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Abstract

Seam tracking is currently accomplished by specia features of the robot and a priori knowledge of seam
geometry. In this paper we demonstrate the feasibility of tracking a seam in real-time. A genera-purpose
seam tracking algorithm is developed for implementation on a robot with Sx degrees-of-freedom. The
algorithm is motivated by a physica interpretation of the T and dT¢ matrices, and the assumption that 3-D
seam data are available. In the past, the dr\é matrix and inverse Jacobian solutions have been used to
compute the differential changes in the joint angles. By using the inverse Jacobian, an iterative agorithm is
introduced to compute both large and smdl changes in the joint variables. The versatile seam tracking
algorithm can be applied to a multitude of robotic seam tracking activities such as gluing, surface grinding

and flame cutting.







1. Introduction

Manufacturing operations such as robotic welding, gluing, sealing and surface grinding require trgjectory
control of the tool mounted on the end-effector of the robot. While the kinematic control agorithm
developed in this paper is applicable to a multitude of manufacturing operations, robotic arc welding.
nomenclature is used. The todl is cdled the welding torch, and the tool trgjectory is defined by the weld
scam. The fundamental problem is to position a welding gun with the proper trandational and rotational
positions with respect to a curved weld scam in three dimensional (3-D) space. A scam in space can be traced
by afive degrcc-of-freedom robot. Since real-time seam tracing requires that both the sensor and torch trace
the seam, a 9x degrcc-of-freedom robot is required. Automation of the welding process thus demands a robot
with six degrces-of-freedom and acceptable performance in terms of speed and accuracy. The control task
also demands a real-time algorithm to guide the robot in afixed geometrical relationship to die contour.

Automation of the welding process can be divided into two distinct components :

 Scam data acquisition and interpretation by a sensor sysem ; and

« Guidance* and control of the robot to traverse the seam, while maintaining the proper orientation
and position.

Since the scam data congtifute the 3-D coordinates of the seam, a visud sensory device (such asa light stripe
imaging device) can be used to obtain the seam data. Methods for obtaining 3-D data from 2-D images have
been developed [Agin 82]. Having obtained and interpreted the scam data, the control system must guide die
robot to traverse the scam and place the requisite amount of weld material aong the path. The torch position
and attitude must be controlléd precisely to ensure acceptable weld quality.

Scam tracking is currently accomplished by exploiting a specia feature of the robot or limiting the
application to a particular type of a seam. Boallinger and Harrison [Bollinger 71] describe the principles and
techniques of agpatial scam tracking system. In this application, the seam is constrained to lie on acylindrical
surface.  Tomi/.uka, e ah [Tomizuka 80] propose a preview control gtrategy for two-axis welding torch
positioning and velocity control. The scheme is only applicable for two-axis control and hence constrains the
scam to lie in a plane. Furthermore, the scheme cannot be implemented on a general purpose sx degrec-of-
frccdom robot.

One of the first successful demonstrations of computer vision to arc welding is the NASA weld skate[HW
80]. This system has been implemented on a special-purpose robot and requires specia edge preparation to
operate properly. The system is incapable of making any determination regarding the joint fit-up. The
principle of structured illumination has been employed by Kawasski Heavy Industries of Japan [Masski 79] to
develop avisua seam traéki ng system. The approach used for image analysis is training-by-showiug. A set of




typica images is acquired in a teaching operation prior to welding and stored in the memory of the processor.
As real-time images are acquired, a search is conducted (through the set of trained images) until a match is
found. During the matching process, the positiona displacement between the two images is computed and
used to correct the position of the torch. The system has been designed specificdly for the ship building
industry and hence operates only on fillet joints. The sysem does not utilize part fit-up information for seam
tracking.

An example of wclding-by-tcaching is the system described by Masaki, et al [Masaki 81] which has a visud
scam tracking capability. The robot is taught the reference path for the end-effector and the reference image
for the image processor. In the teach mode, two passes arc required for each work piece, one for sensing and
one for welding. The path for the welding operation is generated from the sensing pass information.

Current robot welding systems are thus suitable for large batches of parts which are cut and fit to tight
tolerances. The robot must trace and weld a scam, within acceptable tolerance limits, on such closdy fit parts.
Another limiting factor for a semi-automated welding system is the robot programming and set-up time in the
shop when the part is changed. These constraints may be eased through the introduction of a CAD/CAM
data base in which tlie welding trgjectories and speed, weave pattern, wire feed rate, voltage and current are
stored for each welding part and then retrieved as required. Unpredictable fit-up and loose part tolerances
create the need for a real-time guidance and control agorithm.

The objective of this paper is to introduce a versatile scam tracing agorithm that demonstrates the
feadhility of tracking a scam in read-time. The generd purpose seam tracing agorithm can be
implcmentabled on any robot with sx degrecs-of-freedom.  The agorithm is motivated by the physica
interpretation of tlie forward solution, or Tg matrix [Paul 81] and tlie inverse Jacobian. To facilitate
implementation of the inverse Jacobian solutions, an iterative agorithm is developed to compute the
differentiadl changes in the joint variables from tlie dT¢ matrix. To reduce dgnificantly the on-line
computational requirements, the concept of a modified dTs matrix is adso introduced. To evaluate the
performance of the scam tracing agorithm, a functional simulation package (for the Cyro® robot in our
laboratory) has been implemented. The outputs of tlie simulation arc the joint position and velocity set-
points for tlie robot control system.

The paper is organized as follows. The kinematics of the Cyro robot (including the forward and reverse
solutions , and the Jacobian and inverse Jacobian) are developed in Section 2. The foundations for the scam
tracking algorithm are laid in Section 3. Focus is on the specification of the T matrices at tlie sample points

1Cyro is atrademark of the Advanced Robotics Corporation.




along the seam and planning the motion of the torch. To reduce the computational requirements of the
algorithm for real-time applications, the concept of the modified dTg matrix is introduced in Section 4, and an
iterative algorithm to compute both large and small changes in the joint coordinates is then developed. The
computationa requirements arc enumerated to indicate the potential for die real-time implementation of the
algorithm. The salient features of the simulator, which has been implemented to evaluate the performance of
the scam tracing algorithm, arc presented in Section 5. Simulation experiments for representative test cases
are then highlighted in Section 6. Finaly, in Section 7, conclusions arc drawn from the simulation
experiments, and the paper is summarized.

2. Kinematics of the Cyro Robot

The forward solution (or Tg matrix) of die robot, from the base frame to the torch (or end-effector) frame, is
developed usng homogeneous transformations [Paul 81]. "The homogeneous transformations, relating two
successive coordinate frames, are only a function of the gx joint coordinates. Thus, knowledge of dl of the gx
joint coordinates leads to the transformation (or forward solution) from the base frame to the torch frame.

To develop the homogeneous transformation or A matrices, a coordinate frame is embedded in each of the
sx links of the robot, using the Dcnavit-Hartcnberg convention [Denavit 55].  The coordinate frames are
shown in Figure 1. Joints 1*¥ 2 and 6 are rcvolute, and joints 3, 4 and 5 are prismatic. The coordinates of the
revolutejoints arc #,, $, and O'b,and the coordinates of the prismatic joints are X z, and_y\g. The subscripts
on the coordinates indicate the joint number; the base is link zero. The base coordinate frame is fixed at the
center of the table of the robot and coincides with the first coordinate frame. When all of the six joint
coordinates arc zero, the axeﬁ forjoint 1 (table) andjoint 6 (forch) arc parallel and the robot becomes singular.
In the algorithm, the manipulator is assumed to be at the zero position. Without loss of gen'erality, the
constant offsets of die robot are assumed to be zero. A counter-clockwise rotation of the revolute joints is
considered to be positive,, and trandation of die prismatic joints along the positive z-axis is considered to be
positive.

The link parameters of the Cyro robot arc listed in Table 1, and the forward solution is displayed in Table 2.
Having obtained the forward solution, the values of the joint coordinates that led to the T matrix can be
computed. This reverse solution [Paul 81] is required (by the simulator) to relate the T matrix to the present
values of thejoint coordinates. The reverse solution is listed in Table 3.

The differential changes in the cartesian coordinates of the torch are related to the differential changes in
the joint coordinates through the manipulator Jacobian [Whitney 72, Paul 81]. Each column of the Jacobian
matrix Jis a differential trandation and rotation vector. The column vectors of
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arc listed in Table 4.

In scam tracing, sensory data can be utilized to determine the incremental change in the position of die
seam from differential changes in the elements of the Ty matrix. The differential change matrix dTe is thus
available tri plan the incremental motions of the torch. It thus becomes imperative to find the inverse
Jacobian (or incremental changes in the joint coordinates) which produce the specified incremental change in
the T, matrix.

(o]

Numerical inversion of die Jacobian [Whitney 72] is computationally intensive and hence is not suitable for
real-time control applications. Incremental changes in thejoiht coordinates can be obtained from a Taylor
scries expansion of the reverse solution. Such an approach leads to anaytica formulae for the differentia
joint coordinates which are functions of the elements of the Te and dTe matrices [Paul 81]. Analytical
formulae for the differential joint coordinates, which arc obtained by differentiating the reverse solution (in
Table 3), arelisted in Table 5.

