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1 . I n t r o d u c t i o n 

Semantic characterization of full abstraction has been a well known open problem 
for many years. It arises in the context of the Scott-Strachey denotational approach 
to semantics. In this approach each programming construct is given a denotation in 
a mathematical model. Of course, if the semantics is to be of any use at all, it must 
have the property tha t whenever two constructs have same denotations they must behave 
identically in all programming contexts. However, the converse is difficult to ensure. This 
demands tha t two programming constructs have the same denotations whenever they 
behave identically in all programming contexts. This is the well known problem of full 
abstraction. For a special case of typed lambda calculus, P C F , it was shown by Plotkin 
tha t the classical model consisting of domains of continuous functions is not fully abstract . 
However, he wets able to make the model fully abstract by adding to the language a new 
programming construct which provided a parallel or facility. On the other hand Milner was 
able to obtain a syntactic fully abstract model for the typed lambda calculus. However the 
semantic characterization of full abstraction remained an open problem. A satisfactory 
semantic characterization should construct a fully abstract model in a semantic way and 
should point~out its relationship with the original model. In this paper we provide such a 
characterization. We construct an extensional, fully abstract and algebraic model for the 
typed lambda calculus which turns out to be just a retract of the original model. Moreover 
the new denotational semantics decomposes nicely in the sense: the new denotat ion of a 
term turns out to be just a homomorphic retract ion of its old denotat ion. This, we hope, 
provides a very satisfactory semantic characterization of full abstract ion. Moreover the 
theory can be extended to take into account the presence of the reflexive (i.e. recursively 
defined) types. 
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2 . T y p e d L a m b d a C a l c u l u s 

We assume some familiarity with typed lambda calculus and combinators. 
Assume we are given a set of ground types. We shall let /c, /c j , K2 ... range over these 

ground types. From the given ground types we define the set of functional types, T: 
1. /c 6 T, if /c is a given ground type, 

2. (a -> /3) e r whenever a,/3 G I \ 
We shall omit ( ) whenever possible. In this case the association of ( ) is taken as from 

right to left. Thus a a denotes a —>(/?—* /?). We write: 

( t f i , . . . ,<r„ , r ) = • crn -> r for n > 0. 

Note tha t each type can be written in the form ( c ^ , . . . , a n , /c). A type is said to be of first 
order if it is of the form . . . , /c n , K). We assume tha t we are given, for each ground type 
K, a set basic constants B* and for each first order type r a set of basic function constants 
J R . A family { £ r } , where £ r is intended to be a set of terms of type r , is defined to be 
the family of the smallest sets £ T satisfying the conditions: 

1. B* C £*, for all ground types /c. 

2. 7T C £ r , for all first order types r . 

3. s £ £T where S is the usual closed combinator \xyz.(xz)(yz) of type r . 

4. K € £r where i f is the usual closed combinator Xxy.x of type r . 

5. Y £ £T where y , which is intended to be a fixed point combinator, is of type r. 

6. {t s) e C0 whenever t G H""0 and 5 G £ a . 

We shall omit the braces ( ) whenever possible, the association then being from left 
to right. Thus we shall write ts instead of (ts). Also we let Q denote the combinator 
Y(Xx.x) = Y(SKK). Ofcourse Q is the usual 'undefined' term. 

Define £ = (J 7 = U ?r> where r ranges over the first order types, and B = U BK. 
We now give an operational semantics to the above language. Assume tha t we are 

given, for every first order function constant / : ( / c l f . . . , / c n , / c ) , a reduction rule 
which is a partial function from £ K l x • • • x £ K n to B*. If — • ( t i , . • . , tn) = 6, we represent 
this pictorially as: 

We assume tha t is total on BKl x • • • x B* n . This means reduces every term of 
the form fbi ...bny where 6,- G B K i , to some basic constant 6 G B^. Pictorially: 

fbi...bn b. 

This restriction is not severe because one can assume tha t each B* contains the 'undefined* 
constant. When / is a 'call by value' function then the domain of the function —̂ -» will be 
B*1 X • • • x B* n , because, in that case, / insists tha t its arguments be evaluated completely 

2 



before it is called. But this need not be the case always. For example, / might choose to 
ignore its second argument sometimes. 

Now we define a reduction relation — • on terms as follows: 

1. f t i ' - t n ~ * b where t, G £K>, b G 8 and / G J. 
fti... tn —• b 

2. (Y f) — • / ( y / ) , where / G £* ** and £ G £*. 

3. Srst —> (rt)(st), 

4. K r a — • r, 

r 5 — • r ^ 

6. - l ^ i l . 
r 5 — • r s' 

We shall denote by —^ the transitive reflexive closure of — 

We assume tha t — i s reasonable, i.e. it satisfies the following consistency constraint: 

if fti... tn b and —^ 5y for all j then fsi... s n 6 . 
We know tha t Church-Rosser theorem holds for pure typed lambda calculus. The above 
consistency constraint ensures that it holds for £ too. Hence, though — • is not monogenic, 
it has a unique normal form -if the normal form exists. 

We turn next to the denotational semantics of £ . Assume tha t we are given, for each 
ground type /c, a ground domain DK and a type-respecting ground semantics G : B —• U D* 
such tha t all the finite elements of the ground domains are definable by basic constants, 
i.e, for each finite d G D* there exists a basic constant 6 G BK such tha t d = G6. We 
also assume tha t for each / G / r , where r = ( f t i , . . . , / e n , / c ) y we are given a first order 
continuous function H f such tha t for all & i , . . . , 6 n B , 

(HfKGbJ ... (Gbn) = (Gb) if fbx...bn-U b. 

Note that , as all the finite elements of ground domains are assumed to be definable by the 
basic ground constants, the above condition uniquely determines Hf. 

A model of £ , M = (£> r, consists of 
1. a cpo DT for each type r such tha t for each ground type /c, D* is isomorphic to the 

given ground domain. (We shall assume this isomorphism implicitly and not refer 
to it explicitly.) 

2. a continuous application function • : Da~¥0 x Da —» D@ for all types a and /?. 

3. a type preserving map A : £ —* (J DT which is a homomorphism: 

A(t s) = (At) • (As) for all t,se £. 

Again we shall omit • whenever possible, the association being assumed to be from left 
to right. We shall denote by AT the restriction of A to £ T . This definition of model is akin 
to tha t of a general interpretation in [Plotkin]. 
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A model, M = ( D r , -,A), is called standard if 

1. A b = G 6, for all b G B, i.e. A agrees with G on the ground constants. 

2. A / = / / / if / G J . 

If 6 G B and / G we shall ambiguously use the symbol 6 to denote G(b) and the 
symbol / to denote / / / . Whether a symbol 6 or / is playing a syntactic role or a semantic 
one should be clear from the context. 

If a model for £ is to be of any value, it should be faithful to its operational semantics. 
Let us define a type-respecting map O : IJ £ K —* U DK as: 

Q t = [ G b i t t ^ b 
y _L otherwise, i.e. if all computation of i diverge. 

Note that because a normal form, if it exists, is unique by Chuch-Rosser theorem, O is 
well defined. 

A model, M = (Z? r, is called adequate (or faithful) if, for all ground terms i, 

A t = O L 

In this case we say tha t O and A are semantically equivalent. 
One can now define precisely, what it means to say tha t one term is operationally 

weaker than the other. 
We say where i, s G £"{01,..., <J n,«), if for all it- G £ < T i : 

0(ttx . . . i n ) C 0{atx . . . i n ) . (1) 

This definition differs from the usual definition found in li terature which is given in terms 
of 'contexts ' . We shall see later tha t the two definitions are equivalent. 

A model, M = (Z? r, . ,>1), is called fully abstract if for all terms i, s G £ r \ 

AtCiAsiKtCls. 

A simple model for £ is the classical model, M = (Z? r, •, A), where the ground domains 
are the given ones and domains at higher types axe inductively defined simply as follows: 
Da~¥/3 = Da —• Dp, where Dn -> Dft is the domain of continuous functions from DQ to D0. 
The application function • is the usual function application and A is defined as follows: 

1. A{b) = 6, for 6 G B 

2. A ( / ) = / , for / G J 

3. ^4(5) = Axyz . ( zz ) (yz) 

4. A{K) = A z y . x 

5. A ( F ) = U ^ f ( l ) 

6. = {At) {As). 
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It can be shown tha t M is an adequate model of £ (for a similar proof see [Plotkin]). 
However, it was shown by Plotkin tha t M is not fully abstract for a special case of £ 
P C F . But in this case Plotkin made M fully abstract by adding an extra parallel or 
facility to £ . On the other hand, Milner demonstrated the existence of fully abstract 
model for £ in [Milner]. However, his construction is completely syntactic and his model 
doesn't seem to have any obvious relationship with the model M. Many a t tempts have 
been made to construct such a model in a semantic way, especially noteworthy being 
those of Berry and his colleagues. ( See [Berry] which gives an excellent history of the 
problem and an extensive list of bibliographical references.) Nevertheless the semantic 
characterization of full abstraction remained an impor tant open problem. We provide 
tha t semantic characterization in this paper. Our final model will pleasingly turn out to 
be a submodel of M , 

It should be made clear at the outset tha t we dealing with general typed lambda calculi 
as in [Milner]. In particular, we do not assume tha t £ has any additional properties like 
sequentiality (see [Berry] ). Our method will provide a semantic characterzation of full 
abstraction for any general typed lambda calculus, but we shall leave it open whether a 
better semantic characterization can be found when the language £ is known to have the 
above additional properties. 

Henceforth M will refer to the above-mentioned classical model ( D r , •, A). We shall also 
assume tha t D r s axe u;-algebraic complete lattices. Why we require DrJs to be complete 
lattices and not simply consistently complete epos will become clear in the next section. 
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3 . I n c l u s i v e P r e d i c a t e s 

The collapsing of M onto a fully abstract model is achieved through some inductively 
defined inclusive predicates (see [Milne], [Mulmuley], [Reynolds]). For each type r we 
define an inclusive predicate © r C DT x £T as follows: 

1. For a ground type /c, 

e* = {{d,t)\dco(t)}. 

