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POSITIVITY OF WEAK SOLUTIONS OF NON-UNIFORMLY
ELLIPTIC EQUATIONS

by

C. V. Coffman, R. J. Duffin and V. J. Mizel

1. Introduction.

Consider a second-order self-adjoint boundary value problem

of the form
N 3u
(1.1) ILu = - b — a..(x)—;— + b(x)u = £, in Q,

(1.2) Bu on 3,

Il
©
3
c
+
O
!

|

o

Here (1 1is a bounded region in RN having smooth boundary, v

is given by v(x) = A(x)n(x) where A(x) = (3;4(x)); 53

and n(x) is the unit outward normal to 30 at x; B(x) is

a real-valued function on 31 and 6 1is a constant, and either
B(x) =1 and 6§ =0 or B(x) >0 and 6 = 1. Suppose that QO
is connected and that L is uniformly elliptic in Q. If
b(x) and B(x) do not both vanish identically (on  and 30
respectively) then the differential operator £ on L2(Q) deter-
mined by L and B is positive definite and has a compact
inverse. Under these assumptions together with the classical
smoothness conditions on the boundary 30 and on the coefficients
in L and B it follows from the maximum principle that the

Green's function G for & satisfies

G(x,y) > O, X #y, X,yeQ.



Under the same assumptions,, the |east eigenvalue of the eigenval ue

probl em

(1.3) Lu = Ac(x)u in ft, Bu =0 on 5ft,

where c¢c(x) > 0 on ft, is positive and sinmple and the correspond-
ing eigenfunction is of one sign and does not vanish inft.

Finally, this eigenfunction mnimzes the Rayleigh quotient

fr N 2
J(u) - kb g,j §| a - (XL? XF + bu )dx +
+1 3(x) u®(x) day (Ju?(X) ¢ (x) dx),
Bt ft

in the class of functions ueCl(F) that satisfy

Bu ~0 on T = {xedft: 3(x) > o).

For the classical existence and uniqueness theory of (1.1),
(1.2) see Miranda [18]. Some references for positivity properties
of solutions of (not necessarily self-adjoint) second order
boundary val ue problems are [3], [8], [22], [27]. The indicated
properties of the first eigenvalue and its corresponding eigen-
function are proved, at least for special cases, in [8], [11],
[13]+ In general these follow fromthe theory of positive operators
[13], [14], [15], although the references cited generally make
over-restrictive hypotheses which, in particular, rule out the
Dirichlet boundary conditions; see however the remark on page 923,

[13].



The purpose of this paper is to establish results like
t hose quoted above for the weak problens corresponding to (1.1),
(1.2) , and (1.3) which apply when the coefficients are not
necessarily continuous,when L is not necessarily uniforny
elliptic, and when ft 1is not necessarily either bounded or
smoot hly bounded. For problens of this generality there is
avai | abl e neither a strong maxi mum principle nor, even when
b(x) s 0, a Harnack inequality (see however the remark follow ng
the proof of Theorem4.1). In fact we obtain our results not
by a local analysis of solutions of (1.1) but rather by analysis
of the properties of the Sobolev type function spaces naturally
associated with (1.1), (1.2). W are primarily interested in
the Dirichlet problem and the hypotheses which we inpose are
too weak to permt fornulation of general self-adjoint boundary
conditions, thus we do not attenpt here to treat boundary condi -
tions of the generality of those di scussed above. Qur results
however do apply to m xed boundary conditions consisting of the
Dirichlet condition on a portion of the boundary and natura
boundary conditions on the remai nder of the boundary. Fornmally,

such boundary conditions can be witten

(1.4 u=0 on IL ?E =0 on T,
I oV *

where v is as above, ™ Pl T, =0, ™" UT, = 0.

The rel ati on between certain of our nethods and the nethods

used in [3] should be enphasized. This connection is explained




further in the remarks following the proofs of Lemmas 3.6 and
4. 3.

Sonme sources in which elliptic equations are treated under
assunption simlar to (but in all cases sonmewhat stronger than)
ours are Kruzkov, [16], Mirthy and Stanpacchia, [21], and
Trudi nger [29] and [30]. Although these authors are all concerned
with problens essentially different from those which are our main
concern, there is sone overlap of ideas between our work and
theirs. In fact we have been gui ded sonewhat in our choice of
notation by [30]. W note that under their sonmewhat stronger
assunptions together with sone further additional hypotheses,
the Harnack inequalities of Kruzkov [16] and Trudi nger [29]
can be used to prove a positivity result of the sort we prove
here. See the remark follow ng the proof of Theorem 4. 1.

The original notivation for proving the results in this
paper came from certain problens arising in connection with
the work [7] on uniqueness of positive solutions of quasi-
linear elliptic boundary val ue probl ens. Indeed the main result
of [7], Theorem 1, can be regarded as a non-linear anal ogue of

Theorem 5.1 bel ow.




2. Prelimnaries.

Let fi be a connected open set in RN.

Bel ow we shal |l use
the follow ng conventions and notations. First, since such distinc--
tions are not critical for our purpose, we shall not explicitly
di sti ngui sh between an equival ence class of functions (with respect
to equality al nost everywhere) and a representative of such an
equi val ence class. By a subset of fi we wll always understand
a neasurabl e subset; set inclusions and set inequalities are to
be understood as holding to within a set of neasure zero. Finally,
an inequality asserted for a function f on a set E is to be
under st ood as hol ding al nost everywhere on E

VW wi ||l denote Lebesgue nmeasure by JU; the characteristic
function, defined on fi, of the set E ¢; fi will be denoted by

\t,. For a neasurable function f defined onfi,

H

s(f) = {xcQ: f (x) ~ 0} .

Followi ng a standard notation we will et Flioéﬁi) denote the
space of real valued functions which are locally of class L1

in fi and are locally strongly L1 differentiable. Fot f

1.1

ueHloc

(fi), VMu will have the obvi ous neani ng.

1,1
loc

(8 JjiL u(x) = const, ja.£. on a .measurable set G c fi then
Vu =0 ja.e .an G

Levma 2.1. Let ueH ().

(b) ¥ fi' jj3 ja_connected open subset of fi and

Vu=0 a.e. infi’ |



t hen

u(x) 2c¢ a.e. infi',

for sone constant c.

(c) |u e HA(n) and

—

viu|l = sgn u vu a.e. in 0.

Proof, The assertion (a) is Theorem3.2.2 on page 69 of [20].

The assertion (b) follows readily fromthe fact that a
distribution on fi' whose distribution gradient is zero, is a
function constant al nost everywhere, [12], [24].

Finally, assertion (c) follows froma chain rule given in
[17], since the function g(x,t) = |t| satisfies the hypotheses

of Theorem 2.1 of that paper and |u|(x) = g(x,u(x)).

