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1 I n t r o d u c t i o n 

Transactions facilities, as provided in many database systems, permit the definition of transactions 

containing operations that read and write the database and that interact with the external world. The 

transaction facility of the database system guarantees that each invocation of a transaction will execute at most 

once (i.e., either commit or abort) and will be isolated from the deleterious effects of all concurrently 

executing transactions. To make these guarantees, the transaction facility manages transaction 

synchronization, recovery, and, if necessary, inter-site coordination. Many papers have been written about 

transactions in the context of both distributed and non-distributed databases [Bernstein 81, Hswaran 76, Gray 

80, Lampson 81, Lindsay 79]. 

There are a number of ways in which transaction facilities could be extended to simplify the construction of 

many types of reliable distributed programs. Extensions that allow a wider variety of operations to be 

included in a transaction would facilitate manipulation of shared objects other than a database. Extensions 

that permit transaction nesting would facilitate more flexible program organizations, as would extensions 

allowing some form of inter-transaction communication of uncommitted data. Although the synchronization, 

recovery, and inter-site coordination mechanisms needed to support database transaction facilities are 

reasonably well understood, diese mechanisms require substantial modification to support such extensions. 

For example, they must be made compatible with the abstract data type model and with general 

implementation techniques such as dynamic storage allocation. 

Lomet [Lomet 77] considered some of die problems encountered in developing general-purpose transaction 

facilities, but more recently, much of the research in this area has been done at MIT. Moss and Reed have 

discussed nested transactions and other related systems issues [Moss 81, Reed 78]. As part of the Argus 

project, extensions to CLU have been proposed that incorporate primitives for supporting transactions 

[Liskov 82a, Liskov 82b]. Additionally, Weihl has considered transactions that contain calls on shared 

abstract types such as sets and message queues, and has discussed their implementation [Weihl 83a, Weihl 

83b]. Transactions will also be available in the Clouds distributed operating system [Allchin 83]. 

This paper focuses on one important issue that arises when extending transaction facilities: the 

synchronization of operations on shared abstract data types such as directories, stacks, and queues. After a 

presentation of background material in the following section, Section 3 introduces some tools and notadon for 

specifying shared abstract types. Section 4 describes three particular data types and uses the tools to specify 

how operations on these types can interact under conditions of concurrent access by multiple transactions. 

The specifications that are developed make explicit use of type-specific properties, and it is shown how tliis 

approach permits greater concurrency than standard techniques that do not use such information. Section 
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5 discusses how the specifications of individual types interact to determine global properties of groups of 

transactions. Section 6 proposes an extensible approach to locking diat can be used for synchronization in 

implementations intended to meet dicsc specifications. Finally, Section 7 summarizes the major points of Qiis 

paper and concludes with a brief discussion of other considerations in the implementation of user-defined, 

shared abstract data types. 

2 B a c k g r o u n d 

Transactions aid in maintaining arbitrary application-dependent consistency constraints on stored data. The 

constraints must be maintained despite failures and without unnecessarily restricting the concurrent 

processing of application requests. 

In die database literature, transactions are defined as arbitrary collections of database operations bracketed 

by two markers: BeginTransaction and EndTransaction. A transaction that completes successfully commits; 

an incomplete transaction can terminate unsuccessfully at any time by aborting. Transactions have the 

following special properties: 

1. Either all or none of a transaction's operations are performed. This property is usually called 
failure atomicity. 

2. If a transaction completes successfully, the effects of its operations will never subsequently be lost. 
This property is usually called permanence. 

3. If a transaction aborts, no other transactions will be forced to abort as a consequence. Cascading 
aborts are not permitted. 

4. If several transactions execute concurrently, they affect the database as if they were executed 
serially in some order. This property is usually called serializability. 

Transactions lessen the burden on application programmers by simplifying the treatment of failures and 

concurrency. Failure atomicity makes certain that when a transaction is interrupted by a failure, its partial 

results are undone. Programmers are therefore free to violate consistency constraints temporarily during the 

execution of a transaction. Serializability ensures tiiat other concurrently executing transactions cannot 

observe these inconsistencies. Permanence and prevention of cascading aborts limit the amount of effort 

required to recover from a failure. Transaction models that do not prohibit cascading aborts are possible, but 

we do not consider them. 

Our model for using transactions in distributed systems differs from this traditional model in several ways. 

The most important difference is that we incorporate the concept of an abstract data type. That is, 

information is stored in typed objects and manipulated only by operations that are specific to a particular 
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object type. The users of a type arc given a specification that describes die effect of each operation on the 

stored data, and new abstract types can be implemented using existing ones. The details of how objects are 

represented and how the operations arc carried out arc known only to a type's implemcntor. Abstract data 

types grew out of the class construct in Simula [Dahl 72], and arc supported in many other programming 

languages including CLU [Liskov 77], Alphard [Wulf 76], and Ada [Dept. of Defense 82], as well as in 

operating systems, e.g. Hydra [Wulf 74]. In our system model, transactions arc composed of operations on 

objects that arc instances of abstract types. Of particular interest arc tiiosc objects that arc not local to a single 

transaction. These arc instances of shared abstract types. 

We assume that the facilities for implementing shared abstract types and for coordinating the execution of 

transactions that operate on them arc provided by a basic system layer tiiat executes at each node of the 

system. This transaction kernel exports primitives for synchronization, recovery, deadlock management, and 

inter-site communication. In some ways, a transaction kernel is similar to the RSS of System R [Gray 81]. A 

transaction kernel, however, is intended to run on a bare machine and must supply primitives useful for 

implementing arbitrary data types, whereas the RSS has the assistance of an underlying operating system and 

only provides specialized primitives tailored for manipulating a database. 

Another difference between our system model and die traditional transaction model is that we do not 

necessarily require that transactions appear to execute serially. Serializability ensures that if transactions work 

correctly in the absence of concurrency, any interleaving of their operations that is allowed by the system will 

not affect their correctness. But sometimes, serializability is too strong a property, and requiring it restricts 

concurrency unnecessarily. For example, it is usually unnecessary for two letters mailed together and 

addressed identically to appear in their recipient's mailbox together. However, serializability is violated if the 

letters do not arrive contiguously, because there is no longer the appearance that the sender has executed 

without interference from other senders. Thus, it may be desirable for some shared abstract types to allow 

limited non-serializable execution of transactions. This idea has also been investigated by Garcia-Molina 

[Garcia-Molina 83] and Sha et al. [Sha 83]. 

Serializability guarantees that an ordering can be defined on a group of transactions. If the transactions 

share some common objects, serializability requires that these objects be visited in the same order by all the 

transactions in the group. In the next section, a more general ordering property of transactions is defined, of 

which serializability is a special case. We will show that it is possible to prove that transactions work correctly 

in the presence of concurrency, even if they do not appear to execute serially. 

