NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

LTSN
'-TP-'JE‘:H.L‘;;]
i N -5 A
Brig BOE] 4

RN
i [LQLL

Proposal for an
Undergraduate Computer Science Curriculum
for the 1980s

Part I: Discussio_n

Mary Shaw, Steve Brookes, Marc Donner,
James Driscoll, Michael Mauldin, Randy Pausch,
Bill Scherlis, Alfred Spector

Computer Science Department
Carnegie-Melion University
Pittshurgh, Pa, 15213
20 October 1983

~ Abstract

The authors propose to the Carncgic-Mellon Computer Science Department a curricutum for
undergraduate computer science. This report sets forth objectives for computer science
education, presents an overview of the content of a curriculum, defines the course structure for a
degreee program, and outlines a set of courses. The curriculum design is intended to anticipate
the content that will be appropriate at the end of this decade, We have tried t0 avoid being
unduly prejudiced by traditional courses and organizations, '

In addition to propesing a curriculum design for computer science majors, the authors
recommend the development of new curricula to serve sther groups of students,

The Curriculum Design Project is supported by general operating funds
of the Carncgie-Meilon University Computer Science Department,

AN UNDERGRADUAIT COMPUTER SCIENCL CURRICUL UM IFOR THE 19808 i

IExecutive Summary

The Carnegie-Mellon Computer Science Department’s Curriculum Design Project has examined the
current state of computer science and computer science curricula, has projected the requirements for
undergraduate cducation in computer science, and has developed a curriculum suitable for a computer
scieace major. This repert presents our curriculum design.

Carnegie-Mellon currently has a compurter science curriculum (a body of courses), but it does not have a
computer science major (a formal degree program).

We recommend that the Computer Science Department adopt a curriculum based on this proposal,

We recognize that resource limitations may prevent a complete implementation of the curriculum. We
believe that some reasonable subset of the curriculum could form the basis for a computer science major. We
also recognize that a curriculum is a necessary, but not a sufficient. condition for a major.

We make no recommendation on the question of offering a computer science major at Carnegie-
Mellon.

Goals

Computer science is opening new specialties in many fields, and the pattern of student involvemnent in
computing is changing. As a result, four different undergraduate populations within the university will
require distinet kinds of education about computer science. These groups are: computer science majors,
students in computational specializations within other disciplines, students who will write programs for
personal use, and students who will make vonly casual use of computers.

We took as our goal the design of a curriculum for the first group of students: those inferested primarily in
computer science. We have formulated a unified view of the discipline, identified a suitable collection of
courses, and defined the content requirement for a inajor. We chose not to address the university resources
'equired to support such a curriculum.

The University must also provide for the computer science education of non-majors. This report discusses
the needs of these students and some suitable responses, but it does not go into depth. New curriculum
designs will be required for two of the three groups of non-majors.

We recommend that studies of computer science specializations in other disciplines and of education
Jor students only casually invoived with computing be undertaken as separale projecis.

Lducational Philosophy

We sct out 10 develop a curriculum that would support a computer science degree of the highest quality.
Such a curriculum requires a balanced biend of fundamental conceptual material and examples drawn from
the best of current practice. In many ways, our educational philosophy is based directly on the Carnegie Plan
for education, which emphasizes an integrated understanding of basic congepts and the application of those
concepts to practical probiems. We believe that a curriculum with a small common core and a broad sclection
of advanced courses supperts a varicty of computer science specializations including both terminal and
nonterminal programs.

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 19805 i

Resuits

We have designed a computer science curriculum consistent with this educational philosophy. The
curriculum includes a unified overview of computer science, the content requirements for a computer science
major, and detailed descriptions of a number of computer science courses. The interactions of this curriculum
with offerings in other departments are not yet completely specified.

The design recognizes that computer science is a maturing field with a growing set of increasingly
comprehensive models and theories. As such, it relies very heavily on mathematics, and it has close tics to
several other disciplines. Because the field is changing rapidly, students nced fundamental knowledge that
they can adapt 10 new situations. In addition, students must be abic to apply their knowledge to real
problems, and they must be able to generate tasteful and cost-effective solutions fo these problems. In this
curricutum, virtually every course emphasizes the integration of theoretical results and practical applications.

We have sketched outlines for twenty-nine computer science courses. They include seven courses in
sysiems and design, three courses in programming languages, twa courses in algorithms and analysis, three
courses in computer systems, one course in elementary discrete mathematics, four courses in theory and
mathematical foundations, three courses in artificial intelligence, one course in graphics, and five independent
study, project, or seminar courses. Many of these courses are completely new. and the rest are revised from
their present form. As a result, a major effort will be required to implement the individual course designs.

In addition to the courses we define here, we have identificd a number of courses in other departments that
present material relevant to computer science. Though such material is often conceptually part of a computer
science education, we did not develop new descriptions for such courses.

We have also proposed requirements for a computer science major based on this curriculum. These
requirements are the basis for a liberal professional education. The required core is small (five specific
courses plus three courses constrained to specific areas), thereby allowing a variety of specializations within
the major. Additional requirements assure breadth, both by requiring substantial exposure to humanities,
social sciences, and fine arts and by requiring a concentration of study outside the major.

Innovations

Because the design was carried out without prior commitment to course organizations, the resulting
organization is based on the structure of modern computer science rather than on traditional course divisions.
The major innovative characteristics of the resulting curriculum include the following:

» Organization around a core. The curriculum comprises a core of courses that present the basis of
the field and a set of more advanced courses that provide depth of knowledge. The core courses
emphasize the mathematical foundations of the ficld in practical settings.

» Curriculum integration. The courses are carefully intcgrated with each other, and strong
prerequisite relations ensure that the material will be presented in a coherent order. Subareas
often have one course that provides a broad introduction and a sequence of courses that provide
for greater depth of knowledge.)

» Courses designed around topics rather than artifacts. Topics based on common ideas often arcin a
single course, even if the topics are not traditionally taught together. This often entails
rearrangement of traditional course boundarics; it allows integration of theory and practice.

AN UNDERGRADUATE COMPUTER SCIENCE CURRICLT LM FOR T 19805 11

» Uise of proper compuier support, Many COUTses require exiensive access o computers and to
software that illustrates points being made in the course. Though the forthcoming campus-wide
personal computer effort will aid in this, we have presented the functional requirements for
computer support rather than discussing specific ways to use personal computcers.

After developing an overview of the curriculum, we derived specific courses from the overview. We have
re-ostablished the need for an elementary sequence much like the one developed at Carnegic-Mellon in the
late 19705 (FUNDAMENTAL STRUCTURIES OF COMPUTER SCIENCE 1 AND 1L [211/212)). 'Fhis provides a solid
foundation for sequences of advanced courses. In many cases, the initial course of an advanced scquence iS
eminently suited for a student who wants to use the techniques of an arca without specializing in it. The
major new courses and course sequences include

» A sophomore course that provides a concrete appreciation of the nature of computation through a
unified blend of hardware. software, and theory (240).

» A rcorganization of the traditional operating systems course that integrates the hardware,
software. und theoretical views of concurrency, generalizes the resource management aspect of
operating systems, and deals with complex, long-lived data (310, 412, 413).

» A ncw course that presents module-level program organizations and software development
techniques; this course fills a gap between the courses that teach data structures of program
fragments and the courses that deal with constructing systems from modules (311).

» A reorganization of the traditional comparative programming languages ond compiter
construction courses that focuses first on programming languages and user inteitaces, [10gresses
to the use of advanced software toois for sysiem (especially compiler) development, and
culiminates in language design and compiier construction techniques (320, 420, 421),

» A sct of courses that present algorithms and the mathematical foundaticns of Computer Science
with emphasis on inicgrating the practical uses and consequences of the material with the
presentation of the theory. The courses cover algorithms, logic, formal languages, automata,
computability, complexity, and theory of programming languages (330, 350, 351, 430, 450, 431).

» An artificial intelligence scquence with a first course that covers the fundamentals of both the
psychological and practical aspects of Al and independent follow-on courses providing depth in
cognition and robotics (360, 460, 461).

Irn addition, we plan joint development of a course for advanced students that esiablishes a basis for
responsible evaluation of the consequences of computing and for interpreting the technaology o lavmen (3830).

Organization of the Report

The setting for this design is discussed in Chapter 1. Roics for the university to play in the education of
hoth majors and non-majors are cxamined in Chapter 2. Our gencral educational philosophy is defined in
more detail in Chapter 3. Chapter 4 presents our unified view of the content of computer science. Chapter
5 shows how majurs could be created from the courses of this curriculum. Chapter 6 discuss the ratignale for
our organization. Summary descriptions of courses appear in Chaptler 7. Qutlines for the compulter science
courses we propose arc presented in Chapter 8. Chapter 9 lists courses from other departments that cover
matcrial in the arca we broadly view as comiputer science. Since the later two chapters are of somewhat more

litnited interest than the coddict chapters, thev are boand as a separate sofume.

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 19803 A

Preface

Carnegic-Mellon has had a Computer Science Departinent and - a PhD degree program since 1963, but an
undergraduate major leading to a Bachelor’s degrec in Computer Science has never been offered. Although a
formal degree is not offerced, a set of undergraduate courses is taught, and the Mathematics Deparument offers
an option that relies heavily on these courses. Undergraduate students who wish to study computer science
usually take mathematics degrecs in the computer science option, ‘

On a number of occasions over the past decade, the Computer Science Department has considered offering
- an undergraduate Computer Science major. Until recently, the decision has always been ncgative. [n the
Spring of 1981, however, the Department agreed to consider taking steps toward offering a major.

We decided that the first step should be a thorough review of the existing curriculum. The content of the
present courses has evolved through the years, and a complete review has not been done in quite some time.
Because Computer Science is evolving rapidly, we felt that the changing nature of computers and computing
was not adequately reflected by the existing curriculum. As a result, we decided to reconsider the entire
curriculum, including both computer science courses and courses that will probably be offered by other
departments. Our goals are described in a previous report [12] (reprinted in [13]) and briefly reviewed in
Chapter 3.

To date, the interaction between this_ project and the university personal computer network project has been
minimal. However, we have tried to identify ways to take advantage of advanced computing technology as we
have developed courses. In addition, we expect to coordinate our plans with those of the university, which
has a growing nced to use computeis in support of undergraduate education and to develop courses that deal
with computation in ficlds other than compuler science. We hope that by systematically including software
support requirements in course designs we can influence the development of the campus network and justify
software development as an ordinary part of course development.

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 19808 vi

Acknowledgments

A curriculum necessarily spans its discipline: the designers of any such document need all the help they can
get. We have received a great deal. Though it is impossible to acknowledge all of it, we want to express our
appreciation to some of the people who have affected our thinking most significantly. Thanks, then;

» To the Carnegie-Mellon Computer Science Department for support and cncouragement in this
project. '

» To the following people. who contributed signiﬁcéntly to the design of individual courses: Jon
Bentley, Ellen Borison. Jaime Carbonell, Wes Clark, Geoff Hinton, Elaine Kant, Dan Leivant,

Matt Mason, Dana Scott, Chris Stephenson, Bob Wedig, and Bill Wulf,

» To Jill Fain, Cynthia Hibbard, Allen Newell, and Steve Shafer, who provided extensive critical
comments on drafts of the proposal.

» To previous members of this project team, Jon Bentley and Guy Steele. Their participation in the
early stages of the design contributed enormously to the final philosophy and structure.

» To members of the IEEE/ACM Software Engineering Planning Group. Section 1.2 was prepared
while its author was working on both reports, and many of the idecas were developed or refined
during the discussions at the planning meeting in September 1982,

» To the participants of the Sloan Conference/Workshop on the first two years of College
Mathematics, from which the first version of our discrete mathematics syllabus emerged.

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM I'OR TLIE 19803

Table of Contents

Part I; Discussion

1. Setting

1.1 Working Definition of Computer Science
1.2 A View of Future Computing
2. Roles for Universities

2.1 The Audience
2.2 Use of Computing Technology in Education
2.3 The Establishment

3. Objectives

3.1 Premises
3.2 Goals
4, Content

4.1 Basics
4.1.1 Content
4.1.2 Skills
4.2 Flementary Computer Science
4.2.1 Content
4.2.2 Modes of Thought
4.2.3 Skills
4.3 Liberal Professicnal Education
4.3.1 General Scope
4.3.2 Liberal Education
4.3.3 Areas Related to Computer Science
4.3.3.1 Mathematics and Statistics
4.3.3.2 Electrical Engineering
4.3.3.3 Physics
4.3.3.4 Psychology
4.3.3.5 Mechanical Engineering
4.3.3.6 Management and Information Science
4.3.3.7 Public Policy
4 4 Advanced Computer Science
4.4.1 Control
442Data
4.4.3 Systems
444 Language
4.4.5 Foundations
4.4 .6 Process/Design
4.4.7 Communrication
4.4.8 Applications
5. Program Organization

5.1 Requirements
5.2 Advice on the Use of Electives
5.3 Example Programs
5.3.1 Balanced Program
5.3.2 Mathematics Concentration

AN UNDERGRADUATE COMPUTER SCHINCE CURRICULUM FOR T111 19808

5.3.3 Electrical Engineering Concentration
. 3.3.4 Psychology Concentration

6. Remarks -

6.1 General Philosophy

6.2 Relation to Traditional Courses
6.3 Course Organization and Style
6.4 Course Numbecring Scheme

7. Abbreviated Course Descriptions

Part I1: Detailed Course Descriptions

8. Course Descriptions

8.1 Basic and Introductory Courses
8.1.1 Computers in Modern Socicty [100]

8.1.2 Programming and Problem Solving {110]
8.1.3 Discrete Mathematics [150)

8.2 Elementary and Intermediate Computer Science Courses
8.2.1 Fundamental Structures of Computer Science [{211]
8.2.2 Fundamental Structures of Computer Science [1[212]
8.2.3 Real and Abstract Machinces [240]

