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Abstract
Seam tracking is currently accomplished by special features of the robot and a priori knowledge of seam

geometry. In this paper we demonstrate the feasibility of tracking a seam in real-time. A general-purpose

seam tracking algorithm is developed for implementation on a robot with six degrees-of-freedom. The

algorithm is motivated by a physical interpretation of the T6 and dT6 matrices, and the assumption that 3-D

seam data are available. In the past, the dTV matrix and inverse Jacobian solutions have been used to

compute the differential changes in the joint angles. By using the inverse Jacobian, an iterative algorithm is

introduced to compute both large and small changes in the joint variables. The versatile seam tracking

algorithm can be applied to a multitude of robotic seam tracking activities such as gluing, surface grinding

and flame cutting.
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1. Introduction
Manufacturing operations such as robotic welding, gluing, sealing and surface grinding require trajectory

control of the tool mounted on the end-effector of the robot. While the kinematic control algorithm

developed in this paper is applicable to a multitude of manufacturing operations, robotic arc welding

nomenclature is used. The tool is called the welding torch, and the tool trajectory is defined by the weld

scam. The fundamental problem is to position a welding gun with the proper translational and rotational

positions with respect to a curved weld scam in three dimensional (3-D) space. A scam in space can be traced

by a five degrcc-of-freedom robot. Since real-time seam tracing requires that both the sensor and torch trace

the seam, a six degrcc-of-freedom robot is required. Automation of the welding process thus demands a robot

with six degrces-of-freedom and acceptable performance in terms of speed and accuracy. The control task

also demands a real-time algorithm to guide the robot in a fixed geometrical relationship to die contour.

Automation of the welding process can be divided into two distinct components :

• Scam data acquisition and interpretation by a sensor system ; and

• Guidance* and control of the robot to traverse the seam, while maintaining the proper orientation
and position.

Since the scam data constitute the 3-D coordinates of the seam, a visual sensory device (such as a light stripe

imaging device) can be used to obtain the seam data. Methods for obtaining 3-D data from 2-D images have

been developed [Agin 82]. Having obtained and interpreted the scam data, the control system must guide die

robot to traverse the scam and place the requisite amount of weld material along the path. The torch position

and attitude must be controlled precisely to ensure acceptable weld quality.

Scam tracking is currently accomplished by exploiting a special feature of the robot or limiting the

application to a particular type of a seam. Bollingcr and Harrison [Bollinger 71] describe the principles and

techniques of a spatial scam tracking system. In this application, the seam is constrained to lie on a cylindrical

surface. Tomi/.uka, et ah [Tomizuka 80] propose a preview control strategy for two-axis welding torch

positioning and velocity control. The scheme is only applicable for two-axis control and hence constrains the

scam to lie in a plane. Furthermore, the scheme cannot be implemented on a general purpose six degrcc-of-

frccdom robot.

One of the first successful demonstrations of computer vision to arc welding is the NASA weld skate [HWl

80]. This system has been implemented on a special-purpose robot and requires special edge preparation to

operate properly. The system is incapable of making any determination regarding the joint fit-up. The

principle of structured illumination has been employed by Kawasaki Heavy Industries of Japan [Masaki 79] to

develop a visual seam tracking system. The approach used for image analysis is training-by-showiug. A set of



typical images is acquired in a teaching operation prior to welding and stored in the memory of the processor.

As real-time images are acquired, a search is conducted (through the set of trained images) until a match is

found. During the matching process, the positional displacement between the two images is computed and

used to correct the position of the torch. The system has been designed specifically for the ship building

industry and hence operates only on fillet joints. The system does not utilize part fit-up information for seam

tracking.

An example of wclding-by-tcaching is the system described by Masaki, et al [Masaki 81] which has a visual

scam tracking capability. The robot is taught the reference path for the end-effector and the reference image

for the image processor. In the teach mode, two passes arc required for each work piece, one for sensing and

one for welding. The path for the welding operation is generated from the sensing pass information.

Current robot welding systems are thus suitable for large batches of parts which are cut and fit to tight

tolerances. The robot must trace and weld a scam, within acceptable tolerance limits, on such closely fit parts.

Another limiting factor for a semi-automated welding system is the robot programming and set-up time in the

shop when the part is changed. These constraints may be eased through the introduction of a CAD/CAM

data base in which tlie welding trajectories and speed, weave pattern, wire feed rate, voltage and current are

stored for each welding part and then retrieved as required. Unpredictable fit-up and loose part tolerances

create the need for a real-time guidance and control algorithm.

The objective of this paper is to introduce a versatile scam tracing algorithm that demonstrates the

feasibility of tracking a scam in real-time. The general purpose seam tracing algorithm can be

implcmcntablcd on any robot with six degrccs-of-freedom. The algorithm is motivated by the physical

interpretation of tlie forward solution, or T6 matrix [Paul 81] and tlie inverse Jacobian. To facilitate

implementation of the inverse Jacobian solutions, an iterative algorithm is developed to compute the

differential changes in the joint variables from tlie dT6 matrix. To reduce significantly the on-line

computational requirements, the concept of a modified dT6 matrix is also introduced. To evaluate the

performance of the scam tracing algorithm, a functional simulation package (for the Cyro1 robot in our

laboratory) has been implemented. The outputs of tlie simulation arc the joint position and velocity set-

points for tlie robot control system.

The paper is organized as follows. The kinematics of the Cyro robot (including the forward and reverse

solutions , and the Jacobian and inverse Jacobian) are developed in Section 2. The foundations for the scam

tracking algorithm are laid in Section 3. Focus is on the specification of the T6 matrices at tlie sample points

Cyro is a trademark of the Advanced Robotics Corporation.
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along the seam and planning the motion of the torch. To reduce the computational requirements of the

algorithm for real-time applications, the concept of the modified dT6 matrix is introduced in Section 4, and an

iterative algorithm to compute both large and small changes in the joint coordinates is then developed. The

computational requirements arc enumerated to indicate the potential for die real-time implementation of the

algorithm. The salient features of the simulator, which has been implemented to evaluate the performance of

the scam tracing algorithm, arc presented in Section 5. Simulation experiments for representative test cases

are then highlighted in Section 6. Finally, in Section 7, conclusions arc drawn from the simulation

experiments, and the paper is summarized.

2. Kinematics of the Cyro Robot

The forward solution (or T6 matrix) of die robot, from the base frame to the torch (or end-effector) frame, is

developed using homogeneous transformations [Paul 81]. The homogeneous transformations, relating two

successive coordinate frames, are only a function of the six joint coordinates. Thus, knowledge of all of the six

joint coordinates leads to the transformation (or forward solution) from the base frame to the torch frame.

To develop the homogeneous transformation or A matrices, a coordinate frame is embedded in each of the

six links of the robot, using the Dcnavit-Hartcnbcrg convention [Dcnavit 55]. The coordinate frames are

shown in Figure 1. Joints 1* 2 and 6 are rcvolute, and joints 3, 4 and 5 are prismatic. The coordinates of the

rcvolute joints arc #,, $2 and 0' and the coordinates of the prismatic joints are x~, z, and yv. The subscripts

on the coordinates indicate the joint number; the base is link zero. The base coordinate frame is fixed at the

center of the table of the robot and coincides with the first coordinate frame. When all of the six joint

coordinates arc zero, the axes for joint 1 (table) and joint 6 (torch) arc parallel and the robot becomes singular.

In the algorithm, the manipulator is assumed to be at the zero position. Without loss of generality, the

constant offsets of die robot are assumed to be zero. A counter-clockwise rotation of the revolute joints is

considered to be positive,, and translation of die prismatic joints along the positive z-axis is considered to be

positive.

The link parameters of the Cyro robot arc listed in Table 1, and the forward solution is displayed in Table 2.

Having obtained the forward solution, the values of the joint coordinates that led to the 1" matrix can be

computed. This reverse solution [Paul 81] is required (by the simulator) to relate the T matrix to the present

values of the joint coordinates. The reverse solution is listed in Table 3.

The differential changes in the cartesian coordinates of the torch are related to the differential changes in

the joint coordinates through the manipulator Jacobian [Whitney 72, Paul 81]. Each column of the Jacobian

matrix J is a differential translation and rotation vector. The column vectors of



J=
9T6 9T6 9T6 9T6 9T6

9#2 9^3 9z4 9y5 9#6

arc listed in Table 4.

In scam tracing, sensory data can be utilized to determine the incremental change in the position of die

seam from differential changes in the elements of the Tfi matrix. The differential change matrix dT6 is thus

available tri plan the incremental motions of the torch. It thus becomes imperative to find the inverse

Jacobian (or incremental changes in the joint coordinates) which produce the specified incremental change in

the T, matrix.
0

Numerical inversion of die Jacobian [Whitney 72] is computationally intensive and hence is not suitable for

real-time control applications. Incremental changes in the joint coordinates can be obtained from a Taylor

scries expansion of the reverse solution. Such an approach leads to analytical formulae for the differential

joint coordinates which are functions of the elements of the T and dT6 matrices [Paul 81]. Analytical

formulae for the differential joint coordinates, which arc obtained by differentiating the reverse solution (in

Table 3), are listed in Table 5.

3. Kinematic Seam Tracking Control

The control task is to fill a volume with weld material while maintaining the proper position and orientation

of the torch with respect to the seam. While traversing the seam, the tip of the torch traces a curve in 3-D

space. If the discrete points on the curve to be traced and the surface containing the curve arc identified, the

T6 matrices can be generated for each point on the discrctized curve.

