
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS: 
The copyright law of the United States (title 17, U.S. Code) governs the making 
of photocopies or other reproductions of copyrighted material. Any copying of this 
document without permission of its author may be prohibited by law. 



Proposal for an 
Undergraduate Computer Science Curriculum 

for the 1980s 

Fart II: Detailed Course Descriptions 

Mary Shaw, Steve Brookes, Marc Donner, 
James Driscoll, Michael Maulclin, Randy Pausch, 

Bill Scherlis, Alfred Spector 

Computer Science Department 
Carnegie-Mellon University 

Pittsburgh, Pa. 15213 
20 October 1983 

Abstract 

The authors propose to the Carnegie-Mellon Computer Science Department a curriculum for 
undergraduate computer science. This Part contains the detailed course descriptions that support 
the curriculum proposal described in Part I. 

The Curriculum Design Project is supported by general operating funds 
of die Carnegie-Mellon University Computer Science Department. 



AN UNDLRGRADUATK COMPUTHR SCIKNCK CURRICULUM FOR THK 1980S 

Table of Contents 

Part I : Discussion 
1. Setting 

1.1 Working Definition of Computer Science 
1.2 A View of Future Computing 

2. Roles for Universities 
2.1 The Audience 
2.2 Use of Computing Technology in Education 
2.3 The Establishment 

3. Objectives 
3.1 Premises 
3.2 Goals 

4. Content 
4.1 Basics 

4.1.1 Content 
4.1.2 Skills 

4.2 Elementary Computer Science 
4.2.1 Content 
4.2.2 Modes of Thought 
4.2.3 Skills 

4.3 Liberal Professional Education 
4.3.1 General Scope 
4.3.2 Liberal Education 
4.3.3 Areas Related to Computer Science 

4.3.3.1 Mathematics and Statistics 
4.3.3.2 Electrical Engineering 
4.3.3.3 Physics 
4.3.3.4 Psychology 
4.3.3.5 Mechanical Engineering 
4.3.3.6 Management and Information Science 
4.3.3.7 Public Policy 

4.4 Advanced Computer Science 
4.4.1 Control 
4.4.2 Data 
4.4.3 Systems 

,4.4.4 Language ^ 
4.4.5 Foundations' 
4.4.6 Process/Design 
4.4.7 Communication 
4.4.8 Applications 

5. Program Organization 
5.1 Requirements 
5.2 Advice on the Use of Elcctives 
5.3 Example Programs 

5.3.1 Balanced Program 
5.3.2 Mathematics Concentration 



AN UNDI-RGRADUVrLCOMRUTLR Sai-iNCIÍ CURRICULUM FOR TI IK 1980S 

5.3.3 Electrical Engineering Concentration 
5.3.4 Psychology Concentration 

6. Remarks 
6.1 General Philosophy 
6.2 Relation to Traditional Courses 
6.3 Course Organization and Style 
6.4 Course Numbering Scheme 

7. Abbreviated Course Descriptions 

Part I I : Detailed Course Descriptions 

8. Course Descriptions 
5.1 Basic and Introductory Courses 

8.1.1 Computers in Modern Society [100] 
8.1.2 Programming and Problem Solving [110] 
8.1.3 Discrete Mathematics [150] 

8.2 Elementary and Intermediate Computer Science Courses 
8.2.1 Fundamental Structures of Computer Science I [211] 
8.2.2 Fundamental Structures of Computer Science II [212] 
8.2.3 Real and Abstract Machines [240] 
8.2.4 Solving Real Problems [300] 
8.2.5 Time, Concurrency, and Synchronization [310] 
8.2.6 Comparative Program Structures [311] 
8.2.7 Languages, Interfaces, and their Processors [320] 
8.2.8 Algorithms and Programs [330] 
8.2.9 Formal Languages, Automata, and Complexity [350] 
8.2.10 Logic for Computer Science [351] 
8.2.11 Introduction to Artificial Intelligence [360] 

8.3 Advanced Computer Science Courses 
8.3.1 Independent Project [400] 
8.3.2 Undergraduate Thesis [401] 
8.3.3 Research Seminar [409] 
8.3.4 Software Engineering [410] -
8.3.5 Software Engineering Lab [411] 
8.3.6 Resource Management [412] 
8.3.7 Big Data [413] 
8.3.8 Transducers of Programs [420] 
8.3.9 Adxanccd Programming Languages and Compilers [421] 

'.- • ; 8.3.10 Advanced Algorithms [430] 
8.3.11 Computer Architecture [440] 
8.3.12 VLSI Systems [441] 
8.3.13 Theory of Programming Languages [450] 
8.3.14 Complexity Theory [451] • 
8.3.15 Artificial Intelligence — Cognitive Processes [460] 
8.3.16 Artificial Intelligence — Robotics [461] 
8.3.17 Interactive Graphics Techniques [470] 

9. Related Courses 
9.1 Mathematics Courses 

9.1.1 Introduction to Applied Mathematics [Math 127 / CS 150] 



AN UNDIRGR AOL A {I: C0Y1RL I KR SCI l.SCV C I *r<lCU LM i OK Ulli 1980S • ' Üi 

9.1.2 Cilculus I [Math 121] 114 -
9.1.3 Calculus II [Math 122] 114 -
9.1.4 Methods of Applied Math I [Math 259] 114 -
9.1.5 Elements of Analysis [Math 261] 114 -
9.1.6 Operations Research 1 [Math 292] 114 -
9.1.7 Operations Research II [Math 293] 115 
9.1.8 Combinatorial Analysis [Math 301 / CS 251] 115 ' 
9.1.9 Linear Algebra [Math 341] 115 
9.1.10 Numerical Methods [Math 369 / CS 352] 115 
9.1.11 Modern Algebra [Math 473 / CS 452] 115 
9.1.12 Applied Graph Theory [Math 484 / CS 430] 115 
9.1.13 Theory of Algorithms [Maui 451 / CS 451] 115 
9.1.14 Numerical Mathematics I and II [Math 704 and 705] 116 
9.1.15 Large-Scale Scientific Computing [Math 712 / CS 453] 116 

9.2 Statistics Courses 116 
9.2.1 Probability and Applied Statistics for Physical Science and Engineering I [Stat 211 / CS 116 

250] 
9.2.2 Probability and Statistics I [Stat 215] 116 
9.2.3 Statistical Methods for Data Analysis I [Stat 219] 116 

9.3 Electrical Engineering Courses 117 
9.3.1 Linear Circuits: [EE 101 / CS 241] 117 
9.3.2 Electronic Circuits I [EE 102 / CS 242] 117 
9.3.3 Introduction to Digital Systems [EE 133] . 117 
9.3.4 Linear Systems Analysis [EE 218] 117 
9.3.5 Electronic Circuits II [EE 221 / CS 340] 117 
9.3.6 Analysis and Design of Digital Circuits [EE 222 / CS 341] 118 
9.3.7 Introduction to Solid State Electronics [EE 236] " 118 
9.3.8 Introduction to Computer Architecture [EE 247 / CS 440] 118 
9.3.9 Fundamentals of Control [EE 301] 118 

9.4 Psychology Courses 118 
9.4.1 Psychology of Learning and Problem Solving [Psy 113] 119 
9.4.2 Information Processing Psychology and Artificial Intelligence [Psy 213] 119 
9.4.3 Human Factors [Psy 363] 
9.4.4 Cognitive Processes and Problem Solving [Psy 411] 
9.4.5 Thinking [Psy 417] 

9.5 Engineering and Public Policy Courses 
9.5.1 Law and Technology [EPP 321] 120 
9.5.2 Telecommunications Policy Analysis [EPP 402] 120 
9.5.3 Policy Issues in Computing [EPP 380 / CS 380] 120 

9.6 Engineering-Courses 12Œ0 
9.6.1 Real Time Computing in the Laboratory [CIT 252] 120 
9.6.2 Analysis. Synthesis and Evaluation [CIT 300] 121 
9.6.3 The History and Formulation of Research and Development Policy [CIT 401] 121 
9.6.4 Cost-Benefit Analysis [CIT 404] 121 

119 
119 
119 
120 



AN UNDLRGRADUATF COMPUTER SCIFNCF CURRICULUM FOR THF 1980S 45 

8. Course Descriptions 

This chapter presents descriptions of the courses we propose to be the major components of an 
undergraduate computer science curriculum. We have tried to write descriptions that will indicate clearly the 
scope and emphasis we have in mind. However, a complete course design is a major undertaking, so most of 
these descriptions should be viewed as design sketches, not full designs. An overview of the course structure, 
including course names and prerequisites2, is given in Figure 8-1. 

Some courses that are shown would be offered by departments other than computer science. In some 
instances (as in COMBINATORIAL ANALYSIS [MATH 301 / CS 251]), these courses have computer science course 
numbers. Given more time and broader expertise, the Curriculum Design Project would have made detailed 
sketches on such courses; instead, information about similar courses currently offered at Carnegie-Mellon 
University has been provided, but only for purposes of exposition and completeness. We are neither 
endorsing nor criticizing the current curricula of diese courses. 

The prerequisite structure is complete only for computer science.courses. 



Programming 
& Prob Solv 

150: 
Discreto 
Mathematics 

211: 
Fund Struc 
of CS I 

240: 
Real & Abstr 
act Machines 

S t a t 2 U : 
Probabi l i ty 
& S t a t i s t i c s 

M301: 
Combinatorics 

Psych 213: 
Into Proc ro 

AI 

212: 
Fund Struc 
of CS II 

300: 
Solving Real 
Wrld Probs 

212|two 

400.401: 
Indep ProJ 
& thesis 

212+two 

409: 
Research 
Seminar 

FF101.101: M341; 
C i r cu i t s Linear 
Courses Algebra 

M369: 
Numerical 
Methods 

Psych 363: 
Human 
Factors 

3xx thy 

17 3xx 

310: 311: 
Time, Synch. Comparative 
& Concurrency Prog Structs 

320: 
Languages 
& Interfaces 

330: 
AI gor i turns 
& Programs 

FF221.222: 350: 351: 
Flee & Dig Forml t angs Logic for 
C i r cu i t s & Complexity Comp Sci 

360: 
A r t i f i c i a l 
Intel 1igence 

380: 
Pol icy for 
Computing 

410: 
Software 
Engineering 

(varies) 

I St211 
412: / 
Resource 
Management 

(var 

420: 
Transducers 
of Programs 

350, 
360 

411: 
Software 
Eng. Lab 

413: 
Big Data 

421: 
Adv PLs & 
Compilers 

M301 
430: / 440: 
Advanced Computer 
Algorithms Architecture 

441: 
VLSI Design 

M473 
A d v a n c e d 
A l y e b r a 

M301 

451: 
Compi ex i ty 
Theory 

\ r 
450: 
Thy of 
Prog Langs 

M712: 
S c i e n t i f i c 
Computing 

460: I 470: 
AI: Cognitive Computer 
Processes | Graphics 

Cale II 
L1n 

461: 
AI: Robotics 



AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 1980S 47 

8.1 Basic and Introductory Courses 

Introductory computing courses serve all the communities described in Section 2.1. They exist to provide 
general computer literacy to the campus at large, to provide the background for students who must use 
computers in other disciplines, and to provide sufficient background for the basic computer science courses. 

In order to establish the basis of our computer science curriculum, we give a brief description of two kinds 
of introductory course. The first of these is directed at the need for general literacy about computing. The 
second is directed at the need for die specific skills required for good programming, including problem-
solving skills. The two courses are independent; we conceive of the former as a universal requirement. 

8.1.1 Computers in Modern Society [100] 

This course presents algorithmic thinking and the role of computing and technology in contemporary 
society. It covers 

• Use of computing facilities, including important classes of programs such as text formatters, 
- electronic message systems, interactive computation and planning systems, and public information 

utilities. 

• Survey of classes of computers and applications, with emphasis on the diversity of the applications 
and the common elements of the successful ones. 

• The style of precise, deductive reasoning and problem solving that characterizes science and 
engineering. One of the carriers of this idea will be an introduction to elementary computer 
programming. 

• Ethical and social implications of widespread computing power. 
There is an opportunity for this to become a course that teaches all students, particularly nontechnical 
students, about the nature of scientific reasoning. Such a course would include elements of formal logic, 
history and philosophy of science, and Western civilization. Hands-on experience with computers could 
provide the direct experience and tangible feedback that is often difficult to provide. The course would help 
balance the conventional view of liberal education that calls for scientists to take substantive courses in the 
humanities but not for humanists to take substantive courses in the sciences. 

8.L2 Programming and Problem Solving [110] 

Techniques for solving problems with computers, including problem-solving and programming skills. This 
is the course for students who will take more advanced computer science courses. This course could use an 
introductory programming text and books such as the following: 

• R.G. Dromey, How to Solve It by Computers [20]. 

• J.R. Hayes, The Complete Problem Solver [32]. 
• G. Polya, How to Solve It [63]. 

• M. Rubinstein, Patterns of Problem Solving [68]. 
• W.A. Wickelgren, How to Solve Problems [84]. 



AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 1980S. 48 

8.1.3 Discrete Mathematics [150J 

Prerequisites: NONE 

Description: This course introduces and relates a variety of discrete mathematical themes and subjects. This 
course is intended to serve prospective computer science and mathematics majors, among others. 

Rationale: The themes listed below provide the fabric that holds the course together. Although they are not 
mentioned explicitly in the subject listing, it is important that they be approached frequently in 
textbooks and in lectures. 

Objectives: At the end of this course, a student will have a command of the basic ideas and techniques from 
discrete mathematics and will be able to apply them to problems outside mathematics, such as problems 
in computer science. Besides these skills, students will have begun to develop an appreciation of the 
nature and use of abstraction, an Understanding of the roles of language and logic in mathematics, an 
understanding of the notion of mathematical structure, and an understanding of the nature of 
mathematical proof. 

Ideas: This course will be the primary carrier of the following: 

• Problem diagnosis 
• Abstraction: how to go from particular to abstract 
• Representation: making abstract structure concrete 
• Mathematical reasoning and the notion of proof 
• Operational reasoning and die notion of algorithm 
• Recursion and induction; operational vs. relational reasoning 

• Modeling 

• Synthesis: building mathematical structures 

It will reinforce or share responsibility for: 
• A precise understanding of the notion of algorithm and an appreciation of the role of 

algorithms in mathematics. 

Topic Outline: 
1. Graphs 

• Fundamental ideas 
• Directed acyclic graphs and trees 
• Simple algorithms on graphs 

2. Sets 
• Sets and set equality 
• Defining sets: extension and abstraction, paradoxes 
• Relations between sets, operations on sets 
• Infinite sets 
• Relations, mappings, and functions 

3. Logic Skills 
• Propositions and truth functions 
• Individuals, predicates, and quantification 
• The language of logic 
• Expressing statements in the language of logic 
• Informal deduction in predicate logic 



AN.UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 1980S 

• A unifying structure: Boolean algebra 
4. Induction 

• Elementary stepwise induction and complete induction 
• Induction over general structure and inductive definitions of sets 
• Recursive definitions (e.g., of sequences and functions) 

5. A Brief Introduction to Logic and Mathematical Reasoning 
• Syntax: formal languages and inductive definitions 
• Deduction: axioms, rules of inference, and proofs 
• Informal and formal proofs 
• A glimpse at semantics: interpretations and soundness 

6. Counting 
• Combinations, permutations 
• Binomial and multinomial theorem 
• Inclusion/exclusion 

7. Relations, Equivalence Relations, and Order 
• Properties of relations, closures 
• Equivalence relations, partitions, equivalence classes 
• Examples of equivalence relations: divisibility of integers, modular arithmetic 
• Partial and linear order 
• Well-founded ordering 

8. Retrospect 

• (Several lectures drawing on previous work to reinforce the themes of abstraction, proof, algorithm, etc. More 
than one unit of this type may be needed.) 

9. Matrices * 
• Matrix algebra 
• Linear systems, Gaussian elimination 
• Applications: incidence matrices, transitive closure, (and possibly Markov chains) 

10. Algebraic Structures 

• Associative binary operations and semigroups 
• Examples of semigroups (e.g., tables, strings, composition of functions, matrices) 
• Algebras and structures 
• Monoids, groups, rings, and fields 
• Isomorphism and homomorphism 

11. Recurrence Relations 
• Recursive definition of sequences 
• Differencing and summation 
• Solution of linear recurrence relations 
• Applications to algorithm analysis (e.g., Fibonacci, binary search) 

References: 

• G. Birkhoffand T.C. Bartee, Modern Applied Algebra [8]. 

• J.L. Gersdng, Mathematical Structures for Compuer Science [25]. 

• I. Lakatos, Proofs and Refutations: The Logic of Mathematical Discovery [44]. 

• C.L. Liu, Elements of Discrete Mathematics [50]. 

• C.L. Liu, Introduction to Combinatorial Mathematics [49]. 

• D.F. Stanat and D.F. McAlister, Discrete Mathematics in Computer Science [73]. 
• H.S. Stone, Discrete Mathematical Structures and their Applications [74]. 

• J.P. Tremblay and R.P. Manohar, Discrete Mathematical Structures with Applications to 
Computer Science [78]. 



AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 1980S 

Resource Requirements: 

Implementation Considerations and Concerns: 

• Although this is a mathematics course, it should be taught with close attention to the 
abstractions of computer science. 

• This course is also listed as INTRODUCTION TO APPLIED MATHEMATICS [MATH 127] in the 
Mathematics Department. 

• This course should provide sufficient maturity for the student to continue with more 
advanced madicmatics courses. If this one term course proves insufficient, it may need to be 
split into a two term sequence. In that event, course COMBINATORIAL ANALYSIS [MATH 301 / 

CS 251] would be involved in die redesign. 



AN U N D E R G R A D U A T E COMPUTER SCIENCE CURRICULUM FOR THE 1980S 51 

8-2 Elementary and Intermediate Computer Science Courses 

These courses form a core that is germane to nonterminal, terminal, and joint-interest students. We believe 
that all those students need a foundation based on a balance between theory and practice. Divergence, if any, 
can come in the advanced courses. 

In addition to the courses we define here, some of the content of computer science as described in Chapter 
4 may be taught in departments other than computer science. These departments include mathematics, 
electrical engineering, psychology, and others. We have generally avoided designing courses that cover 
material taught at Carnegie-Mellon in these other departments. 

To show more complete coverage of computer science, however, we list here the titles of courses that should 
be jointly listed by computer science and another department. Catalog descriptions for these courses appear 
in Chapter 9. 

• COMBINATORIAL ANALYSIS [MATH 301 / CS 251] 

• NUMERICAL METHODS [MATH 369 / CS 352] 

• PROBABILITY A N D APPLIED STATISTICS [STAT 211 / CS 250] 

• LINEAR CIRCUITS [EE 101 / CS 241] 

• ELECTRONIC CIRCUITS [EE 102 / CS 242] 

• ELECTRONIC CIRCUITS II [EE 221 / CS 340] 

• ANALYSIS A N D DESIGN OF DIGITAL CIRCUITS [EE 222 / CS 341] 

Some of the courses outlined in this section may also be jointly listed. In particular, DISCRETE MATHEMATICS 

[150] can be listed in the Mathematics Department and REAL A N D ABSTRACT MACHINES [240] is very similar to 
INTRODUCTION TO DIGITAL SYSTEMS [EE 133]. 



AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 1980S 52 

8.2.1 Fundamental Structures of Computer Science I [211] 

Prerequisites: PROGRAMMING A N D PROBLEM SOLVING [no] 
DISCRETE MATI IEMATICS [150] 

Description: This course introduces students to die fundamental scientific concepts that underlie computer 
science and computer programming. Software concepts such as abstraction, representation, correctness, 
and performance analysis are developed and arc related to underlying madiematical concepts. Students 
are asked to apply these concepts to programming problems throughout the course. 

Rationale: The ideas of abstraction and analysis arc fundamental in computer science and should be 
introduced as early as possible in the curriculum — as soon as students arc familiar with the activity of 
programming. The specific ideas and techniques introduced in this course serve as the basis for detailed 
development in later computer science courses. 

Objectives: At the end of this course, a student will: 

• Appreciate the central role of abstraction in computer science and programming. 

