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Abstract

This paper presents a computational paradigm for a system which will dynamically model the
contents of a three dimensional scene. The dynamic scene model may be made available to
processes which analyze and interpret the scene as a composition of objects, and processes which
plan and execute actions based on the composition of the surfaces or objects in the scene. This
computational paradigm is presented as a collection of processes and data structures, many of which
are currently areas of active research.

The system receives information in the form of a time sequence of stereo images. These images are
immediately converted into an "initial representation'1 which facilitates the processing of later stages.
The "initial representation" is then passed to a number of independent processes called "shape
experts". Each shape expert extracts information about three dimensional surfaces from a different
source. Surface information is integrated with the information obtained over time to maintain a
"Composite Surface Model". The Composite Surface Model is then made available to processes for
planning, analysis, or object recognition.

The framework is introduced, and then each of the components are examined. The problems
associated with each component are discussed, and a brief description is given of current research in
that area.



 



1 Introduction

Vision has evolved over millions of years as a mechanism for providing animals with a means of

sensing their environment. Vision provides an internal model of the environment that is constantly

updated to reflect the current state of the environment. This internal model provides the basis for

such tasks as:

• Planning actions (reasoning through "mental simulation")

• Supervising the execution of actions (visual feedback)

• Learning about places, objects, and other animals

• Recognizing pre-learned places, objects, and animals.

The common basis for all of these tasks is a reliable, dynamically updated description of the three

dimensional objects in the animal's environment. This paper is an exploration and exposition of the

computational problems involved in maintaining such a dynamic description.

This paper is not a description of an existing system; it is an attempt to elucidate the components of

an idealized vision system. The first part of the paper presents a computational framework for

dynamic three dimensional scene analysis. The problems involved in each of the components are

then briefly examined and some of the research approaches to their solution are presented.

1.1 Dynamic Scene Analysis

A scene is a three dimensional (3-D) setting composed of physical objects. Modeling a 3-D scene is

a process of constructing a description for the surfaces of the objects of which the scene is

composed. Dynamic modeling is a process of maintaining the veracity of the surface model in the

presence of changes in the scene. This paper presents a computational paradigm for a system which

will dynamically model the contents of a three dimensional scene. The dynamic scene model may be

made available to processes which analyze and interpret the scene as a composition of objects, and

processes which plan and execute actions based on the composition of the surfaces or objects in the

scene.

An important concept presented in this framework is .the "Composite Surface Model11. The

comoosite surface model is a data structure which represents the surface information obtained, over



2. The composite surface model is the data structure on which 3-D object recognition,
action planning, process monitoring and other task oriented processes operate.

The composite surface model serves as the view of the world for processes which must plan

actions, monitor the execution of actions, recognize objects, or otherwise interpret the surface data.

When such processes operate directly on the output of sensors or sensor interpretation processes

they are vulnerable to a number of problems.

• They are sensitive to transient errors or "illusions" from the sensor or the sensor
interpretation process.

• They are limited in scope to what the sensor can see "now".

• They can not easily reconcile inconsistent information from different sources.

The problems of obtaining a consistent interpretation over time, from different views, and in the face

of information with varying degrees of confidence is are fundamental to perception. These problems

are common to a variety of different tasks which are based on sensing the surfaces in a scene. It is

important to decouple these problems from the variety of processes which may operate on the sensor

information.

1.2 A Framework for a System for Dynamic Scene Modeling

Figure 1 shows the components for a system which can describe a 3-D scene in terms of the

surfaces of physical objects. Images are first expressed in a symbolic representation called the initial

representation, which is efficient for interpretation. Shape information is then extracted from the

initial representation by simple stereo matching, generalized stereo, shape from shading, shape from

texture, occluding boundaries and other "shape experts". The result is passed to a process which

maintains a viewer-centered description of the surfaces in the scene, called the "composite surface

model". It is composite in the sense that it is composed over time, from many views, and from

information from a number of independent processes.

The composite surface model is available for a variety of tasks. One popular use for the composite

surface model is to construct and maintain a "scene description". A scene description is a data

structure which represents a scene as a composition of labeled physical objects at relative spatial

positions. The overall problem in scene description is to develop algorithms and data structures
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The composite surface model may also be used by a system which plans and executes actions by a

robot arm or a mobile robot. Such a system may be designed to move an arm or a mobile robot body

among the objects in the scene without touching them or to manipulate the objects in a scene to

accomplish a specified goal. A composite surface model is useful for both planning and monitoring

the execution of a task.