The space I4i°i(0), with its natural topology, is a Frechet

space; the collection of all sets of the form {u€H}°é(Q):

J(|vu] + Jul)dx < e} where e >0 and G is bounded, (3¢ Q
G
forms a basis for the neighborhoods of zero in this topology. A

family (N) ° senmi-norms on 'ﬂ'i&k) xS a conplete fanmily of _

semi-norns for H'Yn) if the set (u€H " (n): N (u) <e) is
I oC ICaC n

open for each n and each e > 0, and the totality of setsloi
this formis a subbasis for the nei ghborhoods of zero in HP”C(O)'
For exanple, one conplete countable famly of serai-norns is

gi ven by



(2.1) No(u) =3 (fwu + Jul)dx, n*12...,
“n

wher e {Gn) is a countable cover for 0 consisting of bounded

open sets Gn with "G_nc_n, n=12 ... . |If the sequence fG]}

is increasing then the sem -nornms given by (2.1) satisfy

1,1

(2.2) Na(u) £ Np(u) g uEHlOC(Q)’
for nm=122,... , and m> n.
Remark 1. |If {Nn} is a countable famly of sem -norns

satisfying (2.2), if {I\Illl) is any other countable famly of
sem -norns, and if there exist constants krt Kn, n=12,... ,

such that for ueH™ifi) N (u <k N (u for all n while

| oc n n n
N (u) j£ Knl}l;(u) for all suffidiently large n, then {I\xl!]} is

a conplete famly of sem -norns for H,foé(fl) provi ded {Nn} is.

Remark 2. If {Nn} is a conplete famly of sem -norns
on H,i'oi(Q and if T is a linear mapping froma nornmed |inear
space Z into HJl-oi(O) then it is easily seen that T is con-
tinuous if and only if it is bounded with respect to each Nn,
i.e. if and only if for each n there exists An such that

N (Tu) <A A IlY|r7 f°r23ll yez. Such amap T is uniformy

n o n Zi

gont i nuousla[id therefore has a unique continuous |inear extension,
»

T: Z_ ' "M ocnrx tothe coropletion 2 of Z.



Finally, a real topological linear space X contained as

a linear manifold in H''0) wll be called_stronger than HA'(0)
| oc 11 e —— ioc
if the natural enbedding e: X _>Hioce(fi) is continuous.

Lemma 2.2. Let {G} be an_increasing sequence of bounded,

snoot hly bounded, connected, _open subsets of Q w.th Cn c Q,
ao

n=112 ... ,, fi:I UnG _Let S c Q be a neasurable set of
n=

positive nmeasure. Then (an) , Where

(2.3) N(u) = lvalax + T Juldx,

G SnG

n n

is a"* conplete famly of sem-norns for H}oiQ .

Proof. It is clear that each I\Ilr1 is a sem-norm and, in
view of Remark 1 above it suffices to prove that N’n I's equiva-
lent to Nn, given by (2.1), for all sufficiently large n.
Suppose n is sufficiently large that ju(SCIBr) > 0, but that
N Is not equivalent to N_ Then there is a sequence (u,_}
in He Xfi) such that

(24) W: 1 k = 1,2,..
and
(2.5) lim N (u ) = 0.
k-oor " K
Let u']'{ denote the restriction of U, to Gn, k =1,2,... .

Then Nn(uk) I's just the Hl'l(Gﬂ) normof u® so in view of
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.cts
arable N X N real matrix valued function
a measurable real valued function on Q

35 a.e. self-adjoint and positive definite

non-negative. Let

1 ¢ 2
Q) : J((AVu,Vu) + bu®)dx < @ }.

- 1,
leHloc

Q

3 Wl’z(A,b,Q) and linear manifolds in it

ar product spaces with the semi-definite inner
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(2.8) <u,v> = Ji((Avu,vu) + buv) dx.

Thus, a linear nmanifold X_(:W"SL %A,b,O) is a pre-Hilbert space
If <e, . > is positive definite on X if in addition X is com

plete with respect to <., . > then X is a Hilbert space.

W shall be interested in Hilbert spaces X_c¢ W!?(A b, Q
such that c7v ¢ X C=%(n) Pi X is dense in X, and X is stronger
t han H,iéi(O). (This last condition is necessary and sufficient
in order that the Hilbert space X_(:_W13 2(A,b,Q be a ji-measurable
functional Hilbert space in the sense of [3]; see also Lemma 3.4,
bel ow and the remark following.) If such spaces exist at all then
there clearly exists a snallest one--nanely the conpletion of 9"0)
W th respect to -<.,. >-and this will be denoted Ho(A, b, n). If
c’° (d) o W? (Ab,fi) is contained in a space of this type, (in
particular if W-"?(A b,n) contains ce°(fi) and is a Hilbert
space stronger than H*(fl)), then that uniquely deternined
space will be denoted H(A, b,Q. Criteria for HO(Ab,fI) to
be defined are given in [30]. Such criteriawll also be de-

vel oped, in sonmewhat greater generality, in section 3.

3. The Space W"2?(A b, Q).

Suppose now that A and b are as in 82. W first give
12

general criteria for a subspace of W° (A Db,Q to have a com

pletion in W'2(A, b,n).
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Lemma 3.1. Let Z be a pre-Hlbert space jln W' 2(Ab fi)

which is stronger than Fhloi(Q . Then there exists ji unique

Hi | bert space Xc_w‘]’ %A b,n) such that X JLS stronger_ than

Hr]\'gl(Q and Z is a dense linear manifold in X
T — _

Remark 3. If b is positive on a set of positive neasure
then X is unique even without its being required to be stronger

t han Hi*oi(Q . in general,, however, this is not true.

Proof. Let e denote the natural enbedding Z_>HTJ/JCJ_;(O):
by hypothesis e is continuous. Let a Z > L2(Q Fy"'l) be
defi ned by

(3.1) a(u) = (AY2yu, b 2y),

then a 1is an isometry and thus a(Z) can be identified with

the abstract conpletion of Z Note that if

(glj .. '3gN+l) € -&-—(.E)

t hen

(3 2) 0/_0+|(X) = o a#ter on Q\SO

where So= [xeQ b(x) >o0}. W nowdefine r: a(2) ->H|10%(ﬂ)

as follows

(3.3) r = ea"! .



12

W clearly have, for gea(Z) and to= 79,

(3.4 o= A" —g a.e. on O, ® = b~ * “gys1 a.e. on Sg,

where ¢ = (g.,l. SR ). Since T, definedby (3.3), is a con-

tinuous linear map, by Remark 2 above it has a unique continuous

extension r: o (Z)_>H11/)i (" « N°¥ syppose that gea(Z) and et
11

{g") be a sequence in a(Z) converging to g, with OL = r(gH>
n=12..., sothat (% converges to to=r{g) in H,ioi(O) :

W can assunme, noreover, that (gn} was sel ected so that

9"(x)
all xeft. It then follows that (3.4) holds for gea(Z), co= r{g) .

