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Abstract

The subject of this paper forms part of a broader effort to model the mechanics of grasping and fine-
manipulation for robots. Grasping is the act of acquiring and holding (gripping) an object Fine-
manipulation is an extension of grasping to include control of the object using an end-effector such as a
gripper or a hand. A mechanical model of grasping and manipulation forms the basis for controlling grippers
and paves the way for robots that can make independent judgments about how to pick up and handle the
objects they encounter. In this paper a procedure is developed for computing physical properties with which
a grasp may be described. Among these properties arc grip strength, stability, compliance and mobility. The
results depend strongly on the interaction between the gripping surfaces and the object. For example, a grasp
may be unstable when the fingertips are pointed, but stable for rounded fingertips. The analysis suggests that
particular kinds of sensory information are especially useful in controlling a grasp end supports the notion
that general grasping "rules of thumb* can be identified for use by robots.



1- Introduction

What is the best way to hold an object given a particular grippcr and a particular task to perform? If we

look to natural examples of gripping we find that the answer to this question is a function of many things

including friction, the softness of the object, the fragility of the object, and how well the object "fits" the

geometry of the gripper. For example, all other things being equal, human beings will favor gripping

positions that comfortably fit the size and shape of the hand. We avoid gripping positions that require us to

stretch or to cramp our fingers, unless other considerations predominate. Over years of experience, we seem

to acquire a database of suitable gripping configurations which we apply to the world at large. We choose

gripping positions without much conscious thought until we are faced with a completely unfamiliar object

shape (especially if the object is also slippery or heavy).

For the current generation of industrial robots there is little need to calculate suitable gripping positions.

Today's robots are play-back machines repeating sequences of instructions; they may be programmed to

assemble various shapes or to load them into machine tools but they never have to decide how to grasp an

object. The grasp is chosen for them when they are programmed and is part of the information associated

with the task. This approach is adequate as long as robots continue to perform a narrow range of tasks with a

limited selection of parts, but it becomes impractical if robots are to work under less structured circumstances.

For example, a robot working on the ocean floor, or in a nuclear power plant, would be more effective if it did

not have to ask for instructions about how to pick up every new object it encountered. This goal prompts us

to ask whether a suitable grasp is something that can be determined analytically and expressed to the robot in

terms of an algorithm. But first, we need a model that describes different grasps and predicts how a grasp will

respond to forces and motions applied to the object as the robot proceeds with a task.

The present paper draws upon previous work on the kinematics of an object being manipulated by a

gripper and develops a procedure for determining mechanical properties which may be used to characterize

grips and to discriminate between them. The result is a linearized model of how a grasp will behave in

response to task-induced forces and motions. Using the grasp model, the paper considers the importance of

gripper contact surfaces, fiictional properties and gripping forces in determining the overall behavior of the

grasp.

1.1 Previous Investigations on Prehension

Recently, a few works have appeared that cover grasping kinematics, gripper control and related topics.

Asada {11 begins by describing the force balance for an object held by a gripper with several fingers* He

assumes that the gripper has ka actuators each driving / fingers of which m are actually touching the held

object at a particular time. Thus there are a total of k^xm fingers in contact with the object, of which ka are

independent He next assumes that each finger has a small contact area so that the contact between each



finger and the object can be treated as a point contact. With this assumption the force exerted by each finger

can be resolved into forces perpendicular and tangential to the object surface. The assumption is a limiting

one because it removes the possibility that a single finger can apply a torque about its own axis and ignores

rolling or rocking motion between the fingertip and the object. However, it is often a reasonable

approximation for grippcrs with small gripping surfaces made of hard materials (a pair of tongs, for example).

Generally, the point-contact approximation results in an overestimate of the gripping force required to

maintain equilibrium. Salisbury [2] and Okada [3,4] make similar assumptions in describing the forces

exerted by their three-fingered hands, although Salisbury discusses the effects of having a "soft" finger that

can apply moments, twisting about its central axis.

Having described the equilibrium requirements for an object held by several fingers, Asada addresses the

problem of choosing a suitable finger configuration. He treats the held object as a rigid body and models the

fingers as clastic members with one degree of freedom, along a specified trajectory or locus. He simplifies the

grasping model by ignoring friction at the contact points between the fingers and the object. With this model

he is able to construct a potential function, based on the shape of the object, which indicates the relative

stability of different finger configurations. In the absence of friction, an object held in a stable grasp will

return to its original position if displaced slightly. The theory works well for slippery objects and whenever

the chief concern is that the object should not be dropped (when we wash dishes we hold them in a stable

grasp.) Unfortunately, the utility of the model for industrial robots is very limited. Friction is an important

consideration and is often used to advantage. According to Asada's theory there is no satisfactory way for a

two-fingered gripper to grip many shapes. For example, there is no "stable" configuration for a two-fingered

gripper grasping a sphere. In practice, people depend on friction when they design grippers and when they

program robots to grasp and manipulate objects. A stable grip guarantees that the gripper will not drop an

object but often a great deal more is required It may be required that none of the fingers of a gripper should

slip with respect to an object while it is manipulated because if they do, the object will not return to the same

equilibrium position.1 Industrial robots are often programmed based on a precise knowledge of the position

and orientation of a grasped abject with respect to the robot coordinate system. As soon as any of the fingers

slip, this information is lost

Salisbury [2,5] and Okada [4,3] are concerned with developing control laws for multi-jointed three-finger

grippers. The hand designed by Okada can perform a variety of manipulation tasks such as screwing a nut

onto a bolt and manipulating a match box in three dimensions. When the motions of the manipulated object

are not very small it becomes necessary to treat the fingertips not as points but as surfaces of finite radius. The

fingertips mil with respect to the manipulated object and the kinematic description of the fingertip locus

becomes extremely complicated.

Salisbury [2,51 draws upon his earlier work in manipulator control [6] in which he discusses how to

determine the correct servo stiffnesses for the joints of a robot to achieve some desired set of stiffnesses

In tfeat»eaoe of tkxkm the object would return to its original, sable position.



Mason [9] investigates the effects of friction on basic operations in which a robot grasps an object or

pushes it into place. He points out that the role of friction in simple tasks performed by manipulators has not

been adequately studied. The few investigators who have considered friction have been content to use the

model developed by Coulomb in 1781. For tasks involving grippcrs and objects with hard, flat surfaces, the

Coulomb model gives accurate results. Using it, Mason derives analytic solutions predicting, for example, the

direction and the rate of rotation of an object pushed along a flat surface.

For grippers with soft fingers (and particularly the human hand) the Coulomb model of friction may not

accurately describe what we observe from experience:

"When there is a possibility of the object slipping over the skin, a resistance, namely friction,
intervenes which is proportional to the area of the surfaces in contact ...Sweat glands, by
moistening the skin, tend to increase friction and make the skin more adhesive." [10]

At light pressures, adhesion contributes greatly to the tangential force that a contact can sustain without

slipping. The adhesion is not directly related to the normal force, but depends on surface chemistry, surface

roughness, and the past history of normal forces. As an illustration, a compliant elastomer, once it has been

pressed against the surface of an object, can often resist tangential loads even after the normal pressure is

reduced to zero. The Coulomb coefficient of friction in this case would be infinite.

1.2 Current Investigation

In the following sections a procedure is given for determining mechanical properties with which a grip

may be described. In the analysis, the arrangement of the fingers upon the object, and the stiffness and

kinematic design of each finger are assumed to be known. The object is given arbitrary small displacements

and the resulting motions and changes in forces are computed From these, the overall stiffness of the grip,

the ability of the grip to resist slipping and the ability of the grip to recover equilibrium in the presence of

disturbances may be established. The, procedure is initially illustrated with some two-dimensional examples.

It is shown that the results may contain not only stiffness terms of the kind discussed by Salisbury [2] but also

terms due to differential changes in the grip geometry. Unlike the stiffness terms, the geometric terms may

make the grip unstable. A concept of grip stability is then developed which includes friction. A robot may

choose between competing grips by selecting one which is stable in the presence of disturbances, which is

most able to resist slipping and which matches the stiffnesses of the fingers to the compliance requirements of

thetask.

The analysis is extended to three-dimensional examples and explicit consideration is paid to fie

importance of the interaction between the fingertips and the object Different contact conditions invoMug

pointed, curved, soft and hard fingertips are modeled. A summary of the contact types is shown in Table 6-1

The point-contact model used in earlier analyses sometimes gives misleading results, especially when the

object is snail compared to the hand and when compliant gripping surfaces are employed. Finally, the results

of the analysis are discussed in tenns of designing and controlling dextrous hands or grippers. The re&Is

suggest that certain kinds of sensory information will be especially useful for grasp control and that a Blunter

of grasping "rules of thumb" may be argued on mechanical grounds. For example, an argument can bemde



Nomenclature for Section 2

fi = scalar magnitude of force applied by the Ith finger

ajfij = acting coefficient of friction at the Ith finger ( 0 < at; < 1 )
/I, = coefficient of friction at the Ith finger (from surface properties)
n/ = unit normal vector at the Ith finger
1/ = unit vector tangential to the object at the Ith finger
17 = vector from origin fixed in the object to the Ith finger
fe = external force taken at the origin
rae = external moment taken at the origin
5/2/ = normal component of displacement of i * finger
5// = tangential displacement of 1th finger
fit = angle between unit normal and r,- for i finger
kni = normal stiffness of i * finger
leu = tangential or lateral stiffness of 1th finger
q = a unit vector in an arbitrary direction
6 q = angle between q and the x axis.
Sq = small displacement of the object in the q direction
SB = small rotation of the object
kq = translational stiffness of the grip in direction q
k§ = rotational stiffness of the grip
f§r = restoring torque due to finger stiffnesses
j$t = graq> torque due to rotation

(see also Figure 2-2)



2. Determining Mechanical Properties of a Grasp

In this section the concepts of grip stiffness, strength and stability are discussed and the general procedure

is described for determining the force/displacement characteristics of a grip. The concepts are illustrated at

the end of the section with some simple, two-dimensional examples.

2.1 Grasping Model and Assumptions

A gripper may be modeled as a device with several fingers in contact with an object The "fingers" need

not resemble human fingers. They may be contact points on the jaws of a standard commercial gripper. If,

for the moment, we adopt the Coulomb model of friction the static equilibrium equations become:
m m

m

(see Nomenclature and Fig 2-1 for explanation of terms)

The problem described by the above equations is in general statically indeterminate. The values / . and

ax-/i/lj are the unknowns. In the above equations at is taken as a variable parameter between 0 and 1, so that

0 < aciHf < }ij, where p.f is the standard coefficient of friction determined from surface properties. The unit

vector lj is tangential to the surface of the body but its direction is otherwise unspecified. Until the object

starts to slip with respect to the fingers, 1, and a; cannot be further defined. We can require that the above

equations have at least one solution such that all at < 1 but this is not particularly useful. It eliminates absurd

finger arrangements (eg. all fingers on the same side of the object).

The presence of friction means that there are generally many grasps that will satisfy static equilibrium and

it is possible to choose between them to find the one best suited for a given task. In fact, when we pick up

objects with our own hands the grip we choose often depends more on what we intend to do with the object

than on its shape or surface properties. For example, if we are asked to pick up a tall, thin candle that is lying

on a table we may grasp it near the middle so that it balances in our hand; but if we \^ant to push the candle

into a candlestick holder we usually hold the candle near the base. Similarly, if we pick up a pen to hand it to

somebody the grip we choose is entirely different from the one we use for writing.

To proceed further with a mechanical analysis it is necessary to adopt a force/deflection model for the

gripper and the object This is analogous to the use of Hookes' stress/strain relations in solid mechanics in

which a model for the material provides the necessary additional equations. The force/deflection model used

in the following sections incorporates a number of simplifying assumptions which are listed betow.



• rrhc fingers arc modeled as clastic structures and the object as a rigid body. This is usually a good
approximation for robots assembling parts or holding tools since the scrvocd joints in the robot
arm and fingers make them considerably less stiff than the grasped object. For robots handling
such materials as textiles, foamed plastic or rubber, the elasticity of the object would have to be
taken into account.

• The analysis is static. There is no consideration of dynamic terms and no explicit treatment of
slipping motion. However, the model can predict when a finger will start to slip upon the object
and different grips may be compared by finding the one which will resist the largest task-related
force or torque before slipping occurs.

• The analysis does not attempt to solve for the optimum grip for a given task but provides a
mechanism for evaluating mechanical properties such as the stiffness, stability and resistance to
slipping of a grip. Competing grips may be compared on the basis of such properties.