8.2.4 Solving Real Prablems [300]

8.2.5 Time, Concurrency, and Synchronization [310]

8.2.6 Comparative Program Structures [311]

8.2.7 Languages. Interfaces, and their Processors [320]
8.2.8 Algorithms and Programs {330]

8.2.9 Formal Languages, Automata, and Complexity [350]
8.2.10 Logic for Computer Science [351]

3.2.11 Introduction to Artificial intelligence {360]

8.3 Advanced Computer Science Courses

8.3.1 Independent Project [400]

8.3.2 Undergraduate Thesis [401]

8.3.3 Research Seminar [409] _

8.3.4 Software Engincering [410]

8.3.5 Software Engincering Lab [411]

8.3.6 Resource Management [412)

8.3.7 Big Data [413)

8.3.8 Transducers of Programs [420]

8.3.9 Advanced Programming Languages and Compilers [421]

“ - 18.3.10 Advanced Algorithms [430]

8.3.11 Computer Architecture [440]
8.3.12 VLSI Systems [441]
8.3.13 Theory of Programming Languages [450]
8.3.14 Complexity Theory [451]
8.3.15 Artificial Intclligence — Cognitive Processes [460]
8.3.16 Artificial Intelligence — Robotics [461]
8.3.17 Intcractive Graphics Techniques [470}
9. Related Courses

9.1 Mathematics Courses
9.1.1 Introduction to Applicd Mathematics [Math 127 /7 CS 150]

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM [FOR TUE 19305 X

9.1.2 Caleulus I [Math 121] 114
9.1.3 Calculus Il [Math 122] 114
9.1.4 Methods of Applied Math I {Math 259] : 114
9.1.5 Elements of Analysis [Math 261] 114
9.1.6 Operations Rescarch | [Math 292} 114
9.1.7 Operations Rescarch 1i {Math 293] ' 115
9.1.8 Combinatorial Analysis [Math 301 7 CS 251] 115
9.1.9 Linear Algebra {Math 341] ' 115
9.1.10 Numerical Methods [Math 369 / CS 352} 115
9.1.11 Modern Algebra [Math 473 7 CS 452] 115
9.1.12 Applied Graph Theory [Math 484 / CS 430] 115
9.1.13 Theory of Algorithms [Math 451 / CS 451] 115
9.1.14 Numerical Mathematics I and II [Math 704 and 705] 116
9.1.15 Large-Scale Scientific Computing [Math 712 / CS 453] 116
9.2 Statistics Courses 116
9.2.1 Probability and Applied Statistics for Physical Science and Engineering I [Stat 211 7/ CS 116
250]
9.2.2 Probability and Statistics I [Stat 215] 116
9.2.3 Statistical Methods for Data Analysis I [Stat 219] 116
9.3 Electrical Engineering Courses 117
9.3.1 Linear Circuits: [EE 101 7 CS 241] 117
9.3.2 Electronic Circuits 1 [EE 102 / CS 242] 117
9.3.3 Introduction to Digita! Systems [EE 133] 117
9.3.4 Linear Systems Analysis [EE 218] 117
9.3.5 Electronic Circuits 1f [EE 221 / CS 340] 117
9.3.6 Analysis and Design of Digital Circuits [EE 222 / CS 341}) 118
9.3.7 Introduction to Solid State Electronics [EE 236] 118
9.3.8 Introduction to Computer Architecture [EE 247 7 CS 440} 118
9.3.9 Fundamentals of Control [EE 301} 118
9.4 Psychology Courses ' 118
9.4.1 Psychology of Learning and Problem Solving [Psy 113] 119
9.4.2 Information Processing Psychology and Artificial [ntelligence [Psy 213] 119
9.4.3 Human Factors [Psy 363] 119
9.4.4 Cognitive Processes and Problem Solving [Psy 411] 119
9.4.5 Thinking [Psy 417] 119
9.5 Engineering and Public Policy Courses 120
9.5.1 Law and Technology {EPP 321} 120
9.5.2 Telecommunications Policy Analysis [EPP 402] 120
9.5.3 Policy Issues in Computing [EPP 380 / CS 380 120
9.6 Engineering Courses 120
9.6.1 Real Time Computing in the Laboratory [CIT 252] 120
9.6.2 Analysis, Synthesis and Evaluation {CIT 300} 121
9.6.3 The History and Formulation of Research and Development Policy [CIT 401] 121

9.6.4 Cost-Benefit Analysis {CIT 404] 121

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 19808 1

1. Setting

This report presents a curriculum that addresses the nceds of computer science education in the 1980s. It is
intended to provide the basis of a computer scicnce education of the highest quality. The curriculum is based
upon our evaluation of the structure of computer science and the cducational neceds generated by the
mamuration of the field. In this chapter, we discuss the nature of computer science and the prospects for
cnormous growth in the near future. The sccond chapter describes university roles in computer science
education. Next we present a succinct description of our overall premisses and goals and a general description
of the content of our curriculum. The remaining chapiers describe the curricutum in much greater detail,
including a description of an undergraduate degree program and outlines for courses,

We begin in Section 1.1, which describes the scope of the field we consider to be computer science. In
Section 1.2 we make some projections about the kind of computing we may be doing ten years hence. On the
basis of these projections, we predict some of the issues the field must face over the next decade and some of
the changes we must anticipate.

1.1 Working Definition of Computer Science

There is no generally accepted definition of the field of computer science, and we do not expect to remedy
that deficiency here. Nevertheicss, we need a characterization of the discipline in order to focus our
discussions. The curriculum design presented in this report is based on the following working definition.

Computer science is concerned with the study of computers and of the phenomena connected with
computing, notably algorithms, programs. and programming. A major objective of the discipline is the
formulation of a systematic body of knowledge, theories, and models to explain the properties of computers
and relatcd phenomena. It is often the case that computer (or computational) systems exhibit extremely
complex structure and behavior: techniques for identifying, quantifying and managing complexity are
therefore centrai to computer science. The discipline is also concerned with producing solutions to
technological (real-world) problems using a detailed knowledge of the properties and the applicability of
current computing technology. Since there are usually many different ways to solve a problem, an important
engineering activity is the evaluation, comparison, and selection of alternatives on the basis of criteria such as
cost or efficiency. Unlike the natural sciences, computer science studies objects and systems that are artificial;
since both the rules and the artifacts can be modified by the scientist, this can be both a problem and an
advantage.

A description of computer science should include not only its subject matter, but also its characteristic
paradigms and modes of analysis, reasoning, and problem solving, Computer science borrows heavily from
mathematics, using analytic and synthetic techniques such as inductive definitions and case analysis. Butitis
not exclusively a formal, quantitative field, because the need for practical systems suitable for human use
leads the ficld to rely, for example, on design and modeling techniques from engineering and on techniques
from psychology for the study of human performance and bchavior. In additon, the leading edge of
computer science is moving rapidly. As a result, particular examples or techniques become obsolete and
research results move rapidly into the body of pragmatic knowledge.

AN UNDERGRADUATE COMPUTER SCIENCE CURRICELUM FOR THE 19508 2

Using this working definition as a starting point, we conclude that the curriculum must deal with:
» Computers and related phenomena: machines and computations, both real and abstract
» Algorithms, programs, and programming ,
» Complex structure and behavior of information: how to identify, quantify, and manage it
» Engincering concerns: how to find cost-effective solutions to technological problems and to apply
current technology
» Design tradeoffs: how to compare and select alternatives with respect to given criteria, and some
appropriate criteria for such decisions
» Human performance: the nature of the people who use computers and the ways that humans
manage complex problems:
Computer science is a changing ficld, and the curriculum must be acknowledge this fact. It must be flexible
enough to allow allow adaptation to changes in both technology and current thinking, and it must provide
students with an education of lasting value despite this change. It must be broad enough to train computer
scientists who can interpi‘et the evolution of computer science to laymen. Further, it must make students
aware of the roles of computers in society, because as professionals in a field that will so change society they
must be able to make informed, responsible decisions that will affect the lives of many.,

1.2 A View of Future Computing

The nature of computing, and hence of computer sctence, is changing rapidly. Many topics that now seem
interesting will be obsolete or irrelevant within ten years. If the curriculum we design now is to remain
effective through 1990 or beyond, we must try to understand the forces that are shaping the field and to
anticipate the roles that computing and computer science will play in the future. This section points out some
of the trends that will affect the field over the next decade and describes some of the new phenomena and
issues that may arise.

Computers are becoming smaller and cheaper, and they are being distributed across a wider and more
varied population, Important current trends include:
» Decreasing hardware costs
» Increasing share of computing costs attributable to software
» Increasing expectations about the power and reliability of applications
» Increasing range of applications, particularly those on which lives will depend
» Increasing development of distributed computing and convenient network access
» Increasing availability of computing power, especially in homes
» Widening view of computers as an information utility
» Increasing quality of interfaces to humans (voice, high-performance graphics)
» Increasing exposure of naive people to computers, both at home and in the work place
» Increasing general reliance on computers for day-to-day operations.
» Continuing or increasing shortage of qualified professionals
» Continuing lack of appreciation for the nature of software
» Increasing importance of “intelligent”™ systemns

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM TFOR T 19808 3

On the hasis of these trends, we can extrapuolate some future developments:

» Pervasive Consumer Computing: Computers will be extremely widespread, both as multiple-
purpose machines in homes and offices and as dedicated {(embedded) machines for applications
such as houschold environment control. Most of the users of these machines will be naive —
certainly the majority of them will not be programmers. As a result, most of the users of programs
will not be creators of programs.

» [nformation Utility: We will come to think of computers primarily as tools for communicating and
for accessing information, rather than primarily as calculating machines. Networks will provide a
medium for making available numerous public data bases, both passive (catalogs, library facilities,
newspapers) and active (newsletiers, individualized cntertainment). Real-time control problems
will become more visible,

» Broad Range of Applications: The range of applications will continue to broaden, and an

*increasing number will be applications in which unreliabie computation could lead to risk of
human life. As a result of this and widespread use by nonprogrammers, much of the software will
provide packaged services that require little, i ariy, programming. There will be substantial
cconomic incentives for producing general systems that can be tuned to individual, possibly
idivsyncratic, requircments.

» Changes in the Workplace: Distributed systems and nctworks will facilitate a distributed
workplace, but we doubt that the norm for office workers wilt be to work at home instead of in an
office — computers will not replace human interaction for decision-making. Flectronic work
stations will change the nature of work that now depends on paper flow, and robotics will
substantially change manufacturing,

» Massively More Complex Computers: Some computer networks and large computers will be
replaced by or evolve intv massive computer sysiems with orders of magnitude greater capacity
than any systcms now available. These systems may include enurmous databases (nationwide
banking records, interactive consumer catalogs, the location and velocity of alt occan-going
vessels, cte.), and be used by millions of people simultaneously. The first steps have already been
taken by airline and hotel reservation systems. Embedded systems will proliferate to a point
where the ordering of software and processors is as important as ordering nuts and bolts when
designing any machine (witness the automobile industry today). '

» Intelligent Systems: Intclligent software systems will provide intellectual multipliers that
substentially increase professional preductivity in sorne arcas. Intellizent robots will take over an
increasing percentage of the industrial workload, and perhaps even make a dent in the houschold
chores. Increasingly sophisticated systems will lessen the need for programumers, and perhaps
increase ¢veryone’s need for a basic understanding of computers. Otherwise, today’s expert
systems may be tomorrow's oracles,

» Impact on GNP: Computing and information will represent a major component of the GNP,
heralding the arrival of a socicty as dependent on information as on wheat or metal.

Even if this projection is inaccurate, we'can expect a substantial qualitative shift in the role of computers in
the world at large. The nature of education will surcly be affected: we can alrcady sce the cffects of pocket
caiculators on the teaching of mathematics. Further, entertainment technology (e.g., Sesame Street and video
games) has raised students’ expectations about the educational process.

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR TLHE 19808 4

This view of the future raises a number of issues,

» Consumer Concerns: The use of computers by large numbers of nontechnical people, together
with the increasing number of sensitive applications that involve computers, will raise issues about
the responsibilities of vendors towards their products. These will certainly include analogs of the
familiar problems associated with product and professional liability, merchantability and
warrantability (guarantees), usability and reliability, licensing, copyrights, and product safety (e.g.,
development of an analog to the certification that Underwriters Laboratories provides for
electrical products). Other problems, such as security and privacy concerns, will undoubtedly
arise from the special nature of computers,

» Production and Distribution: An expanding role for computers and computer-related products and
services in the retail marketplace will introduce new problems in manufacturing, sales and service,
equitable methods of charging for shared resources, and industry compatibility standards.
Another class of problems will center on how to create software for a mass market, perhaps
including some notion of mass production of software {e.g., by tailoring packages rather than by
writing code). '

» Safety and Security: In addition to the consumer-safety issues, we can expect questions concerning
licensing, product and professional liability, and the trustworthiness or integrity of data provided
via public databases. Existing concerns about security and privacy will increase. These concerns
will be particularly acute where life-critical applications are involved.

» Economic Impact: The econorr;ic impact of these major innovations must be widespread. Of
particular concern for the computing industry will be the interplay bhetween technological
development and limiting factors, such as productivity, on the growth of the information sector.
Accurate software cost estimates and well considered marketing policies will be vital as the
computer industry matures. One of the most important economic changes will be in personnel,
especially elimination of unskiiled positions by automation, or the replacement of unskilled jobs
with positions requiring a high level of technical expertise.

» Human Issues: Currently, humans deal directly with computers primarily by choice. As
computers become pervasive, humans will interact with them through necessity. There will be a
variety of socciological consequences, including the necessity of systems designed for naive users,
personnel dislocation caused by technical change, and major shifts in the content and style of
education.

» Social Issues: The computer age could bring about a new underprivileged class of the computer
illiterate. Women and minorities might make up the majority of this new class by virtue of
insufficient technical education. Preventing this scenario will require computer scientists 0 be
aware of the social implications of their work, and a society made aware of the implications this
new technology holds.