3. Kinematic Seam ‘i’racking Control

“The control task is to fill a volume with weld material while maintaining the proper position and orientation
of the torch with respect to the seam. While traversing the seam, the tip of the torch traces a curve in 3-D
space. If the discrete points on the curve to be traced and the surface containing the curve arc identified, the
T matrices can be generated for each point on the discrctized curve. ’

Specification of the T matrices at the sample points of the discretized curve accomplishes die seam tracing
task. The Ta matrix is
]

leoxa(px-
.r=noap‘=ny°ya/Py
$~looo01 " n o & A
0 001

and represents the position and orientation of the torch shown in Figure 2. The origin of the describing
coordinate frame is located at the tip of the torch and is described by the vector p with respect to the base
frame. The three unit vectors n, o and a, which describe the orientation relative to the base frame, are
directed as follows [Paul 81]. The z-axis of the déscribing frame lies dong the direction that the torch
approaches die surface (containing the curve to be traced) and is called the approach vector a The y-axis of
the describing frame lies along the direction of the boom holding the camera and is called die orientation




vector 0. The normal vector n is then chosen to form a right-handed set of vectors and is computed as

it =3x3

The vectors n, 0 and a describing the orientation of the torch and the vector p describing the position can be
ecified independently. The control task can thus be split into two independent components :

« Tracing acurve in 3-D space; and

» Maintaining proper orientation of the torch with respect to die surface which contains the curve to
be traced.

The volume to be filled with the weld materia is contained within two surfaces (of metal) which arc to be
joined together. The surfaces may be non-overlapping, as in the case of a butt joint (in Figure 3), or
overlapping as in the case of a lapjoint or afillet joint.

Let m be acurve (in 3-D space) which lies on the surface Sand is to be tiaced by the tip of the torch. The
surface Smay have a varying lope. Henceforth, the curve m will be termed the mid-seam. The mid-scam is
discreti/cd length-wise. Let nr, be the vector (with respect to the base frame) pointing to the i-th sample point
m, on the mid-scam. The discretization is specified to dlow a piccowisc linear approximation of the curve m
between two adjacent sample points. If the surface (in the vicinity of the two sample pointstn. and m. ;) is
aso discretized, then a pieccwisc planar approximation of Sis obtained. Let P, denote the plane (containing
the points m. and m;. j). The direction cosines of the plane pecify the orientation of the torch which is held
constant for the duration of travel from m. tom. .

The position of the torch is specified by the coordinates of the sample points. The foregoing description of
the position and the orientation of the torch completes the formulation of the Ts matrix at die sample points.
The ensuing section specifics the T matrix for butt, lap and fillet joints.

3.1. Specification of the T¢ Matrix

Having interpreted physicaly the elements of the T matrix, die next step is to generate numerical values of
the elements of the Ty matrix in terms of the coordinates of the sample points obtained frdn the sensor
sysem. Since alight stripe projector and a solid state camera are assumed to be used as the sensory device,
the 3-D coordinates of the points on the surfaces to be joined arc mapped into pixels in the camera image.
Figure 4 shows a typicd camera image (at the i-th sampling instant) obtained from a butt joint. The break
points in the camera images of the surface indicate the discontinuity in the actua surfaces to be welded. Td
soecify the curve to be traced, it is essential to extract 3-D coordinates of the bresk points in the images. The




information regarding the orientation of the surfaces, in the vicinity of the break points, can be obtained by
extrecting the coordinates of one additional point on each surface. The bresk points are called u. and v, for
the butt joint shown in Figure 3. The additiona points on each of the two surfaces arc caled p; and g.»
respectively. The subscript i denotes the sampling instant. The coordinates of the sample points are specified
with respect to the base frame of the robot, and Py Uy V, and q arc die vectors from the origin of the base
frame to the points p, u., v. and g respectively. The edges formed by die sample points { p. } {a¢}{ u, }
and { v. } arcdenoted by /?, 1/, M, and v, respectively.

To secify the p vector of the T matrix requires knowledge of the sample points aong the mid-scam. For a
butt joint, the requirement that the torch be placed exactly in the middle across the u and v edges forces the X,
y and z coordinates of the mid-seam to be computed as:

Uy +Vxi

mxi 2
Uy +Vy

My = )
- Uz + vy
Mn - z_~

0

For both lap and fillet joints, torch stand-off is an important consideration for obtaining a quality weld. Let
the desired torch stand-off be characterized by the parameter s, where s ranges from 0 to 1. The coordinates
of the mid-seam are then computed as

Myi =Uxi +S(Vxi-Uyi)

My =Uy; +S(Vyi-Uy;)
Msi =Uz + S(Vzi-Uy)

@
The .
pt p¥and p, components of the T matrix are
Px = "Xi ~3>
pz = mzi )

and specify completely the last column of the T matrix.

Practical seams have edges with sowly-varying dopes. Since the sample points are assumed to lie close to
each other (typicaly separated by 1 mm), the edges between two sample points can be approximated by a




straight line. This approximation leads to 2 P'anc which passes thioligh atleast ajroe of the four sample
points (s, P-sry G, G+ ). The direction cogr, *CS of A plancarc aiso the direstion cosi csofa ety pormal

to the plane. Since'the torch is required to be\P“TPe®iev!ar > the fictitious scam surface, the direction
cosines of thc approach vector a are specified as th'e "evdlive of the dircction cosines « A normg to the

plane.

The values of thc components of thc orientation vector o A~ ComPuted under a fqianing constraint.

When thc torch and the camera arc on thc seam, both should trac ktho SCam: Thiscondition o iarantees that

sample points will not be log if the dope of the mid-edge (at thc poi™ °f thC toren) dffers from the gqyne o
the point-of-vicw of thc camera. Let M be a constant shift in thc numbc."°$2™p!¢ PVits between the torch

>e a vcctor

and thc camera. Figure 2 shows that the o vector is perpendicular to tl. and points dong thc

oy

direction of the am holding the camera. If thc camera is traveling in the directior® °* ' linejoining in, N,
and m. ., then tlic robot system will never lose track of the scam, unless thc dope experiences large changes

or discontinuities along thc scam.

The equation of a plane passing through three of thc four points (pi+iv Pj+1\-v Q\s W /i + N-A €80 NoW A®
specified, and tlic angle between thc planes at thc camera and the torch points can be determined. If (X, /X;
V) and (X2, jup, V] arc the dircction cosincs of the two planes, then the cosine of angle O between the planes
is

cos(0) =XiA2 +MM2 +172
‘ (6)

The vector ajoining the points nij.n_1 and m;.y aong thc mid-edge is computed as

@ =M — Mo
@)
The projection of the vector a onto the torch plane is chosen to be the o vector and is normalized to be of unit
length. Having obtained theé normalized o and a vectors, tlic n vector is computed as

a =3x3
8
to specify completely the Tg matrix at the sample points.

While traversing from the i-th to the (i-f-I)-th point, die orientation of thc torch and consequently tlic n, o
and a vectors remain constant. The p vector in the T matrix changes linearly because of thc straight line
approximation between the two points. To maintain a continuous speed and accéleration at tlic end points of



the segment, the motion of the torch is planned.

3.2. Planning the Motion of the Torch

ThP mnrinn of the tio of thc torch, in traversing a scgr. #
| nemotion 01 me up ui (o iscomposce| of tWO parts:
» Mation aong the segment, and

* Trangition between segments.

To make a smooth transition bctwo, scgments< Jt Js desirable to maintain a continuous velocity and
acceleration at the transition points. ZTO socaify the trangition equations, a fourth-order curve is fit between
the point where a transition star'ss"anj " po nt jncljcajnd thc end of the transition [Paul 81]. The equations

for the trangdition trgjcctorics. ancj velocities arc outlined in Section 3.3.
-

Let M be the totorf number of transition steps in which the desired change in Tg is to occur. The differential
changes in the v;(o and a vectors at each trangition point are '

At = gy — B
. M
9)
Al = iy —F
M
(10)
A3 = 6(i+l} _ai
M
(11)

where the subscripts i and (i + 1) denote the i-th and (i +1)-th segments, respectively. 'Hie An, Ao and Aa
vectors arc then added to die current n, 0 and a vectors, respectively, and normalized to unit length, to
produce thc n, 0 and a vectors at the next segment. Let Np: Op» & andn,, q,, § be thc vectors of the T, matrix
at thc present and next segments, respectively; and let the subscript N indicate that these vectors have been
normalized to unit length. The n,, 0, and &, vectors arc thus computed as follows :

fin =(rtp +A_'n)N

(12)
8, = (8, +8o)y

(13)




3, = (3, + Aa)y
(14)

Having computed the three component vectors (n, 0 and a) of T at the next segment, the first three
columns of the differential change matrix dTs are determined, and the fourth column (or dp vector) can be
computed from the transition trgjectory to specify the differential translation. The differential change matrix
dTgisthen

dn, do, da, dpy
dn, do, da, dp,
dTe =|dn, do, da dp,
0O 0 0 O
(15)
where the differential vector components (dn, do, da and dp) of the dT, matrix represent the corresponding
change in the vector components (n, o, aand p) of the T, matrix.

