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POSITIVITY OF WEAK SOLUTIONS OF NON-UNIFORMLY

ELLIPTIC EQUATIONS

by

C. V. Coffman, R. J. Duff in and V. J. Mizel

1« Introduction.

Consider a second-order self-adjoint boundary value problem

o£ the form

N
(1.1) Lu = - S |r a..(x)|£- + b(x)u = f, in 0,

5 x ^ * x

(1.2) Bu = /3(x)u + 6 |—u = 0 on
01/

Here Q is a bounded region in R having smooth boundary, y

is given by y (x) = A(x)n(x) where A(x) = (a. . (x) ) . . ,

and n (x) is the unit outward normal to Sfl at x; 0 (x) is

a real-valued function on 90 and 6 is a constant, and either

j3(x) = 1 and 6 = 0 or 0 (x) J> 0 and 6 = 1 . Suppose that 0

is connected and that L is uniformly elliptic in 0. If

b(x) and 3(x) do not both vanish identically (on 0 and BO

respectively) then the differential operator £ on L (0) deter-

mined by L and B is positive definite and has a compact

inverse. Under these assumptions together with the classical

smoothness conditions on the boundary 90 and on the coefficients

in L and B it follows from the maximum principle that the

Green1s function G for £ satisfies

G(x,y) > 0, x / y, x,yeO.



Under the same assumptions,, the least eigenvalue of the eigenvalue

problem

(1.3) Lu - Ac(x)u in ft, Bu = 0 on 5ft,

where c (x) > 0 on ft, is positive and simple and the correspond-

ing eigenfunction is of one sign and does not vanish in ft.

Finally, this eigenfunction minimizes the Rayleigh quotient

f r N 2
J(u) - I ( S a. . (x)u u + bu )dx +

H i,j=l 1D xi Xj

+ } 3 (x) u2 (x) da / (Ju2 (x) c (x) dx),
Bft ft

in the class of functions ueC (ft) that satisfy

Bu - 0 on T = {xedft: 3(x) > o ) .

For the classical existence and uniqueness theory of (1.1),

(1.2) see Miranda [18]. Some references for positivity properties

of solutions of (not necessarily self-adjoint) second order

boundary value problems are [3], [8], [22], [27]. The indicated

properties of the first eigenvalue and its corresponding eigen-

function are proved, at least for special cases, in [8], [11],

[13]• In general these follow from the theory of positive operators

[13], [14], [15], although the references cited generally make

over-restrictive hypotheses which, in particular, rule out the

Dirichlet boundary conditions; see however the remark on page 923,

[13].



The purpose of this paper is to establish results like

those quoted above for the weak problems corresponding to (1.1),

(1.2) , and (1.3) which apply when the coefficients are not

necessarily continuous,when L is not necessarily uniformly

elliptic, and when ft is not necessarily either bounded or

smoothly bounded. For problems of this generality there is

available neither a strong maximum principle nor, even when

b(x) s 0, a Harnack inequality (see however the remark following

the proof of Theorem 4.1). In fact we obtain our results not

by a local analysis of solutions of (1.1) but rather by analysis

of the properties of the Sobolev type function spaces naturally

associated with (1.1), (1.2). We are primarily interested in

the Dirichlet problem, and the hypotheses which we impose are

too weak to permit formulation of general self-adjoint boundary

conditions, thus we do not attempt here to treat boundary condi-

tions of the generality of those discussed above. Our results

however do apply to mixed boundary conditions consisting of the

Dirichlet condition on a portion of the boundary and natural

boundary conditions on the remainder of the boundary. Formally,

such boundary conditions can be written

(1.4) u = 0 on IL ~ = 0 on To

l ov *

where v is as above, 1^ PI T2 = 0, 1^ U T2 = 0.

The relation between certain of our methods and the methods

used in [3] should be emphasized. This connection is explained
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further in the remarks following the proofs of Lemmas 3.6 and

4.3.

Some sources in which elliptic equations are treated under

assumption similar to (but in all cases somewhat stronger than)

ours are Kruzkov, [16], Murthy and Stampacchia, [21], and

Trudinger [29] and [30]. Although these authors are all concerned

with problems essentially different from those which are our main

concern, there is some overlap of ideas between our work and

theirs. In fact we have been guided somewhat in our choice of

notation by [30]. We note that under their somewhat stronger

assumptions together with some further additional hypotheses,

the Harnack inequalities of Kruzkov [16] and Trudinger [29]

can be used to prove a positivity result of the sort we prove

here. See the remark following the proof o£ Theorem 4.1.

The original motivation for proving the results in this

paper came from certain problems arising in connection with

the work [7] on uniqueness of positive solutions of quasi-

linear elliptic boundary value problems. Indeed the main result

of [7], Theorem 1, can be regarded as a non-linear analogue of

Theorem 5.1 below.



2. Preliminaries.

NLet fi be a connected open set in R . Below we shall use

the following conventions and notations. First, since such distinc-

tions are not critical for our purpose, we shall not explicitly

distinguish between an equivalence class of functions (with respect

to equality almost everywhere) and a representative of such an

equivalence class. By a subset of fi we will always understand

a measurable subset; set inclusions and set inequalities are to

be understood as holding to within a set of measure zero. Finally,

an inequality asserted for a function f on a set E is to be

understood as holding almost everywhere on E.

We will denote Lebesgue measure by JLI; the characteristic

function, defined on fi, of the set E c: fi will be denoted by

V-,. For a measurable function f defined on fi,
Hi

s(f) = {XGQ: f (x) ̂  0} .

Following a standard notation we will let H ' (fi) denote the

space of real valued functions which are locally of class L

in fi and are locally strongly L differentiable. Fotf

ueH ' (fi), Vu will have the obvious meaning.

Lemma 2 . 1 . Let

(a) jif u(x) = const, ja.£. on a. measurable set G c fi then

Vu = O ja..e. .on G.

(b) Ĵ f fi1 jj3 ja connected open subset of fi and

Vu = 0 a.e. in fi! ,



then

u(x) =2 c a.e. in fiT ,

for some constant c.

(c) |u| e H ^ ( n ) and

v|u| = sgn u vu a.e. in 0.

Proof, The assertion (a) is Theorem 3.2.2 on page 69 of [20]

The assertion (b) follows readily from the fact that a

distribution on fif whose distribution gradient is zero, is a

function constant almost everywhere, [12], [24].

Finally, assertion (c) follows from a chain rule given in

[17], since the function g(x,t) = |t| satisfies the hypotheses

of Theorem 2.1 of that paper and |u|(x) = g(x,u(x)).

