NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Proposal for an
Undergraduate Computer Science Curriculum
for the 1980s

Part II: Detailed Course Descriptions

Mary Shaw, Steve Brookes, Marc Donner,
James Driscoll, Michael Mauldin, Randy Pausch,
Bill Scherlis, Alfred Spector

Computer Science Department
Carnegic-Mcllon University
Pittsburgh, Pa. 15213
20 October 1933

Abstract

The authors propose to the Carnegic-Mcllon Computer Science Department a curriculum for

undergraduate computer science. This Part contains the detailed course descrlpuons that support
the curriculum proposal described in Part I,

The Curricuium Design Project is supported by genecal operating funds
of the Carnegie-Mellon University Computer Science Dcpdrtmcnt

AN UNDERGRADUA T COMPUTER SCIENCE CURRICULUM [FOR TIEE 1980S

Table of Contents

IPart I: Discussion
1. Setting

1.1 Working Definition of Computer Science
1.2 A View of Future Computing
2. Roles for Universities

2.1 The Audience
2.2 Usc of Computing Technology in Fducation
2.3 The Establishment

3. Objectives

3.1 Premises
3.2 Goals
4. Content

4.1 Basics
4.1.1 Content
4.1.2 Skills
4.2 Elementary Computer Science
4.2.1 Content
4.2.2 Modes of Thought
4.2.3 Skills
4.3 Liberal Professional Education
4.3.1 General Scope
4.3.2 Liberal Education
4.3.3 Areas Related to Computer Scicnee
4.3.3.1 Mathematics and Statistics
4.3.3.2 Electrical Engincering
4,3.3.3 Physics
4.3.3.4 Psychology
4.3.3.5 Mechanical Engineering
4.3.3.6 Management and Information Science
4.3.3.7 Public Policy
4.4 Advanced Computer Science
4.4.1 Conirol
4.42 Data
4.4.3 Systems
4.4.4 Language
4.4.5 Foundations
4.4.6 Process/Design -
4.4.7 Communication
4.4.8 Applications
S. Program Organization

5.1 Requircments '
3.2 Advice on the Use of Electives
5.3 Example Programs
5.3.1 Balanced Program
3.3.2 Mathematics Concentration

AN LNDERGRADUAVE COMPUTER SCIENCE CLRRICULUM FOR THE 19808

5.3.3 Elcctrical Engincering Concentration
5.3.4 Psychology Concentration

6. Remarks -

6.1 General Philosophy

6.2 Relation o Traditional Courses
6.3 Course Organization and Style
6.4 Course Numbcring Scheme

7. Abhreviated Course Descriptions

>art 11: Detailed Course Descriptions

8. Course Descriptions

8.1 Basic and Introductory Courses
8.1.1 Computers in Modern Society [100}

8.1.2 Programming and Problem Solving [110]
8.1.3 Discretc Mathematics [150]

8.2 Flementary and Intermediate Computer Science Courses
8.2.1 Fundamental Structures of Computer Science 1[211]
8.2.2 Fundamcntal Structures of Computer Science 1 [212]
8.2.3 Real and Abstract Machines [240]

8.2.4 Solving Rcal Problems [300]

8.2.5 Time, Concurrency, and Synchronization [310]

8.2.6 Comparative Program Structures [311]

8.2.7 Languages. Interfaces, and their Processors [320]

8.2.8 Algorithms and Programs [330]

8.2.9 Formal Languages, Automata, and Complexity {350]
8.2.10 Logic for Computer Science {351] B}
8.2.11 Inuroduction to Artificial Intelligence [360]

8.3 Advanced Computer Scicnce Courses

8.3.1 Indcpendent Project [400]

8.3.2 Undergraduate Thesis [401]

8.3.3 Research Seminar [409]

§.3.4 Softwarc Engincering [410]

8.3.5 Sefiwarc Engincering Lab [411]

8.3.6 Resource Management {412]

8.3.7 Big Data [413}

8.3.8 Transducers of Programs [420]

§.3.9 Adranced Programming Languages and Compilers [421]

., 8.3.10 Advanced Algorithms [430]

8.3.11 Computer Architccture {440]

8.3.12 VLSI Systems [441]

8.3.13 Theory of Programming Languages [450]

8.3.14 Complexity Theory [451)

8.3.15 Artificial Intelligence — Cognitive Processes [460]
8.3.16 Anificial Intelligence -— Robotics [461]

8.3.17 Inicractive Graphics Technigues [470}

9, Related Courses

$.1 Mathematics Courses
9.1.1 introduction 10 Applied Mathematics [Math 127 7 CS 150]

AN UNDERGRADUATE COMPUILER SCIENCT CLRIICUT LM TOK THE 19808 -

2.1.2 Culculus T [Math 121]

9.1.3 Caleulus 11 [Math 122)

9.1.4 Methods of Applicd Math ! [Math 259]

9.1.5 Elements of Anulysis [Math 261)

9.1.6 Operations Research | [Math 292)

9.1.7 Opcrations Rescarch 11 [Math 293]

9.1.8 Combinatorial Analysis {Math 301 / CS 251]

9.1.9 Lincar Algebra (Math 341)

9.1.10 Numerical Mcthods [Math 369 / CS 352)

9.1.1} Modern Algebra [Math 473 / CS 452]

9.1.12 Applied Graph Theory {Math 484 / CS 430]

9.1.13 Theory of Algorithins [Math 451 / CS 451]

9.1.14 Numerical Mathematics 1 and 11 [Math 704 and 7035]

9.1.15 Large-Scale Scientific Computing {Math 712 7 CS 453]
9.2 Suatistics Courses

9.2.1 Probability and Applied Statistics for Physical Scicnce and Engincering 1 {Stat 211 7 CS

250]
5.2.2 Probability and Statistics I [Stat 215]
9.2.3 Sutistical Methods for Data Analysis I [Stat 219]
9.3 Electrical Engineering Courses
2.3.1 Lincar Circuits: [EE 101 / CS 241]
9.3.2 Electronic Circuits 1 [EE 102 / CS 242]
9.3.5 Introduction to Digital Systems [EE 133]
9.3.4 Lincar Sysiems Analysis [EE 218]
9.3.5 Electronic Circuits [T [EE 221 7 CS 340)
9.3.6 Analysis and Design of Digital Circuits (EE 222 / CS 341}
9.3.7 Inreduction to Solid State Electronics [EE 236]
9.3.8 Iniroduction to Computer Architecture (EE 247 7 CS 440]
9.3.9 Fundamentais of Control [EE 301]
9.4 Psychology Courses
9.4.1 Psychelogy of Learning and Problem Solving [Psy 113]
9.4.2 Information Processing Psychology and Artificial Intelligence [Psy 213]
9.4.3 Human Factors [Psy 363] .
9.4.4 Cognitive Processes and Problem Solving [Psy 411]
9.4.5 Thinking [Psy 417]
9.5 Engincering and Public Policy Courses
9.5.1 Law and Technology [EPP 321)
9.5.2 Telecommunications Policy Analysis {fEPP 402]
9.5.3 Policy Issues in Computing [EPP 380 7 CS 330]
8.6 Engincering Courses
9.6.1 Real Time Computing in the Laboratory [CIT 252]
9.6.2 Analysis. Synthesis and Evaluation [CIT 300]

9.6.3 The History and Formulation of Research and Development Policy [CIT 401}

9.6.4 Cost-Benefit Analysis [CIT 404]

iii

114 .
114 .
114 -
114 .
114 -
115~
115~
115
115
115
115
115
116
116
116
116

116
116
117
117
117
117
117
117
118
118
118
118
118
119
119
119
119
119
120
120
120
120
1200
120
121
121
121

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR 1TIE 19808 45

8. Course Descriptions

This chapter presents descriptions of the courses we propose 0 be the major components of an
undergraduate computer science curricuium. We have tried to write descriptions that will indicate clearly the
scope and emphasis we have in mind. However, a complete course design is a major undertaking, so most of
these descriptions should be viewed as design sketches, not full designs. An overview of the course structure,
including course names and prcrcquisitcsz, is given in Figure 8-1.

Some courses that are shown would be offered by departments other than computer science. In some
instances (as in COMBINATORIAL ANALYSIS [MATII 301 7 CS 251]}, these courses have computer science course
numbers. Given more time and broader expertise, the Curriculum Design Project would have made detailed
sketches on such courses; instead, information about similar courses currently offered at Carnegie-Mellon
University has been provided, but only for purposes of cxposition and completeness, We are ncither
endorsing nor criticizing the current curricula of these courses.

2 - . .
fhe prerequisite structure is complete only for computer seience.courses,

0I5 211SINb2IdI] puE 981N 1]-g 3B

0o:
Solving R
Wrig Probs

2i2+two

400,401:
Tndép Proj
& thesis

212 +two

A09;
Research
Seminar

eal

110:
Programming
& Prob Solv Mathematics
240: MaD1: Psych 213:
Fund Struc Real & Abstr- Probab11ity Combinatorics Info Proc
act Machines & Statistics & AT
212: M369: Psych 363:
Fund Struc Numerical Human
of CS 11 Methods Factors
anlthy
I I |
310: 3z20; : 61 360!
Time, Synch, Languages orithms forml |angs Logic for Artificial Palic{ for
& Concurrency Prog Structs & lnterraces Fogsams & Complexity Comp Sci Intelligence Computin
| | N\
F | M301 N | |
410: 420: 450: 460 470
Saftware Transducers Thy of AT ognitive Computer
Engineering of Programs Algorithms Prog Langs Processes Graphics
Calc II
(:;;1es} Lin ﬁlg
411 421, 451 M712: 461
Software Adv PLs & Complexity Scientific Al: Robotics
Eng. Lab Compilers Th Computing -

S0861 L. M0: 1 WM AN SIINHIDS WLLAGINGD (LLVAAOVADUAUNTI NY

9

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 19808 47

8.1 Basic and Introductory Courses

Introductory computing courses serve all the communities described in Section 2.1. They exist to provide
general computer literacy to the campus at large, to provide the background for students who fmust use
computers in other disciplines, and to provide sufficient background for the basic computer science courses.

In order to establish the basis of our computer science curriculum, we give a brief description of two kinds
of introductory course. The first of these is directed at the need for gencral literacy about computing. The
second is directed at the nced for the specific skills réquired for good programming, including problem-
solving skills. The two courses are independent; we conceive of the former as a unjversal requirement.

8.1.1 Computers in Modern Society [100]

This course presents algorithmic thinking and the role of computing and technology in contemporary
society. It covers

» Use of computing facilities, including important classes of programs such as text formatters,

- electronic message systems, interactive computation and planning systems, and public information
utilities, '

» Survey of clasées of computers and applications, with emphasis on the diversity of the applications
and the common elements of the successful ones.

» The style of precise, deductive reasoning and problem solving that characterizes science and
engineering. One of the carriers of. this idea will be an introduction to elementary computer
programuning.

» Ethical and social implications of widespread computing power.

There is an opportunity for this to become a course that teaches all students, particularly nontechnical
students, about the nature of scientific reasoning. Such a course would include elements of formal logic,
history and philosophy of science, and Western civilization. Hands-on experience with computers could
provide the direct experience and tangible feedback that is often difficuit to provide. The course would help
balance the conventional view of liberal education that calls for scientists to take substantive courses in the
humanities but not for humanists to take substantive courses in the sciences.

8.1.2 Programming and Problem Solving {110}

Techniques for solving problems with computers, including problem-solving and programming skills, 'fhis
is the course for students who will take more advanced computer science courses. This course could use an
introductory programming text and books such as the following:

» R.G. Dromey, How to Solve It by Computers[20].

» }.R. Hayes, The Complete Problem Solver[32).

» G. Polya, How to Solve 11 {63].

» M. Rubinstein, Patterns of Problem Solving [68].

» W.A. Wickelgren, How 10 Solve Problems [34]. .

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR 1118 19808 43

8.1.3 Discrete Mathematics [150]

Prercquisites: NONE
Description: This course introduces and retates a varicty of discrete mathematical themes and subjects. This
course Is intended to serve prospective computer scicnce and mathematics majors, among others.

Rationale: The themes listed below provide the fabric that holds the course together. Although they are not
mentioned explicitly in the subject listing, it is important that they be approached frequently in
textbooks and in lectures,

Ubjectives: At the end of this course, a studeni will have a command of the basic ideas and techniques from
discrete mathematics and will be able to apply them to problems outside mathematics, such as problems
in computer science. Besides these skills, students wili have begun to develop an appreciation of the
nature and use of abstraction, an understanding of the roles of language and logic in mathematics, an
understanding of the notion of mathematical structure, and an understanding of the nature of
mathematical proof.

Ideas: This course will be the primary carrier of the following:
» Problem diagnosis
» Abstraction: how to go from particular to abstract
» Representation: making abstract structure concrete
» Mathematical reasoning and the notion of proof
» Opcerational reasoning and the notion of algorithm
» Recursion and induction; operational vs. rclational reasoning
» Modeling
» Synthesis: building mathematical structures

It will reinforce or share responsibility for:

» A precise understanding of the notion of algorithm and an appreciation of the role of
algorithms in mathematics.

Topic Outline:

1. Graphs
» lFundamental ideas
» Directed acyclic graphs and trees
P Simple algorithms on graphs

2. Sets
» Sets and sct equality
» Defining sets: exiension and abstraction, paradoxes
» Relalions between sets, operations on sets
» Infinilc sets
» Relations, mappings. and functions

3. Logic Skills
» Propositions and truth Munctions
Individuals, predicates, and quantification
» The language of logic -
» Cxpressing statements in the language of logic
» Informal deduction in predicate logic

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR TEHE 1980S

» A unifying structure: Boolean algebra
4, Induction
» Clementary siepwise induction and complete induction
> Induction over general structure and inductive definitions of sets
» Recursive definitions {e.g., of sequences and functions)
5. A Brief Introduction 10 Logic and Mathematieal Reasoning
» Syntax: formal languages and inductive definitions
» Deduction: axioms, rules of inference, and proofs
» Informal and formal proofs
» A glimpse at semantics: interpretations and soundness
6. Counting
» Combinations, permutations
» Binomial and multinomial theorem
» Inclusion/exclusion
7. Relations, Equivalence Relations, and Order
» Properties of relations, closures
» Equivalence relations, partitions, equivalence classes
> Examples of equivalence relations: divisibility of integers, modular arithmetic
» Partial and linear order
» Well-founded ordering
8. Retrospect

> (Several lectures drawing on previous work to reinforce the themes of abstraction, proof, algorithm, etc, More
lhan one unit of this type may be needed.)

9. Matrices '
» Matrix algebra
» Linear systems, Gaussian elimination
> Applications: incidence matrices, transitive closure, (and passibly Markov chains)
10. Algebraic Structures
P Associative binary operations and Semigroups
» Examples of semigroups (e.g.. tables, strings, coniposition of functions, matrices)
P Algebras and structures
» Monoids, groups, rings, and fields
» Isomorphism and homomorphism
11. Recurrence Relations
» Recursive definition of sequences
» Differencing and summation
» Solution of linear recurrence relations
» Applications to algorithm analysis (e.g., Fibonacei, binary search)

References:
» G. Birkhoff and T.C. Bartee, Modern Applied Algebra[8].
» L.L. Gersting, Mathematical Structures Jfor Compuer Science [25].
» L. Lakatos, Proofs and Refutations: The Logic of Mathematical Discovery [44).
» C.L. Liu, Elements of Discrete Mathematics [50].
» C.L. Liu, Introduction to Combinatorial Mathematics [49).
» D.F. Stanat and D.F. McAlister, Discrete Mathematics in C omputer Science [73).
» H.S. Stone, Discrete Mathematical Siructures and their Applications [74].

» JP. Tremblay and R.P. Manohar, Discrete Mathematical Structures with Applications to
Computer Science [18].

49

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THIE 19808

Resource Requirements:

Implementation Considerations and Concerns:

» Although this is a mathematics course, it should be taught with close attention to the
abstractions of computer science.

» This course is also listed as INTRODUCTION TO APPLIED MATHEMATICS MATH 127] in the
Mathematics Department.

» This course should provide sufficient maturity for the student to continue with more
advanced mathematics courses. 1 this one term course proves insufficient, it may nced to be
split into a two term sequence. In that event, course COMBINATORIAL ANALYSIS [MATII 301 /
€S 251] would be involved in the redesign.

50

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 19808 51

8.2 Elementary and Intermediate Computer Science Courses

These courses form a corc that is germane to nonterminal, terminal, and joint-interest students, We believe
that all those students need a foundation based on a balance between theory and practice. Divergence, if any,
can come in the advanced courses.

In addition to the courses we define here, some of the content of computer science as described in Chapter
4 may be taught in departments other than computer science. These departments include mathematics,
electrical engineering, psy&hology, and others, We have gencrally avoided designing courses that cover .
material taught at Carnegie-Mellon in these other departments.

To show more complete coverage of computer science, however, we list here the titles of courses that should
be jointly listed by computer science and another department, Catalog descriptions for these courses appear
in Chapter 9.

» COMBINATORIAL ANALYSIS [MATH 301 / CS 251]
> NUMERICAL METHODS [MATH 369 / CS 352)
» PROBABILITY AND APPLIED STATISTICS {STAT 211 / CS 250]
» LINEAR CIRCUITS [EE 101 7 CS 241]
» ELECTRONIC CIRCUITS [EE 102 / CS 242)
» ELECTRONIC CIRCUTTS 1 [EE 221 / C§ 340]
> ANALYSIS AND DESIGN OF DIGITAL CIRCUITS [EE 222 / CS 341)
Some of the courses outlined in this section may also be jointly Tisted. In particular, DISCRETE MATHEMATICS

[150) can be listed in the Mathematics Department and REAL AND ABSTRACT MACHINES {240] is very similar to
INTRODUCTION TO DIGITAL SYSTEMS [EE 133].

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FORTTEE 19808 52

8.2.1 Fundamental Structures of Computer Science 1 {211]

Prerequisites: PROGRAMMING AND PROBLEM SOLVING [110)
DISCRETE MATHUEMATICS [150]

Description: This course introduces students o the fundamental scientific concepts that underlic computer
science and computer programming. Softwarce concepts such as abstraction, representation, correctness,
and performance analysis are developed and are related to underlying mathematical concepts. Students
are asked to apply these concepts to programming problems throughout the course.

Ratignale: The idcas of abstraction and analysis are fundamental in computer science and should be
introduced as carly as possible in the curriculum — as soon as students are familiar with the activity of
programming. The specific ideas and techniques introduced in this course serve as the basis for detailed
development in later computer SCiCNCe COUTSES,

Objectives: At the end of this course, a student will:
» Appreciate the central role of abstraction in computer scicnce and programming,
» Be ablc to reason precisely about the correctniess and performance of simple programs.
» Understand how a knochdgc of analytical techniques can aid informal programming
activity.
» Improve his programming skills through practice and analysis.of existing code.
» Be aware of some of the basic program structures and progranuning techniques.

[deas: This course will be the primary carrier of the following:
» The nature and use of abstraction in computer scicnee.

» Busic techniques for reasoning about program correctness and analyzing program
performance.
» Fundomental algorithms for searching and sorting in arrays.