2. For a type r = a —• /?, 

G ' = {(d, t) | v(c, 5 ) € ©'\(<fc, ts) e efl}. 

It is easy to show tha t Qs can be defined equivalently as follows: 
1. For a ground type /c, 

e* = {{d,t)\dQO{t)}. 

2. For a type r = (<7i, . . . , <rn, K) 

e r = {(<*,t) | v ( 4 , * o e ©*< .ddt . . .dnQ o{ttx...tn)}. 

We shall use any of the two equivalent formulations as convenient. It is easy to show 
that all 0 r s are directed complete. Note tha t (d, e) G © can be taken as saying d is weaker 
than e in some sense . Hence 0 r can be used to define a natura l quasiorder C on Dr. 

- We say 

di C d2 iff for all t, (d2y 0 S © r implies (cfx, t ) G 0 r , 

Let ~ r be the induced equivalence relation. The equivalence class of d G DT will be denoted 

by w . 
In this paper we adopt the convention of dropping the type subscripts and superscripts 

whenever no ambiguity arises. Thus we shall often write C, ~ , [ ], or 0 instead of 
C , ~ r , [ ] r , or @ r . The convention also applies to any definitions we introduce in future. 

The inclusive relation 0 and the induced equivalence relation ~ have many nice prop­
erties. For example, 

t 
if t C s then (a, t) G 0 implies (cf, s) G 0 . 

Secondly, 
• is a refinement of CZ, i.e, if di C d2 then di C ĉ 2-

Let Z)^ denote the set of equivalence classes of Dr. We can convert into a partial order 
as follows. We say 

[di] Q [d2] iff di c d2. 

The choice of the representatives dx and d2 in the above definition is immaterial . Using 
the directed completeness of 0 it can be shown tha t DL is actually a cpo. In fact, for any 

oo oo 
chain {di \ i > 0} , [_J[cft] = [[J di]. Thus we have a continuous function [ ] r : DT —> DZ. 

i 0 t-0 
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As the DTs are assumed to be complete lattices it is easy to see tha t whenever di G [d] 
and d2 G [d] then di U d2 G [d]. (This where we need the lattice property of Dr.) This 
means that [d\ is directed. By the directed completeness of the ©s it follows that each [d] 
has a maximum element max[<i] = U[^]-

Let us consider a ' re t ract ' QT : DT —• : 

QT : d H - • max[d ] r . 

Q r is in some sense a representation of the Quotient Space (and hence the mnemonic 
name QT). Let us consider a 'model ' , MQ = ( Q r , - , A g ) , where A® = Q o A and . is just 
the restriction of the application operation in M and hope tha t is a fully abstract , 
extensional model of £ . Alas! our a t tempt is doomed to failure as QT defined above might 
not be continuous, though it is certainly monotonic and satisfies the retract definition 
QT o QT = Qr. Even if it were continuous the difficulties do not end. How do we know, 
for example, tha t we are justified in letting the application in be just the restriction 
of the application in M ? Tha t is to say, is it the case tha t whenever d G Q°ot —• (3 and 
c G Qa then dc G Q01 And, of course, we have to show tha t it is indeed fully abstract , 
extensional, algebraic . . . 

Definitely we need to be more sophisticated! What we shall do is to consider a sequence 
of subsets of £ , £\ C £ 2 C For each £i we construct a fully abstract , extensional 
model M®. The final model Mis then obtained as a limit of the sequence A/^ , M2 \ . • 
Of course, the success of the approach depends on choosing each £ t wisely. Before we do 
that we need to extend the notion of a model. 

Let K be a subset of £ which is closed under application, i.e, whenever t G K and 
s G < then ts G K. 

A /C-model, N = ( E r , - , B ) , consists of 
1. a cpo ET for each type r such that , for each ground type /c, EK is a subdomain of 

the given ground domain Dk. 
2. a continuous application function • : Ea~>0 x Ea E0 for all types a and /3. 
3. a type preserving map B : K —* U ET which is a homomorphism: 

B(t s) = (Bt) (Bs) for t, s G K. 

It is clear tha t a model for £ , as defined in the previous section is just an £-model. 
A X'-model, N = ( J 5 r , - , 5 ) , is said to be adequate if B(t) = 0(t) for every ground 

term t G K. 

Let Kr = £r n K. Given t,se K ^ ^ ^ ) } we say t C s, if for all tt- G K'4, 

0{tti...tn)QO{sti...tn). 

We say tha t a JC-model, N = ( £ r , •, £ ) , is fully abstract if for all t,s G KT: 

B(t) C 5 (5 ) iff 4 c 5. 



We can now address the question of selecting the sequence of subsets of £ , C\ C 
£ 2 . . . Suppose that we are given, for each ground type K, a monotone sequence of finite 

0 0 

projections, <f>* C 05 • • • s u c ^ fc^at U 0? = ^ where / is the identity function on D*. 
t o 

Finiteness of <j>* implies tha t the Gxpoint set of 0*, is finite, and moreover each fixpoint 
of 4>* is a finite element of DK. For every higher type r = a —* /? we inductively define 

0.- = A / : r.0? 0 / 0 ^ . 

We shall denote by . It follows tha t each is finite- hence D* is finite- and also 
0 0 

that |_J 4>l = / . Also Z) t

a is isomorphic to the function space Df —> Df. 
i- 0 

We make an important assumption. 
We assume that each <f>* is definable in £. 

This means tha t there exists a term $* G £ such tha t A($*) = 0*. It follows by induction 
that 0J" is definable for every type r; we let, for r = a —> /?, 

$ t

r = A/ : r.*f 0 / 0 

(Strictly speaking is an S-K combinator equivalent to the right-hand side of the above 
equation). Then it is easily seen tha t A(^) = <f>\. 

For each term t : r G £ , we define its t t h syntactic apprcximant [ i j t 6 £ as: 

Let £i be the smallest set closed under application which contains [t\i for each t G £ . 
Then 

G Z?[ for every 5 : r G £{. 

and moreover 
0 0 

^ ( 0 = U ^ ( W O f o r e v e r y 4 G 

Let M{ = . , i4 t), where i4 t : ; —• U is simply the restriction of A to Then A/, is 
an adequate, extensional £ t -model . We shall collapse M t onto a fully abstract , extensional 
model M®. But before tha t let us investigate the relationship between the operational 
preorder w.r.t £ and the operational preorder w.r.t 

L e m m a 3 . 1 : For all i , 
C d 

1. if £, s G £ then £ C s implies [tj» C [sj t-. 
d t 

2. if £, s G £ t then t d s implies t d s. 

Proof: 1) Suppose £, s G £ and ( C s , Then for all t i , . . . , £ n G £,: we have, as £{ C £ , 

0{ttx...tn) C 0 ( r t i . . . « n ) -
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Hence, 
<t>*(0(tt1...tn))Q4>ttO(stl...tn)) (2) 

But, 

<t>*{0(tti... tn)) - 4>*{A(tti.. .tn)) by the semantic equiva­
lence between O and A. 

= <f>«((At)(Atl)...(Atn)) 
= tf{(At)(tf' o A{ti)).. • {4>1n o A{tn))) because, for all j , tjjE & 

and hence A(tj) G D"3 

= (<f>loA{t))(Atl)...{Atn) 
= (A[t\i)(Atl)...(Atn) 
= A{[t\itl...tn) 
= 0{[t\iti... tn) by the semantic equiva­

lence. 

And similarly, 
tf(0(«*l...*„)) =0([3\itx...tn). 

From (2) we conclude that : 

0(L*J,-*i . - .*») E 0(L*J<*i • • • *n) for all tj G 

Thus indeed [tj t- £ LaJ<-

2)Assume t, 3 : ( c ^ , . . . , an, K) G and t d s. Then, for all tj : a3• €. a similar calculation 
yields: 

0{tti...tn) = A{tty...tn) 
= {At)(Atl)...(Atn) 

= ( ^ t K ^ f o . . . (<# n o A{tn)) as G £>[ because t € £t-

= (i40(ALt 1 J.-) . . . ( i4L*-J0 
= i4(*L* 1 j < . . . | . t«j .) 
= o(tL*iJ<.--L'«J0 

Tha t is, for all fy : cry G £ , 
0 ( « 1 . . . t n ) = 0( tL*iJ<. . . [ 4 nJ,) (3) 

And similarly, 
o ( » t , . . . g = o ( s L « 1 J . - . - L t n J 0 ( 4 ) 

As t d 5, we conclude tha t for all tj G C 

0{t[tl\i...[tn\i)QO(s[tl\i...[tn\i), 

because [iyjj G Thus from (3) and (4) we conclude tha t for all tj : <Tj € £ 

0{tti...tn) C 0{stl...tn)t 

which means t a s. 
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4 . A f i n i t e a p p r o x i m a t e m o d e l 

In this section we describe how one can construct, for each £ t , a model which will 
be a finite approximation to the final fully abstract £-model, M g . 

For each d G D\ define = D\ Pi [d]T. Then it is easy to see tha t [d\* also has a 
maximum; max[d]l = <j>\{max[d\T). Thus we have a map max\ : D\ —> D t

r , 

max[ : d H - * mai[(f][, 

which is monotonic and hence trivially continuous as D\ is finite. Let 

Q\ = m a i [ o 0T. 

Then, for each <i G £>[, Q[ o Q[(d) = Qf{max[d]i) = mai [mai [d] i ] j = max[d]i = QT(d). 
Hence QT

{ is a retract of DT

{ and also of D r . Also, for all d G DT

iy Q%{d) and <i belong to 
the same equivalence class. Hence 

for all <fG£> t

r, Qi{d) ~ d. 

Let us define 
m? = (q;,.,a?), 

where . is just the restriction of the application function in Aft (or equivalently M ) , and 
A? : d —* UQi is defined as (dropping the type superscripts): 

A? = Qi o At. 