Tn response to these issues, universities must broaden the scope of their computer-related offerings in order to
prepare students to use the new electronic tools and to adapt these tools to a variety of new uses. We believe
that this is best accomplished by teaching students the principles that support current tools; current practices
will rapidly become obsolete, and students must be prepared to adapt.

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM TFOR TIIE 1980S 5

2. Roles for Universities

Computer science has grown rapidly through its short lifetime. Universities have been major contributors
to that growth, and they bear a major responsibility for dissemination of knowledge about computer science.
Professional education in computer science is growing more rigorous, and we expect an increasing need for
students to master a growing set of fundamental concepts. Mere programming skill will no longer suffice for
most computing professionals. The ficld will require solid technical expertise comparable to that expected of
engineers, and most development work will require genuine competence in both the application field and
computer science. In addition, many people will need to use computers in sophisticaied ways and need to
understand the implications of the spreading computer technology. Universities must begin now to respond
to these emerging needs. '

The widespread availability of inexpensive computation will also affect the process of education.
Applications will range from direct implementation of routine exercises to innovative systems that present
material in fundamentally different ways. Courses that make extensive use of computation will take on the
character of laboratory courses; development of computer support, especially of programs suitable for student
use, will be at least as difficult as development of new textbooks.

This chapter discusses roles for computing in universities. It begins with an analysis of the audiences for
computer science education — the groups of students who need some kind of computer science education.
Next, it describes the potential for exploiting computing technology in the educational process. Finally, it
assesses the current state of affairs in the cdmputer sctence curriculum establishment and argues that existing
curricuiilum designs are not adequate.

2.1 The Audience

Because of the growing importance of computers in many fields, universities now have a responsibility for
teaching several distinct groups of students about computers and about computer science. In this section, we
examine the pattern of student involvement with computing and suggest that a significant change in that
pattern is taking place. We describe several distinct groups of students and discuss the kind of computer
science education each group needs. We identify one group, the computer science majors, as the focus of this
report, and we recommend that curriculum design efforts be undertaken for two other groups. In the early
1970s many technical students and a few nontechnical students took some kind of introductory programming
course. Perhaps half of these students went on to take a few more computer science courses: these courses
usually emphasized programming languages or programming techniques. Only a few students pursued
computer science (o the depth required of a major.

This pattern of student involvement in computing can be illustrated by the histogram of Figure 2-1(a),
whose vertical axis represents increased technical depth in computing and whose horizontal axis represents
the fraction of the student body involved. In this figure we see three groups: a modest number of computer
science majors, a significant number of students with extensive programming €xperience and some exposure
to the ideas of computer science, and a large number of students with enough programming ability to use
computers in their own work. It is important to note that most introductory courses and many of the more
advanced courses emphasized computer programming. As a resuit, the conceptual basis of computer science
and the potential of computers for personal information processing were often slighted.

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR T'HE 19808 6

C5 major

Several computer science cpurses

One programming course

ncne i Degree of involvement all

(a) Conventional pattern in the 1970s

CS5 major

Professional use cuiside of CS

Abi1ity to write pregrams for personal use

Functional abiltity 7o use compuiers Aas an information utility

none Degree of involvement all

{(b) Cross-disciplinary pattern expected in the 1980s
Figure 2-1: Profiles of Student Involvement in Computing in the 1970s and1980s

Students graduating in the 1970s with degrees in computer science or with degrees in other disciplines
coupled with some computing cxperience were often employed as programmers. Usually, it was expected
that the students would grow into increasingly responsible technical or managerial positions. [n most cases
. their professional growth cither lay within computer science or invoived an explicit change to, for example,
management,

In the 1980s, as computing becomes part of general competence and computer science moves from a narrow
specialty to a component of the basic education of every student, this pattern will surely change. There is
currently a documented shortage of computer professionals at all levels, from technicians to rescarchers [10];
this manpower shortage is projected to continue through the 1980s. We believe that a major component of
the demand for bachelor’s and master’s level computer professionals wiil soon be for students with advanced
technical competence in computing as an integral component of computing specializations within other .
disciplines. . Such. joint education.in, computer science and another. discipling is.now seriously negleated;
indeed, many of the students who currcntly select computer science majors might be better served by
computing specializations in other departments. [n addition, the criteria for general literacy in the university
at large will require education for large numbers of students who will use a variety of sophisticated programs
and packages but who will do very little creation of programs.

From these predictions and the sketch of future trends in Section 1.2 we can project a very different profile -
for student involvemnent in computing in the 1980s than we saw in the 1970s. Figure 2-1(b) shows the patiern
of student computing expericnce that we expect to see in this decade. We expect, as before, a modest number
of computer scicnce majors. These should be students planning on graduate work in compuler scicnce or

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM TOR TIIE 1980S 7

students who want to work directly within the computer industry. We project the number of computer
science majors to be smaller than the demand currently seen in many schools because we expect much of that
demand to be redirecied to the second group — joint majors who master the fundamentals of both computer
science and a secdnd discipline, then specialize in a computational branch of the second discipline. A third
group of students, those who want computing expertise for more casual use, may need opportunities (e.g.,
short introductions to the use of special packages or particular languages) that are not properly provided
within an academic department. Finally, we expect that virtually all students will need an introduction to the
use of computers and the role of computers in modern society.

The primary objective of this project has been to design a curriculum for computer science majors. We
believe that a single curriculum can suffice for both terminal and nonterminal students. Modern computer
science requires a core of fundamental material for both groups of students, and a program with flexibility in
the use of electives can be tailored 1o a variety of individual needs.

We also sce a need for intermediate-to-advanced computer science training for students who will become
cemputing specialists within some discipline other than computer science. Professional specialization of this
sort requires genuine competence in both fields — unlike present applications programming. We see a need
for joint majors with closer cooperation between departments than is usually implied by a double major.
Such joint programs might include scientific computation (in cooperation with a mathematics or physics
depariment). human-computer interaction (wi[h a psychology department), music synthesis (with a music
department). computer-aided design (with a design or architecture department), or information systems (with
an economics or management department). Students pursuing these joint majors should take at least the
fundarmental courses in computer science, the fundamental courses in a second discipline, and additional
courses that deal with computing specialization within the second discipline. Carnegie-Mellon has an
opportunity 0 make a bold move by declaring computing specializations to be important and by backing up
this declararion with appropriate curricuia in a variety of departments,

Many students will want to use computers in personal projects. This will often involve writing programs.
‘These students can be served by the same basic and elementary courses as students who will become mare
deeply involved in computer science. In addition, there will be a need for education about certain computing
topics that do not fall within a computer science curriculum. Many of these are so narrowly directed at
specific programs or programming languages that they should not carry academic credit; for these, a program
of tutorials in a nonacademic arm of the university should be considered.

An educational program must also be develop_cd for students who will make only casual personal use of
computing. The major need is for a fundamentally new introductory course. This course should introduce
the nature of computing, show the social implications of widespread computing, make students comfortable
accessing an information utility, and develop fluency in the use of packaged software. It should not be a
programming course as such, though it should provide some clementary programming experience. This
course could also provide an opportunity to introduce nontechnical students to problem solying, deductive
reasoning and analytic thinking, in a setting where they could get direct experience and immediate feedback.

We conclude that there are four significant roles for universities to play in computer-related education.
These include

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 19808 3

» Educating future computer scientists at all degree levels,
» Educating non-computer scientists who will bring computing expertise to their own fields of
specialization,

» Educating people who need modest programming skills, and

» Educating the entire university population about the potential and use of computers.
This curriculum design addresses only the first group: the computer science majors. We recommend that
separate studies be undertaken to study computational specializations in other disciplines and computing
education for the University population as a whole. We do not see a major problem with educanng students
who need only modest programming skills.

2.2 Use of Computing Technology in Education

In addition to organizing the content of computer science, a modern curriculum design must consider ways
to use computing technology in the educational process. It is no longer unusual to rely on computers to
support courses: applications range from ordinary bookkeeping for course administration through novel
interactive teaching systems. It is important, however, to avoid confusing education about the substance of
computer science with the use of computers in education. In this section, we are primarily concerned with the
use of computers in computer science education. We consider both the use of computers in the general
educational process and the specific needs of computer science courses to use computing facilities as course
laboratories.

At Carnegie-Mellon and a number of other institutions, computer resources are already commonly used for
many of the mundane activities that are part of every course. These include distributing information to
students; electronic mail between students, instructors, and tcaching assistants; electronic collection of
assignments; text processing; and record keeping. Further progress in this area requires a substantial
commitment to application software development. This development must involve the users heavily, since
the interface to the users is what makes the computer a worthwhile tool in this area, Carnegie-Mellon’s new
University Center for Design in Educational Computing provides a centralized base for innovative uses of
computers in education.

At Carnegie-Mellon, computer support for the students in the courses dates back at least to the 1950s, when
the Graduate School of Industrial Administration (GSIA) introduced the “Management Game™ (a computer-
based management simulation of a detergent industry in which student teams competed for simulated
profits). This course {much updated) is still required for second-year Master's students in GSIA. Other
current computer-based instruction at Carnegie-Mellon includes microprocessor support for Physics
laboratory courses, advanced graphics support for fluid mechanics, color graphics tools for art students,
instructional programs for elementary concepts for formal logic, and a data bank of the French Revolution
used in a freshman history course. In addition, plans are being made for an advanced computerized
engineering laboratory in the engineering college, addition of animation and three-dimensional graphics in
the art program, a Computer Music Center for computer-assisted composition and music analysis, and
incorporation of computer support in a campus-wide writing program.

Applications such as these are becoming more common in computer science as well. At Carnegie-Mellon,
interest dates back at least to a proposal for a laboratory of interchangeable components [6]. More recent

AN UNDERGRANDUATE COMPUTER SCIFNCE CURRICULLM FOR T 19808 %

activity in computer science includes simulators for abstract machines such as finite-state automata or Turing
Machines and difficult-to-understand atgorithms (¢.g., van Dam’s work at Browa [3]): program development
environments (c.g.. T'citelbaum’s program synthesizer [14] at Cornell or Miller’s Gnome {9], an adaptation of
Gandalf, at Carncgic-Mellon). We can envision other automated tools, and libraries of programs to read,
maodify, or usc as clements of assignments.

There are many more opportunitics for imaginative uses here. ‘The more speculative ones include the
transfer of rescarch systems to the classroom, including expert systems, theorem-provers, transformation
systems, and intelligent advice-givers with user models and tracking of student performance. We anticipate a
steady increase in the demand for innovative “course-ware.” ‘These applications can support a variety of
courses. Some of the course-specific uses of computing technology for educational purposes arc indicated in
the individual descriptions of courses in Chapter 8.

In computer science, compuiers are not only pedagogical tools, they are the subject matter of many of the
courses. Thus, computer science is an cxperimental science; computer scicnee courses need undergraduate
laboratories, just as physics, chemistry, and biology courses do. Unlike thosc disciplines, however, computer
scicnee laboratories can often share the physical facilitics — the costs of cstablishing and maintaining the
laboratories will be largely software costs. Undergraduate computer science courses require software support
for the same reasons thal more traditional laboratorics require construction, maintenaace, staffing, and
supplics.

2.3 The Establishment

The ACM [1, 2] and the IEEE (8] have made a varicty of rccommendations on undergraduate curricula.
None of these provides a suitable foundation for a curriculum that mects the emerging needs described
above.

- The major shortcoming of the ACM and TEEE designs is that they scem to be merely summaries of existing
curricula rather than projections designed to last for the next decade. We beiieve, however, that a curriculum
design should play a leadership role. Any actual implementation will involve compromise and dilution, so a
design should provide a level of aspiration and a direction of development rather than simply an inventory of
current practice,

There arc two main reasons why we did not simply develop a curriculum directly based on the ACM
reccommendation. First, the ACM propesal is based more on the status quo in computer cducation than on
any attempt to unify the intellectual content of computer science. Sccond, the ACM curriculum relegates
mathematics to a totally inadcquate position — an attitude perhaps appropriate for a data processing
curriculum, but not for a computer science curricufum,

The [EEE computer engineering curriculum also lacks unity. That design fails to cxpose the important
common fundamentals joining hardware and software. In addition, its balance of hardware, software, and

theory is heavily biased to hardware, and the result is more suitable to computer engineering than to
computer science.

In addition to these well-known curriculum designs, we are beginning to see proposals about “software
enginecring” undergraduate programs as distinct from “computer scicnce” programs. While many

AN UNDFRGRADUATE COMPUTER SCIENCE CURRICULUM FOR TIE 19808 10

undergraduate programs are currently centered on the activity of programming, we believe that software
engineering is clearly a subset of what a well-trained computer scicntist should know, and we belicve that
software engineering alone is too narrow a program for an undergraduate degree.

AN UNDERGRADUATIE COMPUTER SCIENCE CURRICULUM FOR THE 19805 11

3. Objectives

The curriculum described here was developed in response to objectives set forth in Spring 1982 12}, The
premises and goals from that project plan are reproduced in this section,

3.1 Premises

Certain assumptions about computer science, about education, and about CMU underlie this effort. It will
be helpful to make them explicit:

» The major substance of an undergraduate computer science curriculum (as for any subject) should
be fundamental conceptual material that transcends current technology and serves as a basis for
future growth as well as for understanding current practice. This fundamental material should be
reinforced by abundant examples drawn from the best of current practice.

» The CMU Computer Science Department should invest energy in a degree program only if that
program is of very high quality — ranking among the top programs in the country.

» Whether or not the CMU Computer Science Department offers an undergraduate degree, a
complete review of the undergraduate curriculum is in order.

» An undergraduate computer science curriculum design should address the entire curriculum, not
just the courses offered by the Computer Science Department proper or even just the technical
courses refated to computer science.

We take as a working hypothesis the p'roposition that computer science is now mature enough — has
enough intellectual substance — to warrant an undergraduate or master’s-level curriculum and degree
program. In this context, the curriculum design process can be thought of as an experiment to test that
hypothesis.

3.2 Goals

Our specific objective is a high-quality computer science curriculum for CMU. This curriculum should also
merit national recognition, both for the quality of the students it educates and as an exemplar for curricula at
other schools.