Topic Qutline:

1. Introduction: Understanding Programs
» Abstraction '
» Specification and implementation
» Analysis: correetness and performance
» Search in an uncrdered array .
» Search in an ordered array: Binary search

2. Bricf Review of Discrete Mathematics for Computer Science (review of DISCRETE MATHEMATICS (L50])
» Logic skills
» Scts, retations, functions, graphs
» Induction and recursive definition
P Abstraction, language, and logic

3. Finite State Automata
» Alphabets and languages
» Describing languages: recognition and generation
» The notion of stale; abstract automata

. » Nondcterminism

» Regular expressions

4. Programming Languages: Abstractions
» Syntax: programming fanguages as formal languages
» [Flowchart programs and control siructures

AN UNDERGRADUATE COMPUTER SCIENCE CLRRICULUM I°OR THL 19808

» Basic control structure abstractions: sequencing, conditionals, and itcration
» Procedures and function subprograms
» [dentifiers, variables, binding, and assignment
» Parameter binding
» Scope, extent, and free-variable binding
» Recursion
5. Programming Languages: Pragmatics
» Specifying the meanings of programs
» Machinc-level languages
» Representation of high-level constructs
P Translation and inlerpretation
6. Correciness of Programs
» Program specilfication and propramming lanpuage semantics
» Test vs, proof
P Assertions about programs
» [loare assertions and weakest preconditions
» Loops and invariants
» Specification, abstraction, and modularity
7. Performance of Programs
» Resource utilization
» Mecasuring input size, cxpressing cost
» Experimental methods for cost estimation
» Analytic methods
» When and how to improve performance
8. Major Examples
» Abstraction and analysis revisited
» Sorting
» Lcxical Analysis

References:
» A.V. Aho, J.D. Hopcroft, and 1.E. Ullman, Data Structures and Algorithms {3].
» Q.. Dahl, E.W. Dijkstra, and C.A.R. Hoare, Structured Programming [15].

» W.A. Wulf, M, Shaw, P.N. Hilfinger, and L. Flon, Iundamenial Structures of Computer
Science [88]. .

Resource Requirements (Software):

» Example programs to work with

» [nterpreters for micro-languages

» Simulators for finite-statc automata

» Possibly program timing support — routines and test-bed

» Data sets for sorting and scarching — tuned to best, worst cases for various algorithms
Implementation Coasiderations and Concerns: .

» See [22, 34] for discussions of the course design,

» Because of the incexperience of the students and the large class sizes, this course is
particularly sensitive to the problem of concentrating on the exampies at the expense of the
major underlying themes and principles.

» S0 as to provide an appropriate bridge from the programming done in the onc-hundred

53

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 19808

level course to the more theoretical matters that are the topic of this course, it is important to
blend in a sufficient number of programming examples.

54

AN UNDERGRADUATE COMPU I'ER SCHEINCE CURRICULUM FOR THIE 19808 35

8.2.2 Fundamental Structures of Computer Science H {212}

Prcrcquisitc-s: FUNDAMENTAL STRUCTURFES QU COMPUTER SCIENCE [[211)

Description: The coursc is a continuation of FUNDAMENTAL STRUCTURES OF COMPUTER SCIENCE €211, 1t
comprises five major parts: data abstraction, implementation of data types and corresponding
algorithms, models of computation, topics in computer implementations, and a bricf introduction to
LISP. In addition to lectures.on these areas, students arc asked to complete a number of programming
assignments.

‘The programming assignments are an integral part of the course. They arc often the first programs that
arc large cnough to force the student to deal with abstraction (by neccessity), and they give the student an
opportunity to apply algorithms and abstraction techniques that are presented in class. Studcents are
asked to program and think about programmiag during the cntire course. It is this ¢mphasis that ties
the course together.,

Rationale: This coursc presents a breadth first cut across many topics in computer science. Taken as a last
course in computer science, this course and FUNDAMENTAL STRUCTURLS OF COMPUTIR SCIENCE 1 [21]]
provide an introduction to the central topics in the field. Taken as an introduction to the more
advanced courses, this course provides students with material that is either prerequisite or introductory.

Objectives: At the end of this course, a student will have
» Enough programming skill to handle larger programrming assignments and experience in
both PASCAL and, to a lesser extent, LISP

» A basic knowledge of data abstraction and specification techniques, and the ability tc
implement a data structure to support a given specification

» Some background in computability theory
» Some background in the implementation of programming languages
» Soinc background in the design and analysis of algorithms.
Ideas: This course will be the primary carrier of the following:
» Data type specification and abstraction techniques
» Data structure design and analysis, including time/space tradeoffs
» The organization of systems via the use of laycred abstractions
» LISP programiming
It will reinforce or share responsibility for:
» Data representations and related aigorithms
» Topics in the impiementation of programming languages
» Computability theory
» Verification techniques

Topic Outline:

L Data Abstraction. An example is presented almaost immediately, so students can begin to program an abstract data type
on their own.
a Course Introduction, Abstract Dala Types
b. Abstraction, An example of Dircetories a5 ADT implemented via Hashing w/Linear Probing
¢. Introduction Lo Formal Specification

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULLM FOR THTE 19808

d. Algebraic Specifications, Sequences. Positive Integers as examples
c. Abstract Models (Strings, Queues. Sets). Yerification Considerations
2. Abstract Data Types, their Implementation, amd Cotresponding Algorithms. [In general, abstract data lypes are
semi-formally introduced before algorithms and represeatations are discussed. This malerial is presented in Pascal. It
is specifically not intended that the intreduction o LISF be merged with the introduction 1o data types.
a. Basic Programming Abstractions
» Variant Records, and Pascal Modules {Independent Compilation)
» Poiniers/Refcrences Introduced
» Representation technigues (e.g., packing, encoding)
b. Queucs and Stacks
» Slacks, Nesied Abstractions
» FII°O Qucues
» Stalic Implemenlations; ¢.g. via arrays
» Implementations Invelving Single Linking, Double Linking, Circular Structures
» Modeling, Discrete Event Sintulations
» Bucket Hashing
» Other Uses of Queucs and Stacks
¢. Types oflen implemented with trecs
» Abstractions of Sets, Dircctorics, Symbol Tables, Priorily Queucs, ete.
» Inlroduction to rees and Delinitions: Trees as an Abstract Type
» Tree Walks, Uses of Trees, Specilication of Trees, Binary Tree
» Inductive Proofs of Trees, Representation of Trees
» Binary Search Trees, Recursive and Iterative Processing
» Decletion in Binary Search Trees
» alancing Trees
» Multi-way Trees, 2-3 Trees, Heaps
» Copying Structures with Pointers/Recursion
» Multi-key Retrieval, Database Querics
» Intervai Retrieval, Herators
d. Graph-like Types .
» Graphs Introduced, Defined, and Exemplified
» Graph Traversal, Connectness Algorithms
» Graph Represcniations and Transitive Closure Algorithms
» Transitive Closure Algorithms Refined, Shortest Path Algorithms
» Overview of Traveling Saiesman and Spanning Tree Algorithms
3, Models of Computation: An Introduction.
a. Turing Machines
b. Other Models L
c. Church's Thesis and Computability
d. The Halting Problem and Undecidability
e. Contexl-Free Languages and the Chomsky Hierarchy
4. Topics in Computer Implementations.
a. Introduction to Storage Allocation
b. Stack-based storage allocation, static and dynamic scoping
¢ Non-Stack-Based Allocation, Freeiists, Explicit Merging of Objects
d. Buddy System Allocation, Marking In-use Objects and Garbage Collection
5. LISP
a. Notior of Applicative Language
b. Programming Environments and Interpreters
¢. Usc of simple, yet powcrlul, primitives
d. The power o_f recursion
¢. Diflerent implementations of abstractions already secn

References:

» AV. Aho, JD. Hoperoft, JE. Ullman, Data Structures and Algorithins [3].
Chapters/Sections 1, 2.1-2.4, 3.1-3.2, 5.1-5.2, much of 6 and 7.

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THIE 19805

» O.J. Dahl, E.W. Dijkstra, and C.A.R. Hoare, Structured Programming [15].

» P.H. Winston and B.K.P. Horn, 1157 [85].

» WA, Wulf, M. Shaw, P.N. Hilfinger. and L. Flon, Fundamental Structures bf Computer
Science [38]. Chapters 7, 8,9, 10.1-10.5, 11.1-11.2, 13, 14, 15, 16, 19.

» Other reading to be determined,

Resource Requirements (software):
» Library of data types to support many of the assignments
» Simulator for Turing Machines
» Some assignments can involve students with larger programs by giving them running
verstons of exemplar programs (whose design was presented in class) and asking for
modifications, ' ‘
» Note thal FUNDAMINTAL STRUCTURES OF COMPUTER SCIENCE 11 [212] reguires much greater
compuling resources than FUNDAMENTAL STRUCTURLS OI' COMPUTER SCIENCE [[211).
Implementation Considerations and Concerns:
> Sec [22, 34]) for discussions of the course design.
» It is specifically intended that ISP be taught for approximatcly the last 30% of the course
and that the data structure material be taught initially in Pascal. There arc two reasons:
First, one new thing is cnough to learn at a time. Second, the students should see the data
structures material from two points of view (that is, Pascal and then LISP), and the
advantages and disadvantages of both should be made clear.
» Feedback to students is important. An extensive grading staff is required to providé
substantive feedback to students on their programs with respect to algorithms abstraction
techniques, and general prograinming style. This is especially true when students are

supposed to e learning design techniques that require extensive individual feedback and

for which answer sheets do not give enough guidance. This is such a course, and it must be
adequately staffed,

57

AN UNDERGRADUATE COMPUTER SCHENCE CURRICULUM T'OR TTHE 19808 . 58

8.2.3 Real and Abstract Machines [240]

Prerequisites: PROGRAMMING ANIY PROBIEM SOLVING [110]
DISCRETE MATHEMATICS [150]

Description: In this course the student is introduced simultancously to the theorctical models and the
hardware instances of machines that compute. The notions of layers of virtual machires is explored and
their realization in various combinations of hardware and softwarc arc major themes. Beginning with
primitive computations, the mathematical concept of function is used t capture the capabilitics of
combinatorial digital logic circuits. From that base, finitc automata are introduced as tools for
understanding, analyvzing, and designing finite state machines. After that, Turing Machines and, more
appropriately. register machines are introduced and related to the architectures of real computers.
Finaily, microcode, machinc/asscmbly language. and gencral-purpose programming languages arc
positioned in this hicrarchy.

The laboratory component of this course will require about three hours of lab work per week and will
expose the student to simple instances of some of the machine types covered in the lectures. Sudents
will simulate instances of several classes of machine and will design and construct simpie combinatorial
circuits and a simple finite state machine.

Raticnale: Conventional teaching of computer architecture doesn't convey the sense that the capabilitics of
constructable systems can be described and reasoned about formally. While the strict identity between
formal models and actual machines ends at the finite automata, there is nonctheless a great deal to be
learned from exposure to both the formal models of more powerful machines and to the architectural
ideas embodied in real machines. The purpose of this course is to expose students to the design and
construction of various kinds of computing devices and to establish that there arc formal techniques for
reasoning about the mathematical propertics of computing machines.

Objectives: Al the end of this course, a s[udent'will be able to:
' » Understand and describe the relationships between some formal models of machines and
corresponding real machines
» Understand the notion of an interpreter of an instruction set and the layers of abstract
machines that are present in all real systems

» Understand the use of a clock to impose the discrete time abstraction on the continuous
time functions of real circuits

» Understand the circuit family abstraction that permits Boolean algebra to describe the
behavior of real electronic devices

» Design and implement simple Finite State Machines

Ideas: This course will be the primary carrier of the following:
» Concept of machine as exceutor or interpreter of an instruction stream
» Elementary computer architecture

» Abstract machings, corresponding languages, and corresponding real machines; notion that
there are different kinds of machines with different power and various realizations

» Diiscrete time, ordering of events

AN UNDERGRADUATE COMPUTER SCHINCE CURRICULLM QR TUE 19808

» Circuit family abstraction
It will reinforce or share responsibility for:
» Absiraction and representation
» Finite state automata, PIDAs, Turing Machines
» Basic design levels of hardware (shared with COMPUTTR ARCIHTECTURE [440D)
» Notion of algorithm
» Notion of state

» Beolean algebra

Topic Cutline:
1. Function
» Concept of Function
» Circuit Family abstraciion (with hardware lab)
» Combinatorial Logic Circuits (with hardware lab)
> Review of clementary Boolean logic (De Morgan's Theorem)
» Minimization versus VLS]
» PLA, PAL, PROM (with hardware lab)
2. Finite Automata
> Regisiers and Latches (with hardware lab)
» Combinatoniai Logic wilh feedback
» Clocks and diserete time {with hardware lab)
» Regular Languages, Regular Expressions
» [nite State Machines (with hardware lab)
» Register Transfer Level description
» Meaiy and Moore Machines
» One-Hot versus Encoded implementations (with hardware lab)
3. Push Down Automata
» Context Free Grammars (with software lab)
» Context Free Languages
» BNF
» Related real machines - BSO00, HP3000, HP calculators (with software lab)
4. Machine models] .
» Turing Machines (with software lab)
» Register Machines (with soflware lab)
» Von Neumann architecture and the Universal T™
» Memory Devices
> RAM
> Disk
> Tape
> Memory hicrarchies
5. Architecture Introduction
» 15P and Exccutor/Inlerpreter model {with software lab)
» Microcode
» Machine Language (with soltware lab)
» Assembly Language
» Intermediate Language (c.g. Peode)
» Higher Level languages and their Virtual Machines

References:

» C.G. Belt, J.C. Mudge, and J.E. McNamara, Computer Fngincering [4].

59

AN UNDERGRADUATLE COMPUTER SCIENCE CURRICULUM FOR THY 19808

» M. Minsky, Computation: Finite and Infinite Machines [54.
» 2P, Sicwiorek, C.G. Bell. and A, Newcll, Coniputer Structures: Principles and Examples
[72}
Resource Requirements: ‘
‘ » Finite State Machine simulator
» Regular Expression to FSM converter
» PDA Simulator
» CFG w0 PDA converter
» TM Simulator
» [SP simulator

» Digital Electronics lab suitable for building simple digital circuits up to FSMs: TTL parts,
breadhoards, power supplics, signal gencrators, switches and displays, oscilloscopes, logic
analyzer. efc.

Implementation Considerations and Concerns:
» [t may be tricky to find faculty with the right mix of interests to teach this course with good
balance between hardware, software. and theory.
» This course is very similar to INTRODUCTION TO DIGITAL SYSTEMS [EE 133], offered in the
Flectrical Engineering Department. The content is similar cnough that the lab facilities
might easily be set up in commen and shared.

AN UNDIRGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 19805 6t

8.2.4 Solving Real Problems [300]
Prerequisites: FUNDAMIENTAL STRUCTURES OF COMPUTER SCIENCE 1 [212]
REAL AND ABSTRACT MACHINES [240]

Description: This problem-oricnted course provides students with an opporiunity to solve real-world
probiems under the guidance of an instructor. Skills from a varicty of areas both within and outside of
computer scicace will need to be brought to bear on class examples and assignments pused as problems
by the instructor. The emphasis is on the techniques used in obtaining the solution, rather than the
solution per se. While proper software cngincering techniques will, of course, be expected for all
solutions involving software, it should be noted that the emphasis in the course is problem solving, not

software engincering,.

Rationale: Traditional courses provide particutar knowledge and skills, but usually the problems posed in
such courses focus narrowly on the topic of the course. Rarely does a student encounter a problem with
the real-world characteristic of requiring a non-trivial combination of acquired skills. " In addition,
academic assignments often make broad assumptions that make the task much cleaner than actual
problems tend to be. This course should help prepare students for the realistic, thorny sorts of problems
that they will have to encounter after graduation.

Objectives: At the end of this course, a student will be able to: _
» Critically examine a task and define the real issues in solving a problem.
» Form a well-organized attack on a problem.
» Implement a solution, cognizant of possible error or oversight,
» Evaluate a completed solution, and tearn and generalize from it.

Ideas: This course will be the primary carricr of the following:
» Problem analysis, definition, and decomposition,
» Coping with external constraints not necessarily inherent in the problem,
» Application of knowledge and technique in novel ways,
» Critical evaluation of a finished solution.

Topic Qutline:
1. Basic stages of problem solving
a. Problem definitien
b. Plan of attack
¢. Exccution of a plan
d. Check for correctness of solution
e. Evaluation of a finished solution

2. Path to a sotution as the desircd results
a Working backwards from a final goal

b. Establishrent of stable substructures
3. Reductionism vs. Holism
4. Knowiedge vs. skill
5. Epistemology
6. Models and modelling
7. Analegics and metaphors
8. Verbalizing and cxpressing a problem or solution
9. Well-structured vs. Hi-structured problems

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FFOR THE 19808

10. Overcoming conceplual blocks
11. Defining and narrowing a problem domain -
12. Reduction 1o a known problem

13. Partial Solutions
a. Giving up on hard cascs

b. Approximate results; coping
References:
» IL.R. Haycs, The Complete Problem Solver[32).
» 1. Lakatos, Proofs and Refutations {44)].
» G. Polya, How to Solve [1[63].
» G. Polya, Mathematical Discovery [62]
» M. Rubinstcin, Patterns of Problem Solving [68].
» W.A. Wickelgren, How to Solve Problems [84].

Resource Requirements:

» A healthy number of class examples of real problems of an inter-disciplinary flavor,

Implementation Considerations and Concerns:

» This coursc is modelled after existing “Analysis, Synthesis, and Evaluation™ courses taught

in engincering curricula, particularly the course described in [61],
course 204 was also studied [13, 81, 42].

Stanford’s graduate

62 -

AN UNDERGRADUATE COMPUTER SCHENCLE CURRICULUM FOR THE 19808, 63

8.2.5 Time, Concurrency, and Synchronization [310]

Prerequisites: FUNDAMENTAL STRUCTURES OF COMPUTER SCIENCEII [212)
REAL AND ABSTRACT MACIIINIS [240]
PHYSICS T [PITYS [21] (MECHANICS)

Description: This course conveys the fundamental notions of flow of time and control of tcmporal behavior
in computer systems, both at the hardware and the software level. ‘The fundamental issues of
synchronization, deadlock, contention, metastable states in otherwise multistable devices and related
problems are described. Solutions that have been evoived, like handshaking, synchronization with
semaphores, and others are described and analyzed so that the fundamental similarities between the
software and hardware techniques arc exposed. This course has a significant laboratory component.

Rationale: Computer systems, both hardware and software, depend heavily upon synchronization and
concurrency control. This is because they deal with implementations in which there is real paraliclism.
This course makes precise many of the terms (e.g., simultancous, parallcl) that we use to talk about time.
These terms hide many implicit assumptions about the temporal behavior of computer systems that we
make when thinking about hardware and software. Some of these assumptions are correct, while others
are convenient simplifications designed to make intractable problems manageable. There are essential
difficultics with our concepts of how systems behave in time, some of which are due o deep mismatches
between our intuitions about time and the reality as modelled by physicists,

Objectives: At the end of this course, a student will be able to:

» Design, implement, and reason about software with synchronization.

