NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



Workshop on Multiprocessors
for High Performance
Paralle! Computation

Sponsored by
Carnegie-Mellon University
and
The National Science Foundation*

Edited by
Anita K. Jones, Zary Segall, Chuck Seitz and Andrew Wilson

Seven Springs
Champion, Pennsylvania
June 27-29, 1883

Steering Committee:
B. Chemn, A. Jones, Z. Segall, C. Seitz

Local Arrangement Committee:
B. Tomchik, A. Wilson

*this work was supported by the National Science Foundation, Computer Engineering- Program
under grant number ECS.-8215-4686,



Scope and Purpose of the Workshop

For three days in late June, 1983, 44 computer scientists and engineers, mainly active researchers
in highly parallel computer systems, met at Seven Springs,. Pennsylvania. The purpose of our meeting
was to assess the status of research in multiprocessor systems that provide high performance,
parailel computation, and to determine what future research activities would be most productive. The
National Science Foundation and Carnegie-Mellon University sponsored the meeting of this group.

This report summarizes the discussion that took place and the conclusions that were reached.

interest in multiprocessor architectures had grown steadily over the past decade and a haif prior to
the meeting. Multiprocessor systems appeared to offer many benefits, particularly better absolute
performance and better cost/performance than most competing architectures. VLS| technology
offered the potential for building substantially larger computers in the form of multiprocessors to solve
problems that present computers, as well as predicted future sequential machines, were too smail to
solve in a timely way. Many architecture designs for multiprocessors exist -- on paper. Only a few
machines with 20 or more processors and a high degree of parallelism had actually been buiit at the

time of the workshop. But initial experimental results from these parailet computers were available.

The increasing need for effective parallel computing engines, coupled with recent availability of
actual experimental observation meant that it was important at this time, mid 1883, to focus the
research in this field. It was appropriate for the designers, experimenters and potential users of
paraltel computer to take stock and examine the following issues:

e What are the most important experiments to perform in the existing multiprocessor
laboratories, and how can the experimenters best communicate the resuits so others can
use them?

e How can one evaluate newly proposed software/hardware architectures and the
corresponding parallel algorithms in light of those findings?

* What are the trade-offs in specializing paralle! machines to important classes of large-
scale applications such as numerical computation, symbolic computation and database.

This workshop was a forum to address these issues.

Prior to the meeting, attendees submitted position statements; these were distributed at the meeting
to act as a catalyst for discussion and exchange of opinion. A number of informal presentations were
made, most based on position papers. In addition, the researchers separated into five discussion
groups. The mechanism to determine discussion group topics was as follows: a large number of



topics were "nominated”. A group was formed to discuss that topic if a critical size of above five
people couid be formed. Individuals were members of only one group. No attempt was made to
"balance” the group topics to cover the wide spectrum of issues that might be discussed. The choice
of group topics thus represents a statement about what this group of researchers felt was important.
Each discussion group created a summary of their deliberations; the summaries follow in this
document.

Most groups chose to make recommendations of what research should have the highest priority in

the near future. The recommendations are summarized in the Conclusion of this document.



1. The Operating Systems Working Group

lvor Durham, CMU (Group leader and author)
Faye Briggs, Rice
Ingrid Bucher, Los Alamos National Laboratory
Robert Jump, Rice
David Shaw, Columbia,
Pradeep Sindhu, CMU
Alan Smith, University of California at Berkeley

The original charter of this group was to look at four areas: Paratlel [/O architecture,
interconnection structures, building systems from many components, and operating systems. After
some meandering discussion and difficulty in defining what was to be discussed we focused on
identifying operating system issues and briefly explored the question of what could be done to
facilitate the effective exploration of new systems.

1.1 Issues

The following sections describe briefly the areas of concern in developing new cperating systems
for high performance multiprocessors.

1.1.1 Operating System Goals

Our preliminary discussion revealed that there are many views of what software in a system
constitutes an operating system in contrast to other system software. It is essential that the specific
goals for the cperating system be stated clearly and explicitly before any attempt is made at a detailed
design. -

The principal goal for any operating system is to make the system programmable. That is the
operating system must provide a programming interface (environment). The programming
environment must be as straightforward as possibie; complexity in such an environment discourages
programmers from using the system to the greatest effect. Even perceived complexity caused by new
and different notions, such as objects and capabilities, can have a serious impact on pragrammers
who are very familiar with more traditional environments. in multiprocessors, there is inherently more
complexity than with a single processor system because the programmer is now required to attend to
communication and synchronization among multiple processes.

The second major function of an operating system is to manage the resources of the system. This is
particuiarly important in any system that supports concurrent processes which may vie for use of
various resources: memory, I/0 devices, etc.



For a high-performance system the issue arises of whether the system should support more than
one task at a time. Experience suggests that supporting multiple users nzed not be excessively
expensive, particularly in a system that must aiready support multiple processes and shared
resources. The advantage to supporting multiple users is that multiple applications may be developed
simultaneously, but the system may be dedicated to a particular application for a period of time
without excessive operational overhead.

Separating operating system mechanisms from the policies they are used to implement has proved
effective in several systems. The implementation of policies (such as scheduling) may be handled by
software at the application rather than operating system level. This provides considerable flexibility,
particularly with respect to tuning and experimentation. Hence, a goal for an operating system is to
provide mechanisms that support the policies that may be needed for various classes of application to
be run on the system.