>g(x), vor(x)—>7co(x) and o*"_—_—_>0)(x) for al nost

i}

rg

and co = o then clearly g =¢g ae on Q for i =12...,N

V¢ now show that r~ is one-to-one. Indeed if co=fg and &

and gn+1 = g"+1 On Sg so by (3.2), g =9 . Using again the

relation (3.4 for gea(Z), co="Tg, we concl ude t hat T(a(2)) c
WS52(A, b,Q, i.e. that <co, co> as defined by (2.8) is finite
for WET{a(Z)). Let X be the subspace of W" “(Ab,Q whose

el ements are just the elenents of T(cT(z)). It is easily seen

fromthis construction that the isometry a extends to a surjective

isonetry a: X >7(Z), with
g(u) = (AY2vu, b2, uex.
lhus X is a Hilbert space with Z dense in X  The natural

embedding €. X___ >*i||'_’o:!'c(”) satisfies &= f§ SOthat € is
continuous and thus X is stronger than H %O‘l:(Q . On the other
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. 1,2 .
hand, if there exists a Hilbert space X' in W’ (A,b,Q) with 2Z

dense in X' and X' stronger than Hiéi(ﬂ) then a sequence in Z

1,1

which is convergent in X' is convergent in H10c

(Q) to the
same limit. Since the same sequence is also convergent in X

it follows that X and X' must coincide.

Lemma 3.2. (a) In order that Cgﬁﬂ)‘g Wl’z(A,b,Q) it is

1
loc

(Q) .

necessary and sufficient that ||A|, belL

(b) A linear manifold 2% < W'’?(a,b,0) satisfies the

hypotheses of Lemma 3.1 provided either of the following holds:

(i) 2z = Cgﬁn), 0 is bounded, and HA-lH € Ll(ﬂ).

o
loc

(ii) 2 is arbitrary, HA'lH e L Q) and b is

positive on a set of positive measure.

Proof. The sufficiency of the condition in assertion (a)
is obvious. Conversely, suppose that Cgﬁﬂ)‘g Wl’2(A,b,Q).
Then necessarily (Avu,vu) + bu2 € Ll(Q) for each uecgﬁﬂ).
First we show that this implies beLioc(Q)' To this end let G

be an arbitrary open set in Q with G compact, G c Q. Let

u. € CG%Q) with u., =1 on G. Then u_. € Wl’z(A,b,Q) implies

(0] (0] o (0]

that b is integrable over G. Since G was arbitrary it follows
1

that beLloc(Q).

Next we show that the diagonal elements of A belong to Lioc

Let G and Uq be as above and let u(x) = xiuo(x) so that

BBNT LIGRARY
CARNEME-WELLEN BRIVERSITY

Q).
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3-1 on G -P» =0 on G where i is a fixed index 1<i<N.,
2 2
Then on G (Avu,vu) + bu = axr + bu . Since we already know t hat
beL- (Q it follows that a,. st be integrable over G and
. : 1 .
hence, since G was arbitrary, a, e L'J.oc(Q)' Finally let G
and Upy again be as before and let u(x) = (x.l 4—xj)uo(x) SO
that, on G |5 =|5 =1! a4 |g =< for kA jnj " where |
QX. OoX'. o~

1 J K -

and | are distinct, fixed indices 1<7i,] < N Then, for this u,
2 1l J3 137 2

on G (Avu,vu) +bu =a. . +a.. +2a . +bu, and thus we con-

clude that a. . e L™ (ft) .

1j | OC
Suppose now that condition (i) of (b) is satisfied.
From Hol der's inequal,ity and 1/2
(3.5) vu|dx < ( ”A de) 2 2u,ust/?,

0

Since ft 1is bounded there exists p > 0 such that

(3.6) pj (|vul + |ul)dx < J|vu|dx, for ueH Lo,
n O

see [20, p. 69]. Thus, combining (3.5 and (3.6), we see that
(i) implies that C~(n) ( VT*?>(AhQ) is a pre-Hilbert space
(0).

stronger than Hé l( 0), hence al so stronger than H}J.oc

Now suppose that (ii) is satisfied and let S be a

nmeasur abl e set of positive nmeasure such that
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b(x) > m> 0, for xeS,

for sone positive constant m W can assunme that S is contained
in a conpact subset of ft. Let G be a bounded,, open subset of ft

with
SECE G ft,

then for ueW' 2(ADb,ft),

Jovuydx + Jjuldx® [( I AMHX) 2+ m Y2 00(9) YD) <u, ust'?

G S G

It readily follows fromLemma 2.2 that W ?(A h Q is itself

, 1
a Hil bert space stronger than H loi{ft) .

As a consequence of Lemmas 3.1 and 3.2 we have the foll ow ng.

Lemma 3.3. let Al beH_lQC(A) o UL A3 eLﬁOQM and

b is positive on a set of positive neasure then_bot h H(A b, ft)

and H(A b,n) are defined. _If ft is bounded and HA"')! elL!(ft)

t hen HO(Ajbjft) i s defined.

Proof. It is imediate fromLemmas 3.1 and 3.2 that under
the general hypothesis and either of the two alternative conditions
of the above assertion, H{ADbft) is defined. Under the first
of the alternative conditions HAWD,ft) 1is defined as the conpl e-

tion of CMft) nWi2(A b, ft) in WA2(A b, ft).
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Lenma 3.4. Let X be a Hilbert space in W* {K b, O which

i S _stronger than H,1|301(Q).

c
(a) If {u} s a convergent sequence in X wth limt u,
then there exists a subsequence {u } such that
n
k
(3.7) [im u (x) = u(x) a.e. in O
k -ob "k
an
(3.8) [im vu (x) = vu(x) a.e. infi.
k ->ao "k

(b) £f {un} I s a weakly convergent sequence in X and

if (3.7) holds for sone subsequence {unk) then u 1is the

weak |imt of {u,}.

Remark 4. The first assertion of Lemma 3.4 has the follow ng
converse. |If X is any Hilbert space in W?"?(A b*"Q and if
every convergent sequence {u,} in X wth limt u, has a
subsequence {un } satisfying (3.7), then X is stronger
t han Hll’\lc(Q). indeed,, if X has this property then one can
verify imediately that the graph of the natural inbedding
X > Hli("‘]g (fi) is closed and therefore that this inbedding is

conti nuous.

Proof. Convergence of fu,) to u in X inplies conver-
gence of {u,) to u in H”(n), and fromthis the assertion

(a) readily foll ows.
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To prove assertion (b) we can just as well assunme that the
full sequence is a.e. convergent. By Mazur's theorem there is

a sequence {w,} whose terms are convex conbinations of the u,,

w = Za

o 2 0, Ea = 13
0 n,{,u-b’ n,%

n,4

and  (wy) converges strongly in X to the weak limt of the

sequence [ uj . Since u belongs to the closed convex hull of
the set [up,, Up+1...}, for any value of n, one can construct
the sequence (wp) in such a way that

"a — O for t = N,

n, I

and then {wj will converge al nobst everywhere to u. As in
(a), the sequence {wj is convergent in HMN(fi) and its
l[imt in this space clearly must coincide with its a.e. limt.
The X- and the HA(0) -limts of the sequence (wj coi nci de

and this conpletes the proof.