Having generated the present T matrix and dlg matrix to reach the next point, the inverse Jacobian (in
Table 5) is used to compute ‘iterative!)' the differential changes in thejoint coordinates. 'The inverse Jacobian
solutions arc derived under the assumption that the changes in the joint variables leading to the specified dTg
matrix are small. To overcome the practical fact that this assumption is not always satisfied in scam tracing
applications, an iterative technique is developed to compute the changes in the joint variables. The velocity
set-points during the transition are obtained by dividing the incremental values of the joint variables by the
time required to make the incremental change. The transition ends when the torch reaches the point D on the
segment B-C in Figure 5. At this point, the torch has the required orientation and velocity to track the
(i +1)-di segment I1>C without error. This motion is called motion-along-the-segment.

During the motion of the torch, along the segment, the n, o and a vectors of the-robot remain constant. The
updated dTg¢ matrix is specified as:

0 00 dpy
|0 00 dp
<N6=[0 0 0 dp,

000 O

(16)
where dp.. dp, and dp., arc the differential changes in the X, y and z coordinates of the (i +1)-th transition
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point. When the torch reaches the next trangition point, the process of planning the motion of the torch,
aong the segment and during the transition, is repeated to plan the motion for the next segment.

3.3. The Transition Curves

A trangition segment is illugtrated in Figure 5. The transition starts at point A in the i-th segment and ends
a point D in the (i-f 1)-th segment. Maintaining a continuous velocity and acceleration at the points A and D
appears to [equi re that x boundary conditions be satisfied. A fifth-order polynomia (with sx parameters)
would then be needed to approximate the cartesian transition curve. Symmetry of the transition guarantees
that a quartic polynomid can approximate the cartesian transiion curve [Paul 81°. To fadlitate the
devel opment; let T be the trandition time and T be the time required to traverse the segment ft-C. The time of
travcl ( T ) across a segment is computed by dividing the volume of the weld materia (to be deposited along
the segment) by the weld-wire volumetric feed-rate, which is assumed to be constant. ‘The ratio (r/T) is
specified by the engineer (in Section 6). Let the normalizedtime-step parameter h be defined according to

{+r
2T

h =

(17)

where t denotes the running time-variable (-T <t<T).

Let the fourth-order polynomia approximating the cartesian transition segment be
X(h) =Bsh* + g + 80 +8ib + 8
where the five parameters (fi, for i = 0 to 4) must be selected for X(h) to sdisfy the boundary conditions
[Paul 81]:

X(0) =A ; X(1) =(C-B)r +B
. . (18)
X(0) =2(B-A) ; X() =2(c-B)Y
_ (19
X(0) =0 ; X(1) =0
(20)

where the dot denotes differentiation with respect to h. (The initid acceleration condition X(0) = 0 leads to
P2=0)

The cartesian position, velocity and acceleration of the torch on the transition curve (as functions of the

normalized time-step parameter h) are

2'ITie transition equations are reproduced here because of the typographical errorsin the cited reference.




X(h) =-(AcY -AB)IV' +2(AC* -AB)h® +2(AB)h +A

: , , , , (21)
X(h) =-4(AcY -AB)h® +6(ACcY -AB)h° +2(AB)
(22)
and
X(h) = -12(ACY -AB)h? + 12(ACcY -AB)h
(23)

where AB = (B- A) and AC = (C - B).

Filiation (21) defines the cartesian position of the torch (in terms of the normalized time-step parameter h)
and is used to evaluate the coordinates of the transition point. The welding torch trangts from the present
segment to the next and maintains a continuous velocity and acceleration at the end points (A and D in Figure
5) of the transition segments. Equation (21) is used to compute the position of tine torch during the transition.
In the next section, the n, o and a vectors for the transition are formulated.

4. The Modified dTg Matrix ‘

The dT, matrix specifics an incremental change in the orientation and position of the torch induced by
incremental changes in die joint coordinates. Seam tracing requires incremental changes (in the base
coordinates) in both the position and orientation of die torch. Since the changes in the base and the joint
coordinates arc related through the nonlinear inverse Jacobian coordinate transformation, a smal change in
the position and orientation of the torch in the base coordinates may require a large change in the joint
variables. This redization hampers application of the inverse Jacobian to compute the differentiad changesin
thejoint coordinates from the dT¢ matrix.

The goa of this section is to introduce the concept of a modified dT¢ matrix and an iterative agorithm
which docs not restrict the nature of changes in the joint variables that led to the specified dT¢ matrix [Khoda
83]. If the changes are incremental (as assumed for the derivation of the inverse Jacobian), then the algorithm
converges in the fird iteration. Tn the case of large changes, the agorithm converges rapidly (in typicaly 2-3
iterations for the examples highlighted in Section 6) to the appropriate differential changes in the joint
coordinates. The Tg matrix at the next point is computed by adding the present Tﬁ matrix to the modified
dTe matrix. This approach reduces computation time because computing the next'I' 6 matrix does not require
the forward solution.

Let R and S be two points on the mid-seam transition segment between the points A and D (in Figure 6).
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Let tlie position and the orientation of the torch at points R and S be specified by Ter and T(s, respectively.
LetTgs be such that the change dig in Tsir leads to Tes. Thus,

Tes = Teg + dTg
(24)
It is dlso possible to reach Tes from T through a transformation C (in the base coordinates) which consists
of atrandation along the X, y and z axes followed by a rotation 0 along an axis k. Thus,

Tes =CTer
(29
where

C =Trans(x,y,2)Ro((k,0)
(26)

Let ng, Or and ag be the component vectors of the Tgr matrix specifying the orientation of the torch at the
point R, and ns, 05 and a5 be the corresponding vectors of the T s matrix. From (24), the corresponding
differential vectors (In, do and da arc

dh -=i?; -tiR
L (27)
do =0Os " OR

(28)
da —as - &t

(29)

While traveling from point A to point D (in Figure 5), the dIV, matrices should be computed to preserve the
physical significance of the Tg matrices at the trangition points. Thus, Ter should be computed from clTg
according to (24). Geometrically, the loci of the n, 0 and a vectors of a Ty matrix should be a sphere of unit
radius.

Figure 6 depicts the total desired change in each of the n, 0 and a vectors, while traversing from point A to
point D (in Figure 5) in M steps. The components An, Ao and Aa, computed from (30)-(32), arc shown in
Figure 6. The arc of the unit circle represents the loc of the n, o and a vectors during the transition. Let
(Nr),,» (0r)y and (ag),, be the unnormalizcd vectors whose tips lie on the point R’ on the straight linejoining
points A and D. The subscript u indicates that the vectors arc urinormalized. The vectors ng, Or and ag are
obtained by normalizing- the magnitude of the corresponding vectors to unit length.
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The unnormalized vectors of the Tgs matrix are computed as

(ng),=(ny)+8n

(30)
(0s)y=(0),+80

(31)

(32)
and then normalized to obtain the ns, 0s and a vectors. 'I'hc right-hand sides of (27)-(29) are thereby
specified completely, and the differentia vectors of the dT matrix can be computed to preserve the physica
significance of the I', matrix.

Having obtained the (In, do and da vectors of die dT¢ matrix in (15), it remains to compute the dp vector to
specify completely the matrix. The vector dp is computed as

dp =Ps
where the vectors pr and ps arc obtained from (21).

By construction, the dlY matrix satisfies (26). Since the magnitudes of the changes in thejoint variables are
not constrained in the derivation of the d'I'ﬁ matrix, the computed dTb matrix satisfies (27). Thus, the "1\
matrix at the next point S can be obtained by adding the T, matrix at the present point R to the computed
dTs matrix (and consequently there is no need to compute the Tg matrix at the point S from the updated
values of the joint variables when the torch reaches the point S). The real-time computational requirements
of this construction arc detailed in Section 5.

4.1. An lterative Algorithm to Compute the Differential Changes

In applications, such as seam tracing (in which the sample points lie at incremental distances adong the
scam), tlie required changes in the joint variables may not be incremental. A practicad example involves
tracing a scam which has large dope variations. The dT matrix is related to the changes in thejoint variables
through die inverse Jacobian which, in turn, is derived under the assumption of smdl changes in the joint
variables. Many of the scams occurring in practice have dowly varying dopes and application of die inverse
Jacobian to make the incremental motions is computationally advantageous. In practice, the scam may
exhibit Iarge dope changes at a few points, and the solution obtained (for the differentid changes in the joint
coordinates to reach the next point) from the inverse Jacobian may exhibit significant errors. The torch is
thus placed at the incorrect point on the scam, and a large error (in the position and orientation of the torch)
is introduced. To overcome this problem, an iterative agorithm is introduced. A block-diagram of the
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iterative algorithm is shown in Figure 7.

The dgorithm begins at i = 0 with the initidization of the following variables: Tg* (T matrix of the next
point), Tei (current Te matrix), and ¢ » (current values of the joint variables).

"Fhe agorithm implemented at the i-th iteration is ;

dls =15 =Ty

(33
dQi+i =J"'[dTsi,q,+Jd

(34)
q| +i =qi'kiqi+i

(35)
Tei=F[q+1]

(36)
gi=D[qi+i]

37)

where J* is the inverse Jacobian (in Table 5) for the computation of the differential changes in the joint
variables from dTe and g, (in contrast to the symbolic or numerical inversion of the Jacobian matrix); F
‘denotes the operation of computing the Tg matrix (in Table 2); and D sgnifies the computation (delay) time
for the forward solution.