Obviously, 
Ai c A 9 . 

and 
^ ( O ^ A ^ t J f o r a l U G A'. 

It will turn out tha t is a fully abstract , extensional £i-model. Of course, a lot of work 
has to be done in order to prove this. 

First we ask: is the application in well defined? Tha t is, if d G Q°"*^ and c G Qf 
then does dc G Qf always? Before we address this question let us prove a general lemma. 

L e m m a 4 . 1 : Suppose we are given di,d2 : r = a —• /?. Then if, for all c : a , there exists 
a c ' C c such tha t cfic C d2c' then di C do. 

Proof: We have to show that given any (cf2,0 £ ®r> €: 0 r . 
Let (c/2,0 be some arbitrary element in 0 r . For any (c, s) G Qa we know tha t (c', 3) G 

0 a as c ; • c. Hence, because (d2,t) G 0 r , (cf2c',£s) G 0 ^ . This implies, as die C cf2c', tha t 

(efic, **) G 8 f l . Thus for every (c, 3) G 0 a we have (c^c, is) G 6 * , which means [du t) G 0 r . 
This concludes the proof. 
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C o r o l l a r y 4 .2 : Let dL, d2 : r = a —> /? be given such tha t 

1. cfx = (c => 6) for some finite c : a and 6 : /?, where => indicates the usual step 
function, i.e. 

did = 6 if c C a 
= _L otherwise. 

2. there exists c' (Z c such that b C <f2c'. 
**** 

Then d x c d2. 

Proof: For every a : a . we show tha t there exists a' C a such tha t cfxa C <i2a'. The result 
then follows from the above lemma. Consider two cases. 

1. c C a: Then c C a, as C is a refinement of (Z. Now did = 6 EZ d2cf and c' C c C a, 
hence we can let a' = c'. 

2. c g a: Then cixa = _L Hence we can let a' = _L. 

0 

Now we can show that application in is well defined. Let d G Q[ , where r = a —• /?, 
and c € Q*. We want to show tha t dc G Qf. Let 6 = max[dc\i> then this amounts to 
showing that b = dc. Define a : DJ* as 

a = (c => 6) 

As 6 = maxfdc]., trivially 6 C cfc. Now from the preceding corollary it immediately follows 
that add. Hence a C max[a] t C max[cf] t = <i. This implies tha t 6 = ac C <ic. On the 
other hand cfc C maxfdc],: = 6. Thus b = dc and we have shown tha t the application in 
A/^ is well defined. 

What can we say about the extensionality of M t ^? Note tha t this does not follow from 
the extensionality of M t . The extensionality of M t says: if di,d2 G Z? t

r, where r = a —» /?, 
then <ii C <f2 whenever 

c/xc C d 2 c for all c : Df. 

On the other hand the extensionality of of says: if dud2 G Q\ then <ix E d2 whenever 

die C <i2c for all c : 

which is a much stronger s tatement as \Q"\ is jus t a su&set of Df. 
We can prove extensionality as follows. Let di,d2 : Q\ be such tha t die C <i2c for all 

c:Qf. Then for all a : we have 

<*xa = d i (0?(a) ) as dv G 

C cf2(Q t^(a)) by the assumption, as Qi{a) G Q? . 
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Remembering tha t C is a refinement of C , this implies did C d2(Q?a) for all a : D a . Also, 
as a £ D [ , Q\0. C a. Now we immediately conclude from Lemma 4.1 tha t di C d2. Hence 

di = max[cii]T C m a x [ C ^ T — ^ 2 ? 

which proves the extensionality of . 
Algebraicity of follows trivially because \Q\\ is finite for all r . 
Before we turn to the full abstractness of let us prove some lemmas. 

L e m m a 4 . 3 : For all t : R , (At, t) G O r . 

Proof: 
1. If t is a basic ground constant or a first order function constant then it is obvious. 
2. t = 5 : We want to show tha t (AS,S) = (Ax,y,z . (xz)(yz) y S) G 9 . For this it 

suffices to show that for all (x, e), (y, / ) , ( 2 , g) G ©, where x , y , z have appropriate 
/ower order types, ((AS)xyz, Sefg) G © . 

But (x ,c) , (y, / ) , (z, g) G 0 implies (xz,eg),(yzJ fg) G O and hence 

((AS)xyz,(eg)(fg)) = ((xz)(yz),(eg)(fg)) G 9 . 
c 

As Se/c* ~ (eg)(fg), this means 

( ( A 5 ) i y z , 5 e / g ) € 6 , 

which is what we wanted to prove. 
3. t = K: The proof is as in the previous case. 
4. t = Y: Let the type of Y be r = a —• a, where a = a —• a . We show by induction 

tha t 
for all n , (y n , F ) G O r where y„ = A / . / N J _ , 

Then the result follows from the directed completeness of 9 r . 
The basis is clear as (y 0 , Y) = ( _ L , Y) G 9 r . 
Assume, as the induction hypothesis tha t ( y n , F ) G 9 r . We have to show tha t 
( Y N I I , Y) G 9 r . For this it suffices to show tha t for all (c, s) G 9 " , (y n n c , Ys) G 9 a . 
Let (c ,s) be an arbi tary element of 9 * . As (yn,Y) G 9 r , ( c N _ L , F s ) = (y n c , F s ) G 

9 a . Hence, as (c, a) G 9 * , ( c n H l , 3 ( K s ) ) = {c{cn±),s{Ys)) G 9 a . But , as s{Ys) ~ 
Ks, this means tha t ( c n + 1 ± , F s ) G 9 a . 
Thus , for all (c,s) G 9 * , ( y n h l c , K a ) = ( c N + 1 J . , y « ) G 9 ° . Hence ( y n + 1 , K ) G 9 r . 
This concludes the proof of this case. 

5. t : /? = r s , where r : a —* fi, and a : a : By the induction hypothesis (Ar, r ) G 9 a - > / ? 

and ( A a , 3 ) G 9 a . Hence (At,t) - {{Ar){As),ra) G 9 ^ . 
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C o r o l l a r y 4 . 4 : For all t : r G £<, ( - A ? ( 0 . 0 € 9 r . 
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Proof: Let t € By the above lemma, ( A ^ t ) = {At,t) 6 0 r . Since A?(t) ^ A,(t) , this 
means 

(A?(t),t)eer. 

0 

L e m m a 4 .5 : For t, s : r, t C s iff (At, s) € 6 r . 

Proof: 
=>: Suppose t U. s. By Lemma 4.3 (At, t) € 0 r . Hence, a s i C s , (At, s) G 0 r . 

<=: : Suppose (/it, s) € 0 r . Let r = (<r i , . . . , <rn, /c). Then for all t, : a y 

0(tti... t n ) = A(tti ... tn) by semantic equivalence of O and 
A. 

= (At)(At{)...(Atn) 
Q 0(ati...tn) since (At,9) e 0 r by the as­

sumption, and (Atj, t 3 ) € 0* ' by 
Lemma 4.3. 

Thus t c 3 . 

0 

L e m m a 4 .6 : (d, t) e 0 r ifT d c At . 

Proof: 
<=: Suppose d c At. By Lemma 4.3 (At, t) <E 0 r . Hence, as d C At, (<f,t) e 0 r . 

=>•: Suppose (<i, t) € 0 r . Then for any (At, s) G 0 r we conclude from the preceding lemma 

that t C.s and hence, as (d, t) € 0 r , (d, 3) 6 0 r . This means d C At . 

0 

C o r o l l a r y 4 .7 : If cf € £>[ and t € £< then (d, t ) <E 0 r implies Q<d C A?{t). 

Proof: By the above lemma d C At = A<(t). This means 

= max[d]i C m o x [ ^ ( 0 ] < = <3i W ) ) = ^ . 9 ( 0 

C o r o l l a r y 4 .8 : t n s ifi At C. As. 

Proof: 

t e a iff (At, s) E © by Lemma 4.5 
iff >li c As by Lemma 4.6. 

0 

0 
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Now we axe in a position to prove the full abstractness of Mt- . Let £, s G d be 
d L 

such that t d s. Then by Lemma 3.1 we know tha t t C s. Hence by the Corollary 4.8 
A{(i) = At c As = Ai(s). This means 

A?(t) = Q, o = m a x [ A t ( 0 ] . C max[Ai{a)]i = Q, o A t ( s ) = A?( s ) . 

Thus indeed i4?(t) C A t

g ( s ) . 

On the other hand if A? CO E where t,s G £iy then 

A ( 0 = At(t) ~ A ? ( 0 C A t (s ) = A(s) . 

L Li 
Then by Corollary 4.8, f C 5. This in turn implies, by Lemma 3.1, [0* £ L5J»- But M 

Li Li L 
i, 5 € £ j , we know tha t t ~ and 5 ~ [ 5Jt- Thus indeed i d 5. 

We have then proved that 

for all t, 5 e i C 5 iff A?( t ) C A ? ( s ) . 

Tha t is: 
is fully abstract. 

Finally we need to show that A? is a homomorphism, i.e. A?(rs) = (A?r)(A?s), for 
all r,sG Hi. 

Let r, 5 G L{. 
Then 

4 9 ( " ) = Qi(Mrs)) 
= Q t ( ( A ^ ) ( A t s ) ) (5) 
C Q ^ ( A ? r ) ( A ? s ) ) as A C A ? . 

But note tha t , as Af(r)yAf(s) G Q», we conclude, because the application in is 
well defined, tha t (A?r)(A?a) G Q{. This means Qi({A?r)(A?s)) = (A?r){A?a). Thus by 
(5) we conclude tha t 

Af(rs) C {A?r){A?s). 

To prove the other inequality, it suffices to prove that ((A?r)(A?s),rs) G 6 . Because 
then, 

(A?r)(A?s) = Qi((Afr)(A?s)) as above, by the well-definedness of 
application in 

C A?(rs) by Corollary 4.7. 