• The analysis is not concerned with geometric constraints, such as whether a gripper is actually able
to achieve a given grip, or whether it is possible to place the fingers underneath an object that will
be picked up from a flat surface. These are important considerations and a number of them are
addressed in [11,12,13], but they are beyond the scope of this analysis. Basically, it is assumed
that the grips under consideration have already met such criteria.

• The analysis is concerned only with small motions about an initial position. The small-motion
assumption permits linear force and displacement transformations. The results of the analysis are
invalid if the fingers make large motions with respect to the object, for example if they are used to
turn a nut onto a bolt or to flip an object over in the hand. However, there are many tasks in
which a grip is chosen and then the fingers make small motions with respect to the object When
tools such as wrenches or screwdrivers are used, the fingers usually make small motions with
respect to die tool, while larger motions are accomplished with the wrist. As another example,
when assembling parts, an initial grasp is chosen and then the fingers make small adjustments as
the mating parts are slid together.

• Only motions with respect to the hand are considered. The interaction of the hand and the robot
arm is not considered. This is not a severe restriction, however, since the compliance (inverse of
stiffness) of the arm can always be added to the compliance of the hand when determining the
overall force/deflection characteristics. For small and relatively low speed movements of the
fingers there is little concern that dynamic coupling between hand and the ann will cause
difficulties.

2.2 Stiffness, Strength and Stability of a Grasp

Stiffness

The first criterion that might be considered for evaluating a grip is the stiffness of the grip in response to

externally imposed loads. The grip stiffness is a function of the stiffnesses of the fingers and of their

arrangement about the object Given a variety of possible grips, it may be useful to find the one that is stiffs

with respect to torskmal or translational toads. A stiff pip is useful when manipulating objects at high speeds

It helps to ensure that the displacements caused by inertial forces and torques will be small and that fe

natural frequency or bandwidth of the gripper/object ensemble will be high.



= vector from origin to contact

= unit normal at contact surface

== unit tangent at contact surface

Figure 2-1: A two dimensional object held by three fingers

Robots moving freely in space are generally position-servoed and under these conditions the stiffest grip is

often the best, but when a robot interacts with other objects, as during an assembly task, it becomes useful to

control die mechanical impedance of the arm and the grip [14,15]. Impedance control is especially well suited

to servoisig the fingers of the gripper or hand [6]. At low speeds, dynamic effects become negligible and

impedance control reduces to stiffiiess control. For example, the robot hand can be made stiff in directions

which are not constrained by contact with fixtures and compliant in the directions which are. In tenns of

choosing a grip, the best grip is die one whidx best matches the requirements of the task to the achievable

range of finger stiffnesses.

Resistance to slipping

A second way ID discriminate between grips is to find the one that, for a given combination of servo

stiffttesscs, grasping forces and fingertip geometries, can resist the greatest possible applied force or torque

before any of the fingers slip. This again is desirable when manipulating objects at high speed For tasks

involving; contact Ibices aid torques the same analysis may be used to find the grip for which the fingers are

teat i k d f to dip in response1 to the expected range of forces and torques.
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Stability

A third criterion is grip stability. Since the analysis is linearized and only small motions arc considered it

is only possible to determine whether a grip is infinitesimally stable, that is, whether die grip will return to its

original position if the object is displaced by an arbitrary small amount. This amounts to determining

whether the changes in the forces on the object that result from disturbing it will tend to oppose or to increase

the disturbance.

Finger

r
q
1
n

Object surface

ki = lateral finger stiffness
kn = normal finger stiffness

= vector from origin to contact
= unit vector in arbitrary direction
= unit tangent vector at contact
= unit normal vector at contact
= angle between unit normal and r

Origin

Figure 2-2: Detail of a single two-dimensional finger from Figure 2-1

2.3 Procedure for Establishing Grip Properties

The procedure used in determining the above grip properties is outlined below.

L Displace die object an arbitrary, small amount

1 Determine the resulting motions of the fingers. These will depend on the finger geometries,
contact types and stiffnesses.

3. Determine the changes in the foites at the finger/object contact areas that result from the motions
of the object and fingers. There are two contributors to these changes. The first are restoring
forces thac result from the stiffnesses of the fingers. The second result from changes in the grip.
The fingers and the object do not move together as a rigid ensemble and the resulting
modification of the grip geometry changes the way in which the finger forces act upon the object
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4. Compare the new forces at the finger/object contact areas with the maximum forces that the
contacts can sustain without slipping. Also determine whether the normal forces would become
negative at any of the fingers (meaning that they would lose contact with the object).

5. Compare the new resultant forces and torques on the object with the original forces and torques

and with the displacement of the object to determine the stiffness and infinitesimal stability of the

grip-

In later sections, particular attention is paid to the interactions between different kinds of fingertips and an

object. Curved, soft, and pointed fingertips are discussed and their effects on the grip are investigated. It is

shown that the point-contact model adopted in earlier analyses is only accurate when the fingertips are small

compared to the object being held. Thus, if we hold a large cardboard box or a basketball, a point-contact

model of our fingertips is fairly accurate, but when we hold a matchbox or a golf ball it is not

2.4 Two-Dimensional Examples

The concepts of grip stiffness, stability and resistance to slipping can be illustrated with some short

examples. In these two-dimensional examples, the forces and motions are broken into scalar components, but

a matrix notation will be used for the three-dimensional analysts in later sections. Figure 2-1 shows a rigid

body held by three fingers which are assumed to have some characteristic stiffness. ITie actual stiffness of

each finger need not be prescribed; only the relative stiffness with respect to the other fingers is required. In

the following two-dimensional examples, the finger stiffnesses may be resolved into components kni and k$,

perpendicular and parallel to the surface of the object. As before, the fingers need not resemble human

fingers but may be the contact areas of an industrial gripper. It is required only that their stiffness and friction

characteristics be known. Figure 2-2 shows the coordinates and stiffnesses for a single finger.

Looking first at torsional loading, if a force is externally applied to the object, (perhaps by a wrench at the

xy origin in Figure 2-1), the object will be rotated by a small amount, SO. Each fingertip in contact with the

object must move 50xrf along with the object surface. The finger motions can be resolved into components

parallel and perpendicular to the surface of the object

We can equate the potential energy stored in rotating the body with the energy stored in the fingers to express

the rotational stiffness of the grip in terms of the finger stiffnesses.
m

Substituting for Bnf and SIf9

m

1=51

The stifTest p ip for toisional loading is that for which k§ is greater.
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To find the grip that will resist the greatest torsional load without slipping we first look at each of the grips

under consideration and discover which finger (or fingers in a symmetrical grip) is nearest to slipping for a

given applied moment, me, at the origin. As the body is rotated 5^, tlic changes in the forces at each finger

are

8fni=kni8ni and «/*=*//5 ' / -

From the discussion earlier in this section, fu = a/fi^,- for the Coulomb law of friction, where slipping

will occur as a—*1. Then, for example, if initially fu = 0, slipping will occur when

Thus, for a given rotation, 50, the finger nearest to slipping will be the one for which a is closest to 1, or

for which

is greatest

Having found the "worst case" finger for each grip we chose between grips by finding the one for wftki

nig is greatest before a = 1 at the finger.

(where/ is the subscript of the "worst case" finger)

We do not have to worry that cos/?;- will approach zero since it will never be zero for the finger closest so

slipping unless aU fingers are equally likely to slip.

For motion in an arbitrary direction, q, the angle at each finger between q and n, is <p, = fff—fa - §r

(where q, nt B, /? and ffq are shown in Figure 2-2 for a typical finger). Equating potential energies allows &

translational stiffness to be expressed in terms of the finger stiffnesses.
m

Following the procedure used for the rotational case, we can choose between grips to find the one to i£

withstand the largest force, te, in a given direction, q, before any of the fingers slip. The "worst case* fingers

the one for which

1 V>ifm q

is gr^test The best grip is then the one for which fe can be greatest before the "worst case" finger will sip*
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Figure 2-3: Rve ways to grip a rectangle with four fingers

2.4.1 Choosing between five grips: an example

Figure 2-3 shows five grips on a rectangular block. Grips 1,4 and 5 share the same configuration, but with

different finger spadngs. We can use the above results to discriminate between the grips. To simplify the

computation we assume that the fingers are all identical and that their stiffness components, ktti and k$9 are

independent of the orientation of the finger. This is a reasonable approximation for long fingers with several

joints.
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The highest rotational stiffness is achieved cither with grip 1 or grip 2, depending on whether kni or kn is

greater. If it is most important that none of the fingers slip when a moment is applied to the rectangle, then

grips 1, 4 or 5 should be chosen. Grip 1 offers the best combination of rotational stiffness and resistance to

slipping.

For translations the picture is a bit more complicated since the stiffness and die resistance to slipping vary

as the direction of q varies. Intuitively, one might suggest that Grip 3 is the safest choice. Figures 2-4 and 2-5

show plots of the stiffness and the maximum force without slipping as a function of angle, 9q. For these plots,

kni was arbitrarily taken twice as large as kn. Actual values of kni and ku might be quite different, but the

piots provide an example of how grip stiffness varies as a function grip geometry. In this case, the stiffness of

grip 3 is constant, regardless of the direction of fe. Grip 3 also offers the most nearly constant resistance to

slipping and is therefore the safest choice for arbitrary loads, although other grips offer more stiffness or

resistance to slipping when the object is pulled in a single direction.

2.4.2 An unstable example

The foregoing discussion has focused on determining whether the stiffness of a grip is suitable and on

determining when the fingers slip. The next question is whether the grasp will be stable if perturbed slightly.

A potentially unstable grip is shown in Figure 2-6. If the grasp forces are large, and if the fingers are not stiff

enough in the lateral direction, the rectangle will continue to rotate when disturbed by a small angle, 88,

instead of returning to the initial position. The same effect can be seen by gripping a coin on edge between

two opposed fingers. If one squeezes too hard, the coin "collapses" to a more stable position in which one's

fingers are pressing against the faces. In general the coin will also slip with respect to the fingers when this

occurs, but before slipping occurs it is possible to determine whether the grip is stable.

As the rectangle in Figure 2-6 is rotated by a small angle, 50, the lateral stiffnesses of the two fingers

produce a restoring torque, fyr

At ffae same time, due to die rotation of the body, a torque is generated by the grasp forces,

The act change in the torque upon the object is

The pip is unstable if the change in the torque is positive for a positive rotation, 88. Thus, for the grip to be

infinitesmally stable it is required ihatfn < jfyr. Evidently, for a given rectangle size and finger stiffix*

pressing hauler make the pip less stable. This result appears again in later examples and provides m

incentive for not gripping harder than necessary because for a given grip geometry, the stability of (he grip

deemaxs with increased gripping force. Another result is that for a given finger stiffness and gripping fact

ihe pip is mare stable for a longer rectangle (one for which r is large).
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fn

restoring torque:

grasp torque:

2kir250

2fn

3
'fn

kn

Finger Schematic -typ.
Figure 2-6: Instability of a rectangle held by two fingers

These effects can be demonstrated by pressing a pencil lengthwise between the index fingers of each hand.

As one presses harder the grip is likely to collapse unless one also tenses (stiffens) one's arm and finger

muscles. If the experiment is repeated for an old, short pencil and for a new, long one it will be seen that the

grip collapses more easily for the short one.