An operating system needs to provide instrumentation mechanisms--in combination with the
hardware and firmware--to aid in monitoring, debugging, and tuning applications. Specific goals
must be chosen for the flexibility and cost of such mechanisms. '

A multiprocessor has the potential for being very reliable because of the redundancy provided by
the hardware. However, achieving this potential is the subject of considerable current effort. In
applications that require massive amounts of computation, the cost of a ¢rash can be quite high given
the large amounts of computation that may be lost. Reliability must be approached along several
dimensions in an operating system. The operating system needs to be able to adapt easily to changes
in the hardware configuration. The designers must choose whether to provide this adaptability
dynamically or semi-statically--only when the system is loaded, for example. A dynamic approach is
likely to be more complex. The operating system ought to be fauit-tolerant according to some
measure. For exampie, it ought to be able to survive transient hardware errors and mask as many of
them as possible to prolong the processing time available to the application programs. On tha other
hand, the availability of the system may be of more importance. That is, it may be more important to
be able to crash the system and restore full service in a few minutes than to provide longer periods of
service with degraded functionality or performance. The goals for the operating systemn must include
a reliability policy to guide the designers' trade-offs with respect to achieving a balance between
fault-tolerance and availability.



1.1.2 Complexity and Humber of Processors

The complexity (power) and the number of components in a system influence the design of a system
along a number dimensions. The modularity and structure of the system are influenced by the need,
or lack thereof, to have the entire functionality of the system available to alt of the processors in the
system. Trade-offs must be made between the space required to replicate services and the cost of

communicating requests between client and server processors for particular services.

The (in)hcmogeneity of the system components will influence the design of the programmer
intertace. When components are inhomogeneous, the task of presenting a uniform interface is
potentially more complicated. Resource management is complicated by the variety of costs
associated with different units of a particular resource. For example, in a system such as Cm* there is
a hierarchy of costs associated with accessing different memories in the system depending on the
relative tocation of the source and destination of the particular reference. These costs must be
acknowledged in management policies and in the tuning mechanisms that heip the programmer to
optimize the costs for a particular application.

The functionaiity of a multiprocessor operating system does not differ significantly from that of a
system that supports multiple concurrent processes. The additional functionaiity to support
communication and synchronization is independent of the number of processors in the system. The
variety of mechanisms will depend on the power of the individual system companents and the
frequency of their use. For example, communicating through shared memary using busy-wzit locks
may be preferred over a relatively expensive message mechanism.

As the number of components grows, so does the number of the components that are likely to be
inoperative at any moment in time. To make effective use of the system, the operating system must be
sufficiently flexible to accommodate and mask the loss of particular components whenever feasible.
That is, the system should present to the programmer or user a logical machine configuration in
which identical components may be substituted by the operating system without affecting the
apglication programs. For example, the operating system may have to adjust the memory magping to
avoid using a particular memory unit that has performed unreliably. Of course, this may be the
damain only of the memory management sub-system not the core of the operating system. If changes
in the availability of particular components can be accommodated dynamically, the overall periad in
which the system can perform its duties is extended. In particuiar the designers must trade between
two reliability extremes: fault-tolerance to provide some level of perhaps degraded service after some
unit has failed and availability which is the proportion of time that the systern is able to perform its
duties properly. In some cases it may be more appropriate to have the system crash and be reloaded
rapidly than to have its operation slowed down by (say) 20% because of the loss of some memaory.



1.1.3 Common Operating System Abstracticns

Is there a common set of abstractions that constitute a minimal operating system and is this set
dependent on a specific architecture? If not. could various implementations of the set of abstractions
then be shared across various multiprocessor systems, thereby distributing the development effort?
The abstractions need to be characterized in terms of functionality, performance, cost, and reliability.
One possible set of abstractions is: Memory, Processors, Static Software Units (e.q. Modules, Task
Forces), Dynamic Software Units {e.g. processes). Synchronization {e.g. Monitors), Communication
(e.g. Mailboxes, [/0), and Monitering/Debugging probes.

1.1.4 Abstraction versus Transparency

How much of the raw hardware should be visible to’the progrémmer or user? An alternative view of
the same problem is how much does it cost to hide the machine details from the programmer and how
much benefit is to be obtained by doing so. Experience has shown that the desirable level of
abstraction or transparency may depend on the particular stage of development of an application. In
the early stages in which the functionality of the application is being developed, an abstract machine
is sufficient. In the later stages when performance is more important to the programmer, a much
more transparent view of the machine is needed so that unnecessary overheads may be avoided and
performance optimized. The principal argument here is whether the pregrammer wants or needs to
see details of the machine that are not relevant to the immediate task at hand.

1.1.5 Potentially Expensive versus Desirab!e Features

What features of an operating system are desirable, but may impact the cverall system performance
to the extent that customers needing every last ounce of performance would not want them? Several

candidate areas here are fault-tolerance, programmability, and dynamic task structura.

Fault-tolerance requires some of the system resources be used for redundancy rather than for the
application. Some components of a fauit-tolerant design need not be expensive. For example, the
flexibility to accommodate to a variety of hardware configurations does not incur a dynamic cost if the
configuration is constructed when the system is loaded. Dynamic changes in the configuration are
more difficult to accommodate, but the costs may be incurred only when such a change occurs.
Other measures such as checkpointing or redundant secondary storage access incur dynamic costs
that must be borne by the application.

Programmability may incur an overhead that may not be acceptabie. One of the principal toois that
supports modern programming methodology is a type mechanism to enforce the integrity of different



classes of data. Objects of a specific class (type) may be manipulated only by the functions defined
for that class. In addition to enforcing object integrity the typing mechanism can also support other
operations such as garbage collection (where objects need to be tagged to indicate whether they can
be accessed or not). The enforcement of type constraints must be efficient to avoid an unacceptable
dynamic overhead.

Supporting dynamic task structures may require mechanisms to resolve constraints on the
components of the task. For example the Medusa operating system provides a notion of
co-scheduling whic_ﬁ attempts to schedule all of the active processes in a particular tagk at the same
time. If the number of processes changes dynamically, the resource constraints required to satisfy

policies such as co-scheduling must be re-evaluated, thus incurring some dynamic overhead.

