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Lattice Based Algorithms 

1. A b s t r a c t 

In this paper we examine the application of geometry of numbers in algorithm design. We con­
sider two algori thms in detail. T h e first one is a polynomial time algori thm, due to Lcnstra ,Lcnstra , 
and Lovasz, to factorize a polynomial in one variable with rational coefficients. The second one is a 
polynomial time algori thm, due to I t .W. Lcnstra, to solve the integer programming problem with 
a fixed number of variables. Both the algori thms s ta r t by building a certain lattice in Euclidian 
space. The key step is to find a set of generators , small enough in size, for this latt ice. This step, 
called the basis reduction, will t rea ted in detail in this paper. 

The outline of the paper is as follows. In section 2 we present the required results from the 
geometry of numbers . In section 3 we describe LLL's basis reduction a lgor i thm. In section 4 
we prove the conjecture tha t a more elegant version of LLW's basis reduction algori thm indeed 
terminates ; even for real lat t ices. For integer latt ices we derive an explicit bound for the complexity 
of the algori thm. Unfortunately this bound is exponential unlike a polynomial bound for the 
original a lgori thm. Finally we present in section 5 the factorization algori thm and section 6 the 
integer programming a lgor i thm. 

2. L a t t i c e s 

A lattice L in R n is a set generated by finitely many linearly independent vectors B\F...FBK 
of R n ; L = {2Z*=Bl ZIBI | ZY; € Z } . We call B\}..., B^ a basis of the lat t ice. 

Basis is not uniquely de termined by a lat t ice. Suppose & i , . . . , 6 n is & basis of a latt ice L in 
R n . Let M be an N x N matr ix with integral coefficients such t h a t DETM = ± 1 . Then B\F...,VN, 
where B[ — M also form a basis for L. This is because M~L = ADJ(M)/DET M = ±ADJ(M) 
is also an integral matr ix and we have 6t- = M~~L B[. Conversely if B\,...\VN is a basis of L and 
6̂  = M BI, where M is an n x n integral matr ix , then DETM = ±1. To prove this we note tha t 
there exists an integral matr ix N such t h a t 6 t = N B'IF as BT

L9...9B'N form a basis. Fur ther M and 
N are the inverses of each other . Hence DET(M) DET{N) = 1. As M and N are integer matr ices , 
this implies tha t DET(M) = ± 1 and DET(N) = ± 1 . 

Above mentioned integer t ransformat ions with de te rminan t ± 1 are called unimodular t rans­
formations. The part icularly interest ing unimodular t ransfomat ions are: 

(1) Adding an integer mult iple of one of the basis vectors to another . 

(2) Multiplying some basis vector by —1. 

It should now be clear t h a t the positive real number \DET(B\,..., 6 n ) | depends only on L and not 
on the choice of the basis; it is called the de te rminan t of L and is denoted by D(L). We can in terpret 
D(L) as the volume of the parallelopiped Y^=I[°Y where [0, 1) = {X G R | 0 < X < 1}. This 
inerpreta t ion leads to the inequality of Hadamard : 

We shall prove later in this section t h a t L has a basis 6 i , . . . , 6 n such t h a t the following opposite 
inequality holds: 

M < n r = i N (2.1) 

(2.2) 
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where C is a cons tant depending only on N . Fn the next section we also give a constructive proof 
of this existence. T h e algori thm given there can reduce in polynomial time any given basis of L 
into the one satisfying (2.2). 

If every point of lattice M is also a point of a lattice L then we say that M is a sublat t ice of 
L . Let <I\,... , a n and 61, . ' . . ,BN be the bases of M and L respectively. Then there arc integers V{J 
such tha t : 

<*i = £ V<OH: 

The integer 

Z? = \DET{VIJ)\ = DET(AX,...,AN)/DET(BI,...,BN) =D{M)/D{L) 

is called the index of M in L. From the last expression it follows t h a t the index is independent of 
the choice of the bases. Since a i , . . . , a n are independent , D > 1. Thus 

D(L) < D{M) (2.3) 

One of the most impor tan t theorems in the geometry of numbers is: 

2 . 1 . T h e o r e m . (MINKOWSKI): LET S C R n BE A POINT SET OF VOLUME V(S) (POSSIBLY INFINITE] 
WHICH IS SYMMETRIC ABOUT ORIGIN AND CONVEX. LET L BE AN N-DIMENSIONAL LATTICE OF DETERMINANT 
D{L). SUPPOSE THAT EITHER 

V{S) > M:2ND{L) OR 

V(S) = m . 2 n D(L) AND SIS COMPACT. 

THEN S CONTAINS AT LEAST M PAIRS OF NONZERO VECTORS ±V\,..., ±VRN BELONGING TO L. 

This theorem has many impor tan t consequences. One of them is the following basis indepen­
dent character izat ion of a latt ice. 

A NECESSARY AND SUFFICIENT CONDITION THAT A SET L € R n BE A LATTICE IS THAT IT SHOULD SATISFY THE 
FOLLOWING TWO PROPERTIES: 

(1) IF A AND B ARE IN L THEN A ± 6 w IN L; I.E. L IS A GROUP UNDER ADDITION. 

(2) THERE EXISTS A REALR > 0 SUCH THAT THE ONLY POINT OF L IN THE SPHERE \X\ < r IS 0. 