Unfortunately, if we return to the example of gripping a coin between two fingers of one hand, a problem

appears. If the fingers are now pressing against the faces of the coin instead of the edges, the grip should,

according to the above equation, become less stable. This is clearly incorrect and demonstrates that the

point-contact fingertip model gives inaccurate results for human fingers pressing against the faces of a coin. If

we repeat the example, using ball-point pens instead of our fingers to press against the faces of the coin, we

find that the grip is indeed very unstable. The problem is resolved if we model the finite curvature and

deforaiation of our fingertips. Thus, in the following sections, a framework is established in which examples

like those above can be extended to three dimensions and in which fingers with pointed, curved and soft

contacts are considered.
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Nomenclature for Three-Dimensional Analysis

o = origin of (xy,z) system
bp = origin of (Inn) system and contact point on object
fp = contact point on fingertip

/ = origin of (a,kc) system
rb =3x1 vector from (x,y,z) origin to (Inn) origin
r f = 3x1 vector from (&kc) origin to (lm.n) origin
db = vector of small translations and rotations of the object in (x,y,z) coordinates
<*bp = vector of small translations and rotations of the object in (Inn) coordinates
dc = vector of displacements transmitted through the contact
dfp = vector of small finger translations and rotations in {Inn) coordinates
df = vector of small finger translations and rotations in (a, k c) coordinates
dq = vector of small finger translations and rotations in joint coordinates
gb = vector of forces and torques on the object in (x,y,z) coordinates
9bp = vector of forces and torques on the object in {Inn) coordinates
gc = vector of forces transmitted through the contact
g fp = vector of finger forces and torques in (inn) coordinates
gf = vector of finger forces and torques in (a.b,c) coordinates
gq = vector of finger forces and torques in joint coordinates
[ J b ] = 6x6 jacobian relating d b to dbp

[Jf ] = 6x6 jacobian relating df to df p

[Jq] = nfx6 jao>bian relating dq to df
[Jfq] = nfx6 product of [Jf ] and [Jq]
[P] = partition of [Jfq]
[P#] = non-singular partition of [J f q]
[G ] =9x9 grasp jacobian for three fingers
[ Kq ] =r stiffiaes matrix of a finger in joint coordinates
[Kf ] = stif&ess matrix of afingertip for three-fingered hand
[Kx] =s [Kf ] rotated to world coordinate
[Kb] = stiffhe^ matrix of the grasp
[Cf ] = compliance matrix for finger and fingertip
[A] = 3x3 orthonormal rotation matrix
[R] =3x3 skew-symmetric matrix for r

[ I ] = the identity matrix

[M ] = matrix of contact degrees of freedom

[L] = square matrix assembled from [P] and [Kq]
I = vector of Langrange multipliers for [ L ]

\j = ife Langrange multiplier
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= set of///independent elements in df p

= 3x1 unit tangent vector on fingertip
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= number of degrees of freedom of finger
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= stress in // direction

= (/shear stress

= scalar stiffness component

= scalar force component

= width

= thickness



20

3. Extension to Three-Dimensional Problems

3.1 Forward Force and Displacement Relations

In the general case, the gripper fingers and the object may have up to three translational and three

rotational degrees of freedom. It becomes convenient to use matrix equations to express die grip stiffness,

strength and stability. In the following discussion, force vectors, g or f, include force and moment

components and displacement vectors, d, include small translation and rotation components:

f t • [fx- V fz- V V fezl
dt • C«v V i2, a6x, v d,2]

The goal of this analysis is to express the interaction between grasping forces and small motions of the

object If gb is the resultant grasp force on the object and db is a vector of small motions of the object then

the desire is to determine

Since db is a small quantity this may be approximated by the linear relationship

A g b = [ ? ] d b

where [ ? ] is a matrix that must be determined To do this it is necessary to first establish how the fora

applied by the fingers, gf, determine the grasp force, gb, and to establish the relationship between a smal

motion of the object, db, and the resulting motions of die fingers, df. If gb and db were sealars, 5/and fa

the relationship between diem could be written

- | ^ ~ = * or SfxkSxox

Under certain circumstances, for example if the fingeTS do not move relative to the object when the object

moves slightly, an equivalent stiffness expression can be written for forces and displacements of the object

9b = [Kb]db

where [Kb] is a symmetric stiffness matrix. More commonly, the fingertips and the contact areas will shit

with respect to the grasped object as it moves and new terms are added to the above stiffness relationship.

Such terms are discussed later in this section.

In Figure 3-1, the coordinate systems are shown for a fingertip touching an object The fingertip maybe

the last segment of a muMjointed finger or it may be a contact surface on the jaw of an industrial grippa

The global coordinate system, (x,y9z), is embedded in the object at o. The (akc) coordinate systems

embedded in the fingertip at/and, ike the (x,y,z) system, may be chosen with any convenient positim ni

orientation The (Inn) coordinate system is shared by the fingertip contact area, Jp% and the object comae

area, hp. The n axis is perpendicular to both the object and fingertip surfaces and the lm axes 6e m if
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a Finger

Figure 3-1: Coordinate systems for a finger touching an object

common tangent plane. The finger joint coordinates are not shown in Figure 3-1 since they will be different

for each finger design.

It is assumed that the position and orientation of the (a>kc) coordinate Systran can be determined with

respect to (x,y,z) from the geometry of the gripper and knowledge about the initial position and orientation of

die object Salisbury [2] has shown that the position and orientation of the tip of a multijointed finger may be

established in the same way that the position and orientation of the end link of a manipulator arc determined

from the joint angles. The result is often expressed as a 4x4 transformation matrix, [T ] , [16]. The elements

of [T] are given in Appendix A.

Usually, the fingertip will have less than 6 degrees of freedom and the compliance of the fingertip wiH be
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negligible in one or more directions. For example, a finger with /?/< 6 joints is often considered to have nf

degrees of freedom since the structural compliance of the finger links is negligible in comparison to the
compliance of the servoed joints. In this case, the displacement vector of the finger in joint coordinates, dqi

will be an /i/xl vector.

The fingertip is also assumed to have known stiffness properties, represented by the /i/x/i/stiffiiess matrix
[Kq] in joint coordinates. Salisbury [2] has shown that the stiffness matrix for the tip of a multi-jointed
finger, valid for small motions, may be derived from the finger kinematics and joint servo gains.'

Frequently, the fingertip may be treatea as a rigid body so that small displacements of the finger in joint
coordinates may be related to displacements in the te&c), which in turn, may be related to displacements in
the (lm,n) system with the linear transformations:

df = [Jq]dq (where [ Jq ] = ^ .y defines a Jacobian) (3.1)
o dq

dfp = [ J f ]d f (32)

dfp = [ J fq ]d q where [ J f q ] = [ J f ] [ J q ] (33)
(a/x6) (6x6)(/z/x6)

The fingertip displacement vector, df p, will contain 6 elements of which n/will be linearly independent
A set of nf linearly independent elements within df p is called qf.

The object is treated as a rigid body and consequently, a small motion, db, of the object in the
system produces a displacement of the contact area, dbp, in the (Inuri) system.

(34)

Far generality, db and dbp are taken as 6 element vectors (possibly with some zero elements). A number of
identities for 6x6 Jacobians are given in Appendix A.

It can be shown [16], by equating virtual work, that small displacements and forces transform in a

complementary way. If the grasping force, g fp, at the fingertip contact area is known then the equivalent

force in the (a>hc) system is found by equating the work done in displacing the fingertip by df p and the finger

byd f.

Then, substituting from equation (32\

df^gr = df t [Jf ] tSfP or g f = [ J f ] t g f p 05)

Smflariy,
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and

(3.6)

(3-7)

3.2 Summary of Forward Transformations

The forward displacement and force transformations are summarized in Figure 3-2.

Starting at the lower left corner with a displacement, db, of the object in (x,y,z) coordinates, and following

the arrows, the displacements transmitted through the contact are determined as dc. Then, starting with the

contact forces, gc, on the object in (lm,n) coordinates, and. following the arrows, one computes the forces

upon the object

Starting at the lower right corner with displacements of the finger joints, dq, the displacement of the

fingertip, d fp ca be determined- Finally, if the contact forces, g f p , are known for the finger, following the

arrows gives the forces in the finger joints, g^.

Object force

Object motion

Finger joint torques
t

(a,b,c)

(6xnf)

(joint coordinates)

Finger joint motions

Figure 3-2: Flow chart for forward force and displacement tramfoimatioBS
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The forward displacement relations provide transformations starting with the object or the finger and

working towards the common contact The forward force relations start with the contact and work outward

toward the object or the finger. Unfortunately, these relations are not sufficient to complete steps 2 and 3 of

the procedure outlined in Section 2.3. Once dc has been determined, an inverse relationship giving dq in

terms of dc must be used. The solution depends on the type of contact and the number of degrees of freedom

of the finger, and is discussed in Section 33. Once dq has been determined, another inverse relation is

required to determine the change in g fp . ITiis solution also depends on the contact and the finger, and is

discussed in Section 3.4. A forward force transformation can then be used to determine the change in gb

from the change in g f p.

3.3 Finger Motions and Constraints

The mobility of an object represents the number of degrees of freedom with which the object can male

arbitrary motions. The mobility is subject to constraints imposed at each contact point which may prevei

motions in certain directions and couple the motions of the object in others. Generally, the mobility of the

object decreases as the number of contact points increases.

The determination of mobility involves first finding the constraints imposed at each contact point and

then determining how the different contacts interact to limit the mobility of the object In this section, the

emphasis is on characterizing the constraints and contact conditions for a single contact so that vario;

fingertips may be compared.

Once the constraints at each finger have been identified, the way in which they combine to constrain'

object is discussed in previous analyses [2,7]. For such an analysis it is convenient to adopt the terminology

wrenches and twists in which the magnitudes of the components of the force and displacement vectors, %

and dbp, are considered separately from their directions. The number of degrees of freedom of the obp

depends on the intersection over all contacts of the degrees of freedom from each [7]. The number *

independent forces that may be applied to die object by the hand increases as the union over all contacts

the forces that each can apply. When more than one contact can apply forces in the same directions,

becomes possible to specify internal forces on the object [2,7]. These may be set to ensure that all fings

remain in contact with the object

3.3.1 Constraints at a Contact

At each contact point, the constraints depend on how many degrees of freedom are transmitted thra

the contact and on how many degrees of freedom the finger has. Basically, there are three categories. In •

first case a motion of the object exmily determines the motion of the finger (this is the simplest case, in yt

a part of [Jf q] is simply inverted for the inverse displacement and force relations). In the second case

motion of the finger is under'determined'and in the third case the motion of the finger is over determined.

Forces and motions at the fingertip-object contact area are transmitted through a coupling matrix, [
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The elements of [M] depend on the contact geometry (see Figure 4-1) and friction conditions. These are

discussed further in Section 4. If there is complete coupling in six degrees of freedom between the object and

the fingertip (as in the case of a soft, sticky finger adhering to the object) [M] becomes a 6x6 identity matrix.

The elements of df p that are transmitted to the finger form the vector dc and the elements of die grasp force,

g f p, that are transmitted to the object form the vector g c which has nc components.

dc = [M]dbp 9c = [MJ^tp (3.8)

The contact constraints are found by comparing the elements of dc with the independent members of d f p.

As mentioned in the last section, nf elements of df p will usually be linearly independent for a finger with nf

joints. A set of nf independent elements within df p is called #f and, for the purposes of describing the contact

constraint, there are three conditions:

1. A set of independent elements in df p can be found such that dc = qf and nc = nf In this case
arbitrary motions of the object at bp are possible and the motion of the fingertip is completely
determined. Similarly, the joint torques of the finger completely determine the set of forces, gc,
that can be transmitted through the contact to the object

2. A set of independent elements in d f p can be found such that dc c qr If dc is a subset of #f»
arbitrary motions of the object at bp are possible but the finger motion is not completely
determined. The remaining undetermined elements of df p or dq may be solved for by requiring
that the finger move so as to minimize its potential energy.

3. dc a qf. If dc contains elements that are not included in qr the finger and contact limit the
possible motions of the object. At the same time, it is possible that qfd dc, in which case a

L (constrained) motion of the object does not completely determine d f p. If this happens, the
f undetermined elements of df p must be determined as above.

t Methods for solving for the motions of the finger are discussed below for each of the above situations. In

I each case, a submatrix, [ P ] , is extracted from [ J f q ] that relates the nc elements of dc to the nf elements of

I dq: dc = [ P ] dq. The three cases are identified by evaluating the rank of [ P ] .

it
3.3.1.1 Case 1: exactly determined

ES

An example for which d c = qf and nc = nf is a finger with three joints, constructed so that the fingertip

can move in three directions, always touching the object at a single point fixed on the object surface. This is

mathematically the most convenient situation and forms the basis of previous investigations on grip stiffness

[2]. The matrix, [P ] , that is extracted from [ J f q ] will be square and non-singular. The relations are:

fe rank([P]) = nf= nc

eft

k, [q ~*
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3.3.1.2 Case 2: under determined

When dc c qr the submatrix, [P] , that relates the nc members of dc to the nf joint variables, dq, will

have rank nc. The motion of the fingertip will minimize the potential energy of the finger, subject to the nc

constraint conditions that make up the rows of [P ] . The change in the potential energy of the finger may be

expressed as

AP.E = gqtdq + i(dq
t[Kq]dq) (3.10)

in which first term is due to work done against the grasping joint torques and the second is due to the

stiffnesses of the finger joints. The second term is what provides the grasp stiffness discussed in previous

investigations [2,5], but the first term may be of comparable magnitude.