Question: Can some guidelines be established for trading raw performance for desirable system
attributes. What arguments would satisfy customers who need to squeeze every last application cycle
out of their machine?

1.1.68 Opevating System Structure

How is the operating system structure influenced by the hardware architecture? In systems that
support the Client and Server process models, much of the operating system work can be handled in
the same was as ordinary application programs, leaving the basic operating system to provide the
mechanisms to support Client/Server interactions. The principal issue for the designer here is how to
make the various services available to all processes in the system that may need those services, How.
many server processes are required for a particular service? Such performance questions can best
be answered by monitoring the system behavior and tuning it. Provided that the services are
designed with the potential for replication in mind, no extra work is required to handle changes in
load and performance requirements. It is the job of the operating system to make the variations in
how a particular service is provided transparent to the appiication programmer. The days of the
monolithic operating system should soon be past, at least for muitiprocessors. |

-1.1.7 Name Space (Addressing) Architecture

What is the structure of the space of names available to a programmer for identifying data. Shouid
that structure be a linear array of virtual addresses, a graph structure of objects, or a combination of
both? Should the programmer see the world from within individual processes or the task force as a
whole. The chosen view determines whether there is limited sharing (objects owned only the by task
are visible to a process), controlled sharing (any object for which the process can obtain an



unforgeable name may be accessed), unlimited sharing (all processes can access potentially all

memory locations), or no direct sharing (information is exchanged more formaily through mailboxes).

1.2 Design Pr.inciplés

Several guiding principles were identified for the design of multiprocessor operating systems. While

the list is not necessarily comprehensive, the principles deserve serious consideration:

» The system must be designed as the integration of hardware, firmware, and software
components. Therefore the three classes of component must be developed
simultaneously. In particular it is highly undesirable that the hardware be designed
without due consideration for how it is to be programmed.

» Policies and mechanisms should be separated. The operating system should provide the
mechanism necessary to implement the range of policies envisioned for system or
application-level software. (This approach also supports a world composed of client and
server processes, in which the servers implement the management policies for the
resources they make available to their clients. This approach is particularly convenient in
multiple-process systems.)

e Functionality should be separable from performance. That is a programmer should be
able to develop software initially without full consideration of its ultimate perfermance,
using only a subset of the system resources during development (2 rather than 64
processors, for exampla). Tuning tcols must be provided outside the apglication to help
realize the full performance potential of the application. These tools must help with the
fundamental problems of placement of code and data and assignment of processes to
processars. This principle simplifies software development and encourages flexibility in
the design of applications (allowing for variability in the avaiiable resources, for example).

s The system functions must be logically uniform. The foliowing are examples of logical
uniformity:

o Asynchronous-Function Invocation: A client should not need to know how and
where a server is implemented to make use of a particular service.

o Synchronous-Function invocation: An application should not be able to distinguish
functions implemenied in software from functions implemented in hardware,
firmware, or software except by their performance.

o Data Communication Functions: Basic /O primitives should be device
independent, also allowing the device to be another program. For example pipes
and 170 streams may be substituted for each other in Unix'™ aflowing programs to
be connected together to form more complex programs. (This is ideal for a
multiprocessor environment.)



1.3 Potential Experiments for Existing Test-Beds

The principal area in which experiments may be performed on existing test-bed systems is the
design of effective interfaces between the system and either programmers or end users. Current
work described to the workshop is already beginning this task. In particular the monitoring,
debugging, and tuning aspects of software development need to be integrated into a convenient and
uniform interface. Interfaces for multiprocessor systems need to be more sophisticated than for
uniprocessor systems in that a programmer or user is interested in a collection of concurrent

activities. This is an area in which graphics may play an increasingly important role.

1.4 For the Future

Probably the most important problem facing the designers of a new muitiprocessor architecture and
system is now to achieve the ideal integration across hardware, firmware, and software, All too often
the design of the software is delayed until most of the hardware design is complete or even the
implemer.ation is completed before software can be tested. In discussing this probiem, the group
identificd some potential kenefits that might be obtained from the establishment of an
Experimental-Muitiprocessor Laboratory. The notion is similar to that of the broad test-beds
proposed elsewhere during the workshop. Particular goa's that are important to the successful use of
such a iaboratory inciude:

¢ The Ilaboratory should provide an environment in which researchers can develop
complete new multiprocessor systems from architectural concepts to new application
algorithms, but without necessarily having to construct a physical feasibility
demonstration, at least initially.

s The laboratory should provide a small, "canonical® multiprocessor systam with software
for constructing experiments in systems and evaluating them. This includes the ability to
build emuiators for new architectures that are sufficiently powerful to support the
development of software for the new system. The provision of a particular multiprocessor
sand-box would have several advantages:

o A common, shared set of software tools that support a variety of research efforts,
Monitoring, data collection, and debugging tools are of prime importance.

o A shared support effort to reduce the support overhead required when building
one's own demonstration machine,

o A complete system that may be replicated at some future time depending on the
demand for a facility closer to particular groups of researchers.

o Emulator components may be shared across research efforts to enable the rapid
construction of future emulators. For example emulators for different
interconnection structures cculd be developed and used as off-the-shelf emulator
components.



10

o Using one multiprocessor system (however imperfect) to develop ones own ideas
can help one to apopreciate the difficulties and issues in actually using a
multiprocessor.

e The laboratory system should be easily accessible to research communities interested in
multiprocessor research. In particular, a convenient network is very important. if the
demand is sufficiently high the physical resources of the laboratory could be replicated to
form "regional” laboratories.

+ The initial laboratory should be used not only to develop a common working environment
for multiprocessor researchers, but also to act as a depository for accumulated wisdom,
experience, experimental results and so forth. The staff of the laboratory would then be
equipped to provide a consuiting service to application developers.

