
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Workshop on &iulüprocessors
for High Performance
Parallel Computation

S p o n s o r e d by

C a r n e g i e - M e l l o n Univers i ty

a n d

T h e Nat ional S c i e n c e F o u n d a t i o n *

Ed i ted b y

Ani ta K. J o n e s , Z a r y Sega l l , C h u c k Se i tz a n d A n d r e w W i l s o n

S e v e n S p r i n g s

C h a m p i o n , Pennsy l van ia

J u n e 27-29,1983

Steer ing Commit tee :

B. C h e r n , A . J o n e s , Z . Sega l l , C . Se i t z

L o c a l A r r a n g e m e n t Commit tee :

B. T o m c h i k , A . W i l s o n

•this w o r k w a s s u p p o r t e d b y the Nat ional S c i e n c e F o u n d a t i o n , C o m p u t e r Engineering* P r o g r a m

u n d e r g rant n u m b e r ECS -8215-465.

1

Scope and Purpose of the Workshop
For three days in late J u n e , 1983, 44 computer scientists and engineers , mainly active researchers

in highly parallel computer systems, met at Seven Spr ings , Pennsylvania. T h e purpose of our meeting

w a s to assess the status of research in mult iprocessor systems that provide high performance,

parallel computat ion, and to determine what future research activities would be most product ive. T h e

National S c i e n c e Foundat ion and Carnegie -Mel lon University sponsored the meeting of this g roup .

Th i s report summarizes the d iscuss ion that took place and the conc lus ions that were reached.

interest in mult iprocessor architectures had g r o w n steadily over the past d e c a d e and a half prior to

the meeting. Mult iprocessor systems appeared to offer many benefits, particularly better absolute

performance and better cost/performance than most competing architectures. V L S I technology

offered the potential for building substantially larger computers in the form of mult iprocessors to solve

problems that present computers , as well as predicted future sequential machines, were too small to

solve in a timely way. Many architecture des igns for mult iprocessors exist - on paper. On l y a few

machines with 20 or more processors and a high degree of parallelism had actually been built at the

time of the workshop. But initial experimental results from these parallel computers were available.

T h e increasing need for effective parallel computing engines, coup led with recent availability of

actual experimental observat ion meant that it w a s important at this time, mid 1983, to focus the

research in this field. It was appropriate for the designers , experimenters and potential users of

parallel computer to take stock and examine the following issues:

• What are the most important exper iments to perform in the existing mult iprocessor
laboratories, and how can the experimenters best communicate the results so others can
use them?

• H o w can one evaluate newly proposed software/hardware architectures and the
cor responding parallel algorithms in light of those findings?

• What are the trade-offs in special iz ing parallel machines to important c lasses of large-
scale applications s u c h as numerical computat ion, symbol ic computat ion and database.

Th i s workshop w a s a forum to address these issues.

Pr ior to the meeting, attendees submitted posit ion statements; these were distributed at the meeting

to act as a catalyst for d iscuss ion and e x c h a n g e of opinion. A number of informal presentations were

made, most based on position papers. In addit ion, the researchers separated into five d iscuss ion

g roups . T h e mechanism to determine d iscuss ion g r o u p topics w a s as fol lows: a large number of

2

topics were "nominated" . A g roup was formed to d iscuss that topic if a critical s ize of above five

people could be formed. Individuals were members of only one g roup . No attempt was made to

"ba lance" the g r o u p topics to cover the wide spectrum of issues that might be d iscussed . T h e c h o i c e

of g roup topics thus represents a statement about what this g roup of researchers felt was important.

Each discussion g roup created a summary of their deliberations; the summaries follow in this

document .

Most g roups chose to make recommendations of what research should have the highest priority in

the near future. T h e recommendations are summarized in the Conc lus ion of this document .

3

1. The Operating Systems Working Group
Ivor Durham, C M U (G r o u p leader and author)

Faye Br iggs, R ice
Ingrid Bucher , L o s Alamos National Laboratory

Robert J u m p , R ice
David Shaw, Co lumbia ,
Pradeep S indhu , C M U

Alan Smith, University of Cal i fornia at Berkeley

T h e original charter of this g r o u p was to look at four areas: Parallel I/O architecture,

interconnect ion structures, building systems from many components , and operating systems. After

some meandering d iscuss ion and difficulty in defining what was to be d iscussed w e focused on

identifying operating system issues and briefly explored the quest ion of what cou ld be d o n e to

facilitate the effective exploration of new systems.

1.1 Issues

T h e following sect ions descr ibe briefly the areas of c o n c e r n in developing new operating systems

for h igh performance mult iprocessors.

1.1.1 O p e r a t i n g S y s t e m G o a l s

O u r preliminary d iscuss ion revealed that there are many v iews of what software in a system

constitutes an operating system in contrast to other system software. It is essential that the specif ic

goals for the operating system be stated clearly and explicitly before any attempt is made at a detailed

des ign .

T h e principal goal for any operating system is to make the system programmable. That is the

operating system must provide a programming interface (environment) . T h e programming

environment must be as straightforward as possible; complexity in s u c h an environment d iscourages

programmers from using the system to the greatest effect. Even perceived complexity caused by new

and different notions, s u c h as objects and capabilit ies, can have a ser ious impact on programmers

w h o are very familiar with more traditional environments. In mult iprocessors, there is inherently more

complexi ty than with a single p rocessor system because the programmer is now required to attend to

communicat ion and synchronizat ion among multiple processes .

T h e s e c o n d major function of an operating system is to manage the resources of the system. Th is is

particularly important in any system that supports concur rent p rocesses wh ich may vie for use of

var ious resources : memory, I/O dev ices , etc.

4

For a h igh-performance system the issue arises of whether the system should support more than

one task at a time. Exper ience suggests that support ing multiple users need not be excessively

expensive , particularly in a system that must already support multiple processes and shared

resources. T h e advantage to support ing multiple users is that multiple applications may be developed

simultaneously, but the system may be dedicated to a particular application for a period of time

without excess ive operational overhead.

Separating operating system mechanisms from the policies they are used to implement has proved

effective in several systems. T h e implementation of policies (such as schedul ing) may be handled by

software at the application rather than operating system level. Th is provides considerable flexibility,

particularly with respect to tuning and experimentation. Hence, a goal for an operating system is to

provide mechanisms that support the policies that may be needed for various classes of application to

be run on the system.

An operating system needs to provide instrumentation m e c h a n i s m s - i n combination with the

hardware and f i rmware - to aid in monitoring, debugging , and tuning applications. Specif ic goals

must be chosen for the flexibility and cost of s u c h mechanisms.