To minimize the potential energy, the magnitude of the above expression must be at a maximum. If the

elements of dq were all independent (Le. if there were no coupling between dc and dq) then the maximum

would be found by taking the partial derivative of the above equation with respect to each member of dq and

setting the resulting expressions equal to zero. In the present case, a flexible and systematic approach is to use

Lagrange multipliers. The resulting equation is conveniently expressed as

IA

where [L] can be assembled from [P] and [kq] and / is a vector of Langrange multipliers. Details are

given in Appendix A.L

Once all the members of dq have been found, the motion of the finger in (Inn) coordinates is found

using dfP = [ J f q]dq . The restoring forces in the joints are given by Agq = [Kq]dq. Since [P] is not

square, [P ]~ t cannot be used as in Case 1 to determine the changes in the forces at the fingertip, 8gfp.

However, since dc c ff and since dq have been determined subject to the constraints of [P ] , some columns

may be removed from [P] so as to leave a square matrix, [P*] relating dc to nc of the nf elements in dq.

3.3.1.3 Case 3: over determined

When dc d qf the elements of dc become coupled and the object is constrained by the finger and contact

The submatrix, [P] , wil have a rank of Jess than nc. In this case, rows of [P] corresponding to particular

dements of dc may be eliminated to produce a smaller matrix, [P*] that has the same rank as [ P ] , The

elements of dc corresponding to [P*] form the vector, d£. If the new submatiix, [P*] has rank /i/then it

may be inverted as in Case 1 to determine d^ from d£. All the elements of df p can then be recovered as

[Jf q]dq. Thus* the kinematic coupling between the elements of df p is defined.

If the rank of [P] is less than nf then the motion of the inger is not completely determined and potential

energy methods must be used as in Case 2 to determine d̂  from djl. Again, the complete motion of the

fingertip is recovered from [ J f q]d^.
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The general method for determining die motions of a finger from the motions of the contact is illustrated

in the left hand portion of Figure 3-4. For the particular case in which [P] is invertible, the method is

summarized in Figure 3-3.

89, (6x6)

(6)

(nexne)

(joint coordinates)

Finger

Figure 3-3: Flow chart for cases in which [ P ] is invertible (Case 1)

Potential
Energy

(joint coordinates)

Object Finger

Figurt 3-4: Bow chart for relationships between displacements and foires (Case 2 cr 3)
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3.4 Computing Changes in Grip Force

As mentioned in Section 2, the changes in the grip forces will be due to two effects. The first consists of

the restoring forces in the finger joints produced by displacing the fingers. The second stems from relative

motion between the object and the fingers which modifies the grasp geometry so that the grasp forces produce

different forces and torques on the object

The change in grip geometry can be broken into two parts. The first is due to the contact area shifting

upon the object and the second is due to relative motion between the finger and the object For the first part,

recalling that the forces upon the object, gt, are given in terms of g f p by equations (3.7) and (3.8), the total

change in the forces upon the object becomes

Agb = A([Jb] t[M] tg f p) = A f l J b l W t o f p + [ J b ] t [ M ] t Agfp.

The change in the product of the jacobians above may be expanded to give terms involving A [ J b ] t and

A [ J b ] t will be zero if the contact area does not move with respect to the object when the object is

displaced by db. This is true for point contacts and for contacts in which a very soft finger adheres to the

surface. For curved finger/object contact surfaces, the contact area usually moves on the surface of the object

due to rolling of the finger and A[ J b ] t cannot be ignored.

A[M] t will be zero provided that the coupling between the finger and the object does not change. This is

true for many contact geometries, although there are a few exceptions, such as a flat-ended finger touching a

flat surface on the object. If the flat finger rocks slightly with respect to the object, the contact changes from a

line contact to a point contact or from a planar contact to a line contact When this happens the number of

components of foice and motion transmitted between the fingertip and the object is reduced and some

additional elements of [M]1 become zero. Such transitions, however, are not smooth and continuous and

cannot be represented by a matrix A[M]t. In the following analysis it will be assumed that that A[M]t is

zero. The case of a flat-tipped finger on a flat object can be regarded as a limiting case in which the radii of

curvature of the fingertip and object approach infinity.

The expression fbr Ag^ fe now given by

Hk = A [ J b ] t [ i ] V p + [ Jb] W A g f p .

la Appendix AX a method is given for detennining the dements of A[Jb] for a given translation and

rotation of the contact area with respect to the object.

Next, it is necessary co determine the change in gf p. This will be due partly to the relative motion erf the

lager with respect to the (Lmn) coordinate system and partly to the restoring forces in the finger joints.

The motion of the fingertip is d f r where dfp is determined by the methods of Section 33. The motion gf
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tiic {Imji) coordinate system is given by dbp and therefore the relative motion is (df p - dbp). Hie resulting

6-eIcmcnt vector is used to determine the elements of A[Jf ] - t in the same way that the motion of the

contact point on the object determines the elements of [ J b ] 1 . There may also be a contribution to Agf p due

to relative motion between the (cuhx) coordinate system and the joint space in which dq is defined. However,

this will depend on the particular finger design and is not considered in the current analysis.

The restoring forces in the finger joints are given by

Agq = [Kq]dq

where dq is found using the methods in Sections 3.1 and 3.3. The contribution of these restoring forces to

Agf p may be computed for each of the constraint cases discussed in Section 3.3.

For the first case in Section 3.3, in which the motion of the object exactly determines the motion of the

finger, the contribution of Agq to Ag fp follows from equation (3.9).

(3.11)

For the second case, the contribution of the restoring forces in the joints to the change in the forces at the

fingertip is [P*]""tAgq. It does not matter which columns are removed from [P] provided that the

remaining square matrix, [P*] , is non-singular and that the elements of gq corresponding to the eliminated

rows of [P ] are removed from gq.

For the third case the problem is statically indeterminate and there are not enough equations for the

number of unknowns. If no motion is possible in one of the directions of the (£ra,/z) coordinate system, the

change in force for that direction may reasonably be set to zero. This is equivalent to removing null rows and

columns from the compliance matrix in (lm,n) coordinates. If the remaining compliance matrix is still

singular, or in other words, if there are remaining non-zero (but coupled) motions in df p then a useful

technique is to add "virtual joints" to the finger to provide enough equations. The virtual joints can be

chosen in directions orthogonal to the existing joints. The motion about their axes is zero and consequently,

the change in the torques about their axes will also be zero.

For the particular case in which fingers with three degrees of freedom are used to hold an object, with

point contact between the fingertips and the object, the relations above reduce to

* = [0]

If, in addition, it can be assumed that A [ J f ] " * is negligible, the change in the force upon the body

becomes
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Agb =

or, letting = [J]

For a grip with m fingers, the net change in the grasping force becomes

m

or Agb = [Kb]db (3.12)

Three Fingered Hand

For a hand with three fingers, each having three degrees of freedom and point contacts at the fingertips,

Salisbury [2] derives an equivalent expression to (3.12). If the finger axes, (akc) are chosen to-parallel to

(x,y,z) and their origin,/, is moved to the contact point, fp, then

[P] - i [M] [ J b ]
(3x3) (3x6) (3x6)

[ J ] (313)

where [ I ] is a 3x3 identity matrix and [R] is given in Appendix A. The jacobians, [ J ] , for each finger

are assembled into a single grasp jacobian (see Figure 3-5). The 6x9 grasp jacobian is augmented by a 3x9

matrix that gives the dot products between the forces exerted by opposing fingers. These "pinch" terms are

related to the magnitude of the internal forces on the objecL The resulting 9x9 grasp matrix is [G]"1. The

fingertip displacements are concatenated into a single 9x1 vector df and the vector of resultant forces, with

respect to equilibrium, on the object becomes f b = Agb. The 3x3 finger stiffness matrices are also assembled

into a single, block-diagonal 9x9 matrix, [ K ] .

Kf I

Kf

The relationship between displacements of the fingers and the net restoring force upon the body, f b , may

then be expressed as

h =

and the stiffness of the object computed as

[Kb] ^
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The relationship between the above expressions and equation (3.12) can be seen by dropping the "pinch"

terms from [G] and f b, and by allowing an arbitrary number of fingers which have arbitrary orientations,

[Ai ] with respect to the (x,y,z) system:

" A 1 A I A

RA |RA |RA

Multiplying the partitioned matrices above gives
m

[Kb]

/=!

m

m

A* |[RA]1

A1 | [RA]1

A1 | [RA]1

which is identical to (3.12), when [ J ^ ] are given by (3.13).
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Grasp Jacobian for Three Fingers:
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I
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In the above:

[R] are crass-prodnct matrices such that if r = ( r x 9 ry , r z) are vectors from the origin of the

global coordinate system to each of the finger contact points, and f are three-component

foice vectors then [R]f = r x f.

[P] are matrices formed of 3 element vectors r i j which point from finger i to finger j .

The products [P]f produce three scalar internal forces, p i j , which measure the "pinch" between fingers

iaadj.
Figure 3-5:

(from Salisbury [6])
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4. A Closer Look at Contact Conditions

Finger

possible fingertip

Fingertips

pointed

curved

flat

very soft

soft, curved

Figure 4*1: Examples of fingertip geometry

Contact conditions between the gripper and the object depend on friction, adhesion, surface geometry and

surface deformation under load The contort conditions have a profound effect on the strength and stability

of a grip and determine the extent of kinematic coupling between the Ripper fingertips and the object

Previous analyses [lt 2,3,4, $| have used the assumption of hard surfaces and small contact areas to treat
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the contact areas as point contacts. This turns out to be the simplest case to handle analytically, but it

becomes inaccurate when the radius of curvature of the fingertips is not small compared to the size of the

object or when the fingertips deform. The effects of different assumptions concerning the fingertip geometry

arc shown in several examples below. In a later section, the effects of different friction models are discussed.

Models that may be used for the fingertip geometry include: point contacts, hard curved contacts, flat

contacts, clastic curved contacts and very soft contacts. These models are shown schematically in Figure 4-1.

4.1 Point Contact

In a point contact with friction, forces are transmitted between the fingertip and the object but torques are

not Similarly, translation of the fingertip is coupled with that of the object, but rotation is not The result is

that the coupling matrix, [M], is a 3x6 matrix in which the left partition is a 3x3 identity matrix and the right

partition is zero.

In point contact, there is no rolling motion and consequently no movement of the contact area upon the

object or the fingertip. As the object is displaced, the fingers can only rotate about the contact points.

Consequently, there is no change in the jacobian [ J b ] t and only a rotational change in [ Jf ] - t as the object

is displaced

4.2 Curved finger contact

A hard curved finger is similar to a point contact in that the contact area is small so that forces may be

transmitted, but torques may not The main difference arises from the possibility of the fingertip rolling upon

the surface of the object As the finger rolls, the location of the contact point will shift. This shift produces

non-zero terms in the differential jacobians, A[ J b ] t and A[ Jf ] " t introduced in Section 3.4.

A general analysis of rolling becomes quite complex. As a first step, if we assume that the finger does not

twist about its own axis, (perpendicular to the surface of the object) then for snail displacements the problem

can be approximated by a two-dimensional one involving an instantaneous plane of rolling. The plane is

defined by the common perpendicular (n in Figure 3-1) and the vector of translation^ motion of the initial

contact points* bp and jj>. In the Mowing discussion, second-order approximations are derived to express the

translation and rotation of the contact points on the fingertip and the object as functions of the fingertip and

objea curvature*

Figure 4-2 shows the cross sections of a finger and an object in the instantaneous plane of rolling motion.

The fingertip Mid the object profiles may be described parametricaDy as rf ^ and r ^ where s is equal to the

axde&gth along cither curve. The conditions for pure rolling, without slipping or losing contact, are

L There wfll be a common tangent plane at the points of contact

1 The contact points on the fingertip and the object (fp and bp in Figure 3-1) must have the same
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Finger surface

common tangent

s = arclength

AS must be equal for
finger and object

Figure 4-2: Rolling contact

translational velocity. For a differential motion this means that the translational components of
djjp and df p must be equal.

