 0 of [fax!
p13 ri3 |0 o 0| -ri3 - if3y:
P23 (0 0 o] r23 | -r23 | |f3z]

In the above:

[R] are cross-product matrices such that if r = (rx,ry, rz) are vectors from the origin of the
global coordinate system to each of the finger contact points, and f are three-component
force vectors then [R]f = rXx .

[P] are matrices formed of 3 element vectors rij which point from finger 1 to finger j.
The products [ P ]f produce three scalar internal forces, p i j , which measure the "pinch” between fingers
i and j.
Figure 3-5:
(from Salisbury [6] )
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4. A Closer Look at Contact Conditions

Fingertips

N

Finger pointed

N\

curved

[
&
.
L

/ possible fingertip

flat

soft, curved

Figure 4-1: Examples of fingertip geometry

Contact conditions between the gripper and the object depend on friction, adhesion, surface geometry and
surface deformation under load. The contact conditions have a profound effect on the strength and stability
of a grip and determine the extent of kinematic coupling between the gripper fingertips and the object.

Previous analyses [1, 2, 3, 4, 6] have used the assumption of hard surfaces and small contact areas to treat
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the contact arcas as point contacts. This turns out to be the simplest case to handlc analytically, but it
becomes inaccurate when the radius of curvature of the fingertips is not small compared to the size of the
object or when the fingertips deform. The cffects of diffcrent assumptions concerning the fingertip geometry
arc shown in several examples below. In a later section, the effects of different friction models are discussed.

Models that may be uscd for the fingertip geometry include: point contacts, hard curved contacts, flat
contacts, clastic curved contacts and very soft contacts. These models are shown schematically in Figure 4-1.

4.1 Point Contact

In a point contact with friction, forces are transmitted between the fingertip and the object but torques are
not. Similarly, translation of the fingertip is coupled with that of the object, but rotation is not. The result is
that the coupling matrix, [M], is a 3x6 matrix in which the left partition is a 3x3 identity matrix and the right
partition is zero.

In point contact, there is no rolling motion and consequently no movement of the contact area upon the
object or the fingertip. As the object is displaced, the fingers can only rotate about the contact points.
Consequently, there is no change in the jacobian [Jb]* and only a rotational change in [ Jf ]t as the object
is displaced.

4.2 Curved finger contact

A hard, curved finger is similar to a point contact in that the contact area is small so that forces may be
transmitted, but torques may not. The main difference arises from the possibility of the fingertip rolling upon
the surface of the object. As the finger rolls, the location of the contact point will shift. This shift produces
non-zero terms in the differential jacobians, A[Jb]* and A[Jf ] * introduced in Section 3.4.

A general analysis of rolling becomes quite complex. As a first step, if we assume that the finger does not
twist about its own axis, (perpendicular to the surface of the object) then for small displacements the problem
can be approximated by a two-dimensional one involving an instantaneous plane of rolling. The plane is
defined by the common perpendicular (# in Figure 3-1) and the vector of translational motion of the initial
contact points, bp and fp. In the following discussion, second-order approximations are derived to express the
translation and rotation of the contact points on the fingertip and the object as functions of the fingertip and
object curvature.

Figure 4-2 shows the cross sections of a finger and an object in the instantaneous plane of rolling motion.
The fingertip and the object profiles may be described parametrically as r¢(g and ryg, where s is equal to the
arclength along either curve. The conditions for pure rolling, without slipping or losing contact, are

1. There will be a common tangent plane at the points of contact.

2. The contact points on the fingertip and the object (fp and bp in Figure 3-1) must have the same
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Finger surface

common tangent
bp\ / 9

k

s = arclength

As must be equal for
finger and object

Figure 4-2: Rolling contact

translational velocity. For a differential motion this means that the translational components of
dyp and dgp, must be equal.

3. The arc length, §s, traversed along ry(g and ryg must be equal as the fingertip rolls on the
object.

The tangent at any point, s, along each curve in Figure 4-2 is given by the unit vector
dr

u=—
ds -
At the contact point, the tangent is the same for both curves so that

dry _ dryp
ds ~— ds .
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After the fingertip rolls a small amount, the new contact point will be at the location ry, on the body and the
new tangent will have the direction
dry

ds
The contact point on the fingertip will be at the location r¢ with respect to the finger coordinate system and
the direction of the tangent will be

. dre
Ur= i -

For pure rolling it is required that 8s; = 8, where for small motions, 85 = V'Ar-Ar . Thus fora
small rolling motion, the contact point translates Ary, upon the body and rotates through the angle between
up and uy. At the same time, the fingertip must translate by Ary, - Ar¢ (the distance between bp’ and fp’)
and rotate through the angle between ur and up. The translations and rotations are functions of re(y, ryg
and ds.

Ar and u' may be expressed as Taylor’s series expansions in r) and s (Appendix B). To look at the
effects of curvature, terms involving the first and second derivatives of r, and r¢ are kept in the expansions.

translation of bp with respect to object:

_ s dry (8s) d’ry duy (89)?
Arb,.ﬁsdg + 3 gl = u83+—ds — 4.1)
translation of fp’ with respect to object:
(89)?  d'r d*r
Ary = Are = (75— — —5) 42)
rotation of bp with respect to object:
upxuy = 8520 x Loy )
rotation of fp’ with respect to object:
upxuy = 8s( (N dz’*’ yxu) + (8 )z(dzr' dz'} ) . 44

ds?
In(44)and (4.1),u = Up(y = Ug(g-

For a given object shape, the fingertip curvature determines the magnitudes of the translation and rotation
of bp and the translations of fp and fp’, as the fingertip rolls through the small angle given by equation (4.4).

The above equations can be simplified by dropping second order terms. Since |u| = 1, equation (4.4) will
be dominated by a term on the order of

d’r, d’ry
7).

8s(—
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The second term in (4.4) is at least a factor of 8s smaller and, for infinitessima motions, may be dropped.
In (4.2), the trandation offp' is dso smaller than the rotation vof the fingertip by a factor of Ss, which leads
to the conclusion that for infinitesma rolling, the fingertip may be considered to rotate about the contact
point, fp. The trandation of die contact point on the object, bp, contains one term on the order of 6s, and a
second term which may be dropped. The smplified equations are

trandation of contact point with respect to object: Ars s Arp, 2 u8s 4.5)
. . . . . P de d? ™Mb
rotation of contact point with respect to object: u, X UK » 8§(—2—~ X ———) (4.6)
as
. . . . . . ' dz s dl My
rotation of fingertipwith respect to object: UfXup ~ 8s(( g 7 )XUu)> 4.7

4.2.1 Effects of rolling motion

The meaning of the above equations becomes apparent in Figures 4-3 and 4-4, which show afinger with a
curved tip of constant radius rolling on a flat surface on an object For convenience, the coordinate systems
are chosen so that (a,b\ (£/n), and (Xgy) dl lie in the same plane. In Figure 4-3 the radius of curvature, r., of
the fingertip is large while in Figure 4-4 it is small. Inbothcases us = u, = ()i + (0)j. Sincethe objectis
flat, the second derivative of ry, is zero and equation (4.7) reduces to 8%/= Ss(I/r) (Appendix B).