Specification of the T6 matrices at the sample points of the discretized curve accomplishes die seam tracing

ax px

ny

0

°y
o7.
0

ay

a7.
0

Py

P/.
1

task. The TA matrix is
0

n o a p
0 0 0 1

and represents the position and orientation of the torch shown in Figure 2. The origin of the describing

coordinate frame is located at the tip of the torch and is described by the vector p with respect to the base

frame. The three unit vectors n, o and a, which describe the orientation relative to the base frame, are

directed as follows [Paul 81]. The z-axis of the describing frame lies along the direction that the torch

approaches die surface (containing the curve to be traced) and is called the approach vector a. The y-axis of

the describing frame lies along the direction of the boom holding the camera and is called die orientation



vector o. The normal vector n is then chosen to form a right-handed set of vectors and is computed as

tt = 3 x 3

The vectors n, o and a describing the orientation of the torch and the vector p describing the position can be

specified independently. The control task can thus be split into two independent components :

• Tracing a curve in 3-D space; and

• Maintaining proper orientation of the torch with respect to die surface which contains the curve to
be traced.

The volume to be filled with the weld material is contained within two surfaces (of metal) which arc to be

joined together. The surfaces may be non-overlapping, as in the case of a butt joint (in Figure 3), or

overlapping as in the case of a lap joint or a fillet joint.

Let m be a curve (in 3-D space) which lies on the surface S and is to be tiaccd by the tip of the torch. The

surface S may have a varying slope. Henceforth, the curve m will be termed the mid-seam. The mid-scam is

discrcti/cd length-wise. Let nr be the vector (with respect to the base frame) pointing to the i-th sample point

m. on the mid-scam. The discretization is specified to allow a picccwisc linear approximation of the curve m

between two adjacent sample points. If the surface (in the vicinity of the two sample points tn. and m. .) is

also discrctized, then a pieccwisc planar approximation of S is obtained. Let P. denote the plane (containing

the points m. and m i+ j). The direction cosines of the plane specify the orientation of the torch which is held

constant for the duration of travel from m. to m. ,.

The position of the torch is specified by the coordinates of the sample points. The foregoing description of

the position and the orientation of the torch completes the formulation of the T6 matrix at die sample points.

The ensuing section specifics the T6 matrix for butt, lap and fillet joints.

3.1. Specification of the T6 Matrix

Having interpreted physically the elements of the T6 matrix, die next step is to generate numerical values of

the elements of the T6 matrix in terms of the coordinates of the sample points obtained from the sensor

system. Since a light stripe projector and a solid state camera are assumed to be used as the sensory device,

the 3-D coordinates of the points on the surfaces to be joined arc mapped into pixels in the camera image.

Figure 4 shows a typical camera image (at the i-th sampling instant) obtained from a butt joint. The break

points in the camera images of the surface indicate the discontinuity in the actual surfaces to be welded. To

specify the curve to be traced, it is essential to extract 3-D coordinates of the break points in the images. The



information regarding the orientation of the surfaces, in the vicinity of the break points, can be obtained by

extracting the coordinates of one additional point on each surface. The break points are called u. and v. for

the butt joint shown in Figure 3. The additional points on each of the two surfaces arc called pt and q.^

respectively. The subscript i denotes the sampling instant. The coordinates of the sample points are specified

with respect to the base frame of the robot, and p., u., v. and q. arc die vectors from the origin of the base

frame to the points pp u., v. and q{ respectively. The edges formed by die sample points { p. }, { q.{ }, { u. }

and { v. } arc denoted by /?, r/, M, and v, respectively.
i

To specify the p vector of the T6 matrix requires knowledge of the sample points along the mid-scam. For a

butt joint, the requirement that the torch be placed exactly in the middle across the u and v edges forces the x,

y and z coordinates of the mid-seam to be computed as:

+Vxi
2
+ vv

m" ~ 2—~

0)

For both lap and fillet joints, torch stand-off is an important consideration for obtaining a quality weld. Let

the desired torch stand-off be characterized by the parameter s, where s ranges from 0 to 1. The coordinates

of the mid-seam are then computed as

mxi =ux i +s(vx i-ux i)
myi =uy i +s(vyi-uyi)
mzi =u z i + s(vzi-uzi)

(2)

p, p and pz components of the T6 matrix are
Px = m x i ^3>

and specify completely the last column of the T6 matrix.

Practical seams have edges with slowly-varying slopes. Since the sample points are assumed to lie close to

each other (typically separated by 1 mm), the edges between two sample points can be approximated by a



straight line. This approximation leads to a p l a n c w h i c h P a s s e s t h l 0 l l S h at l e a s t ^ircc of the four sample

points (Pi, p . + , , q., q i+ {). The direction cosir. *CS of ^ p l a n c a r c a l s o t h c d i r e c t i o n c o s i » c s of a vector normal

to the plane. Since'the torch is required to be \ D C 1 P c n d i c u I a r "> the fictitious scam surface, thc direction

cosines of thc approach vector a are specified as th'° "egalive of t h c d i r c c t i o n c o s i n c s * ^ normal to thc

plane.

Thc values of thc components of thc orientation vector o ^ c o m p u t c d u n d e r ^ following constraint.

When thc torch and the camera arc on thc seam, both should trac k t h° SCam ' T h i s c o n d i t i o n guarantees that

sample points will not be lost if the slope of thc mid-edge (at thc poi'nt °f thC t o r c h ) d l f f c r s f r o m t h c slope at

thc point-of-vicw of thc camera. Let M be a constant shift in thc numbc."of s a m P | c P()i«ts between thc torch

and thc camera. Figure 2 shows that the o vector is perpendicular to tl.>e a v c c t o r and points along thc

direction of the arm holding the camera. If thc camera is traveling in the direction °* L'1C line joining in. N

and m. N, then tlic robot system will never lose track of the scam, unless thc slope experiences large changes

or discontinuities along thc scam.

The equation of a plane passing through three of thc four points (p i + l V Pj+1\-v Q\ + w ^i + N-l̂  c a n n o w ^e

specified, and tlic angle between thc planes at thc camera and the torch points can be determined. If (Xv /xr

v{) and (X2, ju2, vj arc thc dircction cosincs of thc two planes, then thc cosine of angle 0 between thc planes

is

cos(0) =XiA2 +/MM2 +^1^2

(6)

Thc vector a joining the points ni j+N_1 and m i + N along thc mid-edge is computed as

(7)

The projection of the vector a onto thc torch plane is chosen to be the o vector and is normalized to be of unit

length. Having obtained the normalized o and a vectors, tlic n vector is computed as

a = 3 x 3

(8)

to specify completely the T6 matrix at the sample points.

While traversing from the i-th to the (i-f-l)-th point, die orientation of thc torch and consequently tlic n, o

and a vectors remain constant. The p vector in the T6 matrix changes linearly because of thc straight line

approximation between the two points. To maintain a continuous speed and acceleration at tlic end points of



the segment, the motion of the torch is planned.

3.2. Planning the Motion of the Torch

ThP mnrinn of the tio of thc torch, in traversing a scgr; #

I ne motion 01 me up ui {Qn^ |S c o m p o s c c | of two parts:
• Motion along the segment, and

• Transition between segments.

To make a smooth transition bctwo ^ s c g m c n t s < jt js desirable to maintain a continuous velocity and

acceleration at the transition points. T o spccify t h c transition equations, a fourth-order curve is fit between

the point where a transition star'tS-"an(j ^Q p o j n t jnc |jcaljng thc end of thc transition [Paul 81]. The equations

for thc transition trajcctorics> ancj velocities arc outlined in Section 3.3.

Let M be thc totorf number of transition steps in which thc desired change in T6 is to occur. The differential

changes in the vt(o and a vectors at each transition point are

M

(9)

A! =

A3 =

M
(10)

M
(11)

where the subscripts i and (i + 1) denote the i-th and (i + l)-th segments, respectively. 'Hie An, Ao and Aa

vectors arc then added to die current n, o and a vectors, respectively, and normalized to unit length, to

produce thc n, o and a vectors at the next segment. Let n , o , a and n , o , a be thc vectors of the T, matrix

at thc present and next segments, respectively; and let thc subscript N indicate that these vectors have been

normalized to unit length. The nu, on and an vectors arc thus computed as follows :

fin =(rtp +An)N

(12)

(13)



Aa)N

(14)

Having computed the three component vectors (n, o and a) of T6 at the next segment, the first three

columns of the differential change matrix dT6 are determined, and the fourth column (or dp vector) can be

computed from the transition trajectory to specify the differential translation. The differential change matrix

dT6 is then

dT6 =

dnx dox dax dpx

dny doy day dpy

dnz doz da7 dp,

0 0 0 0

(15)

where the differential vector components (dn, do, da and dp) of the dT matrix represent the corresponding

change in the vector components (n, o, a and p) of the T, matrix.

Having generated the present T6 matrix and d'l 6 matrix to reach the next point, the inverse Jacobian (in

Table 5) is used to compute iterative!)' the differential changes in the joint coordinates. The inverse Jacobian

solutions arc derived under the assumption that the changes in the joint variables leading to the specified dT6

matrix are small. To overcome the practical fact that this assumption is not always satisfied in scam tracing

applications, an iterative technique is developed to compute the changes in the joint variables. The velocity

set-points during the transition are obtained by dividing the incremental values of the joint variables by the

time required to make the incremental change. The transition ends when the torch reaches the point D on the

segment B-C in Figure 5. At this point, the torch has the required orientation and velocity to track the

(i + l)-di segment I>C without error. This motion is called motion-along-the-segment.