The space H ' (0), with its natural topology, is a Frechet

space; the collection of all sets of the form {u€H,* (Q):

J(|vu| + |u|)dx < e} where e > 0 and G is bounded, (3 c Q,

G

forms a basis for the neighborhoods of zero in this topology. A

family (Nn)
 of semi-norms on Hi'c(^) *-s a complete family of

semi-norms for H?"j'1(n) if the set (u€H^1(n): N (u) < e) is
IOC IOC n

open for each n and each e > 0, and the totality of sets of

this form is a subbasis for the neighborhoods of zero in H,9 (0)

For example, one complete countable family of serai-norms is

given by



(2.1) Nn(u) = J (|vu| + |u|)dx, n * 1,2,...,
Gn

where {G ) is a countable cover for 0 consisting of bounded

open sets G with "G c n, n = 1,2, . . . . If the sequence fGn

is increasing then the semi-norms given by (2.1) satisfy

(2.2) Nn(u) £ Nm(u)f

for n,m = 1,2,... , and m > n.

Remark 1. If {N } is a countable family of semi-norms

satisfying (2.2), if {N1 ) is any other countable family of

semi-norms, and if there exist constants k , K , n = 1,2,... ,

such that for ueH^^ifi) N1 (u) < k N (u) for all n while
loc n • n n

N (u) j£ KnN
T (u) for all suffidiently large n, then {N!} is

a complete family of semi-norms for H,9 (fl) provided {N } is.

Remark 2. If {N } is a complete family of semi-norms

on H,' (Q) and if T is a linear mapping from a normed linear

space Z into H ' (0) then it is easily seen that T is con-

tinuous if and only if it is bounded with respect to each N ,

i.e. if and only if for each n there exists A such that

N (Tu) <^ A llul|r7 f o r a 1 1 ueZ. Such a map T is uniformly
n •—• n Zi

continuous and therefore has a unique continuous linear extension,

T: Z ' > H i o c ^ * to t h e coropletion 2 of Z.
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Finally, a real topological linear space X contained as

a linear manifold in H}'1(0) will be called stronger than H^1(0)
loc •' — — ioc

if the natural embedding e: X > H,' (fi) is continuous.

Lemma 2.2. Let {G } be an increasing sequence of bounded,

smoothly bounded, connected, open subsets of Q with G c Q ,
ao

n = 1,2, . . . ,, fi= U G. Let S c Q be a measurable set of
n=l

positive measure. Then (Nf), where

(2.3) N^(u) = j |vu|dx + j |u|dx,

Gn S n Gn

is a^ complete family of semi-norms for Hn
 9 (Q) .

Proof. It is clear that each N1 is a semi-norm, and, in

view of Remark 1 above it suffices to prove that N! is equiva-

lent to N , given by (2.1), for all sufficiently large n.

Suppose n is sufficiently large that ju(SOG ) > 0, but that

N! is not equivalent to N . Then there is a sequence (u, }

in Hn
 5 (fi) such that

(2.4) W = 1' k =

and

(2.5) lim Ni (U. ) = 0.
k-oo n K

Let u" denote the restriction of u, to G , k = 1,2,...

Then Nn(u ) is just the H ' (Gn) norm of u^ so in view of
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G , and consequently, from (b) of

3t. a.e. in G . However by (2.7) we

.e. in SOG and thus UQ(^) ~ ° a.e

.cts (2.6). Thus the lemma is proved.

arable N x N real matrix valued function

a measurable real valued function on fi

3 a.e. self-adjoint and positive definite

non-negative. Let

: J
n

bu2)dx < OD }.

1 2; W 9 (A,b,Q) and linear manifolds in it

ar product spaces with the semi-definite inner
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(2.8) < u,v > = J ((Avu,vu) + buv)dx.

1 2Thus, a linear manifold X cW 9 (A,b,0) is a pre-Hilbert space

if < • , . > is positive definite on X; if in addition X is com-

plete with respect to < . , . > then X is a Hilbert space.

We shall be interested in Hilbert spaces X c wlj2(A,b,Q)

such that c?* c X, CC3D(n) Pi X is dense in X, and X is stronger

than H, ' (0). (This last condition is necessary and sufficient

1 2in order that the Hilbert space X c W 9 (A,b,Q) be a ji-measurable

functional Hilbert space in the sense of [3]; see also Lemma 3.4,

below and the remark following.) If such spaces exist at all then

there clearly exists a smallest one--namely the completion of C^

with respect to -< .,. >--and this will be denoted HQ(A,b,n). If

C00 (Cl) 0 W ' (A,b,fi) is contained in a space of this type, (in

particular if W1^2(A,b,n) contains c£°(fi) and is a Hilbert

space stronger than H^(fl)), then that uniquely determined

space will be denoted H(A,b,Q). Criteria for H (A,b,fl) to

be defined are given in [30]. Such criteria will also be de-

veloped, in somewhat greater generality, in section 3.

3. The Space W1"2(A,b,Q).

Suppose now that A and b are as in §2. We first give

1 2

general criteria for a subspace of W 9 (A,b,Q) to have a com-

pletion in W1'2(A,b,n).
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Lemma 3.1. Let Z be a pre-Hilbert space jLn W1' (A,b,fi)

which is stronger than H1 ' (Q) . Then there exists ji unique

1 2
Hilbert space X c w 9 (A,b,n) such that X JLS stronger than

Hn
9 (Q) and Z is a dense linear manifold in X.
IOC — — — _ _ _ _ _ _ _ _ _ _ _

Remark 3. If b is positive on a set of positive measure

then X is unique even without its being required to be stronger

than H * (Q) ; in general,, however, this is not true.

Proof. Let e denote the natural embedding Z > H T /

by hypothesis e is continuous. Let a: Z > L (Q, R ) be

defined by

(3.1) a(u) = (A1/2vu,b1/2u),

then a is an isometry and thus a(Z) can be identified with

the abstract completion of Z. Note that if

then

(3.2) % + l ( x ) = ° a#e' on

where SQ = [xeQ: b (x) > o}. We now define r: a (Z) ->Hioc

as follows

(3.3) r = ea"1 .
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We clearly have, for gea(Z) and to =

(3.4) Vco = A~ / g a.e. on 0, co = b~ ' g N + 1 a.e. on SQ,

where g = (g.,, . . . , g ) . Since T, defined by (3.3), is a con-

tinuous linear map, by Remark 2 above it has a unique continuous

extension r: o (Z) > H T / (̂ ) • N o w suppose that gea(Z) and let

{g ) be a sequence in a(Z) converging to g, with 0L = r(g )>

n = 1,2,..., so that (%} converges to to = r(g) in H,' (0) .

We can assume, moreover, that (g } was selected so that

gn(x) >g(x), vo^(x) > 7co(x) and o^ > 0)(x) for almost

all xeft. It then follows that (3.4) holds for gea(Z), co = r(g) .