» Design, implement. and reason about hardware synchronization cireuits

Ideas: This course will be the primary carricr of the following:
» Concepis of concurrency
» Concepts of nondeterminism
» Cooperating proccsses
» Synchronization (handshaking, semaphores, monitors, etc)
» Asynchronous and self-timed systems
» Metastable state problem, deadlock, contention
It will reinforce or share responsibility for:
» Abstract machine modecls
» Combinatorial circuits with feedback, memory circuits

» Addressing, data represcntation, and storage

" Topic Outline:
’ In addition to the formal content, this course is intended to teach students how to evaluate systemts 2nd ideas.
1. Time . '

a Continuous iime, Physics
» D.C, circuits
» Propagation delay
» Transmission lines

b. Discrete time
» Clocks

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR TTHE 19808 04

» [vents and orderings on cvents
c. Simultaneity
d. Concurrency
¢. I'ormat Models
» Nondelerministic automata
» Temporal Logic
» Lincar Time
» Branching Time
2. lardware and time
a. Svnchronous. asvnchronous, self-timed
. Mclastable states and deadlock
. llandshaking, synchronivation
. Interrupts
. Multiprocessor organization
. Indivisible instructions {test and sei, comparc and swap ...)
. Clock generatior znd distribution
. Interfacing and data communication protocols
3. Software and time
a. Cooperating Processes
Pand V
. Transactions and atomicity
. Deadlock, livelock - spaghetti-cating philosophers
. Blocking, scmaphores
. Spin Locks
. Monitors
. Ada synchronization consiructs
. Time Clocks
. 170 and Data Communication
. Inter Process Communication
. Network Communication
» Name
» Address
» Route

Fmo— o Do O

_— P e e TR - RN T

References:

» C.G. Bell and J.C. Mudge, “The Evolution of the PDP-11"; Chapter 16 of C.G. Bell, 1.C.
Mudge, and J.E. McNamara, Computer Engineering: A DEC View of Hardware Systems
Design [4].

» M. Ben-Ari, Principles of Concurrent Programniing [5).

» E.W. Dijkstra, Cooperating Sequential Processes [18].

» A.N. Habermann, /ntroduction to Operating System Design [30].

» C.A.R. Hoare, Communicating Sequential P'rocesses [35].)

» R.C. Holt, G.S. Graham, E.D. Lazowska, and M.A. Scott, Structured Concurrent
Programming with Operati}zg System Applications{36].
» C. Secitz, System Timing; Chapter 7 of C.Mecad and L.Conway, [atroduction to VLSI
Systems [53).
Implementation Considerations and Concerns: The best presentation of the material in this course depends
on a careful balance between hardware, software, and theoretical issues. This requires a great deal of
breadth from the instructor, something that may be difficult to tind. ' '

AN UNDERGRADUATE COMPUTER SCHENCI CURRICULUM [FOR TTIE 19808 65

B8.2.6 Comparative Program Structures [311]

Prerequisites: TFUNDAMENTAL STRUCTURES OIF COMPUTER SCIENCE 11 [212]

Description: This course covers a variety of common program organizations and program development
techniques that should be in the vocabulary of a competent software engineer. The student learns
advanced methods for programming-in-the-small including implementation of modules to given
specifications and some common program organizations. The course also covers techniques for reusing
previous work (c.g., transformation techniques and generic definitions) and clementary design and
specification.

Rationale: In previous courses, students have studied data structures, some programming languages, and
some particular ways to vrganize and develop programs by putting individual statements together to
make procedures. In Software Engincering courses they will study ways to put modules together to
form systems. This course fills in the middle ground — ways to put code fragments together to make
modules. This course thus presents a methodology for medium-scale program development. In the
same way that FUNDAMENTAL STRUCTURES OF COMPUTER SCIENCE It [212] and ALGORITHIMS AND
PROGRAMS [330] teach comparative data structures and LANGUAGES. INTERFACES. AND THEIR
PROCESSORS [320] teaches comparative programming languages, this course teaches comparative
program organizations — the program skeletons that good programmers carty in their heads.

Objectives: At the end of this course, a student will be able to:

» Sclect an appropriate program organization for a problem of moderate size (5-10 pages) and
implement a program competently '

» Use pre-cxisting definitions and development tools to expedite the development of such
programs

» Implement a module o a given specification
Ideas: This course will be the primary carrier of the following:
» Standard program organizations
» Program development methodology for medium-scale programs

» Systematic methods for creating and connecting software components
It will reinforce or share responsibility for:

» Understanding that programs can be constructed or modified by other programs
» Engincering concerns in software construction

Topic Qutline:
1. Ideas
B Notion of a program organization paradigm
» Advanced programming techniques and methedology
» Devising and evaluating allernative implementations
» Creating software by modifying software (when large-grain tansformations emerge, Lhey go here)

» Engincering concerns: reliability, reasoning about correctness and cfficiency, informed selection among
alternative implermcntations

2. Program Orpanizations: Examples drawn fronr -
P (Abstract) daia types {use for connection 1o FUNDAMENTAL STRUCTURES OF COMPUTER SCIENCE11{212])
» Pipes/filters
» Table-driven interpreters

. AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM [OR TULE 198065

» Pattern-matching systems: production systems

> State machines

» Command-language processors (c.g. cdilors)

» Constraint systems

» Cooperating concurrent processes

» Object-oriented programming {message-passing systems)
3. Mcthodology

» Iivaluation and selection of implementation alternatives

» Specification (formal and informal)

b Generic definitions and macros

» Transformation systems

» Reusable snfiware

» Program developmcent systems

References: .
» O.J. Dahl, EW. Dijkstra, and C.A.R. Hoare, Structured Programniing [15).
» D. Gries, The Science of Programming [28].
» P. Hibbard, A. Hisgen, J. Roscnberg, M. Shaw, and M. Sherman, Siudies in Ada Style {33).
» B.W. Kcrnighan and P.J. Plauger Software Tools in Pascal [39].

Resource Requirements (software):
» Templates and worked-out examples of the various program organizations included in the
course. '
» A software development cnvironment to make assignment of large programs feasible,
» If casc studies are used, the software being studied should be available for medification or
measurement.)

Implementadon Considerations and Concerns: _

» For the time being, this should be a lab course. It might, for example, be organized as a set
of case studies, much in the style of data structurc courses, with sample program
organizations from the list above, abstract specifications and implementation alternatives for
each, and evaluations of the result. As the formal theories that support these organizations
grow, it should become more of a lecture course.

» The course should cover cascs in both Pascal and LISP.

AN UNDERGRADUATE COMPUTLER SCIENCE CURRICULUM FOR TIIE 19805 67

8.2.7 Languages, Interfuces, and their Processors [320)
Prerequisites: FUNDAMENTAL STRUCTURES OF COMPUTER SCIENCE II [212]
REAL AND ABSTRACT MACHINES [240]

Description: This course examines the nature of programming languages and the programs that implement
them. It covers the basic elements of programming language organization and implementation; it also
touches on the design of interactive interfaces. The emphasis is on the elements of general-purpose
programming languages that are common to many programming languages and on ideas that are also
applicable to specialized systems. Implementation techniques covered include lexical analysis, simple
parsing, semantic analysis including symbol tables and types, and interpretation for elementary
arithmetic expressions. Programming projects include a simple interpreter and an interactive program.

Rationale: The traditional courses on programming languages are a “comparative languages” course and a
“compiler” course; the compiler course aiso served as an example of a medium-sized system with a
well-understood structure. Usually, however, the more fundamental objectives of understanding
languages and system organization get lost in the press of, for example, learning three new
programming languages or constructing a complete compiler for an Algol-class language. In addition,
these courses omit a number of topics that are now of increasing importance to computer science. Such
topics include the use of coherent systems of software development tools, human factors considerations
for interfaces, engineering considerations concerning usability and reliability, and improved theoretical
approaches to specifications of computations and policics. In addition, there has been a shift in the
needs of the students: an increasing number of them end up creating programs to be used by laymen
rather than modules that will be incorporated in large software systems,

We propose a three-course sequence that substantially revises the previous pair of courses:

> LANGUAGES, INTERFACES, AND THEIR PROCESSORS (320] deals with the structure and
organization of programming languages and with the interface between programs and
people. Since it is intended for a wide spectrum of students, it emphasizes techniques
applicable to specialized interfaces as well as to general-purpose languages,

> TRANSDUCERS OF PROGRAMS ([420] centers on the notion that programs should be
manipulated by other programs as well as by people. The major examples are drawn from
compilers, but tools for constructing compilers and a variety of techniques for re-using code
are explored. Examples include code generation, macro/generic definition expansion, test
data generation, use of integrated editors and program development data bases,

» ADVANCED PROGRAMMING LANGUAGES AND COMPILERS [421] is concerned with
programming language topics of specialized interest. These include comparative study of
programming languages, optimization techniques, and the interaction between language
design and implementation.

This scction describes the first course (320) of this programming language sequence. The theme of this
course is the description of computations. These descriptions are used both by humans and by
computers. They may be either static, as in a conventional programming language, or dynamic, as in an
interactive interface, The course covers both notations and software systems that process the notations.
Notations of interest iriclude programming languages, specification formalisms, software interfaces such

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 19808 68

as command languages, and interactive systems such as graphics processors. Students are assumed to
enter knowing Pascal and LISP plus several specialized systems such as operating system command
languages, editors, text formatters, and electronic message systems, so therc is a base of common
experience to provide examples.

Specialized languages and packages account for an increasing share of modern software. They are
especially important to naive users, who may use general-purpose languages rarely or not at all. As a
result, there is a premium on good design and reliable implementation of these specialized systems.
Design and implementation techniques developed for general-purpose programming languages apply as
well to the specialized ones; the transfer is not, however, so obvious that students will make it without
help. We believe that the changing style of computing justifies a shift in emphasis in the courses.
Further, a shift t smaller languages will provide a large set of examples whose size is more manageable
than many of the examples now used in compiler courses. The emergence of software development
tools for constructing parts of language-like systems is also an advantage.

Objectives: At the end of this course, a student will be able to:
» Learn new programming languages or system interfaces with reasonable investment of effort
» Design and implement usabl-e, reliable interfaces for small systems such as editors or data-
management programs
» Be able to evaluate language or interface designs
» Program competently in the programming languages taught in the courses

Ideas: This course will be the primary carrier of the following:

» General structure and organization of programming languages

» Criteria for evaluating languages, including human factors concerns

» Implementation: data structures and algorithms for lexical analysis, symbol tables, and
simple parsing

It will reinforce or share responsibility for:

» Abstraction methodologies

» The impact of notations on approaches to probiems

» Introduction to several general-purpose languages of rather different character {Snobol,
APL, etc)

Topic Qutline:
This course includes a comparison of several general-purpose languages, the general principles of language and interface design,
evaluation criteria and human factors concerns.

1. The concept of language
» Syntax vs semantics vs pragmatics
» Language as a communication/interface medium
» Language {notation) as a means of shaping ideas

2. Introduction to a third programming language
» This language should be fairly different from Pascal and LISP
» Teach a characteristic core subset in a week
» Overlap anatomy of languages lectures with actually learning the language (1-2 weeks)

3. Defining programming languages (review of FUNDAMENTAL STRUCTURES OF COMPUTER SCIENCE I [2113)
» Regular expressions for lexical structure

AN UNDERGRADUATE COMPUTER SCIENCE CURRICUT UM FOR T 19308

» BNT for syntax
» [xistence of formal semantics methods
4. Classical anatomy ol programming languages .

* Noie that this Tevel (sophomore/junior). one cnumerates the design allernatives rather than cxpecting the
compatison and evaluation Lo really sink in. [n a cenain sense. this is clementary analomy: comparative anatomy
COMES in ADVANCED PROGRAMMING LANGUAGIS AND COMPILLRS {321, and genuine depth in language design is a
graduate issuc. '

» Structure of algorithmic languages

» Simple statements: statement sequencing: iteration and recursion: conditionals

» 1ata structures and declarations

> Addressing mechanisms {virtual addresses, indircction): variables. names vs values. scope, binding, extent:
storage allecation — implicit and explicit, struclure and management

» Types (and what is Lyped: values, vanables,. .); absiract dala ypes
» Abstraction mechanisms: functions, procedures, and exception handlers

5. Lvalualion criteria
» Simplicity, orthogonality, abstraction, et
» Language compiexity vs implemcentation complexity
» [Human factors — emphasis on the sorts of interfaces students use and create, not Just en programming languages.

This means graphics and human faclors, amoeng other things.

6. EfTect of programming language on program organizalion
» Structured programming
» Recursion and list structures
» Applicative programming
> Shilting program organization paradigms with shifi in language

7. Interactive program organizalion
» Screen handling
> Simple 2-dimensicnal interface design

8. Special-purpose languages as languages
B Compare structure (control. data, ele} with pencral-purpose languages.
» Relation between complexity of lanzuage and implementation, ease of use
» Examples, {rom: spreadshect program. robot control language, word/text processing language, databasc query

language, editor, etc
9. Project: build an inte:preter with full-screen display. or an interface for a clicnt application provided by the instructor.
Study impicmentation techniques whilc students work on project.
10. Processors and implementation techniques (survey)
» Compilers, interpreters, linkers
»- Lexical analysis, parsing, symbol tables, display management
» Expression evaluation
» Run-lime representations. structures, and types
» Storage management, including reference counts and garbage collection
» Code generation: role of optimization
» Macro processors, pecudo-operations, cross-references, other zood assembler techniques
11. Specific implementation techniques

» These are selected because of their applicability outside the world of compilers for general-purpose languages.

» [evel of aspiration is complete treatment of regular fanguages plus the interpretation of arithmetic expressions as
a special case of context-free.

» Lexical analysis (review of FUNDAMENTAL STRUCTURES OF COMPUTER SCIENCE | (2115}
» Simple BN (review of FUNDAMENTAL STRUCTURES OF COMPUTER SCIENCET(211])

b= Parser (generated with a tool)

» Elementary semantic analysis (symbot tabie, types on nodes of parse tree)

References:

» A.V. Aho and 1.ID. Ullman, Principles of Compiler Design (2). (The “Dragon Book™)

6%

AN UNDERGRADUATE COMPUTER SCHIENCE CURRICUL UM JOR TTIE 19808

» R.E. Griswold and M.T. Griswold, 4 Suobo! Primer[29].
» H. Ledgard and M. Marcotty, The Programming [anguage Landscape [47].

» BJ. Macl.ennan, Principles of Programming languages: Design, Evaluation, and
Implementation [51].

» LE. Nicholls, The Structure and Design of Programming Languages (58]

» S. Pakin, APL\360 Reference Manual [59).

» T W. Pratt, Programming Languages: Design and Implementation [64),

» R.1D. Tennent, Principles of Progranmning Languages[17].

» N, Wirth, Algorithms + Data Structures = Programs[86]. (especially Chapter 5)

» Text on command languages, human cngineering, and interactive systems
Resource Requirements (softwarce):

» Samplec systems
» Compiler-construetion tools

» Compiler lab: modules for lexer, symbol table, ... that can be composed to make a complete
compiler. Ditto for components of an interpreter.)

Implementation Considerations and Concerns:

» It is very hard to generalize about languages without at least 3 in hand, Pascal and LISP
come from the 212 prercequisite; assembler comes from 240. Students should already know
several special-purpose languages, such as the operating system command language, the
cditor. the text formatter, the mailer. Examples should draw heavily on these. [F time
permits, another interactive system such as VisiCale could be taught.

» In addition, 240 is a prerequisite in order to ensure that students can appreciate the
language-as-abstract-machine viewpoint and to provide a fecling for the role of the
representation shift between a high-ievel language and a machine language.

» The emergence of program development tools affects us in two ways: first, they allow for
larger, more realistic cxamples and introduce students 1o the tools of the real world; second,
they make it possible to use the effects of the tools in the first course and defer the
mechanism {e.g., parsing) to a later course.)

» Balance should be 50% what a language is, 50% broadly useful implementations.

» Sce notes in topic outline

70

AN UNDERGRADUATE COMPUTER SCIENCE CURKICLLUM FOR 111 19808 Tt

8.2.8 Algorithms and Programs {330}

Prerequisites: FUNDAMENTAL STRUCTURES QI COMPUTER SCHENCE 1 [212]

Description: Anintroduction to abstract algorithms and to their design, analysis, and realization, The goal of
the course is o develop skill with practical algorithm design and analysis techniques and to develop the
ability to apply these techniques to the construction of real systems,

Rationaic: The treatment of algorithms begins in FUNDAMENTAL STRUCTURES OF COMPUTIR SCIENCE 1l [212]
with the algorithms that manipulate data structures; it continues through ALGORITHMS AND PROGRAMS
[330] with a pragmatic view of the application of algorithmic ideas to reals systems and concludes with an
abstract treatment of algorithms in ADVANCED ALGORITIMS [430]. This scquence provides a solid
grounding in algurithm design and analysis.

In ALGORITIHMS AND PROGRAMS [330] the student is presented with a collection of useful algorithms and
with design and analysis techniques. The context is realistic enough to require meaningful choices
about the application of these techniques. The point of view here is that algorithms (the abstractions)
provide models that can be imposed on nasty real problems, Like ail models, they do not match the real
problems cxactly, and some skiil is required to use them well. Students need to learn a number of these
models to use as tools; they also need practice in applying them to real problems.

Course ADVANCED ALGORITIIMS [430), on the other hand, takes a more abstract view: it is dirccted
towards tcaching the fundamental ideas of problem diagnosis and algorithm design. This division of
responsibilities is iniended to provide all students with good problem solving skills for concrete
algorithmic problems and to cnable interested students to pursuc topics in abstract algorithms in
substantial depth.

Objectives: At the end of this course, a student will be able to
» Choose algorithms appropriate for many common computational problemis.
» Analyze the usc of computational resources by programs,
» Exploit constraints and structure to design good algorithms.
» Apply algorithmic ideas to writé fast programs.
» Select appropriate tradeofTs for speed, space, and reliability.
Ideas: This course will be the primary carrier of the following:
» Algorithm design principles
» Analysis techniques for algorithms

» Pertinence of abstract algorithms to program construction

Topic Qutline: :

L. Dala structures and algorthms (review of FUNDAMENTAL STRUCTURES OF COMPUTER SCIENCE IT [212])
» Queucs, stacks, graphs, heaps, bataneced binary trees, priority queucs

2. Analysis of algorithms
» Whal to anaiyze
» Order arithmetic
» Software iming and moniloriag toois

3. Problermn assessment and algorithm design techniques
» Weak methods: local search, heuristie search, evaluation functions

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM T'OR TiEHE 19808

» Exploiting structure

» Conslfainis

» Problem reformulation: time vs. space, precomputation, dynamic data updating
» Scarch: connected components, shortest paths

» Divide-and-Conquer: binary scarch, sorting, selection

» Greedy Method: 1Njksira’s algorithm, spanning trecs

» Dynamic Programming: path algorithms, traveling salesman

» Probabilistic algorithms

4. Implementation considcrations

» Choosing representations
» Pragmatic constraints: speed vs, maintainability
» Improving performance: bottlenccks, proliling, gross cstimates

5. NP-compleicness

» Satisfiability, clique, hamiltonian dreuits, ete.

6. Paniicular Algorithms. Examples will be selected from the following classes:

» Mathematical Algorithms: arithmetic, randem numbers, polynomials, Gaussian elimination, curve fitling,
integration

» Sorting: clementary sorting metheds, Quicksorl, radix sorting, priority queudcs, sclection and merging, externai
sorting

» Searching: elementary scarching methods, balanced Lrees, hashing, radix searching, external searching

» Siring Processing: string scarching, pattern matching, parsing, file compression, cryptology

» Geometric Algorithms: clementary geometric methods, finding the convex hull, range searching, geometric
intersection, closest point problems

» Graph Algorithms: elementary graph algorithms, connectivity, weighted graphs, directed graphs, network flow,
malching :

7. Advanced Topics: A setection from

Rcferences:

» Algorithm machines: gencral approaches, perfect shuffles, systolic arrays

» The Fast Fourier Transform: cvaluate, muitipty, interpolate, comnlex roots of unity, evaluation and interpolation
at the roots of unity, implementation)

» Dynamic Programming: knapsack problem, matrix chain product, optimal binary search trees, shortest paths,
time and space requircments

» Lingar Programming: linear programs, geometric interprelation, the simplex method, implementation

» Parallcl aigorithms: sorting, searching, in parallel

» Exhaustive Search: exhaustive search in graphs, backtracking, permutation generation, approximation algorithms

» NP-complete problems: delerministic and nondeterministic polynomiai-time algorithms, NP-completeness,
Cook's theorem, some NP-complete problems

» A.V. Aho, J.D. Hopcroft, and LE, Ullman, Data Structures and Algorithms [3).
» A.V. Aho, 1.DD. Hopcroft, and J.E. Ullman, The Design and Analysis of Computer Algorithms

[l

» J.L. Bentley, Writing Efficient Programs|6].

