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Lattice Based Algorithms

1. Abstract

In this paper we examine the application of geometry of numbersin algorithm design. We con-
sider two alzorithms in delail. The first one is a polynomial Lirne algorithm, due to Lenstra,lensira,
and Lovasz, Lo lactorize 2 polynomial in one variable with rational coeflicients. The sccond onc is a
polynomial time algorithm. due to I1.W. Lenstra, Lo solve the integer programming problem with
a lixed number of variables. Both the algorithms start by building a certain lattice in Buclidian
space. The key sicp is Lo find a set of generators, small enough in size, lor this laltice. This step,
called the basis reduction, will treated in detail in this paper.

The outline of the paper is as follows. In section 2 we present the required results froin the
geometry of numbers. I[n section 3 we describe [LLI.'s basis reduction algorithm. In section 4
we prove the conjecture that a more elegant version of LLW's basis reduclion algorithm indeed
terminates; even lor real lattices. For integer lattices we derive an cxplicit bound for the complexity
of the aigorithm. Unfortunately this bound is exponecntial unlike a polynomial bound for the
original algorithin. Pinally we present in section 5 the factorization algorithm and section 6 the
integer programming algorithm.

2. Lattices

A lattice L in R™ is a set generated by finitely many linearly independent vectors bq,..., b5
of R L= {3F_, z:b;| z; € Z}. We call by,...,by a basis of the lattice.

i=1
Basis is not uniquely determined by a lattice. Suppose by,...,b, is a basis of a lattice L in
R"™. Let M be an n X n matrix with integral coellicients such that detM = +£1. Then b),...,8,
where b, = M b;, also form a basis for L. This is because M~} = adj{M)/det M = tadj{M)
is also an integral matrix and we have b, = M ™! b!. Conversely if b{,...,b], is a basis of L and
b: = Mb;, where M is an n X n integral matrix, then det M = +1. To prove this we note that
there exists an integral matrix IV such that b; = N b}, as b,..., ¥} form a basis. Further M and

N are the inverses of cach other. Hence det(AM)det(N} = 1. As M and N are integer matrices,
this implies that det(Af) = 1 and dei(N)} = =1,

Above mentioned integer transformations with delerminant +1 are called unimodular trans-
formations. The particularly interesting unimodular transfomations are:

(1) Adding an integer multiple of one ol the basis vectors to another.
(2) Multiplying some basis vector by —1.

It should now be clear that the positive real number |det(by, ..., b.)! depends only on L and not
on the choice of the basis; it is called Lhe determinanl of L and is denoted by d{7.). We can interpret
d(L) as the volume of the parallelopiped 3°7_,[0,1).b;, where [0,1) = {z € R | 0 € z < 1}. This
inerpretation leads to the inequality of Hadamard:

d(L) < [Ty Ibl (2.4

We shall prove later in this section that L has a basis b(,..., bn such that the following opposite
inequality holds: '

[Ty 5] < c.d(L) (2.2)



where ¢ is a constant depending only on n . [n the next scetion we also give a construclive proof
of Lhis existence. The algorithm given there can reduce in polynomial lime any given basis of L
into Lhe one satislying (2.2).

Il every point of lattice M is also a point of a latlice L then we say that M is a sublattice of

L. Levay,...,up and &,...,b5, be the bases of M and [, respectively. Then there are integers vig
such that:
a, = Z vl-J-bJ-

The integer
D = det{wv;)] = det{ay,...,an)/detlby,...,b,y) = d(M)/d(L)

is called the index of M in L. From the last expression it follows that the tndex is independent of
the choice of the bases. Since ay,...,a, are independent, D > 1. Thus

d(L) < d(M) (2.3)

'One of the most important theorems in the geometry of numbers is:

2.1. Theorem. (Minkowski): Let S C R™ be a point set of volume V(S) {possibly infinite)
which i3 symmetric about origin and convez. Let L be an n-dimensional lattice of determinant
d(L). Suppose that either

V(8) > m.2"d(L) or

V(S) = m.2"d(L) and Sis compact.

Then S contains at least m pairs of nonzero vectors xv,,..., +v, belonging to L.

This theorem has many important consequences, Onc of them is the following basis indepen-
dent characterization of a lattice,

A necessary and sufficient condition that a set L € R™ be a lattice is that it should satisfy the
following two properties:

(1} Ifa and b are in L thena+b i3 in L; t.e. L is a group under addition.
(2) There ezists a realr > 0 such that the only point of L in the sphere |z| < 7 is 0.