In order to maintain the special properties of transactions in our model, the operations on shared abstract 

types that compose them must meet certain requirements. To guarantee the failure atomicity of transactions, 
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it must be possible to undo any operation upon transaction abort. Therefore, an undo operation must be 

provided for each operation on a shared abstract type. Recovery is not the main concern of this paper, and we 

will be considering undo operations only as they pertain to synchronization issues. Further discussion of 

recovery issues can be found in a related paper [Schwarz 83], 

Operations on shared abstract types must also meet three synchronization requirements: 

1. Operations must be protected from anomalies that could be caused by other concurrently 
executing operations on the same object. Freedom from these concurrency anomalies ensures that 
an invocation of an operation on a shared object is not affected by other concurrent operation 
invocations. This is the same property that monitors provide [Hoarc 74]. 

2. To preclude the possibility of cascading aborts, operations on shared objects must not be able to 
observe information that might change if an uncommitted transaction were to abort. This may 
necessitate delaying the execution of operations on behalf of some transactions until other 
transactions complete, citiicr successfully or unsuccessfully. 

3. When a group of transactions invokes operations on shared objects, the operations may only be 
interleaved in ways that preserve serializability or some weaker ordering property of the group of 
transactions. The synchronization needed to control interleaving cannot be localized to individual 
shared objects, but rather requires cooperation among all the objects shared by the transactions. 

Traditional methods for synchronizing access to an instance of a shared abstract type arc designed solely to 

ensure the first goal: correctness of individual operations on an object. This paper is concerned with the 

second and diird goals. We examine the problem of specifying the synchronization needed to achieve tiiem, 

as well as the support facilities that the transaction kernel must provide to implementors of shared abstract 

types. 

3 D e p e n d e n c i e s : A Tool for R e a s o n i n g A b o u t C o n c u r r e n t T r a n s a c t i o n s 

This section introduces a theory that can be used to reason about die behavior of concurrent transactions. It 

allows die standard definition of serializability to be recast in terms of shared abstract types, and provides a 

convenient way of expressing other ordering properties. The tiieory is also useful in understanding cascading 

aborts. 

3.1 Schedules 

Schedules [Eswaran 76, Gray 75] can be used to model the behavior of a group of concurrent transactions. 

Informally, a schedule is a sequence of transaction, operation> pairs that represents the order in which the 

component operations of concurrent transactions are interleaved. Schedules are also known as 

/z/sror/espapadimitriou 77] and logs [Bernstein 79]. In some of the traditional database literature, the 

operations in schedules are assumed to be arbitrary; no semantic knov/ledge about them is available [Eswaran 

76]. In this case, a schedule is merely an ordered list of transactions and the objects they touch: 
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In other work, operations are characterized as Rcad(R) or Writc(W) [Gray 75], in which case the schedule 
includes that semantic information: 

V R ( ( \ ) 
V R ^ ) 
V w(o2) 
V R ( 0 2 ) 

To analyze transactions that contain operations on specific shared abstract types, we will consider schedules 

in which tiiesc operations are characterized explicitly. For example, a schedule may contain operations to 

enter an clement on a queue or to insert an entry into a directory. We call these abstract schedules, because 

they describe the order in which operations affect objects, regardless of any reordering that might be done by 

their implementation.1 Given the initial state of a set of objects, an abstract schedule of operations on these 

objects, and specifications for the operations in the schedule, the result of each operation and the final state of 

the objects can be deduced. For instance, consider die following abstract schedule, which is composed of 

operations on Q, a shared object of type FIFO Queue. The operations QEnter and QRemove respectively 

append an element to die tail of a FIFO Queue and remove one from it's head. Assume Q to be empty 

initially. 
T : QEn te r (Q , X) 
T 2 : QEn te r (Q , Y) 
T 3 : QRemove(Q) 

From this abstract schedule and the initial contents of the Queue, one can deduce the state of Q at any point 

in the schedule. Thus one may conclude that the QRemove operation returns X, and that only Y remains on 

the Queue at the end of the schedule. 

3.2 Dependencies and Consistency 

By examining an abstract schedule, it is possible to determine what dependencies exist among the 

transactions in the schedule. The notation D: T:X —>Q TjiY will be used to represent the dependency D 

formed when transaction T performs operation X and transaction T subsequently performs operation Y on 

some common object O. The object, transaction, or dependency identifiers may be omitted when they are 

unimportant. The set of ordered pairs {(T, T^)} for which there exist X, Y and O such that D: T^X - + 0 T^:Y 

forms a relation, denoted < D . If T < D T , T precedes!\ and T depends on T , under the dependency D. 

! In Section 4.4 we will define a second kind of schedule, the invocation schedule, which reflects the concurrency of specific 
implementations. H 
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Examples of dependencies and their corresponding relations can be drawn from traditional database 

systems. For instance, consider a system in which no semantic knowledge, cither about entire transactions or 

about their component operations, is available to the concurrency control mechanism. The only requirement 

is that each individual transaction be correct in itself: it must transform a consistent initial state of the 

database to a consistent final state. Under these conditions, only scrializablc abstract schedules can be 

guaranteed to preserve the correctness of individual transactions. 

Since all operations are indistinguishable, only one possible dependency D can be defined: Tl < D T 2 if 

performs any operation on an object later operated on by T 2 . Now, consider <*D, the transitive closure of < D . 

A schedule is ordcrable with respect to {< D } iff <*D is a partial order. In other words, there arc no cycles of 

the form T x < D T 2 < D - . < D T n < D T r In general, a schedule is ordcrable with respect to S, where S is a set of 

dependency relations, iff each of the relations in S have a transitive closure that is a partial order. The 

relations in S arc referred to as proscribed relations, and we will use ordcrability with respect to a set of 

proscribed dependency relations to describe ordering properties of groups of transactions. Abstract schedules 

that arc ordcrable with respect to a specified set of proscribed relations will be called consistent abstract 

schedules. 

It can be shown that ordcrability with respect to {< D } is equivalent to scrializability [Eswaran 76]. Given a 

schedule ordcrable with respect to {< D }, a transaction T, and the set O of objects to which T refers, every 

other transaction that refers to an object in O can unambiguously be said either to precede T or to follow 

T. Thus T depends on a well-defined set of transactions that precede it, and a well-defined set of transactions 

depend on T. Each transaction sees the consistent database state left by those transactions that precede it, and 

(by assumption) leaves a consistent state for those that follow. The set of schedules for which <* D is a partial 

order constitutes the set of consistent abstract schedules for a system that employs no semantic knowledge. 

The scheme described above prevents cycles in the most general possible dependency relation, hence it 

maximally restricts concurrency. By considering the semantics of operations on objects, it is possible to 

identify some dependency relations for which cycles may be allowed to form. For example, consider a 

database with a Read/Write concurrency control. Such systems recognize two types of operations on objects: 

Read(R) and Write(W). Thus there are 4 possible dependencies between a pair of transactions that access a 

common object: 

• D x : T:R - > 0 T.:R. T. reads an object subsequently read by T.. 

• D 2 : T^R - > 0 T.:W. T. reads an object subsequently "modified by T.. 