A mult iprocessor has the potential for being very reliable because of the redundancy prov ided by

the hardware. However , achieving this potential is the subject of considerable current effort. In

applications that require massive amounts of computat ion, the cost of a crash can be quite high given

the large amounts of computation that may be lost. Reliability must be approached along several

dimensions in an operating system. T h e operating system needs to be able to adapt easily to changes

in the hardware conf igurat ion. T h e designers must choose whether to provide this adaptability

dynamically or semi -stat ical ly -only when the system is loaded, for example. A dynamic approach is

likely to be more complex . T h e operating system ought to be fault-tolerant according to some

measure. For example, it ought to be able to survive transient hardware errors and mask as many of

them as possible to prolong the processing time available to the application programs. O n the other

hand, the availability of the system may be of more importance. That is, it may be more important to

be able to crash the system and restore full serv ice in a few minutes than to provide longer per iods of

serv ice with degraded functionality or performance. T h e goals for the operating system must include

a reliability pol icy to guide the designers 1 trade-offs with respect to achieving a balance between

fault -tolerance and availability.

5

1.1 .2 C o m p . e x i t y a n d N u m b e r o f P r o c e s s o r s

T h e complexity (power) and the number of components in a system inf luence the des ign of a system

along a number dimensions. T h e modularity and structure of the system are inf luenced by the need ,

or lack thereof, to have the entire functionality of the system available to all of the processors in the

system. Trade-of fs must be made between the s p a c e required to replicate serv ices and the cost of

communicating requests between client and server p rocessors for particular serv ices.

T h e (in)hcmogeneity of the system components will inf luence the des ign of the programmer

interface. W h e n components are inhomogeneous , the task of presenting a uniform interface is

potentially more compl icated. Resource management is compl icated by the variety of costs

associated with different units of a particular resource . For example, in a system such as C m * there is

a hierarchy of costs associated with access ing different memories in the system depending on the

relative location of the s o u r c e and destination of the particular reference. T h e s e costs must b e

acknowledged in management pol icies and in the tuning mechanisms that help the programmer to

optimize the costs for a particular appl icat ion.

T h e functionality of a mult iprocessor operating system d o e s not differ significantly from that of a

system that supports multiple concur rent processes . T h e additional functionality to suppor t

communicat ion and synchronizat ion is independent of the number of p rocessors in the system. T h e

variety of mechanisms will d e p e n d on the power of the individual system components and the

f requency of their use. Fo r example, communicat ing through shared memory using busy -wai t locks

may b e preferred over a relatively expens ive message mechanism.

As the number of components g rows , so d o e s the number of the components that are likely to be

inoperative at any moment in time. T o make effective use of the system, the operating system must be

sufficiently flexible to accommodate and mask the loss of particular components whenever feasible.

That is, the system should present to the programmer or user a logical machine configurat ion in

which identical components may be substituted by the operating system without affecting the

application programs. Fo r example, the operating system may have to adjust the memory mapping to

avoid using a particular memory unit that has performed unreliably. O f course , this may be the

domain only of the memory management sub-system not the c o r e of the operating system. If c h a n g e s

in the availability of particular components can be accommodated dynamical ly , the overall per iod in

wh ich the system can perform its duties is ex tended . In particular the des igners must t rade between

two reliability extremes: fault-tolerance to provide some level of perhaps degraded serv ice after some

unit has failed and availability wh ich is the proport ion of time that the system is able to perform its

duties properly . In some cases it may be more appropriate to have the system crash and be reloaded

rapidly than to have its operation s lowed d o w n by (say) 20% because of the loss of some memory.

6

1.1.3 C o m m o n O p e r a t i n g S y s t e m A b s t r a c t i o n s

Is there a common set of abstractions that constitute a minimal operating system and is this set

dependent on a specif ic architecture? If not, could var ious implementations of the set of abstract ions

then be shared across various mult iprocessor systems, thereby distributing the development effort?

T h e abstractions need to be character ized in terms of functionality, performance, cost , and reliability.

O n e possible set of abstractions is: Memory, Processors , Static Software Units (e.g. Modules, Task

Forces) , Dynamic Software Units (e.g. processes) , Synchronizat ion (e.g. Monitors) , Communicat ion

(e.g. Mailboxes, I/O), and Monitor ing/Debugging probes.

1 .1 .4 A b s t r a c t i o n v e r s u s T r a n s p a r e n c y

H o w much of the raw hardware should be visible to'the programmer or user? An alternative v iew of

the same problem is how much does it cost to hide the machine details from the programmer and how

much benefit is to be obtained by doing so . Exper ience has shown that the desirable level of

abstraction or t ransparency may depend on the particular stage of development of an application. In

the early stages in which the functionality of the application is being deve loped, an abstract machine

is sufficient. In the later stages when performance is more important to the programmer, a much

more transparent v iew of the machine is needed so that unnecessary overheads may be avoided and

performance optimized. T h e principal argument here is whether the programmer wants or needs to

see details of the machine that are not relevant to the immediate task at hand.

1 .1.5 P o t e n t i a l l y E x p e n s i v e v e r s u s D e s i r a b l e F e a t u r e s

What features of an operating system are desirable, but may impact the overall system performance

to the extent that customers needing every last o u n c e of performance would not want them? Several

candidate areas here are fault-tolerance, programmability, and dynamic task structure.

Fault - tolerance requires some of the system resources be used for redundancy rather than for the

application. Some components of a fault-tolerant des ign need not be expensive . For example, the

flexibility to accommodate to a variety of hardware conf igurat ions does not incur a dynamic cost if the

configuration is constructed when the system is loaded. Dynamic c h a n g e s in the configuration are

more difficult to accommodate, but the costs may be incurred only when s u c h a change occurs .

O ther measures s u c h as checkpoint ing or redundant secondary storage access incur dynamic costs

that must be borne by the application.

Programmability may incur an overhead that may not be acceptable. O n e of the principal tools that

supports modern programming methodology is a type mechanism to enforce the integrity of different

7

c lasses of data. Ob jects of a specif ic c lass (type) may be manipulated only by the funct ions defined

for that class. In addition to enforcing object integrity the typing mechanism can also suppor t other

operat ions s u c h as garbage col lect ion (where objects need to be tagged to indicate whether they can

be accessed or not) . T h e enforcement of type constraints must be efficient to avoid an unacceptable

dynamic overhead.

Support ing dynamic task structures may require mechanisms to resolve constraints on the

components of the task. For example the Medusa operating system provides a notion of

co-scheduling wh ich attempts to schedule all of the active processes in a particular task at the same

time. If the number of p rocesses changes dynamically, the resource constraints required to satisfy

pol icies s u c h as co -schedul ing must be re-evaluated, thus incurring some dynamic overhead.

Question: C a n some guidel ines be established for trading raw performance for desirable system

attributes. What arguments would satisfy customers w h o need to squeeze every last application cyc le

out of their machine?