The fingertip undergoes virtually same motion in Figures 4-3 and 4r4, but there is a significant difference
in Ar, and Ar; between the two cases, which steins from the difference in 8s. In Figure 4-4, there is no
appreciable change between ry, and ry. Consequently A[Jb]' = [0]. There is also virtualy no difference
between Vf and rjs when expressed with respect to the {a,b) coordinate frame. Consequently A[Jf]""'
contains only a rotation term resulting from the rotation of the {cub) coordinate system with respect to the
contact point and the (x,y) system. In other words, as the radius of curvature becomes small, the model
reduces to the case of a pointed finger rotating about itstip.

In Figure 4-3, Ar, and Ar; are significant Consequently, A[Jb]" contains a translation term and
A[’f Y* reflects both the rotation of the (a,h) system and the addition of Ar; to r;. The way in which such
terms are incorporated into the elements of the differential jacobians is discussed in Appendix A.2, and an
exampleisgiven in Section 5.

A flat-tipped finger can be seeas alimiting case in which the radius of curvature becomesinfinite so that
Ary and Ary, become infinite and produce an infinite displacement of the contact area for any rotation of the
finger with respect to the object In practice, of course, the contact point will jump to the edge of the flat
fingertip, at which point the radius of curvature becomes zero rather than infinite.
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Figure 4-3: Cross section of a large-radius hemispherical fingertip on a flat object surface
4.3 Very soft finger

The bottom fingertip example shown in Figure 4-1 represents the extreme case of a compliant fingertip
pressing against the object surface. In this model it is assumed that the fingertip conforms to the object
surface, and adheres slightly. Such characteristics are found in many natural gripping surfaces, including the
fingertips of the human hand. The coefficient of friction for such a fingertip will be high (greater than one}.
However, since deformation and adhesion are the primary mechanisms, it is not advisable to assume the
Coulomb friction law.
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Fingertip

Te

Object Surface

X
Figure 4-4: Cross section of a small-radius hemispherical fingertip on a flat object surface

The soft finger model is further specialized with the assumption that no rolling occurs and that the
compliant medium at the fingertp is elastic. With these assumptions the fingertip becomes a less accurate
model of human fingertips. Human skin is visco-elastic and after being deformed will not generally return to
its original position. Depending on the curvature of the object being held and the degree of adhesion present,
the human fingertip will also roll slightly upon the object, exhibiting a rolling resistance of the kind discussed
in Section 44. Nonetheless, the elastic soft-finger model is useful to demonstrate a limiting case in which
there is complete kinematic coupling between the fingertip and the object.
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object surface |

Figure 4-6: Elastic fingertip in contact with object surface
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4
The elastic contact represents a compliant coupling in which small motions of the finger with respect to
the object are possible in any direction. Such relative motions produce changes in the above forces and a
model of the system permits the deflection/force relationships to be expressed as the stiffness of the contact.

The fingertip can be treated as a short elastic member clamped between two rigid boundaries. To obtain
the exact stress field for such a problem is a formidable task — even if the assumption is made that the
material is perfectly elastic and isotropic. Numerical results could be obtained using a finite element analysis,
but the analysis would be time consuming and would have to be re-computed for different cross sections and
materials. The problem can be simplified by observing that the stresses at any given location within the
material are of little interest, provided that

o estimates of the integral quantities can be computed at the object surface
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e the combined stress field nowhere exceeds the strength of the material

e the normal stress, o,,, never becomes sufficiently tensile to cause the fingertip material to
scparate from the object surface.

The last requirement can be satisfied by assuming a large grasping force normal to the object surface and/or
some adhesion between the fingertip and the object. If one edge of the fingertip does start to separate from
the object when the finger rotates slightly, then the finger is starting to roll.

Since an exact elastic solution is impractical (and would in any event be an approximation to the visco-
elastic behavior of compliant polymers anc skin-like materials) an approximate elastic solution is used to
estimate the force/deflection relationship for the fingertip. The behavior of the fingertip in shear, torsion,
compression and bending is discussed below, and the separate solutions are superposed to produce a 6x6
stiffness matrix for the contact.

Bending stiffness and resistance to rolling

‘ The bending model for the elastic fingertip is similar to that used in classical beam theory. A rotation
about the g axis by the finger produces a rotation in the material of §4/ per unit thickness. The bending
strain and stress at a distance m above the centerline are

e,m=-m—fg— and 0,,=Ee,,

where E is the modulus of elasticity. As in bcam theory, it is assumed that plane sections remain plane and
Y = Ymn = 0. Itis also assumed that since the stresses r,, 0, and o are zero at the surfaces of the
material that they are approximately zero throughout. This assumption is somewhat less supportable than in
beam theory since the elastic element cannot be considered slender. However, it is not actually necessary that
Tim Omm and oy be zero everywhere but only that their resultant does not significantly affect the estimated
bending rigidity of the element. The bending rigidity may then be found by equating the energy stored in
rotating the finger with the energy stored in deforming the material

2t 085 =17 [[omemty = Elmm @O

El
o ky= Tl

where I, is the moment of inertia of the cross section about the m axis and V is the volume of the material.

The bending stiffness for rotations about the m axis is similarly found as

EI
klu"':'—t'!-.

As mentioned earlier, the maximum bending moment that the contact can sustain is limited by the
adhesion between the fingertip and the object surface. The limitation is easily demonstrated for the example

i
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of a square contact arca of length w on each side. Referring to Figure 4-6, a normal force of magnitude £,
produces a uniform contribution to the normal stress of

Jn

w

O nn (compression).

A bending moment of magnitude fp; produces a contribution to the normal stress that is maximum at the
cdges of the contact.

Opn = i%—- = 4_-6“{?’ (bending)

The combined normal stress will become tensile at one edge when

Win

Jor > 6

Thus, unless the adhesion between the fingertip and the object is able to resist tensile loads, the finger will
start to roll whenever the bending moment is more than one sixth the normal load times the length of the side.
For small contact areas the fingertip is likely to start rolling unless considerable adhesion is present.

Shear stiffness and resistance to slipping

For a beam with an end load, the variation in the moment over the length of the beam is balanced by a
distribution in shearing stress over the cross section of the beam [17]. For the clastic fingertip, however, it is
assumed that the variation in the moment produced by a shear force in the (ab.c) system is negligible
compared to the effect of rotating the finger. Consequently the bending moment is approximately constant
over 7 and the shear stress is assumed to be uniform over the cross section. The shear stiffness is found by
equating the cnergy required to displace the finger in shear with the energy stored internally in the material.

2
Y2k (8,,) = 112 [ e dV = GA %

In the above, G is the shear modulus of the material and A is the cross section area, wh.

The maximum shearing force that the comtact can sustain is limited by the shear strength of the
fingertip/object interface, which depends on the bonding strength between the fingertip and object
and on the area of intimate contact between them. The area of intimate contact is generally much smaller
than the overall contact area, 4, and depends not only on the current normal force, f;,, but on such factors as
how clean the surfaces are, how rough they are, and how long they have been held together. In general, the
shear strength of the contact will be some fraction, 8, of the shear strength of the fingertip material. The
fraction will be a function of (but not directly proportional to) the normal force, and slipping will occur when
T OF T €xceeds that fraction.