• D 3 : T.:W —>0 T.:R. T. modifies an object subsequently read by Tj. 
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• D 4 : T:W —>Q T:W. T modifies an object subsequently modified by T.. 

The earlier scheme, by not distinguishing between these dependencies, prevents cycles from forming in die 

dependency relation < D , which is the union of all four individual relations. By contrast, Read/Write 

concurrency controls take into account the fact that R —> R dependencies cannot influence system behavior. 

That is, given a pair of transactions, and T 2 , and an abstract schedule in which both 'V{ and T 2 perform a 

Read on a shared object, the semantics of Read operations ensure that neither T r T 2 nor any other 

transaction in die schedule can determine whether < D T 2 or T 2 < D T^ Since these dependencies cannot 

be observed, they cannot compromise serializability. nor can they affect the outcome of transactions. We call 

dependencies meeting this criterion Insignificant. Korth has also noted that when operations are 

commutative, their ordering docs not affect serializability [Korth 83]. 

For the Read/Write case, the necessary condition for serializability can be restated as follows in terms of 

dependency relations: a schedule is serializable if it is orderable with respect to {< D u D u D } [Gray 75]. By 
2 3 4 

allowing multiple readers, Read/Write schemes permit the formation of cycles in die < n dependency 
relation, and in relations tiiat include < n , while preventing cycles in die relation that is die union of <~ , < n 

and < n . For example, consider the following schedules, which have identical effects on die svstem state: 
u 4 

V R ( 0 t ) T 2 : R ( 0 ) 

V R ( 0 t ) V. R ( 0 t ) 

In the first schedule, T l < D T 2 and T 2 < D l y Hence, there is a cycle in the relation < D u D , aldiough 

< D u D u D is cycle-free. In the second schedule, the first two steps are reversed and neither cycle is present. 

On the other hand, the following two schedules are not necessarily identical in effect: 
V R ( 0 1 ) T 2 : W ( 0 a ) 
T 2 : W ( 0 t ) 1 : R(0) 

V W ( 0 t ) T a : W ^ ) 
In this case, the first schedule is not serializable because Tl < D T 2 and T 2 < D Tv thus forming a cycle in the 

2 4 

relation < D u D , which is a sub-relation of < D u D u D . Tl observes 0 1 before it is written by T 2 , but the final 

state of O-ĵ  reflects the Write of Tl rather than T 2 , implying that T x ran after T 2 . The second schedule has no 

cycle and is serializable. 

In summary, orderability with respect to a set of proscribed dependency relations provides a precise way to 

characterize consistent schedules. For a concurrency control that enforces serializability with no semantic 

knowledge at all about operations, the set of proscribed relations must contain < D , which is equivalent to the 

union of every possible dependency relation. For a Read/Write database scheme, the set contains the 

^R-^w u W->R u w->w r e ^ a t i ° n - When type-specific semantics are considered, type-specific dependency 
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relations can be defined for each type. In Section 4, dependencies are used to define interleaving 

specifications for various abstract types. These specifications provide the information needed to determine 

how an individual type can contribute toward maintaining a global ordering property such as serializabiiity. 

If a specification guarantees ordcrability with respect to the union of all significant dependency relations for a 

given type, then it is strong enough to permit serializabiiity. In general however, more concurrency can be 

obtained when only weaker ordering properties are guaranteed. The way in which the interleaving 

specifications of multiple types interact to preserve global ordering properties is discussed in Section 5. 

3.3 Dependencies and Cascading Aborts 

Dependencies arc also useful in understanding cascading aborts. A cascading abort is possible when a 

dependency forms between two transactions, the first of which is uncommitted. An abort by this 

uncommitted transaction may cascade to those that depend on it. Whether or not a cascade actually must 

occur depends on the exact type of dependency involved, and the properties of the object being acted upon. 

For example, consider the four general dependency relations that arise in Read/Write database systems. 

R —* R dependencies are insignificant, and can never cause cascading aborts. This is analogous to die role of 

these dependencies in determining ordcrability. Likewise, R —• W and W —> W dependencies need not cause 

cascading aborts, because in both cases the outcome of the second transaction does not depend on data 

modified by the first2. By contrast, W —• R dependencies represent a transfer of information between the two 

transactions. In the absence of any additional semantic information, it must be assumed that an abort of the 

first transaction will affect the outcome of the second, which must therefore also be aborted. 

Once the dependencies that could lead to cascading aborts have been identified, their formation must be 

controlled. Stated in terms of abstract schedules: starting from the first of the two operations that form the 

dependency there must be no overlapping of the two transactions in the schedule, witJi the prior transaction 

in the dependency relation completing first. Such schedules will be called cascade-free. Note that some 

consistent schedules may not be cascade-free, and vice-versa. 

4 S p e c i f i c a t i o n of S h a r e d A b s t r a c t T y p e s 

This section focuses on the typed operations that make up transactions and discusses how to specify their 

local synchronization properties. The traditional specification of an abstract type describes the behavior of 

the type's operations in terms of preconditions, postconditions, and an invariant. This specification must be 

augmented in several ways to complete the description of a shared abstract type in our model. In the first 

place, the undo operation corresponding to each regular operation must be specified in terms of 

2 It may be necessary to control the formation of these dependencies anyway, if an insufficiently flexible recovery strategy is used. 
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preconditions, postconditions and the invariant. Specification of the undo operations tiicmsclvcs is not 

considered further in this paper. It is important to note, however, diat the set of consistent abstract schedules 

defined by die interleaving specification for a type also implicitly includes schedules in which undo 

operations are inserted at all possible points after an operation has been performed but prior to the end of the 

invoking transaction. This reflects the assumption that it must be possible to undo any operation prior to 

transaction commitment. As will be shown in Section 4.3, this is especially important for types diat do not 

attempt to enforce serializability of transactions. 

The specification of a shared abstract type must also include a description of how operations on behalf of 

multiple transactions can be interleaved. This interleaving specification can be used by application 

programmers to describe their needs to prospective type implcmcntors or to evaluate the suitability of existing 

types for their applications. The specification of a shared abstract type must also list those dependencies that 

will be controlled to prevent cascading aborts. This part of the specification is used mainly by die type's 

implemcntor. 

When specifying how operations on a shared object may interact, the amount of concurrency that can be 

permitted depends in part on how much detailed knowledge is available concerning the semantics of the 

operations [Kung 79]. We have shown how concurrency controls that distinguish diose operations that only 

observe the state of an object ("Reads") from diose that modify it ("Writes") can achieve greater concurrency 

than protocols not making this distinction. To increase concurrency further while still providing 

serializability, one can take advantage of more semantic knowledge about the operations being 

performed [Korth 83]. Section 4.1 illusttates how this is done in specifying Directories, using the concepts 

and notation of the last section. 