1 .1 .6 O p e r a t i n g S y s t e m S t r u c t u r e

H o w is the operating system structure inf luenced by the hardware architecture? In systems that

support the Cl ient and Server p rocess models, much of the operating system work can be handled in

the same was as ordinary application programs, leaving the basic operating system to provide the

mechanisms to suppor t C l ient/Server interactions. T h e principal issue for the des igner here is h o w to

make the var ious serv ices available to all p rocesses in the system that may need those serv ices . H o w

many server p rocesses are required for a particular serv ice? S u c h performance quest ions can best

be answered by monitoring the system behavior and tuning it. Prov ided that the serv ices are

des igned with the potential for replication in mind, no extra work is required to handle c h a n g e s in

load and performance requirements. It is the job of the operating system to make the variations in

how a particular serv ice is prov ided transparent to the application programmer. T h e days of the

monolithic operating system shou ld s o o n be past, at least for mult iprocessors.

1 .1 .7 N a m e S p a c e (A d d r e s s i n g) A r c h i t e c t u r e

What is the structure of the s p a c e of names available to a programmer for identifying data. Shou ld

that structure be a linear array of virtual addresses, a graph structure of objects, or a combination of

both? Shou ld the programmer see the wor ld from within individual p rocesses or the task force as a

whole . T h e c h o s e n v iew determines whether there is limited sharing (objects owned only the by task

are visible to a process) , control led sharing (any object for w h i c h the process c a n obtain an

8

unforgeable name may be accessed) , unlimited sharing (all processes can access potentially all

memory locations), or no direct sharing (information is exchanged more formally through mailboxes).

1.2 Design Principles

Several guiding principles were identified for the design of mult iprocessor operating systems. While

the list is not necessari ly comprehensive , the principles deserve ser ious considerat ion:

• T h e system must be des igned as the integration of hardware, firmware, and software
components . Therefore the three c lasses of component must be developed
simultaneously. In particular it is highly undesirable that the hardware be des igned
without due considerat ion for how it is to be programmed.

• Policies and mechanisms should be separated. T h e operating system should provide the
mechanism necessary to implement the range of policies envis ioned for system or
application-level software. (This approach also supports a wor ld composed of client and
server processes, in which the servers implement the management policies for the
resources they make available to their clients. Th is approach is particularly convenient in
mult iple-process systems.)

• Functionality should be separable from performance. That is a programmer should be
able to develop software initially without full considerat ion of its ultimate performance,
using only a subset of the system resources during development (2 rather than 64
processors , for example). Tuning tools must be provided outside the application to help
realize the full performance potential of the application. T h e s e tools must help with the
fundamental problems of placement of c o d e and data and assignment of processes to
processors . Th i s principle simplifies software development and encourages flexibility in
the design of applications (allowing for variability in the available resources , for example) .

• T h e system functions must be logically uniform. T h e following are examples of logical
uniformity:

o Asynchronous -Funct ion Invocation: A client should not need to know how and
where a server is implemented to make use of a particular serv ice.

o Synchronous -Funct ion Invocation: An application should not be able to dist inguish
functions implemented in software from functions implemented in hardware,
f irmware, or software except by their performance.

o D a t a Communicat ion Funct ions: Basic I/O primitives should be dev ice
independent, also allowing the dev ice to be another program. For example pipes
and I/O streams may be substituted for each other in U n i x t m allowing programs to
be connected together to form more complex programs. (This is ideal for a
multiprocessor environment.)

9

1.3 Potential Experiments for Existing Test-Beds

T h e principal area in wh ich experiments may be performed on existing test -bed systems is the

des ign of effective interfaces between the system and either programmers or end users. Cur rent

work descr ibed to the workshop is already beginning this task. In particular the monitoring,

debugg ing , and tuning aspects of software development need to be integrated into a convenient and

uniform interface. Interfaces for mult iprocessor systems need to be more sophist icated than for

un iprocessor systems in that a programmer or user is interested in a col lect ion of concur rent

activities, t h i s is an area in wh ich graphics may play an increasingly important role.

1 .4 For the Future

Probably the most important problem facing the des igners of a new mult iprocessor architecture and

system is how to achieve the ideal integration across hardware, f irmware, and software. All too often

the des ign of the software is delayed until most of the hardware des ign is complete or even the

implementation is completed before software can be tested. In d iscussing this problem, the g r o u p

identified some potential benefits that might be obtained from the establishment of an

Experimental-Multiprocessor Laboratory. T h e notion is similar to that of the broad test -beds

p roposed e lsewhere during the workshop . Particular goals that are important to the successfu l use of

s u c h a laboratory include:

• T h e laboratory should prov ide an environment in wh ich researchers can deve lop
complete new mult iprocessor systems from architectural concepts to new application
algorithms, but without necessari ly having to construct a physical feasibility
demonstrat ion, at least initially.

• T h e laboratory should prov ide a small, " c a n o n i c a l " mult iprocessor system with software
for construct ing experiments in systems and evaluating them. T h i s includes the ability to
build emulators for new architectures that are sufficiently powerful to support the
development of software for the new system. T h e provis ion of a particular mult iprocessor
sand -box would have several advantages:

o A common, shared set of software tools that support a variety of research efforts.
Monitoring, data col lect ion, and debugg ing tools are of prime importance.

o A shared suppor t effort to reduce the support overhead required w h e n building
one 's o w n demonstrat ion machine.

o A complete system that may be replicated at some future time depending on the
demand for a facility c loser to particular g roups of researchers .

o Emulator components may be shared across research efforts to enable the rapid
construct ion of future emulators. F o r example emulators for different
interconnect ion structures cou ld be deve loped and used as off -the-shelf emulator
components .

10

o Using one mult iprocessor system (however imperfect) to develop ones own ideas
can help one to appreciate the difficulties and issues in actually using a
mult iprocessor.

• T h e laboratory system should be easily accessible to research communities interested in
mult iprocessor research. In particular, a convenient network is very important. If the
demand is sufficiently high the physical resources of the laboratory could be replicated to
form " reg ional" laboratories.

• T h e initial laboratory should be used not only to develop a common working environment
for multiprocessor researchers, but also to act as a depository for accumulated wisdom,
exper ience, experimental results and so forth. T h e staff of the laboratory would then be
equipped to provide a consult ing serv ice to application developers.

T h e principal problem with s u c h laboratory proposals seems to be human rather than technological :

Researches prefer to build their own systems. Much greater control can be exerc ised over a system

in one's own environment and one is not at the mercy of " i l l - cons idered" decis ions on the part of the

maintainers of a distant facility. T h e goals descr ibed above may help to alleviate this problem, but the

problem must be cons idered when any new mult iprocessor research involving the construct ion of

new machines is p roposed .