It is easy to prove tha t {(A?r)(A?s),rs) € 0 . By Corollary 4.4, (A?(r),r), {A?{s), s) 6 0 . 
Hence ((A?r)(A?s))rs) € 0 . 
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We have proved tha t 
A*? is a homomorphism. 

Let us summarize what we have proved in this section. 
is a fully abstract, extensional, algebraic Li-model. Further Qi's are 

homomorphic retractions; i.e., the the following diagram commutes. 

Of course it is obvious tha t the above diagram commutes because tha t is how we defined 
A?\ What is not obvious is that A? defined in this fashion is actually a homomorphism. 
It is possible to take the other approach; we can define A? as a homomorphism and then 
prove that the above diagram commutes. Which approach one takes is a mat te r of tas te 
but the end result is the same anyway. 

It is also interesting to note tha t not all the finite elements of at higher types need 
be definable, which is one of the manifestations of its truly semantic na ture . We shall have 
more to say about this later. 
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5 . L i m i t C o n s t r u c t i o n 

Now that we have fully abstract , extensional, algebraic finite models the next 
natural thing to do is to construct MQ as their ' limit ' . For this to go through the M^s 
must bear some relationship to each other. We want that be in some sense a subretract 
of M? if % < j . 

Before that let us digress for a moment. What does it mean to say tha t a retract r 
is a subretract of a retract 5 ? It is fair enough to stipulate that r C s. If r and s are 
projections then this is all that we need, because we can then immediately conclude that 
M C |s | , where |r| and \s\ are the fixpoint sets of r and 3 . But what if they aren ' t? What 
we need is that there be some injection-projection pair between |r | and | s | . The obvious 
choice for such an injection-projection pair is the most natural one: ( s , r ) . Pictorially: 

\R\Z=L\S\ 
r 

For ( s , r ) to be an injection-projection pair two conditions need to be satisfied: 
1. for all c G s, s o r(c) C c 
2. for all d G r, r o s(d) = d 

The first condition easily follows from the condition r C 3 . The second condition is 
equivalent to saying r o 3 o r = r. 

Hence we say r -< 3 if 
L r C a 
2, r o s o r = r . 

Note that the relation < is transitive. Also, given a monotone sequence r A -< r 2 ^ . . . , 
0 0 

we can construct it 's 'inverse limit ' r = [ J r ; ; this r is the least retract such tha t ry -< r 

for all j . Also if every r3- is algebraic (by this we mean | r ; | is algebraic) so is r. If d is a 
finite element of ry (i.e. if d is a finite element of |r|; d need nof be a finite element of the 
embedding domain of which Tj is a re t rac t ) , then r(d) is a finite element of r. Conversely 
every finite element of r is of this form for some j . We leave the routine proofs to the 
reader. 

With this background we now wish to show that Q [ < Qy, if % < j \ 
It is easy to see tha t Qr

{ C Qy. To show tha t Q\ o QT- o Q\ = Q[ ? it suffices to show 
that Q\ o QJ(d) = d, for all d G QJ. 

Consider then aji arbi trary d G Q[ . This implies d G D [ and hence d G Z?y too. Now 
we calculate: 

Q [ o Q J ( d ) = ^ (mox[Q; («0] ) 
= <?!>,r(max[d]) 

= d 

because, as d € £>;, [QJd] = [d] 

as d e QJ. 
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Thus indeed 
q : < q t , if f < j . 

We now have, for each r , a monotone sequence: 

Q\<Q\...QTi<QTi^<.--

Define QT as the limit of this sequence: 

QT
 = U Ql 

i 0 

As Qi{c) ^ c for every c G DJ, we conclude, from the directed completeness of 0 predicates: 

Qr(d) ~ d for every d e D r . 

Define MQ = ( Q r , A^) , where • is the restriction of the application in M and A^ = Qo A 
(dropping the type superscripts). It will turn out that MQ is a fully abstract , extensional, 
algebraic £-model. 

As before we have to show tha t the application is well defined in M ^ , i.e., if d G 
Qaa —* j3 and c G Qa then dc G Q^. But this time it is easy: 

dc = (UQ*"~°id)(\jQ?c) 
i=0 t=0 

= \J(Q°-Hd)(Q?c). 
i=--0 

As application is well defined in each M ? , we know tha t each (Q<Ta~'0id)(Q?c) G Qf. Hence 

dc=\J(Q°~°i)(QT)e\jQe = Q>3. 
t^O i=0 

Before we prove the extensionality of let us prove one lemma. 

L e m m a 5 . 1 : Let d s Q ) and c G , where r = a —* (3 and i C j . Then 

Qi{d{QjC)) = {Qid)e. 

Proof: One par t of the equality, (Qid)c C Qi{d(Qic)) is obvious as d C Qj(cf) and c • Qj(c)> 
It remains to prove tha t Qi{d(Qc)) C (Q,d)c. 

As c G Q" , we know that c G and hence c G Df too. This means Qj(c) ~ c. Let 
b = Qi{d{Qjc)). Then 

6 = g , - ( d ( g y c ) ) 

C Q i ( c / (g y c ) ) a s Q . C Q y 

= d(Qjc) as the application in A/,^ is well defined. 
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Hence, a s C is a refinement of C , we conclude that b (Z d(Qjc). Let d1 : D\ — (c => b). 
Then because c ~ QjC and 6 C (Q ; c ) , we immediately conclude from Lemma 4.1 tha t 
d1 C d. Therefore d' C d , as d' C m a x [ d ' ] y C raax(d];- = d. But then, a s 6 

ci' QQi{d!) C Q,(c/). Hence g ^ c ^ c ) ) = 6 = d ' c C {Qld)c. 

0 
Lemma 5.1 reminds us of the following fact in the model M which can be easily proved 
from the definitions of the fa projections. 

If d G D* and c G D™9 where r = a —• (3 and i < j then <f>i(d(<f>jc)) = 
(4>id)c. 

Of course, as c G Df implies <f>j(c) = c, the above equation can be reduced to: <t>i(dc) = 

(<f>id)c, whereas in MQ we can not conclude more than the fact c C Qj{c)-

From the above Lemma 5.1 one easily proves tha t the following diagram commutes: 

o r 0 x q? 

•of 

o f 

• o f 

This r o u g h l y s a y s that the application remains invariant under the injection of the family 
{Qi} into {QTj} which is slightly surprising, as this injection 'increases' the elements: 
Qrjic) 3 c, for c : Q\. Thus in true sense can be embedded into {Q)}. We say: 

C o r o l l a r y 5.2: If d e Qr and c € Qf, where r = a /?, then Qi(d(Qc)) = (Qid)c. 

Proof: 

OO 

= < & ( U W y < 0 ( Q y ( < 0 ) ) 

= U Qi{{QMQi')) 

= \J(Qid)c 
3>.i 

= {Qid)c. 

by Lemma 5.1 

0 
I am sure Corollary 5.2 reminds the reader of the following fact in the model M which 
could proved analogusly: 
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If d G DT and c G D", where T = a -* 0, then 

4>i{d{4>c)) = [4>id)c 

Proving extensionality now is easy. Suppose a, 6 6 QT, where r = a —• j3, and that for 
all c € Q'\ ac C 6c. Then for all /i € Q ° , 

(Q, ra)/i = Qf (a(Q"fc)) by Corollary 5.2 
C Qf (6(Q°/i)) by assumption, as Qa(h) G Q a 

= {QTib)h by Corollary 5.2. 

By extensionality of M?, we conclude tha t Q[(a) C (&)• Hence 

a = Q ' ( a ) = U QTM E U OT) = <W) = 
• i - 0 

which proves tha t is extensional. 

Note tha t for every t G 

AQ(i) = Q{At) 
oo oo 

i=0 t=0 

i=0 

U*?(L«J<)-
ir-0 

Also A C A 0 , because for every £ G £ 

^ ( 0 = UM[tU) 
i=0 

E UA?(L«J0 a s ^ C A ? 
i=0 

w a homomorphism, 
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because for every r, s € £ of appropriate type, 

AQ{rs) = QoA(rs) 
0 0 OO 

- ( U Q « ) ( U ^ ( L r J « L 5 J 0 ) ky syntactic continuity 
t o i o 

i 0 i 0 

= UQioAi([r\l[s\i) 
t 0 

t 0 
oo 

= [ J ( 4 ^ [ r J ; ) ( A ^ [ s J i ) because A? is a homomorphism 
i o 

= (i\A?([r\l))(\jAf([s\i)) 
t - 0 i 0 

= (A«r)(A««) . 

is algebraic because it is the inverse limit of M ? s and each is trivially algebraic. 
We now address the question of full abstractness of M ^ . 

Suppose t C s. Then by Lemma 3.1, we know tha t for all z, [t\i C [sj t-. This is because 

full abstractness of implies A^( [ t J t ) C -^?(L5Jf)» ^ o r ^ *• Hence 

AQt = \jA9([t\i)Q\J([s\i) = A^(s). 
t=0 1^0 

On the other hand suppose AQ(t) C 4 Q ( s ) . Then: 

4 ( 0 E A°(0 E ^ Q ( 0 = Q{As) c~ A(s) . 

Thus A(T) C 4 ( 5 ) , which, by Corollary 4.8, means tha t t C s. We have proved: 

AfQ is fully abstract. 
0 0 

Y has the s tandard interpretation in MQ, i.e., 4 g ( y ) = \J AQ(Y3), where = Xf.fn(Q). 
3—0 

This is because 

= U 0 o A(Y3) 

= U ^ ( ^ ) -

M* 3 is also a /?-model (i.e. a model for beta-conversion). For this one has to prove tha t 
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1. A®(Suvw) = A^((uw)(vw)) for all u,v,w G £ of appropriate types. 

2. ^( /Tt i t ; ) = AQ(u) for all TJ, t; G £ of appropriate types. 