Following the Carnegie Plan for education [4, 5, 7, 11}, we want to design a curriculum through which a
student can acquire:

» A thorough and integrated understanding of the fundamental conceptual material of computer
science and the ability to apply this knowledge to the formulation and solution of real problems in
computer science.

» A genuine competence in the orderly ways of thinking which scientists and engineers have always
used in reaching sound, creative conclusions; with this competence, the student will be able to
make decisions in higher professional work and as a citizen.

» An ability to learn independently with scholarly orderliness, so that after. graduation the student
will be able to grow in wisdom and keep abreast of the changing knowledge and problems of his
or her profession and the society in which he or she lives.

» A philosophical outlook, breadth of knowledge, and sense of values which will increase the

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM 1°OR THI {9808 12

student’s understanding and enjoyment of life and cnable each student to recognize and deal
cffectively with the human, cconomic, and social aspects of his or her professional problems,

» An ability to communicate ideas o others.

The focus of the design will be on a liberal professional cducation with cmphasis on problem-solving skills.
Some of the words in the previous sentence are subject to various interpretations. We intend all in a very
positive sease. “Liberal education” is broad, including humanitics and social scicnce courses plus technical
courses outside the student’s specialty. Liberal ceducation includes communication skills, both for
understanding the work of others and for communicating one's own work. Describing the education as
“professional” recognizes the legitimate motivations of many students who value education because they can
apply 1t rather than for pure intellectual enjoyment. “Problem-solving skills™ refers to the ability to apply
general coneepts and methods from a variety of disciplines to all kinds of problems. abstract as well as
practical, whose solutions require thought, insight, and creativity. Thus “problems” can range from the proof
of a theorem to the design and construction of a specialized computer program and “skills” means creative
intellectual ability, not mercly the ability to perform repetitive routine actions.

AN UNDERGRADUATE COMPUTTR SCIENCE CURRICUL.UM FOR T 19808 13

4. Content

This chapter sueveys the content of computer science. The objective is to present a coherent view of the
conceptual structure of the ficld and to indicate the scope of our concerns, while indicating connections with
other ficlds. Chapter 8 shows how the material described here is organized into specific courses.

We realize that a unificd discussion of ideas and concepts may not lead directly to a good organization for
courses. That is, the conceptual structure provided here does not necessarily correspond with the pedagogical
organization that forms the foundation of a curriculum design. 1t is impossible, for example, to convey
certain ideas without a background of methods and conventions. Some issues (c.g., reliability, optimization,
performance, adaptive design) appear in different forms and a variety of subject arcas. Further, courses often
focus on some kind of system (e.g.. compilers) in order to usc a single rich cxampic to bring out a varicty of
related topics.

Computer science embraces a variety of ideas and modes of scientific thought that must be presented
throughout a curriculum for their significance to be cenveved, cven though they may appear as a single
clement of a conceptual organization. Itis important for everyone who teaches the courses to present not only
the concepts themselves but also an understanding of why these concepts are nccessary for a wider
understanding of the science. Because of the importance of these distributed ideas, we mention them
cxplicitly here,

» Abstraction and represeniation. In a ficld such as computer science. in which the essential notions
are quite abstract, it is important that certain modes of thought be presented explicitly, Perhaps
the most important of these is the management of complexity through abstraction and
representation. Computer science deals with systems of human design that can appear to be
extremely malleable, particularly when realized in software. This malleability belies the problem
of handling complexity in such systems. ‘The student must be given a firm grasp of how
abstraction is used to control complexity. In this style of thought computer science bears a strong
similarity to imathematics. I3ccause mathematicians also dcal with systems built upon human
imagination, they have developed conceptual tools to manage complexity in the mathematical
systems they create, Mathematical maturity and an understanding of how mathematics deals with
complexity are cssential for computer scicnce students. Other important modes of thought for
computer science are discussed later in this chapter,

» Recurrent notions. Certain particular ideas, such as naming and addressing, binding, state,
resource management and allocation, and cuucurrency, recur in different contexts throughout
computer science. It is impertant for them to be identified as recurrent ideas so students can
consolidate their understanding. In our organization, there will usually be a single coursc charged
with presenting an overvicw of a given idea in varied scttings. This course should be sufficiently
advanced that the student will have already encountered the topic in severat forms; it sheuld be
clementary cnough that many students will take it.

» Theory and the practice of computing. A good curriculm must be based on sound theories and
models, and it must also teach these foundations in the context of good cngincering practice.
Most idcas in computer science can be presented in both theoretical and practical settings; these
ideas arc brought out most ¢ffectively when introduced at varying levels of abstraction. This is

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR TIIE 19808 14

true not only because students easily grasp ideas 1n a concrete setting, but also because the varying
range of prescntations illustrates how abstract notions are realized in the concrete forms of
programs or machines (or, conversely, how practical experience is expressed in abstract terms), It
is for this reason that nearly all the courses in this curriculum make connections between theory
and practice. '

» Cumulative experience with ideas. Certain essential ideas must be developed over several courses
for them to be completely assimilated. Students are exposed to the ideas early, but they may not
be expected to articulate them or synthesize them until much later. For cxample, students first
encounter data types when they learn to program. At this stage they arc exposed to the idea, but
they do not deal with it as a distinguishable concept. When the first programming language is
re-examined in more depth, students perceive types as an identifiable programming concept,
Later, students gain experience operating with types. for example by developing realizations for
given type specifications. Only after this experience are students able to create new abstract type
specifications. Since the development of such ideas must be distributed over several courses, it is
necessary that each course instructor understand this progression.

The remainder of this chapter surveys the content of computer science, but without assigning topics to
specific courses. The material is organized into four levels of sophistication in computer science,
corresponding to the four levels of student involvement suggested in Section 2.1.

4.1 Basics

This basic material provides fluency in the use of computers and familiarity with their capabilitics that will
be of interest to the broad population of students, not just to computer scientists. Within the next five to ten
years, this material will likely be regarded as an essential part of a good liberal education in any discipline.
We expect that what is now considered fluency will change from our present notion of programming skill to a
very different style of computer usage as the technology improves. The following basic material is expected to
follow that change.

4.1.1 Content

Carnegie-Mellon is committed to requiring all students to use computers effectively. The introduction to
computing for all these students should provide not merely the clerical skills required to use the computing
resources, but also facility in logical and algorithmic thinking and an understanding of the notions of
deductive reasoning, cause and effect, time and sequentiality, and state transition. This introduction should
also provide students with an understanding of the role of computers in a technological society and of the
responsibilities of a professional in the field.

These subjects constitute minimal literacy for a computer-based society: .

» Basic computer literacy (i.e., as a naive user): what computers can and cannot do, dealing with an

information utility {creating and using files), using existing programs and packages.
The office/file cabinet model of computation .
Gaining access to simple useful facilities such as
Computer mail
Simple files and campus data bases (the library card catalog, class schedules, etc.)
Personal data bases (calendars etc.)
Text formatting and writing toois (spelling checking ete.)

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULLM FOR TUHE 19808 15

Using inleractive programs and packages (interactive spreadsheets ete.)
Non-lextual interacuon, drawing packages, painting and layout
Networking and Communication
Using infonmation services {bulletin boards. mailing lists, ctc.)
Using data facilitics (central file servers ete) ‘
The implications of infermation sharing

» Elementary facts about computers: organization, architecture (processors, primary and sccondary

memorics, communication}, concept of stored program.
Processors and memory
The feich/execule cvcle
Storage devices (especially personal dismountable storage: disks, lapes, etc.}
Representation ol informition with binary devices
Binary numbers, encoding (¢.g., characier sets), instructions as data
Networking, how information is shared between computers

» Elcmentary facts about programs: concept of algorithm, simple program structurcs, including

control structures and procedures, declaration and use of data. use of libraries.
Computation and scquential exccution (following directions)
Simple programming in a high lesel language
Using and writing procedures (but not recursion}
Using inlegers, reals, strings, vectors, records {bul not pointers)
File input and output

» Thinking about computers and programs: problem solving ability, programming technique, and

concepts of correctness and performance,
Elementary problam-solving
Mechanics and discipline of writing programs
Simple program forms {filter on text file, summarivation of data, etc.)
Documentation
Incremental coding strategy
Debupging strategies, inciuding data sclection
Correctness and the fact that programns can be reasoned about precisely
Costs and the exisience of lime/space tradeolTs

» Role of computers in society: range of potential applications, appropriate and inappropriate use

of computers.
History of computers and their use
View of computers as providing an information utility
Potential future applications (current Al rescarch provides examples)
Social issues (computer crime, sccurity and privacy, consumer issucs, ete.)
Ethics of compulter use in an electronic community
Careers in computers, technelogical displacement
Impact of computers and robots on industry and employment
Psychological and social aspects of computation
Examples of applications

41,2 Skills

Skills developed in the basic curriculum include problem.solving and simple deductive rcasoning, the
ability to carry on simple interactions with a computer such as using selected programs, and sufficient
familiarity with computing to learn more as required,

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM I'OR THE 19808 16

4.2 Elementary Computer Science

These topics provide the foundation for a computer science degree, but they are relevant to others
interested in computer science as well as to computer scientists. Thus this material should be considered for
joint programs with other disciplines,

Generally, this is material for sophomore and junior courses. Many of the topics are fundamental, in the
sense that they form the basis for development of more advanced material. The material also fosters
functional fluency with contemporary systems. These skills are immediately useful; they provide experience
_ in the use of the fundamental ideas, and the resulting experience makes richer examples accessible.

We organize the material into three rough categories. corresponding to the body of material itself, common
modes of thought that students should be aware of, and skills associated with the material covered,

4.2.1 Content

This scction outlines our view of the body of clementary computer science. [t should be clear that some of
these topics are drawn from other disciplines (such as mathematics and electrical engineering). Both
theoretical and practical topics are included throughout the categories listed here.

» The nature of computation. Concept of algorithm; relation between algorithm and program.

Elementary automata theory. Supporting material from discrete mathematics.

Time, sequentiality, and concurrency
Algorithm, state
Finite-state automata as model of computation (introduce additional power of Turing Machine)
Relations beiween algorithms, programs Lhat express them, and machines that execute them
Probabilistic algorithms and heuristics ’
Discrete mathematics:

Inductive definitions and proofs

Linear algebra, graphs, functions, relations

Propositonal logic and proofs; set theory; boolean algebra
Elementary notions of calculus and numerical analysis

» Computer organizations. The von Neumann model and machine/assembly language.* ISP-level
and PMS-level organizations, elementary network issues. {At this level, the study is fairly
superficial — the objective is understanding the structures in order to use them, rather than to be
able to design new ones. Supporting material from electrical engineering, including electricity,

circuit design. and device characteristics.)
Digital Logic level
Basic digital concepts and terminology
Combinatorial circuits .
Discrete lime abstraction {clocks)
Circuit family abstraction
Register Transfer Level
Program level
Instruction formats and how they get interpreted
Concept of microcode
Architecture as specification of instruction set
Processor - Memory - Switch level
Properties of processors
Classes of switches (busses, crosspoints, etc.)
Memory technology
Characteristics of disks, tapes, drums, etc.
Memory hierarchy

- AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 1980

Addressing technigues, data representation and register transfer
Physical memory and addressing iechniques
Virtual memory and address mapping

170 and bus structures

Examples

Calculators, microprocessors, and microcomputers

Minicomputers and mainframe computers

Multiprocessors, supercomputers

Controi synchronization

» Program organizations. Organization of simple programs and clementary modular composition.
Data structures and some common program forms, Elementary concurrency issues. Reasoning
about correctness and performance. (The objective is design as well as use; the rudimentary

programming skill from the basic material is now refined to a useful fevel.)
Program development methods
Structured programming
Use of specification and verification
Documentation
Debugging and testing
Program organizations
Data organization primitives (pointers, hashing, encoding, packing, etc.)
Iniplementations of data types
Abstract data types and their specification
Some classical program organizations (filters, abstract data types,
pattern-matching systems, table-driven interpreters, etc.)
Imperative and applicative programming
Recursion
Matching data with control
Some classical aigorithms (sorting and searching, numerical algorithms from linear algebra, etc.)

» Languages and notations. Programming languages. An appreciation of the power of good
notation. Syntax and language descriptien. Examples such as BN¥ and regular expressions.
(Students should appreciate the language component of any interface design, and be aware of the

influence on design of pragmatic issues. Supporting material from discrete mathematics.)
Language as communication, interface medium, means of shaping ideas
Syntax and semantics
Formal language issues.
Syntax: regular and context-free languages; hierarchies of languages
Semantics: denotational; operatioral; axiomatic (Hoare-axiom or predicate-transformer)
Formal specification technigues: axioms and models
Classical programming language matters
Organization of program control: iteration and recursion
Functions, procedures, and exception handlers
Daia structures and declarations
Scope, extent, and binding, including parameters
Expression evaluation
Abstraction facilities (procedures, types)
Specification ’
Kinds of languages: applicative and procedural
Specialized languages
Production systems
Query languages
Graphical interaction - .
Semi-languages such as RPG, Visicale, Makefile, editors

» Design techniques. Advanced programming and specification techniques. Also, relevant ideas
from hardware design and other design disciplines.