This criterion is* very useful. For example let H be any /-dimensional, / < n, subspace in 
R n and L be any lattice in R n . By above criterion M = LNH is also a lat t ice. Fur thermore 
every basis of M can be extended to a basis of L . To see this, let LI be projection of L on G) the 
or thogonal complement of / / . Let C i , . . . , c n _ j be the vectors in L such t h a t their projections on G 
form a basis of LF. I t is clear tha t given any D € L there exist integers Z0 such tha t the projection 
of E = D — ZJCJ O N G *ls zero; then e G H O L = M , It follows t h a t there exist integers fct-

such t h a t E = X^ i==1 K{B{. Now D = Y1^Z\ 2jcj + Thus 61, c i , . . . , c n _ j is the 
desired basis of L . 

It is very easy now to determine whether a given set of vectors can be extended to a basis of 
a latt ice L in R n . Let a i , . . . , a m be such a set of linearly independent vectors. If this set can be 
extended to basis of L then clearly 

3 



WHENEVER ]T™_ l r ; a ; G //, r ; arc INTEGERS 

Covcrsdy if above condition holds then a i , . . . , a m form a basis of LNLL, where / / is the 
subspacc spanned by A { , . . . , a m , and thus can be extended to a basis of L . 

Even if <I[,... , a m can not be extended to a basis of />, one can find an interest ing basis for L 
as follows. Let / / ; , 1 < J < n, be the subspacc spanned by <I\,...,AJ. Let L3 = LNLLJ. We s t a r t 
with a basis for L\} extend it to a basis for LO, . . . and so to a basis for L m which can be finally 
extended to a basis for />. This l&asis, B\,..., BNJ of L has a proper ty tha t 

A{ = vn&i 
A2 = V21 2̂2̂ 2 

Am — Vmi6i + Vm2&2 + H V m m 6 m 

for some integers vt-y. 

The problem which often arises in latt ice theory is to determine if a lat t ice L has any point 
in a set S. Sometimes one also nrcds to know the number of linearly independent points of L in 
S. To deal with this problem w* introduce the notion of successive minima. 

Let F(x) be an n-dimensional distance function. This means : F is (1) nonnegative i.e. 
F{X) > 0. (2) cont inuous (3) homogenous i.e. for all real T > 0, F{TX) = TF(X). If for some integer 
K in 1 < K < N and some number X the set 

\S : F{X) < X 

conatains K linearly independent points, then so does J3S for every /3 > X. We define the KTH 
successive minimum X^ = \K(F}L) of the distance function F with respect to the lattice L to be 
the lower bound of the numbers X such tha t \S contains K linearly independent points . Clearly 

Xt < X 2 < . . . < X n 

A common example of a distance function is F(X) = |x|. In this case \I(F,L) is the length of the 
shortest vector in L. It is very easy to find an upper bound for it. let S = {X \ \XX\ < D(L)L/N} - S 

has volume 2 n D(L) - and M = 1 in Theorem 2.1. It follows tha t Xi(| |, L), length of the shortest 
vector in L , is a t the most Y/N(D{L))1^N. Minkowski also gave bounds for the product of successive 
minima. 

2.2. Theorem. LET F(X) BE A DISTANCE FUNCTION. SUPPOSE F(X) < 1 IS A BOUNDED SYMMETRIC 

CONVEX SET OF VOLUME VP. LET X i , . . . , X n BE THE SUCCESSIVE MINIMA OF A LATTICE L WITH RESPECT TO F. 

THEN 

%D{L)<\I--.\NVR<RD{L) 

The existence of a reduced basis satisfying (2.2) is closely related to the existence of an upper 
bound on the product of successive minima provided by the above theorem. To see this we first 
prove the following lemma due to Mahler . 

2.3. lemma. Let A\F...,AN be linearly independent points of an n-dimensional latt ice L. Then 
there exists a basis B\,..., BN of L such t h a t 

\BJ\ < MAX{\AJ\, 1/2 ZLI M> for 1 < j < n 
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P r o o f . Let C\,..., CN be a basis of L such tha t 

AX = VXIA 
DO = VN [C[ -r V22C2 

(2.4) 

for some integers where v t t ^= 0. We shall take B0 of the shape 

6y = cy + TJ-J-XDJ-I h Hr 4 y i a i (2.5) 

where £yt- are the integers to be determined. Clearly & i , . . . , BN is a basis for L. 

We distinguish two cases for each J. If vyy = ± 1 , we put 6y = ± a ; . This cetainly has a shape 
(2.5) and also \BJ\ = |ay|. 

Otherwise |vyy| > 2. on solving (2.4) for cy we have 

CJ = VI/A: + *j j - i f l j - i -*-••• + fcyi"i 

where fcyt- arc some real numbers. Choose iy; in (2.5) such t h a t |fcyt- + tyt-| < 1/2. Then 

6y = /yyay + / y y - H h /y 

where |/yy| = < 1/2 and = |Ary< + *yt-| < 1/2, for I < J. Then obviosly, 

l*y |< i /2E2- iW 

This proves the lemma. | 

Now let X i , . . . , X n be the successive minima of L with respect to | |. There obviosly exist the 
linearly independent vectors a i , . . . , a m such tha t |ay[ < Xy, for 1 < J < n. By above lemma there 
exists a basis B\,..., 6 n of L such t h a t 

|6y| < max{Xy, £ ^ = = 1 X t } < m a x ( l , n / 2 ) X y < nXy 

Using T h e o r e m 2 .2 we have 

n r = 1 ! M < n " . n r = 1 x . < a ¥ : l ^ ) 

where V is the volume of the sphere |x| < 1. Thus for some constant basis & i , . . . , 6 n indeed 
satisfies (2.2). 