When enough concurrency cannot be obtained even after fully exploiting the semantics of the operations on 

a type, it is necessary to dispense with serializability and substitute orderability with respect to some weaker 

set of proscribed dependency relations. Sections 4.2 and 4.3 illustrate this by comparing a serializable Queue 

type with a variation that preserves a weaker ordering property. 

Finally, Section 4.4 discusses how implementations may reorder operations to obtain even more 
concurrency, and the steps that type implementors must take to demonstrate the correctness of an 
implementation. 
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4.1 Directories 

As a first example, consider a Directory data type that is intended to provide a mapping between text strings 

and capabilities for arbitrary objects. The usual operations arc provided: 

• Dirlnscrt(dir, sti\ capa): inserts capa into Directory dir with key string str. Returns ok or duplicate 
key. The undo operation for Dirlnscrt removes the inserted entry, if the insertion was successful. 

• I)irl)elctc(dir,str): deletes the capability stored with key string str from dir. Returns ok or not 
found. The undo operation for DirDelctc restores the deleted capability, if the deletion was 
successful. 

• DirLookup(dir, str): searches for a capability in dir with key string str. Returns the capability capa 
or not found. The undo operation is null, because DirLookup does not modify the Directory. 

• DirDump(dir): returns a vector of <str,capa> pairs with the complete contents of the Directory dir. 
The undo operation for DirDump is null. 

Suppose one wishes to specify the Directory type so as to permit serialization of transactions that include 

operations on Directories. One approach would be to model each Dirlnscrt or DirDelete operation as a Read 

operation followed by a Write operation, and to model each DirLookup or DirDump operation as a Read 

operation. The Directory type could then be specified using the Read/Write dependency relations discussed 

previously. 

The difficulty with using such limited semantic information is that concurrency is restricted unnecessarily. 

For example, suppose Directories have been implemented using a standard two-phase Read/Write locking 

mechanism. Consider the operation DirLookup(dir, "Foo"), which will be blocked trying to obtain a Read 

lock if another transaction has performed DirDclctc(dir, "Fum") and holds a Write lock on the Directory 

object. The outcome of DirLookup(dir, "Foo") docs not depend in any way on the eventual outcome of 

DirDclete(dir, "Fum") (which may later be aborted), or vice-versa, so this blocking is unnecessary. Because 

DirDclete(dir, "Fum") may be part of an arbitrarily long transaction, the Write lock may be held for a long 

time and severely degrade performance. 

The unnecessary loss of concurrency in this example is not the fault of this particular implementation. It is 

caused by the lack of semantic information in the Directory specification. By using more knowledge about 

the operations, this problem can be alleviated. Instead of expressing the interleaving specification for this 

type in terms of Read and Write operations, the type-specific Directory operations can be employed to define 

dependencies and the interleaving specifications can be expressed in terms of these type-specific 

dependencies. 

To keep the number of dependencies to a minimum, the operations for the Directory data type will be 

divided into three groups: 
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• Those that modify a particular entry in the Directory. Dirlnscrt and DirDcIcte operations that 
succeed are in tiiis class. These arc Modify (M) operations. 

• Those that observe the presence, absence, or contents of a particular entry in the Directory. 
DirLookup is in this class, as are Dirlnscrt and DirDeletc operations diat fail. These are Lookup 
(L) operations. 

• Those that observe properties of the Directory that cannot be isolated to an individual entry. 
DirDunip is the only operation in this class diat we have defined; an operation that returned the 
number of entries in the Directory would also be in this class. These arc Dump (D) operations. 

Note that in some cases operations diat fail are distinguished from diose diat succeed. In addition to the 

operations and their outcomes, die dependencies also take into account data supplied to the operations as 

arguments or otherwise specific to the particular object acted upon. In the following list of dependencies, the 

symbols o and a represent distinct key string arguments to Directory operations. 

The complete set of dependencies for this type is: 

• Dj*. T:M(a) —• T.:M(V). T modifies an entry with key string c, andT. subsequently modifies an 
entry with a different key string, a\ 

• D 2 : T:M(a) —• TyM(a). T modifies an entry with key string <J, and Tj subsequently modifies 
die same entry. 

• D 3 : T:M(a) —• TyL(on). T modifies an entry with key string a, and T subsequently observes an 
entry with a different key string, a\ 

o D 4 : T.:M(a) —• T :L (a ) . T modifies an entry with key string a, and T. subsequently observes the 
same entry. 

• D 5 : T:L((y) —> TyL(a). T observes an entry with key string <r, and T. subsequently observes an 
entry with a different key string <x\ 

• D 6 : T:L(<j) —* T^:L(a). T. observes an entry with key string cr, and T subsequently observes the 
same entry. 

• D y : T:L(<T) —* T :M(y) . T observes an entry with key string a, and T. subsequendy modifies an 
entry with a different key string a\ 

• D g : T:L((j) —*• TrM{(j). T observes an entry with key string a, and T subsequently modifies the 
same entry. 

• D 9 : T : D Tj:M(a). T dumps the endre contents of the Directory, and T. subsequently 
modifies an entry with key string a. 

• D 1 Q : T : D —• T :L (a ) . T dumps the entire contents of the Directory, and T subsequently 
observes an entry with key string a. 
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• D n : Tr.M(a) —» L:D. L modifies an entry with key string a, and T. subsequently dumps the 
entire contents of the Directory. 

• Dpi T.:L(a) —> T.:D. rL observes an entry with key string cr, and T. subsequently dumps the 
entire contents of tne Directory. 

• D [ 3 : T.:D —• T.:D. '[\ dumps the entire contents of the Directory and T. subsequently dumps the 
Directory as well. J 

This list is long, but it is actually quite simple to derive. There is a family of dependencies for each pair of 

operation classes. The key to defining the specific dependencies is the observation that when two operations 

refer to different strings, the relationship between the transactions that invoked them is not the same as when 

they refer to identical strings. Those families of dependencies for which both operation classes take a string 

argument therefore have two members, corresponding to these two cases. The families for which one of the 

operation classes is Dump have only a single member. In general, insight into the semantics of a type is 

needed to define the set of possible dependencies. 

Like the R —+ R dependency, many of the Directory dependencies are insignificant and cannot affect the 

outcome of transactions. Hence, they may be excluded from the set of proscribed dependencies for this type. 

The dependencies that may be disregarded are: 

• Those for which neither operation in die dependency modifies the Directory object: D 6 , D 1 Q , D 1 2 

and D 1 3 . These arc directly analogous to the R —• R dependency. 

• Those for v/hich the two operations in the dependency refer to different key strings: Dp D 3 , D 5 , 
and D r 

In terms of the remaining dependencies, the interleaving specification for Directories states that an abstract 

schedule involving Directories is consistent if it is orderable with respect to {< D u D u D u D u D }. The 

abstract Directory thus defined behaves like a collection of associatively-addressed elements, with 

serializabiiity preservable independently for each element Transactions containing operations that apply to 

the entire Directory, such as DirDump, may also be serialized, as may those that refer to multiple elements or 

elements that are not present. 