Lemma 3.5. Let_ ueW'?(A b, Q . Then |ul e W!?2(A'b, Q),

and u and |y have the sanme _norm Suppose that H(A, b,n)

(H{A b,fi)) is defined and let ueHA b, fi) (ueHg (A b, fi)) .

Then |u|l e HADbfI) (Jul e HO(A,b,fi)). Furt hernore whenever

X is. as in lemmn 3.4 and is closed under u

>| u| _,_thenthat

mapping is continuous and so are the mappings u

>u. ., u > u_

L —t__ -
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Remar ks. An argument simlar to that in the proof to follow
shows that ueH(A b,fi) (ueHO(Ab,fI)) implies f(u) e HADTI)
(f(u) e H, (A, b,O) whenever f is uniformy Lipschitz continuous

and f(0) = 0. However continuity of u ->f(u) may fail.

An immedi ate consequence of the last assertion of Lemma 3.5

is the follow ng.

Corollary. Let X be as in Lemma 3.4, and let X be

closed under u >|wul . _JB X is a subspace of X _and V

>|UI’

is a dense linear manifold in X, which is closed under u

then X, _itself is invariant under u > |ul-

Proof of lemma 3.5  For the first statement, note that |ul

has the same normas u as follows fromLemma 2.1, (c) and (2.8).
To prove the second assertion suppose first that ueC”Q) (ueC’Ji) ),

then |u|] can be approximted uniformy by a sequence {wn} in

) (@(Q) with

(3.9) lgrad w () | <C | grad u(x) [, xeG.

This can be done, for exanple, by taking w,(x) = fA(u(x)) where

for n=1,2, ... ,f,eC°(R, fa(0) =0, |f*|_<1, andthe
sequence {fn} converges uniformy to f =] | . The sequence
[Wn} is clearly bounded in HADb;,Q because of (3.9) and the
fact that |[f(t)| < t, and thus can be assuned to converge weakly

in HADb;,Q. Inviewof Lenmma 3.4, (b), this shows that |u|eHA b, O
(luler, (A,b,0)).
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For arbitrary ueH(A b,,Q), (ucl—b(A,b,Q)) we first approxi-
mate u in H(A b,n) by a sequence fw,) in C°%*) (in 07(0)).
By Lemma 3.4, (a) {v¥1} can be assumed to converge al most every-
where in Q and thus, by what we have already shown, f|wn|}
is a bounded sequence in H(A, b,0) (in HO(A,b,Q)) converging
al mst everywhere in Q to |[y].

Using Lemma 3.4, (b), as befo‘re we conclude that |u| e H(A, b,0)
(Ju € HO(A,b._,Q)). That u and |u| have the same norm follows
as before.

The continuity of the mapping u > |ul is proved as

follows. Let (Wn} be a sequence converging to u in X

Then by Lemma 3.4,(a) every subsequence of [wn} has a subse-
quence converging to u a.e. on Q Thus every subsequence
of |V\II] |} has a subsequence converging to |ul a.e. However,
since { |v¥] |} is a bounded sequence in X. W see fromthis,
using Lemma 3.4,(b)y that I‘|wn|} converges weakly to |u].

However the facts
lw——— N | 4] weakly in X,
n 1 1

Nt =AM = i w],

together inply that actually the convergence of {|Wn|} to |ul

is strong convergence in X

Lemma 3.6. Let X be as in Lemma 3.4 and suppose in

>|lul . If

addition that X is closed under the mapping u
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ueX 1s non-negative as a linear functional, i.e. if

(3.10) <v,u> >0

for all wveX with v(x) > 0, a.e. on 1 then

(3.11) u(x) > 0 a.e. on Q.

Proof. Since u(x) < |u(x)]| a.e. on Q, the positivity

of u, as linear functional implies

(3.12) <u,u> < < |ul,u>.

But from the Schwarz inequality, since u and |u| have the

samnme X-norm,

<|ul.,u>» < <u.u>

with equality only if u and |u| are proportional, i.e. only
if u 1is of fixed sign. The conclusion of the Lemma then

follows from (3.12).

Remark 6. If K denotes the positive cone in X, i.e. the
set of functions in X which are a.e. positive on (), and if

K*¥ denotes the dual cone

K¥ = {ueX: <v,u> > 0 for all veK]},

then Lemma 3.6 asserts that
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If X is any Hilbert space, K a proper closed convex cone in X
A> the partial order induced in X by K and Kt the dual cone

then the followi ng are equival ent:

(i) For every wueX _there exists 7UeK such that

U>+ue ||UT <jlyl , where || || _denotes the X-norm

(it) _For ever ueX there exists u eK such that u' >_ u,

oM 1 1]y,

(iii) K ¢ K

For a proof of the non-trivial inplication, (iii) inplies

(i), see the proof of Theorem11, [3].

Lemma 3.7. Let X be_a Hilbert space in Wl 2(A"b.Q with

Cg)’(Q_cX. T£ E 1is a neasurable subset of Q wth ji(B > 0,

>x,"9 where xg denotes the characteristic

and if wu

function of E is an orthogonal projection on X, then ~(QE = 0.

Proof. Assune u__ > XL?“ s an ort hogonal projection
and /i(QE > 0. Let Q be a connected, open subset of 0
havi ng compact closure in Q and such that (i(EflIQ) > 0 and
/[i(Q\E) > 0. Let cp € C(Q with cp(x) = 1 on Jy so that
cpeX. Then if th? Ann W® have, by Lemma 2.1, (a), 7 (x "Ecp) = 0
a.e. on J; and tlhus by Lemma 2.1, (c), X’;cp is constant a.e.
on n', which contradicts (Lt(f2\B > 0. W nust therefore have
ju(Qpe =0 and the result is proved.
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Note that if ypYCr for every ueX then u_>°0@u is
necessarily an orthogonal projection, since by Lemma 2.1, (a) and

(2.8),

<Xg">V> =3 (AWU. W) 4- buv) dx.
E

4. The Green's operator.

Let ¢ be a real-valued neasurable function on Q wth
(4.1) c(x) >0 a.e. on Q
For brevity we shall denote by Y the weighted real L2 space
Wi th weight ¢
Y = L?(Q c(x)dx) .
The inner product in Y wll be denoted (.,.)