Tsiip = B(f,...) Tyield




Compressive stiffness

Displacement of the fingertip toward the object results in a uniform compressive strain, —e¢,,, across the
cross scction. The compressive stiffness is found in the same way as the shear stiffness, with G replaced by £,

LA
k, = —
n t
Torsional stiffness and resistance to slipping

The torsional rigidity of a cylindrical member can easily be found as

7 Gr,t
k0n= 20 =G1p

where 7, is the radius of the cylinder and /, is the polar moment of inertia [17]. For non-circular cross sections
the expression becomes more complicated due to warping of the cross sections, although for the present case
the warping may be negligible since ¢ is small and since the material is constrained by a rigid boundary at each
end. For a bar of elliptical cross-section the torsional rigidity per unit length has been determined as

G
o=
n 4w21p

and it has been found that this formula holds approximately true for other compact cross sections [18].

For a round bar, the shear stress in torsion is

rim = 02 | @9

P
Thus, if the fingertip were a cylinder ending in a circular contact area, slipping would begin at the periphery

when
fon = 202 | @9)
0
(where 7, is given above for shear loading.) Once slipping has occurred at the periphery, the fingertip will
not return to exactly the same orientation when the torque is removed. As the torque is increased, the region
of slipping will spread from the periphery toward the center. The phenomenon resembles the yielding of an
elastic/perfectly plastic bar in torsion. At any stage, the moment balance is given by

Tyl T .
Jorn= fvlrrlmrzdr + /0211',(,-.,r2dr, (4.10)
0 ’.vlip
The above equation can be integrated and condensed by expressing 7, and rg;, in terms of r and the
angle of rotation of the finger, dg,,.
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The result for the torque is

2
Jon = §mrgp(rd — %’.é’ip)

Thus, the torque required for complete dlipping is 8 the torque required to initiate slipping at the periphery,
athough this would theoretically only be reached for an infinite rotation, d$, or dQ, of the fingertip. For a
sguare or rectangular contact area the qualitative behavior is the same, with dipping initiating at the periphery
and spreading inwards. However, the expression for”,, becomes more complex due to the more involved
expression for r/y,.

Fingertip Stiffness Matrix
The above diffnessterms form the elements of a6x6 diagonal matrix [Kc] where

Koy = Kep = GfL | (412)
Keg = %‘" (4.12)
Kew= EI:M (4.13)
Keg = Eri (4.14)
if ; <Kex<Gly (4.15)

If t were larger than wand A, then shear loads would produce bending moments that varied adong 4 and
bending loads would produce shear deflections, as in classica beam theory. The result would be off-diagonal
teraisin [Kc].

4.3.1 Effects of deforming fingertips

The comparative importance of the above quantities can be determined for a fingertip of given
proportions. The table below shows the results for two fingertips. For the first, w= h = 10anandt = 05
cm. Inthesecondw = h = 10cmand 1 = 05an. The modulus of elasticity, E, isassumed to be 250 N/cm?
and Ferisson's ratio is taken m 1/2, so that G = E/3. These are typica values for rubber. A force of 4.0N (a
little Jessthan onelb£) isused to produce del ati onsfor aroparisasL
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Table 4-1:  Soft fingertip dcflections for 4.0 N load and lem? and 4cm? contact area

Fingertip material propertics: E = 250 N/em?, » =05, G= 833 N/ecm?

w=h=10cm, 1= 05cm w=h=20cm,t=05cm
Key, Keyy 167 N/cm 667 N/cm
deflection for4.0 N 0.024 cm 0.006 cm
shear force
Key 500 N/cm 2000 N/cm
deflection for4.0 N
compressive force 0.008 cm 0.002cm
Kcy, Kcgs 42 Ncm 672 Ncm
rotational deflection : .
for4.0 N at 0.096 radian 0.006 radian
1.0 cm lever arm
Ky 27 Nem 432 Ncm
torsional deflection 0.15 radian ~ 0.009 radian
for 4.0 Ncm torque

For the smaller area, the rotational stiffness terms are much lower that the translational terms and the
fingertip is clearly less constrained with respect to rotations than translations. However, the bending and
torsion stiffnesses increase as the square of the contact area, while the shear and compressive stiffness increase
linearly with the contact area. Thus, for the larger contact patch, the rotational and translational stiffnesses
become comparable. If w and & were doubled again, bending and torsional deflections would become
negligible in comparison to shear deflections. This result matches what one would expect intuitively.

If the grasping force is varied proportionately with the contact area, then, as the contact area becomes
small, the fingertip begins to behave like a point contact in which significant rotations are possible but
translations are not. As the contact area becomes large, rotations are negligible compared to shear deflections.
If the grasping force is held constant for different contact areas then the contact becomes much less compliant
as the area increases, and rotational deflections become negligible faster than translational deflections.

For the forces given in the table above, unless some adhesion exists between the fingertip and the object,
the bending moment will cause the fingertip to roll for both the lem? or the 4cm? area. The largest bending
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moment that the contact could sustain without tension is 0.67Nem for the lem? case and 1.33Nem for the
4cm? case. In torsion, depending on the shear strength of the interface, the contact will probably slip for the
lem? arca but might not for the 4cm? area. If the shear strength is roughly cqual to 40N/cm? in the first case
(corresponding to a cocfficient of friction of 1.0) and 1.5N/cm? in the second, (corresponding to a coefficient
of friction of 1.5)3 the maximum torques that can be excrted are 1.7Ncm and 5.3Ncm respectively.  This
supports the idea that a soft finger with a small contact arca can exert torques about an axis normal to the
contact surface more readily than it can exert torques in the plane of the surface. For a soft, curved fingertip,
as discussed below, the difference is more pronounced.

Once the fingertip stiffness matrix has been computed, the net compliance matrix may be formed by
adding the compliances for the finger and the fingertip.

[Cf]=[Jfq][Kq] '[Ifq]* + [Ke]™L.
This matrix is invertible and therefore, the restoring forces at the contact become

Aggp = [CF]I 1dyp

Using equations (3.5) and (3.6), the changes in the forces at the finger joints are Agq = [Jf q]tAq p> and
the finger motions are dq = [Kq] 1A g,

4.4 Soft, Curved Fingertip

The hard curved fingertip and the very soft fingertip represent extremes between which real, deformable
fingertips may be expected to lie. Human fingers and rounded robot fingers with rubber surfaces exhibit both
rolling and substantial deformation. The analysis of such fingertips becomes quite involved, combining the
rolling calculations of Section 4.2 with the deformation calculations of Section 4.3. A complete model is not
attempted in the discussion below, but the properties of soft, rolling fingers are discussed and it is seen that
they are bracketed by the models developed in the last two sections.

A number of insights can be gained by considering the analyses applied to the rolling of rubber tires and
metal cylinders or spheres. For a hard, elastic sphere rolling on an elastic surface, the pressure distribution is
described by the Hertzian contact model of solid mechanics, which predicts a hemispherical pressure
distribution {18]. For the much larger deformations that occur when a soft, curved finger presses against an
object the distribution is expected to be qualitatively similar. The pressure will be maximum at the center of
the contact, diminishing smoothly to zero at the periphery. For progressively softer fingertips, the pressure
distribution becomes more uniform, especially toward the center of the contact area. In the limiting case, the
pressure is essentially uniform throughout, as assumed in the very soft finger model described in Section 4.3.
The pressure distributions are compared for elastic, soft, and very soft fingertips in Figure 4-7.