17

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 19808

Advanced programming technigues
Specification methods and languages
Decomposing programs inte modules

Design tools ’
Documentation

Contemporary approaches (o probiem-solving
Devising and evaluaung aliernatives
ivaluation criteria :

» Evaluation and analysis. Analysis of algorithms, clementary models for performance. Criteria
used for cvaluation (correctness, speed, space, reliability, generality, complexity, cte.} and

tradcoffs among them. Supporting material from discrete mathematics.
Correctness)
Specification and verification
Performance
formal models
Rottleneck identification and climination
Analysis of algorithms
Models and modelling
What models are and how to use/canstruct them
Lmpirical vs analylic models
Validalion
Specific modcels (al this level, introduction only)
Queucing-theoretic models for operating systems and hardware
Productivity and life-cycle models and their limitations
Human factors

» Advanced personal use of computers. Text manipulation, personal data bases, Using an
operating system (command files, Unix pipes. ete.). Graphical intcraction. Access to libraries.
Appreciation of what makes compitters easy and hard to use. Supporling material from design
and psychology. Recasonable and unrecasonable social behavior; computing as a valuable

commodity.
Small examples of program development
Practical matters:
Program segmentation and linkage
Linkers and loaders
Error recovery techniques
Systems and utility programs
Text retrieval and processing {editing and document preparation)
Introduciion to operaling systems concepts
atch, imesharing, and personal (dedicated) systems
Elemensary sofiware engincering
Debugging, preventing debugging, test data selection
Organization of programming tcams
Program organization for maintainability
Verification
Software fibraries
Ethics, privacy, implications of having a user community

» Somc larger systems as cxamples. Study of systems large ¢rough for complexity to become an
issuc. (The point here is to generate some elementary familiarity with the systems and some of the

issucs — the hard problems of design and analysis comc later.)
Compilers {relatively small complex sysiem, but welt-understood)
Cognitive models {the human as a complex system}
Data bascs {(complexity of both size and interaction aver time)
Large software systems, such as operating systems {concurrency issues)
Dis:riburc_d systems

18

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 19805 19

4.2.2 Mo;ics of Thought

The following paradigms of computer science thinking are illustrated in the topics listed above. Students
will be better able to assimilate the technical material if they perceive the role of these paradigms.

» Hypothesis and test. That is, the classical scientific method. Models and their validation.
Generalization as a technique for refining hypotheses.

» Problem solving. Finding and exploiting structure. Tradeoffs between generality and efficiency.
Heuristic exploration of problem spaces.

» Analysis and synthesis. Managing complex systems by decomposition into parts. Development of
systems on the basis of structural organization. Quantitative techniques.

» Abstraction and realization. Abstraction as control of complexity and detail. Realization as a
process of binding underlying structure to implement an abstraction.

» Inductive reasoning. Drawing conclusions from limited observations.

4.2.3 Skills

There are certain skills that are useful and important for students to have when they interact with the ideas
described above. These skills include simple programming skills such as coding and debugging, basic
hardware Jogic design techniques, and the various mathematical skills related to discrete mathematics, such as
inductive proofs and an ability to manjpuiate propositional calculus formulas.

4.3 Liberal Professional Education

These topics serve to make the computer scientist a well-rounded professidnal, able to appreciate the
significance of work in other disciplines and able to relate his computer science expertise to problems outside
computer science.

This section also provides a taste of the interdependencies between computer science and other areas and
suggests areas in which joint degrees might be appropriate.

4.3.1 General Scope

The curriculum for a liberal professional education must define the general coverage as well as the core
material in the field of specialization. For us, that means a set of inclusive statements about the total scope
and some more specific statements about areas that are related to computer science.

Note that a liberal professional education in other disciplines may require joint majors with or computing
specializations in those fields. In this scction we are dealing solely with the problem of a liberal professional
education in computer science itself, '

4.3.2 Liberal Fducation

We believe that students should be broadly educated. QOur definition of a broad education includes
mathematics, science, and engineering as well as humanities, social sciences, and the arts. A broad education
is possibly more important in computer science than in other disciplines for two major reasons; First,
computer science is strongly tied to many cther disciplines. As computers become more prevalent, the range
of related disciplines can be expected to increase further. Second, there is an overwhelming need for literate

" citizens to interpret the field to others.

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 19808 20

4.3.3 Arcas Related to Computer Science

The boundaries of computer science overlap with several other areas. Some of the material at the boundary
should be developed (and possibly taught} with other departments. Specific offerings at the boundary should
arise from close cooperation between the interested departments.

The following sections list topics where there is likely to be overlap between computer science and related
fields. However, the list is by no means definitive. If curricula are established to educate non-computer
scientists to specialize in computing aspects of their fields, it is likely that there would be many new courses
that cxplore highly specific computing problems of various disciplines. Few such courses are included in this
section.

4.3.3.1 Mathematics and Statistics
Rela)[ed courses in mathematics and statistics might cover such topics as:
» Probability and statistics
» Combinatorics
» Modern algebra
» Linear algebra
» Numerical analysis
» Scientific computation, especially applications of linear algebra and numerical analysis

4.3.3.2 Electrical Engincering
Related courses in electrical engincering might cover such topics as:
» Circuit theory
» Solid state electronics and semiconductor devices
» Cocmmunications
» Control theory
» Information theory

4.3.3.3 Physics
Related courses in physics might cover such topics as:
» Electricity and magnetism _
» Solid state physics -
» Computational physics

4.3.3.4-Psychology
Related courses in psychology might cover such topics as:
» Cognitive psychology and information processing
» Problem solving
» Artificial intclligence
» Human factors

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM IF-OR THE 19808 21

» Psychological linguistics

» Perception

4.3.3.5 Mechanical Engineering
Related courses in mechanical engineering might cover such topics as:
» Mechanical linkages, particularly as they relate to robotics

» Computer-assisted manufacturing

4.3.3.6 Management and Inforination Science
Related courses and topics in management and information science might cover such topics as:
» Opcrations rescarch, particularly optimtization
“» Economics, especially project scheduling and estimation
» Management, cspecially relating to auzomation and to high-technology development

» Role of computers in organizations; how organization structures interact with information flow

4.3.3.7 Public Policy
Related courses in public policy might cover such topics as;
» Social implications of large-scale computing
» Consumer issucs in personal computers
» Policy issues arising from computing and communications
» Computer models for policy analysis

» Legal issues such as ownership of software, lability, and security

4.4 Advanced Computer Science

This material is of interest to specialists. Whereas all computer science students would be expected to
master the previous material, specialization begins here. The depth intended here is at or just below first-year
graduate level; as a result this material might form part of a master’s degree curriculum. This is not to say that
we see an undergraduate cducation as covering the graduate curriculum, but rather that we belicve that a
senior undergraduate should master that depth in selected arcas.

The organization given here has been driven by the content of the material; it is not to be misconstrued as a
course organization. For example, a course in software engineering might cover much of the materiat listed
under “Systems” and “Process” and also reenforce previous topics in the other areas. Likewise, a course
similar to the traditional compiler course might be retained — not to teach compiler building, but to exhibit a
medium-sized system with a well-understood structure and to take advantage of the time invested in the
cxample by using it to cover advanced material in data structures, application of formal methods (parsing
theory), and interface construction.

Within cach of the areas listed below we would expect to find contributions from the traditional areas of
theory, software, and hardware. We hope that this organization will avoid inappropriate
compartmentalizations. We also hope that it will stimulate thought about the tnteractions among historically
disparate arcas and simplify the inclusion of individual topics that haven't grown into course-sized entities.

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM [FOR TIIE 19808 22

4.4.1 Control

This arca includes scientific and engineering aspects of algorithms, especially as expressed in programs
running on computers. Topics such as the function of CPU's, sequentiality and concurrency of processing,
use and analysis of algorithms, corrcctness of algorithms, fault tolerance, prebabilistic and heuristic
algorithms are all aspects of control.

Many of these concepts appear repeatedly: for example, the notion of concurrent processing appears in
various guiscs in numcrous contexts. These include hardware circuits, interrupts, communication protocols,
software synchronization mechanisms such as semaphores and monitors, software process constructs such as
coroutines and tasks, data base transactions, and operating systerms policy for scheduling and allocation.

4.4.2 Data

This arca encompasses the manipulation and representation of information, in cormputation and cspecially
in computer programs. Thus notions of state, physical storage devices, addressing and accessing methods,
types, representation, specification. encryption, and “quantity™ of information are all included here.

These topics also appear throughout computer science. For example, the notion of naming or addressing
appears in hardware addressing (direct, indirect, virtwal), memory hicrarchies, program variables {scope,
extent, binding), operating system storage policics (working sets, overlays, virtual memory management),
database models, file directories, and file access methods.,

4.4.3 Systems

A system is a regularly interacting or interdependent group of software or hardware modules which forn a
unified whole. The swdy of systems includes the identification, quantification, and management of
complexity in systems, the design and construction of large systems, the evaluation of performance, reliability,
and security of systems, and how systems are distributed and how communication is performed.

4.4.4 Langnage

The representation of programs (as obposed to the representation of data) characterizes the study of
language. Thus the language arca includes the idcas of notation, syntax, semantics and the study of traditional
programming languages and their implementation and specification. This area also includes issues of user
interfaces, human factors, and technologies such as speech and graphics.

4.4.5 Foundations

These topics are predominantly scientific; the results. are applicd in engincering contexts. At the moment,
they are mostly mathematical and theoretical; there are perhaps many non-theoretical topics which should be
placed here. Alsa some portions of these topics are included in the clementary computer scicnce scction;
inclusion here indicates study at a more advanced level. Sample topics are the study of computability and
complexity, queuing theory, graph theory and inforr: .+ 3n theory, The study of modeling as a tool for
analfsis is also included here. The ability to formulate and analyze cempirical and theoretical models is

essential,

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 19805 23

4.4.6 Process/Design

This arca covers the management of complexity, especially when human behavior or performance is
involved. It includes cngineering considerations pertinent to devclopment (e.g. rcadability and
maintainability of code) and techniques for managing the design and development of large systems {e.g.
instrumentation of programs to aid in dcbugging and performance evaluation). It also addresses the
economics of software including creation costs, maintenance costs, and life cycles,

4.4.7 Communication

This area covers topics related to the transmission of information. As computer architectures become more
distributed, the transmission of information between them becomes a key feature. Personal and home
computers are being used more and more for storing, processing, and sharing information and less for
computational purposes. This area includes both the methodologies used to achieve information transmission
and the implications of widespread access to information. It also covers methods for preventing such access,
i.e. information security.

4.4.8 Applications

These include both applications that depend mainly on ideas from computer science and applications that
are important because of their use of computer science material, but that are not computer science in and of
themselves. The first category includes applications that are taught to synthesize knowledge from various
parts of computer science and present these ideas as parts of a working system. Examples are compilers,
operating systems, graphics, and some artificial intelligence programs. The second category includes systems
which are rich in their use of computer science techniques. Examples are large financial systems, airline
reservation systems, commercial database applications, CAD/CAM systems, remote sensing, and CAL

AN U}\ DERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 19808 24

5. Program Organization

This chapter presents a set of requirements and a suggested curriculum for a complete undergraduate
computer science majof. In keeping with our prediction of the responsibilities of future computer scientists,
considerable flexibility is provided to allow for professional breadth and the computer science component
places hcavy emphasis on fundamental concepts. To this end, a number of electives are specifically
constrained to mathematics courses, a number of clectives afe specifically constrained to be nontechnical, and
a concentration in an arca outside of computer science is required. Even if the curriculum is adopted without
creating a major, this brief discussion of the sort of program that could be based on the curriculum provides a
good global perspective,) ‘

Section 5.1 tabulates the requircments for the program. For both philosophical and practical reasons we
have allowed considerable flexibility in the choice of electives. We have done this to provide students and
their advisors with the opportunity to construct focussed programs tailored to students’ interests, not as a sort
of permissiveness. Section 5.2 describes our intentions about the use of electives; it takes the form of advice
to advisors. To show that the program is actually achievable, Section 5.3 shows how several versions of the
program could be scheduled in four years. ‘

5.1 Requirements

We assume that a normal load is five courses per semester for eight semesters and that college requirements
dominate the first year. The distribution of courses in the last three years is roughly 35% to computer science
and mathematics, 15% to other technical electives, and 30% to humanities, social sciences, and arts. There is
considerable flexibility in the remaining 20%.

We cxpect that the electives will be used to form focuséed, coherent programs; £ many cases computer
science courses will be coupled to specializations in a non-computer science area. Wise use of electives
depends critically on individual advising; electives should be chosen in keeping with an overall plan rather
than as isolated decisions each semester. Good use of the electives may be encouraged by publishing
examples of approved specializations and providing a review and approval mechanism for individual

programs.

A total of 40 courses are required. The distribution is
Freshman year (controlled by coliege) 10
Computer Science and Mathematics 10
Specific required courses
Constrained Computer Science 3xx courses
Advanced Computer Science (4xx)
Constrained Mathematics courses
Technical courses 5
Nontechnical courses (Humanities, Social Sciences, and Fine Arts)
Flectives cutside the Computer Science Department 6
Non-CS Concentration [constructed from other electives]
Total ' 40
These course counts can be converted (approximately) to Carnegie-Mellon “units” by multiptying by 9. The

[I o I S R

D

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULLUM FOR THE 19808 25

specific course requirements are somewhat more liberal than the requirements of other departments. The
elective structure provides considerable flexibility for adapting the program to joint degrees.

The specific requirements for the program are as follows:

» Ireshiman Requirements {10 courses): We believe that college requirements will dominate the
freshman year. This design therefore reserves space for a year’s worth of courses required by the
college (including freshman writing and history). Although this delays the student’s cntry into
computer science courses, it preserves flexibility for selection of a major at the end of the
freshman year. We expect that for students likely o enter computer science the freshman courses
will include at least

PROGRAMMING AND PROBLEM SOLVING [110],

DISCRETE MATHEMATICS [150),

CALCULUS I [MATH 121],

PITYSICS I [PHYS 121],

two other courses in natural sciences or mathematics

one course each in writing and in history or social science
two other courses

We believe that the six courses not named should be broadly distributed, so we make no
additional constraints. '

» Computer Science and Mathematics (10 courses): Four specific courses are required in addition to

those in the college core: .
FUNDAMENTAL STRUCTURES OF COMPUTER SCIENCE I [211],
FUNDAMENTAL STRUCTURES OF COMPUTER SCIENCE IT [212],
REAL AND ABSTRACT MACHINES {240],
ALGORITHMS AND PROGRAMS [330].
Four more courses are constrained within the computer science department, and two courses must
be taken within the mathematics department. These include:
>One 300-level system or software course (from TIME, CONCURRENCY, AND
SYNCHRONIZATION [310[, COMPARATIVE PROGRAM STRUCTURES [31l], LANGUAGES,
INTERFACES, AND THEIR PROCESSORS [320]).
> One 300-level theory or approved mathematics course (from FORMAL LANGUAGES,
AUTOMATA, AND COMPLEXITY [350], LOGIC FOR COMPUTER SCIENCE [351], NUMERICAL
METHODS IMATH 369].)
> Two 400-level computer science courses.
> Two mathematics courses (from COMBINATORIAL ANALYSIS [MATH 301 / CS 251], OPERATIONS
RESEARCH 1 [MATH 292}, LINEAR ALGEBRA [MATH 341], NUMERICAL METHODS [MATH 369},

MODERN ALGEBRA [MATH 473], LARGE-SCALE SCIENTIFIC COMPUTING {MATH 712 / C$ 453],
PROBABILITY AND APPLIED STATISTICS [STAT 211 / CS 250}).