» 1.L. Bentley, Programming Pearls [7).

» D. Grics, The Science of Programming [28].

» D.E. Knuth, The Art of Computer Programming [40, 43, 41}.

» B. Lampson, Notes on System Design [45].

» E.M. Reingold, J. Nievergelt, and N, Deo, Combinatorial Algorithms [65].
» R. Sedgewick, Algorithms [70].

Resource Requirement (software):

» Library of data types and implementations

72

it i e ‘_-M.. “_..M.a. R

AN UNDERGRADUATE COMPUTER SCHENCE CURRICULUM FOR THIFF 19808

» Test bed for timing and program development
» Timing support
» Samplc data sets

Implementation Considerations and Concerns:

» This course would be required for a major because, of all the 300-level courses, it most
clearly capturcs the interplay of theorctical ideas with practical programming problems.
Since so many traditional algorithms courses already exist, there will be a tendency for this
course to drift toward those moedels. 1tis important to resist that drift. ,

» The algorithins listed in the outline are presented as a menu of cxamples. It is not possible
to cover them all in one course, and the integrative material should not be slighted in favor
of a few extra algorithms.

» Some algorithms may be covered in other courses such as numerical linear algebra or graph
theory.

73

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR TITE 19808 74

B.2.9 Formal Languages, Automata, and Complexity [350]

Prerequisites; FUNDAMENTAL STRUCTURES O COMPUTER SCIIENCE [[211]

Description: This course introduces the basic ideas of formal languages, computability and complexity
theory. It contains only the more fundamental material on complexity, to give the student an overall
feel for the topic; the more advanced aspects are covered in an advanced course COMPLEXITY THEOQRY
[451]. Some introductory material will be assumed from the pre-requisite course FUNDAMENTAL
STRUCTURES OF COMPUTER SCIENCE 1]211)]. - .

This course begins with an introduction to finite state automata and their relationship to classes of
formal languages. A finite automaton is a mathcmatical medel of a finite-state system; computer
scicnee has many exampices of finite state systems. Formal languages are of great importance, notably in
defining programming languages and in formalizing the notion of parsing. The material of this course is
primarily concerned with the relationship between the various classes of language and various types of
automaton. Thus it is shown that particular classes of automata recognize particular types of formal
language. Since this is a first course dealing in detail with these concepts, it is important to emphasize
these idcas in a strongly applied context, to bring out the connections with arcas such as software
support (parsers for programming languages, simulators for automata, for example).

Computability is concerned with characterizing the class of problems that can be solved, in a well
defined sense, by a compuier. In complexity theory the interest lics in how much space or how much
time is required to solve a problem (relative to the size of the problem); the recognition problem for
various formal languages serves to provide cxamples of problems of various degrees of complexity,
Again, it is important to emphasize the practicai applications af the results.

Rationale: Automata and the related notien of computability by an automaton are fundamental to many
branches of Computer Science. [Tl.ikewise, formal languages underpin much work on parsing,
programming language theory and practice. This course can be organized around the theme of formal
languages, their gencration by grammars and their recognition by finite state machines, Problems
associated with formal languages, such as ambiguity, can be uscd to illustrate the notions of decidability
and undccidability; the various recognition problems for languages serve to illustrate the problems of
various degrees of complexity.

Objectives: At the end of this course, a student will have a feeling for the theorcticai limitations of computers,
and how restrictions on working space and running time affcct the capability of computers to solve
problems. He will have an idea of how formal languages are used in ihcory and in practice. This will
help in later courses such as ADVAI\;CED PROGRAMMING LANGUAGTES AN COMPILERS [421].

Ideas: This course will be the primary carrier of the following:
» Formal languages
» Automata of various kinds
» Equivalences between machines and corresponding languages
» Impact of notaticn on the way we think
» Recognition and generation problems
» Computability by abstract devices

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR TTIE 19805

» Elementary aspects of Complexity theory |
It will reinforee or share responsibility for:

» Computability and decidability

> [nductive definitions and inductive arguments

Topic Outline:

1. Regular Languages and Finite-State Automata:
» Recognition of a language by an automaton
» Regular sets as Lhe languages recognized by finite automala
» Regular expressions. inite automata
» Lguivalence of deterministic and nondeterministic Nnite automata
» Minimization of a finite automaton
» Algorithm for equivalence of finite autemata (decidable problem)
» The Pumping Lemma and its use in proving non-regularity
» Closure propertics of regular sets
» Algebraic characterization of regular sets
» Myhill-Nerode theorem and its uses

2. Context-free languages as the languages recognized by pushdown automata
» Context-free grammars, pushdown automata
» Ixamples of CFLs which are not regular
» Lindecidability of equivalence problem for CFLs
» Undecidability of ambiguity problem for CFLs
» Closure properties of CT'1 s
» Propertics of grammars: emptiness, ambiguity, LI, LR

3. Computability
» Algorthms: intuitive notion of algorithm as effcctive procedure
» Fermalization of the notion of aigorithm
» Turing machines
P Regisier machines
» Compulabic functions, sets
» Computable by Turing machire iff computable by register machine
» Church’s thesis

4. Recursive function theory
» Recursive functions and sets
» Recursively enumerable sets

5. Decidable and undccidable problems
» Halting problem
» Post correspondence problem
» Rice'’s theorem
» Reduction of a problem to 2n undecidable problem to show undecidability
» Diagenai arguments

» Examples drawn from context free languages (CI7Ls) (¢, g.. equivalence problem for CT'Ls and ambiguity problem

for CI'Ls)

6. Universalily and reéursion

» Godel numbering

» Universal Turing machines

» Kleene's T-predicate

» The s-m-n theorem

» The recursion theorems .

» Use of universal machines (e.g., 1o show computability of Ackermann's fuaction)
7. Complexity Theory:

75

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM 1FOR TIHE 19808 ' 76

> Distinction belween computability and complexily

» Space complexily

> Time complexity

» Complcxity relative to deterministic and nondcterministic computation

» Survey of the lime and space hicrarchics: PTIME, NP, RPTIME, co- NP, PSPACE, ctc.

» Cook's theorem

» Lixamples of problems known to lic in cach hierarchical level: graph isomorphism, recognition problems

Primary References:
» N Cutland, Computability: An Introduction o Recursive Function Theory [14].

» J.LE. Hopcroft and J.ID. Ulman, [ntroduction to Awomata Theory, [anguages and
Computation [37).
» H.R. Lewis and C.H. Papadimitriou, Klements of the Theory of Computation [48].

Secondary References:

» M. Minsky, Computation: Finite and Infinite Machines [54].
» H. Rogers, Theory of Recursive Functions and Effective Computability [67].

Resource Reguirements:

» Grammar support tools: parser generators for various classes of grammars, drivers for
testing granimars

implementation Considerations and Concerns:

» The outline contains a lot of material, possibly too much for a one-semester course. It may
be niecessary to extract the more advanced material on compultability and design an
advanced course covering this, leaving only the basic material on computability here in
FORMAL LANGUAGES, AUTOMATA, AND COMPLEXITY [350].

AN UNDERGRADUATT COMPUTER SCLHENCE CURRICULUM FOR TIHHE 1980S 77

8.2.10 Logic for Computer Science [351])

Prerequisites: FUNDAMENTAL STRUCTURLES OF COMPUTER SCITNCTE | 21
Onc 300-leve! mathematics or theoretical computer science course
Description: The basic results and techniques of Logic are presented and related to fundamental issues in
comptiter seience.

Rationale: Logic provides essential foundations for our activity in computer science. It teaches us o
distinguish between abstraction and realization and, in particular, between language and meaning.
Programming languages are formal languages; the technigues we use 1o give them meaning and to
rcason about them find their foundations in logic. Logic also teaches us how to reason about the world
by manipulating symbaols; this is dircctly analogous to the activity of computation. Finally, the basic
results of logic reveal the inherent limitations on our activity of formal reasoning.

Objectives: At the end of this course, a student will be able to:
» Understand the role of formalization and format rcasoning in computer science,
» Be familiar with the basic technigques and results of mathematical logic,

Ideas: This course will be the primary carrier of the following:
» Fundamental concepts and results from logic

» The notion of formal reasoning
It will reinforce or share responsibility for:
» Syntax and semantics
» Computability
» Reasoning about programs

Topic Gutline;
1. Syntacticat Structures and Computability
¥ Lists and Functions — The basis for a simple model of computation
» An analysis of the notion of computation
» Syntactic structures in logic and programming
2. Formal reasoning -
» Rules of inference and recursive enumeration
> Natural deduction
> Hoare's logic
» Propositional and predicate calculus
» The formalization of mathematical reasoning
> Reasoning about programs
3. Semantics and completeness
» Structures and truth
» Completencss of first-order logic
» Church's thesis revisited
» Semantics and reasoning about progi’ams
4. Incompleteness and undecidability
» Decidability and undecidability
» Presburger arithmetie
5. The incompletencss of certain systems

References:

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM IFOR TLIE 19808,

» G.S. Boolos and R.C. Jeffrey, Compurability and Logic[11].
» H. Enderton, A Mathematical Introduction to Logic [21}.
» D. van Dalen, Logic and Struciure [82).

Resource Requirements:

Implecmentation Considerations and Concerns:

AN UNDERGRADUATE COMPUTTER SCIENCE CURRICELUM FOR TTII: 19808 1%

8.2.11 Introduction to Artificial Intelligence [360)
Prerequisites: FUNDAMENTAL STRUCTURES OF COMPUTER SCHENCE H [212]
Or INFORMATION PROCESSING PSYCIHOLOGY AND AL [PSY 213]

Description: This course tcaches the fundamentals of artiftcial telligence, including problem solving
techniques, scarch, heuristic methods, and knowledge representation. Ideas are illustrated by sample
programs and systems drawn from various branches of Al. Small programming projects will also be
used to convey the central ideas of the course.

Rationale: This course provides a single jumping off point for students in ARTIFICIAL INTELLIGENCE —
COGNITIVE PROCESSES [460] and ARTIFICIAL INTELLIGENCE — ROBOTICS [46], in order to familiarize the
student with both sides of the simulation/performance issuc. [t provides students with an overview of
the field without requiring the math background used in the Robotics courses or the psychological
cmphasis used in the Cognitive Processes course.

Objectives: At the end of this course, a student will be able to
» Program large systems in Lisp
» Use Al techniques to solve difficult problems
» Read and understand Al literature

Ideas: This course will be the primary carricr of the following:
» Advanced Lisp techniques
» Weak methods and problem solving
» Knowlcdge representation

It will reinforce or share responsibility for:

» Lisp programming beyond the level of FUNDAMENTAL STRUCTURES OF COMPUTER SCIENCE
n212) '

» Production systems and embedded languages (also covered in COMPARATIVE PROGRAM
STRUCTURES [311] and LANGUAGES, INTERFACES, AND THEIR PROCESSORS [3207)

» Knowledge representation (also covered in BIG DATA [413])

» Search (also covered in ALGORITHMS AND PROGRAMS (330])

Topic Outline:

1. Intreduction
» History
» ntellectuat Issues

2. Implementation
» ATNs
-» Agenda Control Structures
» Dula Driven Programming
» Discrimination Nets
» Frames
M Lisp
» Semantic Nets

3. Techniques
» Exploiting Constraints
» Heuristic Programming

AN UNDERGRADUATE COMPUTTR SCIENCE CURRICULUM FOR THE 19805

» Inference and Inheritance
» Knowledge Representation
» Minimax and alpha-beta
» Production Systems
» Weak Mcthods
4. Applications
» Analysis
» Data Base
» Design
» Diagnosis
» Game Playing
» Natural Language
» Speech Recognition
» Theorem Proving
» Vision {(esp. Waltz line labelling)
» Knowledge-based systems
5. Concepls
» Discavery
» Learning
» Planning

References:
» E. Rich, Artificial Tntelligence [66)
» P.H. Winston and B.K.P. Horn, £./SP [85).

Resource Requirements:
» Copies of the cxampie programs {Eliza, Mycin, efe.)
» Lisp programming environment
» Lisp cycles
» Lisp cycles
» Lisp cycles
Implementation Considerations and Concerns:
» The instructor has a respoﬁsibiiity to provide a broad overview of Al
» Lisp coverage in FUNDAMENTAL STRUCTURES OF COMPUTER SCIENCE I [212] may be spotty,
review might be necessary.

80

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 19808 81

8.3 Advanced Computer Science Courses

These courses are of specialized interest to computer scientists. They are suitable for a Master's program as
well as for advanced students in a Bachelor's program.

In addition to the courses we define here, some of the content of computer science as described in Chapter
4 may be taught in departments other than computer science. These departments include mathematics,
electrical cngincering, psychology, and others. We have generally avoided designing courses that cover
material taught at Carncgic-Mellon in thesc other departments,

To show more complete coverage of computer science, however, we list here the titles of courses that should
be jointly listed by computer science and another department. Catalog descriptions for these courses appear
in Chapter 9.

» MODERN ALGEBRA [MATII 473 / CS 452)
» LARGE-SCALE SCIENTIFIC COMPUTING [MATII 712/ CS 453]

Some of the courses outlined in this section may also be jointly listed. In particular. COMPUTER
ARCIIITECTURE [440] can be listed in the Electrical Engincering Department, ADVANCED ALGORITIIMS [430]
resernbles APPLIED GRAPH THEORY [MATH 484], and COMPLEXITY THEORY [451] resembles THIORY OF
ALGORITHMS [MATII 451]. '

AN UNDERGRADUATE COMPUTIR SCIENCE CURRICULUM TFOR TTIL: 19808 82

8.3.1 Independent Project [400]

Prerequisites: FUNDAMENTAL STRUCTURES O COMPUTLR SCIENCE H [212]
Two morce courses (beyend 212} with Bs or better
Instructor's permission, based on acceptance of project proposal

Description: This is an independent project laboratory for the most advanced students. The student will
design and construct a substantial software or hardware system under the supervision of the Project Lab
faculty. Before construction of the project may proceed, a detatled design proposal must be submitted
to and accepted by the faculty member running the course. A design review with the [ab faculty and
TAs will be held at mid-term time. A final review of the functioning systcm and its sup[j()rting
documentation will be held at the end of the semester. The intent is to permit the best students to
exercise their design skills in the construction of a real system, so good. design practice and good
documentation are mandatory. The production of a functioning but undocumented system will not be
sufficient. The instructor may accept projects intended to last two semesters, in which case the review at
the end of the first semester will be another major design review.

Rationale: Computer Scientists going out to graduate school or to the practice of programming nced to be
able to design and construct good systems. This means an appreciation of the difficulties of building a
production-quality system, difficultics that go beyond the scope of toy systems built as part of lower
level courses. This course will provide the advanced student with the opportunity to design and build a
significant piece of hardware or software on his own, with cxperienced system builders available as
instructors and TAs to consult, advise, and criticize.

Objectives: At the end of this course, a student will be able to:
» Design a real system
» Document a real system
» Construct a real system

Idecas: This course will be the primary carrier of the following:
» Independent formulation and execution of projects
it will reinforee or share responsibility for:
» Software Design principles
» Hardware Design principles
References: F. Brooks, The Mythical Man-Month [12]

Resource Requirements:
» A substantial host machine, plus access to others
» A well outfitted hardware/software lab
» A lab bench for cach student

Implementation Considerations and Concerns:
» This course is intended to have serious intellectual contant. Tt <hould not be permitted to
deteriorate into a simple home for hacking,.
» It is important that the students in this course have access to experienced system builders.
The teaching of this coursc will be expensive jr all domains, including pcople and inanimate
resources. 1t would be better not to offer it than to reduce the quality,

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 19808 83

8.3.2 Undergraduate Thesis [401]

Prerequisites: FUNDAMENTAL STRUCTURES OF COMPUTER SCIENCE 11 [212]
Two more courses (beyond 212) with B’s or better
Instructor’s permission, basc on acceptance of proposal

Description: This is an independent study and research course for the most advanced students. The student
will write an undergraduate thesis or carry out a program of directed reading. Objectives for the course
_of study will he established by the student and a faculty advisor. With concurrence of a faculty advisor,

an undergraduate thesis project may be planned fbr wo semesters

Rationale: This course provides students with the opportunity to pursue in depth the study of a topic that is
not part of the general curriculum. It is similar to INDEPENDENT PROJECT [400], but the end result is is a
document rather than a system. It is expected that the student will work closely with a facuity advisor.

Objectives: At the end of this course a student will be able to:

» Organize the description of a collection of scientific findings and report the result in an
expository technical paper
» Use the library for background research
» Do independent research
Ideas: This course will be the primary carrier of the following:
» Independent formulation and exccution of a planned program of study.
Resource requirements: ‘

» A pool of faculty to supervise students

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 19805 84

8.3.3 Rescarch Seainr [409)
Prerequisites: FUNDAMENTAL STRUCTURES Ol COMPUTER SCIENCI: H {212)
Two more courses (bevond 212) with Bs or better
Description: Students attend the regular rescarch seminars of the Computer Science Department and submit
short written summaries.

Rationale: The Computer Science Department conducts a rich and varied set of public seminar series
throughout the academic year, Undergraduates with sufficient maturity and experience in the field can
benefit from attending. even if they do not completely understand the material presented. Attending
these seminars is a4 good way t learn about very current ideas and to appreciate the scope and
excitement of the field.

Objectives: At the end of this course, a stirdent will:
» Be acquainted with some of the new ideas in computer science.

» Bc able to write a short summary of a presentation on a technical topic.
Ideas: Students select seminars to suit individual preferences.

Tuopic Qutline:

Certain regular seminar series plus selected individual seminars will be approved for this course. Eack student should plan to
altend an average of one seminar per week. After the seminar, the student prepares a one-page {250-500 word) summary and
critical appraisal of the seminar in his or her own words. Ten of these summarics - from any combination of approved seminars
-- are required for completion of the course. An introduction to writing short technical summaries will be presented at the
beginning of the course.

Resource Requirements:

» Doughnuts

Implementation Considerations and Concerns:

» This coursc requires an ongoing scminar scrics. Rescarch seminars are fine; an

' undergraduate can get a sense of the nature of research and creativity without completely
understanding the material,

» This course could carry about a third of the credit of a normal course. It is intended to
require two to three hours per week.

B

AN LNDERGRADBUATE COMPUTER SCIENCE CURRICUT UM VOR THIE 19808 85

8.3.4 Software Fngincering [410]
Prerequisites: ‘ COMPARATIVE PROGRAM STRUCTURES [311)
LANGUAGES, INTERFACES, AND THEIR PROCISSORS (320]

Description: The student studics the nature of the program development task when many people, many
modules, many versions, or many years are involved in designing, developing, and maintaining the
systemn. The issucs are both technical (c.g.. design, specification, version control} and administrative
(c.g.. cost cstimation and clementary management). The course will consist primarily of working in
small teams on the cooperative creation and modification of software systems.