3mmmmm.mmdmmummdmmmmwmmﬁmmi
is generally not independent.
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Figure 4-7: Pressure distributions for elastic, soft, and very soft fingertips

For a perfectly elastic curved finger, it is impossible to transmit moments in the plane of the contact since
the finger rolls easily upon the object. Thus, in the absence of rolling resistance, the soft curved finger would
behave in the same manner as the hard curved finger discussed earlier, the only difference being that ry
would vary due to flattening of the fingertip under load. If the degree of flattening could be predicted a2
function of fingertip loading, then the methods discussed in section 4.2 could be used to predict the motion of
the finger and the contact point. flattening formulas have been developed for cylinders and spheses,

nlikely to give accurate results for a soft fingertip.

In practice, there is generally a resistance to rolling. At low speeds, the rolling resistance is due largely ©
hymmiommdacm contact area. Rolling resistance is an important subject in the literature
on wheels and tires and is discussed at length in [19, 20, 21]. For an elastic sphere or cylinder rolling upon 2
pimemquﬁmdefmmaﬁmof&mm&ﬁaimmﬁsinahmmﬁslosswhkhmbc!mdmml
"coefficient of rolling resistance™ [19]. Microslip results from the elastic strain of the fingertip material asit &
ressed against the surface. If the fingertip is loaded with a normal load, f,, against the object surface, the
material ahead of the centerline of the contact will spread forwards slightly and the material behind
centerline will spread backwards slightly. The spreading produces regions of microslip toward the front and
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rear of the contact arca. In the absence of tangential forces, the strains, and the shear tractions that result
from them, must cancel each other. _thn a tangential force is present, there will be a region of sticking
toward one side of the contact area, and microslip clsewhere. The microslip results in rolling losses and
"creep.” The end result is that soft curved fingertips do not rotate quite as frecly with respect to the object as
pointed or hard curved fingertips do.

The static resistance to slipping of the soft, curved fingertip will be similar to that of the very soft finger of
Scction 4.3, except that since the pressure distribution is not uniform over the contact area, the value of the
stress at which slipping occurs also varics over the contact. As in Section 4.3, the interface shear strength 7 g,
may be expressed as a fraction of the material shear strength, where the fraction, B, is a function of factors
including the normal pressure and the surface roughness. Since the pressure is least at the edges of the
contact, slipping may be expected to initiate there.

For loads in the plane of the contact, the shear stress may be uniform inside the region where there is no
sliding, but will have an upper limit of rg;, outside the region.

For a moment about the axis normal to the contact, the shear stress inside the sticking region will have the
same distribution as for the very soft finger, the magnitude at any point being proportional to the distance
from the center of the contact as in equation (4.8). In the slipping region, the shear stress will again be equal
to the upper limit of 7g;. A cross section of shear stress distribution is shown in the lower part of Figure 4-8.
The distribution for the very soft fingertip of Section 4.3 is shown in the upper part for comparison. The
maximum torque about the axis of the finger is equal to the polar moment of the shear stress shown in Figure
4-8.

T, T,
Jon = ﬁZﬂfhr’df—!— /021'rﬁpr2dr (4.16)
o0 Tslip
where 7j,(, is proportional to r  and 7,y is a function of 6,y

Thus, unlike the hard curved finger or the pointed finger, the soft curved finger is able to exert small torques
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Figure 4-8: Maximum shear stress for moment about finger axis
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5. Examples

In this scction, results from the last three sections are used in three examples that also illustrate some of
the differcnces between pointed, curved and soft fingers. Figure 5-1 shows three rectangles, each held by two
fingers. In the first case the fingers are pointed, in the second case they have finite radii of curvature and in
the third case they have very soft tips that adhere to the surface of the rectangle. In all three cascs, the fingers
are assumed to have three degrees of freedom, being restricted to motions within the plane of the paper. For
simplicity, it is assumed that the finger joints correspond to translations, a and b, and a rotation, dc, in the
(a,b,c) frames.

The sizes and orientations of the rectangular object and fingers, and the finger stiffnesses, [Kf], are
identical in each case. However, the different contact conditions produce substantially different results for the
mobility, stiffness, strength and stability of the grasp.

In each case the change in the resultant grasp force on the object, Ag, is calculated for small displacements
of the object. The grip stiffness is computed and the maximum force and torque that the grip can resist
without slipping is calculated. '

5.1 Pointed Fingers

The transformation matrices, [Jb], [M], [Jf], and [Jq], are given in Appendix C for the left or first
finger. As the object is moved an arbitrary amount, d,, the motions at the contact points on the object are
given by dp, = [Jb]dy,. Premultiplying by [M] gives the vectors d., which contain just the first three
elements of dy,, since, for point contact conditions, only the translations are transmitted.

The fingers have three degrees of freedom and consequently dq = [dg,, dgp, dg. ]. A motion, dg,
produces a motion dy,, at the fingertip, given by equation (3.3). The elements of d¢, and d. are compared
below for the left and right fingers. The (, m,n) coordinate systems are shown in Figure 5-1.

Matching d¢, with d¢p,; and d, with dy, reveals that dz + ¥dfly = Oand dz— ¥dfy = 0 or,
dz = dfy =0. In other words, the object is constrained by the fingers to move within the plane, except for
rotations about the x axis. In the following discussion it will be assumed that the object is given displacements
in the x and y directions and a rotation about the z axis. Thus, df; and dm, will be zero and the only motions
transmitted to the fingers will be dm,, dn,, dl, and dn,.

The procedure for calculating the finger motions, the changes in the finger forces and the change in force
on the body is given below for the first finger. The contribution from the second finger follows from

symmetry.
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de, depy deps de2
dl dz+ ¥dfy 0 dqy—rfdq, dy+ $dfz
dm dy— ¥d0z dgy+rfdq, 0 dz—¥d@y
dn —dx —dg, dqq dx
d8! ge 0
dém 0 dg.
dfn 0 0

Table 5-1: Motions of left and right finger and object contact areas (pointed fingertips)

5.1.1 Procedure for Left Finger

The first step is to determine the motions of the first finger given dm, and dn,. A motion in the dm
direction can be accommodated citier by a movement of the finger in the 4 direction or by a rotation about c.
In practice, both will occur and the contribution from each will be balanced to minimize the potential energy
of the finger. The two rows of [Jfq] that relate finger motions dg; and dg, to dm and dn are extracted to
form the 3x2 matrix [P]. Following the method in Section 3.3.1.2, a Lagrange multiplier matrix, [L] is
assembled from [Kq] and [P]. The matrices and the matrix equations are shown in Appendix C. Inverting
[L] produces the finger motions, dq. Multiplying the finger joint motions by [Kq] determines the changes
in the joint forces.

The changes in the forces at the fingertip, 8g¢,, depend both on the restoring forces 8g, and the change
in geometry, A[3f]™t, due to the motion of the finger with respect to the object. The motion of the (Lm,n)
coordinate system is given by dy, and the motion of the fingertip is given by [3fq]dq. The translations of
each are the same, but the finger rotates relative to the object by the angle

80 = 861— 8@c.
which appears as a rotation term in A[Jf]"* in Appendix C.