11

2. The Performance Working Group
G e o r g e Almasi , IBM

Gera ld Estr in, U C L A (G r o u p leader and author)
G lenn Ricart , U of Maryland

Zary Segal l , C M U
Richard Snodgrass , U of N. Caro l ina

Dalibor Vrsalovic , C M U
Andrew Wi lson, C M U

2.1 Introduction

T h e need for a hundredfo ld increase in performance is the driving force behind the current

accelerated expenditure of material and intellectual resources to realize " n e x t " generat ion

computers . Some of the innovative p roposed mult iprocessor architectures are certainly laudatory;

however a lack of clarity concern ing performance object ives and performance predict ions is evident.

In particular, the impact of that lack on the des ign and development cyc le can be disastrous. T h e

Performance Working G r o u p saw the need to introduce systematic methods arid automation in order

to face the central issuo:

H o w can w e shorten the des ign and development cyc le for new mult iprocessor system
a r c h i t e c t u r e s . . . assuming that performance goals are establ ished dur ing a requirements
analysis phase with possible modification dur ing des ign and development?

G i ven the a b o v e goal , three fundamental aspects w e r e identified:

• Predict ion of behavior dur ing system des ign .

• Evaluation of behavior dur ing system development .

• Measurement of behavior dur ing system operat ion.

2.2 Issues in Multiprocessor Performance Evaluation

T h e Working G r o u p then raised a ser ies of quest ions relating to each aspect of performance

evaluation. T h e s e issues formed the framework for subsequent recommendat ions made by the g roup .

2.2.1 P r e d i c t i o n o f B e h a v i o r D u r i n g D e s i g n

H o w can w e adequately model mult iprocessor systems and parallel computation so that w e c a n

predict performance of any proposed system . . . and either reject the proposed system or cont inue

deeper into the cost ly des ign and development process?

12

H o w can we character ize parallel processor workloads?

2 .2 .2 E v a l u a t i o n D u r i n g D e v e l o p m e n t

H o w can we create a development testbed for parallel p rocessor systems?

What meaningful set of tools will provide effective automated support for evaluation of parallel

p rocessor systems and subsystems during realization of a proposed architecture?

2 .2 .3 M e a s u r e m e n t D u r i n g O p e r a t i o n

T h e final test of prediction during des ign , and evaluation during development, is observation of

behavior of the operating realized system.

Is it feasible to formulate natural and synthetic benchmarks which are truly representative of

computational loads to be handled by mult iprocessor systems?

Is it possible, at reasonable cost , to observe the behavior of highly parallel systems?

2.3 Recommendations of the Performance Working Group

2.3.1 P r e d i c t i o n D u r i n g D e s i g n

W e recommend support of research seeking improved models of mult iprocessor systems and

improved models of parallel computation so that it becomes more reasonable to predict performance

and also to deal with validation and verification issues.

W e recommend support of research seeking improved methods to character ize workloads for

multiprocessor systems.

W e recommend support of experiments to determine how far w e are from being able to predict

performance of complex systems execut ing highly parallel computat ion.

2 . 3 . 2 E v a l u a t i o n D u r i n g D e v e l o p m e n t

W e recommend design and development of mult iprocessor system testbeds to be used dur ing

development by universities, research institutions and industry.

W e recommend development of a methodology for des ign of experiments to be used in s u c h

evaluation environments.

13

W e recommend formation of a task force w h o s e charge is to determine how to satisfy the national

need for mult iprocessor system testbeds.

W e recommend support of research into methods for evaluation of testbeds.

2 . 3 . 3 M e a s u r e m e n t D u r i n g O p e r a t i o n

W e recommend support of research seeking methods for specify ing benchmarks in a system-

independent manner.

W e recommend support of research into observabil ity of mult iprocessor systems and into analysis

of their behavior .

W e recommend development of a knowledge base about benchmark programs and an associated

query system. W e recommend formation of an interest g r o u p to c o n d u c t network dialogs and develop

critical annotation of the benchmarks.

14

3. The Models of Parallel Computation Working
Group

J im Browne, U T Austin
G e o r g e Hetrick, D E C

Mai Kalos, N Y U
Simon Kasif, U . Maryland

J o e Mohan , C M U
Dan Ostapko, IBM

Larry Rudo lph , C M U
Leah Siegel , Purdue (Group leader and author)

3.1 Fundamental issues
W e view the problem of mapping a problem to an architecture as consist ing of (at least) two levels: a

high level model based on what might be called a "virtual machine" and a lower level model wh ich

deals with specif ic details of an architecture. O u r initial c o n c e r n is with the high level model. Specif ic

issues include:

1. What constitutes an appropriate high level model of parallel computation? Is there a
single model or are there several viable models? Among possibilities are the
paracomputer (shared memory) model , message passing models, and data dr iven
models. It is not immediately clear if any one model subsumes the others.

2. Language provides one possible means of expressing a high level model. O n e w a y of
focusing on parallel computation is to assume the capabilities of a conventional serial
language and examine the constructs needed to support parallelism. Candidates include
provisions for:

• Making data appear in the address space of multiple processors . In the most
general sense, this may include both shared data structures and message passing.

• Process contro l , through synchronizat ion or other mechanisms.

• Invocation/termination of processes .

• Creat ion/destruct ion of processes . Th is is distinct from invocation/termination,
and implies a notion of ownership of the process to be created or dest royed.

W e are consider ing the modeling of processes whose execut ion can be over lapped In
time. However this does not preclude execut ion on a single processor .

3. It is not clear that the above four capabilit ies can adequately specify S IMD process ing.
For example, there is no way to descr ibe the selective activation/deactivation of
individual processors within a single process .

A number of attributes wh ich will bear on the eff iciency of an implementation are not

15

captured by the general model . Examples are the differences arising from message
passing vs. shared memory communicat ions and use of local (by some measure) vs .
long-d istance communicat ions. Th i s suggests that there may appropriately be an
intermediate level model w h i c h d o e s not deal with all of the detail of the specif ic low level
model, but wh ich does capture those gross properties of an architecture wh ich pertain to
eff iciency. At what level of abstraction can the model still prov ide useful information?

4. Is there a distinction between models and languages? If so , what is the nature of this
distinction?

3.2 What research needs to be done?

1. T h e essential research involves establishing what the appropriate model(s) are. T o w a r d s
that end , specif ic models should be defined and compared with respect to inclusion (can
one model be expressed by another?), express iveness , and naturalness.

2. What models d o capture propert ies related to eff iciency?

3. Many quest ions pertain to deciding what is proper ly modeled at what level. Examples :

• Cons ider a tree communicat ion structure. Is that a feature of the highest level or of
a lower level model?

• At what level is the S I M D / M I M D distinction most appropriately modeled?

• At what level should notions s u c h as data encapsulat ion and ownersh ip be
modeled?