We now show that r is one-to-one. Indeed if co = rg and a)f = rg1

and co = coT then clearly g. = gl a.e. on Q for i = 1,2,...,N

and g N + 1 = g^+1 on SQ, so by (3.2), g = g! . Using again the

relation (3.4) for gea(Z), co = Tg, we conclude that r(a(Z)) c

Wl52(A,b,Q), i.e. that <co, co>, as defined by (2.8) is finite

for W€T(a(Z)). Let X be the subspace of W * (A,b,Q) whose

elements are just the elements of T(CT(Z)). It is easily seen

from this construction that the isometry a extends to a surjective

isometry a: X >^(Z), with

= (A1/2vu, bly/'2u), ueX.

Ihus X is a Hilbert space with Z dense in X. The natural

embedding e: X '>Hioc(n) s a t i s f i e s e = TG SO that e is

continuous and thus X is stronger than H ' (Q) . On the other
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1 2
hand, if there exists a Hilbert space X1 in W ' (A,b,O) with Z

dense in X* and X! stronger than H^(ft) then a sequence in Z

which is convergent in X! is convergent in H
1Q C(

n) t o t h e

same limit. Since the same sequence is also convergent in X

it follows that X and X? must coincide.

Lemma 3.2. (a) In order that C®(0) c Wlj> 2 (A,b,ft) it is

necessary and sufficient that ||A||, keL.. (ft) .

(b) A linear manifold Z c Wlj> 2 (A,b, ft) satisfies the

hvpotheses of Lemma 3.1 provided either of the following holds:

(i) Z = C^(ft), ft is bounded, and HA""1)! e L1(fi).

(ii) Z is arbitrary, ||A"""L|| € LJ (Cl) and b jls

positive on a set of positive measure.

Proof. The sufficiency of the condition in assertion (a)

is obvious. Conversely, suppose that C^(n) c W ' (A,b,Q).

Ihen necessarily (Avu, vu) + bu e L (fi) for each ^

First we show that this implies beL1 (Q) . To this end let G

be an arbitrary open set in Q with G compact, G c 0. Let

u e C?\n) with u = 1 on G. Then u e W 9 (A,b,n) implies

that b is integrable over G. Since G was arbitrary it follows

that ^

Next we show that the diagonal elements of A belong to L, (ft)

Let G and u be as above and let u(x) = x.u (x) so that

M l U8SARY
CARNEHE-ItUiH
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— = 1 on G, -r^ = 0 on G where i is a fixed index 1< i< N.

2 2
Then on G (Avu,vu) + bu = a.. + bu . Since we already know that

beL-. (Q) , it follows that a.. must be integrable over G and

hence, since G was arbitrary, a., e L-. (Q). Finally let G

and u again be as before and let u(x) = (x. 4-x.)u (x) so

that, on G, |5 = |5 = 1 and IS = ° for k ^ i^j, where i
Q X . OX . OX,

1 J K
and j are distinct, fixed indices 1 <, i, j <, N. Then, for this u,

2 2

on G, (Avu,vu) + bu = a. . + a . . + 2a. . + bu , and thus we con-

clude that a. . e L̂ " (ft) .
1 j IOC

Suppose now that condition (i) of (b) is satisfied.

From Holder1s inequality and (2.8)
( 3 . 5 )

0

Since ft is bounded there exists p > 0 such that

(3.6) pj(|vu| + |u|)dx < J|vu|dx, for

n o

s e e [20, p . 6 9 ] . Thus, combining (3 .5 ) and ( 3 . 6 ) , we s e e t h a t

( i ) i m p l i e s t h a t C^(n) (} VT1'2 (A,h,Q) is a p r e - H i l b e r t space

stronger than H ' (0), hence also stronger than H}' (0).

Now suppose that (ii) is satisfied and let S be a

measurable set of positive measure such that
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b(x) > m > 0, for xeS,

for some positive constant m. We can assume that S is contained

in a compact subset of ft. Let G be a bounded,, open subset of ft

with

s £ G £ G c ft ,

then for ueW1'2 (A,b,ft),

J|vu)dx + J|u|dx^ [( JllA^Hdx)1/2 + m-1/2(M(S))
1/2)] <u,u>1/2.

G S G

It readily follows from Lemma 2.2 that W1'2 (A,h,Q) is itself

a Hilbert space stronger than H ' (ft) .

As a consequence of Lemmas 3.1 and 3.2 we have the following.

Lemma 3.3. Let ||A||,
 b e L i o c (̂ ) • UL l̂ "3"!! e Lloc^^ a n d

b is positive on a set of positive measure then both Hn(A,b,ft)

and H(A,b,n) are defined. _If ft is bounded and HA" 1)! eL1(ft)

then H (Ajbjft) is defined.

Proof. It is immediate from Lemmas 3.1 and 3.2 that under

the general hypothesis and either of the two alternative conditions

of the above assertion, HQ(A,b,ft) is defined. Under the first

of the alternative conditions H(A,b,ft) is defined as the comple-

tion of C^fft) nWlj2(A,b,ft) in W1^2(A,b,ft).
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Lemma 3.4. Let X be a Hilbert space in W 9 {K,b,O) which

is stronger than H,3 (Q).^ loc

(a) If {u } is a convergent sequence in X, with limit u,

then there exists a subsequence {u } such that
nk

(3.7) lim u (x) = u(x) a.e. in 0
k - O D nk

and

(3.8) lim vu (x) = vu(x) a.e. in fi.
k ->OD nk

(b) £f {u } is a weakly convergent sequence in X and

if (3.7) holds for some subsequence {u ) then u is the
— n k

weak limit of {u }.

Remark 4. The first assertion of Lemma 3.4 has the following

converse. If X is any Hilbert space in W1^2(A,b^Q) and if

every convergent sequence {un} in X, with limit u, has a

subsequence {u } satisfying (3.7), then X is stronger
v

1 1
than H 1^ c(Q). Indeed,, if X has this property then one can

verify immediately that the graph of the natural imbeddimg

X > H1(^c (fi) is closed and therefore that this imbedding is

continuous.

Proof. Convergence of fun) to u in X implies conver-

gence of {un) to u in H ^ ( n ) , and from this the assertion

(a) readily follows.
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To prove assertion (b) we can just as well assume that the

full sequence is a.e. convergent. By Mazur's theorem there is

a sequence {wn} whose terms are convex combinations of the u n,

w =
n

and (wn) converges strongly in X to the weak limit of the

sequence [ u j . Since u belongs to the closed convex hull of

the set [un, u n + 1 . . . } , for any value of n, one can construct

the sequence (wn) in such a way that

' a = o for t < n,
n, I

and then { w j will converge almost everywhere to u. As in

(a), the sequence { w j is convergent in H^(fi) and its

limit in this space clearly must coincide with its a.e. limit.