» Technical Courses (5 courses): These may be selected from courses in science and engineering
departments plus selected technical courses in other departments.

» Nontechnical courses - Humanities, Social Scz'enc'es, and Fine Arts (9 courses in addition lo
Jreshman requirements): Some of these courses are constrained by college and university
requirements. In addition to those requirements, three courses are constrained as follows:

> POLICY ISSUES IN COMPUTING [EPP 380 / CS 380),

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM IFOR THE 19505 26

> A writing course in addition 1o the freshman writing requirement,
> Another course with a substantial writing component,

» Electives (6 courses): Electives are to be selected to support objectives established jointly by the
student and his or her advisor. These six electives must be chosen from outside the Computer
Science Department.

» Non-C'S Concentration: A concentration of at least three related nonintroductory courses in an
area other than computer science is required. Some possibilities will be recommended; students
may propose others for approval. Although the concentration may be in the mathematics
department, mathematics courses taken as part of the Computer Science and Mathematics
requirement may not be used to satisfy the concentration requirement.

Although most of the discussion here has dealt with bachelor’s degrees, the curriculum would also support a
master’s degree. The 4xx courses provide master’s-level depth; we believe that undergraduate students should
achieve this depth in one or two areas. A master’s program would require more breadth at that level; it would
also-include a master’s thesis. We have not addressed the question of whether specialized topics such as
software cnginecring are suitable programs for a master’s degree; certainly such explicit specialization is more
appropriate at the master's level than at the bachelor’s level.

5.2 Advice on the Use of Electives

The design of a degree program might take cither of two forms. The course sequence and requircments
could be so tightly constrained and highly specified that a strong program is guaranteed. The disadvantage of
tiis style is that only the variatons antibipa[ed by the designers are likely to be accommodated by the
program in any reasonable way. As an alternative, the requirements could be left sufficiently flexible that
many different strong programs can be constructed. The weakness of such a flexible approach is that weak
programs also become easy [0 construct, either by design or by error.

We have decided in favor of flexibility in this design because we feel that the field of computer science is
still so fluid that we cannot accurately predict what it will look like in a decade. The price of this decision is
that the responsibility of the advisor in helping design the individual course of study is increased. The faculty
advisor must spend considerable time with each advisee, understanding his strengths, weaknesses, and
interests and providing firm guidance to ensure that each computer science major receives an excellent
education. This will only work if the number of students is small in comparison to the advising faculty. If
individual advisors are responsible for too many students, the flexible alternative may not be feasible. In that
case it would be necessary to specify allowable programs more rigidly,

Because of the cross-disciplinary nature of computer science, every computer science major ought to have
significant exposure to advanced material in some field other than computer science. For that reason we have
introduced the requirement for a non-CS concentration, a sequence of at least three non-introductory courses
in any other fleld. This concentration may be in a technical or non-technical ﬁel_d. We imagine that the main
areas that will be selected are electrical engineering, mathematics, and psychology, but we also want to
encourage students to consider concentrations in fine arts, humanities, social science, the physical sciences,
business, or any other area offered at an advanced level by the university. As a result of our commitment to

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULLM FOR TT11: 19808 2

this breadth, our specification of a computer science najor has substantially fewer specific requirements than

most other majors. However our intention is to provide a morce rigorous, not a less rigorous, overall program.

We intend that most students take more mathematics than is required in the proposed program.
Combinatorial analysis, lincar algebra. operations research, numerical methods, graph theory, probability, and
statistics arc all extremely valuable in many arcas of computer scicnce and are commended o the attention of
students and advisors, '

The typical undergraduate program, as we envision it, draws approximately two-fifths of its content from
computer science and mathematics, one-fifth from other technical arcas, and two-fifths from humanitics,
soctal sciences. and fine arts. This appears to be considerably broader than many of the cxisting technical and
engincering majors at Carnegic-Mellon: we feel that this is appropriate. We cxpect the number of
introductory courses taken to be fairly small. We strongly discourage the kind of “hreadth” that comes from
intellectual dilettantism, particularly when the symptom is a plethora of introductory survey courses.,

5.3 Example Programs

To show the feasibility of this program and some of the ways it can be adapted to the needs of individual
students, we show plans for a few particular instantiations. These plans should be interpreted as onc way, but
certainly not the only way. o schedule courses into semesters and to satisfy requirements, Naturally, courses
may be reordered as long as prerequisite requirements are satisfied. In particular, clectives shown in the
senior year may be exercised earlier, courses restricted to particular topics may be taken in the senior year,
and the non-CS concentration may be taken at some time other than that shown here,

The first example shows how a reasonably balanced program could be organized. The remaining examples
are cxtreme cases, designed to illustrate the flexibility of the program: they are not suggested programs,
These examples are a mathematics concentration, an clectrical engincering concentration for a student who
wishes to take as many technical courses as possible, and a psychology concentration for a student who enters
the computer science program late, after pursuing the social scicnces for three semesters,

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 19808 28

5.3.1 Balanced Program

The sample program shown here might be designed by a student seeking a balanced program. In this
example we have assumed an interest in systems, but not one that is so overriding as to produce a skewed

program.
| Freshman | Sophomore | Junior | Senior
| Fall | Spring | Fall] Spring | Fall | Spring | Fail [Spring |
| CS 110 | CS 150 |CS 211 | CS 212 | €S 330 {CS 320 |CS 412 {CS 420
" | Program’g & | Discrete | Fundamental | Fundamental | Algorithms & |Lang, Int | Resource | Transducers
| Prob. Solving | Math | Struc I | Struc 11 | Programs | & Pracessors { Management | of Programs
| Math 121 | Math 122 | CS 240 | Blective | CS 310 | CS 350 | Math 341 CS 400
| Calcutus | Calculus 1T | Real&Abstr |] Time, Synch | Formal Langs | Linear Senior
] | Machines | | Concurrency | Aut, Cmplxty ! Algebra Project
{ Phys 121 | Freshman | Stat 211 | Math 301 | | | Elective
{ Physics I | Year | Probability | Combin- I Nen CS Concentration ---------->
i | Requirement | & Statistics | atorics | |
| Freshman | Freshman | Writing | H&SS | Another §CS/EPP 380 | H&SS H&SS
| Year | Year | Course | or CFA | Writing { Policy Issues | or CFA or CFA
| Requirement | Requirement | | Elective | Course jin Computing | Elective Elective
| Freshman ! Freshman i o | |
| Year | Year | ¢——--- Humanities, Social Sciences, and Fine Arts (subject to college restrictions) —-—--->
| Requirement | Requirement | | | |

AN UNDERGRADUATE COMPUTER SCIENCTE CURRICULUM FOR THE 19808 29

5.3.2 Mathematics Concentration

The example program below might be designed by a student with a strong interest.in computer science and
mathematics. The conceniration requirement is fulfilled by ecither the sequence of physics or chemistry
courses or by a selection of the mathematics electives. Many students currently at Carnegic-Mellon major in
mathematics with a concentration in computer science. For many of these students, this would be an
appropriate course of study,

Freshman] Sophomore i Tunior	Senior						
Fall	Spring	Fall	Spring	Fall	Spring	Fail	Spring
CS 110	€S 150	CS 211	Cs 212 }CS 330	CS 351	CS 450 [CS 451		
Program’'g &	Diserete	Fundameniai	Fundamental	Algorithims &	Logic	Theory	Compiexity
Prob. Solving	Math	Struc I fStruc II	Programs	for CS	of PLs		
Math 121	Freshman	CS 240	Math 301 [C8§ 350	CS 3xx I Math 341	Math 473 i		
Caleulus I	Year	Real&Abstr	Combin-	FLAC	Restricied	Linear	Algebra i
	Requirement	Machines	atorics	[(310,311,320)	Algebra	[
Phys 121	Freshman	Stat 211	Math 259				Math 369.
! Physics 1	Year	Prabability	Ordinary	Commeem Physics or Chemistry Electives ——--->	Numerical		
[} Requirement	& Statistics	Diff Eqns]			Methods {		
Freshman	Freshman	Writing	H&SS	Another	CS/FPP 380	H&SS	H&SS
Year	Year	Course	or CFA	Writing	Policy Issues	or CFA { or CFA	
Requirement	Requirement		Elective	Course	in Computing	Elective	Elective
{ Freshman | Freshman | |] ! | f

| Year [Year | Crameenms Humalmties, Social Sciences, and Fine Aris (subject to college restrictions) -------=> |

| Requirement | Requirement | [| | | ! i

AN UNDERGRADUATTE COMPUTER SCIENCE CURRICULUM FOR THIT 19868 0

5.3.3 Klectrical Fngineering Concentration

In this case will will assume a student with a strong interest in clectrical engincering that wishes to take the
maximum number of techrical courses as soon as possible. This cxample is quite rigorous, involving one of
the more difficult scquences from Electrical Engincering. 'This is only one example, many others could be

constructed.

| Freshman i Sophomore | Junior | Scnior |
| Fall | Spring ! Fall | * Spring i Frail | Spring | “all | Spring |
{CS 110 JCS 150 |Cs 2t | CS 212 | CS 330 | €S 3xx | €S 440 |CS 441 |
P Program'g & | Discrete | Fundamental ! lFundamemal | Algorithms & |[Comp Sei . | Compuler | VLSI |
Prob. Solving	Malh	Strue	} Struc 1	Programs	Elective	Architecture	
Math 121	Freshman	CS 240	Eicetrical] CS Ixx	CS 3xx	Elective	CS/EPP 380	
Caleulus		Year	Reai&Abstr	Engr i Restricted	Restricted		Policy Issucs
	Reguirement	Machines		(310.311,320)	(350.351.369)		in Computing
Phys 121	Freshman	Stat 211	Math 259	Llective	Writing	Another jII&SS	
Physics [Year	Prabability j Ord Diff		Writing t Course	or CFFA		
	Requirement	& Stalistics	Eqos i i i	Elective			
Freshman	Freshman {EE 101	EEE 102	EE 221	GE 222	T1&SS	H&SS	
Year	Year	Linear	lZlectronic	Electronic	Digital	or CEFA	or CI°A
i Requirement	Requircment	Circuits ! Circuits	Circuits	Circuits	Elective	Elective	
Freshman	Freshman				}		
Year	Year	Physics	Physics	€ememmeee [umanities, Social Sciences, and Fine Arts --=---->			

| Requirement | Requirement | | | | | | }

AN UNDERGRADUNTLE COMPUTTER SCIENCE CURRICULUM FOR 111 (9308 31

5.3.4 Psychology Concentration

Here we will assume a student with interests in cognitive psychology and artificial inteltigence, To illustrate
the flexibility of the program we will assume that the student has interests in social science and public policy,
and decides to enter the computer science program after taking only Calcutus [but no other refevant courses
in the first three semesters.

Freshman | Sophomore Junior Senior
' Fall | Spring] [Fall | Spring | Faalt t Spring | Fall | Spring !
Freshman	I'reshman	11&SS 1CS 110 1 CS 211 1CS5212	CS 330	CS 460			
Year	Year	Course	Program'g &	Fundamental	Fundamental	Algorithms &	Cognitive
Requirement	Requirement	Prob. Solving	Struc [Struc 11	Programs	Processes	
Freshman	FFreshman	H&SS	CS/M 150	CS/EE 240	CS	CS 3xx	CS 461
Year	Year	Course	Discrele	Real & Abstr	Restricted	Restricted	Robotics
Requirement	Requirement		Math	Machines	(350,351,369 (310,311,320}		
Freshman	Freshman	Math 121	Math 122	Sial 211	Math 301	CS 360	CS Ixx
Year { Year	Cale I	Catc IT	Probability	Combin-	Artificial	Comp Sci	
Requirement { Requirement			& Stalistics	atorics	Intelligence	Elective	
Freshman	Freshman	PSY 113 IPSY 213		CS/EPP 380			
Year	Year	Problem	Inf Proc	{ommmmemn Technical Clectives === >	Policy Tssues		
Requirement	Requirement	Solving fand Al			in Computing		
Freshman } Freshman							
Year } Year	K Humanities, Social Sciences, and Fine Arts {(subject to college restrictions) »=====--						
i Requirement { Requirement | ! |

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 19808 R

6. Remarks

The curriculum presented here departs from traditional curricula in a number of ways, Further, some of
our objectives do not appear explicitly in the design. This chapter prescnts remarks about the curriculum that
may help the reader to interpret and evaluate it.

6.1 General Philosophy

We believe that previous computer science curricula have been too compartmentalized. They contain many
courses focused on specific areas, but offer little or no overview of the material. We attempt to organize
courses by coherence of the content, not necessarily following traditional boundaries. We also attempt to
blend theory and practice in all courses. We believe that a strong emphasis on recurring themes (e.g.
abstraction and rcliability)} will help to bridge the gaps between topics that, on the surface, may seem
unrelated.

Though we stress “foundations™ and “unifying concepts”, we also intend to teach students to appreciate and
produce specific solutions to specific problems. We realize that in many respects this is best achieved by
exposing students to a wealth of examples of good “engineering solutions” and by providing large amounts of
supervised “hands on™ experience of the sort that lectures and examinations simply can not provide.