Upon subsgtituting (34) into (35),

Qi hi =Qi +J~'[dTei,qi+1]
(38
and hence,

dq; 1 ={Qi+r — @) = [dT60G +1]
39)
Equation (39), and consequendy the agorithm depicted in Figure 7, is the Ncwton-Raphson method
[Atkinson 78] for solving the inverse Jacobian system of nonlinear equations (in Table 5).

The agorithm converges (in theory) when all of the components of the dT¢ matrix in the block-diagram (in
Figure 7) arc zero. In prectice, the algorithm is assumed to converge when each of die elements of dl'; is less
than a pre-sct tolerance. The computed vector < contains the desired set-points (in the joint variables) to
reach the next position. When the desired changes in thejoint variables arc smal, the agorithm convergesin
one iteration and reduces to obtaining the inverse differentid solutions from the inverse Jacabian (in Table 5).
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For the scams tested with the simulator, the agorithm aways converged in a maximum of three iterations
(when the preset tolerance was set equal to zero). The computationa requirements of the scam tracing
algorithm are outlined in the next section.

5. Computational Requirements

The computations required to follow the scam from the present sample point to the next arc outlined in
"Table 6. The number of iterations required for the trangition point computation and iterative agorithm
(33)-(37) arc denoted by N_ and N,, respectively. (For the scams traced by the smulator, typica vaues are
found to be Ny = 2and N, = 1) Execution times of the 8087 hardware instructions [Intel 83] are listed in
Table 7. These floating point operation times (including the times required to load and store the operand) are
usd to estimate the time required to move the torch from one sample point to the next. Typica times (shown
in Table 6) range from 24 to 29 milliseconds, which correspond to sampling rates of 3540 Hz. For most
welding applications, a sampling frequency of 10 Hz appears to be adequate.

These computational estimates are based upon the matrix kinematic modeling of manipulators used
throughout this paper. Matrix representations of rotations arc highly redundant. Quaternions|[ftcclcv
72, Hamilton 69] offer a convenient representation. for rotations and can reduce both the storage requirements
and computational load [Taylor 79]. The authors estimate that the quaternion implementation of the seam
tracki n(j] agorithm would increase die achievable sampling rate to 60 Hz.

6. Simulation

To evduate the algorithm, 'a software simulator has been developed (in the C programming language on a
VAX 11/780) for the Sx degree-of-freedom Cyro robot in our laboratory. Thé simulation is initidlized by
retrieving scam data (as coordinates of sample points) from a data file. The first two sampled cross-sections of
the seam are used to compute the desired T matrix of the robot at the first point on the mid-seam and to
compute the joint position and velocity set-points to reach die desired destination. Upon reaching the first
point on the mid-seam, the algorithm computes the coordinates of the transition point on this segment (for
the ratio T/T which is entered by the engineer at the start of the simulation) and the totd time T required to
traverse the next segment. The Tg matrices at the present and next sample points are used to generate the
joint position and velocity set points by the agorithm in (33)-(37). The trgectory from the beginning to end
of the trangtion is computed from (21), and thejoint position and velocity set-points arc computed to follow
the interpolated curve. Upon reaching the end of the transition, the process is repeated (for each transition
point), until the last sample point is reached. The smulation is then terminated and the specified curve is
traced.
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To achieve a quaity wed, die lag or lead angle of the torch must be controlled adaptively. In the case of
fillet and lap joints, the torch stand-off must dso be controlled. Since an adaptive controller for these
parameters remains to be developed, we have included (in our smu-latorXthe fecility to specify these control
parameters at the beginning of the simulation.

In the software simulator, the torch can be rotated about two axes. The first is about an axis parallel to the
direction of travel and the second is about an axis perpendicular to the direction of travel (in the plane of the
firg axis). ;'This capability alows control over the lead or lag angle of the torch. Fecdility to specify the
stand-off for lap and fillet joints has aso been incorporated. The simulator has tracked butt, lap and fillet
joints and the experimental results arc highlighted in the next section.

7. Experimental Results

The seam tracking agorithm approximates the curve between sample points by a straight-line. To
emphasize the effect of linear interpolation and the choice of sampling distance on the tracking accuracy, the
simulator tracked a sinusoidal curve (with uniform spacings of 30 and 10 degrees). The smulation results arc
depicted in Figures 8 and 9, respectively. As the sampling distance is decreased, the tracked curve approaches
the actua curve. The maximum tracking error ( which occursfor h = 0.5) is

=3 apr _3
e = <FACT —SCAD

and depends upon AB, AC and the ratio T/T. For a particular seam and sample points, AB and AC are
constant and the tracking error (with respect to the interpolated curve) is a linear function of the ratio T/T.
The smulation experiments’ illustrate that accurate tracking can be achieved by judicioudy sdlecting the
sample points and maintaining the ratio (T/T) of transition time to segment time as small as possible.

8. Conclusions

A genera-purpose real-time seam tracing algorithm, for implementation on any sx degrcc-of-freedom
robot, is proposed. The agorithm (which requires knowledge of only one-point-ahead to track a seam) can be
applied to a multitude of robotic seam tracking activities such as gluing, surface grinding and flame cutting.
The agorithm incorporates the physica interpretation of the T and dTg matrices to redlize scam tracking. To
reduce the computational requirements, the paper introduces the concept of a modified dTg matrix. The
inverse Jacobian solution is generalized (according to Newton's method) to compute both large and small
changes in thejoint coordinates.

To test the efficacy of die proposed seam tracing algorithm, a simulator has been written and tested on a
VAX 11/780. The simulation results arc highlighted in Section 7 of [Khoda 83]. The tracking accuracy is a
function of the sampling distance because of the straight-line approximation between two successve sample
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points, and the tracking error increases with the increase in ratio of the transition time to the segment travel

time.

Future activity will focus on die adaptive control of the weld parameters and dynamic robot control.

Successful  practical  implementation will depend upon the availability of faster processors and the

experimental performance evauation of the algorithm.
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Figure 3: Butt Joint

Figure4: Cameralmage of aButt Joint
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8 isthe angle of rotation about the raxis
a istheangle of rotation about the x-axis

aisthelength oftrandation along thex-axis

disthelength oftranslation along the z-axjs |

Table1: Link Paraméters of the CY RO Robot
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Table2: Forward Solution of die CYRO Robot
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NOMENCLATURE

C; is the Cosine of the i-th joint angle

Si is the Sine of the irth joint angle

atan? is the double_arqument arc tangent junction

Table3: Reverse Kinematic Solution of the CY RO Robot
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DIFFERENTIAL JOINT COORDINATES
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Table5: Inverse Jacobian of the CY RO Robot
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: TIMHin
STEP S X o T el I el S L
[cOr
Find the mid-scam
Butt Joint (1) 3 3 0.334
Lap/Fillet Joint (2) 3 6 0.462
Compute segment travel time T
Butt Joint 23 39 I 5 3611
Lap/Fillet Joint ) 61 1 6 5.256
Find trangition point
Butt Joint 23N i 39*N, Nt 5*N , 7222
Lap/Fillet Joint 32* N, 61* Ni Ni 6*Ny 10512
Computation of
a Vector 9 14 5 1 1611
o Vector (6)-(7) 15 n 3 1 1675
n Vector (8) 3 6 0.462
Compute dT ¢ Matrix 12 0576
Normaization 9 4 3 3 1125
Iterative agorithm (33) - (37) 66* N, 54*N, 6*N, | 7.206
"Totd
Butt Joint 62+23"Nt 186+39"N.j15 N | 10+Nj| 6*N, | 23872
+ 66*N, +54*N,
73+23*Ni [108+39*Ni
: : 28.885
Lap/Fillet Joint +66'N, | +54N, 15+N,J 10+N,[ 6N,

Table6: Computational Requirementsof the Scam Tracing Algorithm
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Abstract

Seam tracking is currently accomplished by specia features of the robot and a priori knowledge of seam
geometry. In this paper we demonstrate the feasibility of tracking a seam in real-time. A genera-purpose
seam tracking algorithm is developed for implementation on a robot with Sx degrees-of-freedom. The
algorithm is motivated by a physica interpretation of the T and dT¢ matrices, and the assumption that 3-D
seam data are available. In the past, the dr\é matrix and inverse Jacobian solutions have been used to
compute the differential changes in the joint angles. By using the inverse Jacobian, an iterative agorithm is
introduced to compute both large and smdl changes in the joint variables. The versatile seam tracking
algorithm can be applied to a multitude of robotic seam tracking activities such as gluing, surface grinding

and flame cutting.







1. Introduction

Manufacturing operations such as robotic welding, gluing, sealing and surface grinding require trgjectory
control of the tool mounted on the end-effector of the robot. While the kinematic control agorithm
developed in this paper is applicable to a multitude of manufacturing operations, robotic arc welding.
nomenclature is used. The todl is cdled the welding torch, and the tool trgjectory is defined by the weld
scam. The fundamental problem is to position a welding gun with the proper trandational and rotational
positions with respect to a curved weld scam in three dimensional (3-D) space. A scam in space can be traced
by afive degrcc-of-freedom robot. Since real-time seam tracing requires that both the sensor and torch trace
the seam, a 9x degrcc-of-freedom robot is required. Automation of the welding process thus demands a robot
with six degrces-of-freedom and acceptable performance in terms of speed and accuracy. The control task
also demands a real-time algorithm to guide the robot in afixed geometrical relationship to die contour.