In the next section we give a 'const ruct ive ' proof for the existence of such a reduced basis. 

3. B a s i s R e d u c t i o n 

Let L be an n-dimensional lattice with basis & i , . . . , 6 n . We denote by B{(J) the projection of 
BI onto the orthogonal complement of the space spanned by & i , . . . , 6y - i , for I > J > 2. 6 t ( t ) is 
same as 6 .̂ We denote \BI(J) — 6 t(j + l) | / |&y(i) | , where I > J, by /^y. Note tha t 6 t ( l ) , . . . , 6 n (n ) 



arc same as the vectors obtained !'»y Cram-Schmid t orthogonalization of 6 i , . . . , b a n d thus form an 
orthogonal basis of R n . The following equality holds: 

6, = 6 , (0 -i- X^}!*! ± M t > M $ 

We shall call the basis B\ ,.BN reduced if 

HIJ < 1/2 for all I > (3.1) 

I M * " - i ) l 8 > S l f c - i ( » - i i f * (3-2) 

Suppose we are given an arliitary integer basis 6 i , . . . , 6 n of L. We give an algori thm, due to 
Lenstra, Lenstra , and Lovasz, to roduce this basis in polynomial t ime into the one satisfying (2.2). 
In the course of the algori thm tlse B\,..., BN will have changed several t imes, but always in such a 
way tha t they form a basis for L . 

At each step of the algorithm we shall have a cur ren t subscript K 6 { 1 , . . . , n + 1}. We begin 
with K = 2. 

Inductively assume t h a t for Uhe current value of K the following condit ions are satisfied: 

|Mtj| < 1/2 for i < J < I < K. (3.3) 

MI - 1 ) | 2 > - IF for 1 < I < K (3.4) 

These conditions are trivially satisfied for K = 2. 

Now one proceeds as follows. If K = N 4- 1 the the basis is reduced and the a lgori thm 
terminates . Suppose K < N. Than we first achieve t h a t 

| / * f c * - i | < l / 2 i f * > l (3.5) 

If this does not hold, let r be tfee integer nearest to / 2 ^ - 1 , and replace BK by BK — r&fc-i. After 
this (3.5) holds. 

Consider two cases. 

Case l : Suppose K > 1 and |6fc(*— 1)( 2 < f 16fc— 1 (A: — i ) | 2 . We interchange BK and 6jt-i and then 
replace A: by A: — 1. Now we are M s i tuation described by (3.3) and (3.4) and we proceed from there . 

Case2: Suppose Jfc = 1 or |6fc(Jfe - 1) | 2 > J | 6 f c - i ( * - 1 ) | 2 . 

In this case we first achieve t h a t 

\FIKJ\ < 1/2 fori < J < K - L (3.6) 

For J = K — 1 this i? already true by (3.5). If (3.6) is 'not t rue for all J, let / be the largest index 
< K with \FIKI\ > 1/2 and let r be the integer nearest to /ijt/. Replace 6^ by BK — RBI (note t h a t 
this does not dis turb /Zfcm, where K > M > /). Repeat the process until (3.6) is satisfied. 

Replace K by K + 1. Now we are in a s i tuat ion described by (3.3) and (3.4). We proceed from 
there . 

We remark tha t in the algorithm we need to keep track of only the numbers |&t-(i")|2, Mtj and 
the vectors B{. All these quantit ies are rat ional . Also in both the cases the new values of these 
quanti t ies can be computed from the old ones very easily. 
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To show that the algorithm fterrninatos, wo need to introduce one new quant i ty . Given any K 
incu;er n-vectors C\, . . . , c^, it is easy to show that : 

d2{L[CX,...,Ck)) = DET[(cirCj)]X<ij<k (3.7) 

Here ( , ) denotes the ordinary iirner product in R n . It is clear tha t d2(L(C\,..., Ck)) is an integer. 
We also have the easy identi ty: 

d 2 ( L ( C l ) . . . ) C f c ) ) = n; = 1 M i ) l 2 (3-8) 

Now we show tha t the aboxe basis reduction algorithm terminates . As before B\,\..,BN will 
denote a basis at any stage of thea lgor i thm. Let dxdenote d2(fj(B\,6t))« And let D = I"ir=i' ^n 

case 1 of the algori thm dk-X is reduced by a factor of at least 3/4 and all other ci ts are undis turbed. 
Hence D decreases by a factor DT a t least 3 /4 . Suppose at s t a r t of the algori thm \BI\2 < B, for all 
I < n. Then by I l adamard ' s inequality we have at s ta r t of the algori thm d{ < BX, for all i < n; 
Hence D < D n ( n ~ l ) / 2 initially. As D is a nonncgative integer, it follows from independence of 
the basis vectors tha t D > 1 throughout the algori thm. Hence the number of times algori thm 
passes through case 1 is at the aaost 0 ( n 2 LOG B). In case 1, the value of K is decreased by 1, and 
in case 2 it is increased by 1. As K < N -f- 1 throughout the algori thm, the number of times we 
pass through case 2 is also Q{%? LOG B)~ T h u s the number of i terat ions is 0 ( n 2 LOG B). With a 
slightly detailed a rgument one aim show tha t the number of ar i thmet ic operat ions needed is no 
more than 0{NALOG B). All the qpanties involved in the algori thm are rational numbers which can 
be expressed as the ratio of tw<t Integers. Later on we shall show tha t the length of these integers 
is bounded by 0(NLOG B). Thusvosing the classical algori thms for the ar i thmet ic operat ions we find 
tha t the number of bit operat ions needed by the basis reduction algori thm is 0(N6(LOG #)3). 