4. A variety of significant applications and algorithms should be expressed in terms of
languages and/or models of computat ion. Th is will allow evaluation of the utility of the
language with respect to express ing parallel formulations of signif icant problems.

5. U s e the analyses of 4 to define the parallel abstract architectures w h i c h are suitable
targets for translation (compilation) of languages. Study how these machines may be
implemented on hardware realizable architectures.

6. Evaluate the relative effectiveness of general purpose and problem specif ic models of
parallel computations.

3.3 Experiments on existing systems

In light of the issues addressed in 3.1 and the quest ions answered in 3.2, write algorithms in the high

level languages for existing and proposed machines. Evaluate the co r respondence between the

models and the actual programs.

16

3.4 Summary
T h e issue of models is clearly an important one, and equally clearly one in wh ich there exists a

broad spectrum of views. W e are each drawn to the model which most closely approximates our own

work. Substantial research is needed to cons ider the full range of possible models against a wide

variety of applications.

17

4. The Large-Scale Computations'
Characteristics Group

B . C h e r n , N S F
A. Despain, University of Cal i fornia at Berkeley

L. Forgy , C M U
R.M. Lea, University of Cal i fornia at Berkeley

G J . L ipovski , University of T e x a s ,
A. McAulay , T e x a s Instruments

B. Rau , E lexs i
R. Warren , Digital

H . J . S iegel , Purdue
H.S. Stone, University of Massachusetts , (G roup leader and author)

T h e committee attempted to character ize the nature of large-scale computat ions in order to

d i scover what kinds of computer architectures are suited to these computat ions. O u r f indings, in

genera l , are that there are signif icant di f ferences among the var ious kinds of large-scale

computat ions. It may be quite reasonable to develop special ized architectures that are well -suited to

particular c lasses of problems. It is also rather unlikely that a single genera l -purpose architecture will

suff ice for ail large-scale problems. T o simplify the character izat ion of computations, the committee

focused on three major areas, wh ich in turn are subdiv ided into special ized areas. T h e areas

reported here are the fol lowing:

1. Numeric

a. Mesh problems

b. Nonregular (part icle- in-cel l and similar problems)

Symbol ic

a. Exper t System, Knowledge -base System

b. Combinatorial Search (theorem prover , etc.)

c. Interactive A l

i. V is ion

ii. S p e e c h Recogni t ion and S p e e c h Understanding

iii. Robot ics

2. Data Base

T h e motivation for partitioning programs as g iven above is that the numeric programs appear to

have qualitatively different sets of requirements than d o the symbol ic programs. Perhaps the

18

characterist ics can be exploited in parallel machines to increase computation speed , and if so ,

numeric and symbolic problems may lead to different parallel architectures. But in recent years, as

large-scale programs have g rown more sophist icated, many s u c h programs have taken on

characterist ics that lie in two or more of the partitions identified above. For example, most expert

systems contain a data-base subsystem, and thus are not purely symbolic nor purely data base in

character .

G iven the possible mixture of different types of computations in a large-scale program, it may well

be desirable to use special ized processors for each distinct computation type. For example, a

machine for expert systems might well have data-base processors for the data-base component and

logic or inference-or iented architectures for symbolic computations. Therefore , we have separated

the wor ld of large-scale problems into numeric, symbol ic , and data base, and w e acknowledge that

specif ic programs many contain any two or all three types of programs.

4.1 Numeric
Tab le 1 s h o w s the characterist ic of numeric programs as identified by the committee. Repetition in

these programs is normally associated with nested loops. T h e table suggests that the computat ions

have a low complexity, wh ich means that computation time g rows as a small polynomial in the s ize of

the input data. Th is suggests that the problems are large because there are many input data, and

therefore, these problems require a h igh-bandwidth I/O architecture. If the input data s ize is very

large, then it is likely that small port ions of the input data will be bought into local memories for

computational purposes as they are needed, and therefore, there will be additional I/O operations

required for data movement between local and auxil iary memory, over and above the extensive I/O

required for initial input and final output. Th i s additional I/O exacerbates the I/O bottleneck. W e

note that some large-scale numerical c o d e s may have less need for h igh -speed I/O than others, but

except for processors that are very special ized to those particular problems, h igh -speed numerical

processors will be structured to support a very high I/O bandwidth.

Tab le 1 s h o w s that the numerical c o d e s appear to be relatively easy to analyze. T h e computational

bottleneck is usually readily identifiable, and in the case of mesh calculations, the bottleneck is an

inner loop that operates on data in a predictable fashion. T h e s e characterist ics have led to the early

implementation of pipeline and array processors , because these architectures were bel ieved to be

capable of exploiting the behavior of large-scale mesh-or iented calculations. But program analysis

and studies of actual implementations suggest that large-scale numerical computat ions have a

sufficiently large percentage of data dependenc ies to reduce the effectiveness of S IMD architectures

19

to the point where they become unattractive. New approaches might general ize the S IMD

architecture to e n h a n c e its capabil ity to support data -dependent numerical computat ions including

the nonmesh calculat ions. O r the approaches might abandon the S I M D approach to look toward

MIMD architectures for dealing with large-scale numerical algorithms. Tab le 1 indicates that the latter

approach may well be feasible because the numerical program appears to be partitionable, and

amenable to implementation on MIMD architectures.

T h e nonmesh calculat ions descr ibed in Tab le 1 actually refer to computat ions that may be der ived

from mesh representations, but for one reason or another the mesh representation does not lead to

lock-step parallelism or to highly predicatable, highly repetitive computations. O n e important

representative of this c lass of problems is the particle- in-cel l (PIC) Algorithm that appears to be

ill-suited to S I M D machines because of the data dependenc ies within the inner loop. Tab le 1 s h o w s

the data d e p e n d e n c y to be the primary characterist ic that dist inguishes this c lass from the mesh

problems. Also included in the nonmesh class is the c lass of sparse matrix operations, mainly

because the locations of the nonzero elements are not readily predictable in many cases. T h e

primary way to gain eff iciency is to be able to focus on the nonzero elements as much as possible,

and this has proven to be difficult to d o for nearly all architectures studied to date.