Only two of the Directory dependencies have the potential to cause cascading aborts. These are D 4 and 

D n . In both cases, the first operation in the dependency modifies an entry and the second operation observes 

that modification. 
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4.2 FIFO Queues 

Similar specifications can be developed for other data types. The FIFO Queue provides an interesting 

example. We will only consider two operations: 

• QKntcr(qucuc, capa): Adds an entry containing the pointer capa to the end of queue. The undo 
operation for QEnter removes this entry. 

• QRcmove(queuc): Removes die entry at the head of queue and returns the pointer capa contained 
therein. If queue is empty, the operation is blocked, and waits until queue becomes non-empty. 
The undo operation for QRemove restores the entry to the head of queue. 

In order to permit serialization of transactions diat contain operations on strict FIFO Queues, and to 

prevent cascading aborts, numerous properties must be guaranteed. For instance: 

• If a transaction adds several entries to a Queue, these entries must appear together and in the same 
order at the head of the Queue. 

• Any entries added to a Queue by a transaction may not be observed by another transaction unless 
the first transaction terminates successfully. 

• If two transactions each make entries in two Queues, the reladve ordering of the entries made by 
the two transactions must be the same in both Queues. 

It is very easy to destroy these properties if unrestricted interleaving of operations is allowed. For instance, 

if QEnter operations from different transactions are interleaved, the entries made by each transaction will not 

appear in a block at the head of the Queue. 

In defining the dependencies for the Queue type, it is necessary, as it was in the case of Directories, to 

distinguish individual elements in the Queue. It is assumed that each element is assigned a unique identifier3 

when it is entered on the Queue. The symbols <J and a ' are used to represent the distinct identifiers of 

different elements, and the QEnter and QRemove operations are abbreviated as E and R respectively. The 

complete set of dependencies for Queues is: 

o Dy T:E(cr) —*Q T.:E(O'). T. enters an element a into the queue Q after T. has previously 
entered an element <x. 

• D 2 : T : E ( a ) - * Q T:R(cr'). T removes element a after T entered element <x. 

• Dy T : E ( a ) - * Q TJ:R((J) . T. removes the element a diat was entered by T. . 

• D 4 : T:R(cr) - * Q T : E ( a ' ) . T. enters element a * after T removed element a . 

3The identifier need not be globally unique, just unique among those generated for the particular Queue object 
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• D5*. Tj:R(a) —>Q T/.R(V). 1\ removes element a' after T. removed clement o. 

In a Read/Write synchronization scheme, QEnter must be modeled as a Write operation, and QRemove 

must be modeled as a Read followed by a Write. Recall that such a scheme must prevent cycles in the 

^R-^W u w—>R u w->w dependency relation. In this case, preventing cycles in this general dependency 

relation is unnecessarily restrictive. Consider dependency D 2 , which is formed when a transaction removes a 

Queue clement after another transaction has previously entered a different Queue element. Neither of the 

transactions performing the operations can detect their ordering, nor can a third transaction. The same 

applies to dependency D 4 , which is the inverse of D 2 . As was die case for Directories, concurrency can be 

increased by disregarding insignificant dependencies. 

To provide a strictly FIFO Queue, one must guarantee that abstract schedules are ordcrable with respect to 

the compound < D D D relation, but cycles may be permitted to form in relations that include D 2 or D 4 as 

long as this property is not violated. For example, consider the following schedule, in which two transactions 

operate on a Queue that initially contains {A, B}: 
T a : QEnte r (Q,X) 
T 2 : QRemove(Q) r e t u r n s A 
11: QEnte r (Q.Y) 

At step 2 of this schedule a D 2 dependency is formed, hence T A < D T 2 . At step 3, however, a D 4 dependency 

is formed with T 2 < D T r Clearly a cycle exists in the compound relation < D u D . It is easy to create other 
4 2 4 

examples of consistent abstract schedules that demonstrate a cycle in the basic < n (or < n ) relation, or in a 
u2 u 4 

compound relation formed from D 2 (or D 4 ) together with D r D 3 and D 5 . 

The dependency relations can also be used to characterize schedules susceptible to cascading abort. 

Dependency relation <~ is similar to the W —• W dependency. Since entries made by an aborted transaction 

can be transparently removed from the Queue, there is no danger of cascading abort. Relations < D and < D 

are more similar to W —• R dependencies. In a D 3 dependency, information is transferred between the 

transactions in the form of the queue element a; this dependency clearly can cause cascading aborts. A D 5 

dependency can also cause cascading aborts, because the removal of an element by the first transaction affects 

which element is received by the second transaction. 

While this definition of consistency for Queues is an improvement over a Read/Write scheme, it is still very 

restrictive of concurrency. It allows at most two transactions, one performing QEnter operations and one 

performing QRemove operations, to access a Queue concurrently. Unlike the Directory, the Queue is 

intended to preserve a particular ordering of the elements contained in it. A system based on serializable 

transactions guarantees that transactions can be placed in some order; by enforcing a particular order, data 

types such as queues (and stacks) restrict concurrency. 
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4.3 Queues Allowing Greater Concurrency 

The preceding examples show how the use of semantic knowledge about operations on a shared abstract 

type permits increased concurrency. Once such knowledge is incorporated, the limiting factor in permitting 

concurrency becomes knowledge about the consistency constraints that the operations in a transaction 

attempt to maintain [Kung 79]. This knowledge concerns the semantics of groups of operations rather than 

individual ones. For example, a consistency constraint might state that every Queue entry of type A is 

immediately followed by one of type B. The potential for such constraints was die cause of the concurrency 

limitations observed above. 

If it is possible to restrict die consistency constraints that a programmer is free to require, types 

guaranteeing ordering properties weaker than serializability may be acceptable. This may permit further 

increases in concurrency. A variation of the queue type can be used to demonstrate this. 

One of die most common uses for a queue is to provide a buffer between activities that produce and 

consume work. Frequently, the exact ordering of entries on the queue is not important. What is crucial is 

that entries put on the rear of the queue do not languish in the queue forever; they should reach the head of 

the queue "fairly" with respect to other entries made at about the same time. A data type having this 

non-starvation property can be defined: the Weakly-FIFO Queue (WQueue for short). A similar type, the 

Semi-Queue, has been defined by Weihl [Weihl 83b]. 

The operations on WQueucs and their corresponding undo operations are similar to those for Queues, but 

the interleaving specification for WQueues allows more concurrency. The dependencies for the WQueue 

type are the same as for the strict Queue. However, where the strict Queue required that consistent abstract 

schedules be orderable with respect to {< D u D u D }, the WQueue permits cycles to occur in all the 

dependency relations save one: < n . By allowing cycles in < n , the interleaving of entries by multiple 

transactions becomes possible. Similarly, removing D 5 from the set of proscribed dependency relations 

permits WQRemove operations to be interleaved. 

To take full advantage of the greater concurrency allowed by this interleaving specification, the semantics of 

WQRemove differ slightly from those of QRemove. If the transaction that inserted the headmost entry in the 

queue has not committed, that entry cannot be removed without risking the possibility of a cascading abort. 