3. The arc length, 5s, traversed along rb^ and r f w must be equal as the fingertip rolls on the
object.

The tangent at any point, s, along each curve in Rgure 4-2 is given by the unit vector

u = ds
At the contort point, the tangent is the same for both curves so that
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After die fingertip rolls a small amount, the new contact point will be at the location r'b on the body and the

new tangent will have the direction

The contact point on the fingertip will be at the location r'f with respect to the finger coordinate system and

the direction of the tangent will be

, dr'f

For pure rolling it is required that Ssf = Ss&, where for small motions, 8 s = VAr -Ar . Thus fora

small rolling motion, the contact point translates Arb upon the body and rotates through the angle between

ub and ub. At the same time, the fingertip must translate by Arb - A r f (the distance between bp' andjp')

and rotate through the angle between Uf and ub. The translations and rotations are functions of r f (sy r ^

and 8s,

Ar and uf may be expressed as Taylor's series expansions in r ^ and 8 s (Appendix B). To look at the

effects of curvature, terms involving the first and second derivatives of rb and r f are kept in the expansions.

translation of bp with respect to object:

^ , ^ + M . ^ . = „«, + £-««!- (,«

translation of Jpf with respect to object:

rotation of bp with respect to objecC

rotation of jp* with respect to object:

In (4.4) and (4.1), u = u ^ = u f ^

For a givoi object shape, the fingertip curyature determines the magnitudes of the translation and rotation

of bp and the translations ofjj? wdjpf
t as the fingertip rolls through the snail angle given by equation (4.4).

The above equations can be simplified by dropping second order terms. Since |u| = 1, equation (4.4) wSl

be ctomiaatedby a tenn on the cwfcrof
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The second term in (4.4) is at least a factor of 8s smaller and, for infinitesimal motions, may be dropped.

In (4.2), the translation offp' is also smaller than the rotation vof the fingertip by a factor of Ss, which leads

to the conclusion that for infinitesimal rolling, the fingertip may be considered to rotate about the contact

point, fp. The translation of die contact point on the object, bp, contains one term on the order of 6s, and a

second term which may be dropped. The simplified equations are

translation of contact point with respect to object: Ar f s Ar b 2 u8s (4.5)

rotation of contact point with respect to object: ub x UK » 8s( ^ b x , ,b ) (4.6)
as as1

rotation of fingertip with respect to object: UfXub ~ 8s (( 2
f , 2

b ) x u ) > (4.7)

4.2.1 Effects of rolling motion

The meaning of the above equations becomes apparent in Figures 4-3 and 4-4, which show a finger with a

curved tip of constant radius rolling on a flat surface on an object For convenience, the coordinate systems

are chosen so that (a,b\ (£/n), and (x9y) all lie in the same plane. In Figure 4-3 the radius of curvature, rc, of

the fingertip is large while in Figure 4-4 it is small. In both cases uf = ub = (l)i + (0)j. Since the object is

flat, the second derivative of rb is zero and equation (4.7) reduces to 8$/= Ss(l/r^) (Appendix B).

The fingertip undergoes virtually same motion in Figures 4-3 and 4r4, but there is a significant difference

in Arb and Ar f between the two cases, which steins from the difference in 8s. In Figure 4-4, there is no

appreciable change between rb and rb . Consequently A [ J b ] t = [ 0 ] . There is also virtually no difference

between Vf and rjs when expressed with respect to the {a,b) coordinate frame. Consequently A[Jf ]"" t

contains only a rotation term resulting from the rotation of the {cub) coordinate system with respect to the

contact point and the (x,y) system. In other words, as the radius of curvature becomes small, the model

reduces to the case of a pointed finger rotating about its tip.

In Figure 4-3, Arb and Ar f are significant Consequently, A [ J b ] t contains a translation term and

A[ Jf Y% reflects both the rotation of the (a,h) system and the addition of Ar f to r f . The way in which such

terms are incorporated into the elements of the differential jacobians is discussed in Appendix A.2, and an

example is given in Section 5.

A flat-tipped finger can be seen^as a limiting case in which the radius of curvature becomes infinite so that

Arb and Arb become infinite and produce an infinite displacement of the contact area for any rotation of the

finger with respect to the object In practice, of course, the contact point will jump to the edge of the flat

fingertip, at which point the radius of curvature becomes zero rather than infinite.
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Object Surface bp

Figure 4-3: Cross section of a large-radius hemispherical fingertip on a flat object surface

4.3 Very soft finger

The bottom fingertip example shown in Figure 4-1 represents the extreme case of a compliant fingertip

pressing against the object surface. In this model it is assumed that the fingertip conforms to the object

surface, and adheres slightly. Such characteristics are found in many natural gripping surfaces, including the

fingertips of the human hand. The coefficient of friction for such a fingertip will be high (greater than ooe).

However, since defoiination and adhesion are the primary mechanisms, it is not advisable to attune the

Coulomb friction law.
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7

Object Surface

Figure 4-4: Cross section of a mall-radios hemispherical fingertip on a flat object surface

The soft finger model is further specialized with die assumption that no rolling occurs and that the

compliant medium at the fingertip is elastic. With these assumptions the fingertip becomes a less accurate

model of human fingertips. Human skin is visco-elastic and after being deformed will not generally return to

ks original position. Depending on the curvature of the object being held and the degree of adhesion present,

the human fingertip will also roll slightly upon the object, exhibiting a rolling resistance of the kind discussed

in Section 44. Nonetheless, the elastic soft-finger model is useful to demonstrate a limiting case in which

there is complete kinematic coupling between the fingertip and the object
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Object Surface

Elastic fingertip

Figure 4^5: Elastic fingertip in contact with object surface

Figure 4-5 shows the fingertip in contact with the surface of an object. The fingertip material is assumed

to be much softer than that of either the object or the finger substrate, which are treated as rigid bodies. For

convenience, the finger (a,kc) coordinate system has been moved to the interface between the fingertip

material and the finger substrate. As explained in Section 3.1, the forces, displacements and stif&ess

characteristics of the finger can easily be transformed from another coordinate system to the one chosen in

Figure 4-5. The (Imn) coordinate system remains, as usual, at the contact area between the fingertip and the

object, with the n axis normal to die object surface.

The grasping forces at the object surface, gbp, can be expressed as integrals of the stresses over the contact

area:
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object surface

Tmn

il = /
A

= j

Figure 4^6: Elastic fingertip in contact with object surface

Urn = in =

= J l*mdAg#1 = jmmmdA J J

The elaac contact repn^nts a compliant coupling in which small motions of the finger with respect to

the object are possible in any direction. Such relative motions produce changes in the above forces and a

model of the system permits the deflection/force relationships to be expressed as the stiffness of the contact

The fingertip can be treated as a short elastic member clamped between two rigid boundaries. To obtain

the exact stress field for such a problem is a formidable task — even if the assumption is made that the

material is perfectly elastic and Jsotxopic. Numerical results could be obuined using a finite element analysis,

but ihe analysis would be time consuming and would have to be re-computed for different cross sections and

materials. The problem can be simplified by observing that the stresses at any given location within the

material are of little interest, provided that

estimates of the integral quantities can be computed at the object surface
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• the combined stress field nowhere exceeds the strength of the material

• the normal stress, omr never becomes sufficiently tensile to cause the fingertip material to
separate from the object surface.

The last requirement can be satisfied by assuming a large grasping force normal to the object surface and/or

some adhesion between the fingertip and the object. If one edge of the fingertip does start to separate from

the object when the finger rotates slightly, then the finger is starting to roll.

Since an exact elastic solution is impractical (and would in any event be an approximation to the visco-

elastic behavior of compliant polymers and skin-like materials) an approximate elastic solution is used to

estimate the force/deflection relationship for the fingertip. The behavior of the fingertip in shear, torsion,

compression and bending is discussed below, and the separate solutions are superposed to produce a 6x6

stiffness matrix for the contact

Bending stiffness and resistance to rolling

The bending model for the elastic fingertip is similar to that used in classical beam theory. A rotation

about the a axis by the finger produces a rotation in the material of S$/t per unit thickness. The bending

strain and stress at a distance m above the centerline are

where £ is the modulus of elasticity. As in beam theory, it is assumed that plane sections remain plane and

Jin = trm = 0. It is also assumed that since the stresses r^ <smm and <JU are zero at the surfaces of the

material that they are approximately zero throughout. This assumption is somewhat less supportable than in

beam theory since the elastic element cannot be considered slender. However, it is not actually necessary that
rbm <*mm m d <*u t>e zero everywhere but only that their resultant does not significantly affect the estimated

bending rigidity of the element The bending rigidity may then be found by equating the energy stored in

rotating the finger with the energy stored in deforming the material

it

where lwm is ibe moment of inotk of the cross section about the m axis, and Fis the volume of the maferiaL

The bending sdfihess for locations about the m axis is similarly found as

As mentioned earlier, tie maximum bending moment that the contact can sustain is limited by the

adhesion between the fingotip and the object surface. The limitation is easily demonstrated for the exa l te
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of a square contact area of length w on each side. Referring to Figure 4-6, a normal force of magnitude fn

produces a uniform contribution to the normal stress of

f
onn~ — \ - (compression).

A bending moment of magnitude j ^ / produces a contribution to the normal stress that is maximum at the

edges of the contact

M L (bending)

The combined normal stress will become tensile at one edge when

Thus, unless the adhesion between the fingertip and the object is able to resist tensile loads, the finger will

start to roll whenever the bending moment is more than one sixth the normal load times the length of the side.

For small contact areas the fingertip is likely to start rolling unless considerable adhesion is present

Shear stiffness and resistance to slipping

For a beam with an end load, the variation in the moment over the length of the beam is balanced by a

distribution in shearing stress over the cross section of the beam [17]. For the elastic fingertip, however, it is

assumed that the variation in the moment produced by a shear force in the (&bx) system is negligible

compared to the effect of rotating the finger Consequently the bending moment is approximately constant

over t and the shear stress is assumed to be uniform over the cross section. The shear stiffness is found by

equating the energy required to displace the finger in shear with the energy stored internally in the material

= GA

or km =

2t
Y

GA

In the above, G is the shear modulus of the material and A is the cross section area, wk

The maximum shearing force that the contact can sustain is limited by the shear strength of the

fingertip/object interface, which depends on the bonding strength between the fingertip and object materials

and on the area of intimate contact between them. The area of intimate contact is generally much smaller

than die overall contact area, A t and depends not only on the current normal force, fn, but on such factors as

how clean the surfaces are, how rough they are, and how long they have been held together. In general, the

shear strength of the contact will be some fraction, /?, of the shear strength of the fingertip material. The

fraction will be a function of (but not directly proportional to) the normal force, and slipping will cxxur when
Twa o r rk « c ^ d s that fraction.
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Compressive stiffness

Displacement of the fingertip toward the object results in a uniform comprcssive strain, -znn, across the

cross section. The compressive stiffness is found in the same way as the shear stiffness, with G replaced by £.

* = —

Torsional stiffness and resistance to slipping

The torsional rigidity of a cylindrical member can easily be found as

where r0 is the radius of the cylinder and Ip is the polar moment of inertia [17]. For non-circular cross sections

the expression becomes more complicated due to warping of the cross sections, although for the present case

the warping may be negligible since t is small and since the material is constrained by a rigid boundary at each

end. For a bar of elliptical cross-section the torsional rigidity per unit length has been determined as

GAA

and it has been found that this formula holds approximately true for other compact cross sections [18].

For a round bar, the shear stress in torsion is

— (A Q\

Thus, if the fingertip were a cylinder ending in a circular contact area, slipping would begin at the periphery

when

fin = Z ~ ^ 2 - (4.9)
ro

(where r^p is given above for shear loading.) Once slipping has occurred at the periphery, the fingertip will

not mum to exactly the same orientation when the torque is removed. As the torque is increased, the region

of slipping will spread from the periphery toward the center. The phenomenon resembles the yielding of an

elastic/perfectly plastic bar in torsion. At any stage, the moment balance is given by

fen= j 2irT!mr2<lr+ J (4.10)

The above equation can be integrated and condensed by expressing r/m and r ^ in terms of r and the

angle of rotation of the finger, d§m
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rlm -

r _ * TSliP
dip ~ Gden

The result for the torque is

Thus, the torque required for complete slipping is 3 the torque required to initiate slipping at the periphery,

although this would theoretically only be reached for an infinite rotation, d$n or dQo of the fingertip. For a

square or rectangular contact area the qualitative behavior is the same, with slipping initiating at the periphery

and spreading inwards. However, the expression f o r ^ n becomes more complex due to the more involved

expression for r/m.

Fingertip Stiffness Matrix

The above stiffness terms form the elements of a 6x6 diagonal matrix [Kc] where

(411)

(4.12)

(4.13)

(4.14)

(4.15)

If t were larger than w and A, then shear loads would produce bending moments that varied along 4 and

bending loads would produce shear deflections, as in classical beam theory. The result would be off-diagonal

teraisin [Kc].