We show tha t a reduced basis produced by the above algori thm has many desirable propert ies. 
The following lemma can be easily proved: 

3 . 1 . L e m m a . If a basis 6 i , . . . , 6 n is reduced in the sense of (3.1) and (3.2) then we have 
j&yi2 < 2 * " 1 . | 6 i ( i ) | 2 for 1 < J < I < N. | 

If & i , . . . , 6 n is a reduced basis for a latt ice L then by the above lemma it follows tha t 
n ? = 1 \H\ < 2*<"-1>/<.nr-i IfcMI- nut D{L) = D(BU...,BN) = </(&t(i),...,Mn)) = nr=i IMOI, 
as & i ( l ) , . . . , BN(N) are orthogonal . Hence: 

n r = i M < 2 n ( n - 1 ) / 4 4 X ) 

Thus (2.2) is indeed satisfied. Further a reduced basis also provides us with a good approximat ion 
to successive minima. 

3 .2 . T h e o r e m . LET \ \ } . . . , X* DENOTE THE SUCCESSIVE MINIMA OF | | 2 ON L. LET B\,... ,BN BE A 
REDUCED BASIS FOR L. THEN: 

2 1 ~ i X i < | 6 t | 2 < 2 n ~ 1 X t - FOR\<I<N 

Proof . The left inequality follows from lemma (2.1) easily. To prove the other inequality, let 
x i , . , , , Xj e L be linearly independent. We show tha t , 

| 6 J f < 2 " - 1 . m a x { | x 1 | 2 , . . . , | x i | 2 } (3.9) 
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Write XK = 1 TLK^X r »* ^ ^ ' ^ o r ^ , x c ( ^ ^ ' c ^ 2 ( ^ ) denote the largest 
XK = r ; f c 6 ; . Then I < K < J, \XK\2 > \HLIK){I{K))\2. Renumber XK si 
claim tha t J < otherwise X\F...,XJ would be dependent as they would 
From J < and Lemma (3.1) we obtain 

From this (3.9), and hence the theorem, follows. 

3 . 3 . C o r o l l a r y . Let L be an n-dimcnsional lat t ice with reduced basis 6[, 

|&i | 2 < 2 n - l . | x | a 

for every nonzero i 6 L , | 

4 . V a r i a t i o n O f T h e B a s i s R e d u c t i o n A l g o r i t h m 

I t is possible to replace the cons tan t 3/4 in (3.4) by any cons tan t C < 
of the a lgor i thm remains polynomial . We ask: wha t happens if t he replaci 
Before considering the complexity issue one mus t first show t h a t t he algoriti 
this replacement . We shall refer to this new algori thm by N E W - R E D U C E in \ 
R E D U C E is same as t h e previous basis reduction algori thm except t h a t we ap, 
two basis vectors BK~I and BK, when 

! M * - i ) | 2 < | 6 f c - i ( f c - t ) | 2 

We show t h a t N E W - R E D U C E te rmina tes even when the intial basis vect< real coordinates . 

Assume t h a t initially | 6 ; | 2 < D for 1 < I < n; this implies |fc t-(i)|2 < j6*j 
t h a t t h roughou t N E W - R E D U C E MAX{\BX(I)\2 : 1 < I < N} is nonincreasing. In c 
unchanged. Consider case 1. By c t and i/,-y we shall denote the vectors and L 
replace 6 t and /x t ; respectively. T h e new basis is given by: 

c/c-i = BK) CK = 6 f c _ 1 , A = BI f o r i ^ t — l f * 

Wehavelcfc-xCfc-lJI = |6 f c (Ar- l) | < \BK-X{K-L)\, by (4.1). Also \CK{K)\ < |c f c(fc-l)i 
" T h u s indeed MAX{\BI(I)\2 | 1 < I < n } is nonincreasing and we have 

IM*')l a < B 

t h roughou t N E W - R E D U C E . Let D< = D2{BU..., B{) = d a ( 6 1 ( l ) , . . . . 6i(») a n d D before. By H a d a m a r d ' s inequality we have d< < a n d hence D < B N ( N ~ ^ ' 2 thrc R E D U C E . 