This criterion is very useful. For example let H be any [-dimensional, { < n, subspace in
R™ and L be any lattice in R"™. By above criterion M = LN is also a lattice. Furthermore
every basis of M can be extended to a basis of L. To see this, let L’ be projection of L on G, the
orthogonal complement of K. Let ¢y,...,cn~; be the vectors in L such that their projections on G
form a basis of L'. It is clear that given any d € L there exist integers z, such that the projection

of e=d— Z;.':] zje; on G is zero; then e € H N L = M. [t follows that there exist integers k;

such that e = Ei=1 kib;. Now d = Z:;:l zic; + Zi___l kb;. Thus by,..., b1, ¢1,...,6n—t is the
desired basis of L.

It is very easy now to determine whether a given set of vectors can be extended to a basis of
a lattice L in R™. Let ay,...,am be such a sct of linearly independent vectors. If this sct can be
extended to basis of L then clearly



Whenever ‘,_\_‘_,;"__l r,a; € [, r; are integers

Coversely if above conditiom holds then ay,...,am form a basis of L {f, where H is the
subspace spanned by ay,...,@m,and thus can be extended to a basis of L.

Fven if @f,...,am can not be cxtended to a basis of /., onc can find an interesting basis for L
as foilows. Let /,, 1 £ 7 < n, be the subspace spanned by ay, ..., a5, Let L; = LN {1;. We start
with a basis for L, cxtend it te a basis for Lo, ... and so to a basis for L., which can be [inally
extended to a basis for 1. This hkasis, b,,...,bn, of L has a property that

a; = v11by
as = vo1by + voobe

Ay, = ”Umlb1 + vmgbz + i+ Yy Om

for some integers v;;.

The problem which often arises in lattice theory is to determine if a lattice L has any point
in a sel S. Sometimes onc also needs to know the number of linearly independent points of L in
S. To deal with this problem we introduce the notion of successive minima.

Let F(x) be an n-dimensional distance function. This means : F is (1} nonnegative i.e.
F(x) > 0. (2) continuous (3) homogenous i.e. for all real ¢t > 0, F(tx) = t F(x). If for some integer
kin 1 € £k < n and some number A the set

NS : Fx) <

conatains k lincarly independent points, then so does 35 for every 8 > M. We define the kth
successive minimum Mg == Mg(F, L) of the distance function F with respeet to the lattice L to be
the lower bound of the numbers X such that AS contains k linearly indcpendent points. Clearly

MEAS S

A common example of a distance functlion is F(x) = Ix{. In this case A{(F, L) is the length of the
shortest vector in L. It is very easy to find an upper bound for it. let § = {z | |z,i < (L)} - §
has volume 2" d(L) - and m = 1 in Theorem 2.1. It follows that X {j {, L), length of the shortest
vector in L, is at the most /a{d{L))}/™. Minkowski also gave bounds for the product of successive
minima.

2.2, Theorem. Let I/(x) be a distance function. Suppose F'(x) < 1 is a bounded symmeiric
conver set of volume V. Let My,..., An be the successive minimea of a lattice L with respect to F.
Then

Td(L) € M-+ An VF < 2%d(L)

The existence of a reduced basis satisfying (2.2) is closely related to the existence of an upper
bound on the product of successive minima provided by the above theorem. To sce this we first
prove the lollowing lemma due to Mahler.

2.3. lemma. Let ay,...,a, belinearly independent points of an n-dimensional lattice L. Then
there exists a basis b1,..., b, of L such that

16;] < maz{laj],1/2]_,la:]} for 1< j<n
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Proof. Letey,...,cn be a basis of L such that

a; = Vi1t
a9 = Up|Cy + Vg2C2

(2.4)
An = Vn|C| + Un2Cp + "+ + Upnln
for some integers v;;, where v, 7= 0. We shall take b; of the shape
bj = c_,-—+—tj_,'_1aj_1 + "'-‘*_tjlal (25)

where ¢;; are the integers to be determined. Clearly by,..., b, is a basis for L.

We distinguish two cases for each j. If v;; = %1, we put b; = xa;. This cctainly has a shape
(2.5) and also |b,| = la,].