Rationale: This course extends the advanced program structures course by broadening the scope of attention
to large-scale systems. This yields a natural progression from individual clements (statements or data
structures} in FUNDAMENTAL STRUCTURES OF COMPUTER SCIENCE [AND I [211/212] through module-
sized clements in COMPARATIVE PROGRAM STRUCTURES [311] (0 large systems. Analysis and evaluation
techniques arc included throughout, but the emphasis on estimation and overall cfficicney is greatest
nere. In addition. issucs of reliability, testing, and implementation and documentation of a substantial
user interface will be addressed here,

Objectives: At the end of this course, a student will be abie to:
» Understand the issues in large-scale software development
» Participate as a tcam member in such a development
» Write specifications for simple modules that will be combined with other modules

» Implement a program or module that satisfies such a specification
[deas: This course will be the primary carrier of the following:

» Complexity of large-scale software and tools for dealing with it
[t will reinforce or share responsibility for:

» Significance of tools for developing software

Topic Qutline: .
1. Elementary management
2. Cost estimation (of routines and larger code units)
3. Multiple people, versions, years, modules, modifications
4. Advanced design and specification; decomposition inta modules
3. Programming-in-the-large
6. Propertics of systems
> Reliability
» Generality
» Efficiency
» Complexity
» Compatibility
» Moadularity
» Sharing
7. System design and development principles
» Design tradeofTs
» Computer system reliability, speed, capacity, cost
P Development methedologies and tools
» [Jcsign automation

AN UNDERGRADUATE COMPUTER SCIHNCE CURRICULUM FOR TS 19805

» Program specification
» Maintenance snd release policy {lest sites, ote.)
» Rapid protolyping and partial evaluation
» Protection and security
» Resource allocation
» Sysiem cvaluation and development aids
8. Modification, planning for modification
9 Making implementation meet specifications
10. Modcls and modelling
» What medels are and how to use/construct them
» Fmpirical vs analytic models
» Validation
» Specific models {at this level, introduction only)
> Qucueing-theoretic models [or operaling systems and hardware
> Productivity and life-cycle modeis {csp. their limiiations)
11. Monitoring tools and techniques for improving efficicncy
12. Human [actors, user interfaces
13. Fxamples of systems
» Large software sysiems, some involving concurrency issues
» Distributed systems
» Compilers, operating systems
» Batch vs. ime-sharing systems
» ['ile management
» System gecounting
» The multiprogramming exccutive (MPX) operating system
» Process control
14. Current state of the art: APSEs, Gandalf, etc
15, Software systems
» Systems and Ctilily Programs
» Sysiem structure
» Paraliclism in operating systems
> Mutual exclusion
> Synchronization
16. Programming style and techniques
» Table-driven schemes -
17. Management, Socical, Economic, and Legal Aspects
» Computing Economics: Acquisition and Operation
» Copyrights and Patents, computer crime
18. Documentation
19. Sofiware Sysiems
» Memory management
» Iiile Systems
» Directories
» Backup and recovery)
» Permanent and transient data; eaching, buifering, atomic transactions, stable storage
» Redundancy, encoding, encryption
¥ Data bast management sysiems (DBMS)

References: .
» B. W. Buchm, Software Engineering Economics {9].
» F. Brooks, The Mythical Man-Month [12).
» G. Myers, Composite/Structured Design [56].

86

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM 1'OR TT1: 19808 87

» G. Myers, Software Reliability: Principles and Practices [55].
» M. Shooman, Software Ingineering [71]
» E. Yourdon and [..1.. Constantine, Structured Design {89].
» M.V, Zelkowitz, A.C. Shaw, and 1.DD. Gannon, Prmcrplcs of Suftware Engineering and
Design [90].
Resource Requirements (software):

» A program development environment will be cssential.

Implementation Considerations and Concerns:

» It is impcrative that students actually use the best available tools for version control, text
cditing, ctc. Students will invariably draw on their ¢xperiences in actual system
development rather than on what they have read or heard in lectures.,

» Since the majority of learning in this course is by duing, a traditional course format may not
be best. The instructor should spend time counselling teams and walking them through
code-reading sessions, etc., in addition to the lcctures. A known problem with many
software enginecring courses taught in the past is that students become involved with the
project they are implementing, and ignore the material in lecture. This has been partmlly
addressed by including a large number of (hopefully) interesting topics not usuaily taught in
software engincering courses.

» The software engincering course currently taught was studied as a basis [38].

AN UNDERGRADUATE COMPUTER SCHENCE CURRICULUM FORHLIL 19865 8

8.3.5 Software Engineering Lab [411]
Prercquisites: vary with the individual arrangement
SOFTWARE ENGINEERING [410]

Description: This course is intended 0 provide a vehicle for real-world software engincering expericnee.
Students will work on existing software that is or will soon be in service. In a work environment, a
student will experience first-hand the pragmatic argurnents for proper design, documentation, and other
software practices that often scem to have hollow rationalizations when applied to code that a student
writes for an assignment and then never uses again. Projects and supervision will be individually
arranged.

Rationale: Software engineering issues arise in software that involves many months, many programmers,
many versions, and many modules, These issucs arc extremely hard to raisc in a one-semester course;
they arc casier to appreciate by working with real-world projects. This course is intended to provide an
opportunity for training similar to a clinical practice course in a medical school. This will require closer
cooperation between the industrial work site and the university than an ordinary work-study program
would need. Evaluation of students will be shared between univeristy faculty and the individual(s)
managing them in the industrial organization.

Objectives: At the end of this course, a student will be able to: ‘
» Apply software engincering principles to large, long-term projects
» Work cffectively in a programming team
Ideas: This course will be the primary carrier of the following:
» Complexity of feal-world systems
» Tools for dealing with that complexity
Resource Requirements:

Implementation Considerations and Concerns:
» Getting good projects and good supervision. We must be able to sclect the pcople who
serve as faculty for this course. :
» We must be carcful not to have this become a “mindless programming for credit” course;
the students must work on challenging projects that will force them to work with practicing
software engincers.,

AN UNDERGRADUA TE COMPUTER SCIENCE CURRICUTUM FOR T11E 19808 89

8.3.6 Resource Management [412]
Prerequisites: TIME, CONCURRENCY, AND SYNCHRONIZATION [310]
PROBABILITY AND APPLIED STATISTICS [STAT 211/ CS 250]

Description: This course provides a synthesis of many of the ideas that students have learned in carlier
courses. The vehicle for this synthesis is the exploration of at lcast onc instance of a real operating
system in great detail. Taking the view that an operating system is a resource manager, we will explore
some resource issucs and how they may be handled. The primary issues are resource classes, propertics,
and management policies. This course has a substantial programming laboratory component in which
an existing operating system will serve as an cxperimental testbed.

Rationale: Many systems, such as operating systems, file systems, and data basc systems, arc resource
management systems. Every system that involves the control of any finite resource presents the
designer with resource management problems and every computer scientist will be faced with such
systems many times in his carcer. Opcrating Systems are particularly rich cxamples of resource
management systems and this course uses operating systems as examples for this reason.

Objectives: At the end of this course, a student will be able to:
» Understand resources and their classifications
» Understand and apply techniques for using, allocating, scheduling, and naming resources
» Understand techniques for making reliable resources from unreliable ones
» Understand and apply sceurity and protection principles

» Analyze and evaluate the performance of resource management systerns

Ideas: This course will include units that synthesize previous examples of the following ideas with examples
that appcar in opcrating systems. It bears the responsibility of showing how these ideas appear in
slightly different form in a varicty of arcas. It will be the primary carrier of the following:

» Resource classification '
» Resource allocation
» Binding {e.g., of decisions as well as names)
» Performance Evaluation
This course will share responsibility for or reinforce the following:
» Multilevel naming |
» Management of concurrency.
Topic Qutline:
1. Naming and Addressing

> Models
> Distributed
» Types
» Scope .
> Space Scope
> Extent (Time Scope)
» Aliasing
2. Resource classification
» Real Time

AN UNDERGRADUATE COMPUTER SCIENCLE CURRFCULUM FOR TIHE 19808,

» CPU Time
» Memory
> Memory Hicrarchy
» Disk
» Logical
» Real
» Pre-cmptible
» Non-pre-cmptible
3. Resource related activities
» Allocation
> Paging Sccondary Storage
» Synchronization
» Scheduling and Concurrency
> CPU Paging
> Reliability
> Redundancy
> Atomicity
» Sccurity, Protection and Authentication
» Analysis
» Resource Managers
> Spooling
> Servers for networks
4. Relationship to Architecture
5. Relationship to Operating System Kernel
6. Performance Bvaluation and Tuning
» Review of elementary Queuing Theory
» Models
> Analytic
> Simulation
References:
» A.N. Habermann, /ntroduction to Operating Systems [30].

» A. Tanenbaum, Computer Networks [16].

Resource Requirements (software):
» operating system components for software laboratory: schedulers, storage allocators, etc.

» Driver and simulated load and timing apparatus

Implementation Considerations and Concerns:

AN UNDERGRADUATE COMPUTIER SCIENCE CURRICUELUM 'OR T11E 19808 91

8.3.7 Big Data [413]
Prerequisites: LANGUAGLS, INTERFACES, AND THEIR PROCESSORS [320]
RESOURCE MANAGEMENT [412]

Description: The central theme of this course is the storage of '!argc amounts of data. Topics include user
data models, undertying data storage techniques. data representations, algorithms for data retrieval,
specialized data manipulation languages, and techniques for providing reliability and sccurity. Systems
that permit the storage and retrieval of large amounts of data are exemplified,

Rationale: Although the topics in this course could be distributed among an algorithins course {externat data
storage and data representations), an operating systems course (reliability and security techniques), and
a language coursc (data ménipu]ation languages and maodels), we have chosen to incorporate them into
one course for three reasons: First, the central theme of all these topics is the storage and manipulation
of large collections of data. Second, the storage and manipulation of large quantitics of data represents
one of the major applications of computers. Third, a unified course on these topics provides an
opportunity for students to focus on large systems and some well understood techniques for their
organization,

Objectives: At the end of this course, a student will be able to:

» Understand the goals of systems that deal with large quantitics of data
» Usc certain example systems

» Understand some of the algorithms and data structures used to organiz¢ such systems

Ideas: This course will be the primary carrier of the following:

» Security techniques

» Reliability techniques

» Algorithms and data structures for external data storage
It will reinforce or share responsibility for:

» Explaining the use of specialized high level languages
» Presenting layered abstractions
» Naming, binding, addressing

Topic Quiline:
1. Files & access methods
» Sorting & searching
> BTrees
> Multi-level Storage Structures
> Memory lierarchy
> Hashing
> Multi-key Organizations
» Other aspects of file crganization
> Physical allecation
> Organizations for availability
> Performance issues in file storage
2. Classical database management:
» modeling at user level
> Litiiity of this level of abstraction
> Classical data models and languages

AN UNDERGRADUATIE COMPUTER SCIENCE CLURRICULUM FOR THE 19808

>» Relational
> Hicrarchical
> Network

> Example Models

» Detail Study of Relational Model
> I’xample Language: SQL
> I'mbedding of SQI. within procedural language
> Lxample SQL Application

3. Topics in the storage of data

» Approaches to data integrity and rcliability
> Use of redundancy
> 0Old master/new master schemes

» Sharing/concurrent access: consistency
> Synchronization aspects
> Recovery considerations
> Role of transactions _

» Security, Privacy. and Authentication
> Capabilitics vs authorization lists
> Aceuess protection and file security
> Administrative concerns
> Role Of Encryption

> Public Key Encryption
> Privaie Key Encryption
4. Non-traditional databases

» Storage of “knowtcdge”

» [ssues in Knowledge Representation

» Non-uniform data in databases

5. Emerging Public information utilitics

» Library Search

» Electronic Publishing

» Teletext-type systems

» Community Builetin Boasds

References:
» C.J. Date, An Introduction to Database Systems, Volumes 1 and 2[16, 17)
» 1.D. Ullman, Principles of Database Systems [T19).

Resource Requirements:
» One or more production-quality data base systems for use and comparison.

Implementation Considerations and Concerns;

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR 111 19808 93

8.3.8 Transducers of Programs [420]

Prerequisites: COMPARATIVE PROGRAM STRUCTURIS [311]

LANGUAGES, INTERFACES, AND 1TII{R PROCESSORS [320)

Description: This course studics ways to gain leverage on the software development process by using

programs to create or modify other programs, by reusing previously-created software, and by using
automated tools to manage the software development process. Examples are drawn from the tools
locally avaitable, Students use these tools in projects that lead to useful software components. Special
emphasts is placed on the use of integrated systems of compatible tools,

Rationale: As programming is usually taught, students often form the impression that programs arc always

created from scratch, by hand. The major theme of this course is that programs ar¢ frequently created
by and from other programs, and that this leverage is important in increasing productivity and in
transmitting good techniques in the form of working software, not just by word of mouth. More
specifically, a system of any size can often be factored into segments, some of which have a structure so
standard that they can be build from a specification by a specialized tool.

For example, parser generators are uscd as tools in the prerequisite course LANGUAGES, INTERFACES,
ANDTHEIR PROCESSORS {320] with only a cursory introduction to the techniques encapsulated in the tool.
In this course, such tools are the objects of study and, for example, the practical parsing theory needed
to understand, modify, or even construct a parser or parser-generator is included. In similar fashion,
this course covers libraries (both design and adminis;ratioﬁ), program development cnvironments,
smart cditors, and other mechanisms for using programs to construct ¢r maintain programs, More
compiier components are studied, and many of the examples are drawn from the class of tools that can
be easily integrated in a system surrounding a parse-tree representation of programs.

Objectives: At the end of this course, a student will be able to:

» Use automated tools effectively in software development.
» Describe the organization of a compiier and make minor modifications to one,

» Add compatible tools to a unificd program development system, taking advantage of
existing components and using interface representations correctly,

Ideas: This course will be the primary carrier of the following:

» Internal representations for compilation and the possibility of using them as an interface
medium

» Tools for program development, especially tool-building tools

» Relation between complexity of language and complexity of implementation; interaction of
language design and system issues

» Compiler organization as example of medium-large system
» Parsing and code generation

It will reinforee or share responsibility for: _
» Various classes of languages and their power (and the cost of processing them)
» Relation between syntax and semantics
» Practical application of formal theorics

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR 'THE 19808

Topic Outline:
1. Re-usable software)
» Librarics and inlcgrated packages — strengihs and weaknesscs
> Pascal siring manipulation package
> 1/0 packages. such as Unix curses
> matnx manipulation and mathematical function libraries
Certified software (c.g., the math sollware)

» Spccifications
» Lvolution: building programs by modifying similar programs
» Program transformation
2. Tools [or operating on programs
» Classes of lools
> Tools that help you program {cditors, cross-referencers, etc)
> Tools that help you organize programs into systems ((iliers, system modellers, etc)
> Toois that build programs (parser generators, cte) '
» Programmablc cditors and filters ’
» Generic definitions
» Propram transformations
3, Use of integrated tools

» Examples: whatcver's avatlable locally from toels in the spint of Gandalf, programmer's workbench, ete. Most
fikely, this will be a set of tools that operate on the parse-tree representation of a program

» Tools: editors, program development data base, documentation genierators,
4. Censtruction of integrated toois
» What goes on inside a front-end generator?
> Example connects 1o previous course LANGUAGES, INTERFACES, AND THEIR PROCESSORS 3201
> Pracuical parsing theory — why Lhe limitations on the grammars arise
> How that theory is used in (and affeets) the implementation

» Bootstrapping
» More about compilers: code generation, linkers
» Test data generation
» Verification condition generation
5. Projects:
» Students should have a project in which they must faclor a system into scgments that can be generated by tools.
» Students should write a simple tool to produce code from specifications for simple factored segments,

References:
» A.V. Aho and J.D. Ullman, Principles of Compiler Design [2]. (The “Dragon Bobk”)
» D, Gries, Compiler Construction for Digital Computers [27].
» B.W. Kernighan and P.J. Plauger, Sofiware Tools in Pascal [39].

Resource Requirements: _
» Software development tools to forin a laboratory that is both rich cnough to iflustrate the
principies and simple enough for undergraduate course projects.
» A demonstration compiler for students to modify.

» Examples of uscful subroutine libraries.

Implementation Considerations and Concerns: _

» This course is at present a bit speculative. We believe that cnough material already exists to
teach it now, but this part of the discipling is moving rapidly. It is important to be sure that
the course remains flexible for a few ycars so that the best of current understanding can be
included.

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 19408 95

8.3.9 Advanced Programming Languages and Compilers [421)

Prerequisites: FORMAL LANGUAGES, AUTOMATA, AND COMPLEXITY [350]
INTRODUCTION TO ARTIFICIAL INTELLIGENCE [360]
TRANSDUCERS OF PROGRAMS [420]

Description: This course is intended for students seriously interested in the construction of compilers for
general-purpose programming languages. The student studies an optimizing compiler as an example of
a well-organized system program, studies algorit.hms and data structures appropriate to the optimization
process, examines code generators, optimizers, and their interactions. The student also studies
comparative programming languages with emphasis on the interaction between language design and
implementation considerations. Compiler-generator technology is used to build a compiler, thereby
demonstrating the use of system-building tools.

Rationale: This is the third course that contains material from the traditional compiler course (the rational for
the sequence is given in the description of LANGUAGES, INTEéFACES, AND THEIR PROCESSORS [320]).
Techniques that are broadly useful for interfaces to interactive programs have been moved into
LANGUAGES, INTERFACES, AND THEIR PROCESSORS {320]. Techniques for which good automated tools
exist have been at least introduced in TRANSDUCERS OF PROGRAMS [420). This course addresses the
techniques that are specialized to optimizing compilers. In addition to the traditional content, it will
cover the use of automated tools for compiler construction and advanced language design topics.

Objectives: At the end of this course, a student will be able to:
» Participate competently in the construction of preduction-quality compilers using modern
compiler-construction techniques and tools

» Identify language features and combinations of features that constrain or simplify
implementation

Tdeas: This course will be the primary carrier of the following:
» Understanding implementation techniques for programming languages
» Using new data structures introduced in the course

» Applying new tools introduced in the course
It will reinforce or share responsibility for:

» Understanding the components of a medium-sized system and how they interact
» Programming language design issues
» Applying theoretical techniques in practice

Topic Outline;

1. Compiler as an example of a complex medium-sized system

2. Intermediate representations for processing programs

3. Compiter-compiler technology

4. Implementation issues for programming languages
» Lexical analysis, parsing, and semantic analysis (revisited)
» Code generation
» Giobal program analysis and optimization
» Optimization
» Interpretation

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM POR 1114 19808 96

» Storage allocation, garbage collection
» Input-output
5. Techniques applied
» Al search techniques
» graph theory
» data {low
» pthers reflecting current research
6. Advanced topics in programming language organization and design
» [ntcraction among design decisions [parameter binding rules, rules for assignment, ct¢}
» Interaction belween language design decisions and implementations
» Kinds of programming languages (survey)
> General-purpose programming languages
> Applicative vs imperative
> Assemblers, macros
> Very high-level languages’
> Systems implementation languages
> Special-purpose languages
> Production systems
> Objcct-oricnied languages
> Query languages
> Graphical interaction
> Special-purpose and application-bascd systems

References:
» A.V. Aho and J.D. Ullman, Principles of Compiler Design [2]. (The “Dragon Book™)
» D. Gries, Compiler Construction for Digital Computers {27].
» R.L. Wexclblay, Histery of Programming Languages [83].
» W. Wulfctal, The Design of an Optimizing Compiler [87]
Resource Regquirements (sofiware);
» Automatic generators for compiler components such as lexical analyzers and parsers.

» Instances of other components of a compiler (symbol tabie module, various optimization
modules)

» The objective is a software lab similar to a physics lab: the student “checks out™ selected
apparatus for an experiment, then assembles it and measures the result.

Implementation Considerations and Concerns:

AN UNDERGRADUATE COMPUTER SCIENCLE CURRICULUM TOR T 19808 97

8.3.10 Advanced Algorithms [430]

Prerequisites: ALGORITIIMS AND PROGRAMS [330]
COMBINATORIAL ANALYSIS [MATH 301 / CS 25]]

Description: A sccond course in the design and analysis ofalgori{hms.