Instead, WQRemove scans the WQueue and removes the headmost entry for which the inserting transaction 

has committed. If no such element can be found, any elements inserted by die transaction doing the 

W'QRemove become eligible for removal. If neither a committed entry nor one inserted by the same 

transaction is available, the operation is blocked until an inserting transaction commits. 
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Modifying the semantics of WQRcinovc in this way docs not destroy the fairness properties of the WQueue. 

No entry will remain in die WQueue forever if: 

1. The transaction that entered it commits in a finite amount of time. 

2. Transactions that remove it terminate after a finite amount of time. 

3. Only a finite number of transactions remove the entry and then abort. 

The behavior of the WQueue is best illustrated by example. In what follows, a WQueue is represented by a 

sequence of letters, with the left end of the sequence being the head of the WQueue. Lower case italic letters 

(a) arc used to denote entries for which the WQEnter operation has not committed (i.e. the transaction that 

performed WQEnter is incomplete). Upper case bold letters (A) are used to represent entries that have not 

been removed and for which the entering transaction has committed. Upper case italic letters are used for 

entries that have been removed by an uncommitted WQRcmovc. Superscripts on entries affected by 

uncommitted operations identify the transaction that performed die operation. 

Assume that the WQueue is initially empty. If transactions T A and T 2 perform WQEnter(WQ, a) and 

WQEnter(WQ, b) respectively, the WQucue's state becomes: 

Since cycles in < D are permitted, T x may also add another entry, yielding: 

{a!

9b2, c1} 

If T x and T 2 both commit, the state becomes: 

{A, B, C} 

Note that the serializabiiity of T 2 and T 2 has not been preserved. Now suppose that T 3 performs WQRemove 

and another transaction, T 4 , removes two more elements: 

If T 3 now aborts and T 4 commits, the final state becomes: 

{A} 

In this case, A and C have effectively been reversed, even though they were inserted initially by the same 

transaction! This example illustrates an important difference between shared abstract types that attempt to 

preserve serializabiiity and those that do not: when a type permits non-serial execution of transactions, 

invoking an operation and subsequently aborting it is not necessarily equivalent to not invoking the operation 

at all. While we do not explicitly consider the undo operations in defining dependencies or interleaving 

specifications, the underlying assumption that aborts can occur at any time prior to commit implies that undo 

operations can be inserted at any point in a schedule between the invocation of an operation and the time at 

which the invoking transaction commits. 
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Another example indicates what happens when an uncommitted entry reaches die head'of-the Queue. 

Suppose the initial state is: 

{a5, b6} 

If T 6 commits but T 5 remains incomplete, the state becomes: 

W, B} 

If T ? removes an clement at this time, B will be returned, leaving: 

after 1 7 commits. On the other hand, if T 5 commits after T 6 , but before die remove by T 7 , A will be returned 
even though its insertion was committed after B's. 

To summarize the comparison between the WQueue and die ordinary Queue, note diat two properties of 

the regular Queue have been sacrificed. First, strict FIFO ordering of entries is not guaranteed, because 

aborting WQRemove operations can reorder them. Second, transactions that operate on WQucucs are not 

necessarily serializable with respect to all transactions in the system. Some other crucial properties, however, 

are preserved. The WQueue will not starve any entry, and it enforces an ordering of diose transactions that 

communicate through access to a common element of the queue. This is ensured by ordcrability with respect 

to { < n }. These modifications greatly increase concurrency, while still providing a daui type diat is useful in 

many situations* 

4.4 Proving the Correctness of Type Implementat ions 

Whereas the user of a type may employ the specified properties of abstract schedules (along with the rest of 

the type's specification) to reason about the correctness of transactions, the implementor of a type must prove 

the correctness of an implementation given the order in which operations are actually invoked. Real 

implementations may reorder the operations on an object to improve concurrency without changing the type's 

interleaving specification. Consider an implementation of the Queue type in which elements to be entered by 

a transaction are first collected in a transaction-local cache and entered as a block at end-of-transactipn. This 

implementation allows any number of transactions to invoke the QEnter operation simultaneously, provided 

care is taken to serialize correctly transactions involving multiple Queues. By actually performing the 

insertions as a block, this implementation effectively reorders the individual QEnter operations to preserve 

consistency. It is possible to reorder QEnter operations in this way because QEnter does not return any 

information to its caller. Formation of any dependencies that might result from its invocation can therefore 

be postponed. The ultimate ordering of operations in the abstract schedule is determined by the 

implementation once all the QEnter operations to be performed by a given transaction are known. Thus, this 

implementation has the benefit of more knowledge about transactions than has the standard implementation. 

U N I V E R S I T Y L I B R A R I E S 
C A R N E G 1 E - M E L L 0 N U N I V E R S I T Y 

P I T T S B U R G H , P E N N S Y L V A N I A 1521 
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Invocation schedules list operations in the order in which they are actually invoked, rather than in order of 

their abstract effects4. For example, the following is a possible invocation schedule for a Queue implemented 

using the block-insertion technique described above: 
T : QEnte r (Q.Y) 
T a : QEnte r (Q.X) 
T 3 : QRemove(Q) 

If T L commits before T 2 , the implementation reorders the two QEnter operations, resulting in the abstract 

schedule: 
T a : Q E n t e r ( Q , X) 
T 2 : QEn te r (Q , Y) 
T 3 : QRernove(Q) 

The mapping between invocation schedules and abstract schedules is many-one; each invocation schedule 

implements exactly one abstract schedule, but an abstract schedule may be implemented by multiple 

invocation schedules. The synchronization mechanism used by an implementation determines a set of 

invocation schedules, called legal schedules, that are permitted by the implementation. The implementor 

must show that all legal invocation schedules map to consistent abstract schedules. To prevent cascading 

aborts as well, implemcntors must use a synchronization strategy that restricts die set of legal invocation 

schedules to those that map to abstract schedules diat are in the intersection of the consistent and cascade-free 

sets. 

5 O r d e r a b i l i i y of G r o u p s of T r a n s a c t i o n s 

The preceding section described how the standard specification of an abstract type, which only seeks to 

characterize the type's invariants and the postconditions for its operations, can be augmented with an 

interleaving specification that describes the local synchronization properties of objects. In this section we 

broaden our focus from the properties of the typed objects that are manipulated by transactions to the 

properties of entire transactions. We first examine how to generalize the definition of consistent abstract 

schedules to schedules that include operations on more than one object type, and then consider how ordering 

properties of groups of transactions can be used to show their correctness. 