Automation of the welding process can be divided into two distinct components :

 Scam data acquisition and interpretation by a sensor sysem ; and

« Guidance* and control of the robot to traverse the seam, while maintaining the proper orientation
and position.

Since the scam data congtifute the 3-D coordinates of the seam, a visud sensory device (such asa light stripe
imaging device) can be used to obtain the seam data. Methods for obtaining 3-D data from 2-D images have
been developed [Agin 82]. Having obtained and interpreted the scam data, the control system must guide die
robot to traverse the scam and place the requisite amount of weld material aong the path. The torch position
and attitude must be controlléd precisely to ensure acceptable weld quality.

Scam tracking is currently accomplished by exploiting a specia feature of the robot or limiting the
application to a particular type of a seam. Boallinger and Harrison [Bollinger 71] describe the principles and
techniques of agpatial scam tracking system. In this application, the seam is constrained to lie on acylindrical
surface.  Tomi/.uka, e ah [Tomizuka 80] propose a preview control gtrategy for two-axis welding torch
positioning and velocity control. The scheme is only applicable for two-axis control and hence constrains the
scam to lie in a plane. Furthermore, the scheme cannot be implemented on a general purpose sx degrec-of-
frccdom robot.

One of the first successful demonstrations of computer vision to arc welding is the NASA weld skate[HW
80]. This system has been implemented on a special-purpose robot and requires specia edge preparation to
operate properly. The system is incapable of making any determination regarding the joint fit-up. The
principle of structured illumination has been employed by Kawasski Heavy Industries of Japan [Masski 79] to
develop avisua seam traéki ng system. The approach used for image analysis is training-by-showiug. A set of




typica images is acquired in a teaching operation prior to welding and stored in the memory of the processor.
As real-time images are acquired, a search is conducted (through the set of trained images) until a match is
found. During the matching process, the positiona displacement between the two images is computed and
used to correct the position of the torch. The system has been designed specificdly for the ship building
industry and hence operates only on fillet joints. The sysem does not utilize part fit-up information for seam
tracking.

An example of wclding-by-tcaching is the system described by Masaki, et al [Masaki 81] which has a visud
scam tracking capability. The robot is taught the reference path for the end-effector and the reference image
for the image processor. In the teach mode, two passes arc required for each work piece, one for sensing and
one for welding. The path for the welding operation is generated from the sensing pass information.

Current robot welding systems are thus suitable for large batches of parts which are cut and fit to tight
tolerances. The robot must trace and weld a scam, within acceptable tolerance limits, on such closdy fit parts.
Another limiting factor for a semi-automated welding system is the robot programming and set-up time in the
shop when the part is changed. These constraints may be eased through the introduction of a CAD/CAM
data base in which tlie welding trgjectories and speed, weave pattern, wire feed rate, voltage and current are
stored for each welding part and then retrieved as required. Unpredictable fit-up and loose part tolerances
create the need for a real-time guidance and control agorithm.

The objective of this paper is to introduce a versatile scam tracing agorithm that demonstrates the
feadhility of tracking a scam in read-time. The generd purpose seam tracing agorithm can be
implcmentabled on any robot with sx degrecs-of-freedom.  The agorithm is motivated by the physica
interpretation of tlie forward solution, or Tg matrix [Paul 81] and tlie inverse Jacobian. To facilitate
implementation of the inverse Jacobian solutions, an iterative agorithm is developed to compute the
differentiadl changes in the joint variables from tlie dT¢ matrix. To reduce dgnificantly the on-line
computational requirements, the concept of a modified dTs matrix is adso introduced. To evaluate the
performance of the scam tracing agorithm, a functional simulation package (for the Cyro® robot in our
laboratory) has been implemented. The outputs of tlie simulation arc the joint position and velocity set-
points for tlie robot control system.

The paper is organized as follows. The kinematics of the Cyro robot (including the forward and reverse
solutions , and the Jacobian and inverse Jacobian) are developed in Section 2. The foundations for the scam
tracking algorithm are laid in Section 3. Focus is on the specification of the T matrices at tlie sample points

1Cyro is atrademark of the Advanced Robotics Corporation.




along the seam and planning the motion of the torch. To reduce the computational requirements of the
algorithm for real-time applications, the concept of the modified dTg matrix is introduced in Section 4, and an
iterative algorithm to compute both large and small changes in the joint coordinates is then developed. The
computationa requirements arc enumerated to indicate the potential for die real-time implementation of the
algorithm. The salient features of the simulator, which has been implemented to evaluate the performance of
the scam tracing algorithm, arc presented in Section 5. Simulation experiments for representative test cases
are then highlighted in Section 6. Finaly, in Section 7, conclusions arc drawn from the simulation
experiments, and the paper is summarized.

2. Kinematics of the Cyro Robot

The forward solution (or Tg matrix) of die robot, from the base frame to the torch (or end-effector) frame, is
developed usng homogeneous transformations [Paul 81]. "The homogeneous transformations, relating two
successive coordinate frames, are only a function of the gx joint coordinates. Thus, knowledge of dl of the gx
joint coordinates leads to the transformation (or forward solution) from the base frame to the torch frame.

To develop the homogeneous transformation or A matrices, a coordinate frame is embedded in each of the
sx links of the robot, using the Dcnavit-Hartcnberg convention [Denavit 55].  The coordinate frames are
shown in Figure 1. Joints 1*¥ 2 and 6 are rcvolute, and joints 3, 4 and 5 are prismatic. The coordinates of the
revolutejoints arc #,, $, and O'b,and the coordinates of the prismatic joints are X z, and_y\g. The subscripts
on the coordinates indicate the joint number; the base is link zero. The base coordinate frame is fixed at the
center of the table of the robot and coincides with the first coordinate frame. When all of the six joint
coordinates arc zero, the axeﬁ forjoint 1 (table) andjoint 6 (forch) arc parallel and the robot becomes singular.
In the algorithm, the manipulator is assumed to be at the zero position. Without loss of gen'erality, the
constant offsets of die robot are assumed to be zero. A counter-clockwise rotation of the revolute joints is
considered to be positive,, and trandation of die prismatic joints along the positive z-axis is considered to be
positive.

The link parameters of the Cyro robot arc listed in Table 1, and the forward solution is displayed in Table 2.
Having obtained the forward solution, the values of the joint coordinates that led to the T matrix can be
computed. This reverse solution [Paul 81] is required (by the simulator) to relate the T matrix to the present
values of thejoint coordinates. The reverse solution is listed in Table 3.

The differential changes in the cartesian coordinates of the torch are related to the differential changes in
the joint coordinates through the manipulator Jacobian [Whitney 72, Paul 81]. Each column of the Jacobian
matrix Jis a differential trandation and rotation vector. The column vectors of




_|arg 9T 9Ts 9T 9Ts 9Te
“lad o2 93 9z, 9ys 9

arc listed in Table 4.

In scam tracing, sensory data can be utilized to determine the incremental change in the position of die
seam from differential changes in the elements of the Ty matrix. The differential change matrix dTe is thus
available tri plan the incremental motions of the torch. It thus becomes imperative to find the inverse
Jacobian (or incremental changes in the joint coordinates) which produce the specified incremental change in
the T, matrix.

(o]

Numerical inversion of die Jacobian [Whitney 72] is computationally intensive and hence is not suitable for
real-time control applications. Incremental changes in thejoiht coordinates can be obtained from a Taylor
scries expansion of the reverse solution. Such an approach leads to anaytica formulae for the differentia
joint coordinates which are functions of the elements of the Te and dTe matrices [Paul 81]. Analytical
formulae for the differential joint coordinates, which arc obtained by differentiating the reverse solution (in
Table 3), arelisted in Table 5.

3. Kinematic Seam ‘i’racking Control

“The control task is to fill a volume with weld material while maintaining the proper position and orientation
of the torch with respect to the seam. While traversing the seam, the tip of the torch traces a curve in 3-D
space. If the discrete points on the curve to be traced and the surface containing the curve arc identified, the
T matrices can be generated for each point on the discrctized curve. ’

Specification of the T matrices at the sample points of the discretized curve accomplishes die seam tracing
task. The Ta matrix is
]

leoxa(px-
.r=noap‘=ny°ya/Py
$~looo01 " n o & A
0 001

and represents the position and orientation of the torch shown in Figure 2. The origin of the describing
coordinate frame is located at the tip of the torch and is described by the vector p with respect to the base
frame. The three unit vectors n, o and a, which describe the orientation relative to the base frame, are
directed as follows [Paul 81]. The z-axis of the déscribing frame lies dong the direction that the torch
approaches die surface (containing the curve to be traced) and is called the approach vector a The y-axis of
the describing frame lies along the direction of the boom holding the camera and is called die orientation




vector 0. The normal vector n is then chosen to form a right-handed set of vectors and is computed as

it =3x3

The vectors n, 0 and a describing the orientation of the torch and the vector p describing the position can be
ecified independently. The control task can thus be split into two independent components :

« Tracing acurve in 3-D space; and

» Maintaining proper orientation of the torch with respect to die surface which contains the curve to
be traced.

The volume to be filled with the weld materia is contained within two surfaces (of metal) which arc to be
joined together. The surfaces may be non-overlapping, as in the case of a butt joint (in Figure 3), or
overlapping as in the case of a lapjoint or afillet joint.