The X- and the H^ (0) - limits of the sequence ( w j coincide

and this completes the proof.

Lemma 3.5. Let ueW1' 2 (A,b, Q) . Then |u| e W l j 2 (A^b, Q ) ,

and u and |uj have the same norm. Suppose that H(A,b,n)

(HQ(A,b,fi)) is defined and let ueH(A,b,fi) (ueHQ (A,b, fi) ) .

Then |u| e H(A,b,fl) (|u| e H (A,b,fi)). Furthermore whenever

X is as in Lemma 3.4 and is closed under u > | u | _, then tha t

mapping is continuous and so are the mappings u > u , u > u
____i-_i.^__-*_________________^_________^^^_^_i_i^__t_ _j_
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Remarks. An argument similar to that in the proof to follow

shows that ueH(A,b,fi) (ueH (A,b,fl)) implies f(u) e H(A,b,fl)

(f(u) e Hn(A,b,O)) whenever f is uniformly Lipschitz continuous

and f(0) = 0. However continuity of u ->f(u) may fail.

An immediate consequence of the last assertion of Lemma 3.5

is the following.

Corollary. Let X be as in Lemma 3.4, and let X be

closed under u > | u | . JEJ: X^ is a subspace of X and V

is a dense linear manifold in x, which is closed under u > | u

then X, itself is invariant under u > |u

Proof of Lemma 3.5. For the first statement, note that |u|

has the same norm as u as follows from Lemma 2.1, (c) and (2.8).

To prove the second assertion suppose first that u e C ^ Q ) (ueC^fi) )

then |u| can be approximated uniformly by a sequence {w } in

^ (Cg>(Q)) with

(3.9) |grad w (x) | <C | grad u(x) |, xeG.

This can be done, for example, by taking wn(x) = f^(u(x)) where

for n = 1,2, . . . ,fn e C°°(R) , fn(0) = 0, | f^ | < 1, and the

sequence {f } converges uniformly to f = | | . The sequence

[w } is clearly bounded in H(A,bj,Q) because of (3.9) and the

fact that |f(t)| < t, and thus can be assumed to converge weakly

in H(A,bJ,Q). In view of Lemma 3.4, (b), this shows that |u|eH(A,b,O)
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For arbitrary ueH(A,b,,Q), (ucH (A,b,Q)) we first approxi-

mate u in H(A,b,n) by a sequence fwn) in C 0 0 ^ ) (in 0^(0))

By Lemma 3.4, (a) {w } can be assumed to converge almost every-

where in Q, and thus, by what we have already shown, f|w |}

is a bounded sequence in H(A,b,0) (in H (A,b,Q)) converging

almost everywhere in Q to u

Using Lemma 3.4, (b) , as before we conclude that |u| e H(A,b,0)

(|u| € H (A,b.,Q)). That u and |u| have the same norm follows

as before.

The continuity of the mapping u > |u| is proved as

follows. Let (w } be a sequence converging to u in X.

Then by Lemma 3.4,(a) every subsequence of [w } has a subse-

quence converging to u a.e. on Q. Thus every subsequence

of ( |w |} has a subsequence converging to |u| a.e. However,

since { |w |} is a bounded sequence in X . We see from this,

using Lemma 3.4,(b) 9 that I|w |} converges weakly to |u|.

However the facts

w N |u| weakly in X,
n ' '

"111 = 1M| = lim|||wn|||,

together imply that actually the convergence of {|w |} to |u

is strong convergence in X.

Lemma 3.6. Let X be as in Lemma 3.4 and suppose in

addition that X is closed under the mapping u > | u | .
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ueX is non-negative as a linear functional, i.e. jLf

(3.10) < v,u> > 0

for all veX with v (x) >̂ 0, a.e. _on Q then

(3.11) u(x) > 0 a.e. on n .

Proof, Since u(x) <̂  |u(x)| a.e. on Q, the positivity

of u, as linear functional implies

(3. 12) < u , u > < ; < | u | , u > .

But from the Schwarz inequality, since u and |u| have the

same X-norm^

< | u | , u > <± •< u, u >

with equality only if u and |u| are proportional, i.e. only

if u is of fixed sign. The conclusion of the Lemma then

follows from (3.12).

Remark 6. If K denotes the positive cone in X, i.e. the

set of functions in X which are a.e. positive on Q,, and if

K* denotes the dual cone

K* = fueX: <v,u> 2 0 for all veK),

then Lemma 3.6 asserts that

K* c K.
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If X is any Hilbert space, K a proper closed convex cone in X,

^> the partial order induced in X by K, and K* the dual cone

then the following are equivalent:

(i) For every ueX there exists ueK such that

u > ± u 9 ||u(| < j|uj| , where || || denotes the X-norm.

(ii) For every ueX there exists u'eK such that uf >, u,

lluMI 1 l|u||.
(iii) K* c K.

For a proof of the non-trivial implication, (iii) implies

(i), see the proof of Theorem 1, [3].

1 2
Lemma 3.7. Let X be a Hilbert space in W ' (A^b.Q) with

.00,
C (Q) c X. T£ E is a measurable subset of Q with ji(E) > 0,

and if u > x v
u
 9 where x F denotes the characteristic

function of E, is an orthogonal projection on X, then ^(Q\E) = 0.

Proof. Assume u > x r?u -̂s an orthogonal projection

and /i(Q\E) > 0. Let Q1 be a connected, open subset of 0

having compact closure in Q and such that (i(E flQ1) > 0 and

/i(Qf\E) > 0. Let cp € C^(Q) with cp(x) - 1 on Q1 9 so that

c p e X . T h e n i f x T ? ^ ^ ^ w e h a v e , b y L e m m a 2 . 1 , ( a ) , 7 ( x ^cp) = 0
hi E

a.e. on Qf 3 and thus by Lemma 2.1, (c), X ̂cp is constant a.e.
.hi

on nT , which contradicts (Lt(f2'\E) > 0. We must therefore have

jLt(Q\E) = 0 and the result is proved.
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Note that if y p U G^ for every ueX then u > •% u is

necessarily an orthogonal projection, since by Lemma 2.1, (a) and

(2.8),

< X E
U > V > - J (AVu.Vv) 4- buv)dx.

E

4. The Green1s operator.

Let c be a real-valued measurable function on Q with

(4.1) c(x) > 0 a.e. on Q.

2
For brevity we shall denote by Y the weighted real L space

with weight c

Y = L2(Q,c(x)dx) .

The inner product in Y will be denoted (.,.)

(f,g) = J f(x)g(x)c(x)dx.
Q

In what follows X will always denote a Hilbert space in

1 2W ' (A,h,Cl) . We shall say that such a space is admissible if it

satisfies the following three conditions

1 2
I. X is a Hilbert space in W ' (A^b^Q) which is

stronger than H^^(Q); X n C00^) is dense in X.