4.3.1 Effects of deforming fingertips

The comparative importance of the above quantities can be determined for a fingertip of given

proportions. The table below shows the results for two fingertips. For the first, w = h = 1.0 an and t = 0.5

cm. In the second w = h = 10 cm and 1 = 0.5 an . The modulus of elasticity, E, is assumed to be 250 N/cm2

and Fcrisson's ratio is taken m 1/2, so that G = E/3. These are typical values for rubber. A force of 4.0N (a

little Jess than one lb£) is used to produce delat ions for aroparisasL
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Table 4-1: Soft fingertip deflections for 4.0 N load and lcm2 and 4cm2 contact area

Fingertip material properties: E = 250 N/cm2, v = 0.5, G = 833 N/cm2

w = h = 1.0 cm, / = 0.5 cm w = h = 2.0 cm, / = 0.5 cm

667 N/cm

0.006 cm

2000 N/cm

0.002 cm

672 Ncm

0.006 radian

432 Ncm

0.009 radian

Kcll3 Kcn

deflection for 4.0 N
shear force

deflection for 4.0 N
eompressive force

rotational deflection
for 4.0 Nat
1.0 cm lever arm

torsional deflection
for4.0Ncmtoique

167 N/cm

0.024 cm

500 N/cm

0.008 cm

42 Ncm

0.096 radian

27 Ncm

0.15 radian

For the smaller area, the rotational stiffness fenns are modi lower that the translational terms and the

fingertip is cleariy less constrained with respect to rotations than translations. However, the bending and

torsion stiffhe^es increase as die square of the contact area, while the shear and compressive stiffness increase

linearly with the contact area. Thus, for the larger contact patch, the rotational and translational stillnesses

become comparable. If w and h were doubled again, balding and torsional deflections would become

negipble in comparison lo shear deflections* This result matches what one would expect intuitively.

If the grasping force is varied proportionately with the contact area, then, as the contact area becomes

small, the fingertip begins to behave Ike a point contact in which significant rotations are possble bat

translations are not As the contort area becomes large, rotations are negligible compared to shear deflectikMi

If the grasping force is held constant for different contact areas then the contact becomes much less compiast

as the area increases, and rotational deflections become negligible faster than translational deflections.

For the forces given in the table atxwe, unless some adhesion exists between the fingertip and the object*

the tending moment will cause the fingertip to roll for both the k m 2 or the 4cm2 area. The largest betide
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moment that the contact could sustain without tension is 0.67Ncm for the lem2 case and L33Ncm for the
4cm case. In torsion, depending on the shear strength of the interface, die contact will probably slip for the
lem2 area but might not for the 4cm2 area. If the shear strength is roughly equal to 4.0N/cm2 in the first case
(corresponding to a coefficient of friction of 1.0) and L5N/cm2 in the second, (corresponding to a coefficient
of friction of 1.5) the maximum torques that can be exerted are 1.7Ncm and 5.3Ncm respectively. This
supports the idea that a soft finger with a small contact area can exert torques about an axis normal to the
contact surface more readily than it can exert torques in the plane of the surface. For a soft, curved fingertip,
as discussed below, the difference is more pronounced.

Once the fingertip stiffness matrix has been computed, the net compliance matrix may be formed by
adding the compliances for the finger and the fingertip.

[Cf ] = [ J f q J E K q r ^ J f q ] t + [Kc]"1 .

This matrix is invertible and therefore, the restoring forces at the contact become

= [Cf ]-*dbR

Using equations (3.5) and (3.6), the changes in the forces at the finger joints are Agq = [ J f q] t Ag f p , and
the finger motions are dq = [Kq]"1A gq.

4.4 Soft, Curved Fingertip

The hard curved fingertip and the very soft fingertip represent extremes between which real, defonnable
fingertips may be expected to lie. Human fingers and rounded robot fingers with rubber surfaces exhibit both
rolling and substantial deformation. The analysis of such fingertips becomes quite involved, combining the
rolling calculations of Section 42 with the defonnation calculations of Section 43. A complete model is not
attempted in the discussion below, but the properties of soft, rolling fingers are discussed and it is seen that
they are bracketed by the models developed in the last two sections.

A number of insights can be gained by considering the analyses applied to the rolling of rubber tires and
metal cylinders or spheres. For a hard, elastic sphere rolling on an elastic surface, the pressure distribution is
described by the Hertzian contact model of soEd mechanics* which predicts a hemispherical pressure
distribution [I8J. For the much larger deformations that occur when a soft, curved finger presses against an
object the distribution is exported to be qualitatively similar. The pressure will be maximum at the center of
the contact, diminishing smoothly to zero at the periphery. For progyesaveiy softer fingertips, the pressure
distribution becomes more uniform, especially toward the center of the contact area. In the limiting case, the
pressure is essentially uniform throughout as assumed in the very soft finger model described in Section 4 3 .
The pressure distributions arc compared for elastic, soft, and wry soft fingertips in Figure 4-7.

According to the Coulomb theory, the coeffkimt of friction would be independent of the contact area, but for ompliaiit uwtmiSi t
is general}? not tndependeol
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(radius of contact)

spherical elastic fingertip
(Hertzian contact -
hemispherical
distribution)

soft curved fingertip

very soft fingertip
(uniform distribution)

Figure 4^7: Pressure distributions for elastic, soft, and very soft fingertips

For a perfectly elastic curved finger, it is impossible to transmit moments in the plane of the contact mz

the finger rolls easily upon the object Thus, m the absence of rolling resistance, the soft curved finger wonii

behave in tie same manna: as the hani curved finger discussed earlier, the only difference bong that fy

would vary due to flattening of the fingertip under load. If the degree of flattening could be predicted at*

ftuiction of fingertip loading, then the methods discussed in section 42 could be used to predict die inotni tf

die finger and the contact pmL Elastic flattening formulas have been developed for cylinders and

but these am unMJcely m gtvt accurate results forasoftfimgertip.

In practice, toe is geoeraiy a resistance to rolling. At low speeds, the raffing resistance is due

hysteress losses md microslip at die contact area, Holing resistance is an important subject m the Vtentm

m wheels m& ires and is discussed at length in [19,20» 21J. For an elastic sphere or cylinder raffing upon i

pk»e surface, die deformation of file material results in a hysteresis loss which can be used tB <terw i

^coefficient of raiting resfeace** fl9J. Microslip restite from the elastic strain of the fingertip material * k i

ptmei ®§mm the air&x. If the fingertip is loaded with a normal load, fm against the object surface* *

material ahead of the ce&terlin* of ttie contact will spread forwards slightly and the maicrial toehtoi *

Geofgrfiae wil spread backwards sigbtly. The g>rcadiDg predic t regions of microslip toward die ftoot wA
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rear of the contact area. In the absence of tangential forces, the strains, and die shear tractions that result

from them, must cancel each other. When a tangential force is present, there will be a region of sticking

toward one side of the contact area, and microslip elsewhere. The microslip results in rolling losses and

"creep/1 The end result is that soft curved fingertips do not rotate quite as freely with respect to the object as

pointed or hard curved fingertips do.

The static resistance to slipping of the soft, curved fingertip will be similar to that of the very soft finger of

Section 4.3, except that since the pressure distribution is not uniform over the contact area, the value of the

stress at which slipping occurs also varies over the contact As in Section 4.3, the interface shear strength r ^

may be expressed as a fraction of the material shear strength, where the fraction, /?, is a function of factors

including the normal pressure and the surface roughness. Since the pressure is least at the edges of the

contact, slipping may be expected to initiate there.

For loads in the plane of the contact, the shear stress may be uniform inside the region where there is no

sliding, but will have an upper limit of r^ip outside the region.

For a moment about the axis normal to the contact, the shear stress inside the sticking region will have the

same distribution as for the very soft finger, the magnitude at any point being proportional to the distance

from the center of the contact as in equation (4.8). In the slipping region, the shear stress will again be equal

to the upper limit of r ^ . A cross section of shear stress distribution is shown in the lower part of Figure 4-8.

The distribution for the very soft fingertip of Section 43 is shown in the upper part for comparison. The

maximum torque about the axis of the finger is equal to the polar moment of the shear stress shown in Figure

4-8.

A«= J 2*T^r2dr + j Iwr^dr (4.16)

where

rdip

is proportional to r and is a function of a

Thus, unlike the hard curved finger or the pointed finger, the soft curved finger is able to exert small torques

about its own axis.
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Very soft fingertip

(uniform pressure)

Soft curved fingertip

r0 =

TW =

Tsiip =

radius of contact area

radius of sticking region

shear stress inside sticking
region (proportional to r)

largest possible shear stress
(function of pressure)

Rgpre 4-8: Maximum shear stress, for moment about finger axis
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5. Examples

In this section, results from the last three sections are used in three examples that also illustrate some of

the differences between pointed, curved and soft fingers. Figure 5-1 shows three rectangles, each held by two

fingers. In the first case the fingers are pointed, in the second case they have finite radii of curvature and in

the third case they have very soft tips that adhere to the surface of the rectangle. In all three cases, the fingers

are assumed to have three degrees of freedom, being restricted to motions within the plane of the paper. For

simplicity, it is assumed that the finger joints correspond to translations, a and 6, and a rotation, 6c, in the

(a,b,c) frames.

The sizes and orientations of the rectangular object and fingers, and the finger stiffnesses, [Kf ] , are

identical in each case. However, the different contact conditions produce substantially different results for the

mobility, stiffness, strength and stability of the grasp.

In each case the change in the resultant grasp force on the object, Ag, is calculated for small displacements

of the object The grip stiffness is computed and the maximum force and torque that the grip can resist

without slipping is calculated

5.1 Pointed Fingers

The transformation matrices, [ J b ] , [M], [ J f ] , and [ J q ] , are given in Appendix C for the left or first

finger. As the object is moved an arbitrary amount, db, the motions at the contact points on the object are

given by dbp = [ Jb ]d b , Premultiplying by [M] gives the vectors dc, which contain just the first three

elements of dbp since, for point contact conditions, only the translations are transmitted.

The fingers have three degrees of freedom and consequently dq = [,dqa, &lb< &lc 1- A motion, dq,

produces a motion df p at the fingertip, given by equation (33). The elements of d f p and dc are compared

below for the left and right fingers. The {lm,ri) coordinate systems are shown in Figure 5-1.

Matching dcl with df p l and dc2 with df p2 reveals that dz + jdBy = 0 and dz — jddy = 0 or,

dz = dOy =0. In other words, the object is constrained by the fingers to move within the plane, except for

rotations about the x axis. In the following discussion it will be assumed that the object is given displacements

in the JC and y directions and a rotation about the z axis. Thus, <MX and dm2 wiU be zero and the only motions

transmitted to the fingers will be dml9 dnl9 dt2 and dn2.

The procedure for calculating the finger motions, the changes in the finger forces and the change in force

on the body is given below for the first finger. The contribution from the second finger follows from

symmetry.



52

Pointed fingertips

+b '
z x m

w

Rounded fingertips

x m!

w

2

Soft fingertips
Figure 54: Hoidiog a rmangle between two fingers — 3 examples
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dl

dm

dn

dOl

d0m

ddn

dci

dz+ fd$y

dy- fddz

-dx

dfpi

0

dqb+ rfdqc

-dqa

dqc

0

0

dfp2

% - rfdqc

0

dqa

0

dqc

0

dC2

dy+fdez

dz- fddy

dx

Table 5-1: Motions of left and right finger and object contact areas (pointed fingertips)

5.1.1 Procedure for Left Finger

The first step is to determine the motions of the first finger given dm1 and dnv A motion in the dm

direction can be accommodated either by a movement of the finger in the b direction or by a rotation about c.

In practice, both will occur and the contribution from each will be balanced to minimize the potential energy

of the finger. The two rows of [ J f q] that relate finger motions dqb and dqc to dm and dn are extracted to

form the 3x2 matrix [ P ] , Following the method in Section 3.3.1.2, a Lagrange multiplier matrix, [L] is

assembled from [Kq] and [ P ] , The matrices and the matrix equations are shown in Appendix C. Inverting

[L] produces the finger motions, dq. Multiplying the finger joint motions by [Kq] determines the changes

in the joint forces.

The changes in the forces at the fingertip, §g f p, depend both on the restoring forces 6gq and the change

in geometry, A[ J f ] "* , due to the motion of the finger with respect to the object The motion of the (lm,ri)

coordinate system is given by 6bp and the motion of the fingertip is given by [Of q]d q . The translations of

each are the same, but the finger rotates relative to the object by the angle

80 = 801-80c.

which appears as a rotation term in A[ Jf ] " t in Appendix C.

For a grasping force off in the a direction and for a motion (dx, dy, d9z) applied to the body, the change

in the force applied by the first finger to the object is shown in Table 5-2.