4 It is assumed that the actual concurrent execution of the transactions can be modeled by a linear ordering of their component 
operations. This requires that the primitive operations be (abstractly) atomic. In the multiprocessor case, all linearizations of operations 
that could occur simultaneously yield distinct invocation schedules. 
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5.1 How the Specif ications of Multiple Types Interact 

Guaranteeing ordcrability with respect to the proscribed relations of a collection of individual types is not 

sufficient to ensure global ordering properties of transactions, such as serializabiiity. Consider the following 

schedule, which contains transactions that operate both on Queues and Directories. Each of these types 

preserves ordcrability with respect to the union of all significant dependencies for the individual type, in 

order that transactions involving the type may potentially be serialized. However, this propeity alone does 

not guarantee serializabiiity of the transactions. For example, the following schedule is not serializablc: 
QEnte r (Q,X) 

T 2 : Q E n t e r ( Q . Y ) 
T : D i r I n s e r t ( D , "A", Z) 
T a : D i r D e l e t e ( D , " A " ) 

Let < T V stand for the <~ , l P I , ~ , ~ , ~ relation, defined earlier for type Directory. Let <~ stand for the 
Dir D2UD^uDgUDgUD^^ J V Q 

< n u D u D relation, defined earlier for Queues. Although the schedule is ordcrable with respect to 

{ < D I R , <Q}, it is not scrializable. To achieve serializabiiity, the Queue and Directory types must cooperate to 

prevent cycles in die relation {^ D i r u q}- The schedule is not ordcrable with respect to rJiis compound 

dependency. 

This example indicates how to generalize the definition of consistency to apply to abstract schedules 

containing operations on multiple types. Assume the interleaving specification for type Y 1 guarantees 

ordcrability with respect to {< D }, die interleaving specification for type Y 2 guarantees ordcrability with 

respect to { < n }, etc. The set of consistent abstract schedules involving types Y,, Y-,... Y is defined as those 

abstract schedules that are ordcrable with respect to {< D y D u D }: die union of the proscribed 
1 2 ' " n 

dependency relations of the individual types. A set of types whose implementations satisfy this property is 
called a set of cooperative types. 

The need for cooperation among types does not necessarily imply that whenever a system is extended by 

the definition of a new type, the synchronization requirements of all existing types must be rethought. When 

designing a system, however, the implementors of cooperative types must first agree on a synchronization 

mechanism that is sufficiently flexible and powerful to meet all of their requirements. A poor choice of 

mechanism for fundamental building-block types will have an adverse effect on die entire system. Section 

6 describes a mechanism based on locking that permits highly concurrent implementations of a large variety 

of shared abstract types. 
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5.2 Correctness of Transactions 

When all of the types involved in a group of transactions cooperate to preserve an ordering property 

equivalent to serializability, it is easy to show diat die correctness of transactions is not affected by 

concurrency. Because transactions arc completely isolated from one another, a transaction can be proven 

correct solely on the basis of its own code and die assumption that the system state is correct when the 

transaction is initiated. 

It is much more difficult to prove the correctness of transactions when they include operations on types that 

permit non-serializable interaction among transactions. One must consider the possible effects of interleaving 

each transaction with any other transaction, subject to the constraints of whatever ordering property is 

guaranteed by die collection of types. Ncvcrtiiclcss, in many practicai situations, this task should not be 

insurmountable. We give two examples of situations where it is possible to make useful inferences about the 

behavior of transactions even though they preserve an ordering property weaker than serializability. 

Users often invoke the DirDump operation on a Directory when they are "just looking around." In such 

cases, users would like to see a snapshot of the Directory's contents at an instant when the status of each entry 

is well defined, but they don't care what happens to the Directory thereafter. If all Directory operations 

attempt to enforce serializability, using DirDump in this way could greatly restrict concurrency. This problem 

can be alleviated by modifying the specification of the Directory type to permit limited non-serializable 

behavior. 

Suppose dependency relations containing D 9 : T : D —• T : M ( a ) are removed from the set of proscribed 

relations for the modified Directory type. That is, the interleaving specification for Directories only requires 

orderability with respect to {< u D D } instead of {< D u D u D u D u D }. Although this modified 
2 4 o 11 2 4 o ? 11 

Directory allows non-serializable behavior, one can still guarantee that certain consistency constraints are not 

violated. For example, if a transaction replaces a group of entries in a Directory, one can still prove that no 

other transaction doing DirLookup operations will observe an incompatible collection of entries. 

The WQueue of section 4.3 provides another example of a useful type that permits non-serializable 

interaction of transactions. Although the ordering property for WQueues is weaker than the one for strict 

Queues, some interesting properties can still be deduced based only on orderability with respect to { < D }. 

Consider two transactions, T x and T 2 , and two WQueues, Q x and Q r Suppose T x is intended to move all 

elements from Q x to Q 2 and T 2 is intended to move all elements from Q 2 to Q r If tiiese transactions are run 

concurrently, the elements should all wind up in one WQueue or the other. This can be guaranteed only if 

< D is proscribed; otherwise elements could be shuffled endlessly between Q1 and Q 2 and the transactions 

might never terminate. 
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6 A T e c h n i q u e for S y n c h r o n i z i n g S h a r e d A b s t r a c t T y p e s 

Wc have developed a formalism for specifying die synchronization of operations on shared abstract types, 

and interleaving specifications for some example types have been given. This section outlines a 

synchronization mechanism that can be used in implementations of these types. While wc do not describe a 

particular syntax or implementation for this mechanism, we show how it can be used to prevent cascading 

aborts and control the interleaving of operations. We show how it provides the cooperation among types that 

is needed to preserve serializabiiity or a weaker ordering property of a group of transactions. Implementation 

sketches for the shared abstract types specified in Section 4 arc given as examples of its use. 

As indicated in Section 4.4. the implcmentor of a type must take the following steps to demonstrate the 
correctness of an implementation: 

1. characterize the set of legal invocation schedules, that is, tfiosc invocation schedules allowed by 
the synchronization mechanism used in the implementation. 

2. give a mapping from invocation schedules to abstract schedules, and prove that the 
implementation carries out this mapping. 

3. prove that every legal invocation schedule yields a consistent abstract schedule under this 
mapping. 

This three-part task is simplest for implementations tiiat are idealized in that they do not reorder operations 

on objects. Under tiiese conditions, invocation schedules and abstract schedules are equivalent, and the 

second step in this process can be eliminated. The examples in this section discuss such idealized 

implementations of types. 

6.1 Type-Specif ic Locking 

The proposed synchronization technique is based on locking, which is used in many database systems to 

synchronize access to database objects. There are many variations on locking, but the same basic principle 

underlies them all: before a transaction is permitted to manipulate an object, it must obtain a lock on the 

object that will restrict further access to the object by other transactions until the transaction holding the lock 

releases it. 

Locking restricts die formation of dependencies between transactions by restricting the set of legal 

invocation schedules. Whenever one transaction is forced to wait for a lock held by another, the formation of 

a dependency between the two transactions is delayed until the first transaction releases the lock. Under the 

well-known two-phase locking protocol [Eswaran 76], no transaction releases a lock until it has already claimed 

all the locks it will ever claim. This has the effect of converting potential cycles in dependency relations into 
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deadlocks instead. These can be detected, and because no dependencies have yet been allowed to form, cidier 

transaction can be aborted without affecting die other. 