For a grasping force of f in the a direction and for a motion (dXx, dy, d6z) applied to the body, the change
in the force applied by the first finger to the object is shown in Table 5-2.

Whmmcmmdﬁngakmmmpmmmmmedmngem&efomemmeob}mbmemm

ina The contributions to 8g, from each finger

cancel for rotations, w:, and add for translations, dy. Similarly, the contributions to 88z from each finger
cancel for motions, dy, and add for rotations dfz. The final result is given in Table 5-3.
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88, = —kydx

dgy = (af=B)dy — (F+ ¥(af- B))doz

og, =0

084y =0

g4y =0

389 = —af-B)dy + F(f+ F(af- B))db:z
where a = —] ks k.

ko = _FKeke
Krit & ad B Kerit+ kg

Table 5-2: Contribution from left finger to §gp, (pointed fingertip)

88y = —2k,dx
dg, = 2Aaf-B)dy
24, = wf+ F(af-B))diz

Table 5-3: Change in gy, due to motions dx, dy, and dfz (pointed fingertips)

5.1.2 Discussion

| becomes positive, the grasp will be unstable for infinitesimal
isplacement: sponding direction. Thmrfkcmmﬂ,{kﬁfq).mechangemmemfmneﬁ
ammmymmmmmmmmmmm This result matches one’s
mmmamcmaksqmemdbmmmﬁngmwmummbkxfme finger pivots freely, without
springs, about axes ¢, and ¢,.

. 2.
1aANIICS

Similarly if 8 <(f+ ¥a ), the rectangle will be unstable with respect to rotations about the zaxis. This
result is less intitively clear but it becomes apparent if . is very large, in which case the fingers do not rotate
about their ¢ axes. For this case, a — 0 and B — k;. If the object is rotated by d#, the change in the torque
upon the body is

(wf— Fhy)doz,
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This is exactly the result obtained carlicr in Scction 1 for the rotation of a rectanglc squeczed between two
fingers, where kp = k;and § = r.

5.2 Curved Fingertips

£ Fingertip

Figure 5-2: Curved finger before rolling

Most of the results from the last example also apply for fingers with curved surfaces. The difference is that
the contact point is no longer fixed with respect to the object and consequently A[Jf] "t is slightly different
from above and A[Jb]* is no longer zero. The new matrices are given in Appendix C.

As with the pointed finger example, results are derived for the first or left finger. In the current example,
the algebra has been simplified by assuming that the (g 5,¢) finger coordinate systems are also the centers of
curvature of the finger tips. The rolling condition is therefore as shown in figures 5-2 and 5-3, before and
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£ Fingertip

Object Surface

i ofme(a.b.C)SyStem, the translation
ibution from the left finger to Ag, is shown in

Table 5-4.

When the results from the second finger are added, the chany
in Table 5-5.
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08y = —k,dx

dgy = (af=B)dy - (f+ F(af- B Iz

og, =0

889x =0

3ggy =0

8862 = i((af=-BIw + 2 - arpw—4fr) df, — 3 ((af= B)w+ 4afr)dy
where a= kbrlj%”_:_ T and B = EI:;—%E:

Table 5-4: Contribution from left finger to §g,, (rounded fingertip)

og, = —2k,dx
8g, = Aaf-B)dy
8g, = {{(af- B)W + 20 — arpw—4f 1) d8,

Table 5-5: Change in g, due to motions dx, dy, and dfz (rounded fingertips)

5.2.‘i Discussion

The results in the x and y directions are identical to those for the point-contact example but the torque
about the z axis has changed. As in the previous example, the cxpression for torque about the z axis simplifies
for the limiting case in which k. is large compared to k; The change in the torque about the z axis reduces to

H(—kyw? + 2fw—4f 1) dé,

In the above expression, if rs="¥ then the last two terms cancel each other out leaving only the restoring
torque, — $k,w?88,. In other words, the translation of the contact point due to rolling of the finger with
respect to the object exactly cancels the effect of rotating the object. ”musforlargemdiiofcurvamre,(?g ¥
), the grasp is infinitesimally stable with respect to rotations regardless of the stiffness of the fingers.
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5.3 Very Soft Fingers

For contacts with soft fingers a combined compliance matrix is cstablished for the finger and fingertip as
in Scction 4.3. The combined compliance matrix is shown in Appendix C for a square fingertip. In the
matrix, &, is the clastic stiffness of the fingertip in compression. Since the shear modulus, G, of rubber-like
materials is generally about one third the compression modulus, E, the shear stiffness can be written using
equations (4.11) and (4.12) as %kp. From cquations (4.13)-(4.15), the bending and torsional stiffnesses are
approximately Bk, and %ka, where B is cqual to one-twelfth the contact area.

The restoring force at the contact is 8gyp, = [KbpJ]dpp. The restoring forces in joint coordinates are
given by 8gq=[J fq]tSpr and the corresponding motions in joint coordinates are given by
dq = [Kq]‘lsdq. The motions are then expressed in fingertip coordinates as dg, = [Jfq]d,.

kpk
- -1 _
%8 otk &
5g - eklke=fr) o
Y ks kpr? + kekp + 3kok
dg, =0
889 =0
38y =0
550 _ kekp(fry = k)w! + U wholkerf + ko) o
? 2kskpr} + kchy + 3kpke)

Table 5-6: Change in 8gy, for small contact area (soft fingertips)

As in point contact and rolling contact, comparison between dp, and d¢p determines the relative motion
between the finger and the object, which appears in the differential jacobian A[Jf ]t

The net change in gy, is obtained by summing the restoring forces and the forces due to the change in
geometry.
8gpp = [Kbp]dp, + A[3f] %y

5.3.1 Discussion

The expression for Agy, is lengthy, but it is simplified considerably for the limiting cases in which
the contact area is very small, or very large. To further simplify the algebra in the following results, the finger
joint stiffnesses in the g and 5 directions have been set equal so that k, = k;

For a small contact area, B— 0 and the bending and torsional stiffnesses become negligible in comparison
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to the shear and compressive stiffnesses. For two fingers, the final results arce given in Table 5-6. If it is
further assumed that kp>> kp, as is usually the case, it can be shown that the results for Ag, become identical
to thosc obtained in the point contact case.

For the case when the contact areca is large, the bending and torsional stiffnesses become infinite. Ifit is
again assumed that k,>> kj, the problem reduccs to that of a finger glued to the surface of the object and Agy,
is given in Table 5-7.

ogy = —=2kydx

dg, = =2kydy

og, =0

029 =0

d2gy =0

026 = =2(kc+ (F+ )2 kp)d8,

Table 3-7: Change in §gy, for large contact arca (soft fingertips)

s 2
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6. Summary

In Section 2 a procedure was listed for discovering the properties of a grip by moving the object slightly,
observing the resulting finger motions and determining the changes in the forces on the object. The grip
properties of stiffness, resistance to slipping and infinitesimal stability were introduced and it was shown that
such properties could be used to compare grips. For specific tasks, one could then choose, for example, the
grip that would be stiffest with respect to rotations or the grip that would resist the largest vertical force before

slipping occurred.