During the motion of the torch, along the segment, the n, o and a vectors of the-robot remain constant. The

updated dT6 matrix is specified as:

<n 6=

0 0 0 dpx

0 0 0 dpy

0 0 0 dpz

0 0 0 0

(16)

where d p . dpv and dp., arc the differential changes in the x, y and z coordinates of the (i + l)-th transition
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point. When the torch reaches the next transition point, the process of planning the motion of the torch,

along the segment and during the transition, is repeated to plan the motion for the next segment.

3.3. The Transition Curves

A transition segment is illustrated in Figure 5. The transition starts at point A in the i-th segment and ends

at point D in the (i-f l)-th segment. Maintaining a continuous velocity and acceleration at the points A and D

appears to require that six boundary conditions be satisfied. A fifth-order polynomial (with six parameters)

would then be needed to approximate the cartesian transition curve. Symmetry of the transition guarantees

that a quart ic polynomial can approximate the cartesian transition curve [Paul 81|2. To facilitate the

development, let T be the transition time and T be the time required to traverse the segment ft-C. The time of

travci ( T ) across a segment is computed by dividing the volume of the weld material (to be deposited along

the segment) by the weld-wire volumetric feed-rate, which is assumed to be constant. The ratio (r/T) is

specified by the engineer (in Section 6). Let the normalized time-step parameter h be defined according to

2T

(17)

where t denotes the running time-variable (-T < t < T).

Let the fourth-order polynomial approximating the cartesian transition segment be

where the five parameters (fi. for i = 0 to 4) must be selected for X(h) to satisfy the boundary conditions

[Paul 81]:

X(0) =A ; X(l) =(C-B)^r +B

X(0) =2(B-A) ; X(l) = 2 ( C - B ) y

(19)

X(0) = 0 ; X(l) = 0

(20)

where the dot denotes differentiation with respect to h. (The initial acceleration condition X(0) = 0 leads to

p2 = o.)

The cartesian position, velocity and acceleration of the torch on the transition curve (as functions of the

normalized time-step parameter h) are

lTie transition equations are reproduced here because of the typographical errors in the cited reference.
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X(h) = - ( A C Y -AB)1V1 + 2 ( A C ^ -AB)h3 +2(AB)h +A

(21)
X(h) = - 4 ( A C Y -AB)h3 + 6 ( A C Y -AB)h2 +2(AB)

(22)

and

X(h) = -12(ACy -AB)h2 + 1 2 ( A C Y -AB)h

(23)

where AB = (B - A) and AC = (C - B).

Filiation (21) defines the cartesian position of the torch (in terms of the normalized time-step parameter h)

and is used to evaluate the coordinates of the transition point. The welding torch transits from the present

segment to the next and maintains a continuous velocity and acceleration at the end points (A and D in F;igure

5) of the transition segments. Equation (21) is used to compute the position of tine torch during the transition.

In the next section, the n, o and a vectors for the transition are formulated.

4. The Modified dT6 Matrix
The dT. matrix specifics an incremental change in the orientation and position of the torch induced by

incremental changes in die joint coordinates. Seam tracing requires incremental changes (in the base

coordinates) in both the position and orientation of die torch. Since the changes in the base and the joint

coordinates arc related through the nonlinear inverse Jacobian coordinate transformation, a small change in

the position and orientation of the torch in the base coordinates may require a large change in the joint

variables. This realization hampers application of the inverse Jacobian to compute the differential changes in

the joint coordinates from the dT6 matrix.

The goal of this section is to introduce the concept of a modified dT6 matrix and an iterative algorithm

which docs not restrict the nature of changes in the joint variables that led to the specified dT6 matrix [Khosla

83]. If the changes are incremental (as assumed for the derivation of the inverse Jacobian), then the algorithm

converges in the first iteration. Tn the case of large changes, the algorithm converges rapidly (in typically 2-3

iterations for the examples highlighted in Section 6) to the appropriate differential changes in the joint

coordinates. The T6 matrix at the next point is computed by adding the present T. matrix to the modified

dT6 matrix. This approach reduces computation time because computing the next rl' matrix does not require

the forward solution.

Let R and S be two points on the mid-seam transition segment between the points A and D (in Figure 6).
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Let tlie position and the orientation of the torch at points R and S be specified by T6R and T(S, respectively.

LetT6S be such that the change di 6 in TfiR leads to T6S. Thus,

Tes = T6R + dT6

(24)

It is also possible to reach T6S from T R through a transformation C (in the base coordinates) which consists

of a translation along the x, y and z axes followed by a rotation 0 along an axis k. Thus,

(25)

where

C =Trans(x,y,z)Ro((k,0)

(26)

Let nR, oR and aR be the component vectors of the T6R matrix specifying the orientation of the torch at the

point R, and ns, os and a<. be the corresponding vectors of the T s matrix. From (24), the corresponding

differential vectors (In, do and da arc

dh -i?s -tiR

(27)
do = Os " OR

(28)
da -as - a^

(29)

While traveling from point A to point D (in Figure 5), the d'IV matrices should be computed to preserve the

physical significance of the T6 matrices at the transition points. Thus, T6R should be computed from c!T6

according to (24). Geometrically, the loci of the n, o and a vectors of a Tfi matrix should be a sphere of unit

radius.

Figure 6 depicts the total desired change in each of the n, o and a vectors, while traversing from point A to

point D (in Figure 5) in M steps. The components An, Ao and Aa, computed from (30)-(32), arc shown in

Figure 6. The arc of the unit circle represents the loci of the n, o and a vectors during the transition. Let

(nR) , (oR)u and (aR) be the unnormalizcd vectors whose tips lie on the point R7 on the straight line joining

points A and D. The subscript u indicates that the vectors arc unnormalizcd. The vectors nR, oR and aR are

obtained by normalizing the magnitude of the corresponding vectors to unit length.
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The unnormalized vectors of the T6S matrix are computed as

(ns)u=(nr)u+8n

(30)
(os)u=(or)u+8o

(31)

(32)

and then normalized to obtain the ns, os and as vectors. rl'hc right-hand sides of (27)-(29) are thereby

specified completely, and the differential vectors of the dT6 matrix can be computed to preserve the physical

significance of the I' matrix.

Having obtained the (In, do and da vectors of die dT6 matrix in (15), it remains to compute the dp vector to

specify completely the matrix. The vector dp is computed as

where the vectors pR and ps arc obtained from (21).

By construction, the d'lV matrix satisfies (26). Since the magnitudes of the changes in the joint variables are

not constrained in the derivation of the d'l' matrix, the computed dT, matrix satisfies (27). Thus, the 1\

matrix at the next point S can be obtained by adding the T, matrix at the present point R to the computed

dT6 matrix (and consequently there is no need to compute the T6 matrix at the point S from the updated

values of the joint variables when the torch reaches the point S). The real-time computational requirements

of this construction arc detailed in Section 5.

4.1. An Iterative Algorithm to Compute the Differential Changes

In applications, such as seam tracing (in which the sample points lie at incremental distances along the

scam), tlie required changes in the joint variables may not be incremental. A practical example involves

tracing a scam which has large slope variations. The dT6 matrix is related to the changes in the joint variables

through die inverse Jacobian which, in turn, is derived under the assumption of small changes in the joint

variables. Many of the scams occurring in practice have slowly varying slopes and application of die inverse

Jacobian to make the incremental motions is computationally advantageous. In practice, the scam may

exhibit large slope changes at a few points, and the solution obtained (for the differential changes in the joint

coordinates to reach the next point) from the inverse Jacobian may exhibit significant errors. The torch is

thus placed at the incorrect point on the scam, and a large error (in the position and orientation of the torch)

is introduced. To overcome this problem, an iterative algorithm is introduced. A block-diagram of the
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iterative algorithm is shown in Figure 7.

The algorithm begins at i = 0 with the initialization of the following variables: T6* (T6 matrix of the next

point), T6i (current T6 matrix), and qi + A (current values of the joint variables).

rFhe algorithm implemented at the i-th iteration is ;

(33)
dQi+i =J"1[dT6 i ,q,+J

(34)
qi +i =qi-kiqi+i

(35)
T6i=F[qi+1]

(36)
qi=D[qi+i]

(37)

where J"1 is the inverse Jacobian (in Table 5) for the computation of the differential changes in the joint

variables from dT6i and qj + J. (in contrast to the symbolic or numerical inversion of the Jacobian matrix); F

denotes the operation of computing the T6 matrix (in Table 2); and D signifies the computation (delay) time

for the forward solution.

Upon substituting (34) into (35),

Qi -hi =Qi +J~1[dT6i,q i+1]

(38)

and hence,

(39)

Equation (39), and consequendy the algorithm depicted in Figure 7, is the Ncwton-Raphson method

[Atkinson 78] for solving the inverse Jacobian system of nonlinear equations (in Table 5).

The algorithm converges (in theory) when all of the components of the dT6i matrix in the block-diagram (in

Figure 7) arc zero. In practice, the algorithm is assumed to converge when each of die elements of dl' is less

than a prc-sct tolerance. The computed vector </. contains the desired set-points (in the joint variables) to

reach the next position. When the desired changes in the joint variables arc small, the algorithm converges in

one iteration and reduces to obtaining the inverse differential solutions from the inverse Jacobian (in Table 5).
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For the scams tested with the simulator, the algorithm always converged in a maximum of three iterations

(when the preset tolerance was set equal to zero). The computational requirements of the scam tracing

algorithm are outlined in the next section.