4.2 Symbolic Computations

Tab le 2 summarizes the character ist ics of two typical kinds of symbol ic operations, the expert

system and the combinatorial searcher s u c h as a theorem prover . T h e committee bel ieves that the

programs for the two c lasses of systems may actually have many character ist ics in c o m m o n . T h e

di f ferences lie in the execut ion of the programs. T h e combinatorial searchers search a decis ion tree;

sometimes exhaust ive c a s e - b y - c a s e examination is required. T h e algorithms that make up this c lass

general ly cannot rely on tricks or shortcuts to reduce total computational complexity to very s lowly

growing functions of problem size, al though heuristic approaches have apparently been helpful. O n

the contrary , expert systems apparently d o successful ly reduce the potentially large amount of

computat ion to something more manageable because they rely on expert knowledge to follow the

more promising paths in the dec is ion tree. In comparing the two types of programs, note that T a b l e 2

s h o w s the complexi ty of the theorem provers and other combinatorial algorithms to be greater than

that of the expert system. T h e r e are no publ ished data on wh ich the committee can rely for this

op in ion , but this result reflects the col lect ive intuition of the committee. Because of the greater need

for backtracking in the purely combinatorial algorithms, the support ing architecture should be biased

toward making fast context swaps . T h i s capabil ity will be useful as well for expert systems,but will

probably not be as critical h e r e as for the support of backtracking in combinatorial algorithms.

20

Both types of problems are highly data dependent . Undoubtedly , a small portion of c o d e might

constitute the inner loop of the computation in either case, but data accessed by that c o d e changes

frequently in time and is rather data dependent . T h e committee at first descr ibed this condit ion as

" p o o r predictabil ity," but the wording subsequent ly changed to " u n k n o w n predictabil ity." Whi le it is

certainly true that the data dependencies prevent the programmer from knowing precisely what paths

will be traversed before the c o d e is actually run, it may well be possible to make g o o d predict ions of

the future from knowledge of the recent past. Hence , there may be architectures, much like c a c h e

memories, that predict future behavior as a function of past behavior and take advantage of such

predict ions to enhance performance.

Both types of programs s h o w n in Table 2 are likely to have a lower ratio of I/O activity in symbolic

computation. Memory management may have a considerable impact on I/O structure, but its

characterist ics for symbol ic programs is still not well understood. Unlike numeric programs, the

bottlenecks in symbolic programs are not easily identified. A l though some subprograms may be

executed repeatedly, and these could be identified in advance, the specif ic data used by those

routines is not easily predicted, and therefore it is very difficult to bring data in advance to the

computations that require the data.

T h e r e appear to be many opportunit ies for partitioning symbol ic programs into smaller modules that

could be executed in parallel. T h e ability to run parallel partitions does not in itself guarantee high

performance because a mult iprocessor cou ld well s p e n d the bulk of its computational activity on

redundant computations. Hence , although the ease of partitioning makes the mult iprocessor

architecture an attractive candidate for symbol ic programs, the necessity for limiting the amount of

redundant computation suggests that it may not be an easy task to obtain large speed -ups this way.

Another major difference between Tab les 1 and 2 is that the numeric codes require a very fast

f loating-point engine, whereas the arithmetic for symbol ic programs tend to be heavily biased toward

arithmetic comparisons. Also, the symbolic computations, particularly the programs that do many

backtracks, perform a significant number of context switches, wh ich are less likely to o c c u r in the

large-scale numeric codes .

N o w cons ider Tab le 3, wh ich s h o w s three important types of interactive Artificial Intell igence

programs. T h e programs represented by this table have additional properties beyond those given in

Tab le 2. Architectures for the programs in Tab le 3 might well contain special ized processors for the

unique aspects of the programs identified in the Tab le 3 plus other processing capability directed to

the needs identified in Tab le 2. Note that all three types of programs descr ibed by Table 3 perform

considerable computation while engaged in sensing and controll ing real-time activities.

21

4.3 Very Large Data Base

Tab le 4 indicates the pr imary character ist ics of data -base programs. Note that data -base

character ist ics are present throughout the symbol ic computat ions descr ibed in the prev ious sect ion .

Consequent ly , the data-base aspects of s u c h computat ions might be partitioned from the symbol ic

computat ions, thereby permitting a special ized data-base processor to work in conjunct ion with a

symbol ic processor .

4.4 Summary

T o re-iterate, w e feel that there are major di f ferences between the var ious sorts of large-scale

computations. Therefore , developing and using special ized processors for each of the following

computation type seems to be desirable.

• N u m e r i c t y p e s . Large -sca le numerical algorithms cou ld feasibly run on MIMD
architectures. Numerical programs appear to be partitionable and amenable to
implementation on MIMD architectures.

• S y m b o l i c t y p e s . Symbol ic programs cou ld be partitioned into smaller modules that
cou ld be executed in parallel in a mult iprocessor. Unfortunately, this partitioning may
result in redundant computat ions that wou ld s low the final process ing time d o w n .

• A l t y p e s . Interactive artificial intel l igence programs cou ld run on architectures that
contain special ized processors for their unique aspects and also have processors for
their symbol ic computat ions.

• D a t a b a s e t y p e s . Partitioning the data base aspects of a symbol ic program would al low
a special ized data base p rocessor to work in conjunct ion with a symbol ic processor .

It is unlikely that a single genera l -purpose p rocessor would suff ice for all these large scale

computations.

22

S t r u c t u r e

TABLE 1
C h a r a c t e r i s t i c s o f N u m e r i c

Mesh
h i g h l y i t e r a t i v e

I / O - t o - c o m p u t e r a t i o l o w , 0 (N)

C o m p u t a i o n a l C o m p l e x i t y 0 (N 2) o r l e s s
P r e d i c t a b i l i t y h i g h
B o t t l e n e c k s known i n a d v a n c e
A r i t h m e t i c h e a v y
D a t a S i z e v e r y l a r g e
P a r t i t i o n a b i l i t y o p p o r t u n i t i e s . w i t h

s c h e d u l a b l e I /O

P r o g r a m s
Nonmesh
h i g h l y i t e r a t i v e , w i t h

s u b s t a n t i a l d a t a
d e p e n d e n c y

l o w , 0 (N) ,
l e s s t h a n mesh

0 (N 2) o r l e s s
h i g h
known i n a d v a n c e
h e a v y
v e r y l a r g e
o p p o r t u n i t i e s , b u t I /O

i s i r r e g u l a r

23

S t r u c t u r e

B a s i c s t e p

I / O - t o - c o m p u t e r a t i o
C o m p u t a i o n a l C o m p l e x i t y

P r e d i c t a b i l i t y
B o t t l e n e c k s
A r i t h m e t i c
D a t a S i z e

P a r t i t i o n a b i l i t y
Memory management

TABLE 2
C h a r a c t e r i s t i c s o f S y m b o l i

E x p e r t S y s t e m

d a t a d e p e n d e n t ,
d e c i s i o n t r e e
t r a v e r s a l

p a t t e r n m a t c h i n g ,
p o s s i b l e c o m b i n
a t i o n a l s e a r c h ;
r u l e s t e n d t o r e d u c e
s e a r c h

p o s s i b l y v e r y l o w
p o s s i b l y v e r y h i g h

unknown
n o t known i n a d v a n c e
c o m p a r i s o n i n t e n s i v e
m o d e r a t e , w o r k i n g
memory unknown
o p p o r t u n i t i e s e x i s t
v e r y c o m p l e x