Two-dimensional examples with point-contact fingers were used to demonstrate how the grip properties
depended on finger stiffness, finger arrangement and gripping forces. In later sections a more complete
three-dimensional analysis was developed. In the final example of Section 2, the instability of a coin held
on-edge between two fingers was discussed, using the simplifying example of a rectangle held between two
pointed fingers. When the rectangle was rotated slightly, the finger stiffnesses produced restoring forces that
tended to stabilize the grip, but the differential change in geometry resulting from the rotation allowed the
grasp forces to become unstable. The stability of the grip was a function of the finger stiffness, the length of
the rectangle, and the magnitude of the initial grasping forces. Interestingly, the grip became less stable as the
gripping forces were increased. Thus, while an increase in the gripping forces may make the fingers more
resistant to slipping, it docs not always make the grip more secure.

The coin example also uncovered a limitation of the point-contact assumption used in previous analyses.
With pointed fingers, a coin is Jess stable if held by fingers pressing against the two faces than if held on edge.
For human fingers, this is obviously not the case. A more accurate model of the finger/object interaction (one
that accounts for the deformation and rolling of the fingertips) explains why. Such a model is developed in
Section 4. First, however, it is useful to establish a more general framework for determining the
force/deflection relations of a grasp.

For three-dimensional problems it becomes convenient to use matrices to describe the grip. The matrix

equammaredevdopedeecﬂmsB.Lﬁ and 3.4. When the procedure of Section 2 is applied to general,

ensional problems, the results depend on the number of degrees of freedom of the contact and the

finger. For an arbitrary motion of the object, the finger motion can be classified as under determined, exactly
determined or over determined. Different solutions are discussed for each case.

Section 4 took a closer look at the interactions between different kinds of fingertips and the object. The
characteristics of pointed, curved, and soft fingers were compared. The different characteristics are reviewed
below, and summarized in Table 6-1.

In Section 4.2, it was shown that the rolling of curved fingers causes the contact area to shift with respect
to the object. This adds a new term to the differential change in the geometry of the grasp — one that may

e



Fingertips Kinenatic conditions Friction conditions
( 1) fn Point contact with friction.
Translgtional motions. and forces are Force tangent to object surface
transmitted, but rotations are not. limited by Coulomb friction law
Finger rotates about contact point
% which remains fixed on object. i < pf,
- 2 Aldb]* = [O]
poi nt ed 4
A[Jf] . rotation terms
(2) . Only translational forces and motions )
! ! transmitted. Contact point moves as Force tangent to object surface
. finger rolls. Approaches case (3) for limited by Coulomb friction law

. re —* oot and case (1) for rr —> 0 fi < uf,
-t A[Jb] " : translation terms

L
curved A[Jf] * translation & rotation terms
(3) Planar contact with friction. L
Translational and rotational forces Distributed pressure and shear
and motions transmitted. No relative tractions allow transmission
motion without slipping. of forces and moments in plane
A[Jb]‘ =" [0] of contact
e |
flat ALITY - [0
(4) Add elastic fingertip compliance to finger

compliance. Contact forces produce Uniformly distributed pressure

relative motion. Approaches case (1) for : and shear tractions. High
A —> 0 and case (3)for A —> 0O . I
(adhesive) friction allows large
A[be = [O] forces and moments to be
transmitted in plane of

s i .

very soft A[J"f] * translation & rotation terms contact.

(5) . . - .
Bastfc coupling + rolling motion. Combine Non-uniform pressure distribut-
cases (2) and (4). Approaches case (1) ion and shear tractions permit
for Pr- =0and A =0 Approaches case | |argeforces and small moments
(3)for ry->00 and A = to be transmitted in plane of
A[Jb]l : translation & rotation terms contact.

soft, curved A[Jf]{ : Anslation & rotation terms

Table6-1: Summary of contact models derived in Section 4

help to stabilize it  As expected when the radius of curvature of a curved finger becomes very smal, the
movement of the contact point becomes negligible and the contact behaves like a point-contact with ftiction.
As the radius of curvanue becomes very large, the finger approaches the limiting case of a flat-tipped finger
having a planar contort with friction.

Fingers aso deform, and a model was developed in Section 43 to investigate the importance of
deformation. The model conaders a very soft fingertip whkh conforms and possibly adheres to the object
surface. The fingertip compliance is added to the finger joint compliance. As the area of contact becomes
anal, the fingertip becomes more compliant with respect to rotations than trandations and approaches tihe

JEAPEII
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planar contact
with friction
A —» 00
- Contact
ili:ve o soft curved
object size) ﬁngemp
| radius :;Lgiﬁs
A-0|
trf - 0 Ii— o0
point contact
with friction Fingerfip radi

(relative to object size)
Figure 6-1: Relations between finger models

point-contact model. For large contact areas, the rotational compliance becomes much smaller than the
translational compliance and the limiting case of a planar contact with friction is approached.

Fingertips such as those found on the human hand display both rolling and deformation. Section 44
addressed the properties of a soft, curved fingertip and found that they combined the attributes of the models
in Sections 4.2 and 4.3. As the radius of curvature and the contact area became small, the fingertip could be
approximated by a point-contact. For large radii of curvature and large contact areas, the fingertip
approached the case of a planar contact with friction.

Figure 6-1 shows the regimes in which the different models developed in Section 4 apply, and indicates
the limiting cases approached for very large or small radii of curvature and contact areas.

In Section 5, some simple examples were used to demonstrate the methods described in Sections 3.1-34
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and to illustrate the differences between pointed, curved and soft fingers. When pointed fingertips were used,
and only rotations of the object were cpnsidcrcd. the problem reduced to the two-dimensional example given
in Section 2. For curved fingertips, the stability of the grasp increased over the pointed-finger case due to
rolling of the fingertips. If the fingertip radii were larger that one half the length of rectangle, the grip became
stable with respect to rotational displacements no matter how small the finger stiffnesses were. The
relationship between the fingertip radii and the length of the rectangle brings up an important point; the
definitions of "large” or "small” radii of curvature and contact arcas depend on the size of the object being
handled. This is why the point-contact modcl is reasonable when we hold a basketball or a large box, but not
a coin or a matchbox.
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7. Applications to the Design and Control of
Hands

The analysis presented in this paper has been part of an effort to describe the mechanical properties of a
grip and to determine how they depend on finger shapes, contact conditions, finger stiffnesscs and gripping
forces. It has been shown that the predicted behavior depends strongly on the model used for the interaction
between the fingertips and the object. In this section we consider how the results might be applied to the
design and control of dextrous hands.

For controls purposes, the small-motion behavior of a grip amounts to a linearized description of the
"plant,” giving a relationship between displacements of the object and the resulting changes in force. The
results show that point-contact finger models and stiffness-based control schemes are not always adequate. If
only the stiffnesses of the fingers are considered, a displacement of the object always results in forces that tend
to restore the object to its original position. However, a small change in the grip geometry may cause the
grasping forces to produce something akin to positive feedback for displacements of the object. For stability,
these must be canceled by increasing the grip stiffness in the corresponding directions.

The contribution of the geometric effect varies for pointed, round and soft fingers and its magnitude
depends on the relative dimensions of the fingers and the object.