Otherwise |v;;| > 2. on solving (2.4) for ¢; we have

|
c; = v

7 a; -+ ij-_la:,-_l E R o k_.,,'itH

where ky; arc some real numbers. Choose ¢;, in (2.5) such that [k, + t;] € 1/2. Then
by = lLjja; + 1 j_q + - +Lj1ay
where |;;{ = ]v;}li < 1/2 and i == ki + ty] € 1/2, for 7 < j. Then obviosly,

by € 1/2520 1 la]

This proves the lemma. |

Now let Ay,..., A, be the successive minima of L with respect to | |. There obviosiy exist the
linearly independent vectors ay,..., @, such that |aj| < X, for 1 £ 7 < n. By above lemma there
exists a basis by,...,bn of L such that

b1 € maz{\;, 7_, N} € maz(l,n/2)N; < nd;

=1

Using Theorem 2.2 we have
[0, 1] < T0 N € 2525 d(L)

where V' is the volume of the sphere |2/ < 1. Thus for some constant basis b;,...,b, indeed
satisfies (2.2).

In the next section we give a ‘constructive’ proof for the existence of such a reduced basis.

3. Basis Reduction

Let L be an n-dimensional lattice with basis by,...,b,. We denote by b,(;) the projection of
b; onto the orthogonal complement of the space spanned by by,...,b;,_q, for1 > 7 > 2. b(1) is
same as b;. We denote [bi(7) — b7 + 1)|/|b,(7)|, where © > j, by u,;. Note that bi(1),...,b.(n)
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are same as the veetors obtained by Gram-Schmidt orthogonaiization of by, ..., bgnd thus form an
orthogonal basis of R™. The folkwing cquality holds:

by = by(£) = 52 2aarbi(d)

We shall call the basis by, ..., bn reduced if

i < 1/2 for all t > j. {3.1)
bl = 1% 2 dbioa(E - 1)F (3.2)
Supposc we are given an arhitary integer basis by, ..., b, of L. We give an algorithm, due to
Lenstra, Lensira, and Lovasz, to reduce this basis in polynormial time into the one satisiying (2.2).
In the course of the algorithm ke by,..., b, will have changed several times, but always in such a
way that they form a basis for L.
At each step of the algorithm we shall have a current subseript & € {L,...,n + 1}. We begin
with & = 2,

Induectively assume that for the current value of & the following conditions arc satisfied:
latiy] <172 forl<j i<k (3.3)

(i~ )12 > by (e =12 Tor1 <i<k (3.4)
These conditions are trivially satisfied for &k = 2.

Now one proceeds as follews, If & = n + 1 the the basis is reduced and the algorithm
terminates. Suppose k£ < n. Then we first achieve that

Bkk—1] £ 1/2 ifk>E (3.5)
If this does not hold, let r be the integer nearest to pg -1, and replace by by by — rbi_;. After
this (3.5) holds.
Consider two cases.

Casel: Suppose k > 1 and |be{k — 12 < 3|be_1(k — 1}{2. We interchange bx and bx—; and then
replace k by k—1. Now we are im situation described by (3.3} and {3.4) and we proceed from there.

Case2: Suppose k = 1 or |be(k — 1)|2 > 3|be—y(k — 1)]2.

In this case we first achieve that
kil <1/2 forl <5< k-1 (3.6)

For j = k ~ 1 this is already true by (3.5). If (3.6) is rot true fer all 7, let { be the largest index
< k with [ug] > 1/2 and let r be the integer nearcst to uw. Replace be by by — rb; (note that
this does not disturb g, where k > m > {). Repeat the process until (3.6) is satisfied.

Replace k£ by k + 1. Now we are in a situation described by (3.3) and (3.4). We proceed from
there.

We remark that in the algorithm we nced to keep track of only the numbers |b;(2)|?, pi; and
the vectors 5;. All these quantities are rational. Also in both the cases the new values of these
quantities ean be computed from the old ones very easily.
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To show Lhat the algorithm serminates, we need Lo introduce one new quantity. Given any k
incger n-veelors ¢y, ..., Ck, iL 15 e1sy Lo show Lhal:

dz(L(ch r ,Ck)) = Det[(c.;,,c,]hg,-,jgk (37)

Here { . ) denoles the ordinary mwner product in R™. It is clear that d®{L(cy, ..., ck)) is an integer.
We also have the easy identity:

2 ke K -
d'(]g(Cl,...,Ck)) - Hj:] CJ‘(J)|2 (3'8)
Now we show that the abowe basis reduction algorithm lerminates. As before b1,~.., b, will
denote a basis at any stage of thealgorithin. Let d; denote d®(74by, ..., 5)). Andlet D =[[7_ . In

case 1 of the algorithm dik_, is rrduced by a lactor of at least 3/4 and all other ¢;s are undisturbed.
Hence D decreases by a factor of at least 3/4. Suppose at start of Lhe algorithm |6;{2 < B, for all
i < n. Then by Iladamard’s inequality we have at start of the aigorithm d; < BY, for all { < n;
Hence D < B™n—1/2 injtially. As D is a nonnegative integer, it follows from independence of
the basis vectors that D > 1 throughout the algorithm. lHence the number of times aigorithm
passcs through case 1 is at the most O(n? log B). In case 1, the value of & is decreased by 1, and
in case 2 it is increased by 1. As k < n + 1 throughout the algorithm, the number of times we
pass through case 2 is also O(x®log B). Thus the numbecr of itcrations is O{n?log B). With a
slightly detailed argument one ean show that the number of arithmetic operations needed is no
more than O{n'log B). All the gmanties involved in the algorithm arc rational numbers which can
be expressed as the ratio of twe inlegers. Later on we shall show Lhat the length of these integers
is bounded by O(nieg 1?). Thus asing the classical algorithms for the arithmelic operations we find
that the number of bit operatlioas nceded by the basis reduction algorithm is O(n®{log B)?).

We show that a reduced bzsis produced by the above algorithm has many desirable properties.
The foliowing lemmma can be casily proved:

3.1, Lemma. If a basis b1,...,56, is reduced in the sense of {3.1) and (3.2) then we have
b2 <2 b(a)P for 1 S j i< n. g

If by,...,b, is a reduced basis for a lattice L then by the above lemma it follows that
[I7< 16 € 27D TI0. iba()] But d(L) == d{by, ..., bn) = d(bi(1), ..., ba(n)) = [T, 16:(3)),
as 0,(1),...,ba(n) are orthogonal. Hence: '

[T7ey bf < om0 074 (L)

Thus (2.2) is indeed satisfied. Further a reduced basis also provides us with a good approximation
to successive minima.

3.2. Theorem. Let\y,..., s denote the successive minima of | {2 on L. Lethy,...,b, be a
reduced basis for L. Then:

211N, < [by|? <2ty for1<i<n

Proof. The left inequality follows from lemma (2.1) easily. To prove the other inequality, let
Zy,...,%; € L be linearly independent. We show that,

6512 < 2n " Lmaz{|2,|%,...,|z;%} (3.9)



Write r, = _\::‘[ Tehy with T € 2.

or lixed & Joy, (k) denoto 14 largoest
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From 1hjs {3.9), ang hence (he theorem, follows,
3.3. CoroJIary. Let /, be an n-dimcnsional lattice With redyceg basiy by,
811% < 2"z 2

for €very nonzero € L.
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first prove that before 5
the I'ol]owing inequalitjes hold:
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nd after every iteration of N.

1512 < np for i & 4



b2 < nPa) ifk#=n+1 (4.3)
172 for1 <7 <1, i<k (1.4)
(1.3)
(4.8)

1A

Mg
g1 < (nB37)12 forl<j<i, 1>k
i < 2R (DR forl <j <k ilk#En+1

Iere {1.2), for ¢ < k, is trivial from (4.4}, and (1.3) follows [rom {1.6). Using that

i (2 <10 305701 = dy o1 (be]?/dy < BTy (4.7)

we sce that (4.5) follows [rom (4.2). (1.3) is saine as (3.3). [t remains to prove (4.2), for ¢ > &,
and (1.6). At the begining of we even have |52 € £ and uy;® £ 7, by (1.7}, so it sullices to
consider Lhe situation at the end of case 1 and case 2. Taking into account that & changes in these
cases, we sce that in case 1 the sel of vectors {b; | 7 & k} is unchanged, and that in case 2 the set
{b; 17 > k} is replaced by a subset. Ilence the inequalities {4.2) are preserved. At the end of case
2, the new values for i, (if ¥ 7= n + 1)are the oid values of pk_,;, so here (4.6) follows from the
inequality (1.5) of the of the previous stage. To prove (4.6) at the end of case | we assume that
it is valid at the previous stage, and we follow what happens to |uk,!. To achieve (3.3) it is, for
7 < k-1, replaced by g — rpk—1 5, With |r| < 2|gre—1] and [pe—y ;| < 1/2, so by (4.8),

ks — Thk—1 5] < gl + e x—1] S 2V (mBr 1) /2 (4.8)
Thus in the notation introduced in the begining of this section we have
oy 5] € en— (k=i pn—1)1/2 for j < k—1

and since k — 1 is the new value for k this exactly the incquality {4.6) to be proved.