• Be able to reason precisely about the correctness and performance of simple programs. 
• Understand how a knowledge of analytical techniques can aid informal programming 

activity. 
• Improve his programming skills through practice and analysis of existing code. 
• Be aware of some of the basic program structures and programming techniques. 

Ideas: This course will be the primary carrier of the following: 

• The nature and use of abstraction in computer science. 
• Basic techniques for reasoning about program correctness and analyzing program 

performance. 
• Fundamental algorithms for searching and sorting in arrays. 

Topic Outline: 
1. Introduction: Understanding Programs 

• Abstraction 
• Specification and implementation 
• Analysis: correctness and performance 
• Search in an unordered array 
• Search in an ordered array: Binary search 

2. Brief Review of Discrete Mathematics for Computer Science (review of DISCRETE MATHEMATICS IISOJ) 

• Logic skills 
• Sets, relations, functions, graphs 
• Induction and recursive definition 
• Abstraction, language, and logic 

3. Finite State Automata 
• Alphabets and languages 
• Describing languages: recognition and generation 
• The notion of state; abstract automata 

m • Nondcterminism 
• Regular expressions 

4. Programming Languages: Abstractions 
• Syntax: programming languages as formal languages 
• Flowchart programs and control structures 



AN U N D E R G R A D U A T E COMPUTER SCIENCE CURRICULUM I OR THE 1980S 

• Basic control structure abstractions: sequencing, conditionals, and iteration 
• Procedures and function subprograms 
• Identifiers, variables, binding, and assignment 
• Parameter binding 
• Scope, extent, and free-variable binding 
• Recursion 

5. Programming Languages: Pragmatics 
• Specifying the meanings of programs 
• Machine-level languages 
• Representation of high-level constructs 
• Translation and interpretation 

6. Correctness of Programs 
• Program specification and programming language semantics 
• Test vs. proof 
• Assertions about programs 
• Iloarc assertions and weakest preconditions 
• Loops and invariants 
• Specification, abstraction, and modularity 

7. Performance of Programs 
• Resource utilization 
• Measuring input size, expressing cost 
• Experimental methods for cost estimation 
• Analytic methods 
• When and how to improve performance 

8. Major Examples 

• Abstraction and analysis revisited 
• Sorting 
• Lexical Analysis 

References: 

• A.V. Aho, J.D. Hopcroft, and J.E. Ullman, Data Structures and Algorithms [3]. 
• O.J. Dahl, E.W. Dijkstra, and C.A.R. Hoare, Structured Programming [15]. 

• W.A. Wulf, M. Shaw, P.N. Hilfingcr, and L. Flon, Fundamental Structures of Computer 
Science [88]. , 

Resource Requirements (Software): 

• Example programs to work with 
• Interpreters for micro-languages 
• Simulators for finite-state automata 

• Possibly program dming support — routines and test-bed 

• Data sets for sorting and searching — tuned to best, worst cases for various algorithms 

Implementation Considerations and Concerns: 

• See [22, 34] for discussions of the course design. 

• Because, of the inexperience of the students and the large class sizes, this course is 
particularly sensitive to the problem of concentrating on the examples at the expense of the 
major underlying themes and principles. 

• So as to provide an appropriate bridge from the programming done in the one-hundred 



AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE. 1980S 

level course to the more theoretical matters that arc the topic of this course, it is important to 
blend in a sufficient number of programming examples. 



AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM EORTIIE 1980S 55 

8.2.2 Fundamental Structures of Computer Science II [212] 

Prerequisites: FUNDAMENTAL STRUCTURES OF COMPUTER SCIENCE I [2ii] 

Description: The course is a continuation of FUNDAMENTAL STRUCTURES OF COMPUTER SCIENCE I [211]. It 
comprises five major parts: data abstraction, implementation of data types and corresponding 
algorithms, models of computation, topics in computer implementations, and a brief introduction to 
LISP. In addition to lectures.on these areas, students arc asked to complete a number of programming 
assignments. 

The programming assignments arc an integral part of die course. They arc often die first programs that 
arc large enough to force the student to deal with abstraction (by necessity), and they give the student an 
opportunity to apply algorithms and abstraction techniques that arc presented in class. Students are 
asked to program and think about programming during the entire course. It is this emphasis that ties 
the course together. 

Rationale: This course presents a breadth first cut across many topics in computer science. Taken as a last 
course in computer science, this course and FUNDAMENTAL STRUCTURES OF COMPUTER SCIENCE I [211] 

provide an introduction to the central topics in the field. Taken as an introduction to the more 
advanced courses, this course provides students with material that is eidicr prerequisite or introductory. 

Objectives: At die end of this course, a student will have 

• Enough programming skill to handle larger programming assignments and experience in 
both PASCAL and, to a lesser extent, LISP 

• A basic knowledge of data abstraction and specification techniques, and die ability tc 
implement a data structure to support a given specification 

• Some background in computability theory 

• Some background in the implementation of programming languages 
>• Some background in the design and analysis of algorithms. 

Ideas: This course will be the primary carrier of the following: 

• Data type specification and abstraction techniques 

• Data structure design and analysis, including time/space tradeoffs 

• The organization of systems via the use of layered abstractions 
• LISP programming 

It will reinforce or share responsibility for: 

• Data representations and related algoridims 

• Topics in the implementation of programming languages 
• Computability theory 

• Verification techniques 

Topic Outline: 
1. Data Abstraction. An example is presented almost immediately, so students can begin to program an abstract data type 

on their own. 
a Course Introduction, Abstract Data Types 

b. Abstraction, An example of Directories as ADT implemented via Hashing w/Linear Probing 
c. Introduction to Formal Specification 



AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM I-'OR THE 1980S 

d. Algebraic Specifications, Sequences, Positive Integers as examples 
c. Abstract Models (Strings, Queues, Sets), Verification Considerations 

2. Abstract Data Types, their Implementation, and Corresponding Algorithms. In general, abstract data types are 
semi-formally introduced before algorithms and representations arc discussed. ITiis material is presented in Pascal. It 
is specifically not intended that the introduction to LISP be merged with the introduction to data types. 

a. Basic Programming Abstractions 
• Variant Records, and Pascal Modules (Independent Compilation) 
• Pointers/References Introduced 
• Representation techniques (e.g., packing, encoding) 

b. Queues and Stacks 
• Stacks, Nested Abstractions 
• FIFO Queues 
• Static Implementations; e.g. via arrays 
• Implementations Involving Single Linking, Double Linking, Circular Structures 
• Modeling, Discrete Fvcnt Simulations 
• Bucket Hashing 
• Other Uses of Queues and Stacks 

c. Types often implemented with trees 
• Abstractions of Sets, Directories, Symbol Tables, Priority Queues, etc. 
• Introduction to Trees and Definitions: Trees as an Abstract Type 
• Tree Walks, Uses of Trees, Specification of Trees, Binary Tree 
• Inductive Proofs of Trees, Representation of Trees 
• Binary Search Trees, Recursive and Iterative Processing 
• Deletion in Binary Search Trees 
• Balancing Trees 
• Multi-way Trees, 2-3 Trees, Heaps 
• Copying Structures with Pointers/Recursion 
• Multi-key Retrieval, Database Queries 
• Interval Retrieval, Iterators 

d. Graph-like Types 
• Graphs Introduced, Defined, and Exemplified 
• Graph Traversal, Conncctness Algorithms 
• Graph Representations and Transitive Closure Algorithms 
• Transitive Closure Algorithms Refined, Shortest Path Algorithms 
• Overview of Traveling Salesman and Spanning Tree Algorithms 

3. Models of Computation: An Introduction. 
a Turing Machines 
b. Other Models 
c. Church's Thesis and Computability 
d. The Halting Problem and Undecidability 
e. Context-Free Languages and the Chomsky Hierarchy 

4. Topics in Computer Implementations. 
a Introduction to Storage Allocation 
b. Stack-based storage allocation, static and dynamic scoping 
c. Non-Stack-Based Allocation. Freelists, Explicit Merging of Objects 
d. Buddy System Allocation, Marking In-use Objects and Garbage Collection 

5. LISP 
a Notion of Applicative Language 
b. Programming Environments and Interpreters 
c. Use of simple, yet powerful, primitives 
d. The power of recursion 
e. Different implementations of abstractions already seen 

References: 
• A.V. Aho, J.D. Hopcroft, J.E. Ullman, Data Structures and Algorithms [3]. 

Chapters/Sections 1, 2.1-2.4, 3.1-3.2, 5.1-5.2, much of 6 and 7. 



AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 1980S 

• O.J. Dahl, E.W. Dijkstra, and C.A.R. Hoarc, Structured Programming [15]. 
• P.H. Winston and B.K.P. Horn, LISP [85]. 

• W.A. Wulf, M.Shaw, P.N. Hilfingcr, and L Flon, Fundamental Structures of Computer 
Science [88]. Chapters 7, 8, 9,10.1-10.5,11.1-11.2, 13,14,15,16,19. 

• Other reading to be determined. 

Resource Requirements (software): 

• Library of data types to support many of the assignments 
• Simulator for Turing Machines 

• Some assignments can involve students with larger programs by giving them amning 
versions of exemplar programs (whose design was presented in class) and asking for 
modifications. 

• Note that FUNDAMENTAL STRUCTURES OF COMPUTER SCIENCE II [212] requires much greater 
computing resources than FUNDAMENTAL STRUCTURES OF COMPUTER SCIENCE I [211]. 

Implementation Considerations and Concerns: 

• Sec [22, 34] for discussions of the course design. 

• It is specifically intended that LISP be taught for approximately the last 30% of the course 
and that the data staicture material be taught initially in Pascal. There are two reasons: 
First, one new thing is enough to learn at a time. Second, the students should sec die data 
structures material from two points of view (diat is, Pascal and then LISP), and the 
advantages and disadvantages of both should be made clear. 

• Feedback to students is important. An extensive grading staff is required to provide 
substantive feedback to students on their programs with respect to algorithms abstraction 
techniques, and general programming style. This is especially true when students are 
supposed to be learning design techniques that require extensive individual feedback and 
for which answer sheets do not give enough guidance. This is such a course, and it must be 
adequately staffed. 



AN UNDI-RGRADUATFXO.VIPUTl 'RSai'NCI'CURRICULUM I OR THE 1980S ' 58 

8.13 Real and Abstract Machines [240] 

Prerequisites: PROGRAMMING A N D PROBLEM SOLVING [no] 
DISCRETE MATHEMATICS [150] 

Description: In this course the student is introduced simultaneously to the theoretical models and the 
hardware instances of machines diat compute. The notions of layers of virtual machines is explored and 
tiicir realization in various combinations of hardware and software are major themes. Beginning with 
primitive computations, die mathematical concept of function is used to capture the capabilities of 
combinatorial digital logic circuits. From that base, finite automata arc introduced as tools for 
understanding, analyzing, and designing finite state machines. After that, 'Turing Machines and, more 
appropriately, register machines arc introduced and related to the architectures of real computers. 
Finally, microcode, machine/assembly language, and general-purpose programming languages are 
positioned in this hierarchy. 

The laboratory component of tliis course will require about three hours of lab work per week and will 
expose the student to simple instances of some of the machine types covered in the lectures. Sudents 
will simulate instances of several classes of machine and will design and construct simple combinatorial 
circuits and a simple finite state machine. 

Rationale: Conventional teaching of computer architecture doesn't convey die sense that the capabilities of 
constructable systems can be described and reasoned about formally. While the strict identity between 
formal models and actual machines ends at the finite automata, dicre is nonetheless a great deal to be 
learned from exposure to both the formal models of more powerful machines and to the architectural 
ideas embodied in real machines. The purpose of this course is to expose students to the design and 
construction of various kinds of computing devices and to establish that there are formal techniques for 
reasoning about the matiicmatical properties of computing machines. 

Objectives: At die end of this course, a student will be able to: 

• Understand and describe the relationships between some formal models of machines and 
corresponding real machines 

• Understand the notion of an interpreter of an instruction set and the layers of abstract 
machines that are present in all real systems 

• Understand the use of a clock to impose the discrete time abstraction on the continuous 
time functions of real circuits 

• Understand the circuit family abstraction that permits Boolean algebra to describe the 
behavior of real electronic devices 

• Design and implement simple Finite State Machines 

Ideas: This course willbc the primary carrier of die following: 
• Concept of machine as executor or interpreter of an instruction stream 

• Elementary computer architecture 
• Abstract machines, corresponding languages, and corresponding real machines; notion that 

dicre are different kinds of machines with different power and various realizations 

• Discrete time, ordering of events 



AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM LOR 11 IE 1980S 

• Circuit family abstraction 
It will reinforce or share responsibility for: 

• Abstraction and representation 

• Unite state automata, PDAs, Turing Machines 

• Basic design levels of hardware (shared with COMPUTER ARCHITECTURE [440]) 

• Notion of algorithm 
• Notion of state 

• Boolean algebra 

Topic Outline: 
1. Function 

• Concept of Function 
• Circuit Family abstraction (with hardware lab) 
• Combinatorial Logic Circuits (with hardware lab) 
• Review of elementary Boolean logic (Dc Morgan's Theorem ...) 
• Minimization versus VLSI 
• PLA, PAL, PROM (with hardware lab) 

2. Finite Automata 

• Registers and Latches (with hardware lab) 
• Combinatorial Logic with feedback 
• Clocks and discrete time (with hardware lab) 
• Regular Languages, Regular Expressions 
• Finite State Machines (with hardware lab) 
• Register Transfer Level description 
• Mealy and Moore Machines 
• One-Hot versus Encoded implementations (with hardware lab) 

3. Push Down Automata 

• Context Free Grammars (with software lab) 
• Context Free Languages 
• BNF 

• Related real machines - B5000, HP3000, HP calculators (with soRware lab) 
4. Machine models 

• Turing Machines (with software lab) 
• Register Machines (with software lab) 
• Von Neumann architecture and the Universal TM 
• Memory Devices 

> RAM 
> Disk 
> Tape 
> Memory hierarchies 

5. Architecture Introduction 

• ISP and Executor/Interpreter model (with software lab) 
• Microcode 
• Machine Language (with software lab) 
• Assembly Language 
• Intermediate Language (e.g. Pcode) 
• Higher Level languages and their Virtual Machines 

References: 

• C.G. Bell, J.C. Mudge, and J.E. McNamara, Computer Engineering [4]. 



AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE" 1980S 

• M. Minsky, Compulation: Finite and Infinite Machines [54]. 
• D.P. Siewiorek, C.G. Bell, and A. Newell, Computer Structures: Principles and Examples 

[72]. 

Resource Requirements: 

• Finite State Machine simulator 

• Regular Expression to FSM converter 

• PDA Simulator 

• CFG to PDA converter 

• TM Simulator 
• ISP simulator 
• Digital Electronics lab suitable for building simple digital circuits up to FSMs: TTL parts, 

breadboards, power supplies, signal generators, switches and displays, oscilloscopes, logic 
analyzer, etc. 

Implementation Considerations and Concerns: 
• It may be tricky to find faculty with the right mix of interests to teach this course with good 

balance between hardware, software, and theory. 
• This course is very similar to INTRODUCTION TO DIGITAL SYSTEMS [EE 133], offered in the 

Electrical Engineering Department. The content is similar enough that the lab facilities 
might easily be set up in common and shared. 



AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 1980S 61 

8.2.4 Solving Real Problems [300] 

Prerequisites: FUNDAMENTAL STRUCTURES OF COMPUTER SCIENCE II [212] 
REAL A N D ABSTRACT MACHINES [240] 

Description: This problem-oriented course provides students with an opportunity to solve real-world 
problems under the guidance of an instructor. Skills from a variety of areas both within and outside of 
computer science will need to be brought to bear on class examples and assignments posed as problems 
by the instructor. The emphasis is on the techniques used in obtaining die solution, rather than the 
solution per se. While proper software engineering techniques will, of course, be expected for all 
solutions involving software, it should be noted that die emphasis in the course is problem solving, not 
software engineering. 

Rationale: Traditional courses provide particular knowledge and skills, but usually the problems posed in 
such courses focus narrowly on the topic of the course. Rarely docs a student encounter a problem with 
the real-world characteristic of requiring a non-trivial combination of acquired skills. * In addition, 
academic assignments often make broad assumptions that make the task much cleaner than actual 
problems tend to be. This course should help prepare students for the realistic, thorny sorts of problems 
that they will have to encounter after graduation. 

Objectives: At the end of this course, a student will be able to: 

• Critically examine a task and define the real issues in solving a problem. 
• Form a well-organized attack on a problem. 

• Implement a solution, cognizant of possible error or oversight 

• Evaluate a completed solution, and learn and generalize from it. 

Ideas: This course will be the primary carrier of the following: 

• Problem analysis, definition, and decomposition. 

• Coping with external constraints not necessarily inherent in the problem. 
• Application of knowledge and technique in novel ways. 
• Critical evaluation of a finished solution. 

Topic Outline: 
1. Basic stages of problem solving 

a Problem definition 
b. Plan of attack 
c. Execution of a plan 
d. Check for correctness of solution 
e. Evaluation of a finished solution 

2. Path to a solution as the desired results 
a Working backwards from a final goal 
b. Establishment of stable substructures 

3. Reductionism vs. Holism 
4. Knowledge vs. skill 
5. Epistemology 
6. Models and modelling 
7. Analogies and metaphors 
8. Verbalizing and expressing a problem or solution 
9. Well-structured vs. Ill-structured problems 



AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM 1 OR THE 1980S 

10. Overcoming conceptual blocks 
11. Defining and narrowing a problem domain 
12. Reduction to a known problem 
13. Partial Solutions 

a. Giving up on hard cases 
b. Approximate results; coping 

References: 

• J.R. Hayes, The Complete Problem Solver [32]. 

• I. Lakatos, Proofs and Refutations [44]. 

• G. Poly a, How to Solve It [63]. 

• G. Polya, Mathematical Discovery [62] 
• M. Rubinstein, Patterns of Problem Solving [68]. 

• W.A. Wickelgren, How to Solve Problems [84]. 

Resource Requirements: 

• A healthy number of class examples of real problems of an inter-disciplinary flavor. 

Implementation Considerations and Concerns: 

• This course is modelled after existing "Analysis, Synthesis, and Evaluation" courses taught 
in engineering curricula, particularly the course described in [61]. Stanford's graduate 
course 204 was also studied [13, 81, 42]. 



AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 1980S 63 

8.2.5 lime, Concurrency, and Synchronization [310] 

Prerequisites: FUNDAMENTAL STRUCTURES OF COMPUTER SCIENCE II [212] 
REAL AND ABSTRACT MACHINES [240] 
PHYSICS I [PHYS 121] (MECHANICS) 

Description: This course conveys the fundamental notions of flow of time and control of temporal behavior 
in computer systems, both at the hardware and die software level. The fundamental issues of 
synchronization, deadlock, contention, mctastable states in otherwise multistable devices and related 
problems arc described. Solutions that have been evolved, like handshaking, synchronization with 
semaphores, and others are described and analyzed so that the fundamental similarities between the 
software and hardware techniques arc exposed. This course has a significant laboratory component. 

Rationale: Computer systems, both hardware and software, depend heavily upon synchronization and 
concurrency control. This is because they deal with implementations in which there is real parallelism. 
This course makes precise many of the terms (e.g., simultaneous, parallel) that we use to talk about time. 
These terms hide many implicit assumptions about the temporal behavior of computer systems that we 
make when thinking about hardware and software. Some of these assumptions arc correct, while others 
are convenient simplifications designed to make intractable problems manageable. There arc essential 
difficulties with our concepts of how systems behave in time, some of which arc due to deep mismatches 
between our intuitions about time and the reality as modelled by physicists. 

Objectives: At the end of tliis course, a student will be able to: 

• Design, implement, and reason about software with synchronization. 