Rationale: This course is intended to familiarize the student with the unifying principles and underlying
coneepts of algorithm design and analysis. It extends and refines the zllrgori[hmic concepts introduced in
ALGORITHMS AND PROGRAMS [330]. Herc a morc abstract view is taken, with cmphasis on the
fundamental ideas of problem diagnosis, design of algorithms, and analysis. The course assumes
familiarity with matcrial on combinatorial analysis.

Objectives: At the end of this course, a student will be able to:
» Design cfficient algorithms
» Analyze the performance of algorithms

Ideas: This course will be the primary carricr of the following:
» Lower bounds
» Optimization
It will reinforce or share responsibility for:

» Analysis of algorithms
» Complexity Theory

Topic Qutline:
1. Data structures
» Lower bound arguments
» Recurrences
» Union-find
1. Graph Algorithms
» Topological sort
» Biconnectivity
» Matching
> Maximum Flow
3. Algebraic algorithms
» Strassen's algorithm
» Transitive closure
» Chinese remainder
» Four Russian’s algorithm
» Fast fourier transform
» Power series multiplication/division
» Lower bound arpuments
4, Linear Programming
5. Complexity Theory
6. Approximation Algorithms

References:

» A.V. Aho, 1.D. Hopcroft, and J.E. Ullman, The Design and Analysis of Comprter Algorithms
[1].
» J.A. Bondy and U.S.R. Murty, Graph Theory with Applications [10].

AN UNDERGRADUATE COMPUTER SCIENCLE CURRICULUM FOR T 19805 -9

» F. Havary, Graph Theory {31].

» D.E. Knuth, The Art of Computer Progrannming [40, 43, 41].

» L. Lawler, Combinatorial Optimization [46].

» C.H. Papadimitriou and K. Steiglitz, Combinatorial Optimization [60).

Implementation Considerations and Concerns:

» In addition to the ALGORITIIMS AND PROGRAMS {330] prerequisice, this course also requires
students to pessess mathematical maturity. This requirement should be aided by the
prerequisitc COMBINATORIAL ANALYSIS [MATH 301 / CS 251).

» There is considerable overlap between this course the material of APPLIED GRAPIE THEORY
[MATLI 484).

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 1980S 99

8.3.11 Computer Architecture [440]

Prerequisites: REAL AND ABSTRACT MACHINES [240]
or INTRODUCTION TO DIGITAL SYSTEMS [EE 133]

Description: This course teaches the important concepts in computer system hardware design. System
architecture is the focus of this course, so the technological details of the components from which such
systems are constructed are avoided cxcept where they are crucial to design goals like capacity and
performance. The topics that are taught include design models including the Register Transfer Level
model, Instruction Set Processor model, and PMS model. Analytic tools taught include notions of
quantity of data based on Information Theory, Queueing Theory concepts, and Performance Evaluation
techniques.

Rationale: A computer scientist ought to understand the design decisions that are embodied in the -computers
that he uses for the same reasons that an automobile driver ought to understand his vehicle: a user who
understands his tool can make better use of its capabilities. As a course that focuses exclusively on

~hardware, this course will teach the computer scientist things about his machines that a simple
understanding of computability and complexity does not provide. As a first exposure to machine
architecture, this course will prepare the machine architect for more complex concepts in computer
¢ngineering,

Objectives: At the end of this course, a student will be able to:

+ » Understand and apply architectural techniques in design and analysis of systems

Ideas: This course will be the primary carrier of the following:
» Machine Architecture design techniques: RTL, ISP, PMS
» System resources: disks, tapes, drums, memory, 170 devices
» data communication - coding, quantity of information
» performance ¢valuation
It will reinforce or share responsibility for:
» Finite State Machines
» Addressing, Data Representation, and Storage
» Analysis, synthesis, and evaluation

Topic Outline:)
1. Assembly language
> Instruction set (68000 as samiple)
» Instruction format
» Addressing Schemes
» Some assembler programming project
2. ALU Design
» Addition and Subtraction
» Multiplication and Division
» Other ALU functions (Masks, Flags, etc.) .
» Floating Point Representations (Add, Subtract, Multiply, Divide, Fast ALUs, Multiplier units)
3. Central Processer Design
» Register schemes (stack, one address, two address, three address)
» Instruction format

ANUNDERGRADUATE COMPUTER SCIENCE CURRICELUM FOIRUITIE 19808

» Pinclining
» [cokahead and paraltelism
4. Mcmory
» Primary Memory design
» Tnterleaved memory
» Sccondary memory
» Associalive memory
5. Memeory Management
» Memory Hierarchies
» Paging Syslemns
» Segmented Sysiems
» Replacement Algorithms
» Cache Memories
6. The Control Unit
» Microprogramming
» Hardwired control
1. 1/0
» Nemory Mapped vs, Programmed 1/0
» DMA
b Channel I/0
» [/0 Modelling
8. Some Design examples
» PDP-11
» IBM 370
» 1P 3000
9. Data Communicatien and [nformation Theory
» Quantity of Information, Entropy
» Signais and Noise
P Shannon's Theorem
P Liror Correcting Codes
10. Performance Evaluation
» Queuing models
» Markov chains
» Simulation, measurement

References:
» C.G. Bell, 1.C, Mudge, and J.E. McNamara, Computer Fngineering [4].
» D.P. Siewiorek, C.G. Bell, and A. Newell, Computer Structures: Principles and Ixamples
[72].
Implementation Considerations and Concerns:
» This course is also listed as INTRODUCTION TO COMPUTER ARCIIITTECIURE {EE 247] in the
Elcctrical Engincering [Department,

100

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 19808 101

3.3.12 VLSI Systems [441)
Prerequisites: COMPUTER ARCHITECTURE {440]
ALGORITHMS AND PROGRAMS [330]

Description: This course introduces the technology of VLSI and its use in system design. A broad survey of
current technologies and simple design methodologies is given. The emphasis throughout is on practical
issues, and the student will learn how to design projects and implement them on a chip. Some ideas of
the potentials and limitations of VLSI design will be given, and special-purpose VLSI designs for a
number of application areas will illustrate these points.

~Rationale: VLSI technology is assuming increasing importance as an aid to high performance, low cost
system design. Computer scientists should be familiar with the advantages, possibilities and limitations
of such an important technology. -

Objectives: At the end of this course, a student will be able to do VLSI designs.

Ideas: This course will be the primary carrier of the following:
» VLSI technology, NMOS, CMOS
» Fabrication and design of chips
» Clocked and self-timed systems
It will reinforce or share responsibility for:
» design techniques for computer hardware
» hardware synchronization circuits
» finite state machines

Topic Outline:
1. NMOS transistors, ratios

2. Fabrication and design rules
3.CIF
4. Clocked logic and shift registers
5. Combinatorial logic between latches
6. Type D static latches
7. Programmable logic arrays
8. Design tools
9. Finite State machines

10. Delay and System Timing

11. Clocks and clock generators

12. Selftiming '

13. Testability and testing

14. Systolic algorithms

15. Design in CMOS

References:
» C. Mead and L. Conway, Introduction to VLSI Systems[53].
» J. D. Ullman, Computational Aspects of VLSI [80).
Resource Requirements;

» Locally accessible on-line design tools

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 19808 102

» Accoess to fabrication facilitics

Implementation Considerations and Concerns:

» The best way to learn to do VI.81 design is to do VLSI design. Therefore, the life blood of
the course should be design projects. Two would be typical: one that is fairly simple such
as a flip flop or shift register, and one that is more advanced.

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 19808 101

8.3.12 VLSI Systems [441]
Prerequisites: COMPUTER ARCHITECTURE [440]
ALGORITHMS AND PROGRAMS [330]

Description: This course introduces the technology of VLSI and its use in system design. A broad survey of
current technologies and simple design methodologies is given. The emphasis throughout is on practical
issues, and the student will learn how to design projects and implement them on a chip. Some ideas of
the potentials and limitations of VLSI design will be given, and special-purpose VLSI designs for a
number of appiication areas will illustrate these points. '

~ Rationale: VLS technology is assuming increasing importance as an aid to high performance, low cost
system design. Computer scientists should be familiar with the advantages, possibilitics and limitations
of such an important technology.

Objectives: At the end of this course, a student will be able to do VLSI designs.

Ideas: This course will be the primary carrier of the following:
» VLSI technology, NMOS, CMOS
» Fabrication and design of chips
» Clocked and self-timed systems
It will reinforce or share responsibility for:

» design techniques for computer hardware
» hardware synchronization circuits
» finite state machines

Topic Qutline:
1. NMOS transistors, ratios

2. Fabrication and design rules
3. CIF
4. Clocked logic and shift registers
5. Combinatorial logic between latches
6. Type D static latches
7. Programmable logic arrays
8. Design tools
9. Finite State machines
10. Delay and System Timing
11. Clocks and clock generators
12. Self-timing ' -
13. Testability and testing
14. Systolic algorithms
15. Design in CMOS

References:
» C. Mead and L. Conway, Introduction to VLSI Systems [53].
» J. D. Ultman, Computational Aspects of VLSI[80].
Resource Requirements:

» Locally accessible on-line design tools

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM I'OR T1IE 1980S 102

» Access to fabrication facilitics

Implementation Considerations and Concerns:

» ‘The best way o learn 10 do VESI design is to do VLSI design. Therefore, the life blood of
the course should be design projects. Two would be typical: one that is fairly simple such
as a flip flop or shift register, and onc that is more advanced.

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 19308 101

8.3.12 VLSI Systems [441]
Prerequisites: COMPUTER ARCHITECTURE [440]
ALGORITHMS AND PROGRAMS [330]

Description: This course introduces the technology of VLSI and its use in system design. A broad survey of
current technologies and simple design methodologics is given. The emphasis throughout is on practical
issues. and the student will learn how to design projects and implement them on a chip. Some ideas of
the potentials and limitations of VLSI design will be given, and special-purpose VLSI designs for a
number of application areas will illustrate these points.

“Rationale: VLSI technology is assuming increasing importance as an aid to high performance, low cost
system design. Computer scientists should be familiar with the advantages, possibilities and limitations
of such an important technology.

Objectives: At the end of this c.ourse, a student will be able to do VLSI designs.

Ideas: This course will be the primary carrier of the following:
» VLSI technology, NMQS, CMOS
» Fabrication and design of chips
» Clocked and self-timed systems
It will reinforce or share responsibility for:

» design techniques for computer hardware
» hardware synchronization circuits
» finite state machines

Topic Qutline:
1. NMOS transistors, ratics

2. Fabrication and design rules
1 CIF
4. Clocked logic and shift registers
5. Combinatorial logic between latches
6. Type D static latches
7. Programmable logic arrays
&. Design tools
9. Finite State machines
10. Delay and System Timing
11. Clocks and clock generators
12. Self-timing '
13. Testability and testing
14, Systolic algorithms
15. Design in CMOS

References:
» C. Mead and L. Conway, Introduction to VL.SI Systems[53).
» 1. D. Ullman, Computational Aspects of VLSI[30].
Resource Requirements:

» Locally accessible on-line design tools

AN UNDERGRADUATE COMPUTLER SCIENCE CURRICULUM IFOR TT1E 19808 162

> Access to fabrication facilities

Implementation Considerations and Concerns: A
» ‘The best way to learn to do VI.SI design is to do VL.SI design. Thercfore, the life blood of
the course should be design projects. Two would be typical: one that is fairly simple such
as a flip flop or shift rcgister, and onc that is more advanced.

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 19308 101

8.3.12 VLSI Systems [441]
Prerequisites: COMPUTER ARCHITECTURE [440]
ALGORITHMS AND PROGRAMS [330]

Description: This course introduces the technology of VLSI and its use in system design. A broad survey of
current technologies and simple design methodologies is given. The emphasis throughout is on practical
issues, and the student will learn how to design projects and implement them on a chip. Some ideas of
the potentials and limitations of VLSI design will be given, and special-purpose VLSI designs for a
number of appiication areas will illustrate these points.

~ Rationale: VLSI technology is assuming increasing importance as an aid to high performance, low cost
systemn design. Computer scientists should be familiar with the advantages, possibilities and limitations
of such an important technology.

Objectives: At the end of this course, a student will be able to do VLSI designs.

Ideas: This course will be the primary carrier of the following:
» VLSI technology, NMOS, CMOS
» Fabrication and design of chips
» Clocked and self-timed systems
It will reinforce or share responsibility for:
» design techniques for computer hardware
» hardware synchronization circuits
» finite state machines

Topic Qutline:

1. NMOS transistors, ratios
2. Fabrication and design rules
3.CIF
4. Clocked logic and shift registers
5. Combinatorial logic between latches
6. Type D static latches
7. Programmable logic arrays
8. Design tools
9. Finite State machines

10. Delay and System Timing

11. Clocks and clock generators

12. Self-timing '

13. Testability and testing

14. Systolic aigorithms

15. Design in CMOS

References:
» C. Mead and L. Conway, /ntroduction to VLSI Systems[53].
» J. D. Ullman, Computational Aspects of VLSI[80}.
Resource Requirements; |

» Locally accessible on-line design tools

AN UNDERGRADUATL COMPUTER SCIENCLE CURRICULUM I'OR T1E 19808 102 -

» Access to fabrication facilitics

Implementation Considerations and Congerns: _
» The best way to learn to do VI.SI design is to do VLS design. Therefore, the life blood of
the course should be design projects. Two would be typical: one that is fairly simple such
as a flip flop or shift register, and one that is more advanced.

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FORTILL 19808 103

8.3.13 Theory of Programming Languages [450]

Prerequisites: LANGUAGES, INTERFACES, AND TIHEIR PROCESSORS [320
FORMAL TANGUAGES, AUTOMATA, AND COMPYLEXITY [350]
LOGIC FOR COMPUTER SCIENCE [351]

Description: This course brings together fundamental material on the theory of programming languages.
‘Techniques for assigning mathematical mcanings to programs and for rcasoning precisely about
program functionality and bchavior are described. Some indication is given of the mﬂucncc of formal
methods on programming methodology and programming language design.

Rationale: Programs are rarely verified formally in practice, but there is much 0 be learned — both- about
programming techniques and about programming language design — from a study of precise methods
for reasoning about programs. Indeed, we cannot reason precisely about programs unless we have a
sound mathematical basis for such rcasoning; this course is intended to provide that foundation.

Objectives: The student should gain from this course an understanding of the variety of approaches and
techniques to reasoning precisely about programs. In particular, students should appreciate the
potential for automation of these technigues, the ways in which they might be applied in practice, and
their theoretical limitations.

Ideas: This course will be the primary carrier of the following:
» Formal rcasoning about programs.
» Scmantics of programming languages.
» Assertions about programs,
It will reinforce or share responsibility for:

» Prograimming methodology.
» Specifications of programs.
» Programming language design.

Topic Outline:
1. Introduction to semantics of programming languages

» Syntax, semantics, and pragmatics: the distinctions

P Abstract syntax and formal semantics

» Assigning meanings lo programs

» Operaticnal semantics
> Compilers and interpreters
> Labelled transition systems
> Operational semantics for simple sequential lahguagc with loops

» Denotational scmantics
> Rasic idea: semantics given by structural induction
> Foundations: domains. continuous functions, and fixed points
> Semantics of a simple language
> Congruence between operational and denotational semantics

» Axiomatic semantics
> Hoare-style axioms
> Weakest preconditions and predicate transformers
> Axiomatic semanltics for simple language
> Consisicncy with respect to denotational or operational semantics
> Elementary ideas of soundness and relative completeness

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 19305

2. The varicty of programming languages
» The distinction between impcerative and applicative programs
» The distinction between environment and store
» Lazy cvaluation and infinite structures
» Object-oriented programming languages
» Very-high-level programming languages
3. Semantic treatment of more complicated programming constructs:
» Procedures:
> Parameterless
> Recursion
> Methods of parameter passing
» Jumps {goto statement, breaks, etc.)
» Nondeterminism {e.g., Dijkstra’s guarded commands)}
» Parallelism:
> Treatment as nondeterministic interleaving of actions
> Concurrent processes (eg. CSP, ADA)
> Coroutines
» Continuation semantics
» Relational semantics
» Elementary ideas of powerdomain semantics
4. Reasoning about programs
» Inductive proof techniques
> Structural induction
> Well-founded induction
> Computational induujo;l
» Partial correctness
> Flowcharts and inductive assertions
> lloare-style assertions
> Weakest preconditions
» Total correctness of sequential programns
> Proving termination: examples of well-founded sets
> The sometime method
> Weakest liberal preconditions
» Fixed-point properties of recursive programs
» Temporal logic
> Continuously-operating programs
» Dynamic logic '
5. Manipulating Programs
» Equivalence of programs
» Program transformations and their correctness

Primary References: A
» Z. Manna, The Mathematical Theory of Computation [52].
» J.E. Stoy, Denotational Semantics: The Scott-Strachey Approach to Programming Language
Theory [15].
Supplementary References:
» E.W. Dijkstra, A Discipline of Programming[19].
» M.J.C. Gordon, The Denotational Description of Programming Languages. [26].
» R.D. Tennent, Principles of Programming Languages [17].

Resource Requirements:

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR TIE 1980S

Implementation Considerations and Concerns:

» We have included a long list of important topics, from which it is possible to draw a variety
of particular courscs tailored to special needs or intercsts. At this advanced level, it is
appropriate to allow some freedom in the selection of appropriate course material, especialty
since the arca we are covering here is not yet static.

» This type of course would benefit greatly from a computer-aided Ffacility for semantic test-
bedding of formal definitions, such as symbolic execution. Although not necessary for the
implementation of the course, such tools would help.

105

AN UNDERGRADUATE COMPUTER SCIHENCE CURRICULUM IFOR THE 19808 106

8.3.14 Complexity Theory [451]

Prerequisites: ALGORITIIMS AND PROGRAMS (330]
FORMAL LANGUAGES, AUTOMATA, AN COMPLEXITY [350]
COMBINATORIAL ANALYSIS [MA'TTI 301 7 CS 251]

Description: This course extends in much more detail the material first introduced in FORMAL LANGUAGES,
AUTOMATA, AND COMPLEXITY [350]. After a quick review of the basic ideas of complexity theory, the
course introduces some of the advanced results and open questions of abstract complexity theory, and
the techniques used in proving these results. Emphasis is made on relating these results and open
questions to their theoretical and practical implications for Computer Science; the study of
computability lcads to theoretical limitations on what a computer can in principle (given enough time
and space) do, while the study of complexity yields limitations on what is feasibly computable; if we are
restricted to using only a limited amount of time or space, the class of problems solvable by computer is
restricted, ‘There is some similarity of course content with THEORY OF ALGORITHMS [MATH 451].

Rationale: The theory of complexity is an interesting area in which many important problems remain to be
solved. This course serves the purpose of cngaging the student’s interest and cquipping him with the
background material and idcas necessary for tackling rescarch in this area.

Objectives: At the end of this course, a student will have a feeling for the theoretical limitations of computers,
and how restrictions on working space and running time affect the capahility of computers to solve
problems. He will have seen enough of the methods and results of this subject to enabic him to tackle
rescarch in this growing area.

