
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

A Machine Learning Approach to Student Modeling

Pat Langley
Stellan Ohlsson
Stephanie Sage

CMU-RI-TR-84-7

The Robotics Institute
Carnegie-Mellon University

Pittsburgh, Pennsylvania 15213 USA

May 1,1984

Copyright © 1984 The Robotics Institute, Carnegie-Mellon University

This research was supported by Contract N00014-83-K-0074, NR 154-508, from the Personnel and Training
Research Program, Psychological Sciences Division, Office of Naval Research. Approved for public release;
distribution unlimited. Reproduction in whole or part is permitted for any purpose of the United States
Government.

We would like to thank Derek Sleeman and Kurt VanLehn for numerous discussions about approaches to the
student modeling problem, as well as John Laird and John Anderson for comments on an earlier draft. Pat
Langley was responsible for implementing the ACM system, Stephanie Sage debugged and tested the system
in the subtraction domain, and Stellan Ohlsson proposed the extensions to ACM discussed at the end of the
paper.

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER
Technical Report No, 1

2. GOVT ACCESSION NO, 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)

A Machine Learning Approach to Student Modeling

5. TYPE OP REPORT & PERIOD COVERED

Annual Report 11/82-11/83

€. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(*>

Pat Langley
Stellan Ohlsson
Stephanie Sage

8. CONTRACT OR GRANT NUMBER^

N00014-83-K-0074

9. PERFORMING ORGANIZATION NAME AND AOORESS
The Robotics Institute
Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

NR 154-508

11. CONTROLLING OFFICE NAME AND AOORESS
Personnel and Training Research Programs
Office of Naval Research (Code 442PT)
Arlington, Virginia 22217

12. REPORT DATE
1 May, 1984

13. NUMBER OF PAGES
32

U T M O N I T O R I N G AGENCY NAME & AOORESSCi/ different (torn Control ting Office) 15. SECURITY CLASS. (o(thie report)
unclassified

15«. DECLASSIF1 CATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the ebetrmct entered In Block 20, It different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continum on

student modeling
strategy learning
buggy procedures
subtraction

eide It neceeemry and idmntity by block number)

problem spaces
production systems
search heuristics
discrimination networks

20. ABSTRACT (Continue on reveree tide it neceeemry and identity by block number)

The notion of buggy procedures has played an important role in recent
cognitive models of mathematical skills. We review some earlier work on
student modeling, in which Artificial Intelligence methods have been
used to automatically construct buggy models of student behavior. We
then propose an alternate approach to student modeling that draws on
insights from the rapidly developing field of machine learning, and

U*J 1 JAN 73 EDITION OF 1 NOV 63 IS OBSOLETE
S/N 0102-014-6601 j unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Dmtm Sntmfd)

describe ACM, a student modeling system that incorporates this approach.
This system begins with a set of overly general rules, which it uses to
search a problem space until it arrives at the same answer as the stu-
dent. ACM then uses the solution path it has discovered to determine
positive and negative instances of its initial rules, and employs a dis-
crimination learning mechanism to place additional conditions on these
rules. The revised rules will reproduce the solution path without search,
and constitute a cognitive model of the student's behavior. We examine
ACM's operation in the domain of multi-column subtraction problems, and
propose some extensions that should be included in future versions of
the system. Finally, we discuss the generality, psychological validity,
and practical utility of this approach to student modeling.

unclassified

SECURITY CLASSIFICATION OF THIS PAGEfWhwi Dmf Bnffd)

MACHINE LEARNING AND STUDENT MODELING PAGE I

Table of Contents
1. Introduction 1
2. Previous Research on Student Modeling 2

2.1. The DEBUGGY System 2
2.2. Production System Models of Subtraction 2
2.3. The Leeds Modeling System 3
2.4. Repair Theory and Step Theory 3
2.5. Comments on the Previous Research 5

3. An Alternate Approach to Student Modeling 5
3.1. Student Modeling as Machine Learning 6
3.2. Algorithms as Constrained Search 6
3.3. Selecting an Initial Procedure 7
3.4. Alternate Condition-Finding Methods 8
3.5. Constructing Discrimination Networks 9
3.6. The ACM Student Modeling System 11

4. Modeling Subtraction Strategies 13
4.1. Subtraction as a Search Problem 13
4.2. Generating Plausible Conditions 14
4.3. Modeling the Correct Subtraction Strategy 15
4.4. Modeling a Buggy Strategy 19
4.5. Initial Results in the Subtraction Domain 21

5. Extending the Approach 22
5.1. Considering Alternate Problem Spaces 22
5.2. Generating Diagnostically Useful Problems 25

6. Discussion ' 26
6.1. Generality of the Approach 27
6.2. Psychological Validity 28
6.3. Practicality of the Approach 29

References 31

MACHINE LEARNING AND STUDHNT MODELING PAGE 1

1. Introduction

In recent years, the methodology of cognitive simulation has been applied to a problem of great
practical interest.— the modeling of students' errors in school work. Given some record of the pupil's work in
arithmetic or some other domain, one constructs a simulation model of his strategy which will explain his
behavior. The concept of a buggy procedure is central to such models. A buggy procedure is a strategy for
some task domain which is applicable to problems in that domain, but which does not solve all of these
problems correctly. In terms of the computer metaphor, a buggy procedure is a "program" which "runs", but
which does not deliver the right "output". A "bug" is any feature of a procedure which causes it to produce
erroneous answers; "buggy thinking" refers to the activity of applying a buggy procedure.

Buggy procedures are important to psychology because human learning is gradual even in task domains
where the dividing line between "correct" and "incorrect" answers is sharp, as in school mathematics. The
number, frequency, and severity of errors decrease gradually over time. The currently favored hypothesis
about this phenomenon, which is also fundamental to the research reported here, is that students traverse a
sequence of buggy procedures on their way to a correct procedure. The pedagogical interest of buggy models
comes from the hope that (in conjunction with a learning theory) they can be used as a basis for remedial
instruction. However, the construction of simulation models is a time-consuming task. For such models to be
practically useful, there must be some way to automate their construction; this is generally known as the
student modeling problem.

The modeling of buggy thinking poses several problems. First, there are the difficulties associated with
any effort to simulate human cognition: the choice of a psychologically motivated representation, the proper
representation of capacity limitations, and so forth. Second, even after one has made these higher level
commitments, many possibilities remain to be considered, since the set of possible buggy procedures for any
task domain is very large. To model buggy thinking, one must systematically consider this set of possibilities,
and determine which procedure best accounts for the student's behavior. In some sense, this is equivalent to
automating the process of psychological theory formation, though in a restricted domain. Thus, any novel
approaches for addressing this challenging problem would be welcome.

We believe that the rapidly developing field of machine learning offers a methodology for approaching
the task of student modeling. Researchers in this field have proposed several different learning mechanisms,
that is, methods for changing a procedure to yield different behaviors. These mechanisms are usually thought
of as methods for improving a procedure, i.e., for making it produce correct answers. However, this need not
be so. A general learning system should be able to acquire buggy procedures as easily as correct ones,
provided it is given buggy behavior to imitate. If so, then one should be able to use standard machine learning
methods to aid in the process of constructing models of student behavior, whether that behavior is correct or
incorrect.

The reader is cautioned to keep in mind the two distinct ways in which "learning" enters into the
current discourse. On the one hand, there is the learning process of the pupil being modeled. On the other
hand, there is the "learning" process which a modeling program goes through in its efforts to construct a valid
model for that pupil. These two processes must be kept distinct. Although the human learning process is
inherently interesting and has considerable relevance to education, we will not propose a theory of human
learning in this paper. Rather, we will employ techniques from machine learning as tools for automating the
construction of student models.

Below we review some previous efforts to automate the construction of computer models of buggy
thinking. After this, we state our analysis of the student modeling problem, which is based on a view of
student modeling as a special case of the task of learning search heuristics. Next we describe ACM, a

MACHINE LEARNING AND STUDENT MODELING PAGE 2

computer program which implements this analysis, along with its behavior in the subtraction domain. We
then examine some weaknesses of the current system, and propose some extensions to deal with these issues.
In the final section, we evaluate our approach along the dimensions of generality, psychological validity, and
practical utility.

2. Previous Research on Student Modeling
Before moving on to describe our approach to student modeling, we should review some of the earlier

work in this area. It is not surprising that much of the research on student modeling has focused on
mathematical skills, since these have a number of advantages over other school subjects. First, domains such
as arithmetic and algebra involve relatively algorithmic procedures, so one can easily construct computer
models of the correct strategy. Second, students appear to treat these subjects in a syntactic manner, so that
cognitive modeling techniques developed on abstract puzzle solving tasks can be easily applied. Finally,
despite their transparency to most educated adults, these subjects cause a great deal of trouble for students,
resulting in an interesting menagerie of buggy behaviors on which to test student modeling systems.
Accordingly, all of the work we will review has been carried out in the context of mathematical skills, and we
have tested our own system in the same area.

2.1. The DEBUGGY System

Some of the earliest work on modeling mathematical skills was carried out by Brown and Burton (1978).
These researchers focused on the domain of multi-column subtraction problems, and found a variety of
strategies that deviated from the standard algorithm. Although the traditional algorithm may seem simple to
most adults, Brown and Burton showed its complexity by representing all of its components and
subcomponents in a hierarchical procedural network. Errorful behavior was explained by replacing one or
more of these components with an errorful or buggy component. Organizing the data in this way, they
identified over 100 buggy components that accounted for the majority of student behavior.

Building on this framework, Burton (1982) proceeded to implement DEBUGGY, a student modeling
system for diagnosing the cause of subtraction errors. Given a set of test problems and a student's answers to
those problems, DEBUGGY went through its list of buggy components, evaluating each in terms of the
answers it predicted. Predictions were made by actually running each buggy procedure on the test problems.
If no single bug accounted for enough of the errors, bugs accounting for some of the mistakes were composed
into two, three, and four-bug combinations. The system relied on a generate-and-test strategy for evaluating
individual bugs, but used a more sophisticated method for deciding which compound hypotheses to examine.
Using this strategy, DEBUGGY was successful in modeling a high percentage of students in the subtraction
domain.

During its diagnostic process, DEBUGGY relied on a user-supplied data-base of bugs, which we will
call a bug library. The bugs in this library were discovered by the researchers themselves, through extensive
analyses of students' answers on subtraction tests. The resulting list of bugs is certainly an impressive
accomplishment, and we will return to this list in evaluating our own student modeling system. However, the
ability to generate new buggy components would have been a definite asset, and as we shall see, more recent
research has addressed this issue.

2.2. Production System Models of Subtraction

Young and O'Shea (1981) have taken a rather different approach to explaining the origin of subtraction
errors. Instead of representing arithmetic strategies as procedural networks, these researchers employed a
production system formalism. They represented the correct subtraction procedure as a set of condition-action
rules. Errors were explained by the removal of one or two rules, or by the inclusion of a few new rules.

MACHINE LEARNING AND STUDENT MODELING PAGE 3

Because these rules were relatively independent of one another, the system would continue to run after such
modifications had been made, but would lead to incorrect solutions. Using this approach, Young and O'Shea
were able to model the most common subtraction bugs observed by Brown and Burton.

These researchers did not attempt to implement an actual student modeling system. However, their
approach does suggest some design features that would be useful in constructing such a system. The notion of
a modular production system is a very attractive one, and the idea of accounting for errors through missing
components is very elegant, since it allows one to avoid the need for an explicit bug library. Unfortunately,
they were forced to introduce a few incorrect rules to account for some of the bugs. These would have to be
provided by the programmer, as in DEBUGGY, or one must find a way to generate such variant rules
automatically.

2.3. The Leeds Modeling System

Sleeman and Smith (1981) have carried out research in much die same spirit as DEBUGGY, though
there are some important differences between the two projects. In this case, the domain was algebra problems
involving a single variable, and die result was the Leeds Modeling System (LMS). Like Brown and Burton's
system, LMS accounted for errorful behavior by replacing components in a correct procedure with buggy
ones. However, rather than representing algebra strategies as procedural networks, they used production rules
for transforming one equation into another. The researchers used the term "mal-rulesM to refer to the buggy
counterparts of the correct rewrite rules.

LMS presented a student with problems designed to distinguish between a single algebra rule and the
mal-rules that might take its place. As more rules were incorporated into the model, more complex problems
were presented to determine die presence of additional rules, until a complete model of the student's algebra
strategy had been constructed. Thus, LMS can be viewed as carrying out a heuristic search through the space
of possible procedures, with each search step identifying which rule to add to the student model. Like
DEBUGGY, Sleeman and Smith's system required the user to specify a bug library.

In a more recent paper, Sleeman (1982) has described an extension of LMS that is capable of
discovering new mal-rules to account for behavior that cannot be modeled using known rules. This approach
involves searching backwards from a given or observed answer, using the existing (correct and incorrect)
re-write rules. If a complete path from the answer to the problem as given can be constructed using only the
correct algebraic rules, then the solution is correct. If a path can be found using the correct rules plus the
already discovered mal-rules, then the error can be modeled using existing components. However, if the
backward search fails to connect the answer with the problem as given, then a new mal-rule is postulated
which connects the problem as given with the first state in some path which led to the observed answer.

This work has considerable potential, since it does not rely on the user to provide a complete bug library
at the outset of the modeling process. One of its limitations is that only a single new mal-rule can be
discovered at a time. If the student is actually using two mal-rules in solving a problem, and if none of these
mal-rules has previously been encountered, the system will learn a single mal-rule that masks the true
behavior. Thus, the resulting student model will have good predictive pov/er, but will not be very useful for a
teacher attempting to design remedial lessons. However, a careful tutor can avoid such confounding by
appropriate selection of sample problems.