• Design, implement, and reason about hardware synchronizadon circuits 

Ideas: This course will be the primary carrier of die following: 

• Concepts of concurrency 

• Concepts of nondeterminism 

• Cooperating processes 

• Synchronization (handshaking, semaphores, monitors, etc) 

• Asynchronous and self-timed systems 

• Metastable state problem, deadlock, contention 

It will reinforce or share responsibility for: 
• Abstract machine models 

• Combinatorial circuits with feedback, memory circuits 

• Addressing, data representation, and storage 

Topic Outline: 
In addition to the formal content, this course is intended to teach students how to evaluate systems and ideas. 
1. Time 

a Continuous time, Physics 
• D.C. circuits 
• Propagation delay 
• Transmission lines 

b. Discrete time 
• Clocks 



AN UNDHRGR A DUATF. COiMPUTKR SCIFNCF CURRICULUM I'ORTUH 1980S 64 

• Events and ordcrings on events 
c. Simultaneity 
d. Concurrency 
e. Formal Models 

• Nondctcrministic automata 
• Temporal Logic 
• Linear Time 
• Branching Time 

2. Hardware and time 
a. Synchronous, asynchronous, self-timed 
b. Metastatic states and deadlock 
c. Handshaking, synchronization 
d. Interrupts 
e. Multiprocessor organization 
f. Indivisible instructions (test and set, compare and swap ...) 
g. Clock generation and distribution 
h. Interfacing and data communication protocols 

3. Software and time 
a. Cooperating Processes 
b. Pand V 
c. Transactions and atomicity 
d. Deadlock, livelock - spaghetti-eating philosophers 
e. Blocking, semaphores 
f. Spin Locks 
g. Monitors 
h. Ada synchronization constructs 
i. Time Clocks 
j. I/O and Data Communication 
k. Inter Process Communication 
1. Network Communication 

• Name 
• Address 
• Route 

References: 

• C.G. Bell and J.C. Mudge, "The Evolution of the PDP-11"; Chapter 16 of C.G. Bell, J.C. 
Mudge, and J.E. McNamara, Computer Engineering: A DEC View of Hardware Systems 
Design [4]. 

• M. Ben-Ari, Principles of Concurrent Programming [5]. 
• E.W. Dijkstra, Cooperating Sequential Processes [18]. 

• A.N. Habcrmann, Introduction to Operating System Design [30]. 

• C.A.R. Hoare, Communicating Sequential Processes [35]. 
• R.C. Holt, G.S. Graham, E.D. Lazowska, and M.A. Scott, Structured Concurrent 

Programming with Operating System Applications [36]. 
• C. Seitz, System Timing] Chapter 7 of C. Mead and L. Conway, Introduction to VLSI 

Systems [53]. 

Implementation Considerations and Concerns: The best presentation of the material in this course depends 
on a careful balance between hardware, software, and theoretical issues. This requires a great deal of 
breadth from the instructor, something that may be difficult to find. 



AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 1980S 65 

8.2.6 Comparative Program Structures [311] 

Prerequisites: FUNDAMENTAL STRUCTURES OF COMPUTER SCIENCE II [212] 

Description: This course covers a variety of common program organizations and program development 
techniques that should be in the vocabulary of a competent software engineer. The student learns 
advanced methods for programming-in-thc-small including implementation of modules to given 
specifications and some common program organizations. The course also covers techniques for reusing 
previous work (e.g., transformation techniques and generic definitions) and elementary design and 
specification. 

Rationale: In previous courses, students have studied data structures, some programming languages, and 
some particular ways to organize and develop programs by putting individual statements together to 
make procedures. In Software Engineering courses they will study ways to put modules together to 
form systems. This course fills in the middle ground — ways to put code fragments together to make 
modules. This course thus presents a methodology for medium-scale program development. In the 
same way that FUNDAMENTAL STRUCTURES OF COMPUTER SCIENCE II [212] and ALGORITHMS A N D 

PROGRAMS [330] teach comparative data structures and LANGUAGES, INTERFACES, A N D THEIR 

PROCESSORS [320] teaches comparative programming languages, this course teaches comparative 
program organizations — the program skeletons that good programmers carry in their heads. 

Objectives: At the end of this course, a student will be able to: 

• Select an appropriate program organization for a problem of moderate size (5-10 pages) and 
implement a program competently 

• Use pre-existing definitions and development tools to expedite die development of such 
programs 

• Implement a module to a given specification 

Ideas: This course will be the primary carrier of the following: 

• Standard program organizations 

• Program development methodology for medium-scale programs 

• Systematic methods for creating and connecting software components 
It will reinforce or share responsibility for: 

• Understanding that programs can be constructed or modified by other programs 
• Engineering concerns in software construction 

Topic Outline: 
1. Ideas 

• Notion of a program organization paradigm 
• Advanced programming techniques and methodology 
• Devising and evaluating alternative implementations 
• Creating software by modifying software (when large-grain transformations emerge, they go here) 
• Engineering concerns: reliability, reasoning about correctness and efficiency, informed selection among 

alternative implementations 
2. Program Organizations; Examples drawn from: 

• (Abstract) data types (use for connection to FUNDAMENTAL STRUCTURES OF COMPUTER SCIENCE II (212)) 

• Pipes/filters 
• Table-driven interpreters 



AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 1980S 

• Pattern-matching systems: production systems 
• State machines 
• Command-language processors (e.g. editors) 
• Constraint systems 
• Cooperating concurrent processes 
• Object-oriented programming (message-passing systems) 

3. Methodology 
• Evaluation and selection of implementation alternatives 
• Specification (formal and informal) 
• Generic definitions and macros 
• Transformation systems 
• Reusable software 
• Program development systems 

References: . 

• O.J. Dahl, E.W. Dijkstra, and C.A.R. Hoare, Structured Programming [15]. 

• D. Gries, The Science of Programming [28]. 
• P. Hibbard, A. Hisgen, J. Rosenberg, M. Shaw, and iM. Sherman, Studies in Ada Style [33]. 

• B. W. Kernighan and P.J. Plauger Software Tools in Pascal [39]. 

Resource Requirements (software): 
• Templates and worked-out examples of the various program organizations included in the 

course. 
• A software development environment to make assignment of large programs feasible. 
• If case studies are used, die software being studied should be available for modification or 

measurement. 

Implementation Considerations and Concerns: 

• For the time being, this should be a lab course. It might, for example, be organized as a set 
of case studies, much in the style of data structure courses, with sample program 
organizations from the list above, abstract specifications and implementation alternatives for 
each, and evaluations of the result. As the formal theories that support these organizations 
grow, it should become more of a lecture course. 

• The course should cover cases in both Pascal and LISP. 



AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FORTI IE 1980S 67 

8.2.7 Languages, Interfaces, and their Processors [320] 

Prerequisites: FUNDAMENTAL STRUCTURES OF COMPUTER SCIENCE II [212] 

REAL A N D ABSTRACT MACHINES [240] 

Description: This course examines the nature of programming languages and the programs that implement 
them. It covers die basic elements of programming language organization and implementation; it also 
touches on the design of interactive interfaces. The emphasis is on the elements of general-purpose 
programming languages tiiat are common to many programming languages and on ideas that are also 
applicable to specialized systems. Implementation techniques covered include lexical analysis, simple 
parsing, semantic analysis including symbol tables and types, and interpretation for elementary 
arithmetic expressions. Programming projects include a simple interpreter and an interactive program. 

Rationale: The traditional courses on programming languages are a "comparative languages" course and a 
"compiler" course; the compiler course also served as an example of a medium-sized system with a 
well-understood structure. Usually, however, the more fundamental objectives of understanding 
languages and system organization get lost in the press of, for example, learning three new 
programming languages or constructing a complete compiler for an Algol-class language. In addition, 
these courses omit a number of topics that are now of increasing importance to computer science. Such 
topics include the use of coherent systems of software development tools, human factors considerations 
for interfaces, engineering considerations concerning usability and reliability, and improved theoretical 
approaches to specifications of computations and policies. In addition, there has been a shift in the 
needs of the students: an increasing number of them end up creating programs to be used by laymen 
rather than modules that will be incorporated in large software systems. 
We propose a three-course sequence tiiat substantially revises the previous pair of courses: 

• LANGUAGES, INTERFACES, A N D THEIR PROCESSORS [320] deals with the structure and 
organization of programming languages and with the interface between programs and 
people. Since it is intended for a wide spectrum of students, it emphasizes techniques 
applicable to specialized interfaces as well as to general-purpose languages. 

• TRANSDUCERS OF PROGRAMS [420] centers on the notion that programs should be 
manipulated by other programs as well as by people. The major examples are drawn from 
compilers, but tools for constructing compilers and a variety of techniques for re-using code 
are explored. Examples include code generation, macro/generic definition expansion, test 
data generation, use of integrated editors and program development data bases. 

• A D V A N C E D PROGRAMMING LANGUAGES A N D COMPILERS [421] is concerned with 
programming language topics of specialized interest. These include comparative study of 
programming languages, optimization techniques, and the interaction between language 
design and implementation. 

This section describes the first course (320) of diis programming language sequence. The theme of this 
course is the description of computations. These descriptions are used both by humans and by 
computers. They may be eitiier static, as in a conventional programming language, or dynamic, as in an 
interactive interface. The course covers both notations and software systems that process the notations. 
Notations of interest include programming languages, specification formalisms, software interfaces such 



AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 1980S 68 

as command languages, and interactive systems such as graphics processors. Students are assumed to 
enter knowing Pascal and LISP plus several specialized systems such as operating system command 
languages, editors, text formatters, and electronic message systems, so there is a base of common 
experience to provide examples. 

Specialized languages and packages account for an increasing share of modern software. They are 
especially important to naive users, who may use general-purpose languages rarely or not at all. As a 
result, diere is a premium on good design and reliable implementation of these specialized systems. 
Design and implementation techniques developed for general-purpose programming languages apply as 
well to the specialized ones; the transfer is not, however, so obvious that students will make it without 
help. We believe that the changing style of computing justifies a shift in emphasis in the courses. 
Further, a shift to smaller languages will provide a large set of examples whose size is more manageable 
than many of the examples now used in compiler courses. The emergence of software development 
tools for constructing parts of language-like systems is also an advantage. 

Objectives: At the end of this course, a student will be able to: 

• Learn new programming languages or system interfaces with reasonable investment of effort 
• Design and implement usable, reliable interfaces for small systems such as editors or data-

management programs 
• Be able to evaluate language or interface designs 

• Program competently in the programming languages taught in the courses 

Ideas: This course will be the primary carrier of the following: 
• General structure and organization of programming languages 
• Criteria for evaluating languages, including human factors concerns 
• Implementation: data structures and algorithms for lexical analysis, symbol tables, and 

simple parsing 
It will reinforce or share responsibility for: 

• Abstraction methodologies 
• The impact of notations on approaches to problems 
• Introduction to several general-purpose languages of rather different character (Snobol, 

APL, etc) 

Topic Outline: 
This course includes a comparison of several general-purpose languages, the general principles of language and interface design, 

evaluation criteria and human factors concerns. 
1. The concept of language 

• Syntax vs semantics vs pragmatics 
• Language as a communication/interface medium 
• Language (notation) as a means of shaping ideas 

2. Introduction to a third programming language 
• This language should be fairly different from Pascal and LISP 
• Teach a characteristic core subset in a week 
• Overlap anatomy of languages lectures with actually learning the language (1-2 weeks) 

3. Defining programming languages (review of FUNDAMENTAL STRUCTURES O F COMPUTER SCIENCE I (2iii) 
• Regular expressions for lexical structure 



AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 1980S 

• HNF for syntax 
• Existence of formal semantics methods 

4. Classical anatomy of programming languages 

• Note that this level (sophomore/junior), one enumerates the design alternatives rather than expecting the 
comparison and evaluation to really sink in. In a certain sense, this is elementary anatomy: comparative anatomy 
comes in ADVANCED PROGRAMMING LANGUAGES AND COMPILERS ¡4211, and genuine depth in language design is a 
graduate issue. 

• Structure of algorithmic languages 
• Simple statements: statement sequencing: iteration and recursion; conditionals 
• Data structures and declarations 
• Addressing mechanisms (virtual addresses, indirection): variables, names vs values, scope, binding, extent; 

storage allocation — implicit and explicit, structure and management 
• Types (and what is typed: values, variables,...): abstract data types 
• Abstraction mechanisms: functions, procedures, and exception handlers 

5. Evaluation criteria 
• Simplicity, orthogonality, abstraction, etc 
• Language complexity vs implementation complexity 
• I luman factors — emphasis on the sorts of interfaces students use and create, not just on programming languages. 

This means graphics and human factors, among other things. 
6. Effect of programming language on program organization 

• Structured programming 
• Recursion and list structures 
• Applicative programming 
• Shifting program organization paradigms with shift in language 

7. Interactive program organization 
• Screen handling 
• Simple 2-dimensional interface design 

8. Special-purpose languages as languages 
• Compare structure (control, data, etc) with general-purpose languages. 
• Relation between complexity of language and implementation, ease of use 
• Examples, from: spreadsheet program, robot consol language, word/text processing language, database query 

language, editor, etc 

9. Project: build an interpreter with full-screen display, or an interface for a client application provided by the instructor. 
Study implementation techniques while students work on project 

10. Processors and implementation techniques (survey) 
• Compilers, interpreters, linkers 
• Lexical analysis, parsing, symbol tables, display management 
• Expression evaluation 
• Run-time representations, structures, and types 
• Storage management, including reference counts and garbage collection 
• Code generation: role of optimization 
• Macro processors, p<cudo-opcrations, cross-references, other good assembler techniques 

11. Specific implementation techniques 

• These arc selected because of their applicability outside the world of compilers for general-purpose languages. 
• l^vel of aspiration is complete treatment of regular languages plus the interpretation of arithmetic expressions as 

a special case of context-free. 
• Lexical analysis (review of FUNDAMENTAL STRUCTURES OF COMPUTER SCIENCE 1 [2111) 
• Simple BNF (review of FUNDAMENTAL STRUCTURES OF COMPUTER SCIENCE i(2iij) 
• Parser (generated with a tool) . 
• Elementary semantic analysis (symbol table, types on nodes of parse tree) 

References: 

• A.V. Aho and J.D. Ullman, Principles of Compiler Design [2]. (The "Dragon Book") 



AN UNDI-RGRADUATl-COMPU'ri-RSCII-NCI-: CURRICULUM I OR MIL 1980S 

• R.K. Griswold and M.T. Griswold, A Snobol Primer [29]. 

• H. Lcdgard and M. Marcotty, The Programming Language Landscape [47]. 

• B.J. MacLennan, Principles of Programming Languages: Design revaluation, and 
Implementation [51]. 

• J.K. Nicholls, The Structure and Design of Programming Languages [58]. 
• S. Pakin, APL\360 Reference Manual [59]. 
• T.W. Pratt, Programming Languages: Design and Implementation [64]. 
• R.D. Tcnncnt, Principles of Programming Languages [77]. 
• N. Wirth, Algorithms + Data Structures = Programs^], (especially Chapter 5) 
• Text on command languages, human engineering, and interactive systems 

Resource Requirements (software): 

• Sample systems 
• Compiler-construction tools 
• Compiler lab: modules for lexer, symbol table,... that can be composed to make a complete 

compiler. Ditto for components of an interpreter. 

Implementation Considerations and Concerns: 

• It is very hard to generalize about languages without at least 3 in hand. Pascal and LISP 
come from the 212 prerequisite; assembler comes from 240. Students should already know 
several special-purpose languages, such as the operating system command language, the 
editor, the text formatter, the mailer. Examples should draw heavily on these. If time 
permits, another interactive system such as VisiCalc could be taught. 

• In addition, 240 is a prerequisite in order to ensure that students can appreciate the 
language-as-abstract-machine viewpoint and to provide a feeling for the role of the 
representation shift between a high-level language and a machine language. 

• The emergence of program development tools affects us in two ways: first, they allow for 
larger, more realistic examples and introduce saidcnts to the tools of the real world; second, 
they make it possible to use the effects of the tools in the first course and defer the 
mechanism (e.g., parsing) to a later course. 

• Balance should be 50% what a language is, 50% broadly useful implementations. 

• See notes in topic outline 



AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR MIL 1980S 71 

8.2.8 Algorithms and Programs [330J 

Prerequisites: FUNDAMENTAL STRUCTURES OF COMPUTER SCIENCE II [212] 

Description: An introduction to abstract algorithms and to their design, analysis, and realization. The goal of 
the course is to develop skill with practical algorithm design and analysis techniques and to develop the 
ability to apply these techniques to the construction of real systems. 

Rationale: The treatment of algorithms begins in FUNDAMENTAL STRUCTURES OF COMPUTER SCIENCE И [212] 

with the algorithms that manipulate data structures; it continues through ALGORITHMS A N D PROGRAMS 

[330] with a pragmatic view of the application of algorithmic ideas to reals systems and concludes with an 
abstract treatment of algorithms in ADVANCED ALGORITHMS [430]. This sequence provides a solid 
grounding in algorithm design and analysis. 

In ALGORITHMS A N D PROGRAMS [330] die student is presented with a collection of useful algorithms and 
with design and analysis techniques. The context is realistic enough to require meaningful choices 
about the application of these techniques. The point of view here is that algorithms (the abstractions) 
provide models that can be imposed on nasty real problems. Like all models, they do not match the real 
problems exactly, and some skill is required to use them well. Students need to learn a number of these 
models to use as tools; they also need practice in applying them to real problems. 

Course ADVANCED ALGORITHMS [430], on the other hand, takes a more abstract view; it is directed 
towards teaching the fundamental ideas of problem diagnosis and algorithm design. This division of 
responsibilities is intended to provide all students with good problem solving skills for concrete 
algorithmic problems and to enable interested students to pursue topics in abstract algorithms in 
substantial depth. 

Objecdves: At the end of this course, a student will be able to 

• Choose algoridims appropriate for many common computational problems. 
• Analyze the use of computational resources by programs. 
• Exploit constraints and structure to design good algorithms. 
• Apply algorithmic ideas to write fast programs. 

• Select appropriate tradeoffs for speed, space, and reliability. 

Ideas: This course will be die primary carrier of the following: 

• Algorithm design principles 

• Analysis techniques for algorithms 

• Pertinence of abstract algorithms to program construcdon 

Topic Outline: 
1. Data structures and algorithms (review of FUNDAMENTAL STRUCTURES OF COMPUTER SCIENCE И pi2i) 

• Queues, stacks, graphs, heaps, balanced binary trees, priority queues 
2. Analysis of algorithms 

• What to analyze 
• Order arithmetic 
• Software timing and monitoring tools 

3. Problem assessment and algorithm design techniques 
• Weak methods: local search, heuristic search, evaluation functions 



AN UNDFRCRADUATH COMPUTER SCIFNCF CURRICULUM FORTIIF 1980S 

• Exploiting structure 
• Constraints 
• Problem reformulation: time vs. space, prccomputation, dynamic data updating 
• Search: connected components, shortest paths 
• Dividc-and-Conquer: binary search, sorting, selection 
• Greedy Method: Dijkstra's algorithm, spanning trees 
• Dynamic Programming: path algorithms, traveling salesman 
• Probabilistic algorithms 

4. Implementation considerations 
• Choosing representations 
• Pragmatic constraints: speed vs. maintainability 
• Improving performance: bottlenecks, profiling, gross estimates 

5. NP-completcness 
• Satisfiability, clique, hamiltonian circuits, etc. 

6. Particular Algorithms. Examples will be selected from the following classes: 
• Mathematical Algorithms: arithmetic, random numbers, polynomials, Gaussian elimination, curve fitting, 

integration 
• Sorting: elementary sorting methods, Quicksort, radix sorting, priority queues, selection and merging, external 

sorting 
• Searching: elementary searching methods, balanced trees, hashing, radix searching, external searching 
• String Processing: string searching, pattern matching, parsing, file compression, cryptology 
• Geometric Algorithms: elementary geometric methods, finding the convex hull, range searching, geometric 

intersection, closest point problems 
• Graph Algorithms: elementary graph algorithms, connectivity, weighted graphs, directed graphs, network flow, 

matching 
7. Advanced Topics: A selection from 

!*• Algorithm machines: general approaches, perfect shuffles, systolic arrays 
• The Fast Fourier Transform: evaluate, multiply, interpolate, complex roots of unity, evaluation and interpolation 

at the roots of unity, implementation 
• Dynamic Programming: knapsack problem, matrix chain product, optimal binary search trees, shortest paths, 

time and space requirements 
• Linear Programming: linear programs, geometric interpretation, the simplex method, implementation 
• Parallel algorithms: sorting, searching, in parallel 
• Exhaustive Search: exhaustive search in graphs, backtracking, permutation generation, approximation algorithms 
• NP-complctc problems: deterministic and nondeterministic polynomial-time algorithms, NP-completeness, 

Cook's theorem, some NP-complete problems 

References: 

• A.V. Aho, J.D. Hopcroft, and J.E. Ullman, Data Structures and Algorithms [3]. 