P r o g r a m s
T h e o r e m P r o v e r
(C o m b i n a t i o n a l S e a r c h)
d a t a d e p e n d e n t ,

c o m b i n a t i o n a l s e a r c h ,
b a c k t r a c k i n g

p a t t e r n m a t c h , c h a n g e
d a t a , s c h e d u l e n e x t
s t e p , c h o o s e one

p o s s i b l y v e r y l o w
p o s s i b l y v e r y h i g h ,

h i g h e r t h a n f o r
e x p e r t s y s t e m

unknown
n o t known i n a d v a n c e
c o m p a r i s o n i n t e n s i v e
m o d e r a t e , w o r k i n g
memory unknown
o p p o r t u n i t i e s e x i s t
v e r y c o m p l e x

24

TABLE 3
Characteristics of Vision, Speech and Robotics Programs

Vision

Structure expert +
real-time +
image processor
(numeric) +
feature extractor
pattern recognition

Speech
Understanding

expert +
real-time +
speech processor
(numeric) +
feature expractor
pattern recognition

Robotics

expert +
real-time +
numeric processor
vision system +
feedback control
(sensors and
transducers) +
size and weight
constraints

Other Properties data intensive per
data point,
many production
rules

heavy computation

25

C h a r a c t e r i s t i c s

D a t a S i z e
C o m p u t a t i o n t y p e

P r e d i c t a b i l i t y

P a r t i t i o n a b l e
I n p u t / O u t p u t
O t h e r

TABLE 4

o f V e r y L a r g e D a t a - B a s e P r o g r a m s

v e r y l a r g e
t o u c h e s o n l y a s m a l l p a r t

o f t h e d a t a , v a r i a b l e
amount p e r i t e m a c c e s s e d

d a t a - d e p e n d e n t a c c e s s e s
c o u l d h a v e p o o r l o c a l i t y
o p p o r t u n i t i e s e x i s t
p o t e n t i a l l y h e a v y
I n d e x c r e a t i o n , m a i n t e n a n c e

26

5. The Fine Granularity Working Group
Howard Brauer, IBM

G e o r g e C o x , Intel
Lanny Forgy , C M U

Bert Halstead, MIT (Group leader and author)
Car l Hewitt, MIT

Anita J o n e s , C M U
H.T. Kung, C M U

C h u c k Seitz, Cal tech
Sal Stolfo, Co lumbia

5.1 Fine Granularity Defined
T h e g roup had some difficulty arriving at a suitable definition of "f ine granularity ." S u c h a definition

was vital, s ince the group 's charter was to cons ider issues related to fine granularity machines.

Among the proposed definitions were

• Ephemerality of tasks. A fine-granularity machine is character ized by tasks that only
execute a few instructions during their lifetime.

• Frequent communication/interact ion between tasks.

• Parallelizing innermost loops. "F ine granular i ty" is an approach to computation in wh ich
concur rency is sought between execut ions of the bodies of innermost loops, rather than
outermost loops (this would be "coarse granular i ty") .

• Large communicat ion/computat ion ratio. Granularity is fine when the amount of
communicat ion is relatively large, compared to the amount cf computat ion.

• "T ight coupl ing . " Th is definition attempts to avoid the issue by defining o n e b u z z w o r d in
terms of another!

• Large degree of parallelism. Finer granularity programs tend to have a larger number of
concurrent tasks.

• Small physical processing node s ize.

• Short c o d e size for program modules.

• Few bits of state per node, or per program module.

A majority of the working group , though not the chairman, preferred the definition of fine granularity

as "small physical processing node s i ze . " O n e conc lus ion from this exerc ise is that the term "f ine

granularity" should be used with caut ion in the literature, as it tends to mean many different .things to

different people.

27

T h e working g roup reached two related conc lus ions : fine granularity is a relative term (thus the

g roup did not attempt to define a precise threshold for "fine granular i ty") , and the granularity

observed may vary accord ing to one 's point of v iew. T h e table below was p roduced dur ing the

g roup 's meeting, illustrating three levels of detail (application programming level, system software

level, and archi tecture/hardware level), and showing that the same machine might appear to have

different scales of granularity at these different levels (key: C R A Y = C r a y - 1 , D A D O = Stolfo's D A D O

machine, H E P = Denelcor HEP-100,432 = Intel 432).

Granularity: Fine Coarse None
Application level ¿32

HEP
CRAY
DADO

System Software
level

DADO 432
HEP

CRAY

Architecture and
hardware level

HEP
CRAY
DADO

432

T h e location of many of these machines on the chart is somewhat arbitrary (depending, in

particular, on w h i c h definition of "granular i ty" is used) ; however , some interesting patterns are

evident. T h e Cray-1 appears as a sequential machine (as far as cor rectness is c o n c e r n e d , not

performance) to application and system level software, but its hardware uses pipelining in a way that

can be cal led f ine-grained, accord ing to several of the above proposed definitions. In the case of the

D A D O machine, the application language is Prolog, where no parallelism is evident. But system

software and the hardware are both cogn izant of a large amount of possible parallelism.

5.2 Issues in Fine Grain Computing

T h e fundamental issues relating to computing using physical ly small processing nodes w e r e

identified as fol lows:

• Physical communicat ion costs , as well as the desire for more parallelism, favor smaller
and more numerous processing nodes , rather than a small number of large nodes.

• Working set considerat ions favor larger process ing nodes.

• Smaller nodes will lead to greater amounts of communicat ion.

• Massive communicat ion is hard to deal with, s o it wou ld be best to shield the user from it.

Research that ought to be d o n e in this area includes

28

• Determine the node size that p roduces the best balance between the considerat ions that
favor larger vs . smaller nodes. Th is optimum size can be expected to vary accord ing to
the application, but if the optimum size for several representative uses were known, better
conjectures could be formed about the optimum size for other uses.

• Design and implement languages to hide the small physical node size from users. It was
general ly agreed among the g roup that, although implementing suitably efficient
languages may be a difficult task, the utility of f ine-grained machines would be much
enhanced by good languages that conceal the communicat ion demands imposed by
small node size.

• "Standard , " or benchmark, applications are needed fcr calibration. Development of
relevant f ine-grained machines would be aided by the availability of a set of applications
generally agreed upon as interesting.

• Fine-grained machines should be built. It is important to build software first, and analyze
the expected performance where possible, to avoid committing resources to
unproduct ive designs. O n the other hand, the nature of f ine-grained machines is s u c h
that thorough simulation with interesting application data sets will usually be
computationally infeasible.

• "Hardware testbeds" that attempt to model the hardware of proposed f ine-grained
machines at a low level would probably be fairly special ized to a particular proposed
architecture, and take longer to build than the proposed f ine-grained machines
themselves, and are probably not worthwhi le.