We .50 have to estimate |5;]* and wy; at the other points of the algorithm. For this it suffices
to remark that the maximum of [uk1}, ..., |4k k—1] is at most doubled when (3.5} is achieved and
the same thing happens in case 2 {or at most & — 2 values of /. Combining this with (4.8) and (4.5)
we conclude that throughout the course of the algorithm we have

lpiz] < 27~ Hnpr 1)1/ forl<j<i<n
and therefore finally

|8:i% < n2(4B)" for1<i<n
Remark that the above argument could be exdended to show that length of the representations of
all the quantities involved in the previous basis reduction algorithm is bounded by O(n logB).

Let us call a basis b of L well bounded if [b;|2 < n?(1B)", for 1 <7 < n. It is clear that basis
remains well bounded throughout NEW-REDUCLE. As any bounded volume contains only finite
number of lattice points, there are only finite number of well bounded bases. Conscquently the set

= {tb‘::":_l; i |1 €k < n,bis a well founded basis and

is finite. Ycnce there exists a ¢ < 1 such that

VeeA. .z < e


file:///fiki

Whenever case | oceurs in NEW-REDUCE the(k — DI/ 1be (k= 1)] € A and hence

betk = 1) /b .1 {k — 1)) < c. This means that 2 decreases by the factor < c. As D < fgn{n-1)/2
initially. by Lhe argument of seetion 3 we conclude that number of ilerations is of the order
O(n® logli/(log 1/¢)). Thus NEW-RIEDUCE indeed terminates. Unfortunately it is not possible to
estimate ¢ in terms ol n and /2 Tor real lattices.

For integer laltices an explicit bound on the number of iterations can be found. So suppose
that by,...,bn arc integer veetors al the start of {and hence throughout) NEW-REDUCLE. Case 1
is applicd, t.e. be and be_y are swapped, whenever

bk — 1) ik~ 1)]2 < 1
Note that

bk — I)fg = dQ(L(bl,.. . ,bk_g,bk))/dg[lg(bl,... +br—_2)) and
‘ibk-—L(k - 1)‘2 == dz(L(bl, . ..,bk_g,bk_l))/dz(L(bl, ey bk_g))
Hence

be(k—13 2% _ d(L(by,..,bu_2,bx)) — d*(L{by,...,.be—2,5x))
b1 (k=1);7 77 d¥(L(by,.ibu—2,bKk—1)) di—

From (3.7) it lollows that d?(/{b,,...,bi_2, b)) and dr_; are integers. Hence whencver case 1 is
applicable, i.e. lbe{k — 1)[%/|br—1(k — 1)|> < 1, we have

bhk—l'z 1
bk_L.(_lek-l‘ Kl=g=<Sl-g=<1-4

Let ¢ = 1 — 5=, then whenever case 1 is applicable we have |be{k — 1)|2/1be_1(k — 1)|? < c. As
logi/e > 1/2B™, the number of iterations, as belore, is

O(n?log B/(logl/c}) <O(B"n?log B)

It is unfortunate that the bound on number of iterations is eXponential as opposed to polynomial
bound for the previous basis reduction algorithm. But probably there is some room for improve-
ment.

5. Lattices And Factorization

In this section we describe a polynomial-time aigorithm, due to Lenstra,Lenstra, and Lovasz,
to solve the following problem: given a non-zero polynomial f € Q[z] with ralional cocflicients,
find the decomposition of f into irreducible factors in Q[z]. [t is well known that this is equivalent
to factoring primitive polynomialsf € Z[z] into irreducible factors in Z{z]. A polynomial f € Z[z]
is primitive if the greatest common divisor of its coeflicients is 1. :

We shall denote by p a prime number and by k a positive integer. We shall write Z/p*Z for
the ring of integers modulo p*, and F, for the field Z/pZ.

Let f € Z[z] of degree n be polynomial to factorized. Suppose we are given in addition
h € Z[z] which has following properties:

h has leading cocfficient 1. (5.1)

10



(R mod p*) divides (f mod p*) in (Z/p*Z)[z]. (5.2)

(h mod p) is irreducibie in Fy[z]. (5.3)

(h mod p)* does not divide (f mod p} in F,[z] {5.4)
Lot [ = deglh); s0 0 < { < n.