We also feel that the “liberal professional” goal is best served by breadth. An undergraduate who
overspecializes can graduate unable to learn on his own, and unable to communicate his knowledge to
laymen. We believe that specialization can and should happen after graduation, whether the student enters
the work force or graduate school. Qur goal is to produce an individual with a broad base ¢n which to build
addirional knowledge, not a worker with skills that may be obsolete shortly after graduation.

Certain “themes” run throughout the curriculum, and are discussed in Chapter 4. Although these topics are
not mentioned explicitly in most courses, all carry the responsibility to convey those ideas through their tone
and examples.

We strongly feel that a curriculum for computer science must have support from current technology.
Software support for undergraduate courses is essential. Section 2.2 discusses this in more detail. Students
must have convenient and substantiai access to computer resources. This access is vital. Computer technology
can also be applied in more enterprising applications than those common today. In addition to routine
applications, computers can be used in creative settings: examples include teaching via intelligent, advice-
giving programs, and other kinds of computer-aided instruction. Extensive experience with current
technology at this carly stage will prepare the student for the real programming world.

6.2 Relation to Traditional Courses

Many of the concepts of computer science appear in nontraditional contexts in this curriculum. This is
often because older courses were organized around artifacts such as computers or software systems, whereas
our design tends to be organized around ideas.

As a particular instance, there are no courses specifically about operating systems or compilers. Both of
these traditional courses take as an integrating theme a complex system such as a compiler or operating system

AN UNDERGRADUATLE COMPUTLER SCIFNCE CURRICULUM FOR TITL 19808 13

from which most of the main ideas are naturally motivated. This curriculum, however, organizes these topics
by grouping similar abstract ideas. As a result, the major concepts from an operating systems course appear in
TIME, CONCURRENCY. AND SYNCTIRONIZATION [310}, COMPUTER ARCTIITECTURE [440), and RISOURCE
MANAGEMENT [412]. The topics from traditional compiler and comparative languages courses are distributed
through LANGUAGES, INTERFACES, AND THEIR PROCESSORS [320], TRANSDUCERS OF PROGRAMS [420], and
ADVANCED PROGRAMMING IANGUAGES AND COMPILERS $421). '

FUNDAMENTAL STRUCTURES OF COMPUTER SCIENCE | AND It [211/212] is the introductory sequence for
computer science students. Tt repiaces what is usually a second programming course with onc that introduces
many important concepts (abstraction, representation, correctness, performance analysis) as carly as possible.
It also has a significant programming component. This sequence has been taught at Carnegic-Mcllon for
several years, and we are very satistied with it as an introduction to computer scicace and a foundation for
further study.

Early courses usually deal with building programs from individual statements, whilc a software engincering
course (c.g. SOFTWARI ENGINEERING [2101) deals with the lntgraction of whole modules in a complete system.
A new course, COMPARATIVE PROGRAM STRUCTURES (311, is intended to cover the intermediale stage. Its
emphasis is on the common frameworks for building modules from code fragments.

Two courses in this curriculum are descendants from traditional courses, but with a significant shift in
cmphasis. REAL AND ABSTRACT MACIIINES [240] is an introduction to hardware that includes relevant material
from programming systems and automata theory with the explicit intention to bridge the normal distances
among thosc areas. ALGORITIIMS AND PROGRAMS [330] is an algorithms course with a highly pragmatic bent
~— blending the more usual “Abstract Algorithms™ and “Advanced Programming’ courses.

Several of the intermediate courses are derived from traditional courses with modest changes in emphasis.
These include FORMAL LANGUAGES, AUTOMATA, ANDY COMPLEXITY {350] and INTRODUCTION TQ ARTIFICIAL
INTELLIGENCE {360].

6.3 Course Organization and Style

By longstanding tradition a “course” is a serics of lessons long enough to fill a semester and containing a
reasonable amount of inteliectual content. The honor accorded by tradition should not be permitted to mask
inadequacies of the course format; nor should skepticism be permitted to destroy the well-reasoned product
of our predecessors. This curriculum focuses on the course as the atomic unit of instruction, not because of a
blind devetion to tradition, but because we found no compelling alternative. Qur commitment is to
excellence in instruction of the next gencration of computer scicntists, not to the provision of particular
courses or degrees,

We arc not certain that every aspect of computer scicnce education is best served by the traditional course
structure. Alternatives to the traditional emphasis on the “course™ include the Oxford/Cambridge tutorial
model, various work/study programs, and the competency examination model, This curriculum should be
seen as au interim solution, realizing that some concepts may be best taught via structures not yet imagined.

Computer science courses often resemble physics laboratory courses in their need for direct observation and
manipulation of the phenomena of computer scicnce. Consequently, computer scicnce courses depend on

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 19808)

laboratory facilities and staff to create and operate those facilitics; including machines, working space, and
programmers. They also require numerous development tools, libraries of examples, and instructional
software. '

Parallels can also be drawn to literary criticisin courses, where students learn to write by reading the writing
of others. This example supports the belief that people can best learn to program by reading programs. Thus
courses involving reading good example programs might be very productive.

More difficult is the challenge of teaching those lessons that by their very nature span more than the
- semester duration of a traditional course. The true value of good programming practice and detailed
documentation are learned only when a programmer has to modify a program months or years after he has
written it, a situation that ‘most students never face. It may be possible to design a sequence of courses
requiring the student to examine or use his previous programs to motivate the need for these habits.

Two brief notes on mechanics: Firstly, our prerequisite structure is intended to be strictly observed. We
recommend that a letter grade of “C” or better be required to satisfy a prerequisite. Secondly, we fecl classes
should be restricted to a manageable size. The repbrt of the 1980 CMU Computer Science Undergraduate
Program Committee [15] recommended the following limits on the size of course sections: 50-60 students in
second year courses (2xx) and 20-30 students in upper division courses (3xx and 4xx). These limits were
independent of issues related to degrees. We strongly endorse these limits.

6.4 Course Numbering Scheme

A rational system of course numbers provides a quick hint about the level and content of each course. Qur
scheme is derived from the Carnegie-Mellon system, and is similar to those in use at many universities, The
level of a course is the year of the average student taking the course (1xx for freshman courses, 2xx for
sophmores, and so on}, except that 4xx courses are for suitable for both seniors and graduate students. There
are no 5xx courses.

A three-digit course number JKI. is interpreted as follows:

» The first digit J indicates the level of the course:
1xx Basic, introductory, or general literacy
2xx Elementary computer science
3xx Intermediate topics focussing on individual ideas
4xx Advanced or specialized topics integrating individual ideas

» The second digit X indicates the general subject matter of the course:
x0x General :
xlx Systems
x2x Programming Languages
x3x Algorithms and Analysis
x4x Computer Systems; Hardware
x5x Theory and Mathematics
x6x Artificial Intelligence and Psychology
x7x Design, Graphics, and Computer-Aided Activities
x8x Management, Economics, Policy
x9x Applications T

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 198¢S 35

» The third digit is assigned arbitrarily to distinguish different courses within a category.

In the rest of this document we will often refer to courses offered by other departments. For this, we will
generally use the Carnegie-Mellon course numbers, which do not necessarily adhere to this convention, Such
coursc numbers are either prefixed with a department name (e.g. CIT 300), or by a two;digit department
code (e.g. 39-300).

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 19808 36

7. Abbreviated Course Descriptions

This chapter contains brief descriptions of the courses we have designed. These descriptions contain the
same level of detail as a college catalog. More complete course outlines are given in Chapter 8, in a separate
volume. Courses in other departments that are of interest to computer scientists arc listed in Chapter 9. An
overview of the course structure, including course names and prerequisitesl, is given in Figure 7-1.

7 1. Fundamental Structures of Computer Science I [211]

Prerequisites: PROGRAMMING AND PROBLEM SOLVING [110]
DISCRETE MATHEMATICS [150}

This course introduces students to the fundamental scientific concepts that underlie computer science and
computer programming. Software concepts such as abstraction, representation, correctness, and performance
analysis are developed and are related to underlying mathematical concepts. Students are asked to apply
these concepts to programming problems throughoeut the course.

7.2. Fundamental Structures of Computer Science 1T [212]

Prerequisites: FUNDAMENTAL STRUCTURES OF COMPUTER SCIENCE1{211]

The course is a continuation of FUNDAMENTAL STRUCTURES OF COMPUTER SCIENCE I [211}. It comprises
five major parts: data abstraction, implementation of data types and corresponding algorithms, models of
computation, topics in computcr implementations, and a brief introduction to LISP. In addition to lectures
on these areas. students are asked to complete a number of programming assignments that are an integral part
of the course. They are often the first programs that are large enough to force the student to deal with
abstraction (by necessity), and they give the student an opportunity to apply algorithms and abstraction

.

techniques that are presented in class. Smdents are asked to program and think about programming during
the entire course.

7.3. Real and Abstract Machines [240]

Prerequisites: PROGRAMMING AND PROBLEM SOLVING [110]
DISCRETE MATHEMATICS {150] -

In this course the student is introduced simultaneously to the theoretical models and the hardware instances
of machines that compute. The notion of layers of virtual machines and their realization in various
combinations of hardware and software are major themes. Beginning with primitive computations, the
mathematical concept of function is used to capture the capabilities of combinatorial digital logic circuits,
From that base, finite automata are introduced as tools for understanding, -analyzing, and designing finite
state machines. After that, Turing Machines and, more appropriately, register machines are introduced and
related to the architectures of real computers. Finally, microcede, machine/assembly language, and general-
purpose programming languages are positioned in this hierarchy. The laboratory component of this course
will require about three hours of 1ab work per weck and will expose the student to simple instances of some of
the machine types. Students will simulate several classes of machine and will design and construct simple
combinatorial circuits and a simple finite state machine. '

]’I'he prerequisite structure is complete only for computer science courses.

mmwmsmgmmmdmmxmqjuimﬂm

110: 160:
Programning Discrote
& Prob Solv Mathematics
211 240: Stat211; M301: Psych 213:
Fund Struc Real & Abstr- Probability Combinatorics ITafa Proc
of C5 1 act Machines & Statistics & AT
212; FE101,101; Midl: H369: Psych 363:
Fund Struc Circults Linear Numerical lluman
of Cs T Courses Algebra Hethods Factors
3xxlthy
I l I l |
ang: 310: 3 320 330 EF221,222: 350: 361 360 Ag0: .
Solving Real Time. Synch, Comparative languages Alqgorithms Flec & Dig Forml lanys loyic for Artificial PuIIC{ for
Wrld Probs & Concurrency Prog Structs & Interfaces & Programs Circuits & Complexity Comp Sci Intelligence Compuiling
| <
3 ™
212+two I ,] \‘\
i S i1 M301 N |
400,401: 410: q12; 420: 430: 440 M473 450 460 470
Indep Proj Software Resource Transducers Advanced Computer Advanced Thy of Al: Cognitive Computer
& thesis . Engineering Management of Programs Algorithms Architecture| Algebra Prog Langs Processes Graphics
Cale II
212+two (varies) /\“3;“/ Lin Tg/
409; 411 413; 421: 441; 451; M712; 461
Research Software Big Data Adv PlLs VLSI Design Complextty Sclentific Al: Robotics
Seminar Eng. Lab Compiler Theory Computing

S086T FHL 40 WNTNDOTHUND IINTIDS T LNdNO0D ALVAQVIDUIANN NV

JA3

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 19808 38

7.4, Solving Real Problems [300]

Prercquisites: FUNDAMENTAL STRUCTURES OF COMPUTER SCIENCE 11 [212]
REAL AND ABSTRACT MACHINES [240]

This problem-ortented course provides students with an opportunity to solve real-world problems under the
guidance of an instructor. Skills from a variety of areas both within and outside of computer science will need
to be brought to bear on class examples and assignments posed as problems by the instructor. The emphasis
is on the techniques used in obtaining the solution, rather than the soiution per se. While proper software
engincering techniques will, of course, be expected for all solutions involving software, it should be noted that
the emphasis in the course is problem solving, not software engineering.

7.5. Time, Concurrency, and Synchronization [310]

Prerequisites: FUNDAMENTAL STRUCTURES OF COMPUTER SCIENCE 11 [212]
REAL AND ABSTRACT MACHINES [24(]
PHYSICS [[PHYS 121] (MECHANICS)

This course conveys the fundamental notions of flow of time and control of temporal behavior in computer
systems, both at the hardware and the software level. The fundamental issues of synchronization, deadlock,
contention, metastable states in otherwise multistable devices and related problems are described. Solutions
that have been evolved, like handshaking, synchronization with scmaphores, and others are described and
analyzed so that the fundamental similarities between the software and hardware techniques are exposed.
This course has a significant laboratory component.

7.6. Comparative Program Structures [311]

Prerequisites: FUNDAMENTAL STRUCTURES OF COMPUTER SCIENCE II {212]

This course covers a variety of common program organizations and program development techiniques that
should be in the vocabulary of & competent software engineer. The student learns advanced methods for
programming-in-the-small including implementation of modules to given specifications and some common
program organizations. The course also covers techniques for reusing previous work (e.g., transformation
techniques and generic definitions) and elementary design and specification.

7.7. Languages, Interfaces, and their Processors [320)
Prerequisites: ’ FUNDAMENTAL STRUCTURES OF COMPUTER SCIENCE II [212]
REAL AND ABSTRACT MACHINES [240]

This course examines the nature of programming languages and the programs that implement them. It
covers the basic elements of programming language organization and implementation; it also touches on the
design of interactive interfaces. The emphasis is on the elements of general-purpose programming languages
that are common o many programming languages and on ideas that are also applicable to specialized systems.
Implementation techniques covered include lexical analysis, simple parsing, semantic analysis including
symbol tables and types, and interpretation for elementary arithmetic expressions. Programming projects:
include a simple interpreter and an interactive program.