• A.V. Aho, J.D. Hopcroft, and J.E. Ullman, The Design and Analysis of Computer Algorithms 

• J.L. Bentley, Writing Efficient Programs [6]. 
• J.L. Bentley, Programming Pearls [7]. 

• D. Gries, The Science of Programming [28]. 
• D.E. Knuth, The Art of Computer Programming [40, 43, 41]. 
• B. Lampsori, Notes on System Design [45]. 
>• E.M. Reingold, J. Nievergelt, and N. Deo, Combinatorial Algorithms [65]. 
• R. Sedgewick, Algorithms [70]. 

Resource Requirement (software): 

• Library of data types and implementations 



AN UNDFRGRADUA'n: COMPUTER SCIFNCF CURRICULUM I OR 11 IF 1980S 73 

• 1 est bed for timing and program development 
• Timing support 
• Sample data sets 

Implementation Considerations and Concerns: 

• This course would be required for a major because, of all the 300-lcvcl courses, it most 
clearly captures the interplay of theoretical ideas with practical programming problems. 
Since so many traditional algorithms courses already exist, there will be a tendency for diis 
course to drift toward those models. It is important to resist diat drift. 

• The algorithms listed in the outline arc presented as a menu of examples. It is not possible 
to cover them all in one course, and the integrative material should not be slighted in favor 
of a few extra algorithms. 

• Some algorithms may be covered in other courses such as numerical linear algebra or graph 
theory. 



AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM I OR THE 1980S 74 

8.2.9 Formal Languages, Automata, and Complexity [350] 

Prerequisites: FUNDAMENTAL STRUCTURES OF COMPUTER SCIENCE I pii] 
Description: This course introduces die basic ideas of formal languages, computability and complexity 

theory. It contains only the more fundamental material on complexity, to give die student an overall 
feel for the topic; the more advanced aspects arc covered in an advanced course COMPLEXITY THEORY 

[451]. Some introductory material will be assumed from the prc-requisitc course FUNDAMENTAL 

STRUCTURES OF COMPUTER SCIENCE I [211]. • • 

This course begins with an introduction to finite state automata and their relationship to classes of 
formal languages. A finite automaton is a mathematical model of a finite-state system; computer 
science has many examples of finite state systems. Formal languages arc of great importance, notably in 
defining programming languages and in formalizing the notion of parsing. The material of diis course is 
primarily concerned with the relationship between the various classes of language and various types of 
automaton. Thus it is shown that particular classes of automata recognize particular types of formal 
language. Since this is a first course dealing in detail with these concepts, it is important to emphasize 
these ideas in a strongly applied context, to bring out the connections with areas such as software 
support (parsers for programming languages, simulators for automata, for example). 

Computability is concerned with characterizing the class of problems that can be solved, in a well 
defined sense, by a computer. In complexity dieory the interest lies in how much space or how much 
time is required to solve a problem (relative to the size of the problem); the recognition problem for 
various formal languages serves to provide examples of problems of various degrees of complexity. 
Again, it is important to emphasize the practical applications of the results. 

Rationale: Automata and the related notion of computability by an automaton are fundamental to many 
branches of Computer Science. Likewise, formal languages underpin much work on parsing, 
programming language theory and practice. This course can be organized around the theme of formal 
languages, their generation by grammars and their recognition by finite state machines. Problems 
associated with formal languages, such as ambiguity, can be used to illustrate the notions of decidability 
and undecidability; the various recognition problems for languages serve to illustrate the problems of 
various degrees of complexity. 

Objectives: At the end of this course, a student will have a feeling for the dieorctical limitations of computers, 
and how restrictions on v/orking space and running time affect the capability of computers to solve 
problems. He will have an idea of how formal languages are used in theory and in practice. This will 
help in later courses such as ADVANCED PROGRAMMING LANGUAGES A N D COMPILERS [421]. 

Ideas: This course will be the primary carrier of the following: 

• Formal languages 
• Automata of various kinds 
• Equivalences between machines and corresponding languages 
• Impact of notation on the way we think 
• Recognition and generation problems 
• Computability by abstract devices 



AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 1980S 75 

• Klcmcntary aspects of Complexity theory , 
It will reinforce or share responsibility for: 

• Computability and decidability 

• Inductive definitions and inductive arguments 

Topic Outline: 
1. Regular languages and Finite-State Automata: 

• Recognition of a language by an automaton 
• Regular sets as the languages recognized by finite automata 
• Regular expressions, finite automata 
• Equivalence of deterministic and nondctcrministic finite automata 
• Minimization of a finite automaton 
• Algorithm for equivalence of finite automata (dccidable problem) 
• The Pumping Lemma and its use in proving non-regularity 
• Closure properties of regular sets 
• Algebraic characterization of regular sets 
• M yh i 11-N erode theorem and its uses 

2. Context-free languages as the languages recognized by pushdown automata 
• Context-free grammars, pushdown automata 
• Examples of CFLs which arc not regular 
• Undccidability of equivalence problem for CFLs 
• Undccidability of ambiguity problem for CFLs 
• Closure properties of CFLs 
• Properties of grammars: emptiness, ambiguity, LL, LR 

3. Computability 
• Algorithms: intuitive notion of algorithm as effective procedure 
• Formalization of the notion of algorithm 
• Turing machines 
• Register machines 
• Computable functions, sets 
• Computable by Turing machine iff computable by register machine 
• Church's thesis 

4. Recursive function theory 
• Recursive functions and sets 
• Recursively enumerable sets 

5. Decidable and undecidable problems 
• Halting problem 
• Post correspondence problem 
• Rice's theorem 
• Reduction of a problem to an undecidable problem to show undccidability 
• Diagonal arguments 

• Examples drawn from context free languages (CFLs) (e.g., equivalence problem for CFLs and ambiguity problem 
for CFLs) 

6. Universality and recursion 
• Godel numbering 
• Universal Turing machines 
• Klecne's T-prcdicate 
• The s-m-n theorem 
• The recursion theorems 
• Use of universal machines (e.g., to show computability of Ackcrmann's function) 

7. Complexity Theory: 



AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM I OR THE 1980S 

• Distinction between computability and complexity 
• Space complexity 
• Time complexity 
• Complexity relative to deterministic and nondctcrministic computation 
• Survey of the time and space hierarchies: PTIME, NT, RITIME, co-NP, PSPACE, etc. 
• Cook's theorem 

• Examples of problems known to lie in each hierarchical level: graph isomorphism, recognition problems 

Primary References: 
• N.J. Cutland, Computability: An Introduction to Recursive Function Theory [14]. 

• J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages and 
Computation [37]. 

• H.R. Lewis and C.H. Papadimitriou, Elements of the Theory of Computation [48]. 

Secondary References: 

• M. Minsky, Computation: Finite and Infinite Machines [54]. 

• H. Rogers, Theory of Recursive Functions and Effective Computability [67]. 

Resource Requirements: 

• Grammar support tools: parser generators for various classes of grammars, drivers for 
testing grammars 

Implementation Considerations and Concerns: 

• The outline contains a lot of material, possibly too much for a onc-scmester course. It may 
be necessary to extract die more advanced material on computability and design an 
advanced course covering this, leaving only the basic material on computability here in 
FORMAL LANGUAGES, AUTOMATA, AND COMPLEXITY [350]. 



AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR TIIH 1980S 77 

8.2.10 Logic for Computer Science [351] 

Prerequisites: FUNDAMENTAL STRUCTURES OF COMPUTER SCIENCE I [211] 

One 300-lcvcl mathematics or theoretical computer science course 
Description: The basic results and techniques of Logic arc presented and related to fundamental issues in 

computer science. 

Rationale: Logic provides essential foundations for our activity in computer science. It teaches us to 
distinguish between abstraction and realization and, in particular, between language and meaning. 
Programming languages arc formal languages; the techniques we use to give them meaning and to 
reason about them find their foundations in logic. Logic also teaches us how to reason about the world 
by manipulating symbols; this is directly analogous to the activity of computation. Finally, the basic 
results of logic reveal the inherent limitations on our activity of formal reasoning. 

Objectives: At the end of this course, a student will be able to: 

• Understand the role of formalization and formal reasoning in computer science. 

• Be familiar with the basic techniques and results of mathematical logic. 

Ideas: This course will be the primary carrier of the following: 

• Fundamental concepts and results from logic 
• The notion of formal reasoning 

It will reinforce or share responsibility for: 

• Syntax and semantics 
• Computability 
• Reasoning about programs 

Topic Outline: 
1. Syntactical Structures and Computability 

• Lists and Functions — The basis for a simple model of computation 
• An analysis of the notion of computation 
• Syntactic structures in logic and programming 

2. Formal reasoning 

• Rules of inference and recursive enumeration 
> Natural deduction 
> Hoare's logic 

• Propositional and predicate calculus 
• The formalization of mathematical reasoning 

> Reasoning about programs 
3. Semantics and completeness 

• Structures and truth 
• Completeness of first-order logic 
• Church's thesis revisited 
• Semantics and reasoning about programs 

4. Incompleteness and undccidability 
• Decidability and undecidability 
• Presburger arithmetic 

5. The incompleteness of certain systems 

References: 



AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 1980S. 

• G.S. Boolos and R.C. Jeffrey, Computability and Logic [XI]. 
• H. Endcrton, A Mathematical Introduction to Logic [21]. 
• D. van Dalcn, Logic and Structure [82]. 

Resource Requirements: 

Implementation Considerations and Concerns: 



AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM L'OR THE 1980S 79 

8.2.11 Introduction to Artificial Intelligence [360] 

Prerequisites: FUNDAMENTAL STRUCTURES OE COMPUTER SCIENCE II [212] 

or INFORMATION PROCESSING PSYCHOLOGY AND AI [PSY 213] 

Description: This course teaches the fundamentals of artificial intelligence, including problem solving 
techniques, search, heuristic methods, and knowledge representation. Ideas arc illustrated by sample 
programs and systems drawn from various branches of A I. Small programming projects will also be 
used to convey the central ideas of the course. 

Rationale: This course provides a single jumping off point for students in ARTIFICIAL INTELLIGENCE — 

COGNITIVE PROCESSES [460] and ARTIFICIAL INTELLIGENCE — ROBOTICS [461], in order to familiarize the 
student with bodi sides of die simulation/performance issue. It provides students with an overview of 
the field without requiring the math background used in the Robotics courses or the psychological 
emphasis used in the Cognitive Processes course. 

Objectives: At the end of this course, a student will be able to 

• Program large systems in Lisp 

• Use AI techniques to solve difficult problems 
• Read and understand AI literature 

Ideas: This course will be the primary carrier of the following: 

• Advanced Lisp techniques 

• Weak methods and problem solving 

• Knowledge representation 

It will reinforce or share responsibility for: 

• Lisp programming beyond the level of FUNDAMENTAL STRUCTURES OF COMPUTER SCIENCE 
II [212] 

• Production systems and embedded languages (also covered in COMPARATIVE PROGRAM 

STRUCTURES [311] and LANGUAGES, INTERFACES, AND THEIR PROCESSORS [320]) 

• Knowledge representation (also covered in BIG DATA [413]) 

• Search (also covered in ALGORITHMS A N D PROGRAMS [330]) 

Topic Outline: 
1. Introduction 

• History 
• Intellectual Issues 

2. Implementation 
• ATNs 
• Agenda Control Structures 
• Data Driven Programming 
• Discrimination Nets 
• Frames 
• Lisp 
• Semantic Nets 

3. Techniques 

• Exploiting Constraints 
• Heuristic Programming 



AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM I-'OR THE 1980S 

• Inference and Inheritance 
• Knowledge Representation 
• Minimax and alpha-beta 
• Production Systems 
• Weak Methods 

4. Applications 
• Analysis 
• Data Base 
• Design 
• Diagnosis 
• Game Playing 
• Natural Language 
• Speech Recognition 
• Theorem Proving 
• Vision (esp. Waltz line labelling) 
• Knowledge-based systems 

5. Concepts 
• Discovery 
• Learning 
• Planning 

References: 

• E. Rich, Artificial Intelligence [66] 
• P.H. Winston and B.K.P. Horn, LISP [85]. 

Resource Requirements: 

• Copies of the example programs (Eliza, Mycin, etc.) 
• Lisp programming environment 

• Lisp cycles 
• Lisp cycles 
• Lisp cycles 

Implementation Considerations and Concerns: 

• The instructor has a responsibility to provide a broad overview of AI. 
• Lisp coverage in FUNDAMENTAL STRUCTURES OF COMPUTER SCIENCE II [in] may be spotty, 

review might be necessary. 



AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 1980S 81 

8.3 Advanced Computer Science Courses 

These courses arc of specialized interest to computer scientists. They arc suitable for a Master's program as 
well as for advanced students in a Bachelor's program. 

In addition to die courses we define here, some of the content of computer science as described in Chapter 
4 may be taught in departments other than computer science. These departments include mathematics, 
electrical engineering, psychology, and others. We have generally avoided designing courses tiiat cover 
material taught at Carnegie-Mellon in these other departments. 

To show more complete coverage of computer science, however, we list here the titles of courses that should 
be jointly listed by computer science and anodicr department. Catalog descriptions for these courses appear 
in Chapter 9. 

• MODERN ALGEBRA [MATH 473 / CS 452] 

• LARGE-SCALE SCIENTIFIC COMPUTING [MATH 712 / CS 453] 

Some of the courses outlined in this section may also be jointly listed. In particular, COMPUTER 

ARCHITECTURE [440] can be listed in the Electrical Engineering Department, ADVANCED ALGORITHMS [430] 

resembles APPLIED GRAPH THEORY [MATH 484], and COMPLEXITY THEORY [451] resembles THEORY OF 

ALGORITHMS [MATH 451]. 



AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR TIIE 1980S 82 

8.3.1 Independent Project [400] 

Prerequisites: FUNDAMENTAL STRUCTURES O F COMPUTER SCIENCE И [212] 

Two more courses (beyond 212) with Bs or better 
Instructor's permission, based on acceptance of project proposal 

Description: This is an independent project laboratory for die most advanced students. The student will 
design and construct a substantial software or hardware system under the supervision of the Project Lab 
faculty. Before construction of the project may proceed, a detailed design proposal must be submitted 
to and accepted by the faculty member running the course. Л design review with the lab faculty and 
TAs will be held at mid-term time. Л final review of die functioning system and its supporting 
documentation will be held at the end of the semester. The intent is to permit the best students to 
exercise their design skills in the construction of a real system, so good, design practice and good 
documentation arc mandatory. The production of a functioning but undocumented system will not be 
sufficient. The instructor may accept projects intended to last two semesters, in which case the review at 
the end of the first semester will be another major design review. 

Rationale: Computer Scientists going out to graduate school or to the practice of programming need to be 
able to design and construct good systems. This means an appreciation of the difficulties of building a 
production-quality system, difficulties that go beyond the scope of toy systems built as part of lower 
level courses. This course will provide the advanced student with the opportunity to design and build a 
significant piece of hardware or software on his own, with experienced system builders available as 
instructors and TAs to consult, advise, and criticize. 

Objectives: At the end of this course, a student will be able to: 

• Design a real system 
• Document a real system 
• Construct a real system 

Ideas: This course will be die primary carrier of the following: 

• Independent formulation and execution of projects 
It will reinforce or share responsibility for: 

• Software Design principles 

• Hardware Design principles 
References: F. Brooks, The Mythical Man-Month [12] 

Resource Requirements: 

• A substantial host machine, plus access to others 

• A well outfitted hardware/software lab 
• A lab bench for each student 

Implementation Considerations and Concerns: 

• This course is intended to have serious intellectual content. Tt "hould net be permitted to 
deteriorate into a simple home for hacking. 

• It is important that the students in this course have access to experienced system builders. 
The teaching of this course will be expensive in all domains, including people and inanimate 
resources. It would be better not to offer it than to reduce the quality. 



AN U N D E R G R A D U A T E COMPUTER SCIENCE CURRICULUM FOR THE 1980S 83 

8.3.2 Undergraduate Thesis [401] 

Prerequisites: FUNDAMENTAL STRUCTURES OF COMPUTER SCIENCE II [ill] 
Two more courses (beyond 212) with B's or better 
Instructor's permission, base on acceptance of proposal 

Description: This is an independent study and research course for the most advanced students. The student 
will write an undergraduate thesis or carry out a program of directed reading. Objectives for the course 
of study will be established by the student and a faculty advisor. With concurrence of a faculty advisor, 
an undergraduate thesis project may be planned for two semesters 

Rationale: This course provides students with the opportunity to pursue in depth the study of a topic that is 
not part of the general curriculum. It is similar to INDEPENDENT PROJECT [400], but the end result is is a 
document rather than a system. It is expected that the student will work closely with a faculty advisor. 

Objectives: At the end of this course a student will be able to: 

• Organize the description of a collection of scientific findings and report the result in an 
expository technical paper 

• Use the library for background research 
• Do independent research 

Ideas: This course will be the primary carrier of the following: 

• Independent formulation and execution of a planned program of study. 

Resource requirements: 

• A pool of faculty to supervise students 



AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM TOR THE 1980S 84 

8.3.3 Research Seminar [409] 

Prerequisites: FUNDAMENTAL STRUCTURES OF COMPUTER SCIENCE II [in] 
Two more courses (beyond 212) with Bs or better 

Description: Students attend the regular research seminars of die Computer Science Department and submit 
short written summaries. 

Rationale: The Computer Science Department conducts a rich and varied set of public seminar series 
throughout the academic year. Undergraduates with sufficient maturity and experience in the field can 
benefit from attending, even if they do not completely understand the material presented. Attending 
dicse seminars is a good way to learn about very current ideas and to appreciate the scope and 
excitement of the field. 

Objectives: At the end of this course, a student will: 

>• Be acquainted with some of the new ideas in computer science. 

• Be able to write a short summary of a presentation on a technical topic. 

Ideas: Students select seminars to suit individual preferences. 

Topic Outline: 
Certain regular seminar scries plus selected individual seminars will be approved for this course. Each student should plan to 

attend an average of one seminar per week. After the seminar, the student prepares a one-page (250-500 word) summary and 
critical appraisal of the seminar in his or her own words. Ten of these summaries - from any combination of approved seminars 
- are required for completion of the course. An introduction to writing short technical summaries will be presented at the 
beginning of the course. 

Resource Requirements: 

• Doughnuts 

Implementation Considerations and Concerns: 

• This course requires an ongoing seminar series. Research seminars are fine; an 
undergraduate can get a sense of the nature of research and creativity without completely 
understanding the material. 

• This course could carry about a third of the credit of a normal course. It is intended to 
require two to three hours per week. 



AN UNDFRGIUDUATE COMPUTER SCIENCE CURRICUl UM FOR TIN- 1980S 85 

8.3.4 Software Engineering [410] 

Prerequisites: COMPARATIVE PROGRAM STRUCTURES [311] 

LANGUAGES. INTERFACES, A N D THEIR PROCESSORS [320] 

Description: The student studies the nature of the program development task when many people, many 
modules, many versions, or many years arc involved in designing, developing, and maintaining the 
system. The issues arc both technical (e.g., design, specification, version control) and administrative 
(e.g., cost estimation and elementary management). The course will consist primarily of working in 
small teams on the cooperative creation and modification of software systems. 