(f.9) =J f(x)g(x)c(x)dx.
Q

In what follows X wll always denote a Hilbert space in

wh 2(A,h,Cl). W shall say that such a space is adnissible if it

satisfies the followng three conditions

l. X is a Hlbert space in Wl 2(A’\b"Q which is

stronger than HAA(Q); X n C°°7) is dense in X

. X is closed under the mapping u— >|uf.
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L1, If E is a neasurable subset of 0 with Jum >0

and if y _ueX whenever ueX then u(QE) = 0.

Ve will say that the pair (X Y) is adnmssible if X is

adm ssible, Y is as above, the functions in X have finite

Y-norm i.e.

(4.2) | u?(x)c(x)dx < QD, for all ueX,
n

and X, regarded as a linear manifold in Y, is dense in Y.
It follows fromLemmas 3.5 and 3.7 that HADfl) or
HE(A,b,Q), whenever they are defined, are adm ssible. W wll
not discuss in detail the various conditions which inply (4.2)
but only record the following trivial criterion for the pair

(XY) to be adm ssible.

Lemma 4.1. jG X is adnissible, if °X*) £* and_if

there exists a constant M such that

c(x) <. Mo(x), a.e. a Q

then the pair (X Y) is adnissible.

In the remainder of this section we will always assune
that the pair (XY) is admssible. W will denote by i

the natural injection of X into Y.
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Lemma 4. 2. The operator i is continuous and has dense

range in Y. The adjoint operator i*: Y_>X is continuous,

i njective and has dense range in X

Proof. Since by condition I above X 1is stronger than

H%Li(ﬂ), the el enents of X are (equivalence classes of)

measur abl e functions (a fact which we have already inplicitly

assunmed in the definition of an adm ssible pair). Therefore, in

view of (4.2), i is well-defined with domain X, by (4.1), i 1is
I ndeed an injection. Further, because of Condition | it follows
fromLema 3.4, (a), that the graph of i is closed, and therefore
that 1 is continuous. That i has dense range in Y follows

imediately fromthe admssibility of (X, Y). The assertions
concerning i* followimediately, by duality, fromthe proper-

ties of i.

W note that, for feY, u=1i*f 1is the solution of the

weak probl em

»

J((Avu, W) 4- buv) dx :JI vfc(x) dx, all  veX
n n
Lemma 4. 3. The operator i* is_nhon-negative, i.e. feY and

f(x) J>0 a.e._on O inmply u(x) ~>0 _a_e._on Q _where u = i*f

Proof, Let feY, f(x) J>0 ae. on Q Thenif wu = i*f
we have

(4.3) <u,v> = (f,iv)

for all VEX.  Since the termon the right in (4.3) is non-negative
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when v(x) .> 0 a.e. on fi it follows that the solution u of
(4.3) is non-negative as a linear functional on X It follows

i mmedi ately fromLemma 3.6 that u(x) >0 a.e. on O.

Remark 7. Let t denote the collection of measurable subsets

E of Q with

c(x)dx <op.

Mme—-

Each ueX determnes a function T on £ by

(4. 4) u( E) u( x) c( x) dx.

= |
E

Let X denote the set [ UGX} furnished with the inner product

(4.5) [u;v[T =* <u, v>, u, veX

Then X is a proper functional Hilbert space in the sense of
[3] ; (X is a jut-neasurable functional Hilbert space in the

sense of [3].) As a proper functional Hilbert space,, X has
a reproduci ng kernel K defined on £ x £, and it is easily

seen that

(4.6) KIE E) - J (i*xg)c(x)dx «J (i*yg) c(x) dx.
Ef E

If wueX, and w= |u|s then clearly Ww(E) > TU(E) for all Ee£.

-

In view of thiss since X is a space of real functions, it
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follows from Theorem 1 of [3] that K IS non-negative on 6xP,

“and this inplies Lemma 4.3.

W now consider the operator k = k_ : Y_—>Y defined by
(4.7) k = ii*
Lenma 4.4. The operator k is self-adjoint, positive
definite and preserves non-negativity.
The self adjointness of k 1is clear from (4.7).

Pr oof .
i *

Positive definiteness follows fromthe injectivity of

(Lenma 4.2) and the identity

1 *
| .

Finally, the non-negativity follows fromthe non-negativity of

identically zero, and

Lemrma 4. 5. Let fcY, f not

f(x) >0 on O.

fs(k™) } _is an_increasing sequence with

Then the sequence

s(k®f) =n.

Tcg

Proof. Let f be as above and suppose G = s(f)\s(kf).

Put tl = )% f where \G is the characteristic function of G,

Fromthe non-negativity of k, since 0 < f,Lfé f on Q
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0 £ kfy < kf on 1,
and thus kfl = on G But by definiteness of Kk
(fi,kfy) >0
unl ess f-J~ = O thus we must have f., =0, i.e. G of neasure

zero. The increasing character of the sequence {s(knf)}

obviously follows. Let now

m .
F- U s(k"f), e = QF.
n=|
Let geY be any non-negative function with s(g) c E, and
suppose that s(kg) n F has positive neasure. Then for
suitably large n, s(kg) n s(knf) wi Il also have positive

measure; but this |leads via

0 < (Kk',,kg) =(k"f,g) =0

to a contradiction. Thus s(g) ¢ E inplies s(kg) c E, at

| east for non-negative g¢g; but then the sane i medi at ely follows

for arbitrary geY. Let now P denote the orthogonal projection

on Y defined by

We have shown that

kP = PkP,
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and fromthis it follows that kP 1is self-adjoint and hence
P and k comute:

kP = Pk.

Thus Y can be represented as the direct sum

Y = MON
where geN if and only if
(4.8) s(g9) ¢ E
and heM if and only if
(4.9) s(h) ¢ P,

and M and N are invariant manifolds for k. Si nce

s(ii*g) =s(i*g), (4.8 inplies
s(i*g) ¢ E
and (4.9) inplies

s(i*h) ¢ F,

so that, by (2.8) and (a) of Lemma 2.1, i*M and i*N are

orthogonal in X  Thus, since i*Y is dense in X

X=UoV

where U is the closure of i*(M and V 1is the closure
of 1*(N), and by Lemma 3.4 the functions in U vanish on E

and those in V vanish on F. Thi s nmeans, however, that the
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orthogonal projection of X onto U is given by u—>y .,
but then, by condition Ill, we nust have ju(g = 0, and the
result is proved.

W now prove that k is strongly positive in the sense
that f€y, f >0 on Y and f ~ 0 inplies (kf)(x) >0
a.e. on Q For this we use Lenmma 4.5 and the follow ng device:
we introduce an operator k,l wWith the sane properties as Kk

and related to k by

(4. 10) k~* = k%t - 1,
so that k may be expressed

2
(4.11) k = kg +k] + ...

To this end we introduce the Hil bert space Xu? which is sinply

X furnished with the equival ent inner product

(4.12) <u,v>; = <u,v> + (iu.iv).