Let m be acurve (in 3-D space) which lies on the surface Sand is to be tiaced by the tip of the torch. The
surface Smay have a varying lope. Henceforth, the curve m will be termed the mid-seam. The mid-scam is
discreti/cd length-wise. Let nr, be the vector (with respect to the base frame) pointing to the i-th sample point
m, on the mid-scam. The discretization is specified to dlow a piccowisc linear approximation of the curve m
between two adjacent sample points. If the surface (in the vicinity of the two sample pointstn. and m. ;) is
aso discretized, then a pieccwisc planar approximation of Sis obtained. Let P, denote the plane (containing
the points m. and m;. j). The direction cosines of the plane pecify the orientation of the torch which is held
constant for the duration of travel from m. tom. .

The position of the torch is specified by the coordinates of the sample points. The foregoing description of
the position and the orientation of the torch completes the formulation of the Ts matrix at die sample points.
The ensuing section specifics the T matrix for butt, lap and fillet joints.

3.1. Specification of the T¢ Matrix

Having interpreted physicaly the elements of the T matrix, die next step is to generate numerical values of
the elements of the Ty matrix in terms of the coordinates of the sample points obtained frdn the sensor
sysem. Since alight stripe projector and a solid state camera are assumed to be used as the sensory device,
the 3-D coordinates of the points on the surfaces to be joined arc mapped into pixels in the camera image.
Figure 4 shows a typicd camera image (at the i-th sampling instant) obtained from a butt joint. The break
points in the camera images of the surface indicate the discontinuity in the actua surfaces to be welded. Td
soecify the curve to be traced, it is essential to extract 3-D coordinates of the bresk points in the images. The




information regarding the orientation of the surfaces, in the vicinity of the break points, can be obtained by
extrecting the coordinates of one additional point on each surface. The bresk points are called u. and v, for
the butt joint shown in Figure 3. The additiona points on each of the two surfaces arc caled p; and g.»
respectively. The subscript i denotes the sampling instant. The coordinates of the sample points are specified
with respect to the base frame of the robot, and Py Uy V, and q arc die vectors from the origin of the base
frame to the points p, u., v. and g respectively. The edges formed by die sample points { p. } {a¢}{ u, }
and { v. } arcdenoted by /?, 1/, M, and v, respectively.

To secify the p vector of the T matrix requires knowledge of the sample points aong the mid-scam. For a
butt joint, the requirement that the torch be placed exactly in the middle across the u and v edges forces the X,
y and z coordinates of the mid-seam to be computed as:

Uy +Vxi

mxi 2
Uy +Vy

My = )
- Uz + vy
Mn - z_~

0

For both lap and fillet joints, torch stand-off is an important consideration for obtaining a quality weld. Let
the desired torch stand-off be characterized by the parameter s, where s ranges from 0 to 1. The coordinates
of the mid-seam are then computed as

Myi =Uxi +S(Vxi-Uyi)

My =Uy; +S(Vyi-Uy;)
Msi =Uz + S(Vzi-Uy)

@
The .
pt p¥and p, components of the T matrix are
Px = "Xi ~3>
pz = mzi )

and specify completely the last column of the T matrix.

Practical seams have edges with sowly-varying dopes. Since the sample points are assumed to lie close to
each other (typicaly separated by 1 mm), the edges between two sample points can be approximated by a




straight line. This approximation leads to 2 P'anc which passes thioligh atleast ajroe of the four sample
points (s, P-sry G, G+ ). The direction cogr, *CS of A plancarc aiso the direstion cosi csofa ety pormal

to the plane. Since'the torch is required to be\P“TPe®iev!ar > the fictitious scam surface, the direction
cosines of thc approach vector a are specified as th'e "evdlive of the dircction cosines « A normg to the

plane.

The values of thc components of thc orientation vector o A~ ComPuted under a fqianing constraint.

When thc torch and the camera arc on thc seam, both should trac ktho SCam: Thiscondition o iarantees that

sample points will not be log if the dope of the mid-edge (at thc poi™ °f thC toren) dffers from the gqyne o
the point-of-vicw of thc camera. Let M be a constant shift in thc numbc."°$2™p!¢ PVits between the torch

>e a vcctor

and thc camera. Figure 2 shows that the o vector is perpendicular to tl. and points dong thc

oy

direction of the am holding the camera. If thc camera is traveling in the directior® °* ' linejoining in, N,
and m. ., then tlic robot system will never lose track of the scam, unless thc dope experiences large changes

or discontinuities along thc scam.

The equation of a plane passing through three of thc four points (pi+iv Pj+1\-v Q\s W /i + N-A €80 NoW A®
specified, and tlic angle between thc planes at thc camera and the torch points can be determined. If (X, /X;
V) and (X2, jup, V] arc the dircction cosincs of the two planes, then the cosine of angle O between the planes
is

cos(0) =XiA2 +MM2 +172
‘ (6)

The vector ajoining the points nij.n_1 and m;.y aong thc mid-edge is computed as

@ =M — Mo
@)
The projection of the vector a onto the torch plane is chosen to be the o vector and is normalized to be of unit
length. Having obtained theé normalized o and a vectors, tlic n vector is computed as

a =3x3
8
to specify completely the Tg matrix at the sample points.

While traversing from the i-th to the (i-f-I)-th point, die orientation of thc torch and consequently tlic n, o
and a vectors remain constant. The p vector in the T matrix changes linearly because of thc straight line
approximation between the two points. To maintain a continuous speed and accéleration at tlic end points of



the segment, the motion of the torch is planned.

3.2. Planning the Motion of the Torch

ThP mnrinn of the tio of thc torch, in traversing a scgr. #
| nemotion 01 me up ui (o iscomposce| of tWO parts:
» Mation aong the segment, and

* Trangition between segments.

To make a smooth transition bctwo, scgments< Jt Js desirable to maintain a continuous velocity and
acceleration at the transition points. ZTO socaify the trangition equations, a fourth-order curve is fit between
the point where a transition star'ss"anj " po nt jncljcajnd thc end of the transition [Paul 81]. The equations

for the trangdition trgjcctorics. ancj velocities arc outlined in Section 3.3.
-

Let M be the totorf number of transition steps in which the desired change in Tg is to occur. The differential
changes in the v;(o and a vectors at each trangition point are '

At = gy — B
. M
9)
Al = iy —F
M
(10)
A3 = 6(i+l} _ai
M
(11)

where the subscripts i and (i + 1) denote the i-th and (i +1)-th segments, respectively. 'Hie An, Ao and Aa
vectors arc then added to die current n, 0 and a vectors, respectively, and normalized to unit length, to
produce thc n, 0 and a vectors at the next segment. Let Np: Op» & andn,, q,, § be thc vectors of the T, matrix
at thc present and next segments, respectively; and let the subscript N indicate that these vectors have been
normalized to unit length. The n,, 0, and &, vectors arc thus computed as follows :

fin =(rtp +A_'n)N

(12)
8, = (8, +8o)y

(13)




3, = (3, + Aa)y
(14)

Having computed the three component vectors (n, 0 and a) of T at the next segment, the first three
columns of the differential change matrix dTs are determined, and the fourth column (or dp vector) can be
computed from the transition trgjectory to specify the differential translation. The differential change matrix
dTgisthen

dn, do, da, dpy
dn, do, da, dp,
dTe =|dn, do, da dp,
0O 0 0 O
(15)
where the differential vector components (dn, do, da and dp) of the dT, matrix represent the corresponding
change in the vector components (n, o, aand p) of the T, matrix.

Having generated the present T matrix and dlg matrix to reach the next point, the inverse Jacobian (in
Table 5) is used to compute ‘iterative!)' the differential changes in thejoint coordinates. 'The inverse Jacobian
solutions arc derived under the assumption that the changes in the joint variables leading to the specified dTg
matrix are small. To overcome the practical fact that this assumption is not always satisfied in scam tracing
applications, an iterative technique is developed to compute the changes in the joint variables. The velocity
set-points during the transition are obtained by dividing the incremental values of the joint variables by the
time required to make the incremental change. The transition ends when the torch reaches the point D on the
segment B-C in Figure 5. At this point, the torch has the required orientation and velocity to track the
(i +1)-di segment I1>C without error. This motion is called motion-along-the-segment.

During the motion of the torch, along the segment, the n, o and a vectors of the-robot remain constant. The
updated dTg¢ matrix is specified as:

0 00 dpy
|0 00 dp
<N6=[0 0 0 dp,

000 O

(16)
where dp.. dp, and dp., arc the differential changes in the X, y and z coordinates of the (i +1)-th transition
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point. When the torch reaches the next trangition point, the process of planning the motion of the torch,
aong the segment and during the transition, is repeated to plan the motion for the next segment.

3.3. The Transition Curves

A trangition segment is illugtrated in Figure 5. The transition starts at point A in the i-th segment and ends
a point D in the (i-f 1)-th segment. Maintaining a continuous velocity and acceleration at the points A and D
appears to [equi re that x boundary conditions be satisfied. A fifth-order polynomia (with sx parameters)
would then be needed to approximate the cartesian transition curve. Symmetry of the transition guarantees
that a quartic polynomid can approximate the cartesian transiion curve [Paul 81°. To fadlitate the
devel opment; let T be the trandition time and T be the time required to traverse the segment ft-C. The time of
travcl ( T ) across a segment is computed by dividing the volume of the weld materia (to be deposited along
the segment) by the weld-wire volumetric feed-rate, which is assumed to be constant. ‘The ratio (r/T) is
specified by the engineer (in Section 6). Let the normalizedtime-step parameter h be defined according to

{+r
2T

h =

(17)

where t denotes the running time-variable (-T <t<T).