II. X is closed under the mapping u > |u|.
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III. If E is a measurable subset of 0 with JLI(E) > 0

and if v _ueX whenever ueX then u(Q\E) = 0.

We will say that the pair (X,Y) is admissible if X is

admissible, Y is as above, the functions in X have finite

Y-norm, i.e.

(4.2) | u2(x)c(x)dx < OD , for all ueX,

n

and X, regarded as a linear manifold in Y, is dense in Y.

It follows from Lemmas 3.5 and 3.7 that H(A,b,fl) or

Hn(A,b,Q), whenever they are defined, are admissible. We will

not discuss in detail the various conditions which imply (4.2)

but only record the following trivial criterion for the pair

(X,Y) to be admissible.

Lemma 4.1. jCf X is admissible, if c
o(^) £

 x and if

there exists a constant M such that

c(x) <; Mb(x), a.e. ori Q,

then the pair (X,Y) is admissible.

In the remainder of this section we will always assume

that the pair (X,Y) is admissible. We will denote by i

the natural injection of X into Y.
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Lemma 4.2. The operator i is continuous and has dense

range in Y. The adjoint operator i*: Y > X is continuous,

injective and has dense range in X.

Proof. Since by condition I above X is stronger than

H1
9 (fi), the elements of X are (equivalence classes of)

measurable functions (a fact which we have already implicitly

assumed in the definition of an admissible pair). Therefore, in

view of (4.2), i is well-defined with domain X; by (4.1), i is

indeed an injection. Further, because of Condition I it follows

from Lemma 3.4,(a), that the graph of i is closed, and therefore

that i is continuous. That i has dense range in Y follows

immediately from the admissibility of (X,Y). The assertions

concerning i* follow immediately, by duality, from the proper-

ties of i.

We note that, for feY, u = i*f is the solution of the

weak problem

J((Avu,Vv) 4- buv)dx = I vfc(x)dx, all veX.

n n

Lemma 4.3. The operator i* is non-negative, i.e. feY and

f (x) J> 0 a.e. on 0 imply u(x) ^> 0 a. e. on Q, where u = i*f.

Proof, Let feY, f(x) J> 0 a.e. on Q. Then if u = i*f

we have

(4.3) <u,v> = (f,iv)

for all V€X. Since the term on the right in (4.3) is non-negative
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when v(x) .> 0 a.e. on fi it follows that the solution u of

(4.3) is non-negative as a linear functional on X. It follows

immediately from Lemma 3.6 that u(x) _> 0 a.e. on 0.

Remark 7_. Let t denote the collection of measurable subsets

E of Q with

I c (x)dx < OD .

E

Each ueX determines a function u on £ by

(4.4) u(E) = | u(x)c(x)dx.

E

Let X denote the set [u: UGX} furnished with the inner product

(4.5) [u,v] =* <u,v>, u,veX

Then X is a proper functional Hilbert space in the sense of

[3] ; (X is a jut-measurable functional Hilbert space in the

sense of [3].) As a proper functional Hilbert space,, X has

a reproducing kernel K defined on £ x £, and it is easily

seen that

(4.6) K(E,Ef) - J (i*xE,)c(x)dx « J (i*x £) c(x) dx.
Ef E

If ueX, and w = |u|5 then clearly w(E) >; u(E) for all Ee£.

In view of this5 since X is a space of real functions, it
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follows from Theorem 1 of [3] that K is non-negative on 6xP,

and this implies Lemma 4.3.

We now consider the operator k = k__ : Y >Y defined by

(4.7) k = ii*.

Lemma 4.4. The operator k is self-adjoint, positive

definite and preserves non-negativity.

Proof. The self adjointness of k is clear from (4.7).

Positive definiteness follows from the injectivity of i*

(Lemma 4.2) and the identity

(kf,f) = < i*f, i*f > .

Finally, the non-negativity follows from the non-negativity of i*

Lemma 4.5. Let fcY, f not identically zero, and

f (x) > 0 on 0.

Then the sequence fs(k f) } is an increasing sequence with

OD
U s(k f) = n.

n=l

Proof. Let f be as above and suppose G = s(f)\s(kf).

Put f.. = )( f where \ is the characteristic function of G.

From the non-negativity of k, since 0 < f, <. f on Q,
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0 £ kfx < kf on

and thus kf. =0 on G. But by definiteness of k

(f1,kf1) > 0

unless f-, = O, thus we must have f. = 0 , i.e. G of measure

zero. The increasing character of the sequence {s(k f)}

obviously follows. Let now

OD

F - U s(knf), E = Q\F.
n=l

Let geY be any non-negative function with s(g) c E, and

suppose that s(kg) n F has positive measure. Then for

suitably large n, s(kg) n s(k f) will also have positive

measure; but this leads via

0 < (knf,,kg) =(kn+1f,g) = 0

to a contradiction. Thus s (g) c E implies s(kg) c E, at

least for non-negative g; but then the same immediately follows

for arbitrary geY. Let now P denote the orthogonal projection

on Y defined by

= x Eg

We have shown that

kP = PkP,
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and from this it follows that kP is self-adjoint and hence

P and k commute:

kP = Pk.

Thus Y can be represented as the direct sum

Y = M © N

where geN if and only if

(4.8) s(g) c E,

and heM if and only if

(4.9) s(h) c P,

and M and N are invariant manifolds for k. Since

s(ii*g) = s(i*g), (4.8) implies

s(i*g) c E

and (4.9) implies

s(i*h) c F,

so that, by (2.8) and (a) of Lemma 2.1, i*M and i*N are

orthogonal in X. Thus, since i*Y is dense in X,

X = U © V

where U is the closure of i*(M) and V is the closure

of i*(N), and by Lemma 3.4 the functions in U vanish on E

and those in V vanish on F. This means, however, that the
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orthogonal projection of X onto U is given by u > y u ,

but then, by condition III, we must have jLt(E) = 0, and the

result is proved.

We now prove that k is strongly positive in the sense

that f€Y, f > 0 on Y and f ^ 0 implies (kf)(x) > 0

a.e. on Q. For this we use Lemma 4.5 and the following device

we introduce an operator k, with the same properties as k

and related to k by

(4.10) k~X = k"1 - I,

so that k may be expressed

(4.11) k = k +

To this end we introduce the Hilbert space X,, which is simply

X furnished with the equivalent inner product

(4.12) <u,v>1 = <u,v> + (iu.iv).