The principal problem with such laboratory proposals seems to be human rather than technological:
Researches prefer to build their own systems. Much greater control can be exercised over a system
in one’s own environment and one is not at the mercy of "ill-considered" decisions on the part of the
maintainers of a distant facility. The goals described above may help to alleviate this problem, but the
problem must be considered when any new multiprocessor research involving the construction of

nevs machines is proposed.



1

2. The Performance Working Group

George Almasi, IBM
Gerald Estrin, UCLA (Group leader and author)
Glenn Ricart, U of Maryland
Zary Seqail, CMU
Richard Snodgrass, U of N. Carolina
Dalibor Vrsalovic, CMU
Andrew Wilson, CMU

2.1 introduction

The need for a hundredfold increase in performance is the driving force behind the current
accelerated expenditure of material and intellectual resources to realize “next" generation
computers. Some of the innovative proposed multiprocessor architectures are certainly laudatory;
however a lack of clarity concerning performance objectives and performance predictions is evident.
In particular, the impact of that lack on the design and development cycle can be disastrous. The
Performance Working Group saw the need to introduce systematic methods and automation in order

to face the central issua:

How can we shorten the design and development cycle for new multiprocessar system
architectures. .. assuming that performance goais are establishad during a requiraments
analysis phase with possible modification during design and development?

Given the above goal, three fundamental aspects were identified:

e Prediction of behavior during system design.
* Evaluation of behavior during system development.

* Measurement of behavior during system operation.

2.2 Issues in Multiprocessor Performance Evaluation

The Working Group then raised a series of questions relating to each aspect of performance
evaluation. These issues formed the framework for subsequent recommendations madse by the group.

2.2.1 Prediction of Behavior During Design

How can we adequately model multiprocessor systems and parallel computation so that we can
predict performance of any proposed system . . . and either reject the proposed system or continue
deeper into the costly design and development process?



12
How can we characterize parallel processor workloads?

2.2.2 Evaluation During Development

How can we create a development testbed for parallel processor systems?

What meaningful set of tools will provide effective automated suppart for evaluation of paraillel
processor systems and subsystems during realization of a proposed architecture?

2.2.3 Measurement During Operation

The final test of prediction during design, and evaiuation during development, is observation of
behavior of the operating realized system. ‘

is it [easible to formulate natural and synthetic benchmarks which are truly representative of
computational! loads to be handled by multiprocessor systems?

Is it possible, at reasonabie cost, to observe the behavior of highly paraliel systems?

2.3 Recommendations of the Performance Working Group

2.3.1 Prediction During Design

We recommend support of research seeking improved models of multiprocessor systems and
improved modeis of parallel computation so that it becomes more reasonable to predict performance
and also to deal with validation and verification issues.

We recommend support of research seeking improved methods to characterize workloads for
multiprocessor systems.

We recommend support of experiments to determine how far we are from being able to predict
performance of complex systems executing highly parallel computation.

2.3.2 Evaluation During Development

We recommend design and development of multiprocessor system testbeds to be used during
development by universities, research institutions and industry.

We recommend development of a methodotogy for design of experiments to be used in such
evaluation environmenis.



13

We recommend formation of a task force whose charge is to determine how to satisfy the national

need for multiprocessor system testbeds.

We recommend support of research intc methods for evaluation of jestbeds.

2.3.3 Measurement During Operation

We recommend support of research seeking methods for specifying benchmarks in a system-

independent manner.

We recommend support of research into observability of multiprocessor systems and into analysis
of their behavior.

We recommend development of a knowledge base about benchmark programs and an associated
query system. We recommend formation of an interest group to conduct network dialogs and develop
critical annotation of the benchmarks.



3. The Models of Parailel Computation Working
Group

Jim Browne, UT Austin
George Hetrick, DEC
Mal Kalos, NYU
'Simon Kasif, U. Maryland

Joe Mohan, CMU
Dan Ostapko, 1BM

Larry Rudolph, CMU

Leah Slegel, Purdue (Group leader and author)

3.1 Fundamental Issues

We view the problem of mapping a problem to an architecture as consisting of (at least) two levels: a
high level model based on what might be called a “virtual machine” and a lower level model which
deals with specific details of an architecture. Our initial concern is with the high level model. Specific
issues include:

1. What constitutes an appropriate high level model of parallel computation? s there a
single model or are there several viable models? Among possibilities are the

paracomputer (shared memcry) model, mescage passing tnodels, and data driven
models. It is not immeciately clear if any one model subsumes the others.

2. Language provides one possible means of expressing a high level model. One way of
focusing on parallel computation is to assume the capabilities of a conventional serial
language and examine the constructs needed to support paralielism. Candidates include
provisions for:

e Making data appear in the address space of multiple processors. In the most
general sense, this may include both shared data structures and message passing.

e Process control, through synchronization or other mechanisma.
o Invocation/termination of processes.

o Creation/destruction of processes. This is distinct from invocation/termination,
and impiies a notion of ownership of the process to be created or destroyed.

We are considering the modeling of processes whose execution ¢an be overlapped in
time. However this does not preclude execution on a single processor.

3. It is not clear that the above four capabilities can adequately specify SIMD processing.
For example, there is no way to describe the selective activation/deactivation of
individual processors within a single process.

A number of attributes which will bear on the efficiency of an implementation are not



15

captured by the general model. Exanples are the differences arising from message
passing vs. shared memory communications and use of local {by some measure) vs.
long-distance communications. This suggests that there may appropriately be an
intermediate level modet which does not deal with all of the detail of the specific low level
model, but which does capture those gross properties of an architecture which pertain to
efficiency. At what level of abstraction can the maodel still provide usefut information?

4. Is there a distinction between models and languages? !f so, what is the nature of this
distinction?

3.2 What research needs to be done?

1. The essential research involves estabiishing what the appropriate modei(s) are. Towards
that end, specific models should be defined and compared with respect to inclusion {can
one model be expressed by another?), expressiveness, and naturalness.