2.4. Repair Theory and Step Theory

As we have noted, one of the limitations of the DEBUGGY system was that it required a user-specified
list of bugs. In addition, more than 100 such bugs were eventually found by painstaking analysis of
subtraction data. In response to this bewildering array of behaviors, Brown and VanLehn (1980) developed a

MACHINE LEARNING AND STUDENT MODELING PAGE 4

theory to account for the origin of these bugs. They called this repair theory, and implemented a cognitive
simulation program based on die theory that was capable of predicting many of the observed subtraction
bugs. Repair theory claimed that arithmetic skills are represented not by a procedural network, but as a
goal-oriented production system.

In this framework, buggy procedures were generated in a number of steps. First, a set of deletion
operators was applied to the correct procedure, thus generating a set of procedures which were incomplete in
various ways. Second, each incomplete procedure was run on a set of subtraction problems. While such an
incomplete procedure was running, it could encounter a situation where it could not proceed, or an impasse.
In response to such an impasse, problem solving was used to repair the broken procedure. A repair was a local
"patch" designed to overcome the impasse and allow the procedure to complete the problem. However, since
the repair was local, it could lead to erroneous answers. Thus, by performing all plausible deletions, and then
responding to each impasse by repairing the incomplete procedure in all plausible ways, Brown and
VanLehn's implementation of repair theory constructed a set of buggy subtraction strategies. The path taken
in generating each bug was interpreted as explaining the origin of that bug. These bugs could then be used by
DEBUGGY in the diagnosis process.

One drawback of repair theory was that its deletion operators were not very psychologically plausible.
VanLehn (1983) has responded to this problem by developing step theory, a model of the learning process that
accounts for the origin of faulty, impasse-producing procedures without reference to deletion operators. This
theory (again implemented as a cognitive simulation) also represents skills in terms of a goal-based production
system. In VanLehn's framework, procedures are acquired incrementally in response to successive lessons
from a textbook, where each lesson consists of a set of solved sample problems. The acquisition of new goal
structures, and subroutines for achieving them, relies on the notion of parsing.

Upon encountering a new sample solution, the learning system uses its current goal hierarchy (initially
this is very simple) in attempting to parse the solution sequence. If a complete parse can be found, then the
system is capable of solving the problem in its current form, so no modifications are necessary. However, if
the parse fails, the system hypothesizes extensions to its goal hierarchy that would have allowed it to succeed.
Since many such extensions are usually possible, the alternatives are rank ordered according to a set of general
principles, such as preferring simpler goal hierarchies to more complex ones. The most desirable extension is
then incorporated into the system's "grammar", so that it will be able to solve similar problems in the future.

The resulting modified procedure is then passed to the implemented version of repair theory. This runs
the procedure on a set of test problems, notes any impasses that result, finds the appropriate repairs, and
generates a set of bugs. Step theory leads to incorrect procedures in cases where a non-representative set of
sample problems are given to the system, so that spurious relations are incorporated into the new goal
hierarchy. Thus, for a particular lesson sequence, it makes specific predictions about the bugs that may be
observed (and those which should not be observed) for a student presented with those lessons.

Both repair theory and step theory are intended as psychological models of the origin of bugs, and
together they are impressive accomplishments on this dimension. However, they do not have as much to
contribute toward the goal of a practical yet general student modeling system. One could imagine using a
combination of step theory, repair theory, and DEBUGGY to model a particular student, but the
requirement that one know the instructional history of that student is a serious drawback. Given our concern
with student modeling, we should look elsewhere for new approaches to this problem.

MACHINE LEARNING AND STUDENT MODELING PAGE 5

2.5. Comments on the Previous Research

In summary, though some interesting work has been done on the student modeling task, it remains an
open problem for which improved methods may be found. We saw that die early DEBUGGY work, though
contributing much to die student modeling paradigm in terms of both methods and data, required the user to
provide an explicit bug library. Young and O'Shea attempted to deal with this drawback by explaining a
number of subtraction bugs in terms of missing rules, but this attempt was only partially successful- Brown
and VanLehn's repair theory and step theory provided a more complete explanation of bug origins, but it was
also much more complex than Young and O'Shea's theory. Neither group of researchers has proposed any
more sophisticated way of diagnosing a particular student's behavior than the approach used in DEBUGGY.

Slceman and Smidi described a more sophisticated heuristic search through the space of procedures,
and this approach has definite advantages. However, the initial version of LMS relied on a user-specified list
of buggy components, just as DEBUGGY did. More recent work by Sleeman has focused on the generation
of new mal-rules, but this approach encounters difficulty when students have multiple bugs. In diis paper, we
describe an approach to student modeling that overcomes these difficulties. Of course, there are many useful
ideas in the earlier work, and we will draw upon them whenever possible. In particular, we will rely on
Sleeman's notion of heuristic search through a procedure space. We will also employ Young and O'Shea's
notion of modular production systems, and the idea that some bugs result from missing rules. The main
difference from the previous work lies in our focus on the generation of new buggy components as the central
problem in student modeling. This gives our approach a radier different flavor Uian earlier ones, which we
hope the reader will find refreshing.

3. An Alternate Approach to Student Modeling
In this section, we describe an alternate approach to student modeling. This approach is based on the

insight that the student modeling task can be viewed as a special case of the task of learning procedures. This
more general task can be stated as follows:

Given: (a) a task domain, (b) a set of problems within diat domain, (c) and a set of answers to those problems;

Find: a procedure that is (d) applicable to any problem in the domain, and (e) when applied to die given
problems, delivers die observed answers.

In the case of student modeling, the observed answers are those produced by a student. If this student uses die
generally accepted "correct" strategy, the student modeling task will be equivalent to the task of learning
correct procedures. However, if the student is using a buggy strategy, then one must learn an "incorrect"
procedure to account for the student's behavior.1 In this section, we describe the approach to student
modeling diat has resulted from this insight. Since there are many directions that such a "learning-based"
student modeling system might take, we will devote this section to discussing the major design decisions we
have made in constructing our system. In the following section, we provide additional details of the system in
the context of its application to the subtraction domain.

This basic idea first arose from discussions between Derek Sleeman and Pat Langley, in attempting to understand the relations
between the former's work on student modeling and the latter's work on learning search heuristics.

MACHINE LEARNING AND STUDENT MODELING PAGE 6

3.1. Student Modeling as Machine Learning

Our first decision was to view the student modeling task as a heuristic search problem. In heuristic
search (Newell, 1972), one is given an initial state from which to begin searching, along with a set of operators
for generating new states. Taken together, these components define a problem space which can be searched in
a systematic way. In the case of student modeling, one must search a space in which each state is a procedure
that is capable of solving (or at least attempting to solve) a class of problems. Many heuristic search methods
also require some lest to determine when the goal state has been reached. In the student modeling task, the
goal is to find some procedure that both predicts and explains the answers produced by the student

In order to carry out heuristic search through any problem space — whether it is a space of procedures,
a space of bugs, or any other - one must specify a number of components, including: (a) the representation
of individual states in the space; (b) the initial state from which search begins; and (c) a set of operators for
moving from one state to another. These components define a particular problem space. In addition, we must
specify some search control method, which determines which operators to apply at each point in die search,
and the states to which they should be applied. In the following pages, we will describe the procedure space
we have chosen to search, in terms of these components.

Since the goal of student modeling is to develop a cognitive model of the student's behavior, the states
in our procedure space must be psychologically plausible procedures. This also constrains the operators for
generating new states, since these must produce plausible procedures. Viewed in this way, we can make a
clean separation between the psychologically relevant components of a student modeling system, and the rest
of its components. The representation of individual states in the problem space must conform to
psychological considerations, since this constitutes a theory of the mental representation of cognitive skills.
However, the other components - the search control and the operators - can be implemented in any way
that is computationally efficient

Expressed differently, the student modeling problem separates into two distinct research problems, one
belonging to Cognitive Psychology and the other to Artificial Intelligence (AI). The psychological problem is
to define the problem space, thus determining the mental representation of procedures. In other words, one
must decide on the "programming style" of the mind. The AI problem is: given a space of possible
procedures, and given a test to decide when the goal procedure has been found (i.e., a set of answers to be
reproduced), implement a means for searching that space in an efficient manner.

3.2. Algorithms as Constrained Search

Let us first address the issue of cognitive skills and their representation. Along these lines, our first basic
decision is to adopt Newell's Problem Space Hypothesis (1980). For our present purposes, we can formulate
this hypothesis as follows:

The Problem Space Hypothesis. All human cognition involves search through some problem space.

The significance of this decision in the current context is that (a) we make contact with a large amount of
cognitive research which has shown that the problem space concept is a fruitful one in the analysis of complex
cognitive processes, and that (b) it commits us to view algorithms as search procedures. Thus, representing a
student's knowledge of a domain involves defining a set of basic arithmetic operators, along with a set of rules
or heuristics for when to apply those operators.

This forces us to make a second decision about how to represent this heuristic knowledge. AI has
developed two alternate representations for such heuristics. The first involves the notion of an evaluation
Junction, and has been extensively used in game-playing domains, where look-ahead tends to be very

MACHINE LEARNING AND STUDENT MODELING PAGE 7

important. The second involves the notion of productions or condition-action ailcs, and has been widely used
in cognitive simulations of human behavior in a variety of domains. One can imagine the problem space
hypothesis being implemented in either of these basic paradigms. However, many arguments have been
given for using production system formalisms in modeling human behavior (Newell, 1972). This assumption
is significant enough to be stated as another hypothesis:

The Production System Hypothesis. All human cognitive skills can be modeled as a production system.

Since we are concerned with developing psychologically plausible models of students' behavior, the
production system representation seems a natural choice. These two representational decisions — viewing
behavior as search through a problem space, and explaining behavior in terms of production systems - have
dramatic implications for the manner in which we approach the student modeling task.

The reader is urged to distinguish the two ways in which die search concept enters into the present
work. On the one hand, we are making the psychological assumption that algorithmic skills are encoded as
search procedures which traverse states in a problem space. On the other hand, we are viewing the student
modeling task in terms of a higher level search through a space of possible procedures.

In addition to being psychologically plausible, the combination of the problem space hypothesis and a
production system representation has an additional advantage. In this framework, relatively independent
"move-proposing" rules are responsible for suggesting which operators to apply; we will use the term
proposers for these rules. Assuming our set of operators includes those operators actually used by the student
(we will return to this assumption later), then the task of learning procedures (and thus the student modeling
task) can be reduced to the problem of: (1) learning which operators are useful; and (2) learning the
conditions under which these operators should be proposed. Since the proposers are independent of one
another, one can transform the student modeling task into a number of much simpler subproblems, each
concerning one of the proposers/operators. Each of these subproblems involves determining whether a given
operator was used by the student, and if so, determining the conditions under which it was used. Once each of
these sub tasks has been completed, the results are combined into a viable model of the student's behavior.
Since we have described earlier systems in terms of search, we should note that this approach can be viewed as
employing the problem reduction approach to problem solving described by Nilsson (1971).

Of course, the problem of mental representation is not solved or exhausted by deciding to abide by the
problem space and production system hypotheses. For instance, one must still decide on a particular problem
space in which to model students, and one must choose a particular production system architecture in which
to implement one's models. We will address these details later, in the context of a specific application domain.
For the moment, let us move on to other matters.

3.3. Selecting an Initial Procedure

As we have seen, any problem space is defined by an initial state, along with one or more operators for
generating new states. In addition, it is often useful to specify some test for recognizing the goal state. In
procedure learning and student modeling, this test is obvious - the goal procedure must generate the
observed answers for the set of sample problems. However, deciding on an initial state and operators is more
problematic. The correct procedure might seem to be a natural choice for the initial state, since one could
argue that most bugs are only slight contortions on the correct strategy. One could then move through the

HThe interested reader should see Laird's (1983) discussion of production systems as a framework for implementing the problem space
hypothesis.

MACHINE LEARNING AND STUDENT MODELING PAGE 8

procedure space by modifying the correct procedure in various ways. This approach is implicit in the
DEBUGGY program, where the procedural network mirrors the correct breakdown of the subtraction skill,
and the buggy components are viewed as versions of the corresponding correct component. It is more explicit
in repair theory, where deletion operators applied to the correct procedure produce the incomplete
procedures which lead to impasses. It is also explicit in the work by Young and O'Shea, and is present in
Sleeman's approach, where each correct rewrite rule has one or more associated mal-rules.

The above approach is closely linked to the view of procedures as algorithms. At some level, this makes
excellent sense, since mathematics students always appear to behave algorithmically. In contrast, the Problem
Space Hypothesis advises us to view procedures as search methods, with algorithms being the special case in
which search is so constrained that only one move is proposed at each point in the search process. Viewing
algorithmic behavior in terms of search leads us to expand our procedure space to include non-algorithmic
methods, even though we may never see such methods used by students.

In turn, this view suggests a different choice for the initial state in the procedure space. Rather than
beginning with an algorithmic, completely constrained search scheme, suppose we start searching from a
procedure composed of rules that are as loosely constrained as possible. For each operator, we include a rule
containing only the information necessary to allow that operator to be instantiated. For instance, in
subtraction one must know which digits one is subtracting before one can find their difference. Such an
overly general initial procedure will have a very useful feature: when combined with breadth-first search
control, each of the component rules will apply in as many situations as possible. As a result, the procedure
will generate all states contained in the problem space it is searching. Assuming our initial procedure includes
those operators used by the student, an exhaustive search scheme is guaranteed to generate the same answer
as the student for each problem. Of course, it will also generate many other answers, and our goal is to find a
set of conditions that, when added to the initial rules, will generate only the student's answers and none of the
others.

There is an old adage that the best way to learn is to make mistakes, and researchers in machine learning
have found this to be true of artificial learning systems as well as human ones. In particular, if one is
attempting to learn the conditions under which a rule should apply, it is useful to have negative instances of
that rule as well as positive ones. Nearly all AI learning systems rely on a strong distinction between good and
bad instances, and if we hope to apply condition-finding techniques from machine learning to the student
modeling task, we must find some way to determine good and bad instances of the initial procedure's rules.