We denote by j the identification

j : X > xx,

and by i. the immersion X. >Y. Then (4.12),, more formally^

becomes
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o r

= < j * j u , v

so t h a t

(4.13) I x = j * j - i * i .

where Iv is the identity on X. From (4.13), since i-, = ij ,

*- 1 * - 1 . * - 1 - 1 , -
L3 j i X = i i X + I y = k

Finally to justify (4.11) we note that, since k is self-

adjoint

1 = finf (k"1f5f): f e domain of k, ||f||y = 1},

and a similar formula holds for ||k,||~ . Thus by (4.10)

and hence

so tha t k, + juk, + \x k, + . . . converges for Ji|lkll < 1 + l!kIU

in p a r t i c u l a r for \x = 1.

Since Lemmas 4 .4 and 4 .5 c l e a r l y apply to k , . if feY,

f not i d e n t i c a l l y ze ro , and f J> 0 on Q then from (4.11)

s(kf) = U s(k"f) =
n=l L
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(again we emphasize that the equality is only to within sets

of measure zero). We thus have proved the following.

Theorem 4.1. The operator k is positive in the sense

that if feY, f > 0 and f is not zero almost everywhere

then kf is positive almost everywhere on Q.

Corollary. Let f be a non-negative eigenfunction of k.

Then f is positive almost everywhere. If moreover

(4.14) kf = ||k||f

then ||k|| is a simple eigenvalue.

Proof. That a non-negative eigenfunction of k must be

positive almost everywhere follows immediately from Theorem 4.1.

Suppose now that (4.14) holds. Then, if A = ||k|| is not a

simple eigenvalue, there is a second eigenfunction g, orthogonal

to f and hence not essentially of one sign. However since

|kg| < k|g|,

N I N I 2 = (kg, g) < (k|g|,|g|) £ ||k|!!lg||2,

so that (by Schwarz1 s inequality) |g|> hence also g and g

are eigenfunctions of k. Since g vanishes on a set of posi-

tive measure this contradicts the first assertion of the lemma

and it follows that ||k|| must be a simple eigenvalue.
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Remark 8.Suppose that Q is bounded, b = 0 and

e Lfc(Q), llA-^llAll2 e LS(Ci),

where t,s >, 1 and

N '

Then in particular |1A|| , ||A \\ f L (0) and thus, by Lemma 3.3,

H (A,O,Q) is defined. If c is such that (Ho (A,0, fi) ,Y) is

s 1 1 2
admissible (e.g. if ceL °(0), — + T = — ) then in this case

s0

the conclusion of Theorem 4.1 follows from Lemma 4.4 and a

Harnack inequality proved by Trudinger [29, Theorem 4.1]. (Indeed

in this case,, when f > 0 on Cl3 f ^ 0, u = i*f has a positive

lower bound on compact subsets of Q. ) For A, c, Q as above

and b subject to suitable integrability requirements, but not

necessarily zero, one can still deduce, by eleirentary arguments,

the conclusion of Theorem 4.1 from the result just quoted.

We next prove that if the operator k has a non-negative

eigenfunction f, say

kf = jitf

then necessarily

IMI = M-

We shall actually prove something more general--we note first

however that in view of the Corollary to Theorem 4.1 and
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Lemma 4.4 we can assume that the eigenfunction f is positive

a.e. on ft. The following result is trivial if k is compact

but the general result is more subtle and does not appear to be

contained in the extensive literature concerning positive opera-

tors .

Theorem 4.2. Let k be a self-adjoint, bounded operator

on Y which preserves non-negativity. If ffY and

f(x) > 0, a.e. on 0

and

(4.15) (kf) (x) .< /if(x), a.e. on Q

then

(4.16)

If equality holds in (4.15) i.e. jL£ f is an eigenfunction of k

then ||k|| = /i.

Proof. Suppose first that k is compact, then by the

theory of compact self-adjoint operators k has an eigenfunction

g with

kg = ||k||g,

and by the theory of compact positive operators, [13], [15], g

can be taken to be non-negative (this also follows from an argu-

ment like that used in the proof of the corollary to Theorem 4.1).
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But from ( 4 . 1 5 ) ,

0 > (kf - M f , g ) = (f, k g - | | k | | g ) + (||k|| - [i) (f, g)

0 2 (llkll - M) (f^g)

and the result follows, since (f,g) > O.

Now consider the general case and let

(4.17) 0= E± U E2 u...U En

be a partitioning of Q into measurable sets of positive measure.

Put

(4.18) f± = a^x f , i = l,...,n
i

where \ is the characteristic function of E. and where
i

„. - (J
E.

so that

where 6.. is the Kronecker delta. We have

f =

a n d
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n

or

(4.19) Ka < j^

where K is the non-negative symmetric matrix defined by

K = ((fi,kfj)),

and the inequality in (4.19) has the obvious meaning. As in

the case of compact k, (4.19) for a having all positive

components implies that the largest eigenvalue of K does not

exceed p,.

If P denotes the orthogonal projection of Y onto the

subspace spanned by f,,...,f , then K is the matrix of PkP

relative to the basis f -. , . . . , f . By choosing a sequence of

finer and finer partitions (4.17) we obtain a corresponding

sequence of projections [P ] such that, because of (4.17)

and the fact that f(x) > 0, a.e. on Q, P tends strongly

to I. Thus also P kP tends strongly to k. Since IIP kP II <
m m ^ J ll m m11 ~

for each m it follows t h a t ||k|| <^ \i. The opposite inequa l i ty ,

when f is a c t u a l l y an eigenfunct ion, is obvious.
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5. Applications.

If we now assume that k is as defined in the previous

section then (4.15), even for a non-negative £, f ^ 0, implies

(4.16).

Consider now any u belonging to the range of i* so that

u = i*g* g€Y

and put

f = iu = kg.

Then since k is positive definite

(f,f) = (kg,kg) < ||k||(g,kg) = ||k||<u,u>,

which implies

(5.1) <u,u> > ||k||'"1(iu,iu)

for u in the range of i*. Since the range of i* is dense

in X the inequality is valid for all ueX. We are now in a

position to prove our main result.

Theorem 5.1. Let A, b be as in §2,, c > 0, and let (X,Y)

be an admissible pair. If the weak eigenvalue problem

r n r(5.2) ( £ a..(x)u vv + b(x)uv)dx = A uvc(x)dx, veX,
%J . . - 1 1 X . X . *i
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has a non-negative eigenfunction u. corresponding to the eigen-

value A1 then u.. (x) > 0 a.e. .on ft, and for all ueX, u ^ 0,

(5.3) J( £ a±. (x)ux ux + b(x)u2)dx > "K1 J u
2c(x)dx.

n 1^ = 1 1 3 n

Moreover, A, is a simple eigenvalue and consequently (5.3) is

strict unless u is proportional to u,.

Proof. The function u.. is an eigenfunction of (5.2),

corresponding to the eigenvalue A, if and only if

kux = A^ u1 ,

thus the almost everywhere positivity of u, and the simplicity

of A.. follow from the Corollary to Theorem 4.1. From Theorem

4.2^ and in view of Lemma 4.4, it then follows that ||kj| = A~ .