We show, using an a rgumen t in LLL, t h a t | 6 t | 2 a r e nicely bounded t h r o u g h o u t N E W - R E D U C E . For t h a t we first prove t h a t before a n d after every i terat ion of N; t he following inequalities hold: 

| 6 , | 2 < r iB for X J= K 



BK

 2 < N-{\B)N TFK^N+L (4.3) 

< 1/2 for 1 <J < t, i < ft (4.4) 
iMtji < {NLP)1 2 for 1 < j < » , * > A (4.5) 
iMfcyi < 2 n - * ( n / ? n - 1 ) 1 - / a for 1 < ; < jfc, if * J= N + 1 (4.6) 

Here (4.2), for I < K, is trivial from (4.4), and (4.3) follows from (4.6). Using tha t 

!/^!2 < !M 2/!M»I 2 = ^ - , N 7 ^ < # - l | M 3 (4.7) 

we sec tha t (4.5) follows from (4.2). (4.3) is same as (3.3). It remains to prove (4.2), for I > fc, 
and (4.6). At the begining of we even have |6 t j 2 < B and / x t ;

2 < B°, by (4.7), so it suffices to 
consider the si tuat ion at the end of case 1 and case 2. Taking into account t h a t K changes in these 
cases, we sec tha t in case 1 the set of vectors {B{ \ I J= K} is unchanged, and tha t in case 2 the set 
{B{ | I > A:} is replaced by a subset. Hence the inequalities (4.2) are preserved. At the end of case 
2, the new values for HKJ (if fc n + l )are the old values of / x ^ i y , so here (4.6) follows from the 
inequality (4.5) of the of the previous stage. To prove (4.6) a t the end of case 1 we assume tha t 
it is valid at the previous stage, and we follow what happens to \FIKJ\> To achieve (3.5) it is, for 
J < fc- 1, replaced by -RPK-IJ, with |r | < 2\/J,KK-I\ and \NK-IJ\ < 1/2, so by (4.6), 

iM/y- r j i f c - iy l < + < 2 n " ^ 1 ( ^ n " 1 ) 1 / 2 (4.8) 

Thus in the notat ion introduced in the begining of this section we have 

< 2 n - ( f c - 1 ) ( n Z ? n - - 1 ) 1 / 2 for J < Jfe-1 

and since A: — 1 is the new value for K this exactly the inequality (4.6) to be proved. 

We -;SO have to es t imate | 6 t | 2 and /x ĵ a t the o ther points of the a lgor i thm. For this it sulTices 
to remark tha t the maximum of \FIKI|> • • •> \L*KK-\I is at most doubled when (3.5) is achieved and 
the same thing happens in case 2 for at most K — 2 values of /. Combining this with (4.6) and (4.5) 
we conclude that th roughout the course of the algori thm we have 

I W J I < 2 n - 1 ( n ^ n " 1 ) 1 / 2 for 1 < j < i < n 

and therefore finally 

| 6 t | 2 < n 2 ( 4 B ) n f o r l < t < n 

Remark tha t the above a rgument could be exdended to show tha t length of the representat ions of 
all the quanti t ies involved in the previous basis reduction algori thm is bounded by 0(NLOGB). 

Let us call a basis 6 of L WELL BOUNDED if | 6 t | 2 < n 2 (4Z?) n , for 1 < I < N. It is clear tha t basis 
remains WELL BOUNDED th roughout N E W - R E D U C E . As any bounded volume contains only finite 
number of lattice points, there are only finite number of WELL BOUNDED bases. Consequently the set 

A = I 1 < < n, 6 is a WELL FOUNDED basis and J^^i^ , < 1} 

is finite. Hence there exists a C < 1 such tha t 

Vx E A. X < C 
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W H E N E V E R C A S E I O C C U R S I N NEW-l iEDUCR \BK[K - \)\/\BK. \ (K — l) | G /1 and hence 
BK{K- l ) ; / " 6 f c - i ( f c - 1)! < C. This means T H A T 0 decreases B Y the factor < c. As D < / ; * ( * - 0 / 2 

I N I T I A L L Y , B Y T H E a rgument O F section 3 W E conclude T H A T number O F i terat ions is O F T H E order 
0(N~ LOGB/{LOG \/<:)). Thus N E W - R E D U C E indeed te rminates . Unfortunately it is not possible to 
E S T I M A T E C in T E R M S O F N and B for real lattices. 

F O R integer lattices an explicit bound on the number O F i terat ions can be found. S O suppose 
T H A T B\,...,BN arc integer vectors at the s t a r t of (and hence throughout ) N E W - R E D U C E . Case 1 
is applied, i.e. BK and 6fc~i ARE swapped, whenever 

! M * - l ) i 2 / : & f c - i ( A : - l ) | 2 < 1 

Note tha t 

\BK{K- 1 ) | 2 = D2(L(B1,...,BK-2,BK))/D2(L(BL,...,BK-2)) and 
- 1 ) | 2 = #{L[BX 6 f c _ 2 , B ^ ^ / D 2 ^ , . . . , 6 f c _ 2 ) ) 

Hence 

bk(k-l) 2
 _ < I 2 ( L ( 6 I , . . . , 6 F C _ 2 , & F C ) ) _ d2(L(bu...,bk„2>bk)) 

From (3.7) it follows tha t D2(L(BI,..., &j t_2> BK)) and DK-\ are integers. Hence whenever case 1 is 
applicable, i.e. \BK(K - l ) | 2 / | 6 f c - i ( * - 1 ) | 2 < 1, we have 

Let c = 1 — 2 ^ r > then whenever case 1 is applicable we have \BK(K — l) | 2 / |6 j t_i(fc — 1) | 2 < C. As 
LOGL/C > l / 2 i ? n , the number of i terat ions, as before, is 

0{N2LOGB/{LOGL/C)) <0{BNN2LOGB) 

It is unfor tunate tha t the bound on number of i terat ions is exponential as opposed to polynomial 
bound for the previous basis reduction a lgor i thm. But probably there is some room for improve-
ment . 