We denote by | the identification

] o X—> Xy,

and by i1 the i mersion X1

becones

<u,v> = <ju,jv > {iu, iv}

>Y. Then (4.12),, nore fornally”
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or
<u,v> = <j*ju,v> - <i*iu,v >,
so that
(4.13) Iy = j*j - i*i.
where 1|, is the identity on X  From (4.13), since i-, =ij_l,
k—-l__ y*-1.-1 c*-1.0% -1 .*—1_-—1 , -1
[

s TS R e S T R
Finally to justify (4.11) we note that, since k is self-
adj oi nt

Wk~ = finf (k"'sf): f edomin of k, [|fl], = 1},

and a simlar formula holds for ||k,l|~l. Thus by (4.10)
-1 -1
“k” = “kl” -1

and hence

%yl = ikl @+ 1xl)

so that k, + juk,i + \X'k] + ... converges for JJI <** MU

in particular for \x = 1.

Since Lemmas 4.4 and 4.5 clearly apply to kJ_,. if fey,

f not identically zero, and f J> 0 on Q then from (4.11)

an
s(kf) = U s(k.f) =@
n=I L
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(again we emphasize that the equality is only to within sets

of measure zero). We thus have proved the following.

Theorem 4.1. The operator k is positive in the sense

that if feyY, £ > 0 and £ 1is not zero almost everywhere

then kf is positive almost everywhere on Q.

Corollary. Let f be a non-negative eigenfunction of k.

Then f 1is positive almost everywhere. If moreover

(4.14) kf = ||k||£

then ||k|| is a simple eigenvalue.

Proof. That a non-negative eigenfunction of k must be
positive almost everywhere follows immediately from Theorem 4.1.
Suppose now that (4.14) holds. Then,if X = ||k|| 1is not a
simple eigenvalue. there is a second eigenfunction g, orthogonal
to f and hence not essentially of one sign. However since

'kg| < klg],

Ixllgl? = kg, @) < xlgl.lgD) < Ixllig)?,

so that (by Schwarz's inequality) |g|, hence also g, and g_
are eigenfunctions of k. Since g, vanishes on a set of posi-
tive measure this contradicts the first assertion of the lemma

and it follows that |k|| must be a simple eigenvalue.
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Remar k 8. Suppose that Q is bounded, b =0 and

1211 e L(Q), HA-AIANZ e LS(Ci),

where t,s > 1 and

1,1.2
t+s<N'
Then in particular [14] , ||A1\\_f { (0) and thus, by Lemma 3. 3,
HO(A,Q(J is defined. If ¢ is such that (H,(A O, fi),Y) is
adm ssible (e.g. if ceL§°(O),'——£ T}t {% then in this case
°0

the conclusion of Theorem4.1 follows fromLema 4.4 and a

Har nack inequality proved by Trudi nger [29, Theorem4.1l]. (Indeed
in this case,, when f >0 on Cds3 f ~ 0, u=i*f has a positive
| ower bound on conpact subsets of Q ) For A ¢, Q as above
and b subject to suitable integrability requirenments, but not
necessarily zero, one can still deduce, by eleirentary argunents,

the conclusion of Theorem4.1 fromthe result just quoted.

W next prove that if the operator k has a non-negative

ei genfunction f, say
kf = jitf
t hen necessarily

IM =M

We shall actually prove sonething nore general --we note first

however that in view of the Corollary to Theorem4.1 and
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Lemma 4.4 we can assume that the eigenfunction f is positive

a.e. on f{l. The following result is trivial if k 1is compact

but the general result is more subtle and does not appear to be

contained in the extensive literature concerning positive opera-

tors.

Theorem 4.2. Let k be a self-adjoint, bounded operator

on Y which preserves non-negativity. If feY and

f(x) > o, a.e. on Q
and
(4.15) (k) (x) < pE(x), a.e. on 0
then
(4.16) Nkl < u-

If equality holds in (4.15) i.e. if f 1is an eigenfunction of k

then |x|| = u.

Proof. Suppose first that k is compact, then by the

theory of compact self-adjoint operators k has an eigenfunction

g with

kg = ||x|g,

and by the theory of compact positive operators, [13], [15],

g

can be taken to be non-negative (this also follows from an argu-

ment like that used in the proof of the corollary to Theorem 4.1).




But from (4.15),

and the result follows,

Now ¢

(4.17)

be a parti

Put

(4. 18)

where \

so that

where ©6..

and

0> (kf - mf,g) = (f, kg-llkllg) + (Kl - [i) (f,9)

22 (1111 - M (")

since (f,g) > QO

34

onsi der the general case and |et
0= E: UE;, u..UE,
tioning of Q into nmeasurable sets of positive neasure.,

is the characteristic function of E.l

wy (\] £2cax) /2
El

is the Kronecker delta. W& have

f = °1f1+ ce. cnfn,
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n
£.,kf.)g. = (f,,kf
jE&( i j)cj (£, k£)
£ pif,15)
n
- £.,£.)0.,
< szl( i j)cJ
or
(4. 19) Ka < j~

where K is the non-negative symetric matrix defined by

K= ((fi, kfj)),

and the inequality in (4.19) has the obvious neaning. As in
the case of conpact k, (4.19) for a having all positive
conponents inplies that the |argest eigenvalue of K does not
exceed p.

If P denotes the orthogonal projection of Y onto the
subspace spanned by f,,..., f then K is the matrix of PkP

L 1
relative to the basis f-.ll. .. hf . By choosi ng a sequence of
finer and finer partitions (4.17) we obtain a correspondi ng
sequence of projections [Pm] such that, because of (4.17)
and the fact that f(x) >0, a.e. on Q %1 tends strongly

to |I. Thus also P kP tends strongly to k. Since IIP kP Il < g
mm n "m mt -~

for each m it follows that |[K]| <AL The opposite inequality,

when f is actually an eigenfunction, is obvious.
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5. Applications.

If we now assune that k is as defined in the previous

section then (4.15), even for a non-negative £, f ~ 0, inplies

(4.16).
Consi der now any u belonging to the range of i* so that
u = i*g* g€y

and put

Then since k is positive definite
(f.f) = (kg,kg) < [Ikll(g.kg) = [[k||<u,u>,
which inplies
(5.1) <u, u> > ||k "Yiuiu)
for u in the range of 1i*. Since the range of i* s dense

in X the inequality is valid for all ueX W are nowin a

position to prove our main result.

Theorem5.1. Let A b be as in 8, c >0, and let (XY)

be an adm ssible pair. If the weak ei genval ue probl em

r n

(5.2) %( £ _awn(x)uxlv&' + b(x)uv)dx = KJ uvc( x) dx, veX,
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has a non-neqgative eigenfunction u

L
value A; then u.l(x) >0 a.e .onft, and for all ueX u”" O,
N
(5.3) IO £ as_(X)ug ue + b(x)u?)dx > "K J u®c(x)dx.
n ia=t ’ 13 n

Mor eover Ai is a sinple eigenvalue and consequently (5.3) is

strict unless u is proportional to u, .