The inequality (5.3) then follows from (5.1).

For applications it is desirable to relax the requirements

on b and c. We do this in the following.

Theorem 5.2. Let A be as before with, moreover,

(5.4) ||A||, HA"1!! e ^

Let b 3 c be real valued measurable functions on 0 with

(5.5) b0, c0
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F in a1ly, let there exist a linear manifold V and a non-negative

function g such that

(a) c£\n) c v c H ^

(b) veV implies |v| e V,

(d) for all veV,

p 2

(5.6) J ( (AW, vv) + ( |bQ| + |cQ| + g)v )dx < QD

If u,fV, u, > 0, un ^ 0, 7̂ , > 0, and

(5.7) J((Avu1J,w) + b^^Jdx = ~h1 J u^c^x, veV5
0

then u,(x) > O a.e. on Q and
— — — • • - " - — j _ — * — '

(5.8) J(A7u,vu) + bQu
2)dx2 \ J u2cQdx

for all ueV, with equality only if u is proportional to u.

Proof. We put

b = b Q 4-
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where

With b defined as above, it follows from Lemma 3.2, in

view of (5.4), (5.5), assumption (c) and the definition of g^,

1 2 1 1
that W (A,b,Q) is a Hilbert space stronger than H 1 Q C ( ^ )

 a n d

containing Ĉ (fi) . By assumptions (a) and (d) , V cW * (A,b,Q);

1 2
we define X to be the closure of V in W ' (A,b,O). It is

clear that W ' (A,b,O) is closed under u > |u| and there-

fore by assumption (b) and the corollary to Lemma 3.5 so is X,

consequently X satisfies condition I of §4. By (2), c 0 ^ ) .£
 x

and therefore, by Lemma 3.6, X satisfies condition II of §4.

Finally, from the definitions of a, b and g.. we have

0

and therefore, since we have already seen that c£f(ft) £ x>

follows from Lemma 4.1 that (X,Y) is admissible.

By adding A, I u.,vg-.dx to both sides of (5.7) and taking

0
into account the definitions of b and c we see that u, is

an eigenfunction of (5.2), thus the positivity assertion concern-

ing u follows from Theorem 5.1, as does the inequality (5.3)

for ueX. Upon subtracting A. J g^u dx from both sides of

n

(5.3) we obtain (5.8). By Theorem 5.1, equality holds in (5.3)

only if u and u, are proportional, hence the same is tru« of

(5.8).
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Corollary. Let 2 <[ p ̂  OD , let A be as in Theorem 5.2

and in addition suppose

(5.9) ||A!| C Lp"2(n),

and

(5.10) bQ, cQ e

where

(5.11) r = 1, r > 1 or r = Np/(Np - 2 (N - p) )

according £s p > N, p = N .or p < N . JJ u1eWQ
5P(n) , i^ ^ 0,

u,/* 0, and u, satisfies (5.7) for all v6W^p(n) then u± JLs

positive almost everywhere and (5.8) holds for all ueW0

with equality only if u and u1 are proportional.
1 X

Proof. By (5.9)

J (Avu, vu)dx < OD
Q

for UGW 'P(fl) while by Sobolev1 s theorem (5.10) and (5.11)

imply

J u2(|b0| + |cQ|)dx < OD
n

for ueW ' P(n). Finally, one can choose g > 0 with g€Lr(Q)

The last condition implies
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f u 2

n
gdx < CD

for ucW 'p(f)). Thus, with this g and with V = W0'
p(n) the

hypotheses of Theorem 5.2 are satisfied and the result follows,

6. Maximum Principle.

In this section we discuss the dependence of the operator k

on boundary conditions and prove a maximum principle and an eigen

value estimate. The maximum principle which we prove can be re-

garded as an analogue, for the boundary value problems which we

treat, of a result of Amann [2] for classical subsolutions of

non-self-adjoint boundary value problems, see also Serrin, [25].

A similar result for weak subsolutions of equations with discon-

tinuous coefficients was proved by Cicco, [6]. We also prove a

partial converse--an eigenvalue estimate--to this maximum princi-

ple. This eigenvalue estimate is the analogue of a theorem of

Barta [4] for the Laplace operator with Dirichlet data. For

generalizations of Barta's result see Duffin, [9], Protter and

Weinberger, [23], and Cicco, [6]; the analogue of these latter

results for ordinary differential operators is a theorem of

Wintner, [33].

Let (X,Y) be an admissible pair and let A. (X,Y) = ||k vIP

1 2 ii

Recall that by Lemma 2.1, (c) whenever ueW ' (A,b,Q), so are |u|,
u and u .
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Lemma 6.1. Let A < A][(X,Y) and let ueW1'2 (A,b, fi) be

such that

u_ e X,

<u,v> > A I uvc(x)dx

n

for a l l veX with v >^ 0 on Q. Then

u )> 0 jon Q.

Proof. Since u eX we have, by Lemma 2.1

-< u_ ,u_ > = --< u,u_ > <^ -A I uu c(x)dx

Q

r 2
^ A I u_c (x) dx.

n

In view of (5.1), since A < A-., this is only possible if u_ = 0.

Thus the lemma is proved.

Definition 6.1. Let X be admissible and let X1 be a

subspace of X which is also admissible. We shall say that X1

is full relative to X if whenever ueXf , wfX and | ia | ^> |w|

on Q then

Definition 6.2. Let X be admissible and let T be a

closed subset of Q. If dfi\F / 0, X-p will denote the closure

in X of the linear manifold

[ueX: u = 0 on a neighborhood of T) •
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If F => SO then X— is the closure in X (equivalently, in

H (A,b,Q)) of the linear manifold

{ueHo(A,b,n): u = 0 on a neighborhood of T} .

Lemma 6.2. Let T be a closed subset of an. Then
_ _ . — _ _ _ _ _ _ _ _ _ _ _ _ _

is admissible and is full relative to X,

Proof. That Xp is admissible follows immediately from

the Corollary to Lemma 3.5 and the proof of Lemma 3.7.