AN UNIDERGRADUATE COMPUTER SCHENCE CLRRICULUM FOR THE 19808 39

7.8. Algorithms und Programs [330]

Prcrcquisitcs: FUNDAMENTAL STRUCTURES O COMPUTER SCHENCE 11 212

An introduction to abstract aigorithms and to their design, analysis, and realization. The goal of the course
is to develop skill with practical algorithin design and analysis techniques and to develop the ability to apply
these techiniques to the construction of real systems. The student is presented with a collection of useful
algorithms and with design and analysis techniques. Like all models, abstract algorithms do not always match
real problems exactly, and some skill is required to use them well.

7.9. Formal Languages. Automata, and Complexity [350)

Prerequisites: JFUNDAMENTAL STRUCTURES OF COMPUTER SCIENCE T f211]
An introduction to the fundamental material on fonnat languages, automata, computability, and complexity
theory. Practical applications and implications of the material are cmphasized,

1.10. Logic for Computer Scicnee [351]
Prerequisites: FUNDAMENTAL STRUCTURES OF COMPUTER SCIENCE { [211]
One 300-tevel mathematics or theoretical computer science course
The basic results and techniques of Logic arc presented and related to fundamental issues in computer
scicnce,

7.11. Introduction to Artificial Inteligence [360]
Prerequisites: FUNDAMENTAL STRUCTURES OF COMPUTER SCIENCE 11 [212]
Or INFORMATION PROCESSING PSYCIIQOLOGY AND AT [PSY 213)

This course teaches the fundamentals of artificial intelligence, including problem sotving techniques, search,
heuristic methods, and knowledge representation, Ideas are illustrated by sample programs and systems
drawn from various branches of Al Small programming projects will also be used to convey the central ideas
of the course.

7.12. Independent Project [400]

Prerequisites: FUNDAMENTAL STRUCTURES OF COMPUTER SCIENCE II [212]
Two more courscs (beyond 212) with Bs or better '
Instructor’s permission, based on acceptance of project proposal

This is an independent project laboratory for the most advanced students. The student will design and
construct a substantial software or hardware system under the supcrvision of the Project Lab faculty. Before
construction of the project may proceced, a detailed design proposal must be submitted to and accepted by the
faculty member running the course. A design review with the lab faculty and TAs will be held at mid-term
time. A final review of the functioning system and its supporting documentation will be held at the cnd of the
semester. The intent is to permit the best students to exercise their design skills in the construction of a real
system, so good design practice and good documentation are mandatory. The preduction of a functioning but
undocumented system will not be sutficient. The instructor may accept pruojects intended to last two
semesters, in which case the review at the end of the first semester will be another major design review,

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 19808 40

7.13. Undergraduate Thesis [401]

Prerequisites: FUNDAMENTAL STRUCTURES OF COMPUTER SCIENCEII [212]
Two more courses (beyond 212) with B's or better
Instructor’s permission, base on accepiance of proposal

This is an independent study and research course for the most advanced students, The student will write an
undergraduaie thesis or carry out a program of dirccted reading. Objectives for the course of study will be
established by the student and a faculty advisor. With concurrence of a faculty adviser, an undergraduate
thesis project may be planned for two semesters

| 7.14. Research Seminar [409]

Prerequisites: FUNDAMENTAL STRUCTURES OF COMPUTER SCIENCE I [212)
Two more courses {(beyond 212) with Bs or better

Students aitend the regular research seminars of the Computer Science Department and submit short
written summaries. The Computer Science Department conducts a rich and varied set of public seminar
series throughout the academic year. Undergraduatés with sufficient maturity and experience in the field can
benefit from attending, even if they do not completely understand the material presented. Attending these
seminars is a good way to learn about very current idcas and o appreciate the scope and ¢xcitement of the
field.

7.15. Software Engineering [410]
Prerequisites: COMPARATIVE PROGRAM STRUCTURES [311])
LANGUAGES, INTERFACES, AND THEIR PROCESSORS [320]

The student studies the nature of the program development task when many people, many modules, many
versions, or many vears are involved in designing. developing, and maintaining the system. The issues are
both technical (e.g.. design. specification, version control) and administrative (e.g., cost estimation and
elementary management), The course will consist primarily of working in small teams on the cooperative
creation and modification of software systems.

7.16. Software Engineering Lab [411}
Prerequisites: vary with the individual arrangement
SOFTWARE ENGINEERING [410]

This course is intended to provide a vehicle for real-world software engineering experience. Students will
work on existing software that is or will soon be in service. In a work environment, a student will experfence
first-hand the pragmatic arguments for proper design, documentation, and other software practices that often
seemn to have hollow rationalizations when applied to code that a student writes for an assignment and then
never uses again. Projects and supervision will be individually arranged.

7.17. Resource Management [412]

Prerequisites: TIME, CONCURRENCY, AND SYNCHRONIZATION [310]
PROBABILITY AND APPLIED STATISTICS [STAT 211 / CS 250}

This course provides a synthesis of many of the ideas that students have learned in earlier courses. The

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR TIIE 19808 41

vehicle for this synthesis is the exploration of at least one instance of a real operating system in great detail.
Taking the view that an operating system is a resource manager, we will explore some resource issucs and how
they may be handled. The primary issucs are resource classes, propertics, and management policies. This
course has a substantial programming laboratory component in which an existing operating system will serve
as an experimental testbed.

7.18. Big Data [413)
Prercquisites: LANGUAGES, INTERFACES. AND TEHEIR PROCESSORS [320]
RESOURCE MANAGEMENT [412]

The central theme of this course is the storage and retrieval of large amounts of data. Topics include user
data models, underlying data storage techniques, data representations, algorithms for data retrieval,
specialized data manipulation languages, and techniques for providing reliability and security. Systems that
permit the storage and retrieval of large amounts of data are exemplified.

7.19. Transducers of Programs [420]

Prerequisites: COMPARATIVE PROGRAM STRUCTURES [313]
LANGUAGES, INTERFACES, AND THEIR PROCESSORS [320]

This course studies ways to gain leverage on the software development process by using programs to create
or modify other programs, by reusing previousty-created software, and by using automated tools to manage
the software development process. Examples are drawn from the tools locally available. Students use these
tools in projects that lead to useful software components. Special emphasis is placed on the use of integrated
systems of compatible tools. '

1.20. Advanced Programming Languages and Compilers [421]

Prerequisites: FORMAL LANGUAGES, AUTOMATA, AND COMPLEXITY [350]
INTRODUCTION TO ARTIFICIAL INTELLIGENCE [360]
TRANSDUCERS OF PROGRAMS [420]

This course is intended for students seriously interested in the construction of compilers for generai-
purpose programming languages. The student studies an optimizing compiler as an example of a well-
organized system program, studies algorithms and data structures appropriate to the optimization process,
examines code generators, optimizers, and their interactions. The student also studies comparative
programiming languages with emphasis on the interaction between language design and implementation
considerations. Compiler-generator technology is used to build a compiler, thereby demonstrating the use of
system-building tools.

7.21. Advanced Algorithms {430}

Prerequisites: ALGORITHMS AND PROGRAMS {330]
COMBINATORIAL ANALYSIS [MATH 301 7 CS 251]

A second-course in the design and analysis of algorithms, this course is intended to familiarize the student
with the unifying principles and underlying concepts of algorithm design and analysis. It extends and refines
the algorithmic concepts introduced in ALGORITHMS AND PROGRAMS (330]. Here a more abstract view is taken,

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR T 19808 42

with cmphasis on the fundamental ideas of problem diagnosis, design of algorithins, and analysis. The course
assumes familiarity with material on combinatorial analysis.

7.22. Computer Architecture [440]

Prerequisites: REAL AND ABSTRACT MACHINES [240]
or INTRODUCTION TO DIGITAL SYSTUMS [EE 133]

"This coursc teaches the important concepts in computer system hardware design. System architecture is the
focus of this course, so the technological details of the components from which such systems are constructed
are avoided cxcept where they are crucial to design geals like capacity and performance. The topics that are
taught include design moedels including the Register Transfer Tevel model, Instruction Sct Processor model,
and PMS model. Analvtic tols taught include notions of quantity of data based on information Theory,
Queucing Theory concepts, and Performance Evaluation tecchnigues. '

7.23. VLSI Systems [441)
Prerequisites: COMPUTER ARCHITECTURE [440]
ALGORITHMS AND PROGRAMS [33)]

This course introduces the rechnology of VLSI and its usc in system design. A broad survey of current
technelogics and simple design methodologies is given. The emphasis throughout is on practical issues, and
the student wili learn how to design projects and implement them on a chip. Some ideas of the potentials and
limitations of VL.SI design will be given, and special-purpose VLS designs for a number of application arcas
will illustrate these points. l

7.24. Theory of Programming Languages [450]

Prerequisites: LANGUAGES, INTERFACES, AND THEIR PROCESSORS {320]
FORMAL LANGUAGES, AUTOMATA, AND COMPLEXITY [350]
LOGIC FOR COMPUTER SCIENCE [351]

This course brings together fundamental matcrial on the theory of programming languages. Techniques for
assigning mathematical meanings to programs and for reasoning precisely about program functionality and
behavior are described. Some indication is given of the influence of formal methods on programming
methodology and programming language design.

7.25, Complexity Theory [451])

Prercquisites: ALGORITHMS AND PROGRAMS (330} _
FORMAL LANGUAGES, AUTOMATA, AND COMPLEXITY [350]
COMBINATORIAL ANALYSIS [MATII 301 / CS 251}

This course extends in much more detail the material first introduced in FORMAL LANGUAGES, AUTOMATA,
AND COMPLEXITY (3501 -After a quick review of the basic ideas of complexity theory, the course introduces
some of the advanced resuits and open questions of abstract complexity theory, and the techniques used in
proving these results. Emphasis is made on relating these resuits and open questions to their theoretical and
practical implications for Computer Science; the study of computability leads to theoretical limitations on
what a computer can in principle (given enough time and space) do, while the study of complexity yiclds
limitations on what is feasibly computable: if we are restricted to using only a fimited amount of time or

space, the class of problems solvable by computer is restrictéd.

AN UNDIRGRADUATE COMPUTER SCIENCE CURRICULLUM I'OR TIE 19808 43

7.26. Artificial Intelligence — Cognitive Processes [460]
Prerequisites: - INTRODUCTION TO ARTIFICIAL INTELLIGENCE [360]
OT INI'ORMATION PROCESSING PSYCIHOLOGY AND Al [PSY 213]
Covers more advanced aspects of the cognitive side of Al including natural tanguage processing, use of
knowledge sources, and learning and discovery. The use of computer programs as psychological models will
also be discussed. Students will implement a large Al system as a semester project,

7.27. Artificial Intelligence — Robotics [461)

Prcrcquisitcs: INTRODUCTION TO ARTIFICIAL INTELLIGENCE [360]
LINEAR ALGIBRA [MATH 341}
CALCULUS I [MATH 122HMULTIVARIATE CALCULUS)
Covers Artificial Intelligence systems that deal in some way with the physical world, cither through visual,
acoustic, or tactile means. Topics include vision, specch recognition, manipulation, and robotics.

7.28. Interactive Graphics Techniques {470]

Prerequisites: LANGUAGES, INTERFACES, AND THEIR PROCESSORS {320]
ALGORITHMS AND PROGRAMS {330]

A course in the creation and usc of graphical information and uscr-interfaces.

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULLM FOR THE 19803 44

References

1. ACM Curriculum Committee on Computer Science. “Curriculum 68: Recommendations for Academic
Programs in Computer Science.” Communications of the ACM 11, 3 (March 1968}, 151-197.

2. ACM Curriculum Committee on Computer Science. "Curriculum "78: Recommendationé for the
Undergraduate Program in Computer Science.” Communications of the ACM 22, 3 (March 1979}, 147-166.

3. Marc H. Brown, Norman Meyrowitz, and Andries van Dam. Personal Computers Networks and
Graphical Animation: Rationale and Practice for Education. ACM SIGCSE 14th Annual Technical
Symposium, Association for Computing Machinery, February, 1983.

4. CMU Graduate School of Industrial Administration. Announcements for 1954-1956. CMU Catalog.
Pitsburgh PA, ,1954. ’

5. Carnegie-Mellon University. Carnegie-Mellon University Undergraduate Catalogue 1981-1983. CMU
Catalog. Pittsburgh PA, ,1980.

6. W. Corwin and W. Wulf, $1.230 - A Softwarc Laboratory Intermediate Report. Carnegie-Mellon
University Computer Science Department, May, 1972.

7. Robert E. Doherty. The Development of Professional Education. CMU, Carnegie Press.

8. Education Comumittee (Model Curriculum Subcommittee) of the IEEE Computer Society. A Curriculum
in Computer Science and Engineering. IEEE Computer Society, November, 1976. Committee Report

9. Philip Miller. GNOME: An Introductoi'y Programming Environment. in preparation.

10. National Science Foundation and the Department of Education. Science and Engincering: Education
for the 1980’s and Beyond. U.S. Government Printing Office, Washington, D.C.

11. Frank W. Paul. Donald L. Feucht, B.R. Teare, Jr., Charles P. Neuman and David Tuma. Analysis,
Synthesis and Evaluation - Adventures in Professional Engineering Problem Solving. Proceedings of the
Fifth Annual Frontiers in Education Conference, IEEE and the Amer. Soc. for Engr. Ed., October, 1975, pp.
244-251.

12. Mary Shaw, Stephen Brookes, Bill Scherlis, Alfred Spector, and Guy Steele. Plan for Developing an
Undergraduate Computer Science Curriculum. CMU CS Curriculum Design Note §2-02.

13. Mary Shaw. Working Papers on an Undergradnate Computer Science Curriculum. Tech. Rept. CMU-
CS-83-101, Carnegie-Mellon University, Computer Science Department, February, 1983.

14. Tim Teitelbaum, Thomas Reps, Susan Horwitz. The Why and Wherefore of the Cornell Program
Synthesizer. Procecdings of the ACM SIGPLAN SIGOA Symposium on Text Manipulation, Cornell
University, June, 1981, pp. §-16.

15. The CSD Undergraduate Program Committee. Initial Report on an Undergraduate CS Program. CMU
internal memorandum,