The following sections examine each of these components in greater detail and describes the

research problems presented by each component.

2 The Initial Representation

The initial representation must represent the information in a gray scale image in such a manner as

to make the task of the various shape experts easier. Processes which obtain surface shape from

simple stereo, generalized stereo, occlusion contours, motion and texture are all based on the

matching of gray scale shapes between images. Updating the composite surface model also requires

matching information from the current composite surface model to information obtained from the

shape experts. Thus the initial representation must facilitate the determination of the

correspondence of gray scale patterns between images.

Many researchers have found that correspondence matching can be made more efficient if it is

performed at multiple resolutions. [24], [23]. Marr and Grimson [14] have developed stereo matching

based on the zero crossings in band-pass images at four resolutions. These band-pass images are

formed by convolution with a Difference of Gaussian filter, which is defined to approximate a form of

Laplacian of Gaussians.

We have developed a multiple resolution representation which is efficient for correspondence

matching. This representation is based on the peaks and ridges in a Difference of Low-Pass (DOLP)

transform [7]. The DOLP transform is a reversible transform which expresses an image (or signal) as

a sequence of band-pass images (or signals) [8]. This sequence of band-pass images is sometimes

referred to as a "Laplacian Pyramid". We have also defined a fast computation algorithm for the

DOLP transform, based on the techniques of resampling and of cascade filtering using Gaussian

filters. The result of applying this algorithm to an N by N image is 2 Log2(N) band-pass images which

are close approximation to the size scaled "Laplacian" images. The difference of Gaussian impulse



responses of these images are copies of a prototype difference of Gaussian filter, scaled in size at

powers of the square root of 2.

The local peaks and ridges from each band-pass image express gray-scale shape in a multi-

resolution tree, which has the property of permitting shapes to be matched despite changes in size,

orientation, or position of forms ( gray-scale patterns) in an image [9]. This representation is useful

for measuring surface shape from simple stereo [6], generalized stereo, occlusion contours, and

optical flow [4]. This representation is also relatively immune to degradation due to noise, and

separates image forms based on their size. Thus it is useful for detecting and measuring shape from

textured patterns.

The patterns which are described by this representation are "gray-scale shapes" or "forms". It is

not necessary for a pattern to have a uniform intensity for it to have a well defined description in this

representation. In this representation, a form is described by a tree of symbols which represent the

structure of the form at every resolution. There are four types of symbols { M, L, P, R } which mark

locations (x, y, k) in the DOLP three space where a band-pass filter of radius Rk is a local "best-fit" to

the form.

Figure 2 shows an example of the use of peaks and ridges for representing a uniform intensity form.

This figure shows the outline of a dark rhomboid on a light background. Circles illustrate the position

and radii of band-pass filters whose positive center lobes best fit the rhomboid. Below the rhomboid is

part of the graph produced by detecting and linking peaks and ridges in the sampled DOLP transform.

A description in this representation contains a small number of symbols at the root. These symbols

describe the global (or low-frequency) structure of a form. At lower levels, this tree contains

increasingly larger numbers of symbols which represent more local details. The correspondence

between symbols at one level in the tree constrains the possible set of correspondences at the next

higher resolution level.

The description is created by detecting local positive maxima and negative minima in one dimension

(ridges) and two dimensions (peaks) in. each band-pass image of a DOLP transform. Local peaks in

the DOLP three space define locations and sizes at which a DOLP band-pass filter best fits a gray-

scale pattern. These points are encoded as symbols which serve as landmarks for matching the
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Figure 2: A Rhomboidal Form and its Representation:
In the upper part of this figure the rhomboidal form is outlined in solid

straight lines. The description is for such a form which is dark on a light
background. Circles indicate the locations and sizes where the band-pass
filters from a sampled DOLP transform produced 3-Space peaks (M-nodes),
2-Space peaks (P-nodes), and 3-Space ridges ( L-nodes). T\ye structure of the
resulting description is shown in the lower part of the figure. The description of
the "negative shape" which surrounds this form is not presented.

form. The paths of the other peaks, which are attached to such landmarks, provide further

description of the form, as well as continuity with structure at other resolutions. Further information is

encoded by detecting and linking two-dimensional ridge points in each band-pass image, and three-

dimensional ridge points within the DOLP three space. The ridges in each band-pass image link the

peaks in that image which are part of the same form. The three-dimensional ridges link the largest



correspondence between forms in two or more images. This representation has properties which

greatly simplify the process of determining the correspondence of patterns in two images.