5. Computational Requirements
The computations required to follow the scam from the present sample point to the next arc outlined in

Table 6. The number of iterations required for the transition point computation and iterative algorithm

(33)-(37) arc denoted by NL and N2, respectively. (For the scams traced by the simulator, typical values are

found to be N{ = 2 and N2 = 1.) Execution times of the 8087 hardware instructions [Intel 83] are listed in

Table 7. These floating point operation times (including the times required to load and store the operand) are

used to estimate the time required to move the torch from one sample point to the next. Typical times (shown

in Table 6) range from 24 to 29 milliseconds, which correspond to sampling rates of 35-40 Hz. For most

welding applications, a sampling frequency of 10 Hz appears to be adequate.

These computational estimates are based upon the matrix kinematic modeling of manipulators used

throughout this paper. Matrix representations of rotations arc highly redundant. Quaternions [ftcclcv

72, Hamilton 69] offer a convenient representation for rotations and can reduce both the storage requirements

and computational load [Taylor 79]. The authors estimate that the quaternion implementation of the seam

tracking algorithm would increase die achievable sampling rate to 60 Hz.

6. Simulation
To evaluate the algorithm, a software simulator has been developed (in the C programming language on a

VAX 11/780) for the six degree-of-freedom Cyro robot in our laboratory. The simulation is initialized by

retrieving scam data (as coordinates of sample points) from a data file. The first two sampled cross-sections of

the seam are used to compute the desired T6 matrix of the robot at the first point on the mid-seam and to

compute the joint position and velocity set-points to reach die desired destination. Upon reaching the first

point on the mid-seam, the algorithm computes the coordinates of the transition point on this segment (for

the ratio T / T which is entered by the engineer at the start of the simulation) and the total time T required to

traverse the next segment. The T6 matrices at the present and next sample points are used to generate the

joint position and velocity set points by the algorithm in (33)-(37). The trajectory from the beginning to end

of the transition is computed from (21), and the joint position and velocity set-points arc computed to follow

the interpolated curve. Upon reaching the end of the transition, the process is repeated (for each transition

point), until the last sample point is reached. The simulation is then terminated and the specified curve is

traced.
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To achieve a quality weld, die lag or lead angle of the torch must be controlled adaptively. In the case of

fillet and lap joints, the torch stand-off must also be controlled. Since an adaptive controller for these

parameters remains to be developed, we have included (in our simu-latorXthe facility to specify these control

parameters at the beginning of the simulation.

In the software simulator, the torch can be rotated about two axes. The first is about an axis parallel to the

direction of travel and the second is about an axis perpendicular to the direction of travel (in the plane of the

first axis). This capability allows control over the lead or lag angle of the torch. Facility to specify the

stand-off for lap and fillet joints has also been incorporated. The simulator has tracked butt, lap and fillet

joints and the experimental results arc highlighted in the next section.

7. Experimental Results
The seam tracking algorithm approximates the curve between sample points by a straight-line. To

emphasize the effect of linear interpolation and the choice of sampling distance on the tracking accuracy, the

simulator tracked a sinusoidal curve (with uniform spacings of 30 and 10 degrees). The simulation results arc

depicted in Figures 8 and 9, respectively. As the sampling distance is decreased, the tracked curve approaches

the actual curve. The maximum tracking error ( which occurs for h = 0.5) is

and depends upon AB, AC and the ratio T/T. For a particular seam and sample points, AB and AC are

constant and the tracking error (with respect to the interpolated curve) is a linear function of the ratio T /T .

The simulation experiments illustrate that accurate tracking can be achieved by judiciously selecting the

sample points and maintaining the ratio (T /T) of transition time to segment time as small as possible.

8. Conclusions
A general-purpose real-time seam tracing algorithm, for implementation on any six degrcc-of-freedom

robot, is proposed. The algorithm (which requires knowledge of only one-point-ahead to track a seam) can be

applied to a multitude of robotic seam tracking activities such as gluing, surface grinding and flame cutting.

The algorithm incorporates the physical interpretation of the T6 and dT6 matrices to realize scam tracking. To

reduce the computational requirements, the paper introduces the concept of a modified dT6 matrix. The

inverse Jacobian solution is generalized (according to Newton's method) to compute both large and small

changes in the joint coordinates.

To test the efficacy of die proposed seam tracing algorithm, a simulator has been written and tested on a

VAX 11/780. The simulation results arc highlighted in Section 7 of [Khosla 83]. The tracking accuracy is a

function of the sampling distance because of the straight-line approximation between two successive sample
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points, and the tracking error increases with the increase in ratio of the transition time to the segment travel

time.

Future activity will focus on die adaptive control of the weld parameters and dynamic robot control.

Successful practical implementation will depend upon the availability of faster processors and the

experimental performance evaluation of the algorithm.
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Figure 1: Link Coordinate Frames of the CYRO Robot
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Figure 2: Physical Interpretation of the T6 Matrix
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Figure 3: Butt Joint

Figure 4: Camera Image of a Butt Joint
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Note* The generic vector g symbolizes the
normal (n), orientation (o) and approach
(a) vectors.

Figure 6: Locii of n, o and a Vectors



24

Set point T6*
Updated nlow of
joint ibto

Pnaant fmlnM
{of joint TBziablM

Figure 7: Block Diagram of the Iterative Algorithm
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Figure 8: Sinusoidal Seam Tracking (30 degrees sampling interval)
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Definition of the Parameters

8 is the angle of rotation about the raxis

a is the angle of rotation about the x-axis

a is the length of translation along the x-axis

d is the length of translation along the z-axis

Table 1: Link Parameters of the CYRO Robot

-CAS6 +X3Q -HSj ) - S i ( - y 5 +L)

82(2482 +X3C2 -HSj) + Ci( - y 5

- C 2 (24C2-X 3 S 2 -HC2) - R

0 1

Table 2: Forward Solution of die CYRO Robot
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Joint coordinate

0i

2A

*

*

Analytical Expression

alanl

atanl

—Z-

-iciax +siay)]
(-«,) j

C"'Z?-ZTR+H

atanl

atanl —— + 180°

Conditions

7-6(2,3)> 0

r6(2,3)< 0

82> 0

^ < 0

NOMENCLATURE

C, is the Cosine of the i-th joint angle

Si is the Sine of the irth joint angle

atan2 is the double argument arc tangent junction

Table 3: Reverse Kinematic Solution of the CYRO Robot
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-<CiC2C« +SiSt)(var]) +(SiC2C6 -
:xCi% +SAH>a r l> +("SiQS6 -QC6)(var2)

QS^varl) -SjS2(var2)

-c ,

3T«

-C2Q(var3) +S2Q(var4)
C|S|(var3) -SA<

SjCvari) -Cj(var4)

- Q
0

3]^
3*3

0
0
0
0

3*4

0 1
0
- 1
0
0
0

3T6

§6

Q
0
0
0
0

HL
306

NOMENCLATURE

varl =Si(z4Sj +x3C2 -HSj ) + Q ( - y 5

var2 sC l(z4SJ +x3Cj -HS2) +Si( - y 3

var3 =s - 24Q + X3S2 + HCj

var3 ^uSj +XjQ - H S j

TaMt4: Column Vectors of theJacobian matrix
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DIFFERENTIAL JOINT COORDINATES

_

* (NSJ2 + (NC2)
2

= C2Axd02 + S2A2 +C2dpz -

=Cipxd$i +S\dpx +Sipyd8i -C\dpy

d(NS2)

A2 =

NOMENCLATURE

NC2 = -at

d(NC2) = -dat

NS2 = """"Cltfx — •S'l̂ y

= S\Qxd0\ — C\d(ix — C\ciyC

A\ = C\px + S\Py

~~SlpXd$l +C\dpx +C\Pydt

i$x - S\day

h+Sidpy

Table 5: Inverse Jacobian of the CYRO Robot
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STEP

Find the mid-scam

Butt Joint (1)

Lap/Fillet Joint (2)

Compute segment travel time T

Butt Joint

Lap/Fillet Joint

Find transition point

Butt Joint

Lap/Fillet Joint

Computation of

a Vector

o Vector (6)-(7)

n Vector (8)

Compute dT 6 Matrix

Normalization

Iterative algorithm (33) - (37)

Total

Butt Joint

Lap/Fillet Joint

3

23

32

23*N i

32*N t

9

15

3

9

66*N2

62 + 23*Nt
+ 66*N2

73+23*Ni

+ 66*N?