Fortunately, this is exactly what an exhaustive search through the problem space provides for us. Since
each step along the solution path - the path leading to the student's answer - brings the system closer to the
goal, these steps must be good instances of the rule that proposed them. On the other hand, steps leading one
step off the solution path take the system away from the goal, so they should be classified as bad instances of
the responsible rule. Steps lying more than one step off the solution path should be ignored, since the system
should never have been there in the first place. This approach to assigning credit and blame in procedure
learning has been employed by Mitchell, Utgoff, and Banerji (1983), Anderson (1981), and a number of other
researchers. Sleeman, Langley, and Mitchell (1982) have discussed the capabilities of the "learning from
solution paths'* method.

3.4. Alternate Condition-Finding Methods

Given a set of positive and negative instances for each rule in the original procedure, we can draw upon
the entire repertoire of condition-finding methods developed by machine learning researchers. These
methods vary along a number of dimensions, and tradeoffs exist between different approaches in terms of
their requirements and their capabilities. For instance, much of the work on condition-finding involves

MACHINE LEARNING AND STUDENT MODELING PAGE 9

incremental methods (Winston, 1970, Hayes-Roth, 1976, Mitchell, 1977), which accept one positive or
negative instance at a time, and modify the current hypothesis accordingly. However, a few researchers have
explored methods that accept an entire set of instances at die outset (Hunt, 1966, Michalski, 1980, Quinlan,
1983a). As one might expect, these methods are much more robust with respect to noise than are the
incremental methods, since no single instance will have much effect on the overall decision process.
Incremental learning methods provide much more plausible accounts of the human learning process, but we
are not restricted to human learning techniques in finding ways to automate the construction of student
models. Since our overly general procedure generates an entire set of positive and negative instances (for each
operator) for each problem, and since student behavior is liable to be noisy, an all-at-once learning scheme is
the more attractive alternative.

Another dimension of variation involves the direction in which learning systems search the space of
conditions. Many condition-finding systems (Hayes-Roth, 1976, Vere, 1975) begin with very specific rules,
and make these more general as they search for some set of conditions which predict all of the positive
instances but none of the negative. These are called generalization-basedlearning systems. Others begin with
very general rules and formulate more specific hypotheses as they progress toward the goal (Brazdil, 1978,
Quinlan, 1983a, Langley, 1983a). These are called discrimination-based learning systems. Since the desired
rule usually lies somewhere between the most general and the most specific hypotheses, it is even possible to
carry out a bi-directional search through the rule space (Mitchell, 1977).

One might think, since our initial procedure is composed of overly general rules, that a discrimination-
based approach is required. It is true that the final rules will be more specific than the original ones, but this
does not say anything about the way in which the additional conditions must be found. Given a set of positive
and negative instances, one could determine these conditions through discrimination, through generalization,
or through bi-directional search. In fact, we will employ a discrimination learning scheme to find these
conditions, but one can imagine using other methods.

We have chosen a discrimination-based strategy for a number of reasons. First, since discrimination
learning methods consider simpler rules before more complex ones, they should construct as simple a student
model as possible. Second, since such methods do not attempt to find features held in common by all positive
instances, they are capable of learning disjunctive rules, which students may also employ. Finally, a number of
all-at-once discrimination methods have been developed, and we felt it would be relatively straightforward to
adapt one of these to the student modeling task. Moreover, these methods had shown themselves capable of
dealing with noisy data (Quinlan, 1983b), and we felt this was an important feature to include in a student
modeling system. Now that we have described the alternate learning methods and our reasons for choosing
discrimination, let us turn to the particular condition-finding method we have implemented.

3.5. Constructing Discrimination Networks

One of the earliest cognitive simulations was Feigenbaum's EPAM model of human verbal learning
behavior (Feigenbaum, 1963). EPAM represented associations between nonsense syllables in terms of a
discrimination network. Such a network is stored as a tree, with events entering at the root node and being
sorted down different branches until they eventually reach a terminal node. Stored at each terminal node is a
response, so that when an event reaches that node, the response is evoked. Hunt, Marin, and Stone (1966)
applied this approach to the task of learning concepts from examples. Unlike EPAM, their CLS system
accepted an entire set of positive and negative instances at the outset, so that it could use simple statistical
methods to determine the best discrimination network to account for the data. Hunt, Marin, and Stone's
system could deal only with attribute-value based concepts, such as large and not square, or small or blue.
However, Quinlan (1983) has extended their technique to deal with complex relational representations, such
as occur in chess.

MACHINIi LEARNING AND STUDENT MODI-LING PAGE 10

Figure 1 presents a sample discrimination network representing the concept ((blue and not large) or (not
blue, not circle, and large)). Each terminal node has either a + or — associated with it. If an event is sorted to
a + node, then it is classified as a positive instance of die concept; however, if it is sorted to a — node, it is
classified as a negative instance. The sorting process is quite simple. An event enters at the root node, and is
sent down either the left or right branch, depending on which of die tests it satisfies. If sent down the left
branch, the tests leading from that branch are applied to the event, and again it is sent down one branch or the
other. This continues until a terminal node is reached. Note that conjunctive conditions (e.g., blue and not
large) are represented as sequences of tests, while disjunctive conditions are represented by alternate
branches. Also note that discrimination networks can easily represent disjuncts at any level in the tree
structure, so conceptually complex rules can be stored in a very efficient manner.

blue / x ~blue

large / \ "-large circle / \ ^circle

~ large

Figure 1. A sample discrimination network.

The process of generating a discrimination network can be viewed as a best-first search through a rule
space. One begins with a network consisting of only the root node. All possible tests are applied to the
observed positive and negative instances, and the most discriminating of these tests is used to create the first
branching point. This test and its negation3 are placed on the resulting branches, and the various instances are
sorted down the branch whose test they satisfy. This process is repeated on the resulting subsets, creating
branches lower in the tree, until nodes are reached that contain only positive or only negative instances. This
method can be easily modified to deal with noise, simply by allowing it to halt before such pure nodes are
achieved.

One constraint on this approach to learning is that one must have some set of tests available at the outset
from which to construct a discrimination network. In the case of attribute-value representations, this is trivial
to accomplish. Given a list of potentially relevant attributes and their values, it is a simple matter to generate
all possible tests that could be placed on the branches of the tree. However, in domains involving relational
representations, such as arithmetic or algebra, one must be able to construct more complex relational tests. In
order to do this efficiently for the student modeling task, we have placed a constraint on the types of tests that

Some methods for constructing discrimination networks do not assume binary trees; however, for our purposes, this simplifying
assumption works quite well.

MACHING LEARNING AND STUDENT MODELING PAGE 11

can be included: the new conditions placed on proposers can only refer to objects that are mentioned in
previously existing conditions. We will see die details of the resulting method in the following section, as it is
applied to the domain of subtraction. At the present time, it is unclear whether this constraint represents a
basic limitation of our approach, a practical measure that can be generalized later, or an important
psychological principle.

For the student modeling task, our system must construct a separate discrimination network for each
operator, based on the positive and negative instances generated during the exhaustive search process. These
networks can be easily transformed into disjunctive sets of conditions by eliminating those branches that lead
to nodes containing only negative instances, and taking the conjunction of the remaining tests occurring in
sequence. Thus, for the tree in Figure 1, we would obtain two disjunctive sets of conditions, blue and not
large, and not blue, not circle, and large. Of course, features such as color and shape are not very useful in
accounting for behavior in mathematics domains, but one can imagine more relevant features that would lead
to similar discrimination trees, and thus to similar conditions. These conditions can then be added to the
proposers in the initial procedure, leading to a production system model of the student's behavior on a set of
test problems.

3.6. The ACM Student Modeling System

To summarize, we represent a strategy as a collection of production rules encoding a search scheme in
some problem space. The initial procedure consists of overly general rules that contain only those conditions
necessary to instantiate an operator. This procedure is then run on a set of sample problems, generating the
observed answers along with many others. Steps along the solution path are labeled as good instances of the
responsible rules, while steps leading one step off this path are labeled as bad instances. The set of instances
for each operator are then passed to a discrimination learning method, which generates a discrimination
network for classifying steps into desirable and undesirable ones. These discrimination nets are transformed
into a set of disjunctive rules for each operator. Taken together, these rules constitute a model of the student's
behavior.

We have implemented ACM, a student modeling system that incorporates these design decisions. Given
a set of operators and a set of test problems, ACM searches the resulting problem spaces until it finds those
answers produced by the student. Based on the resulting solution paths, the system classifies steps as positive
or negative instances of the initial rules, and constructs a discrimination network for each operator. ACM is an
acronym standing for Automated Cognitive Modeler, and the system is a distant descendant of SAGE
(Langley, 1983b, Langley, 1983c), an AI system concerned with learning search heuristics.

ACM can be divided into two components, one domain-specific and another quite general. The first
component consists of the proposers for searching the problem space, the operators used to generate new
states, and the abstract conditions provided by the user. When ACM is working in the subtraction domain,
this component will be quite different than when the system is working in the algebra domain. The second,
more general component consists of rules for assigning credit and blame, along with the discrimination
mechanism for generating variant rules. These will remain the same regardless of the domain in which ACM
is operating.

The ACM system is implemented in PRISM2, a production system formalism designed for modeling
learning processes. The domain-specific proposers, as well as the general rules for assigning credit and blame,
are stated as PRISM2 productions; the discrimination mechanism is written in Franz Lisp, and is called from
the production system. In implementing a production system model, one generally decides on some conflict
resolution principle, which determines the manner in which rules are selected for application. One common
conflict resolution principle prefers rules matching against the most recent elements in memory. Another

MACHINE LEARNING AND STUDENT MODELING PAGE 12

prefers the most specific rules that match on a given cycle. In ACM, we decided to avoid die conflict
resolution process entirely, so that any matched rule would apply. There were two reasons for this decision.
First, we wanted the system to carry out a breadth-first search through the problem space defined by its
operators, and this was a natural way to implement such a search control scheme. Second, we wanted the final
student model to contain all control information in the component rules themselves. In this way, we ensured
that any user of the system (such as a teacher) would be able to understand the final model by inspecting the
rules themselves, and need not understand such an esoteric process as conflict resolution.

Table 1. The initial production system for subtraction.

find-difference
If you are processing columnl,

and number I is in column 1 and rowl,
and number2 is in columnl and row2,

then find the difference between number 1 and number!,
and write this difference as the result for columnl.

add-ten
If you are processing columnl',

and numberl is in columnl and rowl,
and numberl is in columnl and row2,
and rowl is above row2,

then add ten to numberL

decrement
If you are processing columnl,

and numberl is in columnl and rowl,
and number2 is in columnl and row2,
and rowl is above row2,
and columnl is left of columnl,
and number3 is in column2 and rowl,

then decrement number3 by one.

shift-column
If you are processing columnl,

and you have a result for columnl,
and column2 is left of columnl,

then process column2.

The potential for competing hypotheses arises at a number of points in ACM's search through the
procedure space. First, one must specify some problem space within which behavior is to be modeled.
However, it is possible that more than one problem space can be used to explain a student's behavior.
Currently, the programmer defines the problem space, but we will have more to say on this later. Second, one
must find a solution path which generates the same answer as the student on each problem. However, more
than one path may lead to the same solution. The current system selects the shortest of these paths, and if two
or more equally short paths are found, one is selected at random. This is not a very satisfying solution, though
it has led to few difficulties in our runs in the subtraction domain. More thought should be given to this issue.
Finally, one may find two or more tests to be equally discriminating during the condition-finding process. In
some cases, these may be complementary, but in other cases they may be competing explanations of the
student's behavior. We will return to this issue in the following section, in the context of a particular example.