5 . L A T T I C E S A N D F A C T O R I Z A T I O N 

In this section we describe a polynomial- t ime algori thm, due to Lens t ra ,Lens t ra , and Lovasz, 
to solve the following problem: given a non-zero polynomial / G Q [ x ] with rational coefficients, 
tind the decomposition of / into irreducible factors in Q [ x j . It is well known tha t this is equivalent 
to factoring PRIMITIVE po lynomia ls / G Z[X] into irreducible factors in Z[xj. A polynomial / G Z[X] 
is primitive if the greatest common divisor of its coefficients is 1. 

We shall denote by p a prime number and by K a positive integer. We shall wri te Z/PKZ for 
the ring of integers modulo PK

F and F P for the field Z / p Z . 

Let / G Z[X] of degree n be polynomial to factorized. Suppose we are given in addi t ion 
H G Z[X\ which has following properties: 

H has leading coefficient 1. (5.1) 
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[H MOD PK) divides ( / MODPK) in (Z /p*Z)[z | . 

[H MOD P) is irreducible i n F p [ x ] . 

(H MOD P ) 2 does not d i v i d r ( / MOD P) in F p [ x j 

(5.2) 

(5.3) 

(5.4) 

Let / = DEG(H)) so 0 < / < n. 

It is easy to see tha t / his an irreducible factor H0 in Z[xj for which (H MOD P) divides 
[HQ MOD P). By (5.4) this factor is uniquely determined upto sign. Further if G divides / in Z[x] 
then the following can be proved to be equivalent: 

(1) (H MOD P) divides (G RMD P) in F p [ x ] . 

(2) [H MOD PK) divides (G NOD PK) in (Z/PKZ)[X\. 

(3) HO divides G in Z[x]. 

In part icular (H MOD PK) dh ides (HO MOD PK) in Z/PKZ[X]. 

We shall now see how one can construct HO using only the factor (H MOD PK) if K is sufficiently 
large. First we define a latt ice L such tha t HO is contained in it. Fix an integer M > DEG(HO). 

Let L be the collection of all t i e polynomials in Z[x] of degree < m tha t when taken modulo 
PK are divisible by (H MOD p*;} in (Z/p*Z)[xj ; thus HO € L . This is a subset of the (m + 1) 
dimensional real vector space R - h R . x H h R . x m . This vector space is identified with R m _ h l by 
identifying YLT=$AIXL with ( a 0 i . . . . , a m ) . Length of a polynomial G> \\G\\, is defined to be length of 
the corresponding vector. It is *asy to sec t ha t L is a lat t ice in R m ~ l . By (5.1) it follows t h a t the 
following is the basis of L: 

{PKXL : 0 < I < 1} U{HX* < J < m - /} 

Also D{L) = PKL. 

5 . 1 . T h e o r e m . LET B E L BE SUCH THAT GCD{HOJB) — 1 IN Z[x] (AS HO IS IRREDUCIBLE THIS EQUIVALENT 

TO SAYING THAT HO IS NOT A FACTOR OF B). THEN 

P r o o f . Let M be the set of all polynomials of the form c/i0 + ¿6, where C and D are some poly­
nomials in Z[x] such tha t DEG(C) < DEG(B) and DEG(D) deg(/i0)- As GCD(HO}B) = 1, every polynomial 
in M can be uniquely represented in the above form. Hence M is a (DEGB -h DEG /io)-dimensional 
lattice with a basis: 

{HQX1' : 0 < i < DEG{B)} U{BXL : 0 < I < DEG{HQ)} 

It follows from H a d a m a r d ' s inequality tha t D{M) < \\B\\D€*H°.\\HQ\\D€*H < | | 6 | | m | | / i 0 i | m . Let N be 
a DEG(B) + c/er/(/io)-dimensional lattice with the following basis: 

{pkXi | 0 < i < /} \J{HX' j 0 < J < DEG{B) + cfeg(fc0)} 

Note t ha t N is very similar to L. In fact iV is the set of polynomials of degree < DEG(B) + DEG(HO) 

are divisible by (A mod PK) in (Z/p / c Z)[x] . Also rf(iV) = PKI. M is obviously a sublat t ice of N. 
Hence by (2.3), D(N) = p w < d(M) < ||6||m||/ioir. This proves the theorem. | 

PKL < \\KO\\M\\B\\ M 
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Write hQ = T,?~OAIXI- A S W o v o r z t x l ' 1 1 r ° l l o w s from MIGNOTTIC [8 ] tha t : 

< ( T ) i ! / I ! for all 0 < i< M 

Hence \\h0\\ < {J27LQ ( ? ) 2 I L / I L 2 ) 3 2 < * = I f w ^ take such tha t : 

/ ? 2 M < pu 

then from the above theorem it follows tha t any B 6 L which does not contain HQ as a factor 
satisfies: 

L I * I L > {pkl/\\hQ\\)i/m
 > ( L L » L L 2 M / I L ^ I R ) 1 / M = B 

Hence the shortest vector in L is a multiple of h$\ it can be found by Dieter 's a lgor i thm. If 
m = DEG{h$) then the shortest sector can only be an integral multiple of h$. As the value of M 
is unknown to us at the s tar t , *c can simply try the algori thm for M = DEG{h$) to n — 1. If a 
vector is found with length < B tihen we test if it is a factor of / over Z[z], if not guess for m was 
wrong. If such a vector can not lie found for any of the above values of M then / was irreducible. 
Otherwise we have found /io w i t i m = DEG(ho). Alternately we can make an intelligent guess for 
M such tha t M > DEG(ho).U the guess is right then shortest vector will be some multiple of /IQ ; thus 
/to can be found. 