Proof. The function u, is an eigenfunction of (5.2),

corresponding to the eigenvalue A if and only if

1

kuX = AAlU]_ y

thus the al nbst everywhere positivity of u,

\ and the sinplicity

of Al follow fromthe Corollary to Theorem4.1. From Theorem
4.2 and in viewof Lemma 4.4, it then follows that ||k| = Ai?..

The inequality (5.3) then follows from (5.1).

For applications it is desirable to relax the requirenents

on b and c¢. W do this in the follow ng.

Theor em 5. 2. Let A be as before with, noreover

(5.4 1AL, HEIL e nh @)

Let b, c. be real valued neasurable functions on 0 wth

~ -

c

(5.5) bo, Co € L)y (R)

correspondi ng to the eigen-.
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and a non-negati ve

there exist a linear manifold V

Finally, let

function g such that

(a) c£\n) cvcH ™Moy,

(b) veV inmplies |v| eV,

et} @, g >o

() g loc

(d) _for all veV,

2
+gv )dx <@

p
(5.6) J((AW vv) + (|bgd + [cd
0 _

If u,fV, u. >0, u, ~0, 7 >0, and

(5.7 J((Avuy, W) +bAANJdx = ~h; J urchx, veVs
0

then u,(x) > O a.e. on Q and

J(A7u,vu) + bou®)dx2 \ J u®codx

(5.8)
for all ueV, with equality only if u is proportional to u,
Proof. We put
c = co + gl

(o3
I
(o}

Q
N

>
=

a]
-
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wher e

_ -1
g; = ICO, + 27\1 fbol + g.

Wth b defined as above, it follows fromLemm 3.2, in

view of (5.4), (5.5), assunption (c¢) and the definition of g~",
12 11

that W (Ab,Q is a Hlbert space stronger than "1Qc(~) 2"
containing C\(fi) . By assunptions (a) and (d) , V_CW* "‘(A, b, Q;
we define X to be the closure of V in W'1 %A,b,O). It is
clear that W" “ (A b,O is closed under u__> |ul and there-
fore by assunption (b) and the corollary to Lemma 3.5 so is X,
consequently X satisfies condition | of 84. By (2), °®) .£*

and therefore, by Lemma 3.6, X satisfies condition Il of 8§4.

Finally, fromthe definitions of a, b and 9, we have

1

0<eg 2]
and therefore, since we have already seen that C£f$ft) £7> it

follows fromLemma 4.1 that (X Y) is admssible.

By addi ng Al j' ul,vgi.dx to both sides of (5.7) and taking

0
into account the definitions of b and ¢ we see that u, is

L
an eigenfunction of (5.2), thus the positivity assertion concern-
ing u follows from Theorem 5.1, as does the inequality (5.3)

for wueX  Upon subtracting A g"uzdx fromboth sides of
N

(5.3) we obtain (5.8). By Theorem5.1, equality holds in (5.3)

. i . .
only if u and u, are proportional, hence the sanme is tru« of

(5.8).
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'Corollary. Let 2 <[ p~O, _let A be as in Theoremb5.2

and in_addition _suppose
P

(5.9) [|A]. C LP"2(n),
and
(5. 10) bo, Co e LT()
wher e
(5.11) r=1, r > 1 or_ _ r = Np/(Np - 2(N- p))

according £s p>N p=N .o p<N. JJ ueWn), ir~"o,
satisfies (5.7) for _all v6W'P(n) then u. JLS

u:_/* 0, and uy

positive alnpst everywhere and (5.8) _holds for all ueV%’P(O)

with equality only if wu _and wu; are proportional.
1
X

Proof. By (5.9

(]

J (Avu, vu)dx < D
Q

for UGW'P(fI) whi | e by Sobol ev's theorem (5.10) and (5.11)
i mply
J (| bo] + |cd)dx < 0D
n .

for ueV\/l' P(n). Finally, one can choose g >0 with g€L(Q.

The last condition inplies
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f Uzgdx <
n

for ucmé'p(f)). Thus, with this g and with V = V%'p(n) t he

hypot heses of Theorem 5.2 are satisfied and the result follows,

6. Maxi mum Pri nci pl e.

In this section we discuss the dependence of the operator k
on boundary conditions and prove a maxi mum princi ple and an ei gen-
val ue estinmate. The maxi mum principle which we prove can be re-
garded as an anal ogue, for the boundary val ue probl ens which we
treat, of a result of Amann [2] for classical subsolutions of
non-sel f - adj oi nt boundary val ue probl ens, see also Serrin, [25].
A simlar result for weak subsolutions of equations with discon-
tinuous coefficients was proved by Cicco, [6]. W also prove a
partial converse--an eigenvalue estimate--to this nmaxi mum princi-
ple. This eigenvalue estimate is the anal ogue of a theorem of
Barta [4] for the Laplace operator with Dirichlet data. For
generalizations of Barta's result see Duffin, [9], Protter and
Wei nberger, [23], and Cicco, [6]; the anal ogue of these latter
results for ordinary differential operators is a theorem of
W ntner, [33].

Let (X Y) be an admissible pair and let A (XY) = ||k vI_Pl.
12 i

Recal | that by Lemma 2.1, (c) whenever ueW' (A Db, Q, so are |u|,

u, and u_
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Lemma 6.1. Let A< A(XY) and_let ueW' ?(Ab, fi) be

such that
u exX,
]
<u,v>> A | uvc(x)dx
n
for all veX with v > 0 _on Q. Then
uy o jon Q.

Proof. Since u eX we have, by Lemma 2.1

-<u_,u_>:--<u,u_>_<"-Aj uu c(x)dx
Q
r 2
NA U _c(x)dx.
n
In viewof (5.1), since A< AL, this is only possible if u_ = 0.

Thus the lema is proved.

Definition 6.1. Let X be adnmissible and let X' be a

subspace of X which is also admissible. W shall say that X

is full relative to X if whenever ueX , wiX and |ia| "> |w

on Q then weXx'.

Definition 6.2. Let X be adnmissible and let T be a

closed subset of Q@ If dfi\F/ O, Xp wll denote the closure

in X of the linear manifold

[ueX: u =0 on a neighborhood of T)
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If F=> SO then Xl—,isthe closure in X (equivalently, in

HO(A,b,Q) of the linear nanifold

{ueH,(A,b,n): u =0 on a neighborhood of T} .

Lemma 6. 2. Let T be a closed subset of an. Then XI‘

is admissible and is full relative ta X

Proof. That Xp is admssible follows imediately from

the Corollary to Lemma 3.5 and the proof of Lenma 3.7.