CMU/Langley (NR 154-508) 11-Jan-84

Private Sector

1 Dr. Marcia C. Linn

Lawrence Hall of Science
University of California
Berkeley, CA 94720

1 Dr. Don Lyon
AFHRL/OT (UDRI)
Williams AFB, AZ 85225

1 Dr. Jay McClelland
Department of Psychology
MIT
Cambridge, MA 02139

1 Dr. James R. Miller
Computer*Thought Corporation
1721 West Piano Highway
Piano, TX 75075

1 Dr. Mark Miller
Computer"Thought Corporation
1721 West Piano Parkway
Piano, TX 75075

1 Dr. Allen Munro
Behavioral Technology Laboratories
18U5 Elena Ave., Fourth Floor
Redondo Beach, CA 90277

1 Dr. Donald A Norman
Cognitive Science, C-015
Univ. of California, San Diego
La Jolla, CA 92093

1 Dr. Jesse Orlansky
Institute for Defense Analyses
1801 N. Beauregard St.
Alexandria, VA 22311

1 Dr. James A. Paulson
Portland State University
P.O. Box 751
Portland, OR 97207

1 Dr. Nancy Pennington
University of Chicago
Graduate School of Business
1101 E. 58th St.
Chicago, IL 60637

1 DR. PETER POLSON
DEPT. OF PSYCHOLOGY
UNIVERSITY OF COLORADO
BOULDER, CO 80309

Page 7

Private Sector

1 Dr. Lynn Reder

Department of Psychology
Carnegie-Mellon University
Schenley Park
Pittsburgh, PA 15213

1 Dr. Fred Reif
Physics Department
University of California
Berkeley, CA 94720

1 Dr. Lauren Resnick
LRDC
University of Pittsburgh
3939 O'Hara Street
Pittsburgh, PA 1521

1 Dr. Jeff Richardson
Denver Research Institute
University of Denver
Denver, CO 80208

1 Dr. Ernst Z. Rothkopf
Bell Laboratories
Murray Hill, NJ 07974

1 Dr. William B. Rouse
Georgia Institute of Technology
School of Industrial & Systems

Engineering
Atlanta, GA 30332

1 Dr. David Rumelhart
Center for Human Information Processing
Univ. of California, San Diego
La Jolla, CA 92093

1 Dr. Michael J. Samet
Perceptronics, Inc
6271 Variel Avenue
Woodland Hills, CA 91364

1 Dr. Roger Schank
Yale University
Department of Computer Science
P.O. Box 2158
New Haven, CT 06520

1 Dr. Walter Schneider
Psychology Department
603 E. Daniel
Champaign, IL 61820

CMU/Langley (NR 154-508) 11-Jan-84

Private Sector

1 Dr. Alan Schoenfeld

Mathematics and Education
The University of Rochester
Rochester, NY 14627

1 Dr. H. Wallace Sinaiko
Program Director
Manpower Research and Advisory Services
Smithsonian Institution
801 North Pitt Street
Alexandria, VA 22314

1 Dr. Edward E. Smith
Bolt Beranek & Newman, Inc.
50 Moulton Street
Cambridge. MA 02138

1 Dr. Eliott Soloway
Yale University
Department of Computer Science
P.O. Box 2158
New Haven, CT 06520

1 Dr. Kathryn T. Spoehr
Psychology Department
Brown University
Providence. RI 02912

1 Dr. Robert Sternberg
Dept. of Psychology
Yale University
Box 11A, Yale Station
New Haven, CT 06520

1 Dr. Albert Stevens
Bolt Beranek & Newman, Inc.
10 Moulton St.
Cambridge, MA 02238

1 David E. Stone. Ph.D.
Hazeltine Corporation
7680 Old Springhouse Road
McLean, VA 22102

1 DR. PATRICK SUPPES
INSTITUTE FOR MATHEMATICAL STUDIES IN
THE SOCIAL SCIENCES
STANFORD UNIVERSITY
STANFORD, CA 94305

1 Dr. Kikumi Tatsuoka
Computer Based Education Research Lab
252 Engineering Research Laboratory
Urbana, IL 61801

Private Sector

1 Dr, Maurice Tatsuoka
220 Education Bldg
1310 S. Sixth St.
Champaign, IL 61820

1 Dr. Perry W. Thorndyke
Perceptronics, Inc.
545 Middlefield Road, Suite
Menlo Park, CA 94025

1 Dr. Douglas Towne
Univ. of So. California
Behavioral Technology Labs
1845 S. Elena Ave.
Redondo Beach, CA 90277

1 Dr. Kurt Van Lehn
Xerox PARC
3333 Coyote Hill Road
Palo Alto, CA 94304

1 Dr. Keith T. Wescourt
Perceptronics, Inc.
545 Middlefield Road, Suite
Menlo Park. CA 94025

1 William B. Whitten
Bell Laboratories
2D-610
Holmdel, NJ 07733

1 Dr. Mike Williams
IntelliGenetics
124 University Avenue
Palo Alto. CA 94301

1 Dr. Joseph Wohl
Alphatech, Inc.
2 Burlington Executive Ceni
111 Middlesex Turnpike
Burlington. MA 01803

CMU/Langley (NR 154-508) 11-Jan-84

Private Sector

1 Dr. John R. Anderson
Department of Psychology
Carnegie-Mellon University
Pit tsburgh, PA 15213

1 Eva L. Baker
Director
UCLA Center for the Study of Evaluation
145 Moore Hall
University of California, Los Angeles
Los Angeles, CA 90024

1 Mr. Avron Barr
Department of Computer Science
Stanford University
Stanford, CA 94305

1 Dr. Isaac Bejar
Educational Testing Service
Princeton, NJ 08450

1 Dr. Menucha Birenbaum
School of Education
Tel Aviv University
Tel Aviv, Ramat Aviv 69978
Israel

1 Dr. John Black
Yale University
Box 11A, Yale Station
New Haven, CT 06520

1 Dr. John S. Brown
XEROX Palo Alto Research Center
3333 Coyote Road
Palo Alto, CA 94304

1 Dr. Glenn Bryan
6208 Poe Road
Bethesda, MD 20817

1 Dr. Bruce Buchanan
Department of Computer Science
Stanford University
Stanford, CA 94305

1 Dr. Jaime Carbonell
Carnegie-Mellon University
Department of Psychology
Pittsburgh, PA 15213

Page 5

Private Sector

1 Dr. Pat Carpenter

Department of Psychology
Carnegie-Mellon University
Pittsburgh, PA 15213

1 Dr. Micheline Chi
Learning R & D Center
University of Pittsburgh
3939 O'Hara Street
Pittsburgh, PA 15213

1 Dr. William Clancey
Department of Computer Science
Stanford University
Stanford, CA 94306

1 Dr. Michael Cole
University of California
at San Diego

Laboratory of Comparative
Human Cognition - D003A
La Jolla. CA 92093

1 Dr. Allan M. Collins
Bolt Beranek & Newman, Inc.
50 Moulton Street
Cambridge, MA 02138

1 Dr. Emmanuel Donchin
Department of Psychology
University of Illinois
Champaign, IL 61820

1 ERIC Facility-Acquisitions
4833 Rugby Avenue
Bethesda, MD 20014

1 Dr. Anders Ericsson
Department of Psychology
University of Colorado
Boulder, CO 80309

1 Mr. Wallace Feurzeig
Department of Educational Technology
Bolt Beranek & Newman
10 Moulton St.
Cambridge, MA 02238

1 Dr. Dexter Fletcher
University of Oregon
Department of Computer Science
Eugene, OR 97403

CMU/Langley (NR 154-508) 11-Jan-84

Private Sector

1 Dr. John R. Frederiksen
Bolt Beranek & Newman
50 Moulton Street
Cambridge, MA 02138

1 Dr. Michael Genesereth
Department of Computer Science
Stanford University
Stanford, CA 94305

1 Dr. Dedre Gentner
Bolt Beranek & Newman
10 Moulton St.
Cambridge, MA 02138

1 Dr. Robert Glaser
Learning Research & Development Center
University of Pittsburgh
3939 O'Hara Street
PITTSBURGH, PA 15260

1 Dr. Daniel Gopher
Faculty of Industrial Engineering

& Management
TECHNION
Haifa 32000
ISRAEL

1 DR. JAMES G. GREENO
LRDC
UNIVERSITY OF PITTSBURGH
3939 O'HARA STREET
PITTSBURGH, PA 15213

1 Dr. Barbara Hayes-Roth
Department of Computer Science
Stanford University
Stanford, CA 95305

1 Dr. Frederick Hayes-Roth
Teknowledge
525 University Ave.
Palo Alto, CA 94301

1 Dr. Joan I. Heller
Graduate Group in Science and

Mathematics Education
c/o School of Education
University of California
Berkeley, CA 94720

Private Sector

1 Dr. James R. Hoffman
Department of Psychology
University of Delaware
Newark, DE 19711

1 Dr. Earl Hunt
Dept. of Psychology
University of Washington
Seattle, WA 98105

1 Dr. Marcel Just
Department of Psychology
Carnegie-Mellon University
Pittsburgh, PA 15213

1 Dr. David Kieras
Department of Psychology
University of Arizona
Tuscon, A2 85721

1 Dr. Walter Kintsch
Department of Psychology
University of Colorado
Boulder, CO 80302

1 Dr. Stephen Kosslyn
1236 William James Hall
33 Kirkland St.
Cambridge, MA 02138

1 Dr. Jill Larkin
Department of Psychology
Carnegie Mellon University
Pittsburgh, PA 15213

1 Dr. Alan Lesgold
Learning R&D Center
University of Pittsburgh
3939 O'Hara Street
Pittsburgh, PA 15260

1 Dr. Jim Levin
University of California
at San Diego
Laboratory fof Comparative
Human Cognition - D003A

La Jolla, CA 92093

1 Dr. Michael Levine
Department of Educational Psj
210 Education Bldg.
University of Illinois
Champaign, IL 61801

W t a n g l e y (NR 154-508)

Array

11-Jan-84 Page 3

Air Force

CMU/Langley (NR 154-508)

Department of Defense

11-Jan-84

1 Technical Director
U. S. Army Research Institute for the
Behavioral and Social Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Dr. Beatrice J. Farr
U. S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Dr. Harold F. O'Neil, Jr.
Director, Training Research Lab
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Commander, U.S. Army Research Institute
for the Behavioral 4 Social Sciences

ATTN: PERI-BR (Dr. Judith Orasanu)
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Joseph Psotka, Ph.D.
ATTN: PERI-1C
Army Research Institute
5001 Eisenhower Ave.
Alexandria, VA 22333

1 Dr. Robert Sasmor
U. S. Army Research Institute for the
Behavioral and Social Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333

1 U.S. Air Force Office of Scientific
Research

Life Sciences Directorate, NL
Boiling Air Force Base
Washington, DC 20332

1 Dr. Earl Ae Alluisi
HQ, AFHRL (AFSC)
Brooks AFB, TX 78235

1 Mr. Raymond E. Christal
AFHRL/MOE
Brooks AFB, TX 78235

1 Bryan Dallman
AFHRL/LRT
Lowry AFB, CO 80230

1 Dr. Genevieve Haddad
Program Manager
Life Sciences Directorate
AFOSR
Boiling AFB, DC 20332

1 Dr. John Tangney
AFOSR/NL
Boiling AFB, DC 20332

1 Dr. Joseph Yasatuke
AFHRL/LRT
Lowry AFB, CO 80230

12 Defense Technical Information Center
Cameron Station, Bldg 5
Alexandria, VA 22311
Attn: TC

1 Military Assistant for Training and
Personnel Technology
Office of the Under Secretary of Defens
for Research & Engineering
Room 3D129, The Pentagon
Washington, DC 20301

1 Major Jack Thorpe
DARPA
1400 Wilson Blvd.
Arlington, VA 22209

1 Dr. Robert A. Wisher
OUSDRE (ELS)
The Pentagon, Room 3D129
Washington, DC 20301

Civilian Agencies

1 Dr. Patricia A. Butler
NIE-BRN Bldg, Stop # 7
1200 19th St., NW
Washington, DC 20208

1 Dr. Susan Chipman
Learning and Development
National Institute of Education
1200 19th Street NW
Washington, DC 20208

1 Dr. Arthur Melmed
724 Brown
U. S. Dept. of Education
Washington, DC 20208

1 Dr. Andrew R. Molnar
Office of Scientific and Engineei
Personnel and Education

National Science Foundation
Washington, DC 20550

1 Chief, Psychological Reserch Brai
U. S. Coast Guard (G-P-1/2/TP42)
Washington, DC 20593

1 Dr. Edward C. Weiss
National Science Foundation
1800 G Street, NW
Washington, DC 20550

1 Dr. Joseph L. Young, Director
Memory & Cognitive Processes
National Science Foundation
Washington, DC 20550

CMU/Langley (NR 154-508)

Navy

1 Robert Ahlers
Code N711
Human Factors Laboratory
NAVTRAEQUIPCEN
Orlando, FL 32813

1 Dr. Ed Aiken
Navy Personnel R&D Center
San Diego, CA 92152

1 Dr. Meryl S. Baker
Navy Personnel R&D Center
San Diego, CA 92152

1 Dr. Nick Bond
Office of Naval Research
Liaison Office, Far East
APO San Francisco, CA 96503

1 Dr. Richard Cantone
Navy Research Laboratory
Code 7510
Washington, DC 20375

1 Dr. Fred Chang
Navy Personnel R&D Center
San Diego, CA 92152

1 Dr. Stanley Collyer
Office of Naval Technology
800 N. Quincy Street
Arlington, VA 22217

1 CDR Mike Curran
Office of Naval Research
800 N. Quincy St.
Code 270
Arlington, VA 22217

1 Dr. John Ellis
Navy Personnel R&D Center
San Diego, CA 92252

1 DR. PAT FEDERICO
Code P13
NPRDC
San Diego, CA 92152

1 Dr. Jude Franklin
Code 7510
Navy Research Laboratory
Washington, DC 20375

11-Jan-84 Page 1

Navy

1 Dr. Jim Hollan
Code 14
Navy Personnel R & D Center
San Diego, CA 92152

1 Dr. Ed Hutchins
Navy Personnel R&D Center
San Diego, CA 92152

1 Dr. Norman J. Kerr
Chief of Naval Technical Training
Naval Air Station Memphis (75)
Mi11 ington, TN 38054

1 Dr. Peter Kincaid
Training Analysis & Evaluation Group
Dept. of the Navy
Orlando, FL 32813

1 Dr. William L. Maloy (02)
Chief of Naval Education and Training
Naval Air Station
Pensacola, FL 32508

1 Dr. Joe McLachlan
Navy Personnel R&D Center
San Diego, CA 92152

1 Dr. James McMichael
Navy PersonnelR&D Center
San Diego, CA 92152

1 Dr William Montague
NPRDC Code 13
San Diego, CA 92152

1 Library, Code P201L
Navy Personnel R&D Center
San Diego, CA 92152

1 Technical Director
Navy Personnel R&D Center
San Diego, CA 92152

6 Commanding Officer
Naval Research Laboratory
Code 2627
Washington, DC 20390

1 Office of Naval Research
Code 433
800 N. Quincy SStreet
Arlington, VA 22217

CMU/Langley (NR 154-508)

Navy

11-Jan-84

6 Personnel & Training Research Group
Code 442PT
Office of Naval Research
Arlington, VA 22217

1 Dr. Robert G. Smith
Office of Chief of Naval Operations
OP-987H
Washington, DC 20350

1 Dr. Alfred F. Smode, Director
Training Analysis & Evaluation Group
Dept. of the Navy
Orlando, FL 32813

1 Dr. Richard Snow
Liaison Scientist
Office of Naval Research

Branch Office, London
Box 39
FPO New York, NY 09510

1 Dr. Richard Sorensen
Navy Personnel R&D Center
San Diego, CA 92152

1 Dr. Frederick Steinheiser
CNO - 0P115
Navy Annex
Arlington, VA 20370

1 Dr. Thomas Sticht
Navy Personnel R&D Center
San Diego, CA 92152

1 Mr. Brad Sympson
Navy Personnel R&D Center
San Diego, CA 92152

1 Roger Weissinger-Baylon
Department of Administrative Sciences
Naval Postgraduate School
Monterey, CA 93940

1 Mr John H. Wolfe
Navy Personnel R&D Center
San Diego, CA 92152

1 Dr. Wallace Wulfeck, III
Navy Personnel R&D Center
San Diego, CA 92152

Marine Corps

1 H. William Greenup
Education Advisor (E03D
Education Center, MCDEC
Quantico, VA 22134

1 Special Assistant for Mar
Corps Matters

Code 100M
Office of Naval Research
800 N. Quincy St.
Arlington, VA 22217

1 DR. A.L. SLAFKOSKY
SCIENTIFIC ADVISOR (CODE
HQ, U.S. MARINE CORPS
WASHINGTON, DC 20380

MAC1IINE LEARNING AND STUDENT MODELING PAGE 32

Newell, A. and Simon, H. A. Human Problem Solving. Englewood Cliffs, N.J.: Prentice-Hall, Inc. 1972.