Ideas: This course will be the primary carrier of the following:
» Timc and Space hicrarchics
» Notions of reducibility _
» Complete sets for problem classes -
» Implications of the P=NP problem
It will reinforce or share responsibility for:

» Time and space tradeoffs
» Diagonalization arguments
» Algorithms

Topic Qutline:
1. Review of elementary Complexity Theory:
» Distinction between computability and complexity
» Space complexity and time complexity
» Complexity relative to deterministic and nondeterministic computation
2. The time and spaée hierarchies: P, NP, co-NP, PSPACE, etc.
3. Time vs. space trade-offs
4, Location of known problems in the hierarchy: graph isomorphism, recognition problems, ete.
5, Notions of reducibility:
» Turing reducibility
» Polynomial reducibility
» Logspace reducibility
» Use of reductions to show complexity properties

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM [FOR THI: 1980S 107

6. Complete sets for NP: 3CNT-, Clique, Hamilionian circuits

7. Complete sets for PSPACE: QBF

8. Condilions that would impty P= NP

9. Implications for Computer Science of the P=NP guestion: what is the class of “feasibly computabie” problems?
10. Compulabifity and complexily relative Lo an oracle

References:

» M.R. Garey and D.S. Johnson, Conputers and Intractability: A Guide to the Theary of
NP-Completeness [24].

» LK. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages and
Computation [37].

» H. Rogers, Theory of Recursive Functions and Fffective C omputability [67).
Resource Requirements:
Implementation Considerations and Concerns:

» The material covered in this course overlaps with the content of THEORY OF ALGORITHMS
[MATH 451].

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM [FOR THE 193G3 108

8.3.15 Artificial Intelligence — Cognitive Processes [460]

Prerequisites: INTRODUCTION TO ARTIFICIAL INTELLIGENCE [360]
or INFORMATION PROCESSING PSYCHOLOGY AND Al [PSY 213]

Description: Covers more advanced aspects of the cognitive side of Al, including natural language
processing, use of knowledge sources, and learning and discovery. The use of computer programs as
psychological models will also be discussed. Students will implement a large Al system as a semester
project.

Rationale: This course covers the more symbolic side of Al, and allows for interaction between computer
science students and psychology students. The semester project is here rather than in the prerequisite
course, because the prerequisite, INTRODUCTION TO ARTIFICIAL INTELLIGENCE [360], has a lot of ground
to cover and little time in which to do it, and because most of the prerequisite material should be
digested before the student spends too much time on a project.

Objectives: At the end of this course, a student will be able to:
» Use computer programs to model psychological phenomena
» Write large Al systems

Ideas: This course will be the primary carrier of the following:
» Cognitive Simulation
» Learning
» Natural Language Processing
It will reinfores or share responsibility for:

» Knowledge Representation (shared with BIG DATA 413})

Topic Outline:
1. Techniques
» Exploiting Constraints
» Heuristic Programming
» Production Systems
2, Knowledge Representation
» Declarative Knowledge
» Inference and Inheritance
» Procedural Knowledge
» Scripts ’
» Semantic Nets
3. Natural Language
» ATN parsing
» Expectation based parsing
» Generation
4. Expert Systems
» Design
» Engineering Analysis
» Medical Diagnosis -
5. Cognitive Processes
» Concept Acquisition
» Discovery
» Learning

AN UNDERGRADUATE COMPUTER SCHNCE CURRICULUM FOR TIE 19808

» Planning

References:

» E. Rich, Artificial Intelligence [66] _

» R.C. Schank and C.K. Riesbeck, /nside Computer Understanding [69).
Resource Regquirements:

» Online versions of McEli, McSam, ete.

» Lisp programming environment

» Lisp cycles

Implementation Considerations and Concerns:

AN UNDERGRADUATTE COMPUTER SCIENCE CURRICULUM FFOR T 19808 110

8.3.16 Artificial Intelligence — Robotics [461]

Prerequisites: INTRODUCTION TO ARTIFICIAL INTELLIGENCE [360]
LINEAR ALGEBRA [MATII 341]
CALCULUS I [MATIT 122] (MULTIVARIATE CALCULUS)

Description: Covers Artificial Intelligence systems which deal in some way with the physical world, cither
through visual, acoustic, or tactile means. Topics include vision, speech recognition, maripulation, and
robotics.

Rationale: Students entering this course have a basic grounding in AT (which may not help directly in this
course, but does provide a context), and by saving the more advanced material for this scparate course,
additional math can be required. '

Objectives: At the end of this course, a student will be able to:
» Understand the fundamental approaches used.

» Rcad and understand literature on vision, specch, and manipulation.

Ideas: This course will be the primary carrier of the following:
» Perception
» Three Dimensional Modelling
» Control of Physical Systems

Topic Outline:
1. Manipulation
» Kinematics and Dynamics
» Trajectory Planning
» Control and Control Languages
» Programming
» Spatial Planning
» Shape Representation
2. Vision
» Image formation
» Shape from shading
» Shape from range data
» Stcreo vision
» Edge finding
» Motion
» Scene analysis
» Model-based vision
1. Spcech Recogrition
» Signal Processing
» Feature Extraction
» Search
4. Locomotion
» Gait analysis
» Dynamic balance

References:
Implementation Considerations and Concerns:

» This course is a part of the Artificial Intelligence group, and must be taught in such a way
that it does not become a course in “Robot Engincering” or “Robot Math™.

.

AN UNDERGRADUATE COMPUTER SCHINCLE CURRICULUM I'OR TLIE 19808

» We would have preferred to organize this course by technique and method, rather than by
application.

» Also. the lincar algebra course listed as a prerequisite may be too advanced for the purpose
of preparing a student for Robotics. A lower level course covering the same matertal might
be sufficient, for cxampie METNODS OF APPLIED MATHEMATICS T [MATII 259).

111

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM I'OR TIHE 19808 112

8.3.17 Interactive Graphics Techniques [470]

Prerequisites: LANGUAGES, INTERFACES, AND THEIR PROCESSORS [320]
ALGORITIIMS AND PROGRAMS [330]

Description: A course in the creation and usc of graphical information and uscr-interfaces.

Rationale: Although relatively young, the field of graphics has consolidated enough to warrant a semester
course centering on the use of graphical, rather than textual, interaction with computers. A fair amount
of backgreund is required, however, since the students will have to apply a fair amount of previgusly
lcarned material, such as tanguage modcels of interaction and various sorts of algorithims. As graphical
disptay devices become more widespread, knowledge of how to take advantage of them cffectively
become increasingly vital.

Objectives: At the ond of this course, a student will be able to:
» Create interactive interfaces for computer applications.
» Understand the basic implementation and use of graphic support packages.

» Evaluate ergonomic aspects of user interfaces.

Idcas: This course will be the primary carrier of the following:
» The concept of graphical, vs. textual, interaction.
» Graphical inierface creation principles.
» A knowledge basis to judge the merits of existing graphical tools.

Topic Cutline:
1. History of computer praphics
2. Current applications
3. Graphics hardware
» Vector graphics vs. raster graphics
» Input devices (logical and real)
¥ Possible future developments
4, Fundamental graphics operations
» Coordinate system specification and mappings
» Scan-conversion of lines and splines
» Clipping
» Transformation and homogeneous coordinates
5. Intermediate description formats for graphical information
6. Graphics packages
» Device independence
» CORE
» GK3
7. Interaction technigues
.» Menu driven systems
» I'SA model, table-driven applications .
» Prompting, confirmation, errer-checking, undo, redo, consistency
» Prefix, postfix, infix operations
» Window-based systems
8. User-compulter dialogue
» Lanpuage considerations
» Iluman factors
9. Three {and greater} dimensional viewing

AN UNDERGRADUATE COMPUTER SCIENCI: CURRICULUM I'OR TTIE 19808

» Specification

» Implementation

» Solid-modelting systems
10. Graphical algorithms

» Scan-conversion

» tlidden line/surface removal, shading, lighting models
11, Color models and the use of color
12. Hard-copy graphics oulput

» phototypesclters

» bitmapped printers

» isomectric plots

» haif-toning

References:

» J.D. Foley and A. van Dam, Fundamentals of Interactive Computer Graphics [23].

» W.M. Newman and R.F. Sproull, Principles of Interactive C coputer Graphics (57).

Resource Requirements:

» Various sorts of graphical devices for both display and input

» Implementations of existing graphics packages

» cxample interfaces

» computational support for some fairly compute-intensive opcrations

Implemeniation Considerations and Concerns:

113

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 19805 114

9. Related Courses

This chapter contains descriptions of related courses in mathematics, statistics, electrical engineering,
cognitive psychology, management, and public policy. They are included here because of their close ties to
courses described in the previous chapter. In addition, they may be of interest for constructing concentrations
in fields allied to computer science.

Some of the courses in this chapter are not currently offered, but arc rather sketches of courses that sound
interesting to us. These should be interpreted as proposals for discussion.

9.1 Mathematics Courses

9.1.1 Introduction to Applied Mathematics [Math 127 / CS 150]

An outline for this course is given in Section 8.1.3.

9.1.2 Calculus I [Math 121]

Description: Functions, limits, derivatives of algebraic, trigonometric, exponential and logarithmic functions,
curve sketching, related rate and maximum-minimum problems, definite and indefinite integrals with
applications. 3 hrs. lec,, 2 hrs. rec. [Course 21-121 per CMU 1982-34 catalog]

9.1.3 Calculus IT [Math 122]

Description: Techniques of integration, improper integrals. Taylor’s series, functions of several variables,
partial derivatives, dircctional derivatives, chain-rule, the gradient, multiple integrals, line integrals. 3
hrs. lec.. 2 hrs. rec. Prerequisite: 21-121. [Course 21-122 per CMU 1982-84 catalog]

9.1.4 Methods of Applied Math I [Math 259}

Description: Ordinary Differential Equations: first-order, second order linear, input-output analysis, Fourier
series, power series methods, Laplace transform methods. Matrix algebra, eigenvalues, systems of
differential equations. 3 hrs. lec. Prerequisite: 21-122. [Course 21-259 per CMU 1982-84 catalog]

9.1.5 Elements of Analysis [Math 261]

Description: Functions of several variables, chain-rule, inverse function theorem, coordinates, external
problems, multiple integrals. Vector analysis: line and surface integrals, divergence and Stokes’
theorems. Convergence of series and sequences, 'Taylor’s series, Fourier series. Prerequisite: 21-259, 3
hrs. lec. [Course 21-261 per CMU 1982-84 catalog]

9.1.6 Operations Research [[Math 292]

Description: The distribution-transportation problem: row and column number solution method and
sensitivity analysis; flows in networks and incidence matrices; the standard linear program; the simplex
method, post-optimality and the economic lot size problem; dynamic programming and the knapsack
problem; introduction to queueing. 3 hrs. lec. Prercquisite: 21-122. [Course 21-292 per CMU 1982-84
catalog] ‘

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 19808 115

9.1.7 Operations Research 11 [Math 293]

Description: Extension of linear programming, integer programming, game theory: probabilistic
programming; case studies from economics, engineering and management science. Prerequisite: 21-292.
3 hrs. lec. [Course 21-293 per CMU 1982-84 catalog]

9.1.8 Combinatorial Analysis [Math 301 7 CS 251]

Description: An introduction to combinatorial mathematics with an emphasis on applications in computer
science. Topics covered in depth include permutations and combinations, generating functions,
recurrence relations, the principle of inclusion and exclusion, and the Fibonacci and harmonic series.
Topics surveyed include existence proofs, partitions, finite calculus, generating combinatorial objects,
and algorithm analysis. 3 hrs. lec. Prerequisite: 21-122. [Course 21-301 per CMU 1982-84 catalog]

9.1.9 Linear Algebra [Math 341]

Description: Vector spaces, linear transformations, orthogonality and inner product spaces, projections, dual
spaces, spectral theory for normal transformation, Jordan canonical form. 3 hrs. lec. Prerequisite:
21-301. [Course 21-341 as revised fall 1983)

9.1.10 Numerical Metheds [Math 369 / CS 352]

Description: Algorithmic oriented course In computer problem solving. The basic principles of numerical
analysis are developed and used to solve problems involving networks and graphs, non-linear equations,
differential equations, and data analysis. 3 hrs. lec. Prerequisite: 21-259. [Course 21-369 per CMU
1982-84 catalog]

9.1.11 Modern Algebra [Math 473 / CS 452]

Description: Spectral theorem, Jordan canonical form, groups, integral domains, fields, polynomials, unique
factorization domains, rings and ideals, coding theory. 3 hrs lec. Prerequisite: 21-341. [Course 21-473
per CMU 1982-84 catalog]

9.1.12 Applied Graph Theory [Math 484 / CS 430]

Description: Basic terminology, cycles, trees, connectivity, planarity, coloring, matching, graph algorithms,
spanning trees, binary search trees. 3 hrs. rec. Prerequisite: 21-301. [Course 21-484 as revised fall 1983]
See description of ADVANCED ALGORITHMS [430] in Section 8.3.10.

9.1.13 Theory of Algorithms [Math 451 / CS 451)

Description: Basic concepts — models of computation and the design of efficient algorithms, searching and
sorting, integer and polynomial arithmetic, pattern-matching algorithms, NP-completeness problems,
measures of computational complexity. 3 hrs rec. Prerequisite: 21-484. [Course 21-451 as revised fall
1983] See description of COMPLEXITY THEORY [451] in Section 8.3.14. ‘

AN UNDERGRADUA'TE COMPUTTER SCIENCE CURRICULUM FOR TINH 19808 ' 116

9.1.14 Numerical Mathematics | and 11 [Math 704 and 705)

Description: Review of lincar algebra, solution of partial differential cquations by finite clement and finite
difference methods, direct and iterative methods, adaptive grid methods. 3 hrs rec. Prerequisite:
21-369. [Course 21-704, 705 as revised fail 1983)

9.1.15 Large-Scale Scientific Computing [Math 712 / CS 453}

-Description: Review of scientific problems where computer modelling is important, design of algorithms,
supercomputer architectures, algorithms for parallel computer structures. 3 hrs rec. Prerequisite:
21-705 or permission of instructor. [Course 21-712 as revised fall 1983}

9.2 Statistics Courses

9.2.1 Probability and Applied Statistics for Physical Science and Engincering [[Stat 211 / CS 250]

Description: This course provides an introduction to probability for students in engincering and science. The
use of probability theory is illustrated with cxamples drawn from these fields. Topics include
clementary probability theory, conditional probability and independence, random variables,
distribution functions, joint and conditional distributions, law of large numbers, and central limit
theorem. Students desiring a more mathematical treatment should regisier for 36-215. 3 hrs rec.
Prerequisite: 21-122. [Course 36-211 per CMU 1982-84 catalog]

9.2.2 Probability and Statistics I [Stat 215]

Description: An introductory probability course, designed for students whose interest is the theory of
probability. Generaily all mathematics majors should enroll in this course in their junior year. Provides
the necessary background for study of mathematical statistics and further topics in probability theory.
A good working knowledge of calculus is required. Use of the theory is illustrated with examples drawn
from enginecering, scicnce, and management. Topics include elementary probability— theory,
combinatorial analysis, conditional probability, independence, random variables and distribution
functions, conditional distributions, generating functions and moment generating functions, sampling
distributions, law of large numbers, and central limit theorem. 3 hr. rec. Prerequisite: 21-122. [Course
36-215 per CMU 1982-84 catalog]

9.2.3 Statistical Mcthods for Data Analysis I [Stat 219)

Description: This course presents basic concepts and operational methods of statistics for students in
enginecring, scicnce and social science. Topics covered include reduction and summary of data,
probability models and simulation, estimation, t-tests, goodness of fit tests, and muitiple regression. The
analysis of actual data scts is performed with Minitab, a statistical package requiring no previous
computer experience. A scction of this course will be offered for students with background and
interests more oriented towards science, mathematics or engineering, No college-level prerequisites are
necessary. 3 hrs. rec. [Course 36-219 per CMU 1982-84 catalog]

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULLUM FOR THE 1980S 117

9.3 Electrical Engineering Courses

9.3.1 Linear Circuits: [EE 101 / CS 241]

Description: The objective of this course is to develop an understanding of the basic technical and
mathematical skills required for the analysis of electrical systems. The concepts of charge, current,
voltage, capacitance, inductance, cnergy and power are emphasized. Kirchoff's current and voltage
laws, loop and node analyses, linear voltage current characteristics and superposition are introduced.
The analytical and numerical solution of both differcnce and differential equations with constant
coefficients and initial/boundary conditions, which arise in engineering problems is presented and used
for the solution of first- and second-order differential equations which characterize R-C, R-L and
R-L-C circuits. Consideration is given to the transient and sinusoidal steady-state analysis of linear
circuits, including the use of phasor notation and complex algebra. 3 hrs. rec., 2 hm. lab/comp.
Corequisite: 15-104 or 15-111. [Course 18-101 per CMU 1982-84 catalog]

9.3.2 Electronic Circuits [[EE 102 / CS 242]

Description: The objective .of this course is to provide the student with a solid understanding of the
application of the principles learned in 18-101, and to increase the student’s abilities to perform
engineering analysis and synthesis. Semiconductor physics; operation of circuit devices: large and small
signal modcls; biasing and temperature stability; diode and transistor circuits; feedback. 4 hrs. rec., 3
hrs. lab. Prerequisites: 18-101, 21-259, 33-123. [Course 18-102 per CMU 1982-84 catalog]

9.3.3 Introduction to Digital Systems [EE 133]

Description: Description of fundamental digital devices; basic switching circuit theory and design, including
combinational and sequential logic circuits; finite state machines; register transfer level logic design,
including modular components and their interconnection into data processing units; simple processor
architecture. 2 hrs. rec., 3 hrs. comp./lab. Corequisites: 15-104 or 15-111. [Course 18-133 per CMU
1982-84 catalog] Note: This course is very similar to CS course 240 as defined in this report.

9.3.4 Linear Systems Analysis [EE 218]

Description: This course presents a unified analytic treatment of continuous time and discrete-time linear
systems theory, and is intended to develop facility in the mathematical characterization of these systems
and their performance in the time and frequency domains. Topics include convolution, Fourier series
and transforms, sampling theorems, LaPlace transforms, Z-transforms, and applications of these
methods to problems in control and communications. Prerequisite: 18-102. [Course 18-218 per CMU
1982-84 catalog]

9.3.5 Electronic Circuits Il [EE 221 / CS 340]

Description: Continuation of analog circuit analysis: feedback amplifiers; frequency response; stability;
operational amplifiers; op-amp characterstics: op-amp circuits; waveform generators; oscillators: tuned
circuits, power amplifiers; amplifier classification; harmonic distortion. 3 hrs. rec., 3 hrs. lab.
Prerequisite: 18-102. {Course 18-221 per CMU 1982-84 catalog]

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 19308 118

9.3.6 Analysis and Design of Digital Circuits [EE 222 /7 CS 341]

Description: This course introduces some advanced topics in the design and analysis of digital circuits.
Topics to be discussed include the analysis of RTL, DTL, TTL, and ECL gates plus MIS components
such as an ALU and lockahead carry adder with emphasis on performance limitations (noise margins,
propagation delay, fan-in, fan-out, etc.); analysis of noise, cross-talk and reflections in IC
interconnections; non-linear circuit analysis techmiques including Newton-Raphson, Euler integration
and Predictor-Corrector Mcthods; semiconductor processing for simple bipelar and metal-oxide devices
along with the models developed in the course. 2 hrs. rec. 2 hrs. comp., 3 hrs. lab. Prerequisite 18-221.
[Course 18-222 per CMU 1982-84 catalog]

9.3.7 Introduction to Solid State Electronics [EE 236]

Description: This course will introduce students to semiconductor solid state devices. The course will first
cover the essential physics of semiconductor device operation, including the concepts of encrgy bands,
the Fermi distribution function, transport of current by electrons and holes, tunncling, effective mass,

ete. Following this, the operation of p-n junctions, Schottky barrier diodes, bipolar transistors, junction
field effect transistors {JFET), and metal-oxide-semiconductor field effect transistors (MOSFET) will be
discussed along with their use in integrated circuits. The course is intended for students with no prior
experience or knowledge of scmiconductors. Sophomores and higher level students who have
completed Physics III, Electricity and Magnetism, are all well qualified to take this course. This course
will provide a solid backzround for students desiring to take 18-331, Semiconductor Devices and
Applications. 3 hr. reciiation. Prerequisites: 33-123 or permission of instructor. [Course 18-236 per
CMU 1982-84 catalog]

9.3.3 Introduction to Computer Architecture [EE 247 / CS 440]

An outline for this course is given in Section 8.3.10.