1. Only peaks correspond to peaks. The existence of peaks or P-nodes provides a set of
landmarks which can be used as tokens in the matching process.

2. The multi-resolution structure of the representation permits the correspondence process
to commence with the most global M-nodes for each form. Since very few such symbols
exist at the coarsest resolution, the complexity of this process is kept small.

3. The connectivity of P-paths permits the match information from a coarse resolution to
constrain the possible set of matches at the next higher-resolution level. Thus what could
be a very large graph matching problem is repeatedly partitioned into several small
problems.

3 The Shape Experts

Viewer centered information of the 3-D shape of surfaces may be obtained from a sequence of

images by a variety of techniques. All of these techniques provide surface information for the process

which maintains the "Composite Surface Model". The following sections examine a number of

techniques for obtaining surface information from gray scale-images of a scene. In general, these

shape experts operate on a particular subset of the phenomena which occur in an image. In many

cases the different shape experts complement each other nicely, with each shape expert providing

information in cases where the others fail.

3.1 Depth from Simple Stereo

Obtaining depth information from a stereo pair of images involves two problems:

1. Finding the difference in position of pixels in the two images which correspond to the
same physical (3-D) point, and

2. Converting this difference of position to an estimate of depth.

When all of the physical parameters concerning imaging and the positions of the two cameras are

known, the second problem is reduced to a problem of geometry. The most difficult part of this

problem is usually seen as calibrating the system to learn these camera parameters. Gennery[13]

has developed a method for discovering the relative camera model from a few sparse matches. The

development of techniques to discover the camera models Tor a pair of stereo cameras continues to
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3.1.1 Conditions for Simple Stereo

It is well known that a pair of stereo cameras can be configured so that stereo matching may be

accomplished as a 1-D matching problem [10]. We refer to such stereo matching as "simple stereo".

Simple stereo is possible whenever:

1. The two images are taken at approximately the same time.

2. The two cameras are approximately the same distance from the scene.

3. Knowledge of the camera positions provides knowledge of the epipolar planes. That is,
the planes passing through the shared image point and the centers of the two cameras.

The lines along which the epipolar planes pass through the image are known as the epipolar lines.

If the conditions for simple stereo are true, the gray-scale shapes along the epipolar lines in one

image are constrained to match to shapes along the epipolar lines in the second stereo image. If the

equation of the epipolar lines in the two images are known, then stereo matching is reduced to a

series of 1 -D matching problems. The simplest such case is for two cameras with

• identical optics

• co-planar image planes, and

• a displacement that has no vertical (y axis) component.

In such a case, the matching may be performed on a row by row basis. However, these conditions are

not absolutely necessary to obtain surface information from simple stereo; whenever the conditions

for simple stereo which were cited above are true, 1-D matching techniques will work for any pair of

signals from the same epipolar plane.

3.1.2 1 -D Correspondence Matching

Many techniques for solving for the stereo correspondence involve matching selected points or

regions in two (or more) stereo images. A popular approach is to detect small patterns which appear

especially matchable, and only search for matches for these points. Moravec's stereo matching

algorithm is an example of this approach [24]. Moravec developed an "interest operator" which

selects small patterns where the variance is high. Ideally, with this approach, the matching should be

performed on points whose shape and position are invariant to the viewing angle and position.

Regardless, the result is a depth estimate at a discrete set of points. Depth at intermediate points must

be supplied by assumptions about the surface geometry, and often a costly interpolation step is



programming [17]. The algorithm was first developed to perform an optimal 1-D match between scan

rows of the two stereo images. The algorithm was then generalized to perform a 2-D match, in which

the second dimension is consistency across the scan rows. This algorithm uses a continuity

constrained to find the most likely collection of surfaces for a pair of stereo image.