2. What modeis do capiure properties rejated to efficiéncy‘?

3. Many questions pertain to deciding what is properly modeled at what level. Examples:

e Consider a tree communication structure. s that a feature of the highest level or of
a lower level model?

» At what level is the SIMD/MIMD distinction most appropriately madeled?

¢ At what level should notions such as data encapsulation and ownership be
modeled?

4. A variety of significant applications and aigorithms should be expressed in terms of
languages and/or models of computation. This will allow evaluation of the utility of the
language with respect to expressing parallel formulations of significant problems.

5. Use the analyses of 4 to define the parallel abstract architectures which are suitable
targets for translation (compilation) of languages. Study how these machines may be
implemented on hardware realizable architectures.

8. Evaluate the relative effectiveness of general purpose and problem specific models of
parallel computations.
3.3 Experiments on existing systems

In light of the issues addressed in 3.1 and the questions answered in 3.2, write aigorithms in the high

level languages for existing and proposed machines. Evaluate the correspondence between the
models and the actual programs.



18

3.4 Summary

The issue of models is clearly an important one, and equally clearly one in which there exists a
broad spectrum of views. We are each drawn to the model which most closely approximates our own
work. Substantial research is needed to consider the full range of possible models against a wide

variety of applications.



17

4. The Large-Scale Computations’
Characteristics Group

B. Cherit, NSF
A. Despain, University of California at Berkeley
L. Forgy, CMU
R.M. Lea, University of California at Berkeley
G.J. Lipovski, University of Texas,
A. McAulay, Texas inctruments

B. Rau, Elexsi

R. Warren, Digital

H.J. Siegel, Purdue

H.S. Stone, University of Massachusetts, (Group leader and author}

The committee attempted to characterize the nature of large-scale computations in order to
discover what kinds of computer architectures are suited to these computations. Our findings, in
general, are that there are significant differences among the various kinds of large-scale
computations. It may be quite reasonabie to develop specialized architectures that are weil-suited to
particuiat classes of problems. It is also rather unlikely that a single general-purpose architecture will
suffice for all large-scale problems. To simplify the characterization of computations, the committee
focused on three major areas, which in turn are subdivided into specialized areas. The areas
reported here are the following:

1. Numeric

a. Mesh problems

b. Nonregular (particle-in-cell and similar problems)
Symboiic
a. Expert System, Knowledge-base System

b. Combinatorial Search (theorem prover, etc.)

¢. Interactive Al
i. Vision

it. Speech Recognition and Speech Understanding
iil. Robotics
2. Data Base

The motivation for partitioning programs as given above is that the numeric praograms appear to
have qualitatively different sets of requireménts than do the symbolic programs. Perhaps the



18

characteristics can be exploited in parallel maéhines to increase computation speed, and if so,
numeric and symbolic probiems may iead to different parallel architectures. But in recent years, as
large-scale prcgrams have grown more sophisticated, many such programs have taken on
characteristics that lie in two or more of the partitions identiied above. For example, most expert
systems contain a data-base subsystem, and thus are not purely symbolic nor purely data base in
character.

Given the possible mixture of different types of computations in a large-scale program, it may well
be desirable to use specialized processors for each distinct computation type. For example, a
machine for expert systems might well have data-base processors for the data-base component and
logic or inference-criented architectures for symbolic computations. Therefore, we have separated
the world of large-scals problems into numeric, symbolic, and data base, and we acknowledge that
gpecific programs many contain any two or all three types of programs. '

4.1 Numeric

Table 1 shows the chal_'acteristic of numeric programs as identified by the committee. Repetition in
these programs is normally associated with nested loops. The table suggests that the computations
have a low complexity, which means that computation time grows as a small polynomial in the size of
the input data. This suggests that the problems are large because there are many input data, and
therefore, these problems require a high-bandwidth 170 architecture. H the input data size is very
large, then it is likely that small portions of the input data will be bought into local memories for
computational purposes as they are needed, and therefore, there will be additional 1/Q operatians
required for data movement between local and auxiliary memory, over and above the extensive 1/0
required for initial inpdt and final output. This additional 1/0 exacerbates the 1/0 bottleneck. We
note that some large-scale numerical codes may have less need for high-speed 1/Q than others, but
except for processors that are very specialized to those particular problems, high-speed numerical
processors will be structured to support a very high 1/0 bandwidth.

Table 1 shows that the numerical codes appear to be relatively easy to analyze. The computational
bottieneck is usually readily identifiable, and in the case of mesh calculations, the bottleneck is an
inner loop that operates on data in a predictable fashion. These characteristics have led to the early
implementation of pipeline and array processors, because these architectures were believed to be
capable of exploiting the behavior of large-scale mesh-oriented calculations. But program analysis
and studies of actual implementations suggest that large-scale numerical computations have a
sufficiently large percentage of data dependencies to reduce the effectiveness of SIMD architectures



19

to the point where they become unaitractive. New approaches might generalize the SIMD
architecture to enhance its capability to support data-dependent numerical computations including
the nonmesh calculations. Or the approaches might abandon the SIMD approach to look toward
MIMD architectures for dealing with large-scale numerical algorithms. Table 1 indicates that the latter
approaéh may well be feasible because the numerical program appears to be partitionable, and
amenable to implementation on MIMD architectures.

The nonmesh calculations described in Table 1 actually refer to computations that may be derived
from mesh representations, but for one reason or another the mesh represeniation does not lead to
lock-step parallelism or to highly predicatabie, highly repetitive computations. One important
representative of this class of probiems is the particle-in-cell (PIC) Algorithm that appears to be
ill-suited to SIMD machines because of the data dependencies within the inner loop. Table 1 shows
the data dependency to be the primary characteristic lhat distinguishes this class from the mesh
problems. Also included in the nonmesh class is the class of sparse matrix operations, mainly
because the locations of the ncnzero elements are not readily predictable in many cases. The
primary way to gain efficiency is to be able to focus on the nonzero elements as much as possible,
and this has proven to be difficult to do for nearly all architectures studied to date.