Newell, A. Reasoning, problem solving, and decision processes: The problem space hypothesis. In R.
Nickerson (Ed.), Attention and Performance, Hillsdale, N. J.: Lawrence Erlbaum Associates, 1980.

Nilsson, N. J. Problem Solving Methods in Artificial Intelligerce. New York: McGraw-Hill 1971.

Ohlsson, S. On the automated learning of problem solving rules. Proceedings of the Sixth European Meeting
on Cybernetics and Systems Research, 1982 .

Quinlan, R. Learning efficient classification procedures and their application to chess end games. In R, S.
Michalski, J. G. Carbonell, and T. M. Mitchell (Eds.), Machine Learning: An Artificial Intelligence
Approach, Palo Alto, CA: Tioga Press, 1983.

Quinlan, R. Learning from noisy data. Proceedings of the International Machine Learning Workshop, 1983 ,
58-64.

Sleeman, D. H. and Smith, M. J. Modeling students' problem solving. Artificial Intelligence, 1981, 16,
171-187.

Sleeman, D. H. Inferring (mal) rules from pupils' protocols. Proceedings of the European Conference on
Artificial Intelligence, 1982 ,160-164.

Sleeman, D., Langley, P., and Mitchell, T. Learning from solution paths: An approach to the credit
assignment problem. AI Magazine, Spring 1982,48-52.

VanLehn, K. Bugs are not enough: Empirical studies of bugs, impasses, and repairs in procedural skills.
Journal of Mathematical Behavior, 1982, J, 3-72.

VanLehn, K. Human procedural skill acquisition: Theory, model, and psychological validation. Proceedings
of the National Conference on Artificial Intelligence, 1983,.

Vere, S. A. Induction of concepts in the predicate calculus. Proceedings of the Fourth International Joint
Conference on Artificial Intelligence, 1975 ,281-287.

Winston, P. H. Learning structural descriptions from examples. Technical Report AI-TR-231, Massachusetts
Institute of Technology, 1970.

Young, R. M. and O'Shea, T. Errors in children's subtraction. Cognitive Science, 1981,5,153-177.

MACHINE LEARNING AND STUDENT MODELING PAGE 31

References

Anderson, J. R. Tuning the search of the problem space for geometry proofs. Proceedings of the Seventh
International Joint Conference on Artificial Intelligence, 1981, 97-103.

Brazdil, P. Experimental learning model. Proceedings of the Third AISB/GI Conference, 1978 , 46-50.

Brown, J. S. and Burton, R. R. Diagnostic models for procedural bugs in basic mathematical skills. Cognitive
Science, 1978, 2,155-192.

Brown, J. S. and VanLehn, K. Repair theory: A generative theory of bugs in procedural skills. Cognitive
Science, 1980, 4, 379-427.

Burton, R. R. Diagnosing bugs in a simple procedural skill. In D. Sleeman and J. S. Brown (Eds.), Intelligent
Tutoring Systems, London: Academic Press, 1982.

Feigenbaum, E. A. The simulation of verbal learning behavior. In E. A. Feigenbaum and J. Feldman (Eds.),
Computers and Thought, New York: McGraw-Hill, Inc., 1963.

Hayes, J. R. and Simon, H. A. Understanding written problem instructions. In L. W. Gregg (Ed.), Knowledge
and Cognition, Hillsdale, N. J.: Lawrence Erlbaum Associates, 1974.

Hayes-Roth, F. and McDermott, J. Learning structured patterns from examples. Proceedings of Third
International Joint Conference on Pattern Recognition, 1976 ,419-423.

Hunt, E. B., Marin, J., and Stone, P. J. Experiments in Induction, New York: Academic Press 1966.

Korf, R. E. Toward a model of representation change. Artificial Intelligence, 1980, 14, 41-78.

Laird, J. and Newell, A. A universal weak method. Technical Report, Computer Science Department,
Carnegie-Mellon University, 1983.

Laird, J. E. Universal Subgoaling. PhD thesis, Department of Computer Science, Carnegie-Mellon University,
1983.

Langley, P. A general theory of discrimination learning. In D. Klahr, P. Langley, and R. Neches (Eds.),
Production System Models of Learning and Development, Cambridge, Mass.: MIT Press, 1983.

Langley, P. Learning search strategies through discrimination. International Journal of Man-Machine Studies,
1983,18,513-541.

Langley, P. Learning effective search heuristics. Proceedings of the Eighth International Joint Conference on
Artificial Intelligence, 1983 ,419-421.

Lenat, D. B., Sutherland, W. R., and Gibbons, J. Heuristic search for new microcircuit structures: An
application of artificial intelligence. AI Magazine, Summer 1982 ,17-33.

Michalski, R. S. Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 1980, 2, 349-361.

Mitchell, T. M. Version spaces: A candidate elimination approach to rule learning. Proceedings of the Fifth
International Joint Conference on Artificial Intelligence, 1977 , 305-310.

Mitchell, T. M., Utgoff, P., and Banerji, R. B. Learning problem solving heuristics by experimentation. In R.
S. Michalski, J. G. Carbonell, and T. M. Mitchell (Eds.), Machine Learning: An Artificial Intelligence
Approach, Palo Alto, CA: Tioga Press, 1983.

MACHINE LEARNING AND STUDENT MODELING PAGE 30

imagine approaches that lead to such combinatorial explosions in search that they could never be used in real
time. On this dimension, our approach fares well, since even the current system is capable of dealing with ten
or so subtraction problems in a few hours of CPU time. Combined with the methods we have outlined for
reducing the search requirements, a factor of 100 increase in processor speed would put our system well
within the practical range.

A second level of practicality relates to the ability of teachers to use the system. Our approach also does
well on this aspect Obviously, one cannot expect grade school teachers to read the production rules currently
output by the system, but English paraphrases of these rules should be quite easy to understand, and simple to
generate automatically. Moreover, these rules could be contrasted with those composing the correct strategy,
in terms of missing operators and missing or incorrect conditions on existing operators. In this way, the
teacher could see the difference between the student's procedure and the desired one, and this in turn might
suggest particular remedial instruction.

A final dimension of utility involves the percentage of problems on which the system arrives at a useftil
diagnosis. Student modeling systems that rely on an explicit bug library will seldom score well on this
criterion, since some creative student will always be inventing new ways to revise the standard algorithm. This
is precisely the problem that motivated us to explore methods for student modeling that synthesized their own
buggy explanations of errorful behavior. Of course, ACM's ability to model a particular student docs require
that he solve problems in the same basic problem space that the system is searching. However, we would
argue that no conceivable system can do better than this, unless it is capable of searching the space of problem
spaces, and we have started preliminary work on this method as well. To summarize, we believe that our basic
approach to student modeling has excellent potential for eventual application in the schools, though much
work will be necessary before we reach that stage.

MACHINE LEARNING AND STUDENT MODELING PAGE 29

models generated by ACM consist of "flat" production systems, without hierarchical decomposition of the
subtraction skill and without use of explicit goal-expressions.

Despite ACM's success in the subtraction domain with flat models, the absence of goals is clearly an
oversimplification which should be corrected in future versions of the system. On the encouraging side, Laird
(1983) has shown that the problem space hypothesis has no difficulty incorporating goal-based search
methods, so our basic approach to student modeling should remain intact. On the other hand, the field of
machine learning docs not provide an abundance of tools for moving through a procedure space where the
procedures are hierarchically structured. Indeed, only a few learning systems deal with goals in any explicit
way. One of these is Ohlsson's (1982) work on learning search heuristics in the framework of means-ends
analysis. Another is VanLehn's (1983) recent work on step theory, which models the process of acquiring a
goal hierarchy. In our future work, we could do much worse than borrow ideas from these research efforts.

Another aspect of psychological validity is the way in which the allocation of attention is represented in
the models. Human visual processing involves a small area of focal attention, in which the information is fully
available, surroundcred by a larger area of peripheral attention, within which information is only partially
available. The content of focal awareness is manipulated by the near-constant movement of the eyes. This
structure is not represented in the ACM program. We note with interest a principle adopted in VanLehn's
step theory. In this framework, attention is locked to goals, so that one can attend only to objects used as
parameters in the current goal. Attention can be shifted only by creating a new goal, or by popping the
current goal from the goal stack.

A related issue involves the limitations on short term memory capacity, and their representation in
student models. Unfortunately, research on short-term memory has failed to produce any commonly agreed
upon explanation of these limitations, so it is not clear how to include them in such models. Nevertheless, this
phenomenon is significant enough to deserve some discussion. As an illustration of the importance of
attention and memory limitations in understanding subtraction errors, consider the "borrow-add-is-ten" bug
described by VanLehn (1982). In this bug, rather than adding ten to a number, the student replaces it with
ten. Such an error might occur in the following way. The child begins the process of adding ten to a number
by scratching out that number. He may then become involved in some other activity, such as decrementing,
and only later return to the goal of adding ten. At this point, he may perceive the scratch mark as a signal that
the digit has been "taken out" or replaced by zero. Upon adding the borrowed ten to the column, he will
exhibit the observed bug.

The plausibility of this particular "bug story" is not especially relevant. The main point is that
attentional considerations may be very important in the modeling of bugs. This means, in turn, that the
procedures considered by a student modeler should include some explicit mechanism for the allocation of
attention. In other words, the attention mechanism should be represented in such a way that bugs can occur in
the allocation of attention alone.

In summary, the psychological validity of ACM's student models can be criticized on three dimensions
— the absence of goal structures, the poor modeling of attention processes, and the failure to address short
term memory limitations. Each of these areas should be the subject of further work.

6.3. Practicality of the Approach

It is perhaps a bit premature to judge any student modeling system on its practical utility, since this
paradigm is still in its initial stages. Nevertheless, it may be worthwhile to consider the potential practicality of
the present approach. There are many dimensions along which a student modeling system may be practical or
impractical. The most obvious involves the speed at which the system can diagnose a student. All systems will
improve on this dimension as hardware becomes faster, but there are limits to this improvement, and one can

MACHINE LEARNING AND STUDENT MODELING PAGE 28

informative with respect to the mental representation of skills than infrequent bugs. A psychological theory of
mental skills should explain the variation in the frequency of bugs - which implies that infrequent bugs are
not to be dismissed from the analysis.

Another advantage of the approach we have taken with ACM relates to the issue of multiple bugs. Since
DEBUGGY modeled a student's errors in terms of deformations from the correct algorithm, it encountered
combinatoric possibilities when attempting to model students with multiple bugs. In contrast, ACM takes no
longer to model students with three or four bugs than it does to model students with single bugs. In fact, the
system takes as long to model correct subtraction behavior as it does to model complex buggy behavior. Of
course, this last feature of the system could be easily removed by including a simple check for correct answers,
but the main point remains. Rather than constructing buggy models in terms of deformations from the
standard procedure, ACM constructs its models from the ground up, and in doing so, bypasses the
combinatorics usually associated with multiple bugs.

In summary, there seem to be clear reasons why approaches that do not depend on a bug library should
be preferred over those that do. The techniques we have been using to achieve this are exhaustive search and
discrimination learning. The exhaustive search through the problem space finds the desired solution paths,
and discrimination generates the rules which reproduce those paths. The generality of discrimination as a
learning technique has already been demonstrated elsewhere (Langley, 1983a). It has been used to model
concept learning and language development, as well as strategy acquisition. Thus, with respect to this part of
our system, we feel confident that the technique we are using has broad generality.

The exhaustive search component does not fare as well. Although exhaustive search is a very general
method, it cannot be used efficiently when the search space is too large. Thus, the practical generality of the
current approach hinges on an estimate of which task domains generate problem spaces small enough to allow
exhaustive search to be useful. In this context, we believe that most aspects of high-school level mathematics
should fall within the scope of our methods. Moreover, Mitchell, Utgoff, and Banerji (1983) have applied very
similar techniques to learning search heuristics for symbolic integration, so our approach should be
extendable to this domain as well. Thus, though limited in principle, our basic approach may well be
sufficient for a broad range of school subjects.

The notion of searching a set of successively more fine-grained problem spaces also contributes to
alleviating this difficulty. The more aggregated the space, the smaller it will be. Thus, even in task domains in
which the most fine-grained space would be too large to search exhaustively, it may still be true that most of
the higher-level spaces are small enough. In such situations, one could still allow diagnosis to proceed for
some proportion of the pupil population, namely those who can be modeled in the smaller spaces.