When the second finger is added, the expressions for the change in the force on the object become simpler

due to combinations and cancellations of symmetrical terms. The contributions to Sgy from each finger

cancel for rotations, d0z% and add for translations; dy. Similarly, the contributions to 80z from each finger

cancel for motions, dy, and add for rotations dffz. The final result is .given in Table 5-3.
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8gx = -kadx

= (af-P)dy-(f+T(af-l

= 0

= 0

= 0

8&tz = -fW-P)dy + r(f+ f(af-fi))d0z

where a= . *»? and

Table 5-2: Contribution from left finger to Sgb (pointed fingertip)

= -2kadx

Table 5-3: Change in gb due to motions dx, dy, and d8z (pointed fingertips)

5.1.2 Discussion

Whenever any of the above quantities becomes positive, the grasp will be unstable for infinitesmal

displacements in the corresponding direction. Thus, if ^ is small, (kc<frf), the change in the grasp force for

a motion in the y direction will be positive, tending to continue toe motion. This result matches one's

intuition that a rectangle squeezed between two fingers will be unstable if the finger pivots freely, without

springs, about axes Cj and ĉ .

Similarly if fp < (f+ f a / ) , the rectangle win be unstable with respect to rotations about the z axis. This

result is less intuitively dear but it becomes apparent if kc is very large, in which case the fingers do not rotale

about their c axes. For this case, a—>0 and/?-»#j. If the object is routed by t^2 the change in the torque

upon the body n
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This is exactly the result obtained earlier in Section 1 for the rotation of a rectangle squeezed between two

fingers, where kb = kt and j = r.

5.2 Curved Fingertips

Fingertip

Object Surface

u,

Figure 5-2: Curved finger before roEing

Most of the results from the last example also apply for fingers with curved surfeces* The difference is that

the contact point is no longer fixed with respect to the object and consequently A [ J f ] " t i s slightly different

from abo¥e and A[ J b ] t s no longer zero. The new matrices are given in Appendix C

As with the pointed finger example, results arc derived for the first or left finger. In the current example,

the algebra has been simpliied by assuming that the (o»hc) finger coordinate systems are also the centers of

curvature of the finger tips. The rolling condition is therefore as shown in figures 5-2 and 5-3, before and
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Fingertip

Object Surface

Figure 5-3: Curved finger after mMngSi with respect to object

after the finger has rotated a snail amount, 50, with respect to (Ittw) coordinate system on the object As the

figures show, Ss = rjSi.

Since the center of curvature of the inger is also the origin of the fahc) system, the translation of tbe

contact point exmtly cmceb die product S0Xrf. The 'Contribution from the left finger to Ag,b is shown in

Table 5-4.

When the results from tbe second finger are added, the changes in the force upon the object are as showi

is Table 5-5.
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Sgx = -kadx

Hy = {af-fi)dy-(f+ ?(af-

Sgz = 0

= 0

= 0

= \((«/"PV + 2^1 - arf)w- 4/r7) <#z - \((a/-

T and

Table 5-4: Contribution from left finger to Sq^ (rounded fingertip)

8gy

= -2kadx

Table 5-5: Change in g b due to motions dxy dyy and d0z (rounded fingertips)

5.2.1 Discussion

The results in the x and y directions are identical to those for the point-contact example but the torque

about the z axis has dianged. As in the previous example, the expression for torque about the z axis simplifies

for the limiting case in which kc is large compared to k^ The change in the torque about the z axis reduces to

In the above expression, if TJ=' f then the last two terms cancel each other out leaving only the restoring

torque, — } kh w
2 Bff2. In other words, the translation of the contact point due to rolling of the finger with

respect to the object exactly cancels the effect of rotating the object Thus for large radii of curvatuie, (rf> f

X the grasp is infimtestaially stable with respect to rotations regardless of the stiffness of the fingers.
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5.3 Very Soft Fingers

For contacts with soft fingers a combined compliance matrix is established for the finger and fingertip as
in Section 4.3. ITie combined compliance matrix is shown in Appendix C for a square fingertip. In the
matrix, kp is the elastic stiffness of the fingertip in compression. Since the shear modulus, (/, of rubber-like
materials is generally about one third the compression modulus, E, the shear stiffness can be written using
equations (4.11) and (4.12) as \kF From equations (4.13)-(4.15X the bending and torsional stiffnesses are
approximately Bkp and \ Bkp, where B is equal to one-twelfth the contact area.

The restoring force at the contact is 8g.5P = [Kbp]db p . The restoring forces in joint coordinates are
given by 5gq = [J^q] t59bp and the corresponding motions in joint coordinates are given by
dq = [ K q ] " 1 ^ - The motions are then expressed in fingertip coordinates as d f p = [ J f q]d q .

r
2kokb{kc-frf)

Hz = 0

&%9X = 0

Sggy = 0

2(kbkpr*+kc

ke)

Table 5-6: Change in 5gb for small contact area (soft fingertips)

As in point contact and rolling contact, comparison between dbp and d f p determines the relative motion
between the finger and the object, which appears in the differential jacobian A[ J f ] " * .

The net change in gb p is obtained by summing the restoring forces and the forces due to the change is
geometry.

+ A[0f J-tgr

5.3.1 Discussion

The general expression for Agb is lengthy, but it is simplified considerably for the limiting cases in which
the contact area is very small, or very large. To further simplify the algebra in the following results, the finger
joint stiffnesses in the a and b directions have been set equal so that ka= k^

For a small contact area, B-* 0 and the bending and torsional stiffnesses become negligible in comparison
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to the shear and comprcssive stiffnesses. For two fingers, the final results arc given in Table 5-6. If it is

further assumed that kp^> kb, as is usually the case, it can be shown that the results for Agb become identical

to those obtained in the point contact case.

For the case when the contact area is large, the bending and torsional stiffiiesses become infinite. If it is

again assumed that kp^> k^, the problem reduces to that of a finger glued to the surface of the object and

is given in Table 5-7.

= -2kbdx

= -2kbdy

= 0

= 0

= 0

Tabk 5-7: Change in 5gb for large contact area (soft fingertips)
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6. Summary

In Section 2 a procedure was listed for discovering the properties of a grip by moving the object slightly,

observing the resulting finger motions and determining the changes in the forces on the object The grip

properties of stiffness, resistance to slipping and infinitesimal stability were introduced and it was shown that

such properties could be used to compare grips. For specific tasks, one could then choose, for example, the

grip that would be stiffest with respect to rotations or the grip that would resist the largest vertical force before

slipping occurred.

Two-dimensional examples with point-contact fingers were used to demonstrate how the grip properties

depended on finger stiffness, finger arrangement and gripping forces. In later sections a more complete

three-dimensional analysis was developed. In the final example of Section 2, the instability of a coin held

on-edge between two fingers was discussed, using the simplifying example of a rectangle held between two

pointed fingers. When the rectangle was rotated slightly, the finger stiffnesses produced restoring forces that

tended to stabilize the grip, but the differential change in geometry resulting from the rotation allowed the

grasp forces to become unstable. The stability of the grip was a function of the finger stiffness, the length of

the rectangle, and the magnitude of the initial grasping forces. Interestingly, the grip became less stable as file

gripping forces were increased. Thus, while an increase in the gripping forces may make the fingers mm

resistant to slipping, it docs not always make the grip more secure.

The coin example also uncovered a limitation of the point-contact assumption used in previous analyses.

With pointed fingers, a coin is less stable if held by fingers pressing against, the two faces than if held on edge.

For human fingers, this is obviously not the case. A more accurate model of the finger/object interaction (one

that accounts for the deformation and rolling of the fingertips) explains why. Such a model is developed in

Section 4. First, however, it is useful to establish a more general framework for determining the

force/deflection relations of a grasp.

For three-dimensional problems it becomes convenient to use matrices to describe the grip. The malrix

equations are developed in Sections 3.1, 33, and 3 A When the procedure of Section 2 is applied to general,

thiwdmensional problems, the results depend on the number of degrees of freedom of the contact and the

finger. For an arbitrary motion of the object, the finger motion can be classified as under determined, exactly

determined or over determined. Different solutions are discussed for each case.

Section 4 took a closer look at the interactions between different kinds of fingertips and the object The

characteristics of pointed, curved, and soft fingers were compared. The different characteristics are reviewed

below, and arajnarizei in Table 6-3L

In Section 42* it was sbowo that lie rolling of curved fingers causes the contact area to shift with respect

to the object T t e adds a new term to' the differential change in the geometry of the grasp — one that nay
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(1)

pointed
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Kinematic conditions

Point contact with friction.
Translational motions and forces are
transmitted, but rotations are not.

Finger rotates about contact point
which remains fixed on object.

* = [0]
: rotation terms

Friction conditions

Force tangent to object surface

limited by Coulomb friction law

( 2 ) J/:
W.
curved

Only translational forces and motions
transmitted. Contact point moves as
finger rolls. Approaches case (3) for
rf —* oo and case (1) for rf —> 0

A [ J b ] : translation terms

A[ J f ] * : translation & rotation terms

Force tangent to object surface

limited by Coulomb friction law

(3 )

flat

Planar contact with friction.
Translational and rotational forces
and motions transmitted. No relative
motion without slipping.

= [0]

- [0]

Distributed pressure and shear

tractions allow transmission

of forces and moments in plane

of contact

(4)

very soft

Add elastic fingertip compliance to finger
compliance. Contact forces produce
relative motion. Approaches case (1) for
A —> 0 and case (3) for A —> OO

A[Jbf = [0]

A[ J "f ] : translation & rotation terms

Uniformly distributed pressure

and shear tractions. High

(adhesive) friction allows large

forces and moments to be

transmitted in plane of

contact.

Basttc coupling + rolling motion. Combine

cases (2) and (4). Approaches case (1)
for Pf - • 0 and A
(3)for r f - > 0 0 and A

Approaches case

soft, curved

translation & rotation terms

^nslation & rotation terms

Non-uniform pressure distribut-

ion and shear tractions permit

large forces and small moments

to be transmitted in plane of

contact.

Table 6-1: Summary of contact models derived in Section 4

help to stabilize it As expected when the radius of curvature of a curved finger becomes very small, the

movement of the contact point becomes negligible and the contact behaves like a point-contact with ftiction.

As the radius of curvanue becomes very large, the finger approaches the limiting case of a flat-tipped finger

having a planar contort with friction.

Fingers also deform, and a model was developed in Section 43 to investigate the importance of

deformation. The model conaders a very soft fingertip whkh conforms and possibly adheres to the object

surface. The fingertip compliance is added to the finger joint compliance. As the area of contact becomes

anal, the fingertip becomes more compliant with respect to rotations than translations and approaches tihe
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planar contact
with friction

oo

Contact
area
(relative to

object size)

A-0

soft curved
fingertip

ard curved
fingertip

large
radius

00

point contact
with friction Fingertip radius

(relative to object size)

Figure 6-1: Relations between finger models

point-contact model For large contact areas, the rotational compliance becomes much smaller than the

translational compliance and the limiting case of a planar contact with friction is approached.

Fingertips such as those found on the human hand display both rolling and deformation. Section 44

addressed the properties of a soft, curved fingertip and found that they combined the attributes of the models

in Sections 42 and 43. As the radius of curvature and the contact area became small, the fingertip could be

approximated by a point-contact For large radii of curvature and large contact areas, the fingertip

approached the case of a planar contact with friction.

Figure 6-1 shows the repines in which the different models developed in Section 4 apply, and indicates

the limiting cases approached for very large or anaH radii of curvature and contact areas.

In Section 5, sane ample examples were used to demonstrate the methods described in Sections 31-3.4
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and to illustrate the differences between pointed, curved and soft fingers. When pointed fingertips were used,

and only rotations of the object were considered, the problem reduced to tlie two-dimensional example given

in Section 2. For curved fingertips, the stability of tlie grasp increased over tlie pointed-finger case due to

rolling of the fingertips. If the fingertip radii were larger that one half the length of rectangle, the grip became

stable with respect to rotational displacements no matter how small the finger stiffnesses were. The

relationship between tlie fingertip radii and the length of the rectangle brings up an important point; the

definitions of "large" or "small" radii of curvature and contact areas depend on the size of the object being

handled. This is why the point-contact model is reasonable when we hold a basketball or a large box, but not

a coin or a matchbox.
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7. Applications to the Design and Control of
Hands

The analysis presented in this paper has been part of an effort to describe the mechanical properties of a

grip and to determine how they depend on finger shapes, contact conditions, finger stiffnesses and gripping

forces. It has been shown that the predicted behavior depends strongly on the model used for the interaction

between the fingertips and the object In this section we consider how the results might be applied to the

design and control of dextrous hands.