4.2 Symbolic Computations

Table 2 summarizes the characteristics of two typical kinds of symboiic operations, the expert
system and the combinatorial searcher such as a theorem prover. The committee believes that the
programs for the two classes of system; may actually have many characteristics in common. The
differences lie in the execution of the programs. The combinatorial searchers search a decision tree;
sometimes exhaustive case-by-case examination is required. The algorithms that make up this class
generally cannot rely on tricks or shortcuts to reduce total computational complexity to very slowly
growing functions of problem size, although heuristic approaches have apparently been helpful. On
the contrary, expert systems apparentiy do successfully reduce the potentially large amount of
computation to something more manageable because they rely on expert knowledge to follow the
more promising paths in the decision tree. In comparing the two types of programs, note that Table 2
shows the compiexity of the theorem provers and other combinatorial algorithms to be greater than
that of the expert system. There are no published data on which the committee can rely for this
opinion, but this result reflects the coflective intuition of the committee. Because of the greater need
for backtracking in the purely combinatorial algorithms, the supporting architecture should be biased
toward making fast context swaps. This capability will be useful as well for expert systems,but will
probably not be as critical here as for the support of backtracking in combinatorial algorithms.



20

Both types of problems are highly data dependent. Undoubtedly, a small portion of code might
constitute the inner loop of the computation in either case, but data accessed by that code changes
frequently in time and is rather data dependent. The committee at first described this condition as
"poor predictability,” but the wording subsequently changed to "unknown predictability.” While it is
certainly true that the data dependencies prevent the programmer from knowing precisely what paths
will be traversed before the code is actually run, it may well be possible to make good predictions of
the future from knowledge of the recent past. Hence, there may be architectures, much like cache
memories, that predict future behavior as a function of past behavior and take advantage of such
predictions to enhance performance.

Both types of programs shown in Table 2 are likely to have a lower ratio of 170 activity in symbolic
computation. Memory management may have a considerable impact on 170 structure, but its
characteristics for symboiic' programs is still not well understood. Unlike numeri¢c programs, the
bottlenecks in symbolic programs are not easily identified. Although some subprograms may be
executed repeatedly, and these could be identified in advance, the specific data used by those
routines is not easily predicted, and thercfore it is very difficult to bring data in advance to the
computations that require the data.

.There appear toc be many opportunities for partitioning éymbolic programs into smailer modules that
could be executed in paraliel. The ability to run parallel partitions does not in itself guarantee high
partormance because a multiprocessor could well spend the bulk of its computational activity on
redundant computations. Hence, although the ease of partitioning makes the multiprocessor
architecture an attractive candidate for symbolic programs, the necessity for limiting the amount of
redundant computation suggests that it may not be an easy task to obtain large speed-ups this way.

Another major difference hetween Tables 1 and 2 is that the numeric codes require a very fast
floating-point engine, whereas the arithmetic for symbalic programs tend to be heavily biased toward
arithmetic comparisons. Also, the symbolic computations, particularly the programs that do many
backtracks, perform a significant number of context switches, which are less likely to occur in the
large-scale numeric codes.

Now consider Table 3, which shows three important types of interactive Artificial Inteiligence
programs. The programs represented by this table have additional properties beyond those given in
Table 2. Architectures for the programs in Table 3 might well contain specialized processors for the
unique aspects of the programs identified in the Table 3 plus other processing capabiiity directed to
the needs identified in Table 2. Note that ail three types of programs described by Table 3 perform
considerable computation while engaged in sensing and controiling real-time activities,



21

4.3 Very iL,arge Data Base

Table 4 indicates the primary characteristics of data-base programs. Note that data-base
characteristics are present throughout the symbolic computations described in the previous section.
Consequently, the data-base aspects of such computations might be partitioned from the symbolic
computations, thereby pe‘rmitting a specialized data-base processor to work in conjunction with a

symbolic processor.

4.4 Summary

To re-iterate, we feel that there are major differences between the various sorts of large-scale
computations. Therefore, developing and using specialized processors for each of the following
computation type seems to be desirabie.

e Numeric types. Large-scale numerical algorithms could feasibly run on MIMD
architectures. Numerica! programs appear to be partitionable and amenable to
implementation on MIMD architectures.

e Symbolic types. Symbolic programs could be partitioned into smailer moduies that
couid be executed in parallel in a multiprocessor. Unfortunately, this partitioning may
result in redundant computations that would slow the finai processing time down.

¢ Al types. Inieractive artificial intelligence programs could run on architectures that
contain specialized processors for their unique aspects and also have processors for
their symbolic computations.

» Data hase types. Partitioning the data base aspects of a symbolic program would allow
a specialized data base processor to work in conjunction with a symbolic processor.

It is unlikely that a single general-purpose processor would suffice for all these large scale
computations.