These equations say that S behaves like S, K behaves like K, and they constitute a 
closed combinator version of the usual beta-conversion equation. But they are obviously 

true in MQ because Suvw ~ (uw)(vw), Kuv ~ u and MQ is fully abs t r tac t . 
To summarize: 

is a fully abstract, extensional, algebraic /3-model for £. Y has the 
standard interpretation in and moreover 

Now that we have proved tha t MQ is the desired model, we can give its equivalent direct 
definition. Note that for each d G JDJ, 

oo oo 

QT{d) = • QJ(d) = • maxld], = max[d\. 

Let us define a monotonic function, F r , on the finite elements of DT: 

FT(d) = max[d], for each finite d G DT. (6) 

It follows tha t 
QT is the unique continuous extension of FT. 

Similarly, as we know now tha t A® is a homomorphism, we can give its equivalent deno­
tational definition: 

1. Ac*(b) = Q(b) where 6 is a basic ground type constant. 
2. A®(f) = Q(f) where / is a basic first order function constant. 
3. A*{S) = Q{\x,ytz.{xz)(yz)) 
4. A<>[K) = Q(\x,y.x) 

5. A<1(Y)=Q(\] A/./»(_L)) 
n -0 

6. A®(rs) = (A^^^A^s) where r and s axe of the appropriate types. 
What we have proved can now be rephrased as the following main result of this paper: 
T h e o r e m 5-3: MQ = ( Q V , A g ) , where 

1. QT is defined as a continuous extension of Fr in eq 6, 
2. the application • is just the restriction of the application function of Af, 
3. A® is defined denotationally as above, 

is a fully abstract , extensional, algebraic, /3-model of £ . Moreover Y has the s tandard 
interpretation in MQ and the following diagram commutes. 



0 
Note that now we are justified in letting the application in be just the restriction 

of the application in M . Also note that the statement of Theorem 5.3 is direct in the 
sense it does not make any reference to the finite approximate models Aft^, although they 
were used in its proof. It is very pleasing that MQ can be constructed directly in a 
straightforward fashion, though proving that it has all the desired properties was certainly 
not straightforward! In fact, on the surface it seems quite unlikely tha t the application 
will be well defined in MQ or that it will be extensional. 

We can now easily show that t C s ifT for all ground contexts C[ ], 

0(C[t])QO{C[,]). (7) 

£ 

Suppose t C s . Then, because MQ is fully abstract , AQ(t) C AQ(s). This means, as 

AQ is a homomorphism, tha t ,4 g (C[i ] ) C AQ(C[s]) for all ground contexts C[ ]. But then, 

0(C[t\) = AQ(C[t\) as MQ is adequate 
C A*(C[s\) 
= 0(C[s] ) as s adequate. 

On the other hand if 0(C[t}) C 0(C[s]) for all ground contexts then 0(tti...tn) C 
0(sti.. ,tn) for all t i , . . . , t n G £ of appropriate types (let context be [ ]ti...tn. And 

c 
hence t C. s. **** 

£ 
Thus (7) could be used as an alternative definition of C instead of the one given in (1), 

because both of them are now shown to be equivalent. It is surprising how natural ly this 
equivalence follows from the existence of fully abstract M ^ . Contrast this with the elab­
orate efforts taken in [Milner] to prove this equivalence (Milner's First Context Lemma). 
Milner could not have taken our approach because, unlike in our case, the construction 
of his fully abstract model depends upon the validity of the above equivalence. Of course 
there is a hidden assumption in our argument, namely all the finite projections of the 
ground domains are definable, because this assumption was used in the construction of 
M ^ , whereas Milner's First Context Lemma does not need any assumption like this. B U T , 
what we have proved here is more general than Milner's First Context Lemma because the 
First Context Lemma is not applicable when the language contains Y combinator. In the 
presence of Y combinator an addtional assumption seems necessary anyway. 

6 . D i s c u s s i o n 

Observe tha t in our fully abstract model MQ not all the finite elements at the higher 
type need be definable. I have not tried to come up with a specific finite element which 
is not definable. But I conjecture this is the case. Contrast this with Milner's syntactic 
construction of a fully abstract model for typed lambda calculus, where every finite ele­
ment is definable. Even when the classical model of continuous functions was shown fully 
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abstract in [Plotkin] for P C F enriched with 'parallel or' it turned out that all the finite 
elements of the model were definable in the enriched language. To my knowledge, this is 
the first model which is fully abstract and whose all finite elements need not be definable 
still. We leave it open to find out the properties which the ground domains should have 
so that all the finite elements of MQ are definable, (see articulate domains of [Milner]) 

We also leave open whether a better semantic characterization can be found when L is 
known to possess the addtional properties like sequent ia l ly (see [Berry]). 

Let us recollect the assumption on which Theorem 5.3 was proved. 

Basic Assumption 
1. The ground domains DK are algebraic, complete lattices. 

2. All the finite elements of the ground domains as well as their finite projections are 
definable. 

Tha t we are using complete lattices instead of consistently complete epos is a technical 
problem which we would neglect at the moment. Otherwise our assumption is exactly the 
same as the assumption Milner used to construct a syntactic fully abstract , extensional 
model for £ . This surprising coincidence makes us speculate tha t the Basic Assuption 
might in some sense be a necessary condition to guarantee the existence of a fully abstract , 
extensional model for £ . We can justify it as follows. It seems reasonable to assume tha t 
if some fully abstract , extensional model for £ exists then one can construct such a model 
syntactically. After all the syntactic construction is the easiest one, and the whole point of 
Milner's syntactic construction in [Milner] was to show tha t a fully abstract , extensional 
model for L exists. If one can show that the Basic Assumption is in some sense necessary 
for Milner's syntactic construction to succeed, then it follows tha t the Basic Assumption 
is in some sense a necessary condition for the existence of a fully abstract , extensional 
model for £ . It is then not surprising tha t we hit upon the same condition in the semantic 
characterization of full abstraction; you don' t expect to find such a characterization when 
a fully abstract model does not exist! 

What is important : this paper gives us a definite step in the opposite direction; when­
ever the Basic Assumption is t rue, a semantic characterization can be found. Then we can 
say: 

// there exists some fully abstract, extensional, algebraic model for t 
then such a model can be found semantically. 

It is a rather sweeping s tatement , but one can not resist the temptat ion! I would expect 
something of this sort, with possibly a variant of the Basic Assumption, to be true. Tha t 
we leave as an open question for the moment . 

Though we did not show it, the O predicates defined in this paper can be used to 
show tha t O and A are semantically equivalent. In fact such inclusive predicates were 
introduced in [Milne] and [Reynolds] with exactly this aim in mind: to show the semantic 
equivalence between operational and denotational semantics. The techniques developed 
in these papers were mainly meant for the cases when the domains under consideration 
were reflexive. It should not then come as a surprise if the technique developed in this 
paper could be extended to obtain a semantic characterization of full abstraction even 
when domains under consideration axe reflexive. In fact tha t is the case. 
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The same inclusive predicates which are used to show that the operational 
and denotational semantics are equivalent can used to collapse the model 
onto a fully abstract one. 

This ties everything together nicely. In the rest of the paper we shall extend the theory to 
take into account the presence of reflexive domains. 
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7 . R e f l e x i v e T y p e s 

We extend our language by adding reQexive types. Assume without loss of generality 
that T contains a ' bo t tom' type cu such that D" is a trivial one point domain. (For 
example, one can assume that ui was one of the ground types.) We grant u a special s ta tus 
henceforth. We extend F by throwing in the reflexive types. Let T, the set of reflexive 
types, be the least set such that : 

1. uj G T, where a; is a bot tom type, 
2. K G f, where K is a ground type, 
3. a - > / ? G f , if a , / ? G f , 
4. \a.g(a) G f, if g is a type expression over f with one free variable a. 

It is easy to see tha t T C f. 
Let « be the smallest congruence relation such tha t : 

a « (7(a) if a =!r.gr(r). 

We shall let a , r, a * . . . to range over F . 
Define a family { £ r } as the family consisting of the smallest sets £ r , where £ r is 

intended to be a set of reflexive terms of type r , such that : 
1. BK C £*, where K is a ground type, 
2. JT C £ r , where r is a first order type, 
3. 5 , if, Y G £ r , if they are of types r , 
4. £3 G if £ G £ " and 3 G £ a , 
5. £ G £ a , if £ G £ " and a « /?. 

It is easy to see tha t £ r C £ r , if r G T. 
As usual we write £ : r to say £ G £ r . But now a term might possess many types: if 

£ : a and a « /? then £ : /?. 
Next we extend the nonreflexive reduction relation — • . We assume tha t we are given 
a partial function from £** x • • • x £* n to B*, which is an extension of — W e extend 

—> to as follows. 

!• F T A ' " t f ! ^ L w h e r e *i e & e S and / G J . fti... tn-*o 
2. (K / ) — / ( y / ) where / G 

3. Srst—(r£) (3 £) 

4. K r s—*r 

r 3—*r 3 

r 3—*r 3' 

We shall denote by the transitive reflexive closure of it will turn out to be an 
extension of 
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We assume tha t is reasonable, i.e. it satisfies the following consistency constraint: 

if f t i . . . t n —»> b and tj — k s y , for all then fsi . . . s n —k b. 

The notion of a model is analogous to the one in the nonreflexive case, and hence is 
left to the reader. 

To construct a classical model for L we shall embed everything into a universal domain 
U. Assume that for each ground type K we are given a finitary projection of the universal 
domain, <f>K. Let DK = |<£*|. Define 4>T at the higher types by induction: 

1. <t>" = -L, 
2. <f>* is as given, if K is a ground type, 
3. <f>r = A/. cf/j o f o <f>a, if r = a - * /?, 

4. 0 r = Q { 0 r " | r n = < ? » } , if r = ! a . g ( a ) . 
n 0 

We denote |<£r| by DT. Note that if a » /? then <j>a = <f>P and hence D a = JD^. 
Though we did not carry out the t reatment of nonreflexive types in the universal 

domain, we could have done so, and hence we shall assume tha t the t reatement of the 
previous sections was carried out in the universal domain U. 