If we choose k such t h a t pkl > j 3 2 m 2 m ( n " " 1 ) / 2 then by similar a rgument one shows t h a t every 
polynomial in L which is not a multiple of ho has length > 2^N"L^/2B. As L contains a vector ho 
with length < B, by corollary (3Ji), every reduced basis, 6 of L satisfies |6i | < 2^N"X^2B; hence 6i 
will be a mult iple of HQ. Thus WB can use the basis reduction algori thm instead. 

To complete the algori thm we need to find h which satisfies (5.1) to (5.4). We can assume 
without loss of generality tha t / has no mult iple factors. Otherwise we find G = GCD(f,ff), where 
/ ' is the derivative of / . Let /o = f/G- Then fo has no mult iple factors; hence can be factorized 
by the following algori thm. We can factorize G recursively in the same way. 

By employing the subresui tant algori thm [4] we calculate the resul tant / ? ( / , / ' ) , which is 
nonzero as / has no multiple factors. Next we choose a prime number p which does not divide 
/ ? ( / , / ' ) and decompose ( / MOD p) into irreducible factors using Berlecamp's algori thm []. Note 
t ha t / ? ( / . / ' ) upto sign is equal to (characteris t ic of / ) x (leading coeff. of f). Hence p / [ / ? ( / , / ' ) 
guarantees tha t ( / MOD p) has degree N and t h a t it has no mult iple factors in F p [ x j . Hence (5.4) is 
valid for every irreducible factor [h MOD p) of ( / MOD p) in F p [ x j . Leading coefficient of (h MOD p) 
in F p [ x ] can always be chosen to B E I as F P is a field. Thus (5.1) is also satisfied. 

Next we modify h, wi thout modifying (h MOD p), in such a way t h a t (5.2) holds for the value 
of k computed in the algori thm above in addt ion to (5.1), (5.3) and (5.4). This can be achieved by 
Hensel's lemma []. Thus we find h which satisfies (5.1) to (5.4). 

Now one can find ho as expEained before. The same procedure can be applied recursively to 
f/ho until the factorization is complete. 

As the basis reduction, Berlecamp's factorization over prime field and Tifting' through Hensel's 
lemma can all be done in polynomial time, it is obvious t ha t the a lgori thm is polynomial t ime. 

6 . I N T E G E R P R O G R A M M I N G 

The integer linear programming problem is as follows. Given m x n and m x 1 matr ices A 
and B of integers, de termine wheilher there is a X in Z n such t h a t AX < B. The general problem is 
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NT-complete, however if the number of variables is fixed the problem can be solved in polynomial 
time. In this section we give SUCK an algori thm, due to I l .W.Lenstra . 

Consider the closed convex *ct K = {X : R n J AX < B}. We want to decide if K N Z n = 0. 
IT can be shown tha t if K H Z n CP then it is possible to find a Z 6 K PI Z n whose coefficients arc 
bounded by some constant c(n, «j, where a is a bound on absolute values of the coefficients in A or 
B. If necessary, we add these inequalities for all the coefficients. Hence without loss of generality 
we can assume that K is bounded. 

It is possible tha t K has zero volume. This will happen if the dimension, d, of K is less than 
N. In this case we reduce the problem to an equivalent problem in a lower dimension so tha t K 
has nonzero volume in tha t dimension. 

Towards this end one a t t empts to find independent vertices VQ, . . . , Vd-I of K such tha t K — VQ 
lies in a d-dimcnsional affine space V spanned by v\ — VQ, . . . , Vd-I — VO', d can be equal to n . By 
maximizing some arbi tary nonzero linear function, / , on K one finds a vertex VQ of K. For 
maximization of linear functions one can use Khachian ' s polynomial time algori thm. Suppose, 
inductively, t ha t vertices VQ, . . . , v c of K have been found for which v\ — VQ, . . . , vc — vo are linearly 
independent , with C < n . Note tha t every / dimensional affine space W in R n can be characterized 
by some n — / linear functions / 1 , . . . , FN-I as: 

W = {X E R n 1 FI(X) = . . . = / w _ , ( x ) = 0} 

Let / i , . . . , / n - c be the linear functions charecterizing V c , the afiine spanned by the vertices 
u o , . . . , v c . Maximize ±F\,..., ± / n - c on /C. If K does not lie in VC then this will give some 
vertex vc+i of such tha t a r / i (v c ^i )> • • • > ± /n~c(^c f-i) are not all zero. If this occurs then 
^i — V 0 ) - - - 7 ^ c ^ i ~ VO a r e linearly independent and the inductive step of the algori thm is com­
pleted. 

Else K lies in V c; so C = d. If c = d < n then we reduce the problem to an equivalent one d 
dimension. If C = d = n then the next stage of the algori thm can be bypassed. 