6.2. Psychological Validity

A second important issue is the psychological validity of the models produced by the student modeling
system. If a model is going to serve as the basis for remedial instruction — presumably the objective of
student modeling — then it must be as accurate a representation of the pupil's knowledge state as possible. A
procedure which is dramatically different from the student's actual strategy, but which happens to give the
same answer on the test problems, will be of little aid in designing remedial instruction, and may actually
hinder this process.

Unfortunately, the field of computer simulation has not developed any commonly agreed upon criteria
for psychologically valid simulation programs. This aspect of a student modeler is therefore difficult to
evaluate. Nevertheless, a few observations present themselves. First, the intuition of most researchers in
cognitive psychology is that human cognition is heavily goal-oriented, and that skills are hierarchically
structured. This aspect is not represented in the computational approach we have described. The student

MACHINE LEARNING AND STUDENT MODELING PAGE 27

then that path constitutes the valid explanation of the student's behavior, and the other is rejected. The details
of this approach remain to be worked out, but the basic method appears promising.

6. Discussion

In the preceding pages we reviewed some of the previous work on student modeling, and described an
alternate approach that employed techniques from the field of machine learning. We examined ACM, a
student modeling system based on this analysis, and discussed its application to the domain of multi-column
subtraction problems. We also noted some limitations of the current system, and suggested methods for
overcoming these problems. Several issues present themselves for discussion, the most important being the
generality of the techniques used, the psychological validity of the models that are produced, and the practical
utility of the type of system we have discussed.

6.1. Generality of the Approach

We can divide student modeling systems into three categories, based on the amount of domain-specific
knowledge they employ. First, there are systems that rely on a user-supplied bug library, listing the types of
errors that are likely to occur. These can be used in a generate and test manner, or as part of a heuristic search
scheme, as in LMS. However, such systems rely on an extensive analysis of student data by humans in order
to generate the bug library. The generality of such a system is limited to the particular task domain in which
the empirical study was done. This may not be a very serious limitation, since the number of school subjects is
rather small. Also, the educational system develops rather slowly, compared to the time it takes to perform
such a study. Thus, it may be quite feasible, in the long run, to perform empirical "bug studies" for each
domain.

Other systems still rely on a bug library, but are capable of automatically extending this library when
new bugs are encountered. Sleeman's extension of LMS falls into this category. The most natural way to use
such a system is to "prime" it with an incomplete initial bug library, and let it fill in the missing error types. It
could also be used interactively, aiding the programmer in searching through masses of student data for places
where unfamiliar bugs occur. Sleeman has used his program in both of these modes. Such systems seem to be
transitional in nature, though they have considerable potential for true generality.

The third type of system does not rely on a bug library. It does not even use a list of self-generated bugs
in formulating models of student behavior. Instead, it constructs a procedure to account for the pupil's
answers, without explicitly representing the relations between that procedure and the correct procedure for
the task. This is the kind of system we are trying to build. We favor such an approach because we believe that
dependence on any kind of bug library, user-generated or system-generated, is undesirable. The human mind
is not easily bounded; for every bug library, there will always be a pupil somewhere that transcends it.

One could argue that in student modeling, only the most common bugs are important. The evidence to
date indicates that the frequency distribution of bugs is highly skewed. The ten most common bugs account
for nearly 90 percent of the errors made in the subtraction domain. Therefore, one could argue, not only will
systems with bug libraries prove useful, but rather small bug libraries will probably be sufficient for practical
work. We want to question this line of reasoning. From a practical point of view, it is not clear that the most
frequent bugs are the most important. On the contrary, teachers may be familiar enough with the most
frequent bugs that they can recognize them by direct observation of pupil behavior. Because they are
frequent, they may very well be exactly those bugs with which the educator needs the least help from an
automatic modeling system. In "contrast, infrequent or unusually complex bugs or bug combinations may
overtax the diagnostic capabilities of the teacher, making their diagnosis by computer a primary pedagogical
objective. From the research point of view, there seems to be no reason to expect frequent bugs to be more

MACHINE LEARNING AND STUDENT MODELING PAGE 26

simultaneously. Another method would be to accept the ambiguity inherent in multiple solution paths, and to
develop alternate student models based on different paths. In this framework, one would first assign credit
and blame based on one of the paths, pass the resulting positive and negative instances to the discrimination
component, and then do the same for the second path. Unfortunately, if we present ACM with ten test
problems, and it discovers two solution paths for each of these problems, then 210 = 1024 alternate models
will result. Such a combinatorial explosion is clearly unacceptable.

For the moment, let us consider the second case in which ACM must deal with competing explanations,
and return to the problem of multiple solution paths later. Recall that the method for generating
discrimination trees employs two evaluation functions to direct search through the space of possible rules. In
an earlier example, we saw two tests, (greater numberl number2) and (above rowl row2), which scored equally
well on both of these evaluation functions. As a result, ACM was forced to fall back on a somewhat arbitrary
priority ordering to select between them. In this case, no harm was done because the unselected test was
chosen the second time around. In other words, the greater and above tests were complementary in this
example.

However, there are situations in which such tests must be viewed as competing hypotheses rather than
complementary ones. Such situations arise when ACM does not have enough data to determine that one test
is better than another. For instance, if we had given ACM only correctly answered non-borrowing problems,
it would have been unable to determine (as would anyone) whether the student had used the greater
condition, the above condition, or both in deciding when to apply the find-difference operator. This results
from the fact that either condition is sufficient for proposing the correct steps on non-borrowing problems.
However, borrowing problems (such as 93 — 25) give the system additional information by providing new
negative instances of the firid-difference rule. In such cases, the obvious solution is to generate "critical
experiments" in which one of the tests is satisfied but the other is not, and see which best predicts behavior.

Such a critical experiment cannot be carried out in isolation, but must be embedded within a particular
problem. Such dicignostically useful problems could be presented to the student, and then to the system,
leading to additional positive and negative instances which could be used to disambiguate the student model.
Such a diagnostic problem might be generated in the following way. Suppose we have two tests that the
discrimination method is unable to distinguish between, such as the greater and above conditions discussed
earlier. Given the instantiations of the operator in question, we retrieve some positive instance for which both
tests were satisfied. Upon examining the instance and the tests, we generate a new situation in which only one
of the tests (say greater) is satisfied.

We then retrieve the problem in which the original instance occurred, and use the new situation to
generate a slightly modified problem. If the original problem were 54 — 23, in which both conditions match,
this method would produce a new problem like 93 - 25, in which only the above condition is matched. If the
student solves this problem using the same operators (in the same sequence) as for the original problem, then
the above test will acquire a new positive instance. On the other hand, if the student takes a different path,
then a new negative instance will result In either case, one of the tests will now outperform the other, so a
more informed decision can be made. The current version of ACM is incapable of such subtleties, but this is
an obvious direction for future research.

A related approach might be used to distinguish between competing solution paths. If one finds two
paths that lead to the same student answer, then they must have a common state from which they diverge.
This may be the initial problem state, or it may be far into the search tree. By examining the instantiations of
the rules responsible for this divergence, one should be able to generate a variant problem in much the same
way as for competing conditions. If only one of these solution paths has an analog in the variant problem,

MACHINE LEARNING AND STUDENT MODELING PAGE 25

the most highly aggregated space in which a particular pupil can be modeled. The justification of this
approach is that it is maximally conservative in its assumptions about the gaps in the pupil's knowledge.
Remember that tlie operators represent the subskills which tlie pupil has mastered correctly. The more
aggregated tlie operators that we use in the model of die pupil, the bigger the "chunks'1 of tlie subtraction skill
we are assuming he has mastered. The idea is that we should not postulate, in our accounts for buggy
behavior, more tilings wrong with the pupil's thinking than necessary. This idea, too, seems important enough
to be designated as a principle of student modeling:

• The Principle of Conservatism in Student Modeling. A pupil should be modeled as working in the
highest-level problem space that contains the bug he is exhibiting.

The next question is, of course, how the space of problem spaces is to be generated. A system which invents
different problem spaces for some task on tlie basis of an abstract task analysis is currently beyond tlie state of
the art in AI. Some interesting initial work has been done on constructing new representations (Hayes, 1974),
as well as on modifying existing representations (Korf, 1980, Lcnat, 1982), but this research has not yet
reached the applications stage. Our temporary response is therefore to hand-craft a set problem spaces,
drawing upon whatever psychological knowledge is available. This work is currently under way.

One might object that providing the modeling system with a set of problem spaces is no better than
providing it with a bug library. The main answer to this objection is that the problem spaces impose a
structure on the set of bugs. For each arithmetic problem space, there is a set of bugs which can be
represented in that space. The decision to model a pupil in a particular space carries with it the prediction that
all the bugs he is exhibiting are included in the set belonging to that space; if they do not, the selection of that
space was incorrect. Choosing a set of problem spaces, we also choose a particular clustering of the bugs. This
leads us to a third principle:

• The Bug Clustering Principle. The space of problem spaces being considered by a student
modeling program should be such that for any pupil, if N is the set of bugs exhibited by that
pupil, there must exist a space S such that N is a subset of the bugs that can be expressed in S.

Expressed more simply, all tlie pupil's bugs must be representable within one and the same problem space.
This gives us a criterion for selecting the space of problem spaces, and for empirically falsifying it. VanLehn
(1982) has noted that bugs do not cooccur with equal frequencies; some types of errors are more likely to
occur together than others. With the appropriate hierarchy of problem spaces, we should be able to predict
which bugs should occur together. As far as we know, no other mechanism has yet been proposed to explain
these data.

5.2. Generating Diagnostically Useful Problems

In the previous section, we described ACM's search for solution paths to account for a student's answer
to a set of test problems. We noted the possibility for multiple paths to explain the observed answer on a given
problem, and mentioned the system's current means for dealing with this possibility — selecting the shortest
of these paths. However, this is not a very satisfactory solution. One might argue that the shortest path
constitutes the most elegant explanation, and so should be preferred over others. However, since we are trying
to explain student's errors, there is no special reason to suspect that these students are being as efficient as as
possible. A truly robust student modeling system should have a more satisfactory method for dealing with
such competing explanations.

One might consider all solution paths as complementary, rather than as competitors, and label all steps
along any solution path as positive instances. However, if we really believe that the student is using an
algorithm, then this approach cannot be used, since it may lead to a model that considers multiple paths

MACHINE LEARNING AND STUDENT MODELING PAGE 24

incorporates very low-level operators. As an illustration, let us consider a very high-level problem space for
subtraction that includes only two operators:

• (Process column). Takes a column as input, computes the column difference (if and only if the
bottom number is not greater than the top number), writes the answer in the appropriate place,
and shifts attention to the column immediately to the left of the column just processed.

• (Borrow column-1 column-2). Takes a pair of columns as input, subtracts one from the top-
number in column-1 (if and only if it is greater than zero), scratches out the old digit, writes the
new result in its place, shifts attention to column-2, adds ten to its top number, scratches out the
previous digit in that place, and writes the new number instead.

In this space, we represent the child as knowing how to carry out single column subtraction, and how to
borrow. Could there be anything left to know about subtraction? Which bugs could possibly be modeled in
this highly aggregated space, at this level of analysis? At least one error can be modeled in this space. It is the
"always borrow" bug (VanLehn, 1982), in which the child borrows in every column, whether it is needed or
not.

We would not expect too many other bugs to be representable at this level of analysis. Assuming that
the pupil knows how to process a column and how to borrow correctly does not leave much room for
subtraction errors to occur. As we "pick apart" these subskills into their components, we free up the
possibilities for interaction between those components, thus producing new ways in which they can be
incorrectly applied. In other words, the more fine-grained the level of analysis, the more bugs one can
represent. We will use the term expansion to refer to the process of taking an operator and decomposing it
into its components, representing it as a set of rules which call other, lower-level, operators. The result seems
important enought to be designated as a principle:

• The Bug Distribution Principle. If S is a problem space in which the set of bugs B can be modeled,
and space S' is generated from S by expansion of one of the operators of S, then the set of bugs B'
which can be modeled in S' contains B as a subset.

At first glance, the Bug Distribution Principle might be thought to imply that student modeling should
proceed in the most fine-grained problem space possible, since only such a space is guaranteed to contain all
observed bugs. In fact, one could proceed in this manner, though searching such a space would be quite
expensive. However, this conclusion ignores the psychological interpretation of the level of analysis: that the
operators represent those parts of the skill that the pupil has mastered. Any student modeling system should
produce viable psychological models; therefore, we should be prepared to model a pupil in a space which
represents as accurately as possible what he knows. The resulting conclusion is that the student modeler
should consider a number of different problem spaces in which the student might be working. In other words,
the student modeler should search a space of problem spaces for the one in which a particular pupil best can
be modeled

Suppose that we have a space of arithmetic problem spaces. The relation of expansion (i.e., "less
aggregated than") imposes a partial ordering on this space. At the top, there is the most aggregated space
conceivable. This space has only a single operator, namely the operator which takes a subtraction problem as
input, and solves it correctly. It represents those pupils who do not make any errors. Below that, we have
first-level decompositions of the the subtraction skill (such as the two-operator space we used in the
illustration above); for each of these, the decomposition proceeds further, until we reach some extreme level
of fine-grained analysis, in which processes like the writing of a single digit are represented as operators.

We propose to search such a partially ordered space of problem spaces from the top down, until we find

MACHINE LEARNING AND STUDENT MODELING PAGE 23

Until now, we have avoided the issue of how one determines in which problem space the student is
operating. In obtaining the computational results reported in the previous section, we chose a particular,
rather simple arithmetic space. We advanced no psychological reasons for selecting that space. However, the
problem space in which the student model works is no less a psychological hypothesis than is the collection of
productions itself The specification of a problem space constrains the notation for encoding a given problem,
the operators used in solving it, and the criterion for having reached a solution. These aspects remained
constant throughout the mns discussed earlier. Let us pause and pursue a psychological interpretation of these
formal constructs.