Let M = (J9 r , •, 4 ) be the classical model of £ , where • is the usual application function 
and A is defined as follows: 

1. 4 ( 6 ) = G(6), for 6 g B , 

2. A(f) = H{f)9forfe?, 
3. 4 ( 5 ) = Xxyz. (xz)(yz), 
4. A(K) = Axy.x, 

5. A(Y)= [ j A / . T ( ± ) , 

6. A{ts) = (A*) ( 4 s ) . 

4 is an extension of A, i.e. if £ G £ then 4 ( 0 = 4 ( 0 -

Let us define a type-respecting map O : U £ K —* U ^ * as« 

I JL otherwise, i.e. if all computat ion of t diverge. 

Then O is an extension of O. We shall soon show tha t M is adequate, i.e. 4 ( 0 = O ( 0 if 
t G £ is a ground type term. 

I 
The notion of full abstractness is as in the nonreflexive case. We say t C s , where 

t} s : r , if 
0 ( t t i . . . * „ ) = 0 ( * * i . . . t„) , 

whenever r « ( r i , . . . , r n , /c) and : r ; , for all j . It will turn out tha t this definition is 
equivalent to the one given in terms of contexts. It differs from the one for the nonreflexive 
case in two ways. 
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Firstly r may be congruent to many types of the form ( r i , . . . , r n , /c). But if r is 
congruent to ( n , . . . , r n , /c) and ( r { , . . . , r^, /c') then n = n ' , * = /c', and Tj = rj- which means 
£ r j = £ r j . Thus it suffices to consider any one congruent type of the form ( r 1 ? . . . , r n , / c ) . 

The second difference is more subtle: r may not be congruent to any type of the form 
I 

( t j , . . . , r n , /c ) ; in this case we say r is trivial. From the definition of C it follows that for 
£ 

all £, s : t , £ ~ s! But this is not surprising because it is easy to show by induction on the 
definion of types that if r is trivial then <f>T = JL. As M is adequate (we shall soon show 
tha t ) , this means 0(t) = A(t) = 1_, for all t G £ r , hence all t : r are equivalent. 

Adequacy of M is shown by defining for each type an inclusive predicate 0 r . (The same 
approach could have been used to prove adequacy of M as well.) There is nothing new in 
this; such proofs can be found in [Milne] and [Reynolds] for example. Wha t is new is tha t 
we can use the same predicates to collapse M onto a fully abstract , extensional model. 
This strengthens our belief that the proofs of semantic equivalence and full abstraction 
should go hand in hand. 

For each type r let RT be the set of directed complete relations E r C DT x £ r . We 
shall inductively construct for each type r a predicate © r G RT. We have to consider 4 
cases. 

1. r = u. Then 
e r = {(L,t)\te?}. 

2. r = K. Then 
O r = {(d,t) I J C 6 ( f ) } . 

3. r = a -* (3. Then 

0 r = {{d, t) I for all (c, s) € ea.{dc, ts) € 0 ^ } . 

4. r =\ot.g(a). Let C be the set of types (3 € f occuring in g. By induction hypothesis 
we assume tha t has already been constructed for each (3 £ C. 
Let e be any type expression with at most one free variable a such tha t every type 
0 € f occuring in e belongs to C. We inductively define Fe(r) '• RT —* Re^- For 
every Zr e RT: 

(a) if e(r) = 0, where 0 G C, then 

F e ( r ) ( E O = 0 ^ , 

F e ( r ) ( £ ' ) = E ' , 

e2 ( r ) then 

. {(<*,0 | for all (c,«) € F C l ( r ) (E r ) . ( ( i c , ** ) e ^ e a ( r ) ( S r ) } . 
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(b) if e(r) = r then 

( c ) i f e ( r ) = e i ( r ) -

^ ( r ) ( 2 r ) = 



Let 0 5 = {(±,s)_ I s e £ r}> and, for each n, let 0 ^ t = Fg{T)(er

n), and r„ = gn{uj). 

Note tha t each GT

n C DT" x LT. Finally, let 

6 r = {(<f, 5) I for all n . (0 r " (d ) , s ) G 0 ; } . 

L e m m a 7 . 1 : If r =\a.g{ct) then 0 r = 0 9 < r ) . (Note tha t , as 4>T = cf>g(r) and l T = £^r), 
both 0 r and 0 ! / ( r ) are the subsets of DT x £ r . ) 

Proof: The proof is similar to the ones in [Milne], [Reynolds] or [Mulmuley], hence we omit 
it. 

• 

C o r o l l a r y 7.2: If a ss /? then 0 " = 0 ^ 

0 
The above corollary yields us a very convenient equivalent definition of the 0 r predi­

cates. If t is trivial then it is easy to show tha t 

e r = {(±,t) \ t e t } . 

Otherwise let r as ( r x , . . . , r n , « ) . Then 0 r = e ( ' i H e n c e 

0 r = {{d,t)\ for all (c<, «,•)• dcy... cn C . . . sn)}. 

L e m m a 7 .3 : [A(t),t) G 0 r for all t G CT'. 
Proof: The proof is very similar to tha t of Lemma 4,3, except for one new case: t G t a 

and r « a. But in this case, by Corollary 7.2, 0 r = 0 a . 

Now adequacy of M is easy to prove. Let t : K be any ground term. Then by the above 
lemma {A(t),t) G 0 * . Hence, from the definition of 0 " , A(t) C 0(t). 

On the other hand, it is easy to show tha t if t—*s then A(t) = A(s). Hence if t —> b 
then A(t) = b, which means A(t) • 0(t). 

Thus A(t) = 0(t) for all ground terms t, i.e. 
M is adequate. 
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8 . T h e C o l l a p s e d M o d e l 

In the this section we see how we can use the same © predicates to collapse M onto a 
fully abstract , extensional model M®. 

Given d{ld2 6 Dr, we say dinrd2 if ( ^ , 0 £ 0 r implies {di,t) € 0 r . Let ~ r be the 

induced equivalence relation. The equivalence class of d will be denoted by [d] . 
We say [^] 1c[^] 2 if ^Ccfe- (The choice of the representatives d± and d2 does not matter . ) 

Let JX, be the quotient space induced by ~ . Then D„ is a cpo under this ordering. 
Define a monotonic function FT on the finite elements of Dr: 

FT(d) = max[d], for each finite deDr. 

Let QT be the unique continuous extension of FT. Let = ( D r , - , 4 ^ ) , where • is the 
restriction of the application in M and AQ = Q o A. We shall show tha t MQ is a fully 
abstract , extensional, algebraic model of £ . 

As in t h e nonreflexive case we show tha t is the limit of a set of models. 
For each i, define <f>\ inductively: 

1. ft = -L, 
2. <f>* is as given, if /c is a ground type, 

3. 4>1 = Xf : T.(<f>f o f o </>?), if r = a —• /?, 
OO 

4. <fi = • if r = ! a .g ( a ) ; define r n = g n (u;). 

Let DT

{ = Each can be shown to be definable by some term : r . (We have 
already shown this when r €E I \ ) 

Let [5]!" = [d] r n^ t

r - Define a monotonic map F-' on the finite elements of D\\ 

F[(d) = max[d] t

r , for each deDr

{. 

Let Q[ be the unique extension of F[. Of course when r G T then Q[ = and, hence, 
Q\ is finite. Also, for each r G I \ 

Q r = U $<• 

The first na tura l question which comes to mind is: what is the relationship between 
Ql and Q\ when r G T? 
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9 . R e l a t i o n W i t h T h e N o n r e f l e x i v e M o d e l 

In this section we show that Q\ = Q\ if r G T'. 

Let -< be the smallest quasiorder on f such that : 

1. u < r for all r G f, 

2. <*! —• ft ^ a 2 —• ft ^ a i ^ ft a 2 -< ft, 
3. < is ^-respect ing, i.e. if a{ « ft, a 2 « ft and -< ft then a 2 ^ ft. 

Note that the equivalence relation induced by -< is presicely Also if c*i —• a2 -< ft —> ft 
then c*i -< ft and a2 < 02. It is easy to see that 

<jn(u;) -< r if r = ! a . g ( a ) . 

Moreover if a -< 0 then 4>a C <^ and hence D a C Z)^. We next show tha t the injection-
projection pair between D(x and D0, where a -< ft is definable, i.e. there exist : a —* ft 
$a : £ —* a s u c ^ that : 

1. A{*P)d = 0 a(cf) for all deDft, 
2 . A(*P)d = d for all <fG£> a . 

In fact we shall show that : 

1. A($£) = 

2. A(tf£) = <j>°. 

(Note that , though the denotations of and are same, their st/n£acfic types are 
different. A universal domain allows mixing of all types; it is impor tant not to be confused 
by that .) 

Assume a < ft Consider the following cases. 

1. a = u: Let = (Ax.fi) : (/? — u>) and = (Ax.fi) : (u - > 0 ) . 

2. a = a i -> a 2 , 0 = A -+ ft and a A -< ft, a 2 -< ft: let = Ag : ft($g 0 5 0 9 * ) 
and ^ = A / : a . ( * ^ o / o $ ^ ) . 

3. a i « a 2 , ft ~ ft, and a t -< ft: Then a i —> ft ^ a 2 —> ft and ft —> ax « ft —• a 2 , 
hence we can let, = and = 

4. transitive, reflexive closure: easy. 

Tha t ( ^ , $ £ ) is indeed an injection-projection pair with the above mentioned property, 
is left as an easy exercise. 

For any t : ft if a -< ft define its syntactic a-projection [ i j a G jCa as: 

Wa = (*20-

Then A([t\a) = 4>a{A{i)). Also, if a « / ? then [t\a ~ 4. 
Similarly for any a : a , if a -< /?, define its syntactic /^-injection \s\^ € as: 

= (*£«)• 
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t 

Then A{\t]P) = A(t). If a « (3 then [a]* s s . 
For any r G f, define: 

r | = {a | a G T and a -< r } . 