So assume tha t d < n . as usual is the affine space spanned by u o , . . . , i^ . Note tha t the 
coordinates of VQ, . . . , v& are all rational. We next change the basis of R n such tha t the hyperplane 
spanned by new basis vectors 6i, . . . ,6<f is parallel to without disturbing the latt ice Z n . This 
means tha t a t ransformat ion matrix U should be an integer matr ix with de te rminan t ± 1 . Such 
an U can be found in polynomial t ime by the Hermite normal form algori thm of K a n n a n and 
Bachem[3]. In this new coordinate system VD can be characterized as: 

VD = {X\ XD+I = CD+I, . . . , x n = c n } 

for some easily computable constants c ^ + i , . . . , c n . As K is contained in VD, if c j - u i , . . . , c n are 
not all integers then we know that the original problem was unsolvable. Othewise subs t i tu te 
x = U~L[YI,..., YD, Crfo-i,... , c n ] r in our original system AX < 6. We then see tha t the problem 
is equivalent to an integer problem with d variables y i , . . . , YD* 

Withou t loss of generali ty we can now assume tha t in the original problem 

(1) K is bounded. 

(2) K is full dimensional; i.e it has positive volume and dimension n. 

In the next stage we find in polynomial t ime a homogenous t ransformat ion r such tha t TK is 
'spherical ' . More precisely, 

B{P, R) C TK C B{P, R), R/R < 2 n 3 / 2 (6.1) 
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where N(Y, S) is ball of radius S with Y as centre. 
Denote by VOL(VO,..., v n ) the volume of the n-simplex spanned by VQ,...FVN. Then we try 

to find in polynomial time the vertices VO,...FVN such that VOL( VQJ . . . , VN) is sufficiently maximal. 
More precisely, for any other vertex V of K\ 

VOL(VO,... FVI-I,V,VI~I,...,VN) < $VOL(VO,... TVI-UVIIVI^U .. .VN) for all I (6.2) 

Consider any vertex V{. We want to know if there exists a vertex V of K which after replacing 
V{ will increase the volume of the n-siniplex by a factor > 3 /2 . Let / / t be the hypcrplanc spanned 
by V O I . . . , v t-_i, . . . , V N . Let GI be the function which characterizes HI, i.e.: 

HI = {x | ffi(x) = 0} 

Then 

VOL{V0,..., VI-1, V, i , . . . , VN)/VOL(VO,..., v t _ ! , vt-, v t ^ i , . . . , v n ) 

as for any x 6 / / a ; |^i(z; — x)| is proportional to the perpendicular distance of V from HI. Thus it 
suffices to check by Khachian's algorithm whether there exists a vertex V of K such that 

L F T ( v - v y ) | / | f t ( V i - t ; y ) | > 3 /2 

As every replacement increases volume by 3/2 and K is bounded, after some polynomial number 

of iterations the replacement will stop and (6.2) will hold. 
Let r be an endomorphism such that T ( V O ) , . . . , r ( v n ) span a regular simplex. Let P = 

¿ 1 E ^ . o r ( u ; ) ' Ik c a n b e shown that for certain R and R (6.1) is satisfied. Of course R can 
be irrational, in that case one has to consider a rational approximation to r. 

The original problem is now equivalent to checking whether TKC\L = <J>, where L is the lattice 
generated by the columns of r. Remember that: 

B(P, R)CRK C B(P, R), R/R < c i 

where C\ = 2 n 3 / / 2 . Let & i , . . . , 6 n be the reduced basis for L found by the basis reduction algrithm 
given before. It is easy to see that there exists a Q € L such that P — Q £ I C ^ I ^ T where 
- 1 / 2 < Ti < 1/2. Then |p - Q\ < l /2(|&i| H + |6 n | ) . Assume without loss of generality that 
| 6 n | == MAX{\BI\}. Then |p — gj < J n | 6 n | . If Q € RK then we are done. Suppose Q £ RK. Then 

Q £ B(P, R). Hence: 

R < J N | 6 n | (6.3) 

Let M be the lattice generated BY B\,..., & n _i and H be the hyperplane generated by B\,..., 6 n - i -

We have: 

L = A F + Z 6 n C / / + Z6 W = U 6 Z ( # + FC6N) (6.4) 

Hence L is contained in the union of countably many parallel hyperplanes scperated by some 
distance H. As D{L) = H.D(M) and the basis is reduced, 

N I L I N < CZAL) = C2.H.D(M) < C2.H. U7LI N 
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where c2 = 2 n ( n _ 1 ) \ Hence, 

h > c2

l\bn\ (6.5) 

Let t be the number of hypcrplanes which cut TK. Then t - 1 < By (6.1),(6.3) and (6.5) we 
conclude tha t t = 0(cl.c2.n-). Hence the number of values for k tha t have to be considered in (6.4) 
is bounded by a cons tant depending on only n . 

If we fix the value of k then we need restrict our a t ten t ion to only those x = YJi^iV^i ^or 

which yn = k. This leads to an integer programming problem with n — 1 variables ij[,..., yn-\• 
Each of the 0(c\c2n) lower dimcndional problems can be t reated recursively. The case of dimension 
n = 0 can serve as a basis for the recursion. The algori thm is polynomial time but severely depends 
on n. This is so because ci and c2 arc exponential in n. 

Note tha t if K f]Zn is nonempty then the algori thm actually produces an element belonging 
to the intersection. 
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