• Software testbeds, where algorithms and languages may be bread-boarded at a higher
level, may be useful .

5.3 Current Research Capabilities

Act ions that can be taken today are to (1) learn more from existing f ine-grained machines, and (2)

develop languages and applications on existing testbeds. T h e g roup identified the following existing

or soon- to -ex ist f ine-grain machines:

• D A D O (Columbia) .

• Cosmic C u b e (Caltech) . Th is consists of 64 8086/8087 processors .

• Systol ic array testbed (Naval O c e a n Systems Laboratory) . T h i s uses an 8-by -8 array of
8086/8087 processors , but takes 100 microseconds to simulate one step of a systol ic
array!

• 31 -element Mosaic tree (Caltech) . Th i s will exist s o o n .

T h e only existing testbed for language and application experimentation on a sufficiently large scale

is the C m * machine at C M U . Several MIMD machines proposed or under construct ion were

29

mentioned as additional possibilities. In the chairman's opinion, a desirable testbed should have at

least 20-30 processors , and shou ld be able to suppor t a shared-memory model of computat ion for

maximum flexibility.

30

6. Conclusions
Although g roup d iscuss ion topics of the workshop on Mult iprocessors for High Performance

Parallel Computat ion were var ied, several g roups p roduced similar recommendations. Attendees of

the conference were representative of a broad cross -sect ion of the research community.

Consequent ly , the conc lus ions reached by the g r o u p can be regarded as a strong statement by the

research community, in general , and not the opinion of a special interest g roup .

T h e major theme that appeared in several g roup recommendations was
the need for for actual experimentation on multiprocessors, and
communication of experimental results and concommitant insights in a form useful to

researchers other than the original experimenters.

T h e overall recommendations can be g rouped and summarized as fol lows:

1. B u i l d . Build a variety of mult iprocessors. On ly exper ience using actual mult iprocessor
systems will lead to a scientifically credible understanding of mult iprocessors as a vehic le
for high performance computat ion. At this point in research the mult iprocessor remain
the leading contender for providing very high performance parallel computation in the
future. T w o strategies were p roposed .

• Develop a national Experimental Mult iprocessor Laboratory that is

o conduc ive to experimentation with new architectural concepts ,

o wel l - instrumented,

o equipped with support for parallel models and languages,

o easily accessible to multiple research communities, and

o support ive of a variety of application developers .

• Develop multiple experimental laboratories at different research sites, each
developing different architectural concepts or focussed on different applications
such as: general purpose, numeric, symbol ic , and database.

In either case, it is desireable to reduce both the amount of effort and the elapsed time
required to suitably des ign , const ruct and evaluate prototype systems.

2. E x p e r i m e n t . Develop a w ide variety of algorithms and full applications, instrument and
measure their behavior in all d imensions. Th is requires building not only actual
mult iprocessor systems, but the substantial support environment that al lows
programming, instrumenting and measuring the programs. Th is requires further
development of

• languages for expressing parallelism,

31

• methodologies for experimentation with parallel appl ications,

• methodologies for the des ign and implementation of parallel p rocessor testbeds,

• methods for measurement that is c o n d u c i v e to compar ison across multiple
systems.

In addit ion, experimentation requires the investment of cons iderable resources to build
the necessary testbed support software that makes experimentation tractable.

3. E v a l u a t e . Evaluation of exper iments requires the development of better models and
measurement techniques. T h e s e include

• models of parallel computat ion,

• models of mult iprocessor systems,

• character izat ion of work load ,

• techniques to e n h a n c e our ability to observe behavior within testbeds, and

• system- independent benchmark algorithms.

4. C o m m u n i c a t e . A current weakness in reseach in parallel c o m p u t a t i o n to date is that
researchers starting from different premises have had great, usually insurmountable
difficulty, in compar ing their results with results of others. T w o recommendat ions were
made that wou ld improve communicat ion within the research community :

• Deve lop a knowledge base about benchmark programs, their analysis and actual
experimentation results for e a c h . T h e database wou ld include an associated query
system. A n interest g r o u p shou ld be formed to c o n d u c t network dialogs, augment
the database and deve lop c o m m o n , crit ical annotation of the benchmarks.

• If a national laboratory were formed, it shou ld be used not only to deve lop a
common working environment for mult iprocessor researchers , but also to act as a
deposi tory for accumulated wisdom, exper ience , and experimental results. T h e
staff of the laboratory would then be equipped to prov ide a consult ing serv ice to
appl ication developers . A laboratory suppor ted system cou ld b e replicated at
multiple research sites s o that researchers at other sites could perform
experimentat ion, yet not incur the heavy cost of the development of their o w n
exper iment support ing environment.

A number of mult iprocessor archi tecture implementations actual ly existed at the time of the

workshop , but very few had the substantive additional support required for performing and

instrumenting extended experiments as proposed above . More mult iprocessor systems are needed .

Experimentat ion with existing system must cont inue.

Table of Contents
S c o p e a n d P u r p o s e o f t h e W o r k s h o p
1. T h e O p e r a t i n g S y s t e m s W o r k i n g G r o u p

1.1 Issues
1.1.1 Operat ing System Goa ls
1.1.2 Complexity and Number of Processors
1.1.3 C o m m o n Operat ing System Abstract ions
1.1.4 Abstract ion versus T ransparency
1.1.5 Potentially Expens ive versus Desirable Features
1.1.6 Operat ing System Structure
1.1.7 Name S p a c e (Addressing) Architecture

1.2 Design Principles
1.3 Potential Exper iments for Existing T e s t - B e d s
1.4 For the Future

2. T h e P e r f o r m a n c e W o r k i n g G r o u p

2.1 Introduction
2.2 Issues in Mult iprocessor Performance Evaluation

2.2.1 Predict ion of Behavior During Design
2.2.2 Evaluation During Development
2.2.3 Measurement During Operat ion

2.3 Recommendat ions of the Performance Working G r o u p
2.3.1 Predict ion During Design
2.3.2 Evaluation During Development
2.3.3 Measurement During Operat ion

3 . T h e M o d e l s o f P a r a l l e l C o m p u t a t i o n W o r k i n g G r o u p

3.1 Fundamental Issues
3.2 What research needs to be done?
3.3 Exper iments on existing systems
3.4 Summary

4 . T h e L a r g e - S c a l e C o m p u t a t i o n s ' C h a r a c t e r i s t i c s G r o u p

4.1 Numeric
4.2 Symbol ic Computat ions
4.3 Very Large Data Base
4.4 Summary

5. T h e F i n e G r a n u l a r i t y W o r k i n g G r o u p

5.1 Fine Granularity Defined
5.2 Issues in F ine Gra in Comput ing
5.3 Cur rent Research Capabil it ies

6. C o n c l u s i o n s