Rationale: This course extends the advanced program structures course by broadening the scope of attention 
to large-scale systems. This yields a natural progression from individual elements (statements or data 
Structures) in FUNDAMENTAL STRUCTURES OF COMPUTER SCIENCE I A N D II [211/212] through modllle-
sized elements in COMPARATIVE PROGRAM STRUCTURES [3U] to large systems. Analysis and evaluation 
techniques are included throughout, but the emphasis on estimation and overall efficiency is greatest 
here. In addition, issues of reliability, testing, and implementation and documentation of a substantial 
user interface will be addressed here. 

Objectives: At the end of this course, a student will be able to: 

• Understand die issues in large-scale software development 
• Participate as a team member in such a development 

• Write specifications for simple modules that will be combined widi other modules 

• Implement a program or module that satisfies such a specification 

Ideas: This course will be the primary carrier of die following: 

• Complexity of large-scale software and tools for dealing with it 
It will reinforce or share responsibility for: 

• Significance of tools for developing software 

Topic Outline: 
1. Elementary management 
2. Cost estimation (of routines and larger code units) 
3. Multiple people, versions, years, modules, modifications 
4. Advanced design and specification; decomposition into modules 
5. Programming-in-the-large 
6. Properties of systems 

• Reliability 
• Generality 
• Efficiency 
• Complexity 
• Compatibility 
• Modularity 
• Sharing 

7. System design and development principles 
• Design tradeoffs 
• Computer system reliability, speed, capacity, cost 
• Development methodologies and tools 
• Design automation 



AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM I-OR THE 1980S 

• Program specification 
• Maintenance and release policy (test sites, etc.) 
• Rapid prototyping and partial evaluation 
• Protection and security 
• Resource allocation 
• System evaluation and development aids 

8. Modification, planning for modification 
9. Making implementation meet specifications 

10. Models and modelling 
• What models are and how to use/construct them 
• Empirical vs analytic models 
• Validation 
• Specific models (at this level, introduction only) 

> Qucueing-thcorelic models for operating systems and hardware 
> Productivity and life-cycle models (esp. their limitations) 

11. Monitoring tools and techniques for improving efficiency 
12. Human factors, user interfaces 
13. Examples of systems 

• Large software systems, some involving concurrency issues 
• Distributed systems 
• Compilers, operating systems 
• Batch vs. time-sharing systems 
• File management 
• System accounting 
• Thp multiprogramming executive (MPX) operating system 
• Process control 

14. Current state of the art: APSEs, Gandalf, etc 
15. Software systems 

• Systems and Utility Programs 
• System structure 
• Parallelism in operating systems 

> Mutual exclusion 
> Synchronization 

16. Programming style and techniques 
• Tab le-driven schemes • 

17. Management, Societal, Economic, and Ilegal Aspects 
• Computing Economics: Acquisition and Operation 
• Copyrights and Patents, computer crime 

18. Documentation 
19. Software Systems 

• Memory management 
• File Systems 
• Directories 
• Backup and recovery 
• Permanent and transient data: caching, buffering, atomic transactions, stable storage 
• Redundancy, encoding, encryption 
• Data base management systems (DBMS) 

References: 
• B. W. Bochm, Software Engineering Economics [9]. 
• F. Brooks, The Mythical Man-Month [12]. 
• G. Myers, Composite/Structured Design [56]. 



AN U N I M ' R G R A i m A T E COMPUTER SCIENCE CURRICULUM FOR THE 1980S 

• G. Myers, Software Reliability: Principles and Practices [55]. 
• M. Shooman, Software Engineering [71] 

• K. Yourdon and L.L. Constantine, Structured Design [89]. 

• M.V. Zclkowitz, A.C. Shaw, and J.D. Gannon, Principles of Software Engineering and 
Design [90]. 

Resource Requirements (software): 

• A program development environment will be cssendal. 

Implementation Considerations and Concerns: 

• It is imperative that students actually use the best available tools for version control, text 
editing, etc. Students will invariably draw on their experiences in actual system 
development radier dian on what they have read or heard in lectures. 

• Since the majority of learning in this course is by doing, a traditional course format may not 
be best. The instructor should spend time counselling teams and walking them through 
code-reading sessions, etc., in addition to die lectures. A known problem with many 
software engineering courses taught in the past is that students become involved with the 
project they are implementing, and ignore the material in lecture. This has been partially 
addressed by including a large number of (hopefully) interesting topics not usually taught in 
software engineering courses. 

• The software engineering course currently taught was studied as a basis [38]. 



AN UNDERGRADUATE COMPUTER SCIENCE.CURR1CULUM FOR THE 1980S 88 

8.3.5 Software Engineering Lab [411] 

Prerequisites: vary with the individual arrangement 
SOFTWARE ENGINEERING [410] 

Description: This course is intended to provide a vehicle for real-world software engineering experience. 
Students will work on existing software diat is or will soon be in service. In a work environment, a 
student will experience first-hand the pragmatic arguments for proper design, documentation, and other 
software practices Uiat often seem to have hollow rationalizations when applied to code that a student 
writes for an assignment and then never uses again. Projects and supervision will be individually 
arranged. 

Rationale: Software engineering issues arise in software that involves many months, many programmers, 
many versions, and many modules. These issues arc extremely hard to raise in a one-semester course; 
they arc easier to appreciate by working with real-world projects. This course is intended to provide an 
opportunity for training similar to a clinical practice course in a medical school. This will require closer 
cooperation between the industrial work site and the university than an ordinary work-study program 
would need. Evaluation of students will be shared between univeristy faculty and the individual(s) 
managing them in the industrial organization. 

Objectives: At the end of this course, a student will be able to: 

• Apply software engineering principles to large, long-term projects 

• Work effectively in a programming team 

Ideas: This course will be the primary carrier of the following: 

• Complexity of real-world systems 
• Tools for dealing with that complexity 

Resource Requirements: 

Implementation Considerations and Concerns: 
• Getting good projects and good supervision. We must be able to select the people who 

serve as faculty for this course. 
• We must be careful not to have this become a "mindless programming for credit" course; 

the students must work on challenging projects that will force them to work with practicing 
software engineers. 



AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM I OR ruinosos 89 

8.3.6 Resource Management [412] 

Prerequisites: TIME, CONCURRENCY, A N D SYNCHRONIZATION pío] 
PROBABILITY A N D APPLIED STATISTICS [STAT 211 / CS 250] 

Description: This course provides a synthesis of many of the ideas that students have learned in earlier 
courses. The vehicle for this synthesis is the exploration of at least one instance of a real operating 
system in great detail. Taking the view that an operating system is a resource manager, wc will explore 
some resource issues and how they may be handled. The primary issues arc resource classes, properties, 
and management policies. This course has a substantial programming laboratory component in which 
an existing operating system will serve as an experimental testbed. 

Rationale: Many systems, such as operating systems, file systems, and data base systems, arc resource 
management systems. Every system that involves the control of any finite resource presents the 
designer with resource management problems and every computer scientist will be faced with such 
systems many times in his career. Operating Systems arc particularly rich examples of resource 
management systems and this course uses operating systems as examples for this reason. 

Objectives: At the end of this course, a student will be able to: 

• Understand resources and their classifications 

• Understand and apply techniques for using, allocating, scheduling, and naming resources 
• Understand techniques for making reliable resources from unreliable ones 
• Understand and apply security and protcctioR principles 

• Analyze and evaluate the performance of resource management systems 

Ideas: This course will include units that synthesize previous examples of the following ideas with examples 
that appear in operating systems. It bears the responsibility of showing how these ideas appear in 
slightly different form in a variety of areas. It will be die primary carrier of the following: 

• Resource classification 
• Resource allocation 

• Binding (e.g., of decisions as well as names) 
• Performance Evaluation 

This course will share responsibility for or reinforce the following: 
• Multilevel naming 

• Management of concurrency. 

Topic Outline: 
1. Naming and Addressing 

• Models 
> Distributed 

• Types 
• Scope 

> Space Scope 
> Extent (Time Scope) 

• Aliasing 
2. Resource classification 

• Real Time 



AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR Till- 1980S 

• CPU Time 
• Memory 

> Memory Hierarchy 

• Disk 
• logical 
• Real 
• Prc-cmptible 
• Non-pre-emptible 

3. Resource related activities 
• Allocation 

> Paging Secondary Storage 

• Synchronization 
• Scheduling and Concurrency 

> CPU Paging 

• Reliability 
> Redundancy 
> Atomicity 

• Security, Protection and Authentication 
• Analysis 
• Resource Managers 

> Spooling 
> Servers for networks 

4. Relationship to Architecture 
5. Relationship to Operating System Kernel 
6. Performance Evaluation and Tuning 

• Review of elementary Queuing Theory 
• Models 

> Analytic 

> Simulation 

References: 
• A.N. Habermann, Introduction to Operating Systems [30]. 
• A. Tanenbaum, Computer Networks [76]. 

Resource Requirements (software): 
• operating system components for software laboratory: schedulers, storage allocators, etc. 

• Driver and simulated load and timing apparatus 

Implementation Considerations and Concerns: 



AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM EOR THE 1980S 91 

8.3.7 Big Data [413] 

Prerequisites: LANGUAGES, INTERFACES, AND THEIR PROCESSORS [320] 
RESOURCE MANAGEMENT [412] 

Description: The central theme of this course is the storage of large amounts of data. Topics include user 
data models, underlying data storage techniques, data representations, algorithms for data retrieval, 
specialized data manipulation languages, and techniques for providing reliability and security. Systems 
that permit the storage and retrieval of large amounts of data are exemplified. 

Rationale: Although the topics in tliis course could be distributed among an algorithms course (external data 
storage and data representations), an operating systems course (reliability and security techniques), and 
a language course (data manipulation languages and models), we have chosen to incorporate them into 
one course for three reasons: First, the central üicmc of all diese topics is the storage and manipulation 
of large collections of data. Second, the storage and manipulation of large quantities of data represents 
one of the major .applications of computers. Third, a unified course on these topics provides an 
opportunity for students to focus on large systems and some well understood techniques for their 
organization. 

Objectives: At die end of this course, a student will be able to: 

• Understand the goals of systems that deal with large quantities of data 
• Use certain example systems 

• Understand some of the algorithms and data structures used to organize such systems 

Ideas: This course will be the primary carrier of the following: 
• Security techniques 

• Reliability techniques 

• Algorithms and data structures for external data storage 
It will reinforce or share responsibility for: 

• Explaining the use of specialized high level languages 
• Presenting layered abstractions 
• Naming, binding, addressing 

Topic Outline: 
1. Files & access methods 

• Sorting & searching 
> BTrees 
> Multi-level Storage Structures 
> Memory Hierarchy 
> Mashing 
> Multi-key Organizations 

• Other aspects of file organization 
> Physical allocation 
> Organizations for availability 
> Performance issues in file storage 

2. Classical database management: 
• modeling at user level 

> Utility of this level of abstraction 
> Classical data models and languages 



AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM EOR HIE 1980S 

» Relational 
» Hierarchical 
» Network 

> Example Models 

• Detail Study of Relational Model 
> Example language: SQL 
> Embedding of SQL within procedural language 
> Example SQL Application 

3. Topics in the storage of data 
• Approaches to data integrity and reliability 

> Use of redundancy 
> Old master/new master schemes 

• Sharing/concurrent access: consistency 
> Synchronization aspects 
> Recovery considerations 
> Role of transactions 

• Security, Privacy, and Authentication 
> Capabilities vs authorization lists 
> Access protection and file security 
> Administrative concerns 
> Role Of Encryption 

^> Public Key Encryption 
» Private Key Encryption 

4. Non-traditional databases 
• Storage of "knowledge" 
• Issues in Knowledge Representation 
• Non-uniform data in databases 

5. Emerging Public information utilities 
• Library Search 
• Electronic Publishing 
• Teletext-type systems 
• Community Bulletin Boards 

References: 

• CJ. Date, An Introduction to Database Systems, Volumes I and 2 [16,17] 

• J.D. Ullman, Principles of Database Systems [79]. 

Resource Requirements: 
• One or more production-quality data base systems for use andcomparison. 

Implementation Considerations and Concerns: 



AN UNDERGRADUATE COMPUTOl SCIENCE CURRICULUM FOR THE 1980S 93 

8.3.8 Transducers of Programs [420] 

Prerequisites: COMPARATIVE PROGRAM STRUCTURES [311] 

LANGUAGES, INTERFACES. A N D THEIR PROCESSORS [320] 

Description: This course studies ways to gain leverage on the software development process by using 
programs to create or modify other programs, by reusing previously-created software, and by using 
automated tools to manage the software development process. Examples arc drawn from the tools 
locally available. Students use these tools in projects that lead to useful software components. Special 
emphasis is placed on the use of integrated systems of compatible tools. 

Rationale: As programming is usually taught, students often form die impression that programs are always 
created from scratch, by hand. The major theme of tliis course is that programs arc frequently created 
by and from other programs, and that this leverage is important in increasing productivity and in 
transmitting good techniques in the form of working software, not just by word of mouth. More 
specifically, a system of any size can often be factored into segments, some of which have a structure so 
standard that they can be build from a specification by a specialized tool. 

For example, parser generators arc used as tools in the prerequisite course LANGUAGES, INTERFACES, 

A N D THEIR PROCESSORS [320] with only a cursory introduction to the techniques encapsulated in the tool. 
In this course, such tools are die objects of study and, for example, die practical parsing theory needed 
to understand, modify, or even construct a parser or parser-generator is included. In similar fashion, 
this course covers libraries (both design and administration), program development environments, 
smart editors, and other mechanisms for using programs to construct or maintain programs. More 
compiler components are studied, and many of the examples are drawn from the class of tools that can 
be easily integrated in a system surrounding a parse-tree representation of programs. 

Objectives: At the end of this course, a student will be able to: 

• Use automated tools effectively in software development. 

• Describe the organization of a compiler and make minor modifications to one. 

• Add compatible tools to a unified program development system, taking advantage of 
existing components and using interface representations correctly. 

Ideas: This course will be the primary carrier of the following: 

• Internal representations for compilation and the possibility of using them as an interface 
medium 

• Tools for program development, especially tool-building tools 

• Relation between complexity of language and complexity of implementation; interaction of 
language design and system issues 

• Compiler organization as example of medium-large system 
• Parsing and code generation 

It will reinforce or share responsibility for: 

• Various classes of languages and their power (and the cost of processing them) 
• Relation between syntax and semantics 
• Practical application of formal theories 



AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 1980S 

Topic Outline: 
1. Rc-usable software 

• Libraries and integrated packages — strengths and weaknesses 
> Pascal string manipulation package 
> I/O packages, such as Unix curses 
> matrix manipulation and mathematical function libraries 

Certified software (e.g., the math software) 
• Specifications 
• Evolution: building programs by modifying similar programs 
• Program transformation 

2. Tools for operating on programs 
• Classes of tools 

> Tools that help you program (editors, cross-rcfercnccrs, etc) 
> Tools that help you organize programs into systems (filters, system modellers, etc) 
> Tools that build programs (parser generators, etc) 

• Programmable editors and filters 
• Generic definitions 
• Program transformations 

3. Use of integrated tools 
• Examples: whatevcr's available locally from tools in the spirit of Gandalf, programmer's workbench, etc. Most 

likely, this will be a set of tools that operate on the parse-tree representation of a program 
• Tools: editors, program development data base, documentation generators, 

4. Construction of integrated tools 
• What goes on inside a front-end generator? 

> Example connects to previous course LANGUAGES, INTERFACES, A N D THEIR PROCESSORS (320| 

> Practical parsing theory — why the limitations on the grammars arise 
> How that theory is used in (and affects) the implementation 

• Bootstrapping 
• More about compilers: code generation, linkers 
• Test data generation 
• Verification condition generation 

5. Projects: 
• Students should have a project in which they must factor a system into segments that can be generated by tools. 
• Students should write a simple tool to produce code from specifications for simple factored segments. 

References: 

• A. V. Aho and J.D. Ullman, Principles of Compiler Design [2]. (The "Dragon Book") 

• D. Gries, Compiler Construction for Digital Computers [27]. 

• B.W. Kernighan and P.J. Plaugcr, Software Tools in Pascal [39]. 

Resource Requirements: 

• Software development tools to form a laboratory that is both rich enough to illustrate the 
principles and simple enough for undergraduate course projects. 

• A demonstration compiler for students to modify. 
• Examples of useful subroutine libraries. 

Implementation Considerations and Concerns: 

• This course is at present a bit speculative. We believe that enough material already exists to 
teach it now, but diis part of die discipline is moving rapidly. It is important to be sure that 
the course remains flexible for a few years so that the best of current understanding can be 
included. 



AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 1980S 95 

8.3.9 Advanced Programming Languages and Compilers [421] 

Prerequisites: FORMAL LANGUAGES, AUTOMATA, A N D COMPLEXITY [350] 

INTRODUCTION TO ARTIFICIAL INTELLIGENCE [360] 
TRANSDUCERS OF PROGRAMS [420] 

Description: This course is intended for students seriously interested in the construction of compilers for 
general-purpose programming languages. The student studies an optimizing compiler as an example of 
a well-organized system program, studies algorithms and data structures appropriate to the optimization 
process, examines code generators, optimizers, and their interactions. The student also studies 
comparative programming languages with emphasis on the interaction between language design and 
implementation considerations. Compiler-generator technology is used to build a compiler, thereby 
demonstrating the use of system-building tools. 

Rationale: This is the third course that contains material from the traditional compiler course (the rational for 
the sequence is given in the description of LANGUAGES, INTERFACES, A N D THEIR PROCESSORS [320]). 

Techniques that are broadly useful for interfaces to interactive programs have been moved into 
LANGUAGES, INTERFACES, A N D THEIR PROCESSORS [320]. Techniques for which good automated tools 
exist have been at least introduced in TRANSDUCERS OF PROGRAMS [420]. This course addresses the 
techniques that are specialized to optimizing compilers. In addition to the traditional content, it will 
cover the use of automated tools for compiler construction and advanced language design topics. 

Objectives: At the end of this course, a student will be able to: 

• Participate competently in die construction of production-quality compilers using modern 
compiler-construction techniques and tools 

• Identify language features and combinations of features that constrain or simplify 
implementation 

Ideas: This course will be the primary carrier of the following: 

• Understanding implementation techniques for programming languages 
• Using new data structures introduced in the course 
• Applying new tools introduced in the course 

It will reinforce or share responsibility for: 

• Understanding the components of a medium-sized system and how they interact 
• Programming language design issues 

• Applying theoretical techniques in practice 

Topic Oudine: 
1. Compiler as an example of a complex medium-sized system 
2. Intermediate representations for processing programs 
3. Compiler-compiler technology 
4. Implementation issues for programming languages 

• Lexical analysis, parsing, and semantic analysis (revisited) 
• Code generation 
• Global program analysis and optimization 
• Optimization 
• Interpretation 



AN UNDERGRADUATE COMPUTE* SCIENCE CURRICULUM FOR THE 1980S 

• Storage allocation, garbage collection 
• Input-output 

5. Techniques applied 
• AI search techniques 
• graph theory 
• data flow 
• others reflecting current research 

6. Advanced topics in programming language organization and design 
• Interaction among design decisions [parameter binding rules, ailcs for assignment, etc.] 
• Interaction between language design decisions and implementations 
• Kinds of programming languages (survey) 

> General-purpose programming languages 
> Applicative vs imperative 
> Assemblers, macros 
> Very high-level languages' 
> Systems implementation languages 
> Special-purpose languages 
> Production systems 
> Object-oriented languages 
> Query languages 
> Graphical interaction 
> Special-purpose and application-based systems 

References: 

• A. V. Aho and J.D. Ullman, Principles of Compiler Design [2]. (The "Dragon Book") 
• D. Gries, Compiler Construction for Digital Computers [27]. 
• R.L. Wexelblat, History of Programming Languages [83]. 
• W. Wulf et al, The Design of an Optimizing Compiler'[87] 

Resource Requirements (software): 

• Automatic generators for compiler components such as lexical analyzers and parsers. 
• Instances of other components of a compiler (symbol table module, various optimization 

modules) 

• The objective is a software lab similar to a physics lab: the student "checks out" selected 
apparatus for an experiment, then assembles it and measures the result 

Implementation Considerations and Concerns: 



AN U N DERG R A DUATE COMPUTER SCIENCE CURRICULUM I OR THE 1980S 97 

8.3.10 Advanced Algorithms [430] 

Prerequisites: ALGORITHMS A N D PROGRAMS [ЗЗО] 

COMBINATORIAL ANALYSIS [MATH 301 / CS 251] 

Description: A second course in the design and analysis of algorithms. 