-h

'3

6

39

61

39*N,

6l*Ni

14

11

6

12

4

54*N2

86 + 39*N,
+ 54*N2

108 + 39*Ni

+ 54*N2

•

3

I

1

Nt

Ni

5

3

3

15 + N,

15 + N,

5

6

5*N ,

6*NV

1

1

3

10 + Nj

10 + N,

SIN/

/cos

6*N2

6*N2

6*N2

TIMHin
millisec

0.384

0.462

3.611

5.256

7.222

10.512

1.611

1.675

0.462

0.576

1.125

7.206

23.872

28.885

Table 6: Computational Requirements of the Scam Tracing Algorithm
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Abstract
Seam tracking is currently accomplished by special features of the robot and a priori knowledge of seam

geometry. In this paper we demonstrate the feasibility of tracking a seam in real-time. A general-purpose

seam tracking algorithm is developed for implementation on a robot with six degrees-of-freedom. The

algorithm is motivated by a physical interpretation of the T6 and dT6 matrices, and the assumption that 3-D

seam data are available. In the past, the dTV matrix and inverse Jacobian solutions have been used to

compute the differential changes in the joint angles. By using the inverse Jacobian, an iterative algorithm is

introduced to compute both large and small changes in the joint variables. The versatile seam tracking

algorithm can be applied to a multitude of robotic seam tracking activities such as gluing, surface grinding

and flame cutting.
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1. Introduction
Manufacturing operations such as robotic welding, gluing, sealing and surface grinding require trajectory

control of the tool mounted on the end-effector of the robot. While the kinematic control algorithm

developed in this paper is applicable to a multitude of manufacturing operations, robotic arc welding

nomenclature is used. The tool is called the welding torch, and the tool trajectory is defined by the weld

scam. The fundamental problem is to position a welding gun with the proper translational and rotational

positions with respect to a curved weld scam in three dimensional (3-D) space. A scam in space can be traced

by a five degrcc-of-freedom robot. Since real-time seam tracing requires that both the sensor and torch trace

the seam, a six degrcc-of-freedom robot is required. Automation of the welding process thus demands a robot

with six degrces-of-freedom and acceptable performance in terms of speed and accuracy. The control task

also demands a real-time algorithm to guide the robot in a fixed geometrical relationship to die contour.

Automation of the welding process can be divided into two distinct components :

• Scam data acquisition and interpretation by a sensor system ; and

• Guidance* and control of the robot to traverse the seam, while maintaining the proper orientation
and position.

Since the scam data constitute the 3-D coordinates of the seam, a visual sensory device (such as a light stripe

imaging device) can be used to obtain the seam data. Methods for obtaining 3-D data from 2-D images have

been developed [Agin 82]. Having obtained and interpreted the scam data, the control system must guide die

robot to traverse the scam and place the requisite amount of weld material along the path. The torch position

and attitude must be controlled precisely to ensure acceptable weld quality.

Scam tracking is currently accomplished by exploiting a special feature of the robot or limiting the

application to a particular type of a seam. Bollingcr and Harrison [Bollinger 71] describe the principles and

techniques of a spatial scam tracking system. In this application, the seam is constrained to lie on a cylindrical

surface. Tomi/.uka, et ah [Tomizuka 80] propose a preview control strategy for two-axis welding torch

positioning and velocity control. The scheme is only applicable for two-axis control and hence constrains the

scam to lie in a plane. Furthermore, the scheme cannot be implemented on a general purpose six degrcc-of-

frccdom robot.

One of the first successful demonstrations of computer vision to arc welding is the NASA weld skate [HWl

80]. This system has been implemented on a special-purpose robot and requires special edge preparation to

operate properly. The system is incapable of making any determination regarding the joint fit-up. The

principle of structured illumination has been employed by Kawasaki Heavy Industries of Japan [Masaki 79] to

develop a visual seam tracking system. The approach used for image analysis is training-by-showiug. A set of



typical images is acquired in a teaching operation prior to welding and stored in the memory of the processor.

As real-time images are acquired, a search is conducted (through the set of trained images) until a match is

found. During the matching process, the positional displacement between the two images is computed and

used to correct the position of the torch. The system has been designed specifically for the ship building

industry and hence operates only on fillet joints. The system does not utilize part fit-up information for seam

tracking.

An example of wclding-by-tcaching is the system described by Masaki, et al [Masaki 81] which has a visual

scam tracking capability. The robot is taught the reference path for the end-effector and the reference image

for the image processor. In the teach mode, two passes arc required for each work piece, one for sensing and

one for welding. The path for the welding operation is generated from the sensing pass information.

Current robot welding systems are thus suitable for large batches of parts which are cut and fit to tight

tolerances. The robot must trace and weld a scam, within acceptable tolerance limits, on such closely fit parts.

Another limiting factor for a semi-automated welding system is the robot programming and set-up time in the

shop when the part is changed. These constraints may be eased through the introduction of a CAD/CAM

data base in which tlie welding trajectories and speed, weave pattern, wire feed rate, voltage and current are

stored for each welding part and then retrieved as required. Unpredictable fit-up and loose part tolerances

create the need for a real-time guidance and control algorithm.

The objective of this paper is to introduce a versatile scam tracing algorithm that demonstrates the

feasibility of tracking a scam in real-time. The general purpose seam tracing algorithm can be

implcmcntablcd on any robot with six degrccs-of-freedom. The algorithm is motivated by the physical

interpretation of tlie forward solution, or T6 matrix [Paul 81] and tlie inverse Jacobian. To facilitate

implementation of the inverse Jacobian solutions, an iterative algorithm is developed to compute the

differential changes in the joint variables from tlie dT6 matrix. To reduce significantly the on-line

computational requirements, the concept of a modified dT6 matrix is also introduced. To evaluate the

performance of the scam tracing algorithm, a functional simulation package (for the Cyro1 robot in our

laboratory) has been implemented. The outputs of tlie simulation arc the joint position and velocity set-

points for tlie robot control system.

The paper is organized as follows. The kinematics of the Cyro robot (including the forward and reverse

solutions , and the Jacobian and inverse Jacobian) are developed in Section 2. The foundations for the scam

tracking algorithm are laid in Section 3. Focus is on the specification of the T6 matrices at tlie sample points

Cyro is a trademark of the Advanced Robotics Corporation.
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along the seam and planning the motion of the torch. To reduce the computational requirements of the

algorithm for real-time applications, the concept of the modified dT6 matrix is introduced in Section 4, and an

iterative algorithm to compute both large and small changes in the joint coordinates is then developed. The

computational requirements arc enumerated to indicate the potential for die real-time implementation of the

algorithm. The salient features of the simulator, which has been implemented to evaluate the performance of

the scam tracing algorithm, arc presented in Section 5. Simulation experiments for representative test cases

are then highlighted in Section 6. Finally, in Section 7, conclusions arc drawn from the simulation

experiments, and the paper is summarized.

2. Kinematics of the Cyro Robot

The forward solution (or T6 matrix) of die robot, from the base frame to the torch (or end-effector) frame, is

developed using homogeneous transformations [Paul 81]. The homogeneous transformations, relating two

successive coordinate frames, are only a function of the six joint coordinates. Thus, knowledge of all of the six

joint coordinates leads to the transformation (or forward solution) from the base frame to the torch frame.

To develop the homogeneous transformation or A matrices, a coordinate frame is embedded in each of the

six links of the robot, using the Dcnavit-Hartcnbcrg convention [Dcnavit 55]. The coordinate frames are

shown in Figure 1. Joints 1* 2 and 6 are rcvolute, and joints 3, 4 and 5 are prismatic. The coordinates of the

rcvolute joints arc #,, $2 and 0' and the coordinates of the prismatic joints are x~, z, and yv. The subscripts

on the coordinates indicate the joint number; the base is link zero. The base coordinate frame is fixed at the

center of the table of the robot and coincides with the first coordinate frame. When all of the six joint

coordinates arc zero, the axes for joint 1 (table) and joint 6 (torch) arc parallel and the robot becomes singular.

In the algorithm, the manipulator is assumed to be at the zero position. Without loss of generality, the

constant offsets of die robot are assumed to be zero. A counter-clockwise rotation of the revolute joints is

considered to be positive,, and translation of die prismatic joints along the positive z-axis is considered to be

positive.

The link parameters of the Cyro robot arc listed in Table 1, and the forward solution is displayed in Table 2.

Having obtained the forward solution, the values of the joint coordinates that led to the 1" matrix can be

computed. This reverse solution [Paul 81] is required (by the simulator) to relate the T matrix to the present

values of the joint coordinates. The reverse solution is listed in Table 3.

The differential changes in the cartesian coordinates of the torch are related to the differential changes in

the joint coordinates through the manipulator Jacobian [Whitney 72, Paul 81]. Each column of the Jacobian

matrix J is a differential translation and rotation vector. The column vectors of



J=
9T6 9T6 9T6 9T6 9T6

9#2 9^3 9z4 9y5 9#6

arc listed in Table 4.

In scam tracing, sensory data can be utilized to determine the incremental change in the position of die

seam from differential changes in the elements of the Tfi matrix. The differential change matrix dT6 is thus

available tri plan the incremental motions of the torch. It thus becomes imperative to find the inverse

Jacobian (or incremental changes in the joint coordinates) which produce the specified incremental change in

the T, matrix.
0

Numerical inversion of die Jacobian [Whitney 72] is computationally intensive and hence is not suitable for

real-time control applications. Incremental changes in the joint coordinates can be obtained from a Taylor

scries expansion of the reverse solution. Such an approach leads to analytical formulae for the differential

joint coordinates which are functions of the elements of the T and dT6 matrices [Paul 81]. Analytical

formulae for the differential joint coordinates, which arc obtained by differentiating the reverse solution (in

Table 3), are listed in Table 5.

3. Kinematic Seam Tracking Control

The control task is to fill a volume with weld material while maintaining the proper position and orientation

of the torch with respect to the seam. While traversing the seam, the tip of the torch traces a curve in 3-D

space. If the discrete points on the curve to be traced and the surface containing the curve arc identified, the

T6 matrices can be generated for each point on the discrctized curve.