For controls purposes, the small-motion behavior of a grip amounts to a linearized description of the

"plant," giving a relationship between displacements of the object and the resulting changes in force. The

results show that point-contact finger models and stiffness-based control schemes are not always adequate. If

only the stiffnesses of the fingers are considered, a displacement of the object always results in forces that tend

to restore the object to its original position. However, a small change in the grip geometry may cause the

grasping forces to produce something akin to positive feedback for displacements of the object For stability,

these must be canceled by increasing the grip stiffness in the corresponding directions.

The contribution of the geometric effort varies for pointed, round and soft fingers and its magnitude

depends on the relative dimensions of the fingers and the object

If a stiffness model as used in earlier analyses is not adequate, then what must be done to describe and

control the grip? Unfortunately, a three-dimensional analysis of the grip becomes quite involved when finger

rolling and deformation are considered. It seems unrealistic to expect a robot or gripper controller to perform

a complete analysis in real-time.

Much of the complexity of the procedure results from its being a predictive or open-loop calculation in

which only the motion of the object and the physical characteristics of the object and the fingers are assumed

to be known* The forward force and displacement relations are relatively simple, but some complication

arises in determining how displacements will be transmitted through the contact and how the finger wfll

respond to diem. Further difficulty arises in determining how finger stiffnesses, finger motions and grasp

forces will interact to change the forces transmitted to the object Much of the difficulty could be avoided f

the finger motions and contact fortes were available from another source. In practice, humans and animals use

sensory information and experience to provide this kind of information.

When we manipulate objects with our fingers we do not use a kinematic analysis to predict how the forces

at our fingertips will change in response to displacements of the object Instead, we seem to acquire a

database of general grip behavior and we use the sensors in our fingers and fingertips to modliy off

predictions while we work. A similar approach might ako be used by a robot, provided the gripper had

sufficient sensors to describe the tetawr of the grasp. This prompts us to consider what kinds of sensors
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would be useful. Based on the results of the analysis presented earlier, several types of sensory information are

suggested:

• rITie measurement of normal and shear forces at the fingertips.
If these can be measured, they do not have to be computed. The shear force can be compared
with normal forces and, using information about the friction conditions, predictions can be made
concerning how close each finger is to slipping.

• The location of the center of the contact area on the finger.
Using this information, one can determine how the contact has moved since the last time step, and
(by extrapolation), where it will be next. For curved fingers this allows one to track the movement,
of the contact with respect to the finger and to determine the degree of rolling motion. For fingers
that do not roll, it shows that rate at which the finger is sliding against a surface.

• The size, uniformity and general shape of the pressure distribution of the contact area.
The pressure distribution could be compared with typical profiles for point contacts, curved
contacts and soft contacts and an estimate made of how closely the actual contact approaches each
of these models.

• Sums and first moments of pressures and shear tractions.
These allow the forces and moments transmitted through the contact to be determined.

To the above list of fingertip quantities would be added the joint angles and joint torques of the fingers, but

already, the list is becoming unrealistic. Even if accurate sensors were available, computing first moments and

matching pressure profiles might be just as time consuming as performing the analysis presented in this paper.

Determining such quantities has much in common with feature extraction for grey-scale vision, which is

notoriously slow unless performed on special-purpose hardware.

However, even if only the forces and an estimate of the contact size and location were available, the

analysis could be simplified. Between these fingertip quantities and the finger joint angles, most of the

information needed to describe the grip would be available through forward transformations. The finger joint

torques are easily found from the fingertip forces and the fingertip motion is easily determined from the joint

angles. An estimate of the contact size would indicate the degree of finger/object coupling and the contact

location would allow the finger jacobians to be updated A small number of fingertip sensors might be

sufficient Recent studies with human beings performing assembly-line tasks [22] suggest that a sparse array

of sensory information (perhaps no more than eight points per fingertip) provides adequate information.

In Section 2 the possibility of discriminating between different grip geometries based on grip stiffness,

stability and resistance to slipping was considered. The best grip would be the one that most closely matched

the grip properties to the task requirements. Presumably the finger stiffnesses would be chosen near the

middle of their achievable range. The next question is, once a suitable grip has been identified how should

the finger stiffnesses (joint servo gains) and joint torques be adjusted? The problem is usually under

deteraiined if only the force on the object and its stiffness with respect to external loads are specified.

Salisbury [2] specified additional internal forces and internal grip stiffnesses so that every finger joint torque

and stiffness became determined. The internal grip forces and stiffnesses could be chosen to ensure that
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fingers remained in. contact with the object, to reduce the likelihood of crushing the object, or to reduce the

danger of slipping.

As mentioned in Section 1, Orin and Oh [8] consider a similar problem in determining the most efficient

distribution of joint forces for walking machines or multi- fingered grippers. The optimum force distribution

is found subject to a number of constraints including linearized friction limitations. In grasping it is probably

less important to minimize power consumption than it is in a walking machine. More important is the need to

minimize gripping forces. This prevents objects from being damaged, avoids saturating the fingertip sensors

and reduces the kind of instability demonstrated for the rectangle held between two fingers. Linear

programming methods may be too slow for real-time control of joint torques, but could be useful for off-line

estimation of grasp forces and stiffnesses. The fingertip models of Section 4 could be added to the kinematic

description of the grasp.

In a current investigation, Kerr [23] has extended the kinematic analyses of Salisbury and has considered

the optimum selection of internal grip forces. Like Orin and Oh [8], he suggests the use of "friction

pyramids" to form a set of linear constraint equations for slipping at the fingertips.

Ideally, choosing and adjusting a grip is something that a robot should be able to do using a combination

of computational methods (including those discussed above), sensory information and some "rules of

thumb." The rules are difficult to define, but as we continue to explore the mechanics of gripping and to

observe how humans and animals handle objects we can begin to make some suggestions such as:

• In general, grip as gently as possible without letting the object slip. A light grip helps to prevent
damage to the object and the fingers, reduces the likelihood of instability, and keeps the sensors
working near the lower end of their range (where they are often more sensitive).

• Try to match the stiffness of the grip to the requirements of the task. This will simplify the active
control of the object

• Spacing the fingers closer together results in a grip that is less stiff with respect to rotations.

• Point contacts are usually less stable than soft or rounded fingers.

Compared to die analysis and control of manipulator aims, the modeling and control of multi-fingered

grippers are m an infant stage. Current efforts are directed not toward making them more precise and

efficient but toward controliing them at alL Fortunately, it is unnecessary to develop a system that rivals the

bwmm ttaixL In fact* a gripper that could grasp and manipulate within its restricted environment as weS as

many animals do in theirs, would be extremely useful The results of this .and previous analyses suggest that

for tasks involving snail motions and sold objects, gjips can be modeled and 'Controlled Experiments with

grippers assembling parts, wielding tools and loading machines are now required to construct grasping ntles,

to determine what sensory kfamMfon is most useful and to explore control strategies for

hands*
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A. Matrix Identities

The finger positions and orientations may be expressed with 4x4 homogeneous transformation matrices,

[T ]
A I

0 I
d y 0 y C Y

az b2 c z

0 0 0 I 1

[A] is a 3x3 orthononnal matrix of direction cosines, expressing the orientation of the finger {a, bfc) system of

Figure 3-1 in terms of the global (x,y,z) system, r is a vector from the origin of the (x*y,z) system to the origin

of the (a,btc) system. If r f is the vector in Figure 3-1 from / to Jp in (akc) coordinates then [A]r f gives the

same vector in (x,y,z) coordinates. Consequently, the vector from o to fp in Figure 3-1 is r = rb - [A] rf.

The relationship between two six-element vectors (dl - [d x , d , d2, d^x, d^ , d^2] ) of

differential translations and rotations may be expressed as a 6x6 jacobian.

The jacobian is conveniently written in terms of 3x3 partitions:

(6x6) 0 | At

(3x3) (3x3)

[A] is again a 3x3 matrix of direction cosines. In the above example, [A] expresses the orientation of the

(lm,n) coordinate system at bp in Figure 3-1 with respect to the (x,y,z) system. Since [A] is orthononnal it

follows that [>]* = [A] ' 1 .

[R] is an antisymmetric crass-product matrix formed from the elements of a vector r, such that if v is a

three-component vector (for example, the three rotational components of db) then

[R] - r ,
- I N ,

r x v

Siiiceis[R]EaEiisyiiimeiik;[R]t = -[R] and [R] tv = v t[R] = vx p.

Given the above identities for [R] and [A] fee following relationships hold for [ J ] :
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[Jb] t =
A | 0

RA
[Ob]-1 _

RA

[Jb] -t
A1 0

A1

A.1 Matrix Method for Under Determined Finger Motions

For the case in which the motion of the object does not completely determine the motion of the finger, the

potential energy may be minimized subject to the nc constraint conditions in [ P ] . The constraint equations,

Cj, are formed by multiplying one row of [ P ] by dc. The w/auxiliary equations may then be written as [24]

dP.E. dC, 3 C2

These are combined with the constraint equations to provide nf+ nc equations for nf+ nc unknowns. The

equations may be conveniently expressed as,

-1
9q

where /is a column vector of the nc Lagrange multipliers and

Kq 1 P*

I - - -
P I 0

[L3

A.2 Differential Jacobians

In Section 3.1 the change in the jacobians, [ J ] , as a result of small displacements of the object are

considered. These terms, [ AJ ] and [AJ]*, result from shifting of the contact area and rolling of the fingers.

Products such as [ A J ] d contain very small terms and may be ignored, but products such as [ AJ]*g may

contain significant terms since the forces, g, may be large. As an example, if the contact area translates and

rotates with respect to the object then change in the jacobian relating gb p and g^ is

[AJb]t = [Jb1]t-[Jb]t

where [ J b ' ] l is the jacobian relating to the new position and orientation of the contact area and [ J b ] 1 is

the original jacobian. By writing [ J b ' ] l and [ J b ] 1 in terms of partitions, [AJb] 1 is seen to be

AA
I

A(RA)|AA
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where A(RA) = (RA)'-(RA) = [R][A] + [AR][A] + [R][AA] + [AR][AA] - [R][A].

[ A R][AA] contains second order terms, and may be dropped so that A (RA) x [AR][A] + [R][AA].

[AR] and [AA] can be written in terms of difFerentiai translations and rotations,

[AR] - [R'] - [R] =

[AA] = [A1] - [A] =

0 -5rz 5rz 5ry

0 -5rx

0-5ry 5rx

0 -86Z 8By
86Z 0 -80X
8dv 8dx 0

[AA] and 5r are also equivalent to the upper left 3x3 partition and right column respectively of the
differential 4x4 homogeneous transform, [ A ] , expressing a small translation and rotation of one coordinate
system with respect to another [16J.
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B. Rolling Contact

r ' (,) = r(* + Ss) a n d U\s) = % + «s)m a y b e e x P a n d e d m t c r m s o f r(s)

dr d2r
{s) ds ds2

Then A r becomes

as 2! as 2! as

Since the first derivatives of rb and r f are equal at the initial contact point, subtracting Arb - Ar f gives

. (5s)2 .cPrb d2rfArb-Arf = - i r - ( ^ -^-) + . . .

or, Arb - A r f s l/2(5s)2 times the difference in curvature between rb(^ and

lire rotation of the contact point is given by the vector (ub x u b ) and the rotation of the fingertip is given

by (Uf x ub ). Expanding Uf and ub in terms of r ^ and discarding third and higher derivatives of r gives

and

b = (u f x ub) + 8s(u f x •

where u = ub = u f at the initial contact point

For the case in which the object surface is flat and the fingertip is a segment of a circular arc, as in Figures

4-3 and 4-4, or 5-2 and 5-3, the rolling equations become

r f = (rc sinfy)! +(rc cos0/)j , rb = (rc

where Of is related to sas

d$f

For # j = tf $ = 0 at the initial conte:t point, equations (43H4-7) boxniie
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ubxub = 0

x ub =
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C. Details for examples in Section 5
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A [ J f ] point contact
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Summary of matrix equations for left finger — point-contact example

1. dbp = [M][Jb]db

2. d fp = [Jfq]dq

3.

= [«-]- l
9q

dm
dn

4. 8gq = [Kq]dq

5. [Cfp] =

6. [Cfc] = non-singular portion of [Cfp]

7. dfC = subset of dfp corresponding to [Cfc]

8. 8gfc = [Cfpl^dre

9. 5gfp = Sgfc + A[Jfy*$ r

10. Sgb = [Jb] t[M] t5g f p



76

[Cfp]
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