W now show t hat X—t is full relative to X  Suppose
first that an\r ~ O. Let ueXlT weX and suppose that |u”™> |wW
on n. There is no loss of generality in assumng, as we shall,

that uJ>w> 0 on n. Let

u= Ilimu in X
n -CD "
where for each n =1,2,... |, un€X, and U, vani shes on a

nei ghborhood of F, by the continuity assertion of Lemma 3.5
we can assume u__ >0 on n for each n. Mreover, for each

val ue of n,

Un " ( u n n W) +
belongs to X and vanishes on a nei ghborhood of T and since

(6.1) w=u- (u- w),,

it follows fromthe |ast assertion of Lemmm 3.5 that weX-l_.



Suppose now that r = Bi so that XT: HO(A. brO) . L
ueXr, 9 WEX with u”wJ>0 on d, and |et
u= limugs w= limw, in X
n -+ ao n - OD

where the sequences [u_}, (w1} are in °*(") and ¢ Pn)
respectively. We can assunme that these sequences converge

a.e. in 0. Consider the sequence [vn} wher e

" {u

As before it follows from (5.1) and Lemma 3.5 that

(6.2) w= limv in X

and clearly
(63) S(Vn) .Q S(un) )- n = 1121"

For a fixed n let vf’e Cc’°~)  pe defined, for 6 >0,

VA(X) = (Jeva) (x) = J Je(X-y)va(y)dy,

where j, is anollifier defined as in [1] . From(6.2)
foll ows that v'f;e CX0) when £ is sufficiently small.

over, since Vo YV, € L*"Q) (by Lemma 2. 1c),

(6.4) |VE|, |w?| <C on q,

44

et

by

Mor e--
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where, for n fixed, C 1is independent of €. Finally, for n

fixed
L 1
m m .
(6.5) v ——~€>vn, W, > VY a.e. on Q,
1
as m ~ . In view of the fact that the vg all have their

supports in some fixed bounded set, it follows from (6.4) and

(6.5) and the dominated convergence theorem that

=

lim v
m ™ @

=8

= v in X,
n

and thus v, o€ HO(A,b,Q) for all n; it is then immediate

from (6.2) that w € HO(A,b,Q).

Theorem 6.1. Let (X,Y) be an admissible pair, and let X!'

be a subspace of X which is such that (X',Y) is admissible

and X! is full relative to X. Then

(6.6) k > kg y

in the sense that

‘whenever feY and £ > O on Q.

Proof. Let feY, £ >0 on O and put

u = i'*f, w = i*f

where i', i denote the inclusions X' C Y, X € Y respectively.
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Then ueX', weX and, by Lemma 4.3, u,w > O on . Since

(w-—u)__g u and X' is full relative to X it follows that

(w-u)_ e X'. We have, moreover

<w-u,z>= (f,iz-1i'z)= 0 for all zeX',
and thus, by Lemma 6.1.
w>u a.e. on Q.

Since f was an arbitrary non-negative element of Y the

result follows.

Corollary. Let X, X' and Y be as in Theorem 6.1. If

%l(X',Y) is an eigenvalue of kX' v and X' # X then
’

, .
(6.7) Kl(x ,Y) > Al(X,Y).
Proof. For brevity let k' = k(X',Y) k = k(X,Y), %i==%l(x',Y),
%l = %l(X,Y). Let 0 < fey, u # 0, with
k'u = %iu.

Then u > 0 a.e. on I and it follows from Theorem 6.1 that

ku > k'u

and equality holds a.e. on (Q only if k = k'. 1Indeed, if

k # k' then there exists an f > O in Q such that (kf) (x) > (k'f) (x)
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on a set of positive measure in 0, but then

0< ((k- KY)f,u) = (f, (k- kK )u),

so that ku/ k'u. On the other hand if k = k's then clearly
i* = il* but the ranges of i* and i'* are dense in X and
X' respectively and thus if X~ X', then k/k?'. It follows

that |lkdly > ||K'ul|y, and this inplies (6.7).

Remark. The result is false if we do not assume A;(X)

is an eigenvalue of k'. This is easily seen from consideration
2
d
of the operator - 5—+ 1 + p(x) wth the boundary conditions
yt (0) = o and y(0) =0 respectively. Indeed one can choose
p(x) in such a way that the probl em
(6.8) -y (L +p(x)y = A on (0, GD)
(6.9) y' (00 =0

has a positive eigenfunction corresponding to the eigenvalue 1

and has spectrum [1,0D), while the boundary val ue problem

(6. 10) y(0) = 0,

for (6.8) has the sanme spectrumand [by the above Corollary
necessarily] has no eigenfunction which is positive in (0 0D).
Thus the Green's functions for both problens will have norm 1

. 2
as operators in L (0'QD).
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| ndeed we define
1
Yo(X) = ~2"> K >_l
- X
. , 2
and define Yo(*) o" [0,1] in such a way that yge C [0 0D),
yo(x) >0 on [oo0Dp and yo(O =0. W then take
p(x) = yg(x)/yd(x),

so that

Thus Yo © LZ(O\C© and satisfies
y' - p(x)y = 0O y'(Q =0

i.e. Yo is an eigenfunction of (6.8)" (6.9) corresponding

to A=1 Since PGLYO CID), it follows from [28, pp. 97-101],
[32] that the spectrumof both (6.8), (6.9 and (6.8), (6.10)
contains [1,0D) . On the other hand, by Theorem4.2, the spectrum

of (6.8), (6.9) is contained in [1,0D), thus it follows from
Theorem 6.1 that the spectrum of both problens is precisely

[1,a0).

Theorem 6. 2. Let X, X', Y be as in Theorem®6. 1. Let

A< A(X YY) _and let ueX satisfy

u ex,

<u, v>Jz A(iuyiv)
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for_all veX'! with v >0 jon 0. Then either X = X,

A=A(XY) and u is an eigenfunction of (5.2) or u >0
|

in G.
Proof. If A< A-ﬁX,Y) < A:LJ,XSY) , the assertion has already
been proved in Lemma 6.1. |In any case, as in the proof of Lema

6.1, w= u_eVY,— satisfies

(6.11) <w, w> <; A fo) (tw 1w

and thus by the Corollary to Theorem6.1 and (5.1), u =w=0 if
XX A~ X Finally if X =X and (6.11) holds with u* = w¢£ 0,
then w>0 ae on Q and w=u, =-u is an eigenfunction

of (5.2).

Remark. Wien X' is of the form )i_‘ then the condition
u eX can be interpreted as "u )> 0 on P% conpare Definition

1.1, p. 14, [26] .
A partial converse to Theorem6.2 is the followng result.

Theorem6.3. If* ueX, u_>0 on 0O and for some A >0

(6.12) <u,v>2 Aliu,iv) for—at+ veX, v " 0,

hewr

AL(X,Y) > A




t hen

which implies (4.15), with ju = 7T
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Pr oof . in (6.12) let f =iu and let v = i*g, gey,
(6.12) becones
(f,g) > A(kf,qg) for all grY

1 .  The result then follows

immediately from Theorem 4.2 and the definition of Ay(X,Y).

10.
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