It is casy to see that f hwm an irreducible factor hg in Ziz] for which (A mod p) divides
(hg mod p). By (5.1) this lactoris uniquely determined upto sign. Further if g divides f in Z(z]
then the following can be proved to be cquivalent:

(1) (h mod p) divides (g med p} in Fplz|.

(2) (A mod p*) divides (g mod p*) in (Z/p*Z)(z|.

(3) ho divides g in Z{z].

In particular (A mod p*) dizides (hy mod p*) in Z/p*Z{z].

We shall now see how one cxn construct hp using only the factor (h mod p*) if k is sufficiently
large. First we define a lattice L such that hg is contained in it. Fix an integer m > deg(ho).
Let L be the collection of ail the polynomials in Z{z| of degrece < m that when taken modulo
p* are divisible by {k mod p*} in (Z/p*Z)[z]; thus hy € L. This is a subset of the {m + 1}
dimensional rcal vector space R+ R.z+ -« + R.z™. This vector space is identified with R™"! by
identifying "7 o @iz* With (Ges-..,am). Length of a polynomial g, {|gl!, is defined to be length of
the corresponding vector. [t is fasy to sce that Lis a lattice in R™'. By (5.1) it follows that the
following is the basis of Lt

{(Pz:0<i < ulha? :0<j<m—1}

Also d(L) = p*',

5.1. Theorem. Letb& [ be such that gcd{hg,b) = | in Z{z| {as hg i3 irreducible this equivalent
to saying that hg 18 not a factor of b). Then

p < lhol{™16l1™
Proof. Let M be the sct of all polynomials of the form chg + db, where ¢ and d are some poly-
nomials in Z[z} such that deg(e) < deg(h) and deg(d) deg(ho). As ged(hy, b) = 1, every polynomial

in M can be uniquely represented in the above form. Hence M is a {degb + deg hg)-dimensional
lattice with a basis:

{hoz* : 0 < 1 < deg(h)} U{baz*: 0 < i < deg(ho)}

It foilows from Iladamard’s inequality that d{M) < ||b]|949 "0 | hol|¢¢9® < {|b]{™||Ro/|™. Let N be
a deg(b) + deg(ho)-dimensional lattice with the following basis:

{p*2: 10 < i <1} ul{hz? |0 <7 < deg(b) + deg(ho)}
Note that N is very similar to L. In fact NV is the set of polynomials of degree < deg(b) + deg(hq)
are divisible by (h mod p*) in (Z/p*Z)[z]. Also d(N) = p*'. M is obviously a sublattice of N,
Hence by (2.3), d(N) = p* < d(M) < ||b]|™|lho||™. This proves the theorem. |
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Write hg = Y70 g a,2'. As ki f over Z{z], it lollows from MIGNOTTI (8 | that:

—

a, < (M) Sl forall0 <2< m

Hence (Aol < (70 (m)ziiffiz)z < (2:)1 ® = B. If we take & such that:

3
B2m < pkt

then from the above theorem it follows that any & € L which does not conlain hg as a factor
satisfies:

1811 2 (P4 LRol)' /™ 2 (B /1 BI™) ™ = B

Hence the shortest vector in L is a multiple of hg; it can be found by Diecter’s algorithm. If
m = deg(hg) then the shortest zector can only be an integral multiple of hg. As the value of m
is unknown to us at the start, wc can simply try the algorithm for m = deg{ho) ton — 1. If a
vector is found with length < B shen we test if it is a factor of f over Z[z], il not guess for m was
wrong. [f such a vector can not be found for any of the above values of m then f was irreducible.
Otherwise we have found hg withk m = deg{hp). Alternately we can make an intclligent guess for
m such that m > deg{ho).Il the gaess is right then shortest vector will be some multiple of hq; thus
hg can be found. :

If we choose k such that p** > B2m2om{n—1)/2 then by similar argument one shows that every
polynomial in L which is not a multiple of Ag has length > 2("~1/2B, As L contains a vector hg
with length < B, by corollary (23), every reduced basis, b of I satisfies |6;] < 2(*1)/28; hence b
will be a multiple of Ag. Thus we can use the basis reduction algorithm instead.