Rationale: This course is intended to familiarize the student with the unifying principles and underlying 
concepts of algorithm design and analysis. It extends and refines the algorithmic concepts introduced in 
ALGORITHMS A N D PROGRAMS [330]. Here a more abstract view is taken, with emphasis on the 
fundamental ideas of problem diagnosis, design of algorithms, and analysis. The course assumes 
familiarity with material on combinatorial analysis. 

Objectives: At the end of this course, a student will be able to: 

• Design efficient algoridims 

• Analyze the performance of algorithms 

Ideas: This course will be the primary carrier of the following: 

• Lower bounds 
• Optimization 

It will reinforce or share responsibility for: 

• Analysis of algorithms 
• Complexity Theory 

Topic Outline: 
1. Data structures 

• Lower bound arguments 
• Recurrences 
• Union-find 

2. Graph Algorithms 
• Topological sort 
• Biconnectivity 
• Matching 
• Maximum Flow 

3. Algebraic algorithms 
• Strasscn's algorithm 
• Transitive closure 
• Chinese remainder 
• Four Russian's algorithm 
• Fast fouricr transform 
• Power scries multiplication/di vision 
• Lower bound arguments 

4. Linear Programming 
5. Complexity Theory 

6. Approximation Algorithms 

References: 

• A. V. Aho, J.D. Hopcroft, and J.E. Ullman, The Design and Analysis of Computer Algorithms 

• J.A. Bondy and U.S.R. Murty, Graph Theory with Applications [10]. 



AN U N D E R G R A D U A T E COMPUTER SCIENCE CURRICULUM I-OR THE 1980S 

• F. На гагу, Graph Theory [31]. 
• D.H. Knuth, The Art of Computer Programming [40, 43, 41]. 

• E.L. Lawlcr, Combinatorial Optimization [46]. 

• C.H. Papadimitriou and K. Stciglitz, Combinatorial Optimization [60]. 

Implementation Considerations and Concerns: 
• In addition to the ALGORITHMS A N D PROGRAMS [330] prerequisite, diis course also requires 

students to possess mathematical maturity. This requirement should be aided by the 
prerequisite COMBINATORIAL ANALYSIS [MATH 301 / c s 251]. 

• There is considerable overlap between this course die material of APPLIED GRAPH THEORY 

[MATH 484]. 



AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 1980S 99 

8.3.11 Computer Architecture [440] 

Prerequisites: REAL A N D ABSTRACT MACHINES [240] 

or INTRODUCTION TO DIGITAL SYSTEMS [EE 133] 

Description: This course teaches the important concepts in computer system hardware design. System 
architecture is the focus of this course, so the technological details of the components from which such 
systems are constructed are avoided except where they are crucial to design goals like capacity and 
performance. The topics that are taught include design models including the Register Transfer Level 
model, Instruction Set Processor model, and PMS model. Analytic tools taught include notions of 
quantity of data based on Information Theory, Queueing Theory concepts, and Performance Evaluation 
techniques. 

Rationale: A computer scientist ought to understand the design decisions that are embodied in the computers 
that he uses for the same reasons that an automobile driver ought to understand his vehicle: a user who 
understands his tool can make better use of its capabilities. As a course that focuses exclusively on 
hardware, this course will teach the computer scientist things about his machines that a simple 
understanding of computability and complexity does not provide. As a first exposure to machine 
architecture, this course will prepare the machine architect for more complex concepts in computer 
engineering. 

Objectives: At die end of this course, a student will be able to: 

* • Understand and apply architectural techniques in design and analysis of systems 

Ideas: This course will be the primary carrier of the following: 

• Machine Architecture design techniques: RTL, ISP, PMS 
• System resources: disks, tapes, drums, memory, I/O devices 
• data communication - coding, quantity of information 
• performance evaluation 

It will reinforce or share responsibility for: 

• Finite State Machines 

• Addressing, Data Representation, and Storage 

• Analysis, synthesis, and evaluation 

Topic Outiine: 
1. Assembly language 

• Instruction set (68000 as sample) 
• Instruction format 
• Addressing Schemes 
• Some assembler programming project 

2. ALU Design 

• Addition and Subtraction 
• Multiplication and Division 
• Other ALU functions (Masks, Flags, etc.) 

• Floating Point Representations (Add, Subtract, Multiply, Divide, Fast ALUs, Multiplier units) 
3. Central Processor Design 

• Register schemes (stack, one address, two address, three address) 
• Instruction format 



AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM l'OR THE 1980S 

• Pipelining 
• I .ookahcad and parallelism 

4. Memory 

• Primary' Memory design 
• Interleaved memory 
• Secondary memory 
• Associative memory 

5. Memory Management 

• Memory Hierarchies 
• Paging Systems 
• Segmented Systems 
• Replacement Algorithms 
• Cache Memories 

6. The Control Unit 

• Microprogramming 
• Hardwired control 

7. I/O 

• Memory Mapped vs. Programmed I/O 
• D M A 
• Channel I/O 
• I/O Modelling 

8. Some Design examples 

• PDP-11 

• IBM 370 
• IIP 3000 

9. Data Communication and Information Theory 

• Quantity of Information, Entropy 
• Signals and Noise 
• Shannon's Theorem 
• Error Correcting Codes 

10. Performance Evaluation 

• Queuing models 
• Markov chains 
• Simulation, measurement 

References: 

• C.G. Bell, J.C. Mudge, and J.E. McNamara, Computer Engineering [4]. 

• D.P. Siewiorek, C.G. Bell, and A. Newell, Computer Structures: Principles and Examples 
[72]. 

Implementation Considerations and Concerns: 

• This course is also listed as I N T R O D U C T I O N TO COMPUTER ARCHITECTURE [EE 247] in the 
Electrical Engineering Department. 



AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 1980S 101 

8.3.12 VLSI Systems [441] 

Prerequisites: COMPUTER ARCHITECTURE [440] 
ALGORITHMS AND PROGRAMS [330] 

Description: This course introduces the technology of VLSI and its use in system design. A broad survey of 
current technologies and simple design methodologies is given. The emphasis throughout is on practical 
issues, and the student will learn how to design projects and implement them on a chip. Some ideas of 
the potentials and limitations of VLSI design will be given, and special-purpose VLSI designs for a 
number of application areas will illustrate these points. 

Rationale: VLSI technology is assuming increasing importance as an aid to high performance, low cost 
system design. Computer scientists should be familiar with the advantages, possibilities and limitations 
of such an important technology. 

Objectives: At the end of this course, a student will be able to do VLSI designs. 

Ideas: This course will be the primary carrier of the following: 

• VLSI technology, NMOS, CMOS 

• Fabrication and design of chips 

• Clocked and self-timed systems 
It will reinforce or share responsibility for: 

• design techniques for computer hardware 

• hardware synchronization circuits 

• finite state machines 

Topic Outline: 
1. NMOS transistors, ratios 
2. Fabrication and design rules 
3.CIF 
4. Clocked logic and shift registers 
5. Combinatorial logic between latches 
6. Type D static latches 
7. Programmable logic arrays 
8. Design tools 
9. Finite State machines 

10. Delay and System Timing 
11. Clocks and clock generators 
12. Self-timing 
13. Testability and testing 
14. Systolic algorithms 
15. Design in CMOS 

References: 

• C. Mead and L. Conway, Introduction to VLSI Systems [53]. 

• J. D. Ullman, Computational Aspects of VLSI[80]. 

Resource Requirements: 

• Locally accessible on-line design tools 



AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM 1*0R THE 1980S 

• Access to fabrication facilities 

Implementation Considerations and Concerns: 

• The best way to learn to do VLSI design is to do VLSI design. Therefore, the life blood of 
the course should be design projects. Two would be typical: one that is fairly simple such 
as a flip flop or shift register, and one that is more advanced. 



AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 1980S 101 

8.3.12 VLSI Systems [441] 

Prerequisites: COMPUTER ARCHITECTURE [440] 
ALGORITHMS AND PROGRAMS [330] 

Description: This course introduces the technology of VLSI and its use in system design. A broad survey of 
current technologies and simple design methodologies is given. The emphasis throughout is on practical 
issues, and the student will learn how to design projects and implement them on a chip. Some ideas of 
the potentials and limitations of VLSI design will be given, and special-purpose VLSI designs for a 
number of application areas will illustrate these points. 

Rationale: VLSI technology is assuming increasing importance as an aid to high performance, low cost 
system design. Computer scientists should be familiar with the advantages, possibilities and limitations 
of such an important technology. 

Objectives: At the end of this course, a student will be able to do VLSI designs. 

Ideas: This course will be the primary carrier of the following: 

• VLSI technology, NMOS, CMOS 

• Fabrication and design of chips 

• Clocked and self-timed systems 

It will reinforce or share responsibility for: 

• design techniques for computer hardware 

• hardware synchronization circuits 

• finite state machines 

Topic Outline: 
1. NMOS transistors, ratios 
2. Fabrication and design rules 
3.CIF 
4. Clocked logic and shift registers 
5. Combinatorial logic between latches 
6. Type D static latches 
7. Programmable logic arrays 
8. Design tools 
9. Finite State machines 

10. Delay and System Timing 
11. Clocks and clock generators 
12. Self-timing 
13. Testability and testing 
14. Systolic algorithms 
15. Design in CMOS 

References: 

• C. Mead and L. Conway, Introduction to VLSI Systems [53]. 

• J. D. Ullman, Computational Aspects of VLSI [HQ]. 

Resource Requirements: 

• Locally accessible on-line design tools 



AN UNDERGRADUATE COMPUTER. SCIENCE CURRICULUM TOR THE 1980S 

• Access to fabrication facilities 

Implementation Considerations and Concerns: 

• The best way to learn to do VLSI design is to do VLSI design. Therefore, die life blood of 
the course should be design projects. Two would be typical: one that is fairly simple such 
as a flip flop or shift register, and one that is more advanced. 



AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 1980S 101 

8.3.12 VLSI Systems [441] 

Prerequisites: COMPUTER ARCHITECTURE [440] 

ALGORITHMS A N D PROGRAMS [330] 

Description: This course introduces the technology of VLSI and its use in system design. A broad survey of 
current technologies and simple design methodologies is given. The emphasis throughout is on practical 
issues, and the student will learn how to design projects and implement them on a chip. Some ideas of 
the potentials and limitations of VLSI design will be given, and special-purpose VLSI designs for a 
number of application areas will illustrate these points. 

Rationale: VLSI technology is assuming increasing importance as an aid to high performance, low cost 
system design. Computer scientists should be familiar with the advantages, possibilities and limitations 
of such an important technology. 

Objectives: At the end of this course, a student will be able to do VLSI designs. 

Ideas: This course will be the primary carrier of the following: 

• VLSI technology, NMOS, CMOS 

• Fabrication and design of chips 

• Clocked and self-timed systems 
It will reinforce or share responsibility for: 

• design techniques for computer hardware 

• hardware synchronization circuits 

• finite state machines 

Topic Outline: 
1. NMOS transistors, ratios 
2. Fabrication and design rules 
3.CIF 

4. Clocked logic and shift registers 

5. Combinatorial logic between latches 

6. Type D static latches 

7. Programmable logic arrays 

8. Design tools 

9. Finite State machines 

10. Delay and System Timing 

11. Clocks and clock generators 

12. Self-timing 

13. Testability and testing 

14. Systolic algorithms 

15. Design in CMOS 

References: 

• C. Mead and L. Conway, Introduction to VLSI Systems [53]. 

• J. D. Ullman, Computational Aspects of VLSI [80]. 

Resource Requirements: 

• Locally accessible on-line design tools 



AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM LOR THE 1980S 

• Access to fabrication facilities 

Implementation Considerations and Concerns: 

• The best way to learn to do VLSI design is to do VLSI design. Therefore, the life blood of 
the course should be design projects. Two would be typical: one that is fairly simple such 
as a flip flop or shift register, and one that is more advanced. 



AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 1980S 101 

8.3.12 VLSI Systems [441] 

Prerequisites: COMPUTER ARCHITECTURE [440] 
ALGORITHMS AND PROGRAMS [330] 

Description: This course introduces the technology of VLSI and its use in system design. A broad survey of 
current technologies and simple design methodologies is given. The emphasis throughout is on practical 
issues, and the student will learn how to design projects and implement them on a chip. Some ideas of 
the potentials and limitations of VLSI design will be given, and special-purpose VLSI designs for a 
number of application areas will illustrate these points. 

Rationale: VLSI technology is assuming increasing importance as an aid to high performance, low cost 
system design. Computer scientists should be familiar with the advantages, possibilities and limitations 
of such an important technology. 

Objectives: At the end of this course, a student will be able to do VLSI designs. 

Ideas: This course will be the primary carrier of the following: 

• VLSI technology, NMOS, CMOS 

• Fabrication and design of chips 

• Clocked and self-timed systems 

It will reinforce or share responsibility for: 

• design techniques for computer hardware 

• hardware synchronization circuits 

• finite state machines 

Topic Outline: 
1. NMOS transistors, ratios 
2. Fabrication and design rules 
3. CIF 
4. Docked logic and shift registers 
5. Combinatorial logic between latches 
6. Type D static latches 
7. Programmable logic arrays 
8. Design tools 
9. Finite State machines 

10. Delay and System Timing 
11. Clocks and clock generators 
12. Self-timing 
13. Testability and testing 
14. Systolic algorithms 
15. Design in CMOS 

References: 

• C. Mead and L. Conway, Introduction to VLSI Systems [53]. 

• J. D. Ullman, Computational Aspects ofVLSI[iO]. 

Resource Requirements: 

• Locally accessible on-line design tools 



AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM I-OR THE 1980S 

• Access to fabrication facilities 

Implementation Considerations and Concerns: 

• The best way to learn to do VLSI design is to do VLSI design. Therefore, the life blood of 
the course should be design projects. Two would be typical: one that is fairly simple such 
as a flip flop or shift register, and one that is more advanced. 



AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 1980S 103 

8.3.13 Theory of Programming Languages [450] 

Prerequisites: LANGUAGES, INTERFACES, A N D TI IFIR PROCESSORS [320] 

FORMAL LANGUAGES, AUTOMATA, AND COMPLEXITY [350] 

LOGIC FOR COMPUTER SCIENCE [351] 

Description: This course brings together fundamental material on die theory of programming languages. 
Techniques for assigning madicmatical meanings to programs and for reasoning precisely about 
program functionality and behavior are described. Some indication is given of the influence of formal 
methods on programming methodology and programming language design. 

Rationale: Programs are rarely verified formally in practice, but there is much to be learned — both about 
programming techniques and about programming language design — from a study of precise methods 
for reasoning about programs. Indeed, we cannot reason precisely about programs unless we have a 
sound madicmatical basis for such reasoning; this course is intended to provide that foundation. 

Objectives: The student should gain from this course an understanding of die variety of approaches and 
techniques to reasoning precisely about programs. In particular, students should appreciate the 
potential for automation of these techniques, the ways in which they might be applied in practice, and 
their theoretical limitations. 

Ideas: This course will be the primary carrier of the following: 

• Formal reasoning about programs. 

• Semantics of programming languages. 

• Assertions about programs. 
It will reinforce or share responsibility for: 

• Programming methodology. 

• Specifications of programs. 

• Programming language design. 

Topic Outline: 
1. Introduction to semantics of programming languages 

• Syntax, semantics, and pragmatics: the distinctions 
• Abstract syntax and formal semantics 
• Assigning meanings to programs 
• Operational semantics 

> Compilers and interpreters 
> labelled transition systems 
> Operational semantics for simple sequential language with loops 

• Denotational semantics 

> Basic idea: semantics given by structural induction 
> Foundations: domains, continuous functions, and fixed points 
> Semantics of a simple language 
> Congruence between operational and denotational semantics 

• Axiomatic semantics 
> Hoare-style axioms 
> Weakest preconditions and predicate transformers 
> Axiomatic semantics for simple language 
> Consistency with respect to denotational or operational semantics 
> Elementary ideas of soundness and relative completeness 



AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 1980S 

2. The variety of programming languages 
• The distinction between imperative and applicative programs 
• The distinction between environment and store 
• Lazy evaluation and infinite structures 
• Object-oriented programming languages 
• Very-high-level programming languages 

3. Semantic treatment of more complicated programming constructs: 
• Procedures: 

> Parameterless 
> Recursion 
> Methods of parameter passing 

• Jumps (goto statement, breaks, etc.) 
• Nondeterminism (e.g., Dijkstra's guarded commands) 
• Parallelism: 

> Treatment as nondeterministic interleaving of actions 
> Concurrent processes (eg. CSP, ADA) 
> Coroutines 

• Continuation semantics 
• Relational semantics 
• Elementary ideas of powerdomain semantics 

4. Reasoning about programs 
• Inductive proof techniques 

> Structural induction 
> Well-founded induction 
> Computational induction 

• Partial correctness 
> Flowcharts and inductive assertions 
> Moare-style assertions 
> Weakest preconditions 

• Total correctness of sequential programs 
> Proving termination: examples of well-founded sets 
> The sometime method 
> Weakest liberal preconditions 

• Fixed-point properties of recursive programs 
• Temporal logic 

> Continuously-operating programs 

• Dynamic logic 
5. Manipulating Programs 

• Equivalence of programs 
• Program transformations and their correctness 

Primary References: 

• Z. Manna, The Mathematical Theory of Computation [52]. 

• I E . Stoy, Denotational Semantics: The Scott-Strachey Approach to Programming Language 
Theory [J5]. 

Supplementary References: 

• E.W. Dijkstra, A Discipline of Programming [19]. 

• M.J.C. Gordon, The Denotational Description of Programming Languages. [26]. 

• R.D. Tennent, Principles of Programming Languages [77]. 

Resource Requirements: 



AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 1980S 

Implementation Considerations and Concerns: 

• We have included a long list of important topics, from which it is possible to draw a variety 
of particular courses tailored to special needs or interests. At this advanced level, it is 
appropriate to allow some freedom in the selection of appropriate course material, especially 
since the area we are covering here is not yet static. 

• This type of course would benefit greatly from a computer-aided facility for semantic test-
bedding of formal definitions, such as symbplic execution. Although not necessary for the 
implementation of the course, such tools would help. 



AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 1980S 106 

8.3.14 Complexity Theory [451] 

Prerequisites: ALGORITHMS A N D PROGRAMS [330] 

FORMAL LANGUAGES, AUTOMATA, AND COMPLEXITY [350] 

COMBINATORIAL ANALYSIS [MATH 301 / CS 251] 

Description: This course extends in much more detail die material first introduced in FORMAL LANGUAGES, 

AUTOMATA, A N D COMPLEXITY [350]. After a quick review of the basic ideas of complexity theory, the 
course introduces some of the advanced results and open questions of abstract complexity theory, and 
die techniques used in proving these results. Emphasis is made on relating these results and open 
questions to their theoretical and practical implications for Computer Science; the study of 
computability leads to theoretical limitations on what a computer can in principle (given enough time 
and space) do, while the study of complexity yields limitations on what is feasibly computable: if we are 
restricted to using only a limited amount of time or space, the class of problems solvable by computer is 
restricted. There is some similarity of course content with THEORY O F ALGORITHMS [MATH 451]. 

Rationale: The theory of complexity is an interesting are.a in which many important problems remain to be 
solved. This course serves the purpose of engaging die student's interest and equipping him with the 
background material and ideas necessary for tackling research in this area. 

Objectives: At the end of this course, a student will have a feeling for the theoretical limitations of computers, 
and how restrictions on working space and running time affect die capability of computers to solve 
problems. He will have seen enough of the methods and results of this subject to enable him to tackle 
research in this growing area. 