L e m m a 9 . 1 : For any r G f, r | is directed. 
Proof: Suppose this is not the case. Let a G T be a nonreflexive type of minimal length 
for which there exist r G f and j3 G T such that : 

1. a , / 3 G r | , 
2. aft/?, i.e. a and /? do not have an upper bound in r | . 

We derive a contradiction. Consider three cases. 

1. a = UJ: This is not possible, as in tha t case a, /? -< (3 G r |. 
2. a = /c, for some ground type /c. But then as /c = a G r j , this means r « /c, and 

hence /? ="/c. Again a, /? -< /c S r | , which is a contradiction. 
3. a = a i —> a 2 : Then (3 is also of the form &\ —• /? 2 for some /3i and /? 2 , because 

otherwise the minimality of OL is contradicted. Also, since c*i —• a 2 = oc -< r , r « 
Ti —> r 2 , for some r i , r 2 G T. As a , ( 3 < r , we conclude: /?i G fi j and a 2 , / ? 2 G r 2 . 
If both the pairs (a i , /? i ) and (a 2 , / 3 2 ) are consistent (i.e. have an upper bound) 
then so is (a,/3), hence, without loss of generality, assume tha t oti$(3i in ri | . But , 
as a x is of smaller length than a , we have a contradiction to the minimality of a . 

0 
As a -< (3 implies <f>a C by the above lemma {<f>a \ ot G r j } is directed for every r G f, 
moreover it is easy to show that : 

cj>r = {<t>* \ a e r l } . 

For every t G £ we inductively define £ | C £ , the set of nonreflexive approximations to t: 

1. 6 j = {6}, if 6 is a basic ground constant, 

2. / | = { /} , if / is a first order function constant, 

3. K 1= {K : a | a G r ! } , if K G £ r , 

4 . 5 | = { 5 : a | a G r 1 } , if 5 G £ r , 

5. Y i={Y : a | a G r j } , if y G f r , 

6. (rs) | = {uv | u : a ' —• /?',t; : a ' , u G r | , v G s j } . 

We have the following approximation continuity result: 
oo 

L e m m a 9.2 : For every t G I, A(i) = [J i4( iu). 

oo 

Proof: Let t G £ . It is obvious tha t A(t) • [ J i4(iy). Hence, we need to prove only the 

other inequality. 
We consider only the most difficult case: t = r s , where r G Cn"*0 and 5 G £ a . 
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Suppose (u : a r ) G r j , where <r G a | , r £ /? j , and (r; : cr') G 3 j . Then, as a 1 
is directed, there exists <J" G a l , such tha t a,a1 < a11. Define (uv) G (rs) I as (uv) = 

oo oo 

fu]"" ' > r [V|*". Since, by the induction hypothesis, A(r) = | J A(u) and A(s) = [ J A(s) , 

we conclude: 

i ( r s ) = (Ar){As) = ( ft Au){ \J Av) = ft A(uv) C ft i4(w). 

0 

Call t € £ finite if A{t) is finite. 

L e m m a 9 .3 : Let a € T. Then, for every finite t € Lthere exists an a e £ a such tha t 
= /1(a). 

OO 

Proof: By approximation continuity, A(t) = [ J A(u;). As t is finite, there exists some 
wQti 

(w : /?) G £ 1 , where /? ^ a, such that A(i) = A(w). Let 3 = ( V | a . 
0 

Open question: Does there exist such an s even when t is not finite? Probably not . 
Let t G £ a , where a G I \ Then, for every i, [*Ji is finite. Hence by the above lemma 

there exists some s G £ a such tha t A([t j t ) = Define as: 

<*}< = 9. 

(Which s one chooses is immatterial . Just choose one arbitarily using Axiom of Choice.) 

L e m m a 9.4: If d G where r G T, then 
1. (cf, 0 G 0 r implies (rf, ( i)t) € 0 r , 
2. (d, s) G 0 r implies (d, G O r and, hence, (d, s) G © r . 

Proof: If r = a; then the lemma is obvious. Otherwise let r = ( r i , . . . , r n , K). By induction 
hypothesis, assume tha t the lemma holds for all Tj. 
(1) Assume (d, t) G 0 r . Then for all (cy, S j ) G 0 r ' , by induction hypothesis, (cj, J , ) G © r > 

and hence: 

dci... c n C 0 ( * L 5 i J t • • • L 5 n j t ) _ 

= ( A f ) ( A [ 5 i J i ) . . . ( A [ 5 n J j ) by the semantic equivalence be­
tween A and O. 

This means: 

d c i . . . c n = <f>i{dci... c„) as d G 2) • 

c tf((A)ML»iJO.-.tfL'«J<)) 

= (tf ( i * ) ) ( ^ L « i J 0 • • • MLvIO as A ( L « y J 0 € D? for all ; 
= {A{t)i){A[Sl\i)... (AL«„J,-) as [ a i J , - , . . . , [3n\i e £ 
Q (A(t)i){Asl)...{Aan) 
= 0((t)i3i... sn) by semantic equivalence. 
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Hence (<f, (*).) € 6 r . 
(2) Similar. 

Hence diC.d2. 

0 
If, r G T and d £ D t

r , then by the above corollary, 

[d\: = [d\:. (8) 

Hence, Qi(d) = maxfdjj = max[d]i = QJ"^)- This means: 

Q i = Q[, for every r G T. 

By continuity, 

Q r = Q% for every r 6 T. 

Note tha t if r G T and d is finite then d E D*, for some j , and hence by (8): 

[d\: = [d]*, for all i > j . 

But this does not necessarily mean tha t [d]T = {cf]r, as [d\T or [d] r might contain some 
element c none of whose finite approximations belong to them. Hence, 

Open Question: Is [d]r = [d]T for every finite d G DT1 

Better still: 

Is [d]T = [d]r for every d G DT1 
If the answer to the second question is negative, we have an interesting situation where 
the quotient spaces D^,DL might not be equal but their closures Qr,QT are! 

33 

C o r o l l a r y 9 .5 : If r G T, and d i , d 2 € £>•" then 

diZLd.2 iff C di. 

Proof: We only prove that di • d2 implies d[Od2, the proof in the other direction being 

similar. 
Suppose di C.d2. Then 

(d2,t)ee 
=> (d 2 , G 0 by the above lemma 

( < * i > ( t ) t ) € 0 a s ^ C ^ 

=> (cfA, 6 0 by the above lemma 

= > ( < * i , 0 e e as (*)t- c *. 
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1 0 . R e l a t i o n s h i p B e t w e e n R e f l e x i v e Q u o t i e n t C l o s u r e s 

In this section we investigate the relationship between various reflexive quotient clo­
sures Q\. We show tha t Q? -< O f , if a -< 0. 

If a -< (3 let us define 

r e Y = { ( d , [ t f ) \ ( d , t ) e e a } , 

and 

L e m m a 1 0 . 1 : If a -< /? then 
1. \ea]fi c 0 ^ , 

2. [ 0 ^ j a c e a . 

Proof:We only show 1 . The proof of 2 . is analogous. 
Consider three cases. 

(1) a = UJ: Obvious. 
( 2 ) a = a i —* a 2 , /? = /?!—• /? 2 , and a A -< a 2 -< /? 2 : Assume, by induction hypothesis, 
tha t the lemma holds for ctj and fy, j = 1 , 2 . Let ( d , t) G 0 a . We have to show tha t 
( d , [ i f ) 6 0 ^ = e * - * v 

Consider an arbi t rary (c, 5) € 0 ^ 1 . Then , remembering tha t d G D a » " M , » J 

(dc, m ^ ) = (dc, r . i A - A ) = w c ) , * A ( t ( * - . 5 ) ) ) . ( 9 ) 

Now: 

( c , s) e 0 * 

=> ( 0 a , c , $ a i . s ) G 0 a i by induction hypothesis, 
=> ( d ( 0 a , c ) , i ( $ a i s ) ) G 0 a * as ( d , * ) G 0 a = 0 a i - * ° " , 

=> (d(4>aic),$P2(t($aic))) G Q07 by induction hypothesis, 
= • ( d c , f t " ! ' * ) G 0 ^ by ( 9 ) . 

Hence, for all ( c , s ) G 0 ^ , ( d c , \t]fis) G 0 A . This means ( d , [ i ]") G 0 ^ . 

( 3 ) a « a ' , /? « /?', and a ' -< /3': But then, 0 a = 0 a ' and 0 ^ = 0 ^ ' , hence the result 
follows. 

0 
L e m m a 10 .2 : If a -< /3 and d x , d 2 G Da, then 

d i ( Z d 2 iff d i C d 2 . 

Proof: Remember tha t d A , d 2 G D a implies d i , d 2 G D^. We shall only prove tha t d^C. d 2 

- . . . . . . ~ a 

implies d i ( Z d 2 ; the proof in the other direction is similar. 
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If <fi|Z d-i then: 

=> (d2, [t\a) € &a by the above lemma 
=> (du [t\a) £ 8 a as dig d2 

Or 

=> (di, \[t\aY) S O' 3 by the above lemma 

Hence <ii(Z ^ 2 . ~ 0 
0 

Corol lary 10 .3 : If a -< /?, 

1. d € £>" implies [5f C [2j' t 

2. <f G implies [3)f? C [3jf. 

0 

Now if a -< (3 and d G then from the above corollary it easily follows tha t : 

max[d]° = 4>f(max[d]^). 

From which, one easily obtains: 
I?* -< Ff. 

(With the obvious abuse of notat ion, as strictly speaking, neither F° nor Ff is a retract . ) 
By continuity, 

QT •< Of. 
Applying continuity once more, 

Qa -< 
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1 1 . C o n t i n u i t y A r g u m e n t 

In this section we shall show, using continuity argument, that is an extensional, 
fully abstract , algebraic model of £ . 

Before tha t let us ask ourselves two questions: 
1, What is the precise relationship between Q\ and QJ, if i < j? 