22

TABLE 1

Characteristics of Numeric Programs

Mesh
Structure : - highly iterative

I1/0-to-compute ratio Tow, O(N)

Computaional Complexity O(N%) or less

Predictability high

Bottlenecks known in advance
Arithmetic . heavy

Data Size very large
Partitionability opportunities, with

schedulable I/0

Nonmesh

highly iterative, with
substantial data
dependency

low, O(N),
less than mesh

O(N%) or less

high

known in advance

heavy

very large

opportunities, but I/0
is irregular



TABLE 2

Characteristics of Symbolic Programs

Structure

Basic step

I/0-to-compute ratio
Computaional Complexity

Predictability
Bottlenecks
Arithmetic
Data Size

Partitionability
Hemory management

Expert System

data dependent,
decision tree
traversal

pattern matching,
possible combin-
ational search;
rules tend to reduce
search

possibly very low

possibly very high

unknown

not known in advanca
comparison intansive
moderate, working
memory unknown
opportunities exist
very complex

Theorem Prover

(Combinational Search)

data dependent,
combinational search,
backtracking

pattern match, change
data, schedula next
step, choose one

possibly
possibly

higher

expert
unknown
not known 1in advance
comparison intensive
moderate, working
memory unknown
opportunities exist
vary complex

very low
vary high,
than for
system



Structure

Other Properties

24

TABLE 3
Characteristics of Vision, Speech and Robotics Programs

Vision

axpert +

real-time +

image processor
{numeric) +

feature extractor
pattern recognition

datd intensive per
data point,

many production
rules

Speech
Understanding

expert +

real-time +

speech processor
{numeric) +

feature expractor
pattern recognition

heavy computation

Robotics

expert +
real-time +
numeric processor
vision system +
feedback control
{sensars and
transducers) +
size and weight
constraints



25

TABLE 4
Characteristics of Very Large Data-Base Programs
Data Size very large
Computation type touches only a small part

of the data, variabls
amount per item accessed

Predictability data-dependent accesses
could hava poor Tocality

Partitionable opportunities exist

Input/Output potentially heavy

Other Index creation, maintenance



. 26

5. The Fine Granularity Working Group

Howard Brauer, 1BM
George Cox, Intel
Lanny Forgy, CMU
Bert Halstead, MIT (Group leader and author)
Carl Hewitt, MIT
Anita Jones, CMU
H.T. Kung, CMU
Chuck Seitz, Caltech
Sal Stolfo, Columbia

5.1 Fine Granularity Defined

The group had some difficulty arriving at a suitable definition of "fine granularity.” Such a definition
was vital, since the group's charter was to consider issues related to fine granularity machines.

Among the proposed definitions were

e Ephemerality of tasks. A fine-granularity machine is characterized by tasks that only
execute a few instructions during their lifetime.

# Frequent communication/interaction between tasks.
» Parallelizing innermost loops. "Fine granularity” is an approach to computation in which
concurrency is sought between executions of the bodies of innermost loops, rather than

outermost loops (this would be "coarse granularity").

e Large communication/computation ratio. Granularity is fine when the amount of
communication is relatively large, compared to the amount cf computation.

¢ "Tight coupling.” This definition attempts to avoid the issue by defining one buzzword in
terms of ancther!

e Large degree of parallelism. Finer granularity programs tend to have a larger number of
concurrent tasks.

¢ Small physical processing node size.
e Short code size for program modules.
e Few bits of state per node, or per program module.
A majority of the working group, though not the chairman, preferred the definition of fine granularity
as "small physical processing node size.” One conclusion from this exercise is that the term "fine

granularity” should be used with caution in the literature, as it tends to mean many different things to
different people.



rig

The working group reached two related conclusions: fine granularity is a relative term (thus the
group did not attempt to define a precise threshold for “fine granularity”), and the granularity
ocbserved may vary- according to oné's point of view, The table below was produced during the
group's meeting, illustrating three levels of detail (application programming level, system software
level, and architecture/hardware level), and showing that the same machine might appear to have
different scales of granularity at these different levels (key: CRAY = Cray-1, DADO = Stolfo’'s DADO
machine, HEP = Denelcor HEP-100, 432 = Inte! 432). )

Granularity: Fine Coarse None
Application level 432 CRAY
HEP DADO
System doftware DADO 432 CRAY
level HEP
—=*" Architecture and HEP 432
. habdware level CRAY
. , DADO

\

The location of many of these machines on the chart is somewhat arbitrary {depending, in
particular, on which definition of “granularity” is used); however, some interesting patterns are
evident. The Cray-1 appears as a sequential machine (as far as correctness is concerned, not
performance) to application and system level software, but its hardware uses pipelining in a way that
can be called fine-grained, according to several of the above proposed definitions. In the case of the
DADO machine, the application language is Prolog, where no parallelism is evident. But system
software and the hardware are both cognizant of a large amount of possible parailelism.

5.2 Issues in Fine Grain Computing

The fundamental issues relating to computing using physically small processing nodes were
identified as follows: )

s Physical communication costs, as well as the desire for more parallelism, favar smaller
and more numerous processing nodes, rather than a small number of large nodes.

¢ Working set considerations favor larger processing nodes.
» Smaller nodes will lead to greater amounts of communication.

e Massive communication is hard to deal with, so it would be best to shield the user frem it.

Research that ought to be done in this area inciudes



28

¢ Determine the node size that produces the best balance between the considerations that
favor larger vs. smaller nodes. This optimum size can be expected to vary according to
the application, but if the optimum size for several representative uses were known, better
conjectures could be formed about the optimum size for other uses.

e Design and implement languages to hide the smaill physical node size from users. It was
generally agreed among the group that, although implementing suitably efficient
languages may be a difficult task, the utility of fine-grained machines would be much
enhanced by good languages that conceal the communication demands imposed by
small node size.

e "Standard,” or benchmark, applications are needed for calibration. Development of
relevant fine-grained machines would be aided by the availability of a set of applications
generally agreed upon as interesting.

» Fine-grained machines should be built. It is important to build software first, and analyze
the expected performance where possible, to avoid committing resources to
unproductive designs. On the other hand, the nature of fine-grained machines is such
that thorough simuiation with interesting application data sets will usually be
computationally infeasible.

¢ "Hardware testbeds” that attempt to model the hardware of proposed fine-grained
machines at a low level would probably be fairly specialized to a particular proposed
architecture, and take longer to build than the proposed fine-grained machines
themsslves, and are probably not worthwhile.

e Software testbeds, where algcrithms and languages may he hread-hoarded at a higher
level, may be useful.