Ideas: This course will be the primary carrier of die following: 

• Time and Space hierarchies 

• Notions of reducibility 

• Complete sets for problem classes 

• Implications of die P = N P problem 
It will reinforce or share responsibility for: 

• Time and space tradeoffs 

• Diagonalization arguments 

• Algorithms 

Topic Outline: 
1. Review of elementary Complexity Theory: 

• Distinction between computability and complexity 
• Space complexity and time complexity 
• Complexity relative to deterministic and nondcterministic computation 

2. The time and space hierarchies: P, NP, co-NP, PSPACE, etc. 

3. Time vs. space trade-offs 
4. Location of known problems in the hierarchy: graph isomorphism, recognition problems, etc. 

5. Notions of reducibility: 
• Turing reducibility 
• Polynomial reducibility 
• Logspace reducibility 
• Use of reductions to show complexity properties 



AN UNDERGRADUATE COMPUTER SCIENCE. CURRICULUM LOR Till- 1980S 

6. Complete sets for NP: 3CNE, Clique, I Iamiltonian circuits 
7. Complete sets for PSPACE: QBE 
8. Conditions that would imply P = N P 

9. Implications for Computer Science of the P = NP question: what is the class of "feasibly computable" problems? 
10. Computability and complexity relative to an oracle 

References: 

• M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of 
NP-Completeness [24]. 

• J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages and 
Computation [37]. 

• H. Rogers, Theory of Recursive Functions and Effective Computability [67]. 

Resource Requirements: 

Implementation Considerations and Concerns: 

• The material covered in this course overlaps with the content of THEORY OF ALGORITHMS 
[MATH 451]. 



AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 1980S 108 

8.3.15 Artificial Intelligence — Cognitive Processes [460] 

Prerequisites: INTRODUCTION TO ARTIFICIAL INTELLIGENCE [360] 

or INFORMATION PROCESSING PSYCHOLOGY A N D Al [PSY 213] 

Description: Covers more advanced aspects of the cognitive side of AI, including natural language 

processing, use of knowledge sources, and learning and discovery. The use of computer programs as 

psychological models will also be discussed. Students will implement a large AI system as a semester 

project. 

Radonale: This course covers the more symbolic side of AI, and allows for interaction between computer 
science students and psychology students. The semester project is here rather than in the prerequisite 
course, because the prerequisite, INTRODUCTION TO ARTIFICIAL INTELLIGENCE [360], has a lot of ground 
to cover and little time in which to do it, and because most of the prerequisite material should be 
digested before the student spends too much time on a project 

Objectives: At the end of this course, a student will be able to: 

• Use computer programs to model psychological phenomena 

• Write large AI systems 

Ideas: This course will be the primary carrier of the following: 

• Cognitive Simulation 

• Learning 

• Natural Language Processing 
It will reinforce or share responsibility for: 

• Knowledge Representation (shared with BIG DATA [413]) 

Topic Outline: 
1. Techniques 

• Exploiting Constraints 
• Heuristic Programming 
• Production Systems 

2. Knowledge Representation 

• Declarative Knowledge 
• Inference and Inheritance 
• Procedural Knowledge 
• Scripts 
• Semantic Nets 

3. Natural Language 

• ATN parsing 
• Expectation based parsing 
• Generation 

4. Expert Systems 
• Design 
• Engineering Analysis 
• Medical Diagnosis 

5. Cognitive Processes 

• Concept Acquisition 
• Discovery 
• Learning 



AN UNDERGRADUATE COMPUTER SCIE.NCECURRICULUM EORTIIE 1980S 

• Planning 

References: 

• E. Rich, Artificial Intelligence [66] 

• R.C. Schank and C.K. Ricsbcck, Inside Computer Understanding^]. 

Resource Requirements: 

• Online versions of McEli, McSam, etc. 
• Lisp programming environment 
• Lisp cycles 

Implementation Considerations and Concerns: 



AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 1980S 110 

8.3.16 Artificial Intelligence — Robotics [461] 

Prerequisites: INTRODUCTION TO ARTIFICIAL INTELLIGENCE [360] 
LINEAR ALGEBRA [MATH 341] 

CALCULUS II [MATH 122] (MULTIVARIATE CALCULUS) 

Description: Covers Artificial Intelligence systems which deal in some way with the physical world, either 
through visual, acoustic, or tactile means. Topics include vision, speech recognition, manipulation, and 
robotics. 

Rationale: Students entering this course have a basic grounding in AI (which may not help directly in this 
course, but docs provide a context), and by saving the more advanced material for this separate course, 
additional math can be required. 

Objectives: At the end of this course, a student will be able to: 

• Understand the fundamental approaches used. 

• Read and understand literature on vision, speech, and manipulation. 

Ideas: This course will be the primary carrier of the following: 

• Perception 

• Three Dimensional Modelling 

• Control of Physical Systems 

Topic Outline: 
1. Manipulation 

• Kinematics and Dynamics 
• Trajectory Planning 
• Control and Control Languages 
• Programming 
• Spatial Planning 
• Shape Representation 

2. Vision 
• Image formation 
• Shape from shading 
• Shape from range data 
• Stereo vision 
• Edge finding 
• Motion 
• Scene analysis 
• Model-based vision 

3. Speech Recognition 

• Signal Processing 
• Feature Extraction 
• Search 

4. Locomotion 
• Gait analysis 
• Dynamic balance 

References: 

Implementation Considerations and Concerns: 

• This course is a part of die Artificial Intelligence group, and must be taught in such a way 
diat it does not become a course in "Robot Engineering" or "Robot Math". 



A N U N D E R G R A D U A T E COMPUTER SCIENCE C U R R I C U L U M I OR THE 1980S 

• Wc would have preferred to organize this course by technique and method, radicr than by 
application. 

• Also, the linear algebra course listed as a prerequisite may be too advanced for the purpose 
of preparing a student for Robotics. A lower level course covering die same material might 
be sufficient, for example METHODS O F APPLIED MATHEMATICS I [MATH 259). 



AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR I HE 1980S 112 

8.3.17 Interactive Graphics Techniques [470] 

Prerequisites: L A N G U A G E S , INTERLACES, A N D THEIR PROCESSORS [3201 

ALGORITHMS AND PROGRAMS [330] 

Description: A course in the creation and use of graphical information and user-interfaces. 

Rationale: Although relatively young, the field of graphics has consolidated enough to warrant a semester 
course centering on the use of graphical, ratiicr than textual, interaction with computers. A fair amount 
of background is required, however, since the students will have to apply a fair amount of previously 
learned material, such as language models of interaction and various sorts of algorithms. As graphical 
display devices become more widespread, knowledge of how to take advantage of them effectively 
become increasingly vital. 

Objectives: At the end of this course, a student will be able to: 

• Create interactive interfaces for computer applications. 

• Understand the basic implementation and use of graphic support packages. 

• Evaluate ergonomic aspects of user interfaces. 

Ideas: This course will be the primary carrier of the following: 

• The concept of graphical, vs. textual, interaction. 

• Graphical interface creation principles. 

• A knowledge basis to judge the merits of existing graphical tools. 

Topic Outiine: 
1. History of computer graphics 

2. Current applications 

3. Graphics hardware 

• Vector graphics vs. raster graphics 
• Input devices (logical and real) 
• Possible future developments 

4. Fundamental graphics operations 

• Coordinate system specification and mappings 
• Scan-conversion of lines and splines 
• Clipping 
• Transformation and homogeneous coordinates 

5. Intermediate description formats for graphical information 

6. Graphics packages 

• Device independence 
• CORE 

• GKS 

7. Interaction techniques 
. • Menu driven systems 
• FSA model, table-driven applications 
• Prompting, confirmation, error-checking, undo, redo, consistency 
• Prefix, postfix, infix operations 
• Window-based systems 

8. User-computer dialogue 
• Language considerations 
• Human factors 

9. Three (and greater) dimensional viewing 



AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 1980S 

• Specification 
• Implementation 
• Solid-modelling systems 

10. Graphical algorithms 
• Scan-conversion 
• Hidden line/surface removal, shading, lighting models 

11. Color models and the use of color 
12. Hard-copy graphics output 

• phototypesctters 
• bitmapped printers 
• isometric plots 
• half-toning 

References: 

• J.D. Foley and A. van Dam, Fundamentals of Interactive Computer Graphics [23]. 

• W.M. Newman and R.F. Sproull, Principles of Interactive Computer Graphics [57]. 
Resource Requirements: 

• Various sorts of graphical devices for both display and input 
• Implementations of existing graphics packages 
• example interfaces 

• computational support for some fairly compute-intensive operations 

Implementation Considerations and Concerns: 



AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 1980S 114 

9. Related Courses 

This chapter contains descriptions of related courses in mathematics, statistics, electrical engineering, 

cognitive psychology, management, and public policy. They are included here because of their close des to 

courses described in the previous chapter. In addition, they may be of interest for constructing concentrations 

in fields allied to computer science. 

Some of the courses in this chapter are not currently offered, but are rather sketches of courses that sound 

interesting to us. These should be interpreted as proposals for discussion. 

9.1 Mathematics Courses 

9.1.1 Introduction to Applied Mathematics [Math 127 / CS 150] 

An outline for this course is given in Section 5.7.5. 

9.1.2 Calculus I [Math 121] 

Description: Functions, limits, derivatives of algebraic, trigonometric, exponential and logarithmic functions, 
curve sketching, related rate and maximum-minimum problems, definite and indefinite integrals with 
applications. 3 hrs. lee, 2 hrs. rec. [Course 21-121 per CMU 1982-84 catalog] 

9.1.3 Calculus II [Math 122] 

Description: Techniques of integration, improper integrals, Taylor's series, functions of several variables, 
partial derivatives, directional derivatives, chain-rule, the gradient, multiple integrals, line integrals. 3 
hrs. lee, 2 hrs. rec. Prerequisite: 21-121. [Course 21-122 per CMU 1982-84 catalog] 

9.1.4 Methods of Applied Math I [Math 259] 

Description: Ordinary Differential Equations: first-order, second order linear, input-output analysis, Fourier 
series, power series methods, Laplace transform methods. Matrix algebra, eigenvalues, systems of 
differential equations. 3 hrs. lec. Prerequisite: 21-122. [Course 21-259 per CMU 1982-84 catalog] 

9.1.5 Elements of Analysis [Math 261J 

Description: Functions of several variables, chain-rule, inverse function theorem, coordinates, external 

problems, multiple integrals. Vector analysis: line and surface integrals, divergence and Stokes' 

theorems. Convergence of series and sequences, Taylor's series, Fourier series. Prerequisite: 21-259,3 

hrs. lec. [Course 21-261 per CMU 1982-84 catalog] 

9.1.6 Operations Research I [Math 292] 

Description: The distribution-transportation problem: row and column number solution method and 

sensitivity analysis; flows in networks and incidence matrices; the standard linear program; the simplex 

method, post-optimality and the economic lot size problem; dynamic programming and the knapsack 

problem; introduction to queueing. 3 hrs! lec. Prerequisite: 21-122. [Course 21-292 per CMU 1982-84 

catalog] 



AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR TOE 1980S 115 

9.1.7 Operations Research II [Math 293] 

Description: Extension of linear programming, integer programming, game theory; probabilistic 
programming; case studies from economics, engineering and management science. Prerequisite: 21-292. 
3 hrs. lec. [Course 21-293 per CMU 1982-84 catalog] 

9.1.8 Combinatorial Analysis [Math 301 / CS 251] 

Description: An introduction to combinatorial mathematics with an emphasis on applications in computer 
science. Topics covered in depth include permutations and combinations, generating functions, 
recurrence relations, the principle of inclusion and exclusion, and the Fibonacci and harmonic series. 
Topics surveyed include existence proofs, partitions, finite calculus, generating combinatorial objects, 
and algorithm analysis. 3 hrs. lec. Prerequisite: 21-122. [Course 21-301 per CMU 1982-84 catalog] 

9.1.9 Linear Algebra [Math 341] 

Description: Vector spaces, linear transformations, orthogonality and inner product spaces, projections, dual 
spaces, spectral theory for normal transformation, Jordan canonical form. 3 hrs. lec. Prerequisite: 
21-301. [Course 21-341 as revised fall 1983] 

9.1.10 Numerical Methods [Math 369 / CS 352] 

Description: Algorithmic oriented course in computer problem solving. The basic principles of numerical 
analysis are developed and used to solve problems involving networks and graphs, non-linear equations, 
differential equations, and data analysis. 3 hrs. lec. Prerequisite: 21-259. [Course 21-369 per CMU 
1982-84 catalog] 

9.1.11 Modern Algebra [Math 473 / CS 452] 

Description: Spectral theorem, Jordan canonical form, groups, integral domains, fields, polynomials, unique 
factorization domains, rings and ideals, coding theory. 3 hrs lec. Prerequisite: 21-341. [Course 21-473 
per CMU 1982-84 catalog] 

9.1.12 Applied Graph Theory [Math 484 / CS 430] 

Description: Basic terminology, cycles, trees, connectivity, planarity, coloring, matching, graph algorithms, 
spanning trees, binary search trees. 3 hrs. rec. Prerequisite: 21-301. [Course 21-484 as revised fall 1983] 
See description o/ADVANCED ALGORITHMS [430] in Section 8.3.10. 

9.1.13 Theory of Algorithms [Math 451 / CS 451] 

Description: Basic concepts — models of computation and the design of efficient algorithms, searching and 
sorting, integer and polynomial arithmetic, pattern-matching algorithms, NP-completeness problems, 
measures of computational complexity. 3 hrs rec. Prerequisite: 21-484. [Course 21-451 as revised fall 
1983] See description of COMPLEXITY THEORY [451] in Section 8.3.14. 



AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM LOR THE: 1980S 116 

9.1.14 Numerical Mathematics I and II [Math 704 and 705] 

Description: Review of linear algebra, solution of partial differential equations by finite clement and finite 
difference mctiiods, direct and iterative methods, adaptive grid methods. 3 hrs rec. Prerequisite: 
21-369. [Course 21-704, 705 as revised fall 1983] 

9.1.15 Large-Scale Scientific Computing [Math 712 / CS 453] 

• Description: Review of scientific problems where computer modelling is important, design of algorithms, 
supercomputer architectures, algorithms for parallel computer structures. 3 hrs rec. Prerequisite: 
21-705 or permission of instructor. [Course 21-712 as revised fall 1983] 

9.2 Statistics Courses 

9.2.1 Probability and Applied Statistics for Physical Science and Engineering I [Stat 211 / CS 250] 

Description: This course provides an introduction to probability for students in engineering and science. The 
use of probability theory is illustrated with examples drawn from tiicsc fields. Topics include 
elementary probability theory, conditional probability and independence, random variables, 
distribution functions, joint and conditional distributions, law of large numbers, and central limit 
theorem. Students desiring a more mathematical treatment should register for 36-215. 3 hrs rec. 
Prerequisite: 21-122. [Course 36-211 per CMU 1982-84 catalog] 

9.2.2 Probability and Statistics I [Stat 215] 

Description: An introductory probability course, designed for students whose interest is the theory of 
probability. Generally all mathematics majors should enroll in this course in their junior year. Provides 
the necessary background for study of mathematical statistics and further topics in probability theory. 
A good working knowledge of calculus is required. Use of the theory is illustrated with examples drawn 
from engineering, science, and management. Topics include elementary probability theory, 
combinatorial analysis, conditional. probability, independence, random variables and distribution 
functions, conditional distributions, generating functions and moment generating functions, sampling 
distributions, law of large numbers, and central limit theorem. 3 hr. rec. Prerequisite: 21-122. [Course 
36-215 per CMU 1982-84 catalog] 

9.2.3 Statistical Methods for Data Analysis I [Stat 219] 

Description: This course presents basic concepts and operational methods of statistics for students in 
engineering, science and social science. Topics covered include reduction and summary of data, 
probability models and simulation, estimation, t-tests, goodness of fit tests, and multiple regression. The 
analysis of actual data sets is performed with Minitab, a statistical package requiring no previous 
computer experience. A section of this course will be offered for students with background and 
interests more oriented towards science, mathematics or engineering. No college-level prerequisites are 
necessary. 3 hrs. rec. [Course 36-219 per CMU 1982-84 catalog] 



AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 1980S 117 

93 Electrical Engineering Courses 

9.3.1 Linear Circuits: [EE 101 / CS 2411 

Description: The objective of this course is to develop an understanding of the basic technical and 
mathematical skills required for the analysis of electrical systems. The concepts of charge, current, 
voltage, capacitance, inductance, energy and power are emphasized. Kirchoff s current and voltage 
laws, loop and node analyses, linear voltage current characteristics and superposition are introduced. 
The analytical and numerical solution of both difference and differential equations with constant 
coefficients and initial/boundary conditions, which arise in engineering problems is presented and used 
for the solution of first- and second-order differential equations which characterize R-C, R-L and 
R-L-C circuits. Consideration is given to the transient and sinusoidal steady-state analysis of linear 
circuits, including the use of phasor notation and complex algebra. 3 hrs. rec, 2 hrs. lab/comp. 
Corequisite: 15-104 or 15-111. [Course 18-101 per CMU 1982-84 catalog] 

9.3.2 Electronic Circuits I [EE 102 / CS 242] 

Description: The objective of this course is to provide the student with a solid understanding of the 
application of the principles learned in 18-101, and to increase the student's abilities to perform 
engineering analysis and synthesis. Semiconductor physics; operation of circuit devices; large and small 
signal models; biasing and temperature stability; diode and transistor circuits; feedback. 4 hrs. rec., 3 
hrs. lab. Prerequisites: 18-101, 21-259, 33-123. [Course 18-102 per CMU 1982-84 catalog] 

9.3.3 Introduction to Digital Systems [EE 1331 

Description: Description of fundamental digital devices; basic switching circuit theory and design, including 
combinational and sequential logic circuits; finite state machines; register transfer level logic design, 
including modular components and their interconnection into data processing units; simple processor 
architecture. 2 hrs. rec, 3 hrs. comp./lab. Corequisites: 15-104 or 15-111. [Course 18-133 per CMU 
1982-84 catalog] Note: This course is very similar to CS course 240 as defined in this report 

9.3.4 Linear Systems Analysis [EE 218] 

Description: This course presents a unified analytic treatment of continuous time and discrete-time linear 
systems theory, and is intended to develop facility in the mathematical characterization of these systems 
and their performance in the time and frequency domains. Topics include convolution, Fourier series 
and transforms, sampling dieorems, LaPlace transforms, Z-transforms, and applications of these 
methods to problems in control and communications. Prerequisite: 18-102. [Course 18-218 per CMU 
1982-84 catalog] 

9.3.5 Electronic Circuits II [EE 221 / CS 340] 

Description: Continuation of analog circuit analysis: feedback amplifiers; frequency response; stability; 
operational amplifiers; op-amp characterstics; op-amp circuits; waveform generators; oscillators; tuned 
circuits, power amplifiers; amplifier classification; harmonic distortion. 3 hrs. rec, 3 hrs. lab. 
Prerequisite: 18-102. [Course 18-221 per CMU 1982-84 catalog] 



AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 1980S 118 

9.3.6 Analysis and Design of Digital Circuits [EE 222 / CS 341] 

Description: This course introduces some advanced topics in the design and analysis of digital circuits. 
Topics to be discussed include die analysis of RTL, DTL, TTL, and ECL gates plus MIS components 
such as an ALU and lookahead carry adder with emphasis on performance limitations (noise margins, 
propagation delay, fan-in, fan-out, etc.); analysis of noise, cross-talk and reflections in IC 
interconnections; non-linear circuit analysis techniques including Newton-Raphson, Euler integration 
and Predictor-Corrector Methods; semiconductor processing for simple bipolar and metal-oxide devices 
along with die models developed in the course. 2 hrs. rec. 2 hrs. comp., 3 hrs. lab. Prerequisite 18-221. 
[Course 18-222 per CMU 1982-84 catalog] 

9.3.7 Introduction to Solid State Electronics [EE 236] 

Description: This course will introduce students to semiconductor solid state devices. The course will first 
cover the essential physics of semiconductor device operation, including the concepts of energy bands, 
the Fermi distribution function, transport of current by electrons and holes, tunneling, effective mass, 
etc. Following this, the operation of p-n junctions, Schottky barrier diodes, bipolar transistors, junction 
field effect transistors (JFET), and metal-oxide-semiconductor field effect transistors (MOSFET) will be 
discussed along with their use in integrated circuits. The course is intended for students with no prior 
experience or knowledge of semiconductors. Sophomores and higher level students who have 
completed Physics III, Electricity and Magnetism, are all well qualified to take tiiis course. This course 
will provide a solid background for students desiring to take 18-331, Semiconductor Devices and 
Applications. 3 hr. recitation. Prerequisites: 33-123 or permission of instructor. [Course 18-236 per 
CMU 1982-84 catalog] 

9.3.8 Introduction to Computer Architecture [EE 247 / CS 440] 

An outline for this course is given in Section 8.3JO. 