Much work in stereo matching has been done with random dot stereo-gram images. Using such

images, Marr [22] and Grimson [14] have developed algorithms that make use of thezero crossings in

the convolution of the images with Difference of Gaussian (DOG) filters. Difference of Gaussian filters,

at four resolutions are used, and the result of matching at low resolution is used to constrain the

matching at higher resolutions. An interpolation step, which is based on a surface consistency

constraint, is used to provide an estimate of the depth at points which are not on zero-crossings.

When stereo matching is based on a multiple resolution representation, such as the initial

representation described above, it becomes possible to obtain an estimate of depth over most of the

image [6]. These depth estimates have a variable resolution. The resolution of the depth estimate

depends on the size of the patterns that can be matched at a location in the picture, where size refers

to the size of a difference of low-pass filter which is used to represent the pattern in the image. Where

no match can be found, the depth estimate may be found from the other shape experts.

This depth estimate can be made with no assumptions about the continuity of surfaces that

produced the images. However, some assumptions about the surfaces in the scene can facilitate the

correspondence matching process. The depth estimate from this method tends to have a lower

resolution at points away from sharp edges, but these are the points where "shape from shading"

techniques are the most useful. In this sense, this stereo matching technique complements other

sources of depth information.

A good review of stereo matching research, for both the simple stereo and generalized stereo cases

is presented by Barnard and Fischler [2]. Much of the early work in stereo was done with aerial

images. The survey papers by Konecy and Pape[19] and Case [5] provide a good review of the

efforts in this area.

3.2 Generalized Stereo

Whpn the* rplativA nn<?itinn<* nf the* twn r.flmpra.ci arA nnt rnnstrpiinpH <sn that thp imanp
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A popular approach to correspondence matching in the case where the camera is moving is to

determine the lines of "optical flow" [4]. Given reliable feature points, the correspondence

algorithms developed by Ullman [28]. and by Marr and Poggio [22] can be used to find

correspondence. Lucas has developed an algorithm that uses the spatial intensity gradient of the

images to iteratively hill climb to a correspondence [20].

When a camera moves forward or backward in a scene, the size of the gray-scale forms in the scene

change. Thus, general stereo matching is facilitated by a representation which can be matched

despite changes in size, as well as position and orientation. The multi-resolution representation given

by peaks and ridges in the DOLP transform has been shown to have this property [9]. We have

recently begun an effort to demonstrate stereo matching for the case where the camera has moved in

an arbitrary three dimensional direction, using the representation based on peak and ridges in the

DOLP transform. The result of such stereo matching is a change in position and a change in size for

forms in the two images. These two measurements can be used to determine the distance to the

objects which the forms represent. These measurements can also be used to determine the direction

of travel of the camera, by detecting the "optical flow" of the forms.

A successful solution to the generalized stereo problem will open applications in mobile robot

navigation, as well as in dynamic 3-D scene analysis.

3.3 Contours of Occlusion

Control of camera motion, and freedom to move in arbitrary directions, provides an opportunity to

measure another important source of information about 3-D shape: the lines of discontinuity that

bound objects. Marr has noted that there are four basic ways that contours of gray level discontinuity

(edges) can result in a single image:

1. Discontinuities in distance from the viewer

2. Discontinuities in surface orientation

3. Changes in surface reflectance

4. Illumination effects such as shadows, light sources and highlights.

Interpreting a scene involves determining which source is responsible for each such edge contour.
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contours may be detected by detecting patterns in one image that are occluded in a second image.

Gray-level discontinuities resulting from occlusion contours are particularly easy to discriminate from

illumination effects and changes in surface reflectance if the system has the ability to move the

cameras in a direction perpendicular to the contour. In the case of an occlusion contour, such

motion hides or exposes a part of the background pattern against which the contour is defined. Such

an occlusion detection process can also detect discontinuities in surface orientation which do not

result in image edges. Detecting the occluded or exposed background pattern requires the same sort

of correspondence matching required for generalized stereo.

3.4 Shape from Shading

The orientation of a patch of a 3-D surface may be described by the two parameters of its gradient

often referred to as (p,q) [3]. The (p,q) plane is known as the "gradient space". When a scene is

illuminated by a single source, the observed intensity at a pixel is a function of: the illumination

intensity, the angle between the illumination source and the surface patch normal (i), and the angle

between the line from the camera and the surface patch normal (e).