The notation used to encode a problem presupposes a set of hypotheses about what aspects of the
problem the pupil pays attention to. A notation employs some list of predicates which can be used to describe
the state of the problem. For example, in the subtraction problem space we have been using, predicates like
in-column, in-row, above, left-of, added-ten, decremented, and greater-than came into play. Each predicate
introduced into the notation constitutes a hypothesis that (a) the pupil has that concept available, and (b) he is
actively using it when thinking about arithmetic problems.

In the examples discussed in the previous section, ACM employed four basic arithmetic operators in
searching the subtraction space:

• (Find-difference digit-1 digit-2). Takes two digits as input, determines the difference between
them, and writes that result in the appropriate column.

• (Decrement digit). Takes a digit, subtracts unity from it, scratches out the digit, and writes the new
result in its place.

• (Add-ten digit). Takes a digit, adds ten to it, scratches out the digit, and writes the new result in its
place.

• (Shift-column column-1 column-2). Shifts attention from the first column to the second column.

As one can see, most of these operators are rather complex, consisting of a sequence of steps. What does it
mean to use these as "primitive" operators in a student model?

Clearly, different operators can be defined for one and the same task. In the above example, the
decrement operator can be broken down into a number of "smaller" components: cross-out, subtract-unity,
and write-result. In other words, operators can be defined at different levels of aggregation. Some operators
are powerful, contain a lot of machinery, and perform a large portion of the task; others are simple, and make
a very modest contribution to the complete computation. Whatever machinery is packed away in the
operators will not be explicitly represented in the final model; only the rules for directing search through the
problem space will be explicitly represented. To select a problem space is therefore to select a level of analysis.

In student modeling, the focus of interest is on the bugs, the conceptual mistakes that cause the pupil to
produce the wrong answers on test problems. Therefore, these decisions and mistakes should be represented
in the heuristic rules for when to apply operators, rather than in the operators themselves. This is the basic
representational principle underlying die ACM system. In other words, an operator represents a hypothesis
about a subskill which the pupil is able to execute without making errors. The set of operators for the
arithmetic problem space is an assumption about what the pupil knows about arithmetic; they are the parts of
arithmetic that he has mastered. The rules about when and how to apply those operators, on the other hand,
represents those parts of the skill in which he might be making mistakes.

Since individual differences in cognitive processes are ubiquitous in general, and since pupils are at
different skill levels in particular, it is clear that a robust student modeler cannot consider just a single
problem space, as does ACM. Not every pupil (every bug) can be modeled in a single space, unless that space

MACHINE LEARNING AND STUDENT MODELING PAGE 22

Table 5. Subtraction bugs successfully modeled by ACM.

BUG

CORRECT STRATEGY

SMALLER FROM LARGER

STOPS BORROW AT ZERO

BORROW ACROSS ZERO

0 - N = N

BORROW NO DECREMENT

BORROW ACROSS ZERO OVER ZERO

0 - N = N EXCEPT AFTER BORROW

BORROW FROM ZERO

BORROW ONCE THEN SMALLER FROM LARGER

BORROW ACROSS ZERO OVER BLANK

0 - N = 0

EXAMPLE

81 - 38 = 43

81 - 38 = 57

404 - 187 = 227

904 - 237 = 577

50 - 23 = 33

62 - 44 = 28

802 - 304 = 408

906 - 484 = 582

306 - 187 = 219

7127 - 2389 = 5278

402 - 6 = 306

50 - 23 = 30

FREQUENCY

124

67

51

40

22

19

17

15

14

13

12

Since the exhaustive search and credit assignment phases should each increase linearly with the number
of problems, we can predict that ten similar problems will require 760 CPU seconds, or nearly 13 CPU
minutes. Moreover, the search spaces in our example were relatively small, since the short solution paths kept
the combinatorics to a minimum. However, the solution paths for problems with additional columns,
especially those involving borrowing across zero, are much longer, and can considerably slow down the
system's progress. The condition generation stage should be unaffected by the number of problems, and the
discrimination stage should be only slightly affected, so efforts to increase efficiency should focus on the
search and credit assignment phases.

5. Extending the Approach
In an earlier section, we mentioned three ways in which competing explanations of a student's behavior

could arise, and it is now time to address these possibilities in greater detail. The first of these involved the
occurrence of alternate problem spaces, each capable of generating the student's answers. Since ACM
currently works in a single problem space, we discuss below a more comprehensive approach to student
modeling that deals with this possibility. Two other possibilities for competing explanations involve the
discovery of multiple solution paths, and the occurrence of conditions that score equally well on both of
ACM's evaluation functions. We discuss these complications together, along with ways to deal with them in
future implementations.

5.1. Considering Alternate Problem Spaces

The perspective which underlies the ACM program allows a clear separation of the system's
psychological assumptions and its computational devices. The restrictions which define the procedure space
constitute a set of assumptions about the mental representation of skills, but the computational techniques
which are used to search that space have no psychological content. Each node in the procedure space is a
collection of productions which work in the same basic problem space.

MACIHNE LEARNING AND STUDENT MODELING PAGE 21

Table 4. A model for the "smaller from larger" subtraction bug.

find-difference
If you arc processing column!,

and number/ is in column I and rowl,
and number2 is in colwnnl and row2,
and numberl is greater than number2y

then find the difference between numberl and numberl,
and write this difference as the result for columnL

shift-column
If you arc processing columnl,

and you have a result for colwnnl 9

and column2 is left of colwnnl9

then process column2.

4.5. Initial Results in the Subtraction Domain

ACM has been implemented on a Vax 750, and successfully run on a number of the more common
subtraction bugs. Although the system must still be considered in the testing stage, let us review some
tentative results we have obtained from these runs. Table 5 presents eleven common bugs reported by
VanLehn (1982), along with their observed frequencies. ACM has successfully modeled each of these bugs,
given idealized behavior on a set of representative test problems. A number of these bugs involve borrowing
across zero, and so required some additional operators beyond those described in the earlier examples. These
operators shift the focus of attention to the left or to the right, in search of an appropriate column from which
to borrow. Introducing these operators considerably expanded the search tree for each problem, though ACM
was still capable of finding a solution path using near-exhaustive search.

We have focused on the most common bugs first, since if ACM had serious difficulty with these errors,
we would not need to bother with less common mistakes. Fortunately, the system ran into only minor
difficulties in modeling these bugs, which were easily corrected. Although we have so far tested ACM on only
eleven bugs, we estimate that the current version will be able to model another 20 known bugs without
modification. Moreover, we estimate that ACM will be able to model approximately 30 additional bugs,
provided the system is augmented with a few more operators (such as incrementing rather than decrementing)
and a few more abstract conditions (such as (left-most column)). We plan to test these predictions in the near
future. We feel these are conservative predictions, and that ultimately ACM will be able to account (with only
minor modifications) for 80 percent of the systematic subtraction errors that have been observed. Since a few
of the known bugs appear to lie outside the subtraction problem space searched by ACM, we would not
expect the system to handle these without major changes in its representation of states and operators.

We should also mention the computational resources required by the student modeling system. Let us
consider ACM's behavior in modeling the correct subtraction strategy, based on the two examples discussed
earlier. On this run, the system required 39 CPU seconds to generate a set of specific conditions for each
operator, and 52 CPU seconds to exhaustively search the two problem spaces and reproduce the student's
answers. In addition, ACM took 18 CPU seconds to retrieve the solution paths and to assign credit and blame,
and 17 CPU seconds to use the resulting positive and negative instances in constructing discrimination
networks. Taken together, these sum to a total of 126 CPU seconds, or slightly more than two CPU minutes.
This is not very long, but recall that ACM was given only two simple test problems in this run.

MACHINE LEARNING AND STUDENT MODELING PAGE 20

require borrowing. However, the solution path for the borrowing problem shown in Figure 5 includes only
the find-diffcrcnce and shift-column operators. Apparently, the student is treating borrowing problems as if
they were non-borrowing problems, and the student model ACM develops should reflect this relationship. As
before, the system uses the solution paths it has discovered to assign credit and blame. As in the previous run,
only positive instances of die shift-column operator are found, indicating that its conditions need not be
altered. And since both positive and negative instances of the find-difference rule are noted, ACM calls on its
discrimination process to determine additional conditions for when to apply this operator. The major
difference from the earlier am is that only negative instances of the add-ten and decrement operators are
found. This tells ACM that the proposers for these operators should not be included in the final model, since
apparently the student nevers uses them.

solution

5-3

deer.

2-8

Figure 5. Search tree for the problem 93 - 25 = 72.

For this idealized student, ACM finds four positive instances of the find-difference operator and four
negative instances. When these instances are passed to the discrimination mechanism, the system finds the
(greater numbcrl number2) condition to be the most discriminating test, with a maximal score of 2.0.
However, the (above rowl row2) condition, which tied with the greater test in modeling the correct strategy,
does not fare so well on this data set, receiving the score E = 0.75 + 0,75 = 1.5. Moreover, the greater test
completely discriminates between the positive and negative instances, leading ACM to a very simple
discrimination net for the find-difference rule. This is because the idealized student is always subtracting the
smaller number from die larger, regardless of the position, and this is exactly what the resulting student model
does as well. Table 4 presents the variant rules that ACM generates for this buggy strategy. This model is very
similar to that for the correct strategy, except for the missing condition in the find-difference rule, and the
notable absence of the rules for decrementing and adding ten, since these are not needed.

In our examples, ACM was presented with an idealized student's behavior on only two test problems.
Although these were sufficient for modeling the correct strategy and the "smaller from larger" bug, more
complex errors will clearly require additional test problems. VanLehn (1982) has reported a diagnostic set of
20 test problems, which let the DEBUGGY system distinguish between every bug in its library, even in the
presence of noise. Since ACM searches a larger space of student models than DEBUGGY, it is possible that
our system will sometimes require an even larger set of test problems in order to completely disambiguate a
student's behavior. One alternative to designing a standard set of test problems would be to let ACM generate
its own diagnostically useful problems when necessary; such an extended system could model some students
based on a only a few problems, and produce more if the need arose. We discuss one approach to
automatically generating diagnostic problems in a later section.

MACHINE LEARNING AND STUDENT MODELING PAGE 19

Table 3. A production system model for the correct subtraction strategy.

find-difference
If you are processing columnl,

and number/ is in column! and row/,
and number2 is in columnl and row2,
and rowl is above row2,
and numberl is greater than number2,

then find the difference between numberl and number2,
and write this difference as the result for column!.

add-ten
If you are processing columnl,

and number! is in columnl and rowl,
and number2 is in columnl and r<nv2,
and rowl is above row2,
and number2 is greater than numberl,

then add ten to numberl.

decrement
If you are processing columnl,

and numberl is in columnl and row/,
and number2 is in columnl and row2,
and row/ is above row2,
and column2 is left of columnl,
and numberS is in column2 and row/,
and number2 is greater than numberl,

then decrement numbers by 1.

shift-column
If you are processing columnl,

and you have a result for columnl,
and column2 is left of columnl,

then process column2.

4.4. Modeling a Buggy Strategy

Now that we have considered ACM's learning methods applied to modeling the correct subtraction
algorithm, let us examine the same methods when used to model a buggy strategy. Many subtraction bugs
involve some form of failing to borrow. In one common version, students subtract the smaller of two digits
from the larger, regardless of which is above the other. In modeling this errorful algorithm, ACM begins with
the same proposers as before, shown in Table 1. If we present the same two subtraction problems we used in
the previous example, we find that the buggy student produces the correct answer 54 - 23 = 31 for the
non-borrowing problem, but generates the incorrect answer 93 - 25 = 72 for the borrowing problem. As
before, ACM's task is to discover a set of variants on the original proposers that will predict these answers.
Obviously, the solution path for the first problem will be identical to that shown in Figure 2. However, the
solution path for the second problem (shown in Figure 5) differs considerably from that for the same problem
when done correctly (shown in Figure 3).

In the correct subtraction strategy, the decrement and add-ten operators are used in problems that

MACHINE LEARNING AND STUDENT MODELING PAGE 18

Of course, it is still possible for two or more tests to tie on this dimension, and in such cases, the order in
which the abstract conditions were originally specified by the programmer is used to break the tic.7 Since the
greater condition was listed before the above condition in our earlier discussion, the test (greater numberl
number2) would be preferred. This facility gives the user the ability to incorporate into the student modeling
process his own biases about the types of conditions the student is likely to use. On the other hand, if the user
has no such preference, he is forced to specify one anyway, and this is undesirable. Later we will propose an
alternative to this approach, but for now we are concerned with honestly describing the current system.

Once it has selected a test, ACM adds a branch to its discrimination network, and sends the various
instances down the left or right branch depending on whether they pass or fail the test, respectively. If all of
the instances sent down a branch are negative, the branch is abandoned, since the system is only interested in
generating positive instances of each operator. If only positive instances are sent, then that branch becomes a
terminal node in the discrimination network, and a rule containing the tests leading to that node is
formulated. If both positive and negative instances are sent, the discrimination process is called recursively to
find additional tests which will further subdivide the instances.

(greater n1 n2) / \ -(greater n1 n2)

(above r1 r2)

Figure 4. Correct discrimination network for the find-difference operator.

In our example, the (greater numberl number2) test was selected in favor of the (above rowl row2)
condition, due to the order in which the abstract tests were specified by the user. This leads to a right branch
containing only negative instances, and a left branch containing four positive instances and two negative
instances. When ACM examines the remaining tests, it finds that the (above rowl row2) condition achieves
the maximal score of 2, faring better than any other test. As a result, two new branches are created, the left
one containing only the four positive instances and the right containing both negative instances. Based on the
left branch, ACM creates a single rule containing the two conditions (greater numberl number2) and (above
rowl row2), in addition to the initial conditions. Figure 4 presents the final discrimination network for the
find-difference operator. This includes both positive and negative terminal nodes, even though only the
former are used in constructing the actual rules. Similar networks are created for each of the other operators.
Table 3 presents the rule formulations of these discrimination networks, which can be used by ACM to
resolve each of the original subtraction problems correctly without search.