Let the fourth-order polynomia approximating the cartesian transition segment be
X(h) =Bsh* + g + 80 +8ib + 8
where the five parameters (fi, for i = 0 to 4) must be selected for X(h) to sdisfy the boundary conditions
[Paul 81]:

X(0) =A ; X(1) =(C-B)r +B
. . (18)
X(0) =2(B-A) ; X() =2(c-B)Y
_ (19
X(0) =0 ; X(1) =0
(20)

where the dot denotes differentiation with respect to h. (The initid acceleration condition X(0) = 0 leads to
P2=0)

The cartesian position, velocity and acceleration of the torch on the transition curve (as functions of the

normalized time-step parameter h) are

2'ITie transition equations are reproduced here because of the typographical errorsin the cited reference.




X(h) =-(AcY -AB)IV' +2(AC* -AB)h® +2(AB)h +A

: , , , , (21)
X(h) =-4(AcY -AB)h® +6(ACcY -AB)h° +2(AB)
(22)
and
X(h) = -12(ACY -AB)h? + 12(ACcY -AB)h
(23)

where AB = (B- A) and AC = (C - B).

Filiation (21) defines the cartesian position of the torch (in terms of the normalized time-step parameter h)
and is used to evaluate the coordinates of the transition point. The welding torch trangts from the present
segment to the next and maintains a continuous velocity and acceleration at the end points (A and D in Figure
5) of the transition segments. Equation (21) is used to compute the position of tine torch during the transition.
In the next section, the n, o and a vectors for the transition are formulated.

4. The Modified dTg Matrix ‘

The dT, matrix specifics an incremental change in the orientation and position of the torch induced by
incremental changes in die joint coordinates. Seam tracing requires incremental changes (in the base
coordinates) in both the position and orientation of die torch. Since the changes in the base and the joint
coordinates arc related through the nonlinear inverse Jacobian coordinate transformation, a smal change in
the position and orientation of the torch in the base coordinates may require a large change in the joint
variables. This redization hampers application of the inverse Jacobian to compute the differentiad changesin
thejoint coordinates from the dT¢ matrix.

The goa of this section is to introduce the concept of a modified dT¢ matrix and an iterative agorithm
which docs not restrict the nature of changes in the joint variables that led to the specified dT¢ matrix [Khoda
83]. If the changes are incremental (as assumed for the derivation of the inverse Jacobian), then the algorithm
converges in the fird iteration. Tn the case of large changes, the agorithm converges rapidly (in typicaly 2-3
iterations for the examples highlighted in Section 6) to the appropriate differential changes in the joint
coordinates. The Tg matrix at the next point is computed by adding the present Tﬁ matrix to the modified
dTe matrix. This approach reduces computation time because computing the next'I' 6 matrix does not require
the forward solution.

Let R and S be two points on the mid-seam transition segment between the points A and D (in Figure 6).
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Let tlie position and the orientation of the torch at points R and S be specified by Ter and T(s, respectively.
LetTgs be such that the change dig in Tsir leads to Tes. Thus,

Tes = Teg + dTg
(24)
It is dlso possible to reach Tes from T through a transformation C (in the base coordinates) which consists
of atrandation along the X, y and z axes followed by a rotation 0 along an axis k. Thus,

Tes =CTer
(29
where

C =Trans(x,y,2)Ro((k,0)
(26)

Let ng, Or and ag be the component vectors of the Tgr matrix specifying the orientation of the torch at the
point R, and ns, 05 and a5 be the corresponding vectors of the T s matrix. From (24), the corresponding
differential vectors (In, do and da arc

dh -=i?; -tiR
L (27)
do =0Os " OR

(28)
da —as - &t

(29)

While traveling from point A to point D (in Figure 5), the dIV, matrices should be computed to preserve the
physical significance of the Tg matrices at the trangition points. Thus, Ter should be computed from clTg
according to (24). Geometrically, the loci of the n, 0 and a vectors of a Ty matrix should be a sphere of unit
radius.

Figure 6 depicts the total desired change in each of the n, 0 and a vectors, while traversing from point A to
point D (in Figure 5) in M steps. The components An, Ao and Aa, computed from (30)-(32), arc shown in
Figure 6. The arc of the unit circle represents the loc of the n, o and a vectors during the transition. Let
(Nr),,» (0r)y and (ag),, be the unnormalizcd vectors whose tips lie on the point R’ on the straight linejoining
points A and D. The subscript u indicates that the vectors arc urinormalized. The vectors ng, Or and ag are
obtained by normalizing- the magnitude of the corresponding vectors to unit length.
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The unnormalized vectors of the Tgs matrix are computed as

(ng),=(ny)+8n

(30)
(0s)y=(0),+80

(31)

(32)
and then normalized to obtain the ns, 0s and a vectors. 'I'hc right-hand sides of (27)-(29) are thereby
specified completely, and the differentia vectors of the dT matrix can be computed to preserve the physica
significance of the I', matrix.

Having obtained the (In, do and da vectors of die dT¢ matrix in (15), it remains to compute the dp vector to
specify completely the matrix. The vector dp is computed as

dp =Ps
where the vectors pr and ps arc obtained from (21).

By construction, the dlY matrix satisfies (26). Since the magnitudes of the changes in thejoint variables are
not constrained in the derivation of the d'I'ﬁ matrix, the computed dTb matrix satisfies (27). Thus, the "1\
matrix at the next point S can be obtained by adding the T, matrix at the present point R to the computed
dTs matrix (and consequently there is no need to compute the Tg matrix at the point S from the updated
values of the joint variables when the torch reaches the point S). The real-time computational requirements
of this construction arc detailed in Section 5.

4.1. An lterative Algorithm to Compute the Differential Changes

In applications, such as seam tracing (in which the sample points lie at incremental distances adong the
scam), tlie required changes in the joint variables may not be incremental. A practicad example involves
tracing a scam which has large dope variations. The dT matrix is related to the changes in thejoint variables
through die inverse Jacobian which, in turn, is derived under the assumption of smdl changes in the joint
variables. Many of the scams occurring in practice have dowly varying dopes and application of die inverse
Jacobian to make the incremental motions is computationally advantageous. In practice, the scam may
exhibit Iarge dope changes at a few points, and the solution obtained (for the differentid changes in the joint
coordinates to reach the next point) from the inverse Jacobian may exhibit significant errors. The torch is
thus placed at the incorrect point on the scam, and a large error (in the position and orientation of the torch)
is introduced. To overcome this problem, an iterative agorithm is introduced. A block-diagram of the
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iterative algorithm is shown in Figure 7.

The dgorithm begins at i = 0 with the initidization of the following variables: Tg* (T matrix of the next
point), Tei (current Te matrix), and ¢ » (current values of the joint variables).

"Fhe agorithm implemented at the i-th iteration is ;

dls =15 =Ty

(33
dQi+i =J"'[dTsi,q,+Jd

(34)
q| +i =qi'kiqi+i

(35)
Tei=F[q+1]

(36)
gi=D[qi+i]

37)

where J* is the inverse Jacobian (in Table 5) for the computation of the differential changes in the joint
variables from dTe and g, (in contrast to the symbolic or numerical inversion of the Jacobian matrix); F
‘denotes the operation of computing the Tg matrix (in Table 2); and D sgnifies the computation (delay) time
for the forward solution.

Upon subsgtituting (34) into (35),

Qi hi =Qi +J~'[dTei,qi+1]
(38
and hence,

dq; 1 ={Qi+r — @) = [dT60G +1]
39)
Equation (39), and consequendy the agorithm depicted in Figure 7, is the Ncwton-Raphson method
[Atkinson 78] for solving the inverse Jacobian system of nonlinear equations (in Table 5).

The agorithm converges (in theory) when all of the components of the dT¢ matrix in the block-diagram (in
Figure 7) arc zero. In prectice, the algorithm is assumed to converge when each of die elements of dl'; is less
than a pre-sct tolerance. The computed vector < contains the desired set-points (in the joint variables) to
reach the next position. When the desired changes in thejoint variables arc smal, the agorithm convergesin
one iteration and reduces to obtaining the inverse differentid solutions from the inverse Jacabian (in Table 5).
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For the scams tested with the simulator, the agorithm aways converged in a maximum of three iterations
(when the preset tolerance was set equal to zero). The computationa requirements of the scam tracing
algorithm are outlined in the next section.

5. Computational Requirements

The computations required to follow the scam from the present sample point to the next arc outlined in
"Table 6. The number of iterations required for the trangition point computation and iterative agorithm
(33)-(37) arc denoted by N_ and N,, respectively. (For the scams traced by the smulator, typica vaues are
found to be Ny = 2and N, = 1) Execution times of the 8087 hardware instructions [Intel 83] are listed in
Table 7. These floating point operation times (including the times required to load and store the operand) are
usd to estimate the time required to move the torch from one sample point to the next. Typica times (shown
in Table 6) range from 24 to 29 milliseconds, which correspond to sampling rates of 3540 Hz. For most
welding applications, a sampling frequency of 10 Hz appears to be adequate.