We now show that X_ is full relative to X. Suppose

first that an\r ̂  0. Let ueX— weX and suppose that |u|̂ > |w|

on n. There is no loss of generality in assuming, as we shall,

that u J> w >; 0 on n. Let

u = lim u in X
n -CD n

where for each n = 1,2,... , u €X, and u vanishes on a

neighborhood of F; by the continuity assertion of Lemma 3.5

we can assume u _> 0 on n for each n. Moreover, for each

value of n,

Vn = un " ( u n " w )

belongs to X and vanishes on a neighborhood of T and since

(6.1) w = u - (u- w ) + ,

it follows from the last assertion of Lemma 3.5 that weX-.
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Suppose now that r = Bfi so that X— = H (A.b^O) . Let

~,9 W€X with u ^ w J> 0 on Cl, and let

u = lim u 3 w = lim w , in X
n -• ao n -• OD

where the sequences [u }, (w } are in c^(^) a n d C

respectively. We can assume that these sequences converge

a.e. in 0. Consider the sequence [v } where

vn = Un "

As before it follows from (5.1) and Lemma 3.5 that

(6.2) w = lim v in X,
n ^ OD n

and clearly

(6.3) s(vn) c s(u n), n = 1,2,

For a fixed n let vn e C
00^) be defined, for 6 > 0, by

v^(x) = (Jevn) (x) = J je(x-y)vn(y)dy,

where jp is a mollifier defined as in [1] . From (6.2) it

follows that v' e Cn(0) when £ is sufficiently small. More-

over, since v , vv e L^Q) (by Lemma 2.1c),

(6.4) |v£|, |vv^| < C on
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where, for n fixed, C is independent of 6. Finally, for n

fixed

1 J.

(6.5) v™ >v n, vv™ > v v
n'

 a-e* on Q>

JL
as m ~* ao . In view of the fact that the v all have their

n
supports in some fixed bounded set, it follows from (6.4) and

(6.5) and the dominated convergence theorem that

1

lim v = v in X,_ n nm -> OD

and thus v e H (A,b,Q) for all n; it is then immediate

from (6.2) that w e HQ(A,b,n).

Theorem 6.1. Let (X,Y) be an admissible pair5 and let X1

be a subspace of X which is such that (X!,Y) is admissible

and X! is full relative to X. Then

(6.6) k^ y > k x^ y

in the sense that

kX,Yf ^ kX' ,Yf

whenever feY and f _> 0 £n Q.

Proof. Let feY, f .> 0 on Q and put

u = i1 *f, w = i*f

where i1, i denote the inclusions Xf c Y, X c Y respectively.
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Then UGX 1 , weX and, by Lemma 4.3, u,w >_ O on Q. Since

(w - u) <̂  u and XT is full relative to X it follows that

(w - u)_ e X! . We have, moreover

•< w -u, z > = (f, iz - i1 z) = 0 for all zeX1 ,

and thus, by Lemma 6.1.

w j> u a . e. on 0.

Since f was an arbitrary non-negative element of Y the

result follows.

Corollary. Let X, X1 and Y be as in Theorem 6.1. If

A., (XT ,Y) is an eigenvalue of k , and X1 ^ X then
1 A , Y — — — —

(6.7) AX(X',Y) > A1(X,Y).

Proof. For brevity let kf = k(X!,Y) k = k(X,Y), A^ = 7^ (XT,Y)

Al = Ai( x^ y)• L e t ° ̂  feY> u ^ 0, with

k!u = A^u.

Then u > 0 a.e. on Q and it follows from Theorem 6.1 that

and equality holds a.e. on Q only if k = k1 . Indeed, if

k / k1 then there exists an f ̂ 0 in 0 such that (kf)(x) > (kff)(x)
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on a set of positive measure in 0, but then

0 < ((k- k1 )f,u) = (f, (k- k' )u),

so that ku / k'u. On the other hand if k = k! 3 then clearly

i* = i1 *, but the ranges of i* and i! * are dense in X and

X1 respectively and thus if X ^ X!, then k / k 1 . It follows

that ||ku|| > ||kTu||Y, and this implies (6.7).

Remark. The result is false if we do not assume A-(X1)

is an eigenvalue of k!. This is easily seen from consideration
d2

of the operator - 5— + 1 + p(x) with the boundary conditions

yt (o) = o and y(0) = 0 respectively. Indeed one can choose

p(x) in such a way that the problem

(6.8) -yfl + (l + p(x))y = Ay on (O,GD)

(6.9) y' (0) = 0

has a positive eigenfunction corresponding to the eigenvalue 1

and has spectrum [1,OD), while the boundary value problem

(6.10) y(0) = 0,

for (6.8) has the same spectrum and [by the above Corollary

necessarily] has no eigenfunction which is positive in (O,OD).

Thus the Green's functions for both problems will have norm 1
2

as operators in L (O^QD).
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Indeed we define

Y O ( x ) = ~2 > K > 1
x

2
and define YQ(

X) on [0,1] in such a way that yQ e C [O,OD),

y (x) > 0 on [O,OD) and y' (O) = 0 . We then take

p(x) = yg(x)/yo(x),

so that

2
p(x) = — , x > 1.

x

2
Thus y e L (O^c©) and satisfies

y" - p(x)y = O, y1 (O) = O

i.e. y is an eigenfunction of (6.8)^ (6.9) corresponding

to A = 1. Since PGL1(O,CJD), it follows from [28, pp. 97-101],

[32] that the spectrum of both (6.8), (6.9) and (6.8), (6.10)

contains [1,OD) . On the other hand, by Theorem 4.2, the spectrum

of (6.8), (6.9) is contained in [1,OD), thus it follows from

Theorem 6.1 that the spectrum of both problems is precisely

Theorem 6.2. Let X, X1 , Y be as in Theorem 6.1. Let

<; A1(X,Y) and let ueX satisfy

u_ e X! ,

<u,v> J> ?\(iu,iv)
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for all veX1 with v > 0 jon 0. Then either X = X! ,

A = A,(X,Y) and u is an eigenfunction of (5.2) or u > 0
l — — —— —

in Cl.

Proof. If A < A-(X,Y) <; A J X S Y ) , the assertion has already

been proved in Lemma 6.1. In any case, as in the proof of Lemma

6.1, w = u_ e W— satisfies

(6.11) <w,w> <; A (X,Y) (iw, iw)

and thus by the Corollary to Theorem 6.1 and (5.1), u =w = 0 if

X1 ^ X. Finally if Xf = X and (6.11) holds with u^ = w £ 0,

then w > 0 a.e. on Q and w = u = -u is an eigenfunction

of (5.2).

Remark. When X1 is of the form X_ then the condition

u eXf can be interpreted as flu )> 0 on P% compare Definition

1.1, p. 14, [26] .

A partial converse to Theorem 6.2 is the following result.

Theorem 6.3. If̂  ueX, u _> 0 on_ 0 and for some A > 0

(6.12) < u,v > 2 A(iu,iv) for all veX, v ̂  0,

then
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Proof. in (6.12) let f = iu and let v = i*g, geY,

then (6.12) becomes

(f,g) > A(kf,g) for all grY

which i m p l i e s ( 4 . 1 5 ) , w i t h jut = 7T . The r e s u l t t h e n f o l l o w s

i m m e d i a t e l y from Theorem 4 . 2 and t h e d e f i n i t i o n of A1(X,Y).
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