Specification of the T6 matrices at the sample points of the discretized curve accomplishes die seam tracing

ax px

ny

0

°y
o7.
0

ay

a7.
0

Py

P/.
1

task. The TA matrix is
0

n o a p
0 0 0 1

and represents the position and orientation of the torch shown in Figure 2. The origin of the describing

coordinate frame is located at the tip of the torch and is described by the vector p with respect to the base

frame. The three unit vectors n, o and a, which describe the orientation relative to the base frame, are

directed as follows [Paul 81]. The z-axis of the describing frame lies along the direction that the torch

approaches die surface (containing the curve to be traced) and is called the approach vector a. The y-axis of

the describing frame lies along the direction of the boom holding the camera and is called die orientation



vector o. The normal vector n is then chosen to form a right-handed set of vectors and is computed as

tt = 3 x 3

The vectors n, o and a describing the orientation of the torch and the vector p describing the position can be

specified independently. The control task can thus be split into two independent components :

• Tracing a curve in 3-D space; and

• Maintaining proper orientation of the torch with respect to die surface which contains the curve to
be traced.

The volume to be filled with the weld material is contained within two surfaces (of metal) which arc to be

joined together. The surfaces may be non-overlapping, as in the case of a butt joint (in Figure 3), or

overlapping as in the case of a lap joint or a fillet joint.

Let m be a curve (in 3-D space) which lies on the surface S and is to be tiaccd by the tip of the torch. The

surface S may have a varying slope. Henceforth, the curve m will be termed the mid-seam. The mid-scam is

discrcti/cd length-wise. Let nr be the vector (with respect to the base frame) pointing to the i-th sample point

m. on the mid-scam. The discretization is specified to allow a picccwisc linear approximation of the curve m

between two adjacent sample points. If the surface (in the vicinity of the two sample points tn. and m. .) is

also discrctized, then a pieccwisc planar approximation of S is obtained. Let P. denote the plane (containing

the points m. and m i+ j). The direction cosines of the plane specify the orientation of the torch which is held

constant for the duration of travel from m. to m. ,.

The position of the torch is specified by the coordinates of the sample points. The foregoing description of

the position and the orientation of the torch completes the formulation of the T6 matrix at die sample points.

The ensuing section specifics the T6 matrix for butt, lap and fillet joints.

3.1. Specification of the T6 Matrix

Having interpreted physically the elements of the T6 matrix, die next step is to generate numerical values of

the elements of the T6 matrix in terms of the coordinates of the sample points obtained from the sensor

system. Since a light stripe projector and a solid state camera are assumed to be used as the sensory device,

the 3-D coordinates of the points on the surfaces to be joined arc mapped into pixels in the camera image.

Figure 4 shows a typical camera image (at the i-th sampling instant) obtained from a butt joint. The break

points in the camera images of the surface indicate the discontinuity in the actual surfaces to be welded. To

specify the curve to be traced, it is essential to extract 3-D coordinates of the break points in the images. The



information regarding the orientation of the surfaces, in the vicinity of the break points, can be obtained by

extracting the coordinates of one additional point on each surface. The break points are called u. and v. for

the butt joint shown in Figure 3. The additional points on each of the two surfaces arc called pt and q.^

respectively. The subscript i denotes the sampling instant. The coordinates of the sample points are specified

with respect to the base frame of the robot, and p., u., v. and q. arc die vectors from the origin of the base

frame to the points pp u., v. and q{ respectively. The edges formed by die sample points { p. }, { q.{ }, { u. }

and { v. } arc denoted by /?, r/, M, and v, respectively.
i

To specify the p vector of the T6 matrix requires knowledge of the sample points along the mid-scam. For a

butt joint, the requirement that the torch be placed exactly in the middle across the u and v edges forces the x,

y and z coordinates of the mid-seam to be computed as:

+Vxi
2
+ vv

m" ~ 2—~

0)

For both lap and fillet joints, torch stand-off is an important consideration for obtaining a quality weld. Let

the desired torch stand-off be characterized by the parameter s, where s ranges from 0 to 1. The coordinates

of the mid-seam are then computed as

mxi =ux i +s(vx i-ux i)
myi =uy i +s(vyi-uyi)
mzi =u z i + s(vzi-uzi)

(2)

p, p and pz components of the T6 matrix are
Px = m x i ^3>

and specify completely the last column of the T6 matrix.

Practical seams have edges with slowly-varying slopes. Since the sample points are assumed to lie close to

each other (typically separated by 1 mm), the edges between two sample points can be approximated by a



straight line. This approximation leads to a p l a n c w h i c h P a s s e s t h l 0 l l S h at l e a s t ^ircc of the four sample

points (Pi, p . + , , q., q i+ {). The direction cosir. *CS of ^ p l a n c a r c a l s o t h c d i r e c t i o n c o s i » c s of a vector normal

to the plane. Since'the torch is required to be \ D C 1 P c n d i c u I a r "> the fictitious scam surface, thc direction

cosines of thc approach vector a are specified as th'° "egalive of t h c d i r c c t i o n c o s i n c s * ^ normal to thc

plane.

Thc values of thc components of thc orientation vector o ^ c o m p u t c d u n d e r ^ following constraint.

When thc torch and the camera arc on thc seam, both should trac k t h° SCam ' T h i s c o n d i t i o n guarantees that

sample points will not be lost if the slope of thc mid-edge (at thc poi'nt °f thC t o r c h ) d l f f c r s f r o m t h c slope at

thc point-of-vicw of thc camera. Let M be a constant shift in thc numbc."of s a m P | c P()i«ts between thc torch

and thc camera. Figure 2 shows that the o vector is perpendicular to tl.>e a v c c t o r and points along thc

direction of the arm holding the camera. If thc camera is traveling in the direction °* L'1C line joining in. N

and m. N, then tlic robot system will never lose track of the scam, unless thc slope experiences large changes

or discontinuities along thc scam.

The equation of a plane passing through three of thc four points (p i + l V Pj+1\-v Q\ + w ^i + N-l̂  c a n n o w ^e

specified, and tlic angle between thc planes at thc camera and the torch points can be determined. If (Xv /xr

v{) and (X2, ju2, vj arc thc dircction cosincs of thc two planes, then thc cosine of angle 0 between thc planes

is

cos(0) =XiA2 +/MM2 +^1^2

(6)

Thc vector a joining the points ni j+N_1 and m i + N along thc mid-edge is computed as

(7)

The projection of the vector a onto thc torch plane is chosen to be the o vector and is normalized to be of unit

length. Having obtained the normalized o and a vectors, tlic n vector is computed as

a = 3 x 3

(8)

to specify completely the T6 matrix at the sample points.

While traversing from the i-th to the (i-f-l)-th point, die orientation of thc torch and consequently tlic n, o

and a vectors remain constant. The p vector in the T6 matrix changes linearly because of thc straight line

approximation between the two points. To maintain a continuous speed and acceleration at tlic end points of



the segment, the motion of the torch is planned.

3.2. Planning the Motion of the Torch

ThP mnrinn of the tio of thc torch, in traversing a scgr; #

I ne motion 01 me up ui {Qn^ |S c o m p o s c c | of two parts:
• Motion along the segment, and

• Transition between segments.

To make a smooth transition bctwo ^ s c g m c n t s < jt js desirable to maintain a continuous velocity and

acceleration at the transition points. T o spccify t h c transition equations, a fourth-order curve is fit between

the point where a transition star'tS-"an(j ^Q p o j n t jnc |jcaljng thc end of thc transition [Paul 81]. The equations

for thc transition trajcctorics> ancj velocities arc outlined in Section 3.3.

Let M be thc totorf number of transition steps in which thc desired change in T6 is to occur. The differential

changes in the vt(o and a vectors at each transition point are

M

(9)

A! =

A3 =

M
(10)

M
(11)

where the subscripts i and (i + 1) denote the i-th and (i + l)-th segments, respectively. 'Hie An, Ao and Aa

vectors arc then added to die current n, o and a vectors, respectively, and normalized to unit length, to

produce thc n, o and a vectors at the next segment. Let n , o , a and n , o , a be thc vectors of the T, matrix

at thc present and next segments, respectively; and let thc subscript N indicate that these vectors have been

normalized to unit length. The nu, on and an vectors arc thus computed as follows :

fin =(rtp +An)N

(12)

(13)



Aa)N

(14)

Having computed the three component vectors (n, o and a) of T6 at the next segment, the first three

columns of the differential change matrix dT6 are determined, and the fourth column (or dp vector) can be

computed from the transition trajectory to specify the differential translation. The differential change matrix

dT6 is then

dT6 =

dnx dox dax dpx

dny doy day dpy

dnz doz da7 dp,

0 0 0 0

(15)

where the differential vector components (dn, do, da and dp) of the dT matrix represent the corresponding

change in the vector components (n, o, a and p) of the T, matrix.

Having generated the present T6 matrix and d'l 6 matrix to reach the next point, the inverse Jacobian (in

Table 5) is used to compute iterative!)' the differential changes in the joint coordinates. The inverse Jacobian

solutions arc derived under the assumption that the changes in the joint variables leading to the specified dT6

matrix are small. To overcome the practical fact that this assumption is not always satisfied in scam tracing

applications, an iterative technique is developed to compute the changes in the joint variables. The velocity

set-points during the transition are obtained by dividing the incremental values of the joint variables by the

time required to make the incremental change. The transition ends when the torch reaches the point D on the

segment B-C in Figure 5. At this point, the torch has the required orientation and velocity to track the

(i + l)-di segment I>C without error. This motion is called motion-along-the-segment.