In cases where two or more specific conditions are based on the same abstract condition, even this priority ordering is not sufficient
However, this has not yet given us difficulties in our subtraction runs.

MACHINE LEARNING AND STUDENT MODELING PAGE 17

the greatest number of positive instances, while Quinlan's ID3 system computed a complex information
theoretic measure. The current system computes the number of positive instances matching a given test (M+),
the number of negative instances failing to match that test (U_), the total number of positive instances (T),
and the total number of negative instances (T_). Using these quantities, ACM calculates the sum S =
M + / T + + U_/T_, and computes E = maximum (S, 2 - S). An optimal test that matches all positive
instances and none of the negative instances would thus receive the maximum score S = 1 + 1 = 2. In
contrast, a test with no discriminating power would match exactly have the positives and half the negatives,
giving the minimum score S = 1/2 + 1/2 = 1. Since negated tests can be useful, we also want tests that
match all of the negatives but none of the positives to score highly, and for this reason die final evaluation
function E is defined as the maximum of S and 2 - S. To summarize, at each stage in constructing a
discrimination network, ACM computes the function E for each test, and extends the tree based on the
highest scoring test. When a test with the perfect score of 2 is found, no further discriminations need to be
made.

Table 2. Tests and instances for the find-difference operator.6

13-5 8-2 4-3 5-2 5-3 3-5 3-4 2-5 5-3' 3-5' 5-13 2-8

GREATER Nl N2 X X X X 1.75

ABOVE Rl R2 X 1.75

ADD-TENC1 . X

DECR. Cl

1.25

1.25

ADD-TEN-ANY X 1.25

DECR-ANY 1.0

JUST-DECR. Cl 1.25

For example, in Table 2 we see that the test (greater numberl number2) satisfies all four of the positive
instances, but fails to satisfy only six out of eight negative instances. This leads to the score E = 4/4 + 6/8 =
1.0 + 0.75 = 1.75. The test (above rowl row2) receives an identical score, though it satisfies a different pair of
negative instances. The test (added-ten columnl) is assigned a lower score; since it matches only one positive
instance and none of the negative instances, we get E = 1/4 + 8/8 = 0.25 + 1.0 = 1.25. Thus, one can see
that the evaluation function E does reasonably well at finding features that distinguish positive instances from
negative instances, leading to simple discrimination networks for summarizing the data.

The six tests based on the is-zero, is-one, and is-ten predicates are not included in the table, but all have a minimal score of 1.0 for the
evaluation function E

MACHINE LEARNING AND STUDENT MODELING PAGE 16

two problems, we shall focus on it here. Upon examining the two search trees, we find four good instances of
finding a difference, which lie on the solution path, and eight bad instances, which lie one step off the solution
path. A number of additional instances lie multiple steps off the solution path, but these do not concern us,
since the system should never have reached those states in the first place.

Table 2 lists the four good and eight bad instances of the find-difference Rile from the problems in
Figures 2 and 3, along with the tests satisfied by each of these instances. Instances occurring beneath a + are
positive, while instances marked with - are negative.5 Crosses mark tests that are satisfied by a particular
instance, while the absence of a cross indicates an unsatisfied test. Consider the two instances 4 - 3 and 3 - 4
at the first level of Figure 2. The first of these steps lies along the solution path, while die second leads off this
path. The first instance satisfies the test (greater number 1 nunibcr2), since 4 is greater than 3; however, the
second fails to satisfy the test, since the converse is not true. ACM's goal is to find some set of conditions that
will cover all of the positive instances, but none of the negative instances. Upon close examination, we find
that no single condition is capable of this, but that a few come close. Considering pairs of tests, we do find
one pair that satisfies our criterion — (above rowl row2) and (greater number! numbcr2). In this simple
example, one can find the desired conditions by inspection, but for complex cases, a more sophisticated
approach is required.

8-2
13-5

+ 10

deer,

solution

13-5

Figure 3. Search tree for the problem 93 — 25 = 68.

As we outlined earlier, ACM attempts to generate a discrimination network that can distinguish the
positive instances of a rule from its negative instances. The system begins with a branchless tree, and grows
the tree downward, adding the most discriminating tests first. This process continues until nodes are reached
containing only positive or only negative instances, or until no useful test can be found. At a higher level,
ACM can be viewed as carrying out a search through the space of possible discrimination networks,
attempting to find that tree which can account for the data in as simple a manner as possible. Every time the
system decides which test to use in distinguishing between positive and negative instances, it can be viewed as
taking a step through this space of discrimination networks.

Thus, the process of generating a discrimination network can be viewed as a best-first search through a
rule space, with each successive state adding a new set of branches to the network. In order to direct this
search, one needs some evaluation function. Hunt, Marin, and Stone's CLS system selected that test matching

T h e t w o i n s t a n c e s 5 - 3 ' a n d 3 - 5 ' di f fer f r o m t h e i n s t a n c e s 5 - 3 a n d 3 - 5 in s t e p s t a k e n b e f o r e t h e find-difference r u l e w a s
a p p l i e d .

MACHINE LEARNING AND STUDENT MODELING PAGE 15

In the runs described below, ACM was presented with ten abstract condition types, from which the
system generated specific potential conditions for each of its initial rules. These condition types were:

• (Greater number number). This condition is satisfied if the first argument is greater than the
second argument. Both arguments must be numbers.

• (Above row row). This condition matches if the first argument is above the second. Both
arguments must be rows.

• (AddetHen number). This test is met if ten has been added to the predicate's argument, which
must be a number.

• (Decremented number). This condition is satisfied if the argument has been decremented. Again
the argument must be a number.

• (Added-ten-to-any). This condition is satisfied if ten has been added to any number. No arguments
are involved.

• (Decremented-any). This condition is satisfied if any number has been decremented. No
arguments are necessary for this test either.

• (Just-decremented number). This test is satisfied if the argument was just decremented on the
previous step. This argument must be a number.

• (Is-zero number). This matches if the numeric argument is zero.

• (Is-onc number). This matches if the numeric argument is one.

• (Is-ten number). This matches if the numeric argument is ten.

Note that some of these conditions, such as (greater number number) and (above row row), relate to features of
the problem state, while others, such as (decremented column), describe traces left by certain operators.

Let us consider ACM's response to tlrese conditions in the context of the initial find-difference rule. In
this case, the system generates the following specific conditions: (greater numberl number2)? (greater number2
numberl), (above rowl row2), (above ro>v2 rowl), (added-ten columnl), (decremented columnl),
(added-ten-to-any-column). (decrementcd-any-column), (just-decremented columnl), (is-zero numberl),
(is-zero number2), (is-one numberl), (is-one number2), (is-ten numberl), and (is-ten number2). However, since
ACM has the ability to consider negated conditions as well as positive ones, some of these are redundant.
Accordingly, the system is told that (greater x y) is the inverse of (greater y x), and that the same relation
holds between (above x y) and (above y x). As a result, the system eliminates the two specific conditions
(greater number2 numberl) and (above row2 rowl), and only considers their inverses.

By providing ACM with a set of abstract conditions, along with a set of initial rules, we are defining the
space of rules that the system will search in constructing student models. The conditions given to ACM
certainly constrain its search, and different sets of conditions may lead the system to formulate entirely
different models. However, we will argue again that this is more elegant and more general than providing the
system with a library of standard bugs. In specifying abstract conditions, we only partially determine the
course that events will take. The particular conditions ACM selects will depend on the data it encounters
during its modeling attempts. Thus, though there is a model-driven component to the system, its final actions
are determined by the behavior of the student it is attempting to explain.

4.3. Modeling the Correct Subtraction Strategy

After finding the solution paths for a set of problems, ACM uses the conditions it has generated to
formulate more conservative proposers that will let it regenerate those paths without search. Let us examine
the search trees in Figures 2 and 3, and the variant rules that are generated from the good and bad instances in
these trees. Since most of the interesting learning occurs with respect to the find-difference operator in these

MACHINE LEARNING AND STUDENT [MODELING PAGE 14

presented with the minimum conditions necessary to allow each operator to apply. For instance, the correct
rule for finding die difference between Nl and N2 would require that Nl be above N2, and that Nl be larger
than or equal to N2. However, including these conditions would mean that ACM could never constaict
student models in which they were absent, and this would severely limit its generality. Rather, the program is
told only that two numbers must be in the same column before their difference can be found, as can be seen
from the first rule in Table 1. Similar simplifications are made for the add-tcn and decrement rule, since a
number of common bugs also involve incorrect conditions on these operators. Note that the shift-column rule
is correctly stated, since few bugs seem to involve this operator.

Given the very general initial conditions on its proposers, ACM must search when it is given a set of
subtraction problems. However, rather than looking for the correct answer to these problems, it searches for a
set of answers that agree with the student's answers. Figure 2 shows the system's search on the non-borrowing
problem 54 - 23, when the correct answer 31 is given by the student that ACM is attempting to model. For
this problem-answer pair, the solution involves finding a difference, shifting columns, and finding a second
difference. Figure 3 shows ACM's search on the borrowing problem 93 — 25, when the correct answer 68 is
given. In this case, the solution path includes decrementing and adding ten, as well as finding a difference,
shifting columns, and finding a final difference. States along the solution paths are shown as squares, while
other states are represented by circles. Note that a number of dead-end states occur when ACM finds a
difference for some column that disagrees with the student's answer for the same column. Given such a partial
answer, ACM decides that the current path should not be pursued any further, drastically reducing the
amount of search it must carry out.

4.2. Generating Plausible Conditions

Before it can determine the conditions on its operators that will let it model a student's behavior, ACM
must be told what form these conditions can take. This information is provided by the programmer in terms
of an abstract set of tests that can be instantiated for each rule. ACM generates the set of potentially relevant
conditions at the outset of each run.4 This actually occurs before die system begins to search for solution paths
to explain a student's behavior; we have delayed discussion until now because one must understand the
nature of the initial proposers in order to understand how specific conditions are generated. Given an abstract
condition such as (greater number number), ACM examines each of its rules, and finds those variables having
the same type as those in the abstract condition. For example, the find-difference rule has two numeric
variables, numbcrl and number! These would be inserted into the general form in all possible ways,
generating a set of potentially relevant conditions. In this case, there are two such conditions for the find-
difference rule, (greater numberl number2) and (greater numbcr2 numbcrl). Analogous tests would result
from other abstract conditions, with a different set of specific conditions being constructed for each of the
initial proposers.

Some caution is necessary in deciding on the set of abstract conditions given to the system, since we
want the final model to be psychologically plausible. Thus, conditions which examine the problem state
generated by the system ten steps earlier would be unacceptable. However, most tests involving the current
problem state are plausible, since even if the student forgets something, he can generally retrieve it by
inspecting what he has written down on the paper. For example, since a number is crossed out when it has
been decremented, this is a plausible test to give to the system. Above relations are another plausible test,
since these are available by direct inspection as well. Note that the constraint that the arguments of each
predicate be already mentioned in the initial rule considerably limits the types of tests that ACM can consider.
From an AI viewpoint, this would be a severe drawback, but from a psychological perspective, this is an asset

4
This need only be done once for each student, and involves very little computational time.

MACHINE LEARNING AND STUDENT MODELING PAGE 13

4. Modeling Subtraction Strategies
Now that we have discussed ACM's learning methods in the abstract, let us examine how they can be

applied to a particular domain — multi-column subtraction problems. We decided on subtraction as the
initial testbed for our system precisely because Brown and Burton's, Brown and VanLehn's, and Young and
O'Shea's extensive work in this area provided us with a relatively well-understood set of bugs. Ultimately, we
expect our approach to be applicable in novel domains, but in the testing stage it is essential to have a familiar
bug library, in order to see what percentage of the observed bugs our approach can handle. Thus, we will rely
heavily on the earlier empirical analyses of these researchers in the subtraction domain, though we employ a
quite different approach to the student modeling problem.

Below we describe ACM's behavior in the domain of multi-column subtraction problems. In order to
do this, we must first describe the problem space searched by the system, in terms of the initial states, the
operators used for moving through this space, and the initial proposers for these operators. After this, we
discuss the conditions that ACM considers in attempting to characterize the student's strategy. Next, we
follow the steps taken by the system in modeling correct behavior on a set of test problems. This should help
the reader understand the relation between student modeling and the AI problem of procedure learning. We
then trace the system's behavior in modeling a buggy subtraction strategy. Finally, we summarize those bugs
that the system has successfully modeled, and consider the reasons for its successes and failures.

shift
5 - 2 solution

4 - 3

deer.

2 - 4

Figure 2. Search tree for the problem 54 — 23 = 31.

4.1. Subtraction as a Search Problem

As we have seen, one of the domain-specific inputs required by ACM is a list of operators for moving
through a problem space. In the domain of subtraction, a number of operators are involved. For the sake of
clarity, we will focus on only the four most basic operators - finding a difference between two numbers in a
column, adding ten to a number, decrementing a number by one, and shifting attention from one column to
another. The initial rules for proposing these operators are given in Table 1. In fact, these operators are not
even capable of correctly solving all subtraction problems (additional operators are required for borrowing
across zero, as in the problem 401 — 283), and they are certainly not capable of modeling all buggy
subtraction strategies. However, limiting attention to this set will considerably simplify the examples, so we
ask the reader to take on faith the system's ability to handle additional operators.

In the context of the student modeling task, ACM is not given the "legal" conditions on operators, since
this would cause it to begin with the correct algorithm for a domain like subtraction. Instead, the system is