To complete the algorithm we need to find h which satisfies {5.1) to (5.4). We can assume
without loss of generality that § has no multiple factors. Otherwise we find ¢ = ged(f, /'), where
[’ is the derivative of f. Let fo = f/g. Then fo has no multiple factors; hence can be factorized
by the following algorithm. We ean factorize g recursively in the same way.

By employing the subresuitant aigorithm [4] we caleulate the resultant R(/f, f’), which is
nonzero as f has no nultiple factors. Next we choose a prime number p which does not divide
R(f, f') and decompose (f mod p) into irreducible factors using Berlecamp's algorithm [|. Note
that R(f.f') upto sign is equal to {characteristic of f) x (leading coeff. of {). Hence p AR(f, )
guarantees that (f mod p) has degree n and that it has no multiple factors in Fpz]. Hence (5.4) is
valid for every irreducible factor (h mod p) of (f mod p) in F,(z|. Leading cocflicient of (h mod p)
in Fp[z| can always be chosen te be 1 as F is a field. Thus {5.1) is also satisfied.

Next we modily h, without modifying (A mod p), in such a way that (5.2) holds for the value
of k computed in the algorithm zbove in addtion to (5.1), (5.3) and (5.4). This can be achieved by
Hensel's lemma []. Thus we find A which satisfies (5.1) to (5.4).

Now one can find ko as explained before. The same procedure can be applied recursively to
f/ho until the lactorization is cemplete.

As the basis reduction, Berlecamp's lactorization over prime ficld and ‘lifting’ through Ilensel’s
lemma can all be done in polynemial time, it is obvious that the algorithm is polynomial time.

8. Integer Programming

The integer linear programming problem is as follows. Given m x n and m x 1 matrices A
and b of integers, determine whether there is a z in 2™ such that Az < b. The general problem is
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NP-complele, however il the number of variabics is fixed the problem can be solved in polynomial
time. In this section we give sueh an algorithm, duc to H.W.Lenstra.

Coasider the closed convexset K = {z : R™ | Az < b}. We want to decide if KNZ™ = 4.
It can be shown that if K™ Z™ #= ¢ then il is possible to lind a z € KX NZ" whose coellicients are
bounded by some constant c(n, a), where a is a bound on absolute values of the coeflicients in A or
b. Il necessary, we add these inequalities for all the cocllicients. [lence without loss of generality
we can assumec that A is bounded.

It is possible that K has zero volume. This will happen if the dimension, d, of K is less than
n. In this case we reduce Lthe problem to an cquivalent problemn in a lower dimension so that K
has nonzero volume in that dimension.

Towards this end one atterapts to find independent vertices vg, ..., vg—) of K such that K-y
lies in a d-dimensional afline space V" spanned by vy — vg,...,v4—1 — vg; d can be cqual to n. By
maximizing seme arbitary nonzero linear function, f, on K one finds a vertex vy of K. For
maximization of lincar functions one can use Khachian's polynomial time algorithm. Suppose,
inductively, that vertices vg,...,v. of K have been found for which v1 — v, ..., v. —vg are linearly
independent, with ¢ < n. Note that every [ dimensional alline space W in R™ can be characterized
by some n — ! linear functions fi,..., fa—; as: '

W={z€R"| /i(z) = ... = fauilz) = 0}

Let fi,...,fn_c be the linear functions charecterizing V., the affine spanned by the vertices

Vo, ..., V. Maximize =f1,...,2fn—c on K. Il K does not lie in V. then this will give some .
vertex vewy of K such that =fi(vew1),..., £fa—c(vcrt) are not all zero. I this occurs then
V) = Vg, ..., Y1 — Vo are lincarly independent and the inductive step of the algorithm is com-
pleted.

Else K liesin V;s0 e = d. If ¢ = d < n then we reduce the problem to an cquivalent one d
dimension. If ¢ = d = n then the next stage of the algorithm can be bypassed.

So assume that d < n. V; as usual is the affine space spanned by wvg,...,vq. Note that the
coordinates of vg, ..., vq are all rational. We next change the basis of R™ such thal the hyperplane
spanned by new basis vectors by,...,bg is parallel to Vy without disturbing the laltice Z™. This
means that a transformation matrix U should be an integer matrix with determinant =1. Such
an U/ can be lound in polynomial time by the Hermile normal form algorithm of Kannan and
Bachem(3]. In this new coordinate system Vy can be characterized as:

Ve = {I I Td+1 = Cdtlyes sy Tn = cn}

for some easily computable constants ¢q-,,...,cn. As K is contained in Vy, if cgey,...,cpn are
not all integers then we know that the original problem was unselvable. Othewise substitute
z=U"Yy1,...,¥d €d=1,.--,6x]T in our original systemn Az < b. We then see that the problem
is equivalent to an integer problem with d variables yy,...,y4-

Without loss of generality we can now assume that in the original problem

(1) K is bounded.