During the motion of the torch, along the segment, the n, o and a vectors of the-robot remain constant. The

updated dT6 matrix is specified as:

<n 6=

0 0 0 dpx

0 0 0 dpy

0 0 0 dpz

0 0 0 0

(16)

where d p . dpv and dp., arc the differential changes in the x, y and z coordinates of the (i + l)-th transition
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point. When the torch reaches the next transition point, the process of planning the motion of the torch,

along the segment and during the transition, is repeated to plan the motion for the next segment.

3.3. The Transition Curves

A transition segment is illustrated in Figure 5. The transition starts at point A in the i-th segment and ends

at point D in the (i-f l)-th segment. Maintaining a continuous velocity and acceleration at the points A and D

appears to require that six boundary conditions be satisfied. A fifth-order polynomial (with six parameters)

would then be needed to approximate the cartesian transition curve. Symmetry of the transition guarantees

that a quart ic polynomial can approximate the cartesian transition curve [Paul 81|2. To facilitate the

development, let T be the transition time and T be the time required to traverse the segment ft-C. The time of

travci ( T ) across a segment is computed by dividing the volume of the weld material (to be deposited along

the segment) by the weld-wire volumetric feed-rate, which is assumed to be constant. The ratio (r/T) is

specified by the engineer (in Section 6). Let the normalized time-step parameter h be defined according to

2T

(17)

where t denotes the running time-variable (-T < t < T).

Let the fourth-order polynomial approximating the cartesian transition segment be

where the five parameters (fi. for i = 0 to 4) must be selected for X(h) to satisfy the boundary conditions

[Paul 81]:

X(0) =A ; X(l) =(C-B)^r +B

X(0) =2(B-A) ; X(l) = 2 ( C - B ) y

(19)

X(0) = 0 ; X(l) = 0

(20)

where the dot denotes differentiation with respect to h. (The initial acceleration condition X(0) = 0 leads to

p2 = o.)

The cartesian position, velocity and acceleration of the torch on the transition curve (as functions of the

normalized time-step parameter h) are

lTie transition equations are reproduced here because of the typographical errors in the cited reference.
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X(h) = - ( A C Y -AB)1V1 + 2 ( A C ^ -AB)h3 +2(AB)h +A

(21)
X(h) = - 4 ( A C Y -AB)h3 + 6 ( A C Y -AB)h2 +2(AB)

(22)

and

X(h) = -12(ACy -AB)h2 + 1 2 ( A C Y -AB)h

(23)

where AB = (B - A) and AC = (C - B).

Filiation (21) defines the cartesian position of the torch (in terms of the normalized time-step parameter h)

and is used to evaluate the coordinates of the transition point. The welding torch transits from the present

segment to the next and maintains a continuous velocity and acceleration at the end points (A and D in F;igure

5) of the transition segments. Equation (21) is used to compute the position of tine torch during the transition.

In the next section, the n, o and a vectors for the transition are formulated.

4. The Modified dT6 Matrix
The dT. matrix specifics an incremental change in the orientation and position of the torch induced by

incremental changes in die joint coordinates. Seam tracing requires incremental changes (in the base

coordinates) in both the position and orientation of die torch. Since the changes in the base and the joint

coordinates arc related through the nonlinear inverse Jacobian coordinate transformation, a small change in

the position and orientation of the torch in the base coordinates may require a large change in the joint

variables. This realization hampers application of the inverse Jacobian to compute the differential changes in

the joint coordinates from the dT6 matrix.

The goal of this section is to introduce the concept of a modified dT6 matrix and an iterative algorithm

which docs not restrict the nature of changes in the joint variables that led to the specified dT6 matrix [Khosla

83]. If the changes are incremental (as assumed for the derivation of the inverse Jacobian), then the algorithm

converges in the first iteration. Tn the case of large changes, the algorithm converges rapidly (in typically 2-3

iterations for the examples highlighted in Section 6) to the appropriate differential changes in the joint

coordinates. The T6 matrix at the next point is computed by adding the present T. matrix to the modified

dT6 matrix. This approach reduces computation time because computing the next rl' matrix does not require

the forward solution.

Let R and S be two points on the mid-seam transition segment between the points A and D (in Figure 6).
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Let tlie position and the orientation of the torch at points R and S be specified by T6R and T(S, respectively.

LetT6S be such that the change di 6 in TfiR leads to T6S. Thus,

Tes = T6R + dT6

(24)

It is also possible to reach T6S from T R through a transformation C (in the base coordinates) which consists

of a translation along the x, y and z axes followed by a rotation 0 along an axis k. Thus,

(25)

where

C =Trans(x,y,z)Ro((k,0)

(26)

Let nR, oR and aR be the component vectors of the T6R matrix specifying the orientation of the torch at the

point R, and ns, os and a<. be the corresponding vectors of the T s matrix. From (24), the corresponding

differential vectors (In, do and da arc

dh -i?s -tiR

(27)
do = Os " OR

(28)
da -as - a^

(29)

While traveling from point A to point D (in Figure 5), the d'IV matrices should be computed to preserve the

physical significance of the T6 matrices at the transition points. Thus, T6R should be computed from c!T6

according to (24). Geometrically, the loci of the n, o and a vectors of a Tfi matrix should be a sphere of unit

radius.

Figure 6 depicts the total desired change in each of the n, o and a vectors, while traversing from point A to

point D (in Figure 5) in M steps. The components An, Ao and Aa, computed from (30)-(32), arc shown in

Figure 6. The arc of the unit circle represents the loci of the n, o and a vectors during the transition. Let

(nR) , (oR)u and (aR) be the unnormalizcd vectors whose tips lie on the point R7 on the straight line joining

points A and D. The subscript u indicates that the vectors arc unnormalizcd. The vectors nR, oR and aR are

obtained by normalizing the magnitude of the corresponding vectors to unit length.
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The unnormalized vectors of the T6S matrix are computed as

(ns)u=(nr)u+8n

(30)
(os)u=(or)u+8o

(31)

(32)

and then normalized to obtain the ns, os and as vectors. rl'hc right-hand sides of (27)-(29) are thereby

specified completely, and the differential vectors of the dT6 matrix can be computed to preserve the physical

significance of the I' matrix.

Having obtained the (In, do and da vectors of die dT6 matrix in (15), it remains to compute the dp vector to

specify completely the matrix. The vector dp is computed as

where the vectors pR and ps arc obtained from (21).

By construction, the d'lV matrix satisfies (26). Since the magnitudes of the changes in the joint variables are

not constrained in the derivation of the d'l' matrix, the computed dT, matrix satisfies (27). Thus, the 1\

matrix at the next point S can be obtained by adding the T, matrix at the present point R to the computed

dT6 matrix (and consequently there is no need to compute the T6 matrix at the point S from the updated

values of the joint variables when the torch reaches the point S). The real-time computational requirements

of this construction arc detailed in Section 5.

4.1. An Iterative Algorithm to Compute the Differential Changes

In applications, such as seam tracing (in which the sample points lie at incremental distances along the

scam), tlie required changes in the joint variables may not be incremental. A practical example involves

tracing a scam which has large slope variations. The dT6 matrix is related to the changes in the joint variables

through die inverse Jacobian which, in turn, is derived under the assumption of small changes in the joint

variables. Many of the scams occurring in practice have slowly varying slopes and application of die inverse

Jacobian to make the incremental motions is computationally advantageous. In practice, the scam may

exhibit large slope changes at a few points, and the solution obtained (for the differential changes in the joint

coordinates to reach the next point) from the inverse Jacobian may exhibit significant errors. The torch is

thus placed at the incorrect point on the scam, and a large error (in the position and orientation of the torch)

is introduced. To overcome this problem, an iterative algorithm is introduced. A block-diagram of the
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iterative algorithm is shown in Figure 7.

The algorithm begins at i = 0 with the initialization of the following variables: T6* (T6 matrix of the next

point), T6i (current T6 matrix), and qi + A (current values of the joint variables).

rFhe algorithm implemented at the i-th iteration is ;

(33)
dQi+i =J"1[dT6 i ,q,+J

(34)
qi +i =qi-kiqi+i

(35)
T6i=F[qi+1]

(36)
qi=D[qi+i]

(37)

where J"1 is the inverse Jacobian (in Table 5) for the computation of the differential changes in the joint

variables from dT6i and qj + J. (in contrast to the symbolic or numerical inversion of the Jacobian matrix); F

denotes the operation of computing the T6 matrix (in Table 2); and D signifies the computation (delay) time

for the forward solution.

Upon substituting (34) into (35),

Qi -hi =Qi +J~1[dT6i,q i+1]

(38)

and hence,

(39)

Equation (39), and consequendy the algorithm depicted in Figure 7, is the Ncwton-Raphson method

[Atkinson 78] for solving the inverse Jacobian system of nonlinear equations (in Table 5).

The algorithm converges (in theory) when all of the components of the dT6i matrix in the block-diagram (in

Figure 7) arc zero. In practice, the algorithm is assumed to converge when each of die elements of dl' is less

than a prc-sct tolerance. The computed vector </. contains the desired set-points (in the joint variables) to

reach the next position. When the desired changes in the joint variables arc small, the algorithm converges in

one iteration and reduces to obtaining the inverse differential solutions from the inverse Jacobian (in Table 5).
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For the scams tested with the simulator, the algorithm always converged in a maximum of three iterations

(when the preset tolerance was set equal to zero). The computational requirements of the scam tracing

algorithm are outlined in the next section.