2. What is the precise relationship between Q" and <§f, if a ~< (3? 
If we assume that i increases in the horizontal direction and types increase in the vertcal 
direction, the first question enquires about the relationship in the horizontal direction and 
the second question enquires about the relationship in the vertical direction. As it will 
turn out, both the relationships are exactly similar, which is very pleasing. 

The answer to the first question is easy. We know now tha t Q™ = Q™, if a G T. Hence 
from what we have already proved for the nonreflexive case, it follows tha t the family 
{Q° | a G T} = {Q" \ a ET} is closed under application and 

{Q?\*eT}< { Q ? | a e r } , i f i < y . 

Note tha t this implies not only tha t Qf < bu t also tha t the application remains 
invariant under this embedding. It is easy to prove tha t for every r G f: 

QTi= U Q? = U Qt-

Hence, using the continuity argument as in Section 5, it follows tha t [Q] \ r G f } is closed 
under application and 

{QUret}< {Q* | r € f } , i f » < j . 
We have already part ly answered the second question: we showed in the previous section 
that Qf -< Qf, if a < f3. But we still have to show tha t this vertical embedding behaves 
nicely with respect to the application. 
L e m m a 1 1 . 1 : Let rx = c*i —• r 2 = a 2 —• /3 2 , where -< j3i and a 2 <̂ /? 2 . For a fixed 
2, let d G Q? and c G Q t

a | . Then 

Q*(d(Qrc)) = (Q?d)c. 

Proof:It suffices to prove the lemma when a.j,f$j G T; in the general case the lemma 
is proved by continuity argument. But then Q?x, Qf{ . . . axe all finite, hence the proof 
similar to the one of Lemma 5.1 works. (Finiteness of Q™},... is required in the definition 
of the step function.) 

o 

It can be easily shown from the above lemma tha t the following diagram commutes: 

QT H h xQ?l—+Q01 
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This says tha t the application remains invariant under vertical embedding too. 
Define < if ot < /? and i < j . Then combining the horizontal and vertical 

embeddings we get a diagonal embedding: 

Q':<Q!l if ( a , z ) < ( / 5 , j ) , 

and the application remains invariant under the diagonal embedding too. We now have a 
nice commutative diagram: 

Qf -Q> 

Q? "Q" 

where (a,x) < {/3,j) and the arrows indicate embeddings. 
As the embeddings behave nicely in all directions, the reader can easily prove, by the 

continuity argument, tha t {Qr | r G f } is closed under application and, moreover, it is 
extensional and algebraic. In fact {Qr | r G f } is the limit of the horozontal embedding 
sequence {Q\ \ r G f } < {QT

2 \ r G f } < . . . It can also be regarded as the 'vertical closure' 
of the family {Qn \ a G T} = {Qa \ a G T} . Thus there is more than one way of proving 
the above assertion! 

For every t G £ , 
AQ{t) = Q(At) 

= ( U Qa)( U A H ) 

= j j Qo A(w) 
w e n 

= U A«(to). 
w€tl 

Hence, as A 9 is a homomorphism, so is 
We have proved tha t 

= (QT,',A®) is an algebraic, extensional model of L. 

We turn to full abstractness of . First let us prove some lemmas. 

L e m m a 11 .2 : 

1. t c s iff {At, a) G 0 , 

2. (d,t) G 0 iff dtA{t), 

3. t c s iff A ( i ) c A ( s ) . 

Proof: As the proof is very similar to the one in the nonrelexive case, we shall only prove 
- £ 

tha t (Ai, s) G 0 implies ( C s , 
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Suppose {At, a) e 9 r . If r « ( n , . . . , t „ . k ) , then by Corollary 7.2, 0 r = 0< r ' r~*> and, 
hence, {At, a) G 0< r r - " ) . This implies tha t for all {ty : n ) , . . . , (£„ : r n ) : 

<5(«i.. . t„) = i ( « i . . . t „ ) 
= {At){Atl)...{Atn) 
C 0(s f ! . . . * „ ) as (>4*y,ty) € e r>. 

Hence t e a . 

0 

If a € r I then, for every t : r , define (i)(a,i) = ( U J a ) * -

L e m m a 1 1 . 3 : If t, a : r then t C 3 implies (i)(*,o C (s)(«,t) for every a e r j and t. 

Proof: similar to the one of Lemma 3.1. 
0 

Now if A*(t) C AQ{a)i then: 

A(t) C A g ( i ) C A g ( s ) = Q(As) ~ A{a). 

- - £ Hence A(i) ~ A($), which, by Lemma 11.2, implies 

On the other hand, if (t : r) C (s : r) then, by Lemma 11.3, for all ot e r [ and i, 

(t)( a iij d («)(a,t)> which, as every is fully abstract , implies A g ((£)(a,i)) C AQ{(a)(aj)). 
Hence: 

E Q ^ ( , ) ( a „ - ) 

= A*{8). 

Thus indeed, 
ia fully abatract. 

One proves, jus t as in the nonreflexive case, tha t Y has the s tandard denotation in 
and tha t is a /?-model. 

As A g is shown to be a homomorphism, its equivalent denotational definition can now 
be given: 

1. A ( 3 (6) = Q(b) where 6 is a basic ground type constant. 
2. ACi(f) = Q{f) where / is a basic first order function constant . 
3. A^{S) = Q{\x,y,z.{xz){yz)) 
4. AQ{K) = Q{\x,y.x) 

5. i « ( y ) = Q ( Q A / . / n ( l ) ) 
n - 0 
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6. AQ{rs) = (AQr)(AQs) where r and 3 are of the appropriate types. 
We have proved the second main result of this paper: 
T h e o r e m 11 .4 : MQ = {Q\ •, AQ) is a fully abstract , extensional, algebraic, /3-model of £,. 
Moreover Y has the s tandard interpretation in MQ and the following diagram commutes. 

Further is jus t an extension of M Q , i.e. 
1. Qn = Q'\ if a € T, 
2. AQ{t) = A«( t ) , if t € L 

Finally one can prove from the existence of M Q : 

t c s iff 6(C[t]) C 6{C[3\) for all ground contexts C[ ]. 
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1 2 . D i a g o n a l i z a t i o n 

N o w w e must f a c e t h e q u e s t i o n : w h y is it that we gave preferene t o C o v e r • or = i n 

the definition of 0 or 0 predicates? 
Tha t w e could not use = is obvious, because we want the property: 

di C do implies di C ^ , 

But what about • ? (Then we shall have to replace max with m i n everywhere in the 
treatment.) It can be shown that © and 0 predicates exist for any operational semantics 
O or O. (This does not mean tha t our theory goes through for any operational semantics, 
because we used the equivalence between the denotational and operational semantics on 
innumerable occasions.) We shall show, using diagonalization, tha t this is not the case 
when C is replaced by • . This provides, at least, a partial justification for our preference. 

Suppose K is a nontrivial ground type, i.e. D* has atleast two elements. Choose an O 
such tha t , for every t : /c, 

6 ( 0 = b # j . , 

for some b € D*. Let r = ! a . ( a —• ac). Now if C were replaced by • in the definitions of 
the 0 predicates, then the 'new' 0 r should satisfy the recursive equation: 

0 r = {(d, t) | for all(c, a) e eT.dc • 6{ts)}. 

We show tha t the above equation has no solution! As 0(r) = 6, for every r : /c, this reduces 
to showing tha t the equation 

E r = {d E Dr | for all c e tr.dc • 6} (10) 

has no solution. 
Suppose it had a solution E r . Let f:DT = Xx.xx. Consider two cases. 
1. / 6 E r : But then / / • 6 7^ J_. However, by the argument similar to the one in 

[Park] one can show tha t / / = (Xx.xx)(Xx.xx) = J_. This is a contradiction. 
2. / £ t r : But then for all d € E r : 

fd = dd 
• b as d G E r . 

Hence / G E r . Again we arive at a contradiction. 
We conclude tha t (10) has no solution. 

When O is the actual operational semantics, we leave the above existence problem 
open. (A similar question was raised in [Stoy]. We have answered it partially above.) 
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1 3 . C o n c l u s i o n 

In this paper we have provided a semantic characterization of fully abstract , exten­
sional, algebraic models of typed lambda calculi with or without reflexive types. One 
pleasing aspect of the theory was tha t it meshed so well with the proof of the equivalence 
between the denotational and operational semantics. One question which needs further 
study is: what happens when we enrich a language? How is the fully abstract model, as 
constructed in this paper, of the enriched language related to the fully abstract model of 
the original language? We have already answered this question in one instance when we 
showed tha t the fully abstract model for the language enriched with reflexive types, M®, 
is jus t an extension of the fully abstract model of the original language, M^. But this 
question deserves further study. 

The domains used for the semantics of the 'real ' programming languages are reflexive. 
But , as our theory works in the presence of reflexive domains, it is hoped tha t the above 
theory should work for the real programming languages too. Note tha t in the case of 
reflexive domains the definitions of inclusive predicates used for collapsing are recursive, so 
one must ensure tha t the predicates do exist. General techniques were given in [Reynolds] 
and [Milne] "to show the existence of such predicates. Unfortunately these proofs are 
known to be complicated, and so there has been a tendency to skip these proofs. But in 
Section 12 we showed, by diagonalization, tha t this tendency is unjustified and dangerous 
because there exist nontrivial examples of inclusive predicate definitions which do not 
have any solution! In [Mulmuley] a general theory was given which could be used to prove 
the existence of the inclusive predicates, when they did exist, and which had an added 
advantage of being mechanizable. A system was built on top of LCF , which could (almost) 
automatically prove the existence of such inclusive predicates. The implementation is quite 
nontrivial. A look at any existence proof in the l i terature will give an idea of the amount 
of reasoning the system has to carry out. Wha t is important in the present context is tha t , 
because the same predicates can be used to obtain a semantic characterization of a fully 
abstract model, a large chunk of a semantic characterization proof can be automated! 

Finally it remains to be seen if this technique can be extended to deal with powerdo-
mains. 
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