These computational estimates are based upon the matrix kinematic modeling of manipulators used
throughout this paper. Matrix representations of rotations arc highly redundant. Quaternions|[ftcclcv
72, Hamilton 69] offer a convenient representation. for rotations and can reduce both the storage requirements
and computational load [Taylor 79]. The authors estimate that the quaternion implementation of the seam
tracki n(j] agorithm would increase die achievable sampling rate to 60 Hz.

6. Simulation

To evduate the algorithm, 'a software simulator has been developed (in the C programming language on a
VAX 11/780) for the Sx degree-of-freedom Cyro robot in our laboratory. Thé simulation is initidlized by
retrieving scam data (as coordinates of sample points) from a data file. The first two sampled cross-sections of
the seam are used to compute the desired T matrix of the robot at the first point on the mid-seam and to
compute the joint position and velocity set-points to reach die desired destination. Upon reaching the first
point on the mid-seam, the algorithm computes the coordinates of the transition point on this segment (for
the ratio T/T which is entered by the engineer at the start of the simulation) and the totd time T required to
traverse the next segment. The Tg matrices at the present and next sample points are used to generate the
joint position and velocity set points by the agorithm in (33)-(37). The trgectory from the beginning to end
of the trangtion is computed from (21), and thejoint position and velocity set-points arc computed to follow
the interpolated curve. Upon reaching the end of the transition, the process is repeated (for each transition
point), until the last sample point is reached. The smulation is then terminated and the specified curve is
traced.
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To achieve a quaity wed, die lag or lead angle of the torch must be controlled adaptively. In the case of
fillet and lap joints, the torch stand-off must dso be controlled. Since an adaptive controller for these
parameters remains to be developed, we have included (in our smu-latorXthe fecility to specify these control
parameters at the beginning of the simulation.

In the software simulator, the torch can be rotated about two axes. The first is about an axis parallel to the
direction of travel and the second is about an axis perpendicular to the direction of travel (in the plane of the
firg axis). ;'This capability alows control over the lead or lag angle of the torch. Fecdility to specify the
stand-off for lap and fillet joints has aso been incorporated. The simulator has tracked butt, lap and fillet
joints and the experimental results arc highlighted in the next section.

7. Experimental Results

The seam tracking agorithm approximates the curve between sample points by a straight-line. To
emphasize the effect of linear interpolation and the choice of sampling distance on the tracking accuracy, the
simulator tracked a sinusoidal curve (with uniform spacings of 30 and 10 degrees). The smulation results arc
depicted in Figures 8 and 9, respectively. As the sampling distance is decreased, the tracked curve approaches
the actua curve. The maximum tracking error ( which occursfor h = 0.5) is

=3 apr _3
e = <FACT —SCAD

and depends upon AB, AC and the ratio T/T. For a particular seam and sample points, AB and AC are
constant and the tracking error (with respect to the interpolated curve) is a linear function of the ratio T/T.
The smulation experiments’ illustrate that accurate tracking can be achieved by judicioudy sdlecting the
sample points and maintaining the ratio (T/T) of transition time to segment time as small as possible.

8. Conclusions

A genera-purpose real-time seam tracing algorithm, for implementation on any sx degrcc-of-freedom
robot, is proposed. The agorithm (which requires knowledge of only one-point-ahead to track a seam) can be
applied to a multitude of robotic seam tracking activities such as gluing, surface grinding and flame cutting.
The agorithm incorporates the physica interpretation of the T and dTg matrices to redlize scam tracking. To
reduce the computational requirements, the paper introduces the concept of a modified dTg matrix. The
inverse Jacobian solution is generalized (according to Newton's method) to compute both large and small
changes in thejoint coordinates.

To test the efficacy of die proposed seam tracing algorithm, a simulator has been written and tested on a
VAX 11/780. The simulation results arc highlighted in Section 7 of [Khoda 83]. The tracking accuracy is a
function of the sampling distance because of the straight-line approximation between two successve sample
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points, and the tracking error increases with the increase in ratio of the transition time to the segment travel

time.

Future activity will focus on die adaptive control of the weld parameters and dynamic robot control.

Successful  practical  implementation will depend upon the availability of faster processors and the

experimental performance evauation of the algorithm.
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7

Figure 3: Butt Joint

Figure4: Cameralmage of aButt Joint
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Figure6: Locii of n, 0 and a Vectors
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Link | Variable | 8 alald
1 o % | 0lo0[R

2 6 0,90 -0 |-H| L
3 3 90 { 9] 0] +3
4 24 9 [ 0] O] =
5 Vs 0 | 0710} y%
6 ft ft 10jo0]0O

Definition of the Parameters -~
8 isthe angle of rotation about the raxis
a istheangle of rotation about the x-axis

aisthelength oftrandation along thex-axis

disthelength oftranslation along the z-axjs |

Table1: Link Paraméters of the CY RO Robot

CCCe +55% -CAS6 +5,C —CiSy Cy(zS; +X3Q -HSj) -Si( -ys +L)
§1CC —CiSs —51CSs —CiCs —$1S2 822482 +X3C2 -HSj) +Ci( -ys +L)
Tesl  _s.c 88 -C, (24C2-X3S,-HC2) -R
1} 0 0 1

Table2: Forward Solution of die CYRO Robot




Joint coordinate l Analytical Expression [ Conditions
& atauZlfz-l 7-6(2,3)> 0
a;
a2
& alanl ['ﬂx re(2,3)< 0
-lC +g
Oi atanl[ Cax Say)]:
('«1) J
X3 CCsp, +31C1p, - Sapr ~ SR
oA Ci n R+H
|
Vs ] .
0y
* atanl |-—-] 8> 0 -
. . -,
Oz
% atanl [ l + 180° A< 0
N,
NOMENCLATURE

C; is the Cosine of the i-th joint angle

Si is the Sine of the irth joint angle

atan? is the double_arqument arc tangent junction

Table3: Reverse Kinematic Solution of the CY RO Robot
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K
-5
3 d 8
3*3 0
- 0 4
’§6
Q
3Ts |0
ays {0
0
0.
varl
var2
var3
var3

TaMt4:

[-C,Q(var3) +S,Q(var4)
C|S|(var3) -SA <{var4)
SCvari) -Cj(var4)

29

-<CiCC« +SiSt)(var]) +(SIC,C6 _GiS)(var2)
«¢Ci% +SAH>"'> +(" SiQS6 -QC6)(var2)

QStvarl) -SjSy(var2)
-5C
S:S¢
- C ,

- S
-Q
0
[ 0]
0
m -1
3*4 0
0
| 0
0
0
HL_g
306
0
1
NOMENCLATURE

=Si(z4S] +x3C, -HSj) +Q( -ys +L)
sC(z4S; +x3Cj -HS2) +Si( -ys +L)
=s-24Q + X322 +HCj

Aug +XjQ -HSj

Cdumn Vedtor s of theJacobian matrix




DIFFERENTIAL JOINT COORDINATES

da}_("S)dﬂ, +C1dd,) .
~ (Cia; +S1a))

g- = NCAINS)) — NS;d(NC)

* (NSJ? +(NCy)°

dz S:A3d 6

‘= CAdD, + SA; +Cudp,

s —Cipdsi  +Sdp.  +Spdsi -Cdp,

a6 = Sgo; — Cen,

NOMENCLATURE
NG, = -a
d(NCZ) = —dat

NSZ = ""”"Otfx _ .S'l/\y

d(NS, =S\Qdo\ — C\d(iy — C\ciyCi$x - S\da,

A\ = C\p, +S\Py
A, = ~~Slpxd$l +C\dp, +C\Pydth+Sidpy

Table5: Inverse Jacobian of the CY RO Robot




31

: TIMHin
STEP S X o T el I el S L
[cOr
Find the mid-scam
Butt Joint (1) 3 3 0.334
Lap/Fillet Joint (2) 3 6 0.462
Compute segment travel time T
Butt Joint 23 39 I 5 3611
Lap/Fillet Joint ) 61 1 6 5.256
Find trangition point
Butt Joint 23N i 39*N, Nt 5*N , 7222
Lap/Fillet Joint 32* N, 61* Ni Ni 6*Ny 10512
Computation of
a Vector 9 14 5 1 1611
o Vector (6)-(7) 15 n 3 1 1675
n Vector (8) 3 6 0.462
Compute dT ¢ Matrix 12 0576
Normaization 9 4 3 3 1125
Iterative agorithm (33) - (37) 66* N, 54*N, 6*N, | 7.206
"Totd
Butt Joint 62+23"Nt 186+39"N.j15 N | 10+Nj| 6*N, | 23872
+ 66*N, +54*N,
73+23*Ni [108+39*Ni
: : 28.885
Lap/Fillet Joint +66'N, | +54N, 15+N,J 10+N,[ 6N,

Table6: Computational Requirementsof the Scam Tracing Algorithm




e Tr o >

Function Time(jis)
Multiply 27
Add 17
Divide 39
Sguare Root 36
Tangent 90
Exponentiation 100
L oad 10
Store 21

Table7: Execution Times of the 8086/8087 Microprocessor MHz Clock) [Intd 83]