5. Computational Requirements
The computations required to follow the scam from the present sample point to the next arc outlined in

Table 6. The number of iterations required for the transition point computation and iterative algorithm

(33)-(37) arc denoted by NL and N2, respectively. (For the scams traced by the simulator, typical values are

found to be N{ = 2 and N2 = 1.) Execution times of the 8087 hardware instructions [Intel 83] are listed in

Table 7. These floating point operation times (including the times required to load and store the operand) are

used to estimate the time required to move the torch from one sample point to the next. Typical times (shown

in Table 6) range from 24 to 29 milliseconds, which correspond to sampling rates of 35-40 Hz. For most

welding applications, a sampling frequency of 10 Hz appears to be adequate.

These computational estimates are based upon the matrix kinematic modeling of manipulators used

throughout this paper. Matrix representations of rotations arc highly redundant. Quaternions [ftcclcv

72, Hamilton 69] offer a convenient representation for rotations and can reduce both the storage requirements

and computational load [Taylor 79]. The authors estimate that the quaternion implementation of the seam

tracking algorithm would increase die achievable sampling rate to 60 Hz.

6. Simulation
To evaluate the algorithm, a software simulator has been developed (in the C programming language on a

VAX 11/780) for the six degree-of-freedom Cyro robot in our laboratory. The simulation is initialized by

retrieving scam data (as coordinates of sample points) from a data file. The first two sampled cross-sections of

the seam are used to compute the desired T6 matrix of the robot at the first point on the mid-seam and to

compute the joint position and velocity set-points to reach die desired destination. Upon reaching the first

point on the mid-seam, the algorithm computes the coordinates of the transition point on this segment (for

the ratio T / T which is entered by the engineer at the start of the simulation) and the total time T required to

traverse the next segment. The T6 matrices at the present and next sample points are used to generate the

joint position and velocity set points by the algorithm in (33)-(37). The trajectory from the beginning to end

of the transition is computed from (21), and the joint position and velocity set-points arc computed to follow

the interpolated curve. Upon reaching the end of the transition, the process is repeated (for each transition

point), until the last sample point is reached. The simulation is then terminated and the specified curve is

traced.
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To achieve a quality weld, die lag or lead angle of the torch must be controlled adaptively. In the case of

fillet and lap joints, the torch stand-off must also be controlled. Since an adaptive controller for these

parameters remains to be developed, we have included (in our simu-latorXthe facility to specify these control

parameters at the beginning of the simulation.

In the software simulator, the torch can be rotated about two axes. The first is about an axis parallel to the

direction of travel and the second is about an axis perpendicular to the direction of travel (in the plane of the

first axis). This capability allows control over the lead or lag angle of the torch. Facility to specify the

stand-off for lap and fillet joints has also been incorporated. The simulator has tracked butt, lap and fillet

joints and the experimental results arc highlighted in the next section.

7. Experimental Results
The seam tracking algorithm approximates the curve between sample points by a straight-line. To

emphasize the effect of linear interpolation and the choice of sampling distance on the tracking accuracy, the

simulator tracked a sinusoidal curve (with uniform spacings of 30 and 10 degrees). The simulation results arc

depicted in Figures 8 and 9, respectively. As the sampling distance is decreased, the tracked curve approaches

the actual curve. The maximum tracking error ( which occurs for h = 0.5) is

and depends upon AB, AC and the ratio T/T. For a particular seam and sample points, AB and AC are

constant and the tracking error (with respect to the interpolated curve) is a linear function of the ratio T /T .

The simulation experiments illustrate that accurate tracking can be achieved by judiciously selecting the

sample points and maintaining the ratio (T /T) of transition time to segment time as small as possible.

8. Conclusions
A general-purpose real-time seam tracing algorithm, for implementation on any six degrcc-of-freedom

robot, is proposed. The algorithm (which requires knowledge of only one-point-ahead to track a seam) can be

applied to a multitude of robotic seam tracking activities such as gluing, surface grinding and flame cutting.

The algorithm incorporates the physical interpretation of the T6 and dT6 matrices to realize scam tracking. To

reduce the computational requirements, the paper introduces the concept of a modified dT6 matrix. The

inverse Jacobian solution is generalized (according to Newton's method) to compute both large and small

changes in the joint coordinates.

To test the efficacy of die proposed seam tracing algorithm, a simulator has been written and tested on a

VAX 11/780. The simulation results arc highlighted in Section 7 of [Khosla 83]. The tracking accuracy is a

function of the sampling distance because of the straight-line approximation between two successive sample
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points, and the tracking error increases with the increase in ratio of the transition time to the segment travel

time.

Future activity will focus on die adaptive control of the weld parameters and dynamic robot control.

Successful practical implementation will depend upon the availability of faster processors and the

experimental performance evaluation of the algorithm.
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Figure 1: Link Coordinate Frames of the CYRO Robot
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Torch
I Camera

•ir

Baae Frame

Figure 2: Physical Interpretation of the T6 Matrix
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Figure 3: Butt Joint

Figure 4: Camera Image of a Butt Joint
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FigureS: A Transition Segment
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Note* The generic vector g symbolizes the
normal (n), orientation (o) and approach
(a) vectors.

Figure 6: Locii of n, o and a Vectors
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Set point T6*
Updated nlow of
joint ibto

Pnaant fmlnM
{of joint TBziablM

Figure 7: Block Diagram of the Iterative Algorithm
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Figure 8: Sinusoidal Seam Tracking (30 degrees sampling interval)
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Figure* Sinusoidal Seam Tracking (10 degrees sampling interval)
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Link
1

2

3

4

5

6

Variable

*3

24

ys

ft

8

02-9O

90

90

0

ft

a
-90

-90

90

90

0

0

a
0

-H

0

0

0

0

d

-R.

L

*3

*4

y%

0

Definition of the Parameters

8 is the angle of rotation about the raxis

a is the angle of rotation about the x-axis

a is the length of translation along the x-axis

d is the length of translation along the z-axis

Table 1: Link Parameters of the CYRO Robot

-CAS6 +X3Q -HSj ) - S i ( - y 5 +L)

82(2482 +X3C2 -HSj) + Ci( - y 5

- C 2 (24C2-X 3 S 2 -HC2) - R

0 1

Table 2: Forward Solution of die CYRO Robot
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Joint coordinate

0i

2A

*

*

Analytical Expression

alanl

atanl

—Z-

-iciax +siay)]
(-«,) j

C"'Z?-ZTR+H

atanl

atanl —— + 180°

Conditions

7-6(2,3)> 0

r6(2,3)< 0

82> 0

^ < 0

NOMENCLATURE

C, is the Cosine of the i-th joint angle

Si is the Sine of the irth joint angle

atan2 is the double argument arc tangent junction

Table 3: Reverse Kinematic Solution of the CYRO Robot
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-<CiC2C« +SiSt)(var]) +(SiC2C6 -
:xCi% +SAH>a r l> +("SiQS6 -QC6)(var2)

QS^varl) -SjS2(var2)

-c ,

3T«

-C2Q(var3) +S2Q(var4)
C|S|(var3) -SA<

SjCvari) -Cj(var4)

- Q
0

3]^
3*3

0
0
0
0

3*4

0 1
0
- 1
0
0
0

3T6

§6

Q
0
0
0
0

HL
306

NOMENCLATURE

varl =Si(z4Sj +x3C2 -HSj ) + Q ( - y 5

var2 sC l(z4SJ +x3Cj -HS2) +Si( - y 3

var3 =s - 24Q + X3S2 + HCj

var3 ^uSj +XjQ - H S j

TaMt4: Column Vectors of theJacobian matrix
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DIFFERENTIAL JOINT COORDINATES

_

* (NSJ2 + (NC2)
2

= C2Axd02 + S2A2 +C2dpz -

=Cipxd$i +S\dpx +Sipyd8i -C\dpy

d(NS2)

A2 =

NOMENCLATURE

NC2 = -at

d(NC2) = -dat

NS2 = """"Cltfx — •S'l̂ y

= S\Qxd0\ — C\d(ix — C\ciyC

A\ = C\px + S\Py

~~SlpXd$l +C\dpx +C\Pydt

i$x - S\day

h+Sidpy

Table 5: Inverse Jacobian of the CYRO Robot
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STEP

Find the mid-scam

Butt Joint (1)

Lap/Fillet Joint (2)

Compute segment travel time T

Butt Joint

Lap/Fillet Joint

Find transition point

Butt Joint

Lap/Fillet Joint

Computation of

a Vector

o Vector (6)-(7)

n Vector (8)

Compute dT 6 Matrix

Normalization

Iterative algorithm (33) - (37)

Total

Butt Joint

Lap/Fillet Joint

3

23

32

23*N i

32*N t

9

15

3

9

66*N2

62 + 23*Nt
+ 66*N2

73+23*Ni

+ 66*N?

-h

'3

6

39

61

39*N,

6l*Ni

14

11

6

12

4

54*N2

86 + 39*N,
+ 54*N2

108 + 39*Ni

+ 54*N2

•

3

I

1

Nt

Ni

5

3

3

15 + N,

15 + N,

5

6

5*N ,

6*NV

1

1

3

10 + Nj

10 + N,

SIN/

/cos

6*N2

6*N2

6*N2

TIMHin
millisec

0.384

0.462

3.611

5.256

7.222

10.512

1.611

1.675

0.462

0.576

1.125

7.206

23.872

28.885

Table 6: Computational Requirements of the Scam Tracing Algorithm
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• Tr

Function

Multiply
Add
Divide
Square Root
Tangent
Exponentiation
Load
Store

Time(jis)

27
17
39
36
90
100
10
21

Table 7: Execution Times of the 8086/8087 Microprocessor^ MHz Clock) [Intel 83]