• 9.3.9 Fundamentals of Control [EE 301] 

Description: An introduction to the fundamental principles and main ideas of classical feedback control and 
its application. Emphasis is on problem formulation and the analysis and synthesis of servo-
mechanisms using frequency domain techniques. Topics include analytical; graphical, analog 
techniques for treating automatic control systems; analysis of performance, stability criteria, 
readability, and speed of response; compensation methods in the frequency domain, root-locus design, 
and pole-zero synthesis techniques; the use of analog computers in control systems; systems with delay 
and computer control systems; state-space description of linear systems; and non-linearities in control 
systems. 3 hrs. rec. 2 hrs. comp. Prerequisite: 18-213. [Course 18-301 per CMU 1982-84 catalog] 

9.4 Psychology Courses 



AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM 1 OR THE 1980S 119 

9.4.1 Psychology of Learning and Problem Solving [Psy 113] 

Description: A course aimed at increasing students' learning and problem-solving skills through 
understanding and applying topics in cognitive psychology. Topics covered will include representing 
problems searching for solutions, making decisions, learning and creativity. Emphasis will be placed on 
die acquisition of skills which can be transferred to the student's own area of interest. [Course 85-113 
per CM U 1982-84 catalog.] 

9.4.2 Information Processing Psychology and Artificial Intelligence [Psy 213] 

Description: Analysis of computer programs for producing intelligent behavior and their relationship to 
human information processing. The course focuses on perceptual information processing, memory 
systems, problem-solving and language processing. Students will write programs to simulate aspects of 
human information processing, rcrequisites: Ability to program in some computer language. [Course 
85-213 per CMU 1982-84 catalog.] 

9.4.3 Human Factors [Psy 363] 

Description: The purpose of the course is to acquaint students with a rapidly expanding area of psychology, 
investigating the effects of human factors on cognitive and behavioral functioning. Central to the area is 
the notion that physical and social environments should be planned and constructed in a way that 
maximizes the fit between those environments and the psychological characteristics of the people that 
will inhabit diem. In general, die course will focus on the use of machines as aides to human 
functioning. Included will be a discussion of the role diat computers can play in information processing 
and human problem solving. Prerequisites: any 100- or 200-lcvcl psychology course. [Course 85-363 per 
CMU 1982-84 catalog.] 

9.4.4 Cognitive Processes and Problem Solving [Psy 411] 

Description: Psychological processes in thinking and problem solving; relation of language to thinking; 
relation of perception and imagery to problem solving; semantics and internal representations; 
development of information processing capacity. Methods for studying thinking empirically; 
constructing and testing computer simulation models of adult's and children's thinking. Prerequisite: 
consent of die instructor. [Course 85-411 per CMU 1982-84 catalog] 

9.4.5 Thinking [Psy 417] 

Description: The course is intended as an extension of Psychology 411. It will review research on higher-
level mental processes and the implications of this research.. Possible topics include knowledge 
representation, pattern recognition, symbolic knowledge, schematic knowledge, memory for facts, skill 
acquisition, problem-solving, reasoning, language comprehension, language generation, and language 
acquisition. The factual content will mainly come from assigned readings and class discussions. Also, 
students will be required to perform a scries of projects simulating various cognitive processes. Grade 
will be based on these simulation assignments and a final take-home. Prerequisite: Instructor's 
permission. [Course 85-417 per CMU 1982-84 catalog] 



AN UNDERGRAIXJATE COMPUTER SCIENCE CURRICULUM FOR THE 1980S 120 

9.5 Engineering and Public Policy Courses 

9.5.1 Law and Technology [EPP 321] 

Description: The interaction of law and technology is considered in several areas: the environment, safety 
and health, product liability and patents and trade secrets. The public policy which emerges as law in 
these areas arises from forums such as public hearings or courts of law. The focus of the course is 
twofold: (1) understanding present law in these areas, and (2) using the data from prior public hearings 
in at least two of these areas to evaluate critically the nature and validity of die technological input used 
in reaching the public policy decision. Prerequisite: 19-319 or 70-361. [Course 19-321 per CMU 
1982-84 catalog] 

9.5.2 Telecommunications Policy Analysis [EPP 402] 

Description: This course reviews the physical principles and capabilities of modern telecommunications 
systems and surveys statc-of-the art technology. Economic, cultural, political, and health-related 
impacts of telecommunications arc discussed. The concept of the electromagnetic spectrum,as a scarce 
but nondeplctable resource and questions of economic efficiency and distributional equity will be 
considered as bases for national and international regulation. Cost-risk benefit determination and 
allocation will be studied using case studies (e.g.,tclephone rate design, direct broadcast satellite 
licensing, ELF submarine communications alternatives). Prerequisites: 73-100, junior standing in C1T. 
[Course 19-402/18-402 per CMU 1982-84 catalog] 

9.5.3 Policy Issues in Computing [EPP 380 / CS 380] 

As computers and automation become more pervasive, it becomes the responsibility of those who understand 
this technology to be aware of its effects on society and to be able to interpret it to both laymen and 
policy makers. This course is intended for students with expertise in computer science, and it will 
address the effects of specific computer technologies such as networks, very large databases, and robot 
automation. Prerequisites: F U N D A M E N T A L STRUCTURES OF COMPUTER SCIENCE I A N D II [211/212] plus 
any 300-level computer science course. 

9.6 Engineering Courses 

9.6.1 Real Time Computing in the Laboratory [CIT 252] 

Description: The goal of this course is to introduce students to the use of dedicated microcomputers in 
laboratory situations, by covering diose basics in computer organization and pertinent software concepts 
not taught in 15-104, 15-111. It will require laboratory work, and will draw data gathering and real-time 
control examples and applications from various engineering disciplines. It is primarily intended for 
non-Electrical Engineering majors in CIT. Prerequisite: 15-104 or 15-111. [Course 39-252 per CMU 
1982-84 catalog] 



AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 1980S 121 

9.6.2 Analysis, Synthesis and Evaluation [CÏT 300] 

Description: Analysis, synthesis, and evaluation in the context of realistic engineering situations. The student 
learns through practice to deal with problems which require the use of skills that include modeling, 
analyses that range from mathematical to heuristic, the use of experimental methods, inventing, making 
judgments of value and need, and the making of decisions and recommendations. Problems are chosen 
to reflect interdisciplinary nature of engineering problems. 2 hrs. rec. 2 hrs. tutorial/lab. Prerequisite: 
junior standing in CIT. [Course 39-300 per CMU 1982-84 catalog] 

9.6.3 The History and Formulation of Research and Development Policy [CIT 401] 

Description: This interdisciplinary course will study the modes of research and development over the course 
of the 20th century. It will examine the relationship between the institutions responsible for R&D, such 
as industry, government, universities and foundations, and how R&D has affected the course of 
technological change. The course will consider the goals of R&D policy and the factors that have gone 
into policy formulation. The last section of the course will deal with the future directions of R&D 
policy. [Course 39-401,79-509 per CMU 1982-84 catalog] 

9.6.4 Cost-Benefit Analysis [CIT 404] 

Description: The course will be directed primarily to Engineering students. Approximately equal time will 
be devoted to theory and practical applications. Topics will include the concepts of costs and benefits, 
market valuation and the meaning of prices (explicit and imputed), efficiency, the distribution of 
wealth, effects of alternative property rights structures, externality, investment criteria, uncertainty and 
risk. Examples of cost-benefit analysis will be presented and techniques of estimating costs and benefits 
will be discussed. Finally students will be given the opportunity to improve their skills in evaluating 
projects and examining appropriate alternatives by means of a practical exercise. 3 hrs. rec. 
Prerequisite: 73-100 or 24-291 or 06-303. [Course 39-404 per CMU 1982-84 catalog.] 



AN UNDERGRADUATE COMPUTER SCIENCE: CURRICULUM LOR THE 1980S 122 

References 

1. Alfred V. Aho, John F. Hopcroft, and Jeffrey D. Ullman. The Design and Analysis of Computer 
Algorithms. Addison-Wcslcy, 1974. 

2. Alfred V. Aho and Jeffrey D. Ullman. Principles of Compiler Design. Addison-Wesley, 1977. 

3. Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. Data Structures and Algorithms. Addison-
Wesley, 1983. 

4. C. Gordon Bell, J. Craig Mudgc and John F. McNamara. Computer Engineering a DEC View of Hardware 
Systems Design. Digital Press, 1978. 

5. M. Bcn-Ari. Principles of Concurrent Programming. Prentice-Hall, 1982. 

6. Jon Louis Bentley. Writing Efficient Programs. Prentice-Hall, Inc., 1982. 

7. Jon Louis Bentley. "Programming Pearls.'1 Communications of the ACM 26, 8 (August 1983). Regular 
column. 

8. Garrett Birkhoff and Thomas C. Bartcc. Modem Applied Algebra. McGraw-Hill, 1970. 

9. Barry W. Boehm. Software Engineering Economics. Prentice-Hall, Inc, 1981. 

10. J. A. Bondy and U. S. R. Murty. Graph Theory with Applications. American Elsevier, 1976. 

11. G.S. Boolos and R.C. Jeffrey. Computabiliiy and Logic. Cambridge University Press, 1974. 

12. Frederick P. Brooks, Jr.. The Mythical Man-month: Essays on Software Engineering. Addison-Wesley, 
1975. 

13. Michale J. Clancy and Donald E. Knuth. A Programming and Problem-Solving Seminar. Tech. Rept 
Technical Report Stan-CS-77-606, Stanford University, April, 1977. 

14. N.J. Cutland. Computabiliiy: An Introduction to Recursive Function Theory. Cambridge University Press, 
1980. 

15. O.J. Dahl, E.W. Dijkstra, and C.A.R. Hoare. Structured Programming. Academic Press, 1982. 

16. C.J. Date. The System Programming Series: An Introduction to Database Systems. Addison-Wesley, 
Reading, MA, 1981. 

17. C.J. Date. The System Programming Series: An Introduction to Database Systems Volume 2. Addison-
Wesley, Reading, MA, 1983. 

18. E.W. Dijkstra. Co-operating Sequential Processes. In F. Genuys, Ed., Programming Languages, 
Academic Press, 1968, pp. 43-112. 

19. Edsger W. Dijkstra. A Discipline of Programming^ Prentice-Hall, Inc., 1976. 

20. R.G. Dromey. How to Solve it by Computer. Prentice-Hall, 1982. 

21. H. Enderton. A Mathematical Introduction to Logic. Academic Press, 1972. 



AN UNDERGRADUATE COMPUTER SCIENCE: CURRICULUM EOR THE 1980S 123 

22. Lawrence Ron, Paul N. Hilfingcr, Mary Shaw and Wm. A. Wulf. A Fundamental Computer Science 
Course that Unifies Theory and Practice. Proceedings of the SIGCSK/CSA Technical Symposium of 
Computer Science Education, February, 1978, pp. 255-259. 

23. J.D. Foley and A. Van Dam. Fundamentals of Interactive Computer Graphics. Addison-Wcslcy, 1982. 

24. Michael R. Garcy and David S. Johnson. Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman and Company, 1979. 

25. Judith L. Gcrsting. Mathematical Structures for Computer Science. W.H. Freeman, 1982. 

26. M J . C Gordon. The Denotational Description of Programming Languages. Springer-Verlag, 1979. 

27. David Grics. Compiler Construction for Digital Computers. Wiley, 1971. 

28. David Grics. The Science of Programming. Springer- Verlag, 1981. 

29. Ralph E. Griswold and Madge T. Griswold. A SNOBOL4 Primer. Prcnticc-Hall, Inc, 1973. 

30. A.N. Habcrmann. Introduction to Operating System Design. Science Research Associates, Inc., 1976. 

31. Frank Harary. Graph Theory. Addison-Weslcy, 1969. 

32. John R. Hayes. The Complete Problem Solver. Franklin Institute Press, 1981. 

33. Peter Hibbard, Andy Hisgen, Jonadian Rosenberg, Mary Shaw, and Mark Sherman. Studies in Ada 
Style. Springer-Verlag, 1981. 

34. Paul N. Hilfinger, Mary Shaw, Wm. A. Wulf and Lawrence Fion. Introducing "Theory" in die Second 
Programming Course. Proceedings of the Ninth SIGCSE Technical Symposium, August, 1978. 

35. C A.R. Hoare. "Communicating Sequential Processes." Communications of the ACM 21, 8 (August 
1978), 666-677. 

36. R.C. Holt, E.D. Lazowska, G.S. Graham and M.A. Scott. Structured Concurrent Programming with 
Operating Systems Applications. Addison-Wesley, 1978. 

37. J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory Languages and Computation. Addison-
Wesley, 1979. 

38. Elaine Kant. "A Semester Course in Software Engineering." Software Engineering Notes <5,4 (August 
1981), 52-76. 

39. B.W. Kernighan and P.J. Plauger. Software Tools in Pascal Addison-Wesley, 1981. 

40. Donald E. Knuth. The Art of Computer Programming. Volume 1: Fundamental Algorithms. Addison-
Wesley, 1973. 

41. Donald E. Knuth. The Art of Computer Programming. Volume 3: Sorting and Searching. Addison-
Wesley, 1973. 

42. Donald E. Knuth and Allan A. Milldr. A Programming and Problem-Solving Seminar. Tech. Rept. 
Technical Report Stan-CS-81-863, Stanford University, June, 1981. 



AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 1980S 124 

43. Donald 11. Knuth. The Art of Computer Programming. Volume 2: Seminumerical Algorithms. Addison-
Wesley, 1981. 

44. Imrc Lakatos. Proofs and Refutations: The Logic of Mathematical Discovery. Cambridge University 
Press, 1976. 

45. Butler W. Lampson. Hints for Computer System Design. Proceedings of Symposium on Operating 
System Principles, Association for Computing Machinery, 1983, to appear. 

46. Eugene L. Lawler. Combinatorial Optimization: Networks and Matroids. Holt, Rinchart, and Winston, 
1976. 

47. Henry Lcdgard and Michael Marcotty. The Programming Languge Landscape. Science Research 
Associates, 1981. 

48. H.R. Lewis and C.H. Papadimitriou. Elements of the Theory1 of Computation. Prentice-Hall, 1981. 

49. C.L. Liu. Introduction to Combinatorial Mathematics. McGraw-Hill, 1968. 

50. C.L. Liu. Elements of Discrete Mathematics. McGraw :Hill, 1977. 

51. Bruce J. MacLennan. Principles of Programming Languages: Design, Evaluation, and Implementation. 
Holt, Rinchart, Winston, 1969. 

52. Zohar Manna. Mathematical Theory of Computation. McGraw-Hill, 1974. 

53. Carver Mead and Lynn Conway. Introduction to VLSI Systems. Addison-Wesley, 1980. 

54. Marvin Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, .1.967. 

55. Glenford J. Myers. Software Reliability Principles and Practices. Wiley Interscience, 1976. 

56. Glenford J. Myers. Composite/Structured Design. Van Nostrand Reinhold, 1978. 

57. William M. Newman and Robert F. Sproull. Principles of Interactive Computer Graphics. McGraw-Hill, 
1979. 

58. J.E. Nicholls. The Structure and Design of Programming Languages. Addison-Wesley, 1975. 

59. Sandra Pakin. APL\360 Reference Manual, Second Edition Science Research Associates, Inc., 1972. 

60. Christos H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and Complexity. 
Prentice-Hall, 1982. 

61. Frank W. Paul, Donald L. Feucht, B.R. Teare, Jr., Charles P. Ncuman and David Tuma. Analysis, 
Synthesis and Evaluation - Adventures in Professional Engineering Problem Solving. Proceedings of the 
Fifth Annual Frontiers in Education Conference, IEEE and die Amer. Soc. for Engr. Ed., October, 1975, pp. 
244-251. . 

62. George Polya. Mathematical Discovery. John Wiley and Sons, 1962. 

63. George Polya. How to Solve It. Princeton University Press, 1973. 

64. Terrcnce W. Pratt. Programming Languages: Design and Implementation (second edition). Prentice-Hall, 
Inc., 1984. 



AN U N O F R G R AI) U A T F C O MI > UT F R SCIF.NCF CURRICULUM I DR Till« 1980S 125 

65. Edward M. Rcingold, Jurg Nicvcrgclt, and Narsingh Deo. Combinatorial Algorithms: Theory and 
Practice. Prentice-Hall, 1977. 

66. Elaine Rich. Artificial Intelligence. McGraw-Hill, 1983. 

67. H. Rogers. Theory^ of Recursive Functions and Effective Compulability. McGraw-Hill, 1967. 

68. Moshe F. Rubinstein. Patterns of Problem Solving. Prcnticc-Hall, Inc., 1975. 

69. Roger C. Schank and Christopher K. Riesbcck. Inside Computer Understanding. Lawrence Erlbaum 
Associates, 1981. 

70. Robert Scdgcwick. Algorithms. Addison-Wesley, 1983. 

71. Martin Shooman. Software Engineering. McGraw-Hill, 1983. 

72. Daniel P. Sicwiorek, C. Gordon Bell, and Allen Newell. Computer Structures: Principles and Examples. 
McGraw-Hill, 1982. 

73. D.F. Stanatand D.F. McAlister. Discrete Mathematics in Computer Science. Prentice-Hall, Inc., 1977. 

74. H.S. Stone. Discrete Mathematical Structures and Their Applications. Science Research Associates, Inc., 
1973. 

75. Joseph E. Stoy. Denotational Semantics: The Scott-Strachey Approach To Programming Language 
Theory. MIT Press, 1977. 

76. Andrew S. Tancnbaum. Computer Networks. Prentice-Hall, Engelwood Cliffs, NJ, 1981. 

77. Pv.D. Tennent. Principles of Programming Languages. Prentice-Hall, 1981. 

78. J.P. Tremblay and R.P. Manohar. Discrete Mathematical Structures With Applications to Computer 
Science. McGraw-Hill, 1975. 

79. Jeffrey D, Ullman. Principles of Database Systems. Computer Science Press, 1982. 

80. Jeffrey D. Ullman. Computational Aspects of VLSI. Computer Science Press, 1984. 

81. Chris Van Wyk and Donald E. Knuth. A Programming and Problem-Solving Seminar. Tech. RepL 
Technical Report Stan-CS-79-707, Stanford University, January, 1979. 

82. D. vanDalen. Logic and Structure. Springer- Verlag, 1980. 

83. Richard L. Wexclblat, editor. History of Programming Languages. Academic Press, 1981. 

84. Wayne A. Wickelgren. How to Solve Problems. W.H. Freeman and Company, 1974. 

85. Patrick Henry Winston and Ikrthold Klaus Paul Horn.' LISP. Addison-Wesley, Reading, Mass, 1981. 

86. Niklaus Wirth. Algorithms + Data Structures = Programs. Prentice-Hall, 1976. 

87. William Wulf, Richard K. Johnsson, Charles B. Weinstock, Steven O. Hobbs, and Charles M. Geschke. 
The Design of an Optimizing Compiler. American Elsevier Publishing Co., 1975. 

88. William A. Wulf, Mary Shaw, Paul N. Hilfinger, and Lawrence Flon. Fundamental Structures of 
Computer Science. Addison-Wesley, 1981. 



AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM I-OR Till« 1980S 126 

89. Edward Yourdon and Larry L. Constantinc. Structured Design Fundamentals of a Discipline of Computer 
Program and Systems Design. Prcntice-Hall, 1979. 

90. Marvin V. Zclkowitz, and Alan C. Shaw, and John D. Gannon. Principles of Software Engineering and 
Design. Prentice-Hall, 1979. 