For a given configuration of camera, illumination source, and 3-D surface, there are a closed

connected set of values of (p,q) that correspond to a given intensity at a pixel. This set of values

correspond to a contour in the space of (p,q). If the scene is observed with illumination from a

second light source, then a second contour in (p,q) results from the observed intensity. In general

there will be two values for (p,q) that lies on both contours. A third image with illumination from yet

another 3-D point will disambiguate the situation and give a unique value of (p,q). This shape

measurement technique is known as "photometric stereo". Alternatively, knowledge about the

possible shapes of objects can be used to disambiguate the shape from two images.

Photometric stereo is not usually practical, but the contours of equal reflectance in (p,q) space can

be used in another way to obtain local shape information. Given knowledge of the values of (p,q) for a

point, the gray levels along any line from that point map into a contour in (p,q) space, provided that no

discontinuities in surface orientation are crossed, that the values of (p,q) are assumed continuous

and smoothly varying and that the surface reflectance ("albedo") is constant. Thus knowledge of

(p,q) at a point allows knowledge of relative (p,q) at adjacent points.
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3.5 Shape from Texture

A visual texture is a image region composed of many instances of the same or similar small patterns

(texture elements or "texels"). The shape of a surface can be inferred from the pattern of a texture on

the surface in at least three ways.

First, if the exact shape of the texture element is known, then transformations in that shape identify

a local surface orientation to within 2 values of (p,q).

Second, if we assume that the elements of a texture are all of the same size, then the directional

derivatives of the size of the texture elements can be used to determine the the orientation of the

surface. Even if the texture elements are not all exactly the same shape, the local derivatives can be

based on local ensembles of sizes. This happens, for example, when a human looks at a field of

grass.

Third, the assumption that texture elements are co-linear on a surface allows measurement of a 3-D

contour on the surface as a 2-D contour in the image.

Stevens has shown how to recover surface shape from co-linear contours of texture elements [27];

Kender has shown a computational paradigm that allows local surface orientation to be recovered

from all three of these cases [18].

3.6 Shape from Motion

A rigid object may be described by a set of landmark points on its surface, and a distance and

orientation of the vector between these landmark points. When a rigid object moves in a scene, the

3-D length and relative 3-D orientations of these vectors remain constant, while the observed 2-D

lengths and relative 2-D orientations change. A sequence of images of a moving rigid object in which

a set of keypoints are detected can allow the 3-D lengths and orientations of the lines between

keypoints to be determined. The first major study of this ability in humans was performed by Wallach

and O'Connell [29]. Subjects were shown the shadow of a rotating wire figure and reported seeing a

rigid wire figure turning in space. Johansson showed human subjects films of persons moving

around in a dark room with reflective tape on major joints. Subjects could interpret what they saw and

could easily tell what the observed person was doing [16].
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three views of four points were sufficient. These investigations sought to prove the possibility of

shape from motion; the resulting algorithms were quite sensitive to even minor noise. Webb and

Aggarwal [30] developed a procedure which used many views and an assumption of rigid rotation

about a common point to determine shape from motion.

4The Composite Surface Model

The composite surface model serves as a common data structure into which the ensemble of shape

experts place their interpretation of surface shape in the scene. It also permits each shape expert to

read the interpretation from the other shape experts so that it may modify or guide its interpretation in

ambiguous situations. The composite surface model is the data structure in which a description is

built up from many views taken over time. It is also the data structure in which inconsistent

information about surfaces from the different knowledge sources is resolved.

In addition to integrating a surface description from many knowledge sources, the composite

surface model is also the data structure on which a variety of "higher level" processes operate. Such

processes perform tasks such as:

• Recognize 3-D objects and construct a scene description

• Plan actions with respect to the scene

• Monitor the execution of actions

• Learn the shape of objects, or collections of objects.

The composite surface model is "viewer centered"; it contains a description of surfaces as seen by

the viewer from a particular perspective, perhaps including surfaces which are temporarily occluded.