If a stiffness model as used in earlier analyses is not adequate, then what must be done to describe and
control the grip? Unfortunately, a three-dimensional analysis of the grip becomes quite involved when finger
rolling and deformation are considered. It seems unrealistic to expect a robot or gripper controller to perform
a complete analysis in real-time.

Much of the complexity of the procedure results from its being a predictive or open-loop calculation in
which only the motion of the object and the physical characteristics of the object and the fingers are assumed
to be known. The forward force and displacement relations are relatively simple, but some complication
arises in determining how displacements will be transmitted through the contact and how the finger will
respond to them. Further difficulty arises in determining how finger stiffnesses, finger motions and grasp
forces will interact to change the forces transmitted to the object. Much of the difficulty could be avoided if
the finger motions and contact forces were available from another source. In practice, humans and animals use
sensory information and experience to provide this kind of information.

When we manipulate objects with our fingers we do not use a kinematic analysis to predict how the forces
at our fingertips will change in response to displacements of the object. Instead, we seem to acquire 2
database of general grip behavior and we use the sensors in our fingers and fingertips to modify our
predictions while we work. A similar approach might also be used by a robot, provided the gripper had
sufficient sensors to describe the behavior of the grasp. This prompts us to consider what kinds of sensors
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would be useful. Based on the results of the analysis presented carlier, several types of sensory information are
suggested:
e The measurement of normal and shear forces at the fingertips.
If these can be measured, they do not have to be computed. The shear force can be compared

with normal forces and, using information about the friction conditions, predictions can be made
concerning how close each finger is to slipping.

¢ The location of the center of the contact area on the finger.
Using this information, onc can determine how the contact has moved since the last time step, and
(by extrapolation), where it will be next. For curved fingers this allows one to track the movement.
of the contact with respect to the finger and to determine the degree of rolling motion. For fingers
that do not roll, it shows that rate at which the finger is sliding against a surface.

e The size, uniformity and gencral shape of the pressure distribution of the contact area.
The pressure distribution could be compared with typical profiles for point contacts, curved
contacts and soft contacts and an estimate made of how closely the actual contact approaches each
of these models.

o Sums and first moments of pressures and shear tractions.
These allow the forces and moments transmitted through the contact to be determined.
To the above list of fingertip quantities would be added the joint angles and joint torques of the fingers, but
already, the list is becoming unrealistic. Even if accurate sensors were available, computing first moments and
matching pressure profiles might be just as time consuming as performing the analysis presented in this paper.
Determining such quantities has much in common with feature extraction for grey-scale vision, which is
notoriously slow unless performed on special-purpose hardware.

However, even if only the forces and an estimate of the contact size and location were available, the
analysis could be simplified. Between these fingertip quantities and the finger joint angles, most of the
information needed to describe the grip would be available through forward transformations. The finger joint
torques are easily found from the fingertip forces and the fingertip motion is easily determined from the joint
angles. An estimate of the contact size would indicate the degree of finger/object coupling and the contact
location would allow the finger jacobians to be updated. A small number of fingertip sensors might be
sufficient. Recent studies with human beings performing assembly-line tasks [22] suggest that a sparse array
of sensory information (perhaps no more than eight points per fingertip) provides adequate information.

ting between different grip geometries based on grip stiffness,
resistance nsidered. The best grip would be the one that most closely matched
megmpmﬂwmkmqmmm Presumably the finger stiffnesse
middle of their achievable range. The next question is, once a suitable grip has been identified how should
the finger stiffnesses (joint servo gains) and joint torques be adjusted? The problem is usually under
determined if only the force on the object and its stiffness with respect to external loads are specified.
Salisbury [2] specified additional internal forces and internal grip stiffnesses so that every finger joint torque
and stiffness became determined. The internal grip forces and stiffnesses could be chosen to ensure that
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fingers remained in contact with the object, to reduce the likclihood of crushing the object, or to reduce the

danger of slipping.

As mentioned in Scction 1, Orin and Oh [8] consider a similar problem in determining the most efficient
distribution of joint forces for walking machines or multi-fingered grippers. The optimum force distribution
is found subject to a number of constraints including linearized friction limitations. In grasping it is probably
less important to minimize power consumption than it is in a walking machine. More important is the need to
minimize gripping forces. This prevents objects from being damaged, avoids saturating the fingertip sensors
and reduces the kind of instability demcnstrated for the rectangle held between two fingers. Linear
programming methods may be too slow for real-time control of joint torques, but could be useful for off-line
estimation of grasp forces and stiffnesses. The fingertip models of Section 4 could be added to the kinematic

description of the grasp.

In a current investigation, Kerr [23] has extended the kinematic analyses of Salisbury and has considered
the optimum selection of internal grip forces. Like Orin and Oh [8], he suggests the use of "friction
pyramids" to form a set of linear constraint equations for slipping at the fingertips.

Idcally, choosing and adjusting a grip is something that a robot should be able to do using a combination
of computational methods (including those discussed above), sensory information and some "rules of
thumb.” The rules are difficult to define, but as we continue to explore the mechanics of gripping and to
observe how humans and animals handle objects we can begin to make some suggestions such as:

o In general, grip as gently as possible without letting the object slip. A light grip helps to prevent

damage to the object and the fingers, reduces the likelihood of instability, and keeps the sensors
working near the lower end of their range (where they are often more sensitive). .

o Try to match the stiffness of the grip to the requirements of the task. This will simplify the active
control of the object.

o Spacing the fingers closer together results in a grip that is less stiff with respect to rotations.

o Point contacts are usually less stable than soft or rounded fingers.

Compared to the analysis and control of manipulator arms, the modeling and control of multi-fingered
grippers are in an infant stage. Current efforts are directed not toward making them more precise and
efficient but toward controlling them at all. Fortunately, it is unnecessary to develop a system that rivals the
human hand. In fact, a gripper that could grasp and manipulate within its restricted environment as well as
many animals do in theirs, would be extremely useful. The results of this and previous analyses suggest that
for tasks involving small motions and solid objects, grips can be modeled and controlled. Experiments with
grippers assembling parts, wielding tools and loading machines are now required to construct grasping rules,
to determine what sensory information is most useful and to explore control strategies for manufacturing
hands.
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A. Matrix Identities

The finger positions and orientations may be expressed with 4x4 homogencous transformation matrices,

BE

. A | r ax bx cx I rx
[T] = |-==-m=m-- = ay by cy | ry
0 I 1 az bz cz l l“Z

0 0 0 | 1

[A] is a 3x3 orthonormal matrix of direction cosines, expressing the orientation of the finger (a,b,¢) system of
Figure 3-1 in terms of the global (x,y,2) system. r is a vector from the origin of the (x,y,z) system to the origin
of the (g b,¢) system. If r¢ is the vector in Figure 3-1 from fto fp in (a,b,¢) coordinates then [A]r¢ gives the
same vector in (x,y,z) coordinates. Consequently, the vector from o to fp in Figure 3-1is r = ry, - [A] ry.