(2) K is [ull dimensional; i.e it has positive volume and dimension n.

In the next stage we find in polynomial time a homogenous transformation 7 such that 7K is

‘spherical’. More precisely,

B(p,7) € 7K C B(p, R), R/r < 2n%/2 (8.1)
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where B{y, s) is ball of radius s with y as cenlre.

Denote by vol(vo, ..., va) the volume of the n-simplex spanned by va,...,va. Then we try
to find in polynomial time the vertices vg, ..., Un such that vui('uo,...,vn) is sulliciently maximal.
More preeiscly, for any other vertex v of K:

vol(vo,...,v‘-_l,v,v‘-_l,...,vﬂ) < %vof[vo,...,v"_l,v.;,v'-?_l,...vn) for all ¢ {6.2)

Consider any vertex v We wanl to know il there exists a vertex v of K which after replacing
¢ will increase the volume of the n-simplex by a factor > 3/2. Let [1; be the hyperplane spanned
by vg, ...y Yic by Yimls e oo Uns Let g; be the function which characterizes Hj, i.c.:

H, = {z] gi{z) = 0}
Then

7"01(1’0:" U1y VY1, ---:Uﬂ)/UOl(vOs ey Vo Vi Vi, - .,'U")
= igi(v = v;)l/lge(vi — vs)]

as for any z € Hlgi(v —z)| is proportional to the perpendicular distance of v from F;. Thus it
suffices to check by Khachian's algorithm whether there exists a vertex v of K such that

|gi{v — v )|/ |gi(ws — v5)l > 3/2
As every replacement increases volume by 3/2 and K is bounded, alter some polynomial number
of iterations the replacement wiil stop and (6.2) will hold.

Let r be an endomorphism such that 7(vg), ..., T(va) span a regular simplex. Let p =
2 o 7(vs). It can be shown that for cortain r and R {6.1) is satisfied. OF course 7 can
be irrational, in that casc one has to consider a rational approximation to 7.

The original problem is now equivalent to checking whether T N L = ¢, where L is the lattice
generaled by the columns of 7. Remember that:

Blp,7) c 7K < B(p, R), R/r<c1

where ¢; = 2n37%. Let by,..., ba be the reduced basis for L found by the basis reduction algrithm
given before. It is easy to see that there exists a ¢ € L such that p—¢q € Z:_:lr,-b‘- where
~1/2 < r; < 1/2. Then [p—gj < 1/2(1by! + -+« + |bnl). Assume without loss of generality that
byl = maz{]bs|}. Then |p— gl € inlba]. If g € 7K then we arc done. Suppose 7 € 7K. Then
g ¢ B(p,r). Hence:

r < injbal | | (8.3)

Let M be the lattice generated by by, ..., bn—y and /T be the hyperplane generated by biyeeesbn_t.
We have:

L== M + Zb, C I + Zby = Upez(H + kbn) (6.4)

Hence L is contained in the union of countably many parallel hyperplanes scperated by some
distance k. As d(L) = h.d{M) and the basis is reduced,

Mh_, b} < cq.d(L) = ca.h.d(M) < co.h. TI5L 18]
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— )n{n 1) 1

whcrc cg = [lence,

ho> e b (6.5)

Let ¢ be the number of hyperplanes which cut 7K. Then ¢ ~ 1 < 3. By (6.1),(6.3) and (6.5) we
conclude that ¢ = Ofcl.c2.n). lence the number of values lor & that have to be considered in (6.4)
is bounded by a coustant depending on only n.

If we fix the value of k£ Lhen we need restrict our attention to only those z = ZLE yib; for
which y, = k. This leads Lo an integer programming problem with n — | variables g, ..., ¥n_1.
Llach of the O(e  eqn) lower dimendional problems can be treated recursively. The case of dimension
n = 0 can scrve as a basis for the recursion. The algorithm is polynomial time but severely dcpends
on 7. This is so because ¢; and ¢ are exponcential in n.

Note that if K {1Z™ is nonempty then the algorithm actually produces an clement belonging
to the intersection.
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