9.3.9 Fundamentals of Control [EE 301]

Description: An introduction to the fundamental principles and main ideas of classical feedback control and
its application. Emphasis is on problem formulation and the analysis and synthesis of servo-
mechanisms using frequency domain techniques. Topics include analytical; graphical, analog
techniques for treating automatic control systems; analysis of performance, stability criteria,
realizability, and speed of response; compensation methods in the frequency domain, root-locus design,
and pole-zero synthesis techniques; the use of analog computers in control systems; systems with delay
and computer control systems; state-space description of linear systems; and non-linearities in control
systems. 3 hrs. rec. 2 hrs. comp. Prerequisite: 18-213. [Course 18-301 per CMU 1982-34 catalog]

9.4 Psychology Courses

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE (930S 119

9.4.1 Psychology of Learning and Problen Solving [Psy 113]

Description: A course aimed at increasing students' lcarning and problemi-solving skills through
understanding and applying topics in cognitive psychology. ‘Topics covered will include representing
problems searching for solutions. making decisions, learning and creativity. Emphasis will be placed on
the acquisition of skills which can be transferred to the student’s own area of interest. [Course 85-113
per CMU 1982-84 catalog.)

9.4.2 Information Processing Psychology and Artificial Intelligence [Psy 213]

Description: Analysis of computer programs for producing intclligent behavior and their relationship to
human information processing. The course focuses on perceptual information processing, merory
systems, problem-solving and language processing. Students will write programs to simulate aspects of
human information processing, rerequisites: Ability to program in some computer language. [Course
85-213 per CM U 1982-84 catalog.]

9.4.3 Human Factors [Psy 363)

Description: The purpose of the course is to acquaint students with a rapidly expanding arca of psychology,
investigating the cffects of human factors on cognitive and behavioral functioning, Central to the area is
the notion that physical and social environments should be planned and constructed in a way that
maximizes the fit between those environments and the psychological characteristics of the people that
will inhabit them. In general, the course will focus on the use of machines as aides to human
functioning. Included will be a discussion of the role that computers can play in information processing
and human problem solving. Prerequisites: any 100- or 200-level psychology course. [Course 85-363 per
CMU 1982-84 catalog.)

9.4.4 Cognitive Processes and Problem Solving [Psy 411}

Description: Psychological processes in thinking and problem solving; relation of language to thinking;
relaton of perception and imagery to problem solving; semantics and internal representations:
development of information processing capacity. Methods for studying thinking empirically;
constructing and testing computer simulation models of adult’s and children’s thinking, Prercquisite:
consent of the instructor. [Course 85-411 per CMU 1982-84 catalog]

9.4.5 Thinking [Psy 417]

Description: The coursc is intended as an extension of Psychology 411, Tt will review rescarch on higher-
level mental processes and the implications of this research. Possible topics include knowledge
representation, pattern recogaition, symbolic knowledge, schematic knowlcdgé, mermory for facts, skill
acquisition, problem-solving. reasoning, language comprehension, language generation, and language
acquisition. The factual content will mainly come from assigned readings and class discussions. Also,
students will be required to perform a scrics of projects simulating various cognitive processes. Grade
will be based on these simulation assignments and a final take-home. Prerequisite: Instructor’s
permission. [Course 85-417 per CM U 1982-84 catalog]

AN UNDERGRADUATE COMPUTER SCHENCE CURRICULUM FORITIE 19808 120

9.5 Engineering and Public Policy Courses

9.5.1 Law and Technology [EPP 321]

Description: The interaction of law and technology is considered in several arcas: the environment, safety
and health, product liability and patents and trade scerets. The public policy which emerges as law in
these arcas arises from forums such as public hearings or courts of law., The focus of the course is
twofold: (1) understanding present law in these arcas, and (2) using the data from prior public hearings
in at icast two of these areas to evaluate critically the nature and validity of the techaological input used
in reaching the public policy decision. Prercquisite: 19-319 or 70-361. {Course 19-321 per CMU
1982-84 catalog]

9.5.2 Telecommunications Policy Analysis [EPP 402]

Description: ‘This course reviews the physical principles and capabilities of modern tclecommunications
systems and surveys statc-of-the art technology. Fconemic, cultural, political, and hecalth-related
impacts of tclecommunications arce discussed. The concept of the clectromagnetic spectrum.as a scarce
but nondepletable resource and questions of cconomic cfficiency and distributional cquity will be
considered as bases for national and international regulation, Cost-risk benefit determination and
allocation will be studied using casc studies (e.g.lclephone rate design. direct broadcast satellite
licensing, ELF submarine communications alternatives). Prerequisites: 73-100, junior standing in CIT.
[Course 19-402/18-402 per CMU 1982-84 catalog] '

9.5.3 Policy Issues in Computing {EPP 380 / CS 380]

As computers and automation become more pervasive, it becomes the responsibility of those who understand
this technology to be aware of its effects on socicty and to be able to interpret it to both laymen and
policy makers. This course is intended for students with expertise in computer scicnce, and if will
address the effects of specific computer technologies such as networks, very large databases, and robot
automation. Prerequisites: FUNDAMENTAL STRUCTURES OF COMPUTER SCIENCE [AND 1I [211/212] plus
any 300-level computer scicnce course. '

9.6 Engineering Courses

9.6.1 Real Time Computing in the Laboratory [CIT 252]

Description: The goal of this course is to introduce students to the use of dedicated microcomputers in
laboratory situations, by covering those basics in computer organization and pertinent software concepts
not taught in 15-104, 15-111. It will require laboratory work, and will draw data gathering and real-time
control examples and applications from various engincering disciplines. It is primarily intended for
non-Electrical Eﬁginecring majors in CIT. Prerequisite: 15-104 or 15-111. {Course 39-252 per CMU
1982-84 caialog] '

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 19808 121

9.6.2 Analysis, Synthesis and Evaluation [CIT 300}

Description: Analysis, synthesis, and evaluation in the context of realistic engincering situations. The student
learns through practice to deal with problems which require the use of skills that include modcling,
analyses that range from mathematical to heuristic, the use of experimental methods, inventing, making
judgments of value and need, and the making of decisions and recommendations. Problems are chosen
to reflect interdisciplinary nature of engineering problems. 2 hrs. rec. 2 hrs. tutorial/lab. Prerequisite:
junior standing in CIT. {Course 39-300 per CMU 1982-84 catalog]

9.6.3 The History and Formulation of Research and Development Policy {CIT 401]

Description: This interdisciplinary course will study the modes of research and development over the course
of the 20th century. It will examine the relationship between the institutions responsible for R&D, such
as industry, government, universities and foundations, and how R&D has affected the course of
technological change. The course will consider the goals of R&D policy and the factors that have gone
into policy formulation. The last section of the course will deal with the future directions of R&D

7 policy. [Course 39-401, 79-509 per CMU 1982-84 catalog]

9.6.4 Cost-Benefit Analysis [CIT 404]

Description: The course will be directed primarily to Engineering students. Approximately equal time will
be devoted to theory and practical applications. Topics will include the concepts of costs and benefits,
market valuation and the meaning of prices (explicit and imputed), efficiency, the distribution of
wealth, effects of alternative property rights structures, externality, investment criteria, uncertainty and
risk. Examples of cost-benefit analysis will be presented and techniques of estimating costs and benefits
will be discussed. Finally students will be given the opportunity to improve their skills in evaluating
projects and cxamining appropriate alternatives by means of a practical exercise. 3 hrs. rec.
Prerequisite: 73-100 or 24-291 or 06-303. [Course 39-404 per CMU 1982-84 catalog.)

AN UNDERGRADUATE COMPUTTLER SCIENCE CURRICULUM T'OR TTLE 19805 122

References

1. Alfred V. Aho, John E. Hoperoft, and Jeffrey D. Ullman. The Deszgu and Analysis of Computer
Algorithms. Addison-Wesley, 1974,

2. Alfred V. Aho and Jeffrey D. Ullman. Principles of Compiler Design. Addison-Wesley, 1977.

3. Alfred V. Aho, John E. Hoperoft, and Jeffrey D. Ullman. Daia Structures and Algorithins. Addison-
Wesley, 1983.

4. C. Gordon Bell, J. Craig Mudge and John E. McNamara, Computer Engineering a DISC View of Hardware
Systems Design. Digital Press, 1978.

5. M. Ben-Ari. Principles of Concurrent Programming. Prentice-Hall, 1982,
6. Jon Louis Bendey. Writing Efficient Programs. Prentice-Hall, Tnc., 1982.

7. Jon Louis Bentley. "Programming Pearls." Connnumnications of the ACM 26, 8 (August 1983), Regular
column.

8. Garrett Birkhoff and Thomas C. Bartce. Modern Applied Algebra McGraw-Hill, 1970,

9. Barry W. Boehm. Software Frgineering EEconomics. Prentice-Hall, Inc, 1981,

10. J. A. Bondy and U. S. R. Murty. Graph Theory with Applications. American Elsevicr, 1976.
11. G.S. Boolos and R.C. Jeffrey. Computability and Logic. Cambridge University Press, 1974.

12. Frederick P. Brooks, Jr.. The Mythical Man-month: Essays on Sofiware Engineering. Addison-Wesley,
1975,

13. Michale I. Clancy and Donald E. Knuth. A Programming and Problem-Solving Seminar. Tech. Rept.
Technical Report Stan-CS-77-606, Stanford University, April, 1977.

14. N.J. Cutland. Computability: An Introduction 10 Recursive Function Theory. Cambridge University Press,
1980.

15. O.J. Dahl, E.-W. Dijkstra, and C.A.R. Hoare, Structured Programming. Academic Press, 1982,

16. C.J. Date. The System Programming Series: An Introduction to Database Systems. Addison-Wesley,
Reading, MA, 1981,

17. C.J.Date. The System Programming Series: An Introduction to Database Systems Volume 2. Addison-
Wesley, Reading, MA, 1983

18. E.W. Dijkstra. Co-operating Sequential Processes. In F. Genuys, Ed., Programming Languages,
Academic Press, 1968, pp. 43-112. '

19. Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall, Inc., 1976.
20, R.G. Dromey. How fo Solve it by Computer. Prentice-Hall, 1982.

21. H. Enderton. A Mathematical Introduction ti: Logic. Academic Press, 1972.

AN UNDERGRADUATE COMPUTER SCIENCE CURRICLLUM FOR TILE 1980S. 123

22. Lawrence Flon, Paul N, Hilfinger, Mary Shaw and Wm. A. Wulf. A Fundamental Computer Science
Course that Unifies Theory and Practice. Proceedings of the SIGCSE/CSA Technical Symposium of
Computer Science Education, February, 1978, pp. 255-259.

23. J.DD. Foley and A. Van Dam. Fundamenals of Interactive Computer Graphics. Addison-Wesley, 1982,

24. Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman and Company, 1979,

5. Judith L. Gersting. Mathematical Structures for Computer Science. W .H. Frceman, 1982,

26. M.J.C. Gordon. The Denotational Description of Programming languages. Springer-Verlag, 1979.
27. David Grics. Compiler Construction for Digital Computers, Wiley, 1971,

28. David Grics. The Science of Programming. Springer-Verlag, 1981.

29. Ralph E. Griswold and Madge T. Griswold. 4 SNOBOL4 Primer. Prentice-Hall, Ine, 1973,

30. A.N. Habermann. Introduction 1o Operating Systent Design. Science Research Associates, Inc., 1976.
31. Frank Harary. Graph Theory. Addison-Wesley, 1969, 7

32, John R. Hayes. The Complete Probiem Solver. Franklin Institute Press, 1981.

33. Peter Hibbard, Andy Hisgen, Jonathan Rosenberg, Mary Shaw, and Mark Sherman. Swudies in Ada
Style. Springer-Verlag, 1981. '

34. Paul N. Hilfinger, Maryl Shaw, Wm. A. Wulfand {awrence Fion. Introducing “Theory"” in the Second
Programming Course. Proceedings of the Ninth SIGCSE Technical Symposium. August, 1978.

35. C.AR. Hoare. "Communicating Sequential Processes.” Communications of the ACM 21, 8 (August
1978), 666-677, :

36. R.C. Holt, E.D. Lazowska. G.S. Graham and M.A. Scott. Structured Concurrent Programming with
Operating Systems Applications. Addison-Wesley, 1978.

37. J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory Languages and Computation, Addison-
Wesley, 1979, '

38. Elaine Kant. "A Semester Course in Software Engincering." Software Engineering Notes 6, 4 {August
1981), 52-76.

39. B.W. Kernighan and P.J. Plauger. Software Tools in Pascal, Addison-Wesley, 1981,

40. Donald E. Knuth. The Art of Computer Programming. Volume 1: Fundamental Algorithms. Addison-
Wesley, 1973,

A 41. Donald E. Knuth. The Art of C ompuler Programming. Yolume 3: Sorting and Searching. Addison-
Wesley, 1973.) :

42. Donald E. Knuth and Allan A. Miller. A Programming and Probiem-Solving Seminar. Tech. Rept.
Technical Report Stan-CS-81-863, Stanford University, June, 1981, '

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THIZ 19808 124

43, Donald U Knuth. The Art of Computer Programming, Volume 2: Seminumerical Algorithins, Addison-
Wesley, 1981,

44. Imre Lakatos. Proofs and Refutations: The Logic of Mathematical Discovery. Cambridge University
Press, 1976. '

45. Butler W. Lampson. Hints for Computer System Design. Proceedings of Symposium on Operating
System Principles, Asseciation for Computing Machinery, 1981, to appear.

46. Eugene .. Lawler. Combinatorial Optimization: Networks and Matroids. Holt, Rinchart, and Winston,
1976.

47. Henry ledgard and Michacl Marcotty. The Programming Languge Landscape. Science Rescarch
Associates, 1981,

48. H.R. Lewis and C.H. Papadimitriou. Elements of the Theory of Computation. Prentice-Hall, 1981.
49, C.L. Liu. 7ntreduction to Combinatorial Mathematics. McGraw-Hill, 1968.
50. C.L. Liu. Ilements of Discrete Mathematics. McGraw-Hill, 1977.

51. Bruce J. Maclennan, Principles of Programming Languages: Design, Evaluation, and Implementation.
Holt, Rinchart, Winston, 1969.

82. Zohar Manna. Mathematical Theory of Computation. McGraw-Hill, 1974.

53, Carver Mead and Lynn Conway. [ntroduction te VLST Systems. Addison-Wesley, 1980.
54. Marvin Minsky. Compulgtion: Finite and Infinite Machines. Prentice-Hall, 1967,

35. Glenford J. Myers. Sofiware Reliability Principles and Practices. Wiley lnterscience, 1976.
56. Glenford J. Myers. Composite/Structured Design. Van Nostrand Reinhold, 1978.

57. William M. Newman and Robert F, Sproull. Principles of Interactive Computer Graphics. McGraw-Hill,
1975,

58. J.E. Nicholls. The Structure and Design of Programming Languages. Addison-Wesley, 1975.
59. Sandra Pakin. APL\360 Reference Manual, Second Edition. Science Research Associates, Inc., 1972.

60. Christos H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and Complexity.
Prentice-Hall, 1982.

61. Frank W. Paul, Donald I.. Feucht, B.R. Teare, Jr., Charles P. Neuman and David Tuma. Analysis,
Synthesis and Evaluation -- Adventures in Professional Engineering Problem Solving. Proccedings of the
Fifth Annual Frontiers in Education Conference, 1EEE and the Amer. Soc. for Engr. Ed., October, 1975, pp.
244-251. .

62. George Polya, Mathematical Discovery. John Wiley and Sons, 1962.
63. George Polya. How to Solve Ii. Princcton University Press, 1973,

64. Terrence W. Pratt. Programming Languages: Design and Implementation (second edition). Prentice-Hall,
Inc., 1984,

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR T 19808 125

65. Edward M. Reingold, Jurg Nicvergelt, and Narsingh [Deo. Combinatorial Algorithms: Theory and
Practice. Prentice-Hall, 1977,

66. Elainc Rich. Arrificial Inteiligence. McGraw-Hill, 1983.
67. H. Rogers. Theory of Recursive Functions and Effective Computability. McGraw-Hill, 1967.
68. Moshce F. Rubinstein, Parterns of Problem Solving, Prentice-Hall, Inc., 1975.

69. Roger C. Schank and Christopher K. Riesbeck. /nside Computer Understanding, Lawrence Erlbaum
Associates, 1981.

70. Robert Sedgewick. Algorithms. Addison-Wesley, 1983.
71, Martin Shooman. Software Fugineering. McGraw-Hill, 1983.

72. Daniel P. Siewiorek, C. Gordon Bell, and Allen Newell. Computer Structures: Principies and Fxamples.
McGraw-Hill, 1982.

73. D.F. Stanat and D.F. McAlister. Discrete Mathematics in Computer Science. Prentice-Hall, Inc., 1977.

74. H.S. Stone. Discrete Mathematical Structures and Their Applications. Science Rescarch Associates, Inc.,
1973.

75. Joseph E. Stoy. Denotational Semantics: The Scott-Strachey Approach To Programming Language
Theory. MIT Press, 1977.

76. Andrew S. Tanenbaum. Computer Networks. Prentice-Hatl, Engelwood Cliffs, NJ, 1981,
71. R.D. Tennent. Principles of Programming Languages. Prentice-Hall, 1981.

78. 1P. Tremblay and R.P. Manohar. Discrete Mathematical Structures With Applications to Computer
Science. McGraw-Hill, 1975.

79, Jeftrey D. Ullman. Principles of Database Systems. Computer Science Press, 1982,
80. Jeffrey D, Ullman. Computational Aspects of VLSI. Computer Science Press, 1984,

81. Chris Van Wyk and Donald E. Knuth. A Programming and Problem-Solving Seminar. Tech. Rept.
Technical Report Stan-CS-79-707, Stanford University, January, 1979,

82. D.vanDalen. Logic and Structure. Springer-Verlag, 1980,

83. Richard L. Wexelblat, editor. History of Programming Languages. Academic Press, 1981.

84. Wayne A. Wickelgren. How to Solve Problems. W.H. Freeman and Company, 1974,

85. Patrick Henry Winston and Berthold Klaus Paul Horn, LISP. Addison-Wesley, Reading, Mass, 1981,
86. Niklaus Wirth, Algorithms + Data Structures = Programs. Prentice-Hall, 1976.l

87. William Wulf, Richard K. Johnsson, Charles B. Weinstock, Steven O. Hobbs, and Charles M. Geschke.
The Design of an Optimizing Compiler. American Elsevier Publishing Co., 1975.

88. William A. Wulf, Mary Shaw, Paul N, Hilfinger, and Lawrence Flon. Fundamental Structures of
Computer Science. Addison-Wesley, 1981,

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR TTHIS 19808 126

89. Fdward Yourdon and Larry L. Constantine. Structured Design Fundamenials of a Discipline of Computer
Program and Systems Design. Prentice-Hall, 1979,

90, Marvin V. Zelkowity, and Alan C. Shaw, and John . Gannon. Principles of Software Engineering and
Design. Prentice-Hall, 1979,