The relationship between two six-element vectors (d* = [d,, d, d,, dg,, dp. dg1)of
differential translations and rotations may be expressed as a 6x6 jacobian.

dpp = [Jb]dy
The jacobian is conveniently written in terms of 3x3 partitions:

[Jb] S B et f
(6x6) 0 ] At
(x3) (x3)

[A] is again a 3x3 matrix of direction cosines. In the above example, [A] expresses the orientation of the
(L m,n) coordinate system at bp in Figure 3-1 with respect to the (x,y,2) system. Since [A] is orthonormal it
follows that [A]* = [A]™L

[R] is an antisymmetric cross-product matrix formed from the elements of a vector r, such that if visa
three-component vector (for example, the three rotational components of dy) then

{0 -rp ry | fvy
[R] v = | rz -0 -rg | fvyl = rXxv

-ry ry O v,

Since is [R] is antisymmetric, [R]* = -[R] and [R]*v =Vv![R]=vXr.

Given the above identities for [R] and [A] the following relationships hold for [J]:



A | 0 A | RA
[Jb]t = [ ——————————— l [Jb]"? = [ ----------- ]
RA | A |- 0 | A
At |0
[Jb]t = |-
AtRt | At

A.1 Matrix Method for Under Determined Finger Motions

For the case in which the motion of the object does not completely determine the motion of the finger, the
potential energy may be minimized subject to the nc constraint conditions in [P]. The constraint equations,
C;, are formed by multiplying one row of [P ] by d.. The nfauxiliary equations may then be written as [24]

_ 9PE 2, °G
P:i= dg; dg; +}\23¢1i + * A dq;

These are combined with the constraint equations to provide nf + nc equations for nf'+ nc unknowns. The
equations may be conveniently expressed as,

dq q
_———— = [L]'l _——

where /is a column vector of the nc Lagrange multipliers and

Kg | Pt
(L] = === ]- - -
P | 0

A.2 Differential Jacobians

In Section 3.1 the change in the jacobians, [J], as a result of small displacements of the object are
considered. These terms, [AJ] and [AJ]?, result from shifting of the contact area and rolling of the fingers.
Products such as [AJ]-d contain very small terms and may be ignored, but products such as [AJ]*-g may
contain significant terms since the forces, g, may be large. As an example, if the contact area translates and
rotates with respect to the object then change in the jacobian relating gy, and gy, is

[AJb]t =[Jb']t-[Ib]t
where [Jb' ]* is the jacobian relating to the new position and orientation of the contact area and [Jb]t is
the original jacobian. By writing [Jb' ]* and [Jb]* in terms of partitions, [AJb ]t is seen to be

- — I..--
A(RA) | AA
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_ where A(RA) = (RA)'-(RA) = [R][A] + [AR]J[A] + [R][AA] + [AR][AA] - [R][A]
[AR][AA] contains sccond order terms, and may be dropped so that A(RA) = [AR][A] + [R][AA].

[AR] and [AA] can be written in terms of differential translations and rotations,
(8ry,0ry,8r,,80,,86,.38; ).
[ 0 -&r, &ry ]
or, 0 -0ry
i -6ry dry 0 J

[AR]

[R'] - [R]

0 -80, &6y ]
84, 0 -804
-84, &6, 0 ]
[AA] and ér are also equivalent to the upper left 3x3 partition and right column respectively of the
differential 4x4 homogeneous transform, [A], expressing a small translation and rotation of one coordinate

system with respect to another [16].

[AA]

[A'] - [A]
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B. Rolling Contact

may be expanded in terms of o3

P = Fersy A4 UG =Ug s
, dr (8s)? d*r
r ) = f‘(s) + 83 dS‘b + 2! dfzb + ..
. dr d*r
u'y = + &s s + -

Then Ar becomes

2 2
Ar=osdl 4 QS dr s+ 890 du

ds A ds? n & T

Since the first derivatives of ry, and ry are equal at the initial contact point, subtracting Ary - Ar¢ gives

(89)2 d’ry,

_dr
e ~ )t

A - Af‘f =
or, Arp — Arp = 1/2(85)* times the difference in curvature between ry(g and reg.

The rotation of the contact point is given by the vector ( u, X uy ) and the rotation of the fingertip is given
by (us Xuy ). Expanding u¢ and uy, in terms of (4 and discarding third and higher derivatives of r gives

2
ubxugzubx(ub+ﬂddl;° ds) = (D)-i-Ss(d‘;_b x.dd;;b )
and
up Xup, = (up X uy) + 8s(up ' )+ (8 )1(‘”f xd;;;" )

d%re d*ry

& <)

= @+ 855 - Lyxu) + 39%
where u = up = uy at the initial contact point. -

For the case in which the object surface is flat and the fingertip is a segment of a circular arc, as in Figures
4-3 and 4-4, or 5-2 and 5-3, the rolling equations become
re =(rosinfpi +(r.cos8)j, rp=(r.tanby)i—r.j.

whereaf'mrelaxedtosas
dé
= =V

For 8= 8, = 0 at the initial contact point, equations (4.5)(4.7) become




7
Ary = (r. 807 + 0j

2
Arp — Arp =01 + ’C(af) ]

ub>(u;,=0

ut Xup = 847

R -
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Figure C-1: Matrices for Left Finger - pointed or rolling contact
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A[Jf]"  point contact A[Jf] " rolling contact
00 0O | 00O 0 000|000
880 0 j 00O -86 oolooo
0-88 0 '000 0O 80 ! 000
e e —— _ = o
0 0 O \' 00O 86rf0<n1700
00 O }-8600 0 00 ]-8800
0 0 -SOry 0-86 0 1 0 00 0+.86 0_|
A[Jb]" rdling contact Object *  Finger
-, 0 0 00 6- db dbp d; d;p df dq
8 0o 0 ‘o000 1|l 0 © 0 -?Pdn -%ndm
5': 0O 0 0 {000 2 dm dn{ dm
j ) 0 0 joo dy | n o
l 86 0 0 [000 310 dn dnl dh 0
AT o a1 am o
. » SRR slo o | 0 0
6| déz O | © adm adm
In the above,
dn = - 8$ =d0z -a(dy- Wzd#z) dop = [Ib] db
a6
dn = dy- 5— g =Kk dc = [M]dbp
d# =do; k,,r,e-!- ke dg, = [J7]°,
_te& 4 = [Jq] dq
a = 2
ko + ke

Fgure C-22 Matbc” for left finger » pointed or rolling contact

RN
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Summary of matrix equations for left finger — point-contact example
dpp = [M][Jb]dy

dep = [Jfq]dq

dq 9q
~——— = [L]'l ———
A dm
A, dn
8gq = [Kaldg

[Cfp] = [JIfq][Kq] [Ifq]*

[Cfc] = non-singular portion of [Cfp]
drc = subset of d¢p, corresponding to [Cfc]
8grc = [Cfp] ldec

8asp = 8gpc + A[IF] gy

8gy = [Jb]*[M]1t g+




[Cfp]
3
. 0 0 0 0 0
1 3 T,
0 = += 0 =t 0
Bk ke 0
1,1
0 0 BRI
R R
0 = 0t O 0
1
0 0 0 0 —B-E;) 0
0 0 0 0 0
7Bk,

Combined compliance for finger and square fingertip
where ka =ky in finger joint coordinates and

e
Kshear = —~
Kpeny = Bkp
. _ Zkp
Kot =
~ Area
B TR
for the elastic fingertip,

Figure C-3: Compliance matrix for soft finger example
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