It is referred to as composite because it is a composition of information obtained, over time, from

different views, and from all of the shape experts. The development of a representation for the

composite surface model is currently an important research issue in scene analysis.

The most obvious implementation for a composite surface model is as a "depth map", that is a 2-D

array of the form z = f(x,y). The most obvious problem with this representation is how to represent

surfaces that are vertical with respect to the viewer. In this case there are multiple surface points at a

given location (x,y). A second problem is an inability to represent surfaces which are temporarily

occluded.
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One possible implementation for the composite surface model is to represent surface regions as

patches which are enclosed in closed contours where the surface shape is discontinuous. Each such

patch could be approximated by a plane or a second order curve. A surface description of this form

can be implemented as a graph of "surface patch elements", with each element linked to its adjacent

neighbors. A planar representation composed of triangles has been developed by Fuchs[12]. A

more general scheme which employs polyhedral approximations to 3-D objects has been developed

by Faugeras et. al. [11]. This group developed an algorithm for segmenting a collection of surface

points into a collection of planar patches.

An alternative to representing each patch as a planar or second order element is to represent each

patch as a network of surface normals. Such a set of normals can be represented by a spatial

proximity graph [15].

A Composite surface model based on representing surface patches also offers an additional

attractive property: many matching algorithms devised for edge-based descriptions of images can be

generalized for a surface patch description. Matching is fundamental to the integration of information

from different shape experts and to the integration of surface information over time.

5 Object Centered Models

Objects have 3-D shapes. In the general case there is no way to know a-priori the 3-D angle or

distance from which an object is likely to be seen. Thus a model is needed which describes the

complete 3-D shape of an object. The system must be able to determine from this model what

surfaces and surface features will be seen from a given viewing angle. Because such a model is

represented independent of viewing angle it should be "object centered". That is surfaces in the

model are represented relative to an internal coordinate system.

A powerful method for representing the 3-D shapes of objects is the technique known as

"generalized cylinders" developed by Agin [1]. A generalized cylinder is described by three

components:

1. A spine, or 3-D curve which is the center axis of the object,

2. A cross section, and
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Marr has proposed a scheme for representing shapes as a hierarchy of generalized cylinders [21].

In this representation scheme, the description at each level is kept very simple. A pointer refers to a

more detailed description of each component. Brooks has demonstrated a model driven visual

interpretation system named ACRONYM which uses such a representation [3].

Generalized cylinders give a good volumetric description for many types of objects. However, there

are many classes of objects for which cylinders are inappropriate as a representation. (For example,

a desk surface, or a sheet of paper.) There are also cases where there are several possible ways to fit.

a generalized cylinder to a shape (consider a cube, for example). A more general representation with

a richer vocabulary of shape primitives is needed for a general scene analysis system.

6 Object Matching

Construction of a scene description from a composite surface model involves matching object

centered 3-D models to the viewer centered composite surface model. Matching 3-D object models to

the composite surface model may proceed from one of two approaches. The so-called "bottom up"

approach involves detecting landmarks in the composite surface model, finding corresponding

landmarks in the 3-D models, and then using this correspondence to hypothesize the orientation and

size parameters for projecting the 3-D model onto the composite surface model for matching.

Alternatively, a "top down" strategy may be employed, which uses some "high level expectations" to

predict the expected size and 3-D orientation at which an object is likely to be found.

In either case, some number of candidate 3-D models must then be more closely compared to the

surfaces in the composite surface model. Such matching requires projecting from the object

centered 3-D models into the viewer centered surface model.

7 Summary and Conclusion

This paper has presented a computational paradigm for dynamic 3-D scene analysis. The heart of

this paradigm is the construction and dynamic maintenance of an internal description of the surfaces

in a scene, called the "composite surface model". A process called "update" combines information

from independent "shape experts" with the current contents of the composite surface model.
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• The Composite Surface Model

• Updating the Composite Surface Model

• Object Models

This paper was written to explore the various problems of dynamic three dimensional scene

analysis. The problems of the "initial representation", the "shape experts" and the representation of

surface information have received increasing attention in the literature recently. The problems of

resolving inconsistency between the shape experts and the problem of representing uncertainty in

the surface model have not been as widely recognized. This paper was written to present these

elements in a combined system, and to briefly review the state of research in each aspect of the

system.
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