5.3 Current Research Capabilities

Actions that can be taken today are to (1) learn more from existing fine-grained machines, and (2)
develop languages and applications on existing testbeds. The group identified the following existing

or soon-to-exist fine-grain machines:

* DADO (Columbia).

o Cosmic Cube (Caitech). This consists of 64 3086/8087 processors.

» Systolic array testbed (Nava! Ocean Systems Laboratory). This uses an 8-by-8 array of
8086/8087 processors, but takes 100 microseconds to simulate one step of a systolic
arrayl

» 31-element Mosaic tree (Caltech). This will exist soon.

The only existing testbed for language and application experimentation on a sufficiently large scale
is the Cm* machine at CMU. Several MIMD machines proposed or under construction were



29

mentioned as additional possibilities. In the chairman’s opinion, a desirable testbed shculd have at

least 20-30 processors, and should be able to support a shared-memory model of computation for
maximum flexibility.



6. Conclusions

Although group discussion topics of the workshop on Multiprocessors for High Performance
Parallel Computation were varied, several groups produced similar recommendations. Attendees of
the conference were representative of a broad cross-section of the research community.
Consequently, the conclusions reached by the group can be regarded as a strong statement by the

research community, in general, and not the opinion of a special interest group.

The major theme that appeared in several group recommendations was
the need for for actual experimentation on multiprocessors, and

communication of experimental results and concommitant insights in a form useful to
researchers other than the original experimenters.

The overall recommendations can be grouped and summarized as follows:

1. Build. Build a variety of multiprocessors. Only experience using actual muitiprocessor
systems will iead to a scientifically credible understanding of multiprocessors as a vehicle
for high performance computation. At this point in research the muitiprocesser remain
the leading contender for providing very high performance parailel computation in the
future. Two strategies were proposed,

e Develop a nationat Experimentai Multiprocessor Laboratory that is

o conducive to experimentation with new architectural concepts,
o well-instrumented, |

o equipped with support for parallel models and languages,

o easily accessible to multiple research communities, and

o supporiive of a variety of application developers.

e Develop multiple experimental laboratories at different research sites, each
developing different architectural concepts or focussed on different applications
such as: general purpose, numeric, symbotic, and database.

in either case, it is desireable to reduce both the amount of effort and the elapsed time
required to suitably design, construct and evaluate prototype systems.

2. Experiment. Develop a wide variety of algorithms and full applications, instrument and
measure their behavior in all dimensions. This requires building not only actual
muitiprocessor systems, but the substantial support environment that allows
programming, instrumenting and measuring the programs. This requires further
development of

e languages for expressing parallelism,



31

» methodologies for experimentation with parallei applications,
+ methodologies for the design and implementation of paraliel processor testbeds,

o methods for measurement that is conducive to comparison across multiple
systems.

In addition, experimentation requires the investment of considerable resources to build
the necessary testbed support software that makes experimentation tractable.

3. Evaluate. Evaluation of experiments requires the development of better models and
measurement techniques. These include

e models of parallel computation,

o models of multiprocessor systems,

e characterization of workload,

¢ techniques to enhance our ability to observe behavior within testbeds, and
* system-independent benchmark algorithms.

4. Communicate. A current weakness in reseach in parallel computatinon to date is that
researchers starting from different premises have had great, usually insurmountabie
difficuity, in cemparing their results with results of others. Two recommendations were
made that would improve communication within the research community:

¢ Develop a knowledge base about benchmark programs, their analysis and actual
experimentation results for each. The database wouid include an associated query
system. An interest group should be formed to conduct network dialogs, augment
the database and develop common, critical annotation of the benchmarks.

e If a paticnal laboratory were formed, it shouid be used not only to develop a
common working environment for multiprocessor researchers, but also to act as a
depository for accumulated wisdom, experience, and experimental resuits. The
staff of the laboratory would then be equipped to provide a consuiting service to
application developers. A laboratory supported system could be replicated at
multiple research sites so that researchers at other sites couid perform
experimentation, yet not incur the heavy cost of the development of their own
experiment supporting environment,

A number of multiorocessor architécture implementations actually existed at the time of the
workshop, but very few had the substantive additional support required for performing and
instrumenting extended experiments as proposed above. More muitiprocessor systems are needed.
Experimentation with existing system must continue. ’



Tabie of Contents

Scope and Purpose of the Workshop
1. The Operating Systems Working Group
1.1 Issues
1.1.1 Operating System Goals
1.1.2 Complexity and Number of Processors
1.1.3 Common Operating System Abstractions
1.1.4 Abstraction versus Transparency
1.1.5 Potentially Expensive versus Desirabie Features
1.1.6 Operating Systemn Structure
1.1.7 Name Space (Addressing) Architecture
1.2 Design Principles
1.3 Potential Experiments for Existing Test-Beds
1.4 For the Future
2. The Performance Working Group

2.1 Introduction

2.2 Issues in Multiprocessor Performance Evaluation
2.2.1 Prediction of Behavior During Design
2.2.2 Evaluation During Development
2.2.3 Measurement During Operation

2.3 Recommendations of the Performance Working Group
2.3.1 Prediction During Design
2.3.2 Evaluation During Development
2.3.3 Measurement During Operation

3. The Modeis of Parallel Computation Working Group

3.1 Fundamental Issues
3.2 What research needs to be done?
3.3 Experiments on existing systems
3.4 Summary
4. The Large-Scale Computiations’ Characteristics Group
4.1 Numeric
4.2 Symbolic Computations
4.3 Very Large Data Base
4.4 Summary
§. The Fine Granularity Working Group
" 8.1 Fine Granularity Defined
5.2 Issues in Fine Grain Computing
5.3 Current Research Capabilities
6. Conclusions