Locking is a conservative policy, because it delays die formation of any dependency that is part of a 

proscribed relation, not just those that eventually lead to cycles. This is not as significant a disadvantage as it 

might appear, however, because formation of those dependencies that transfer information (sec Section 3.3) 

must be delayed anyway to prevent cascading aborts. In fact, die even more restrictive strategy of holding 

certain locks until end-of-transaction must often be employed to ensure that schedules arc cascade-free. 

Furthermore, it is the conservative nature of locking protocols that makes them a suitable mechanism for sets 

of cooperative types. By preventing the formation of any dependencies local to a single object, cycles in 

proscribed relations that involve multiple types arc automatically avoided without explicit communication 

between type managers. This is an important advantage, because it allows type managers to be constructed 

independently, as long as they correctly prevent the local formation of dependencies. 

The chief disadvantage of many locking mechanisms is diat they sacrifice concurrency by making minimal 

use of semantic knowledge about the objects being manipulated. The simplest locking schemes use only one 

type of lock, and hence cannot distinguish between significant and insignificant dependencies. Read/Write 

locking schemes use some semantic information, but are not flexible enough to take advantage of the extra 

concurrency specifiable in terms of type-specific dependencies. It has been shown [Kung 79] that two-phase 

locking is optimal under such conditions of limited semantic knowledge, but much more concurrency can be 

obtained if more semantic information is used. The locking technique described here generalizes the ideas 

behind Read/Write locking. It permits the definition of type-specific locking rules that reflect the 

interleaving specifications of individual data types. More restrictive type-specific locking schemes have 

previously been investigated by Korth [Korth 83], 

Two observations can be made concerning type-specific dependencies. First, they specify the way in which 

type-specific operations on behalf of different transactions may be interleaved. Analogously, the generalized 

locking scheme requires the definition of type-specific lock classes, which correspond roughly to the 

operations on the type. Second, in addition to the operations, die dependencies reflect data supplied to the 

operations as arguments or data that is otherwise specific to the particular object acted upon. Therefore, an 

instance of a lock in the generalized locking scheme consists of two parts: the type-specific lock class and 

some amount of instance-specific data. It is the inclusion of data in the lock instance that differentiates our 

technique from Korth's. We use die notation {LockClass(data)} to represent an instance of a lock. 

Once the lock classes for a type have been defined, a Boolean function must be given that specifies whether 

a particular new lock request may be granted as a function of those locks already held on the object. In 
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accordance with the practice in database literature, this function will be represented by a lock compatibility 

table. Only tiiosc locks held by other transactions need be checked for compatibility; a new lock request is 

always compatible with other locks Held by die same transaction. 

To complete die description of a type's locking scheme, one must specify the protocol by which each of the 

type's operations acquires and releases locks. Although two-phase locking can be used with type-specific 

locks, the locking protocol may also be type-specific. A uniform two-phase protocol is simplest to understand, 

but die added flexibility of type-specific protocols can allow increased concurrency. The exact nature of a 

type-specific protocol depends not only on die semantics of the type, but also on the particular representation 

and implementation chosen. 

6.2 Directories 

A simple idealized implementation of the Directory type specified in Section 4.1 illustrates die basics of 

type-specific locking. In this example, it is assumed that the Directory operations have been implemented in 

a straightforward fashion with no attempt at internal concurrency. It is further assumed that the operations 

act under the protection of a monitor or other mutual exclusion mechanism during the actual manipulation of 

Directory objects. Locking is used exclusively to control the sequencing of Directory operations on behalf of 

multiple transactions. The locking and mutual exclusion mechanisms cannot be completely independent, 

however, because mutual exclusion must be released when waiting for a lock within die monitor. This is a 

standard technique in systems that use monitors for synchronization [Hoare 74]. 

Because the.mapping from invocation schedules to abstract schedules is trivial for this implementation, the 

second step of the validation process is eliminated. The discussion of the locking scheme for Directories 

therefore focuses on the first and third steps: informal characterization of the set of legal schedules, and 

comparison of this set with the set of consistent schedules. 

As was noted in Section 4.1, the operations for the Directory data type can be divided into three groups: 

• Modify operations, that alter the particular Directory entry identified by the key string a . 

• Lookup operations, that observe the presence, absence, or contents of the particular Directory 
entry identified by the key string <r. 

• Dump operations, that observe properties of die Directory that cannot be isolated to an individual 
entry. 

Corresponding to these groups, three lock classes can be defined: 

• {DirModify(cr)}: To indicate that an incomplete transaction has inserted or deleted an entry with 
key string a . 
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• {DirLookup(a)}: To indicate diat an incomplete transaction has attempted to observe the entry 
with key string a. 

• {DirDump}: To indicate that an incomplete transaction has performed a DirDump of die entire 
directory. 

The lock compatibility table for Directories can be found in Table 1. Since there arc a potentially infinite 

number of strings, the symbols a and o' arc used to represent two arbitrary non-identical strings. 

Lock Held 
DirModify(cr) DirLookup(a) DirDump 

Lock Requested DirModify(a) No No No 
DirModify(<r') OK OK No 
DirLookup(a) No OK OK 
DirLookup(a) OK OK OK 

DirDump No OK OK 

Table 1: Lock Compatibility Table for Directories 

Each entry in this table reflects the nature of one of the type-specific dependency relations for Directories. 

Compatible entries represent dependency relations in which cycles are allowed to occur: for example, the 

entry in row 2? column 2 is "OK" because cycles arc permitted in the < M ^ ^ M r ( y ^ dependency relation. 

Incompatible entries reflect proscribed relations, such as the entry in row 1, column 2, which is due to die 

proscr ibed< w , V f / .relation. 

The protocol used by die Directory operations for acquiring and releasing locks is as follows: 

• Dirlnscrt or DirDelete operations diat specify the key string a obtain a {DirModify(cr)} lock on 
the Directory. If die operation succeeds, die lock is held until end-of-transaction. If the operation 
fails, die lock is converted to a {DirLookup(a)} lock, which is held until end-of-transaction. 

• DirLookup operations that specify the key string a obtain a {DirLookup(cj)} lock on die Directory 
that is held until end-of-transaction. 

• DirDump operations obtain a {DirDump} lock on the Directory that is held until end-of-
transaction. 

The following example demonstrates how the components of the locking scheme interact. Suppose a 

Directory D is initially empty. If a transaction T1 performs the operation DirDeIctc(D, "Zebra"), this 

operation will fail by returning not found and leave a {DirLookup("Zebra")} lock on the Directory until the 

termination of T r Now suppose a second transaction, T 2 , performs the operation 

DirInsert(D, "Zebra", capa). According to the protocol, Dirlnscrt must first obtain a {DirModify("Zebra")} 

lock. Because the dependency relation _^ M ^ a ) is proscribed, this lock is incompatible with the 
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{DirLookupC'Zcbra")} lock already held by T L (sec row I , column 3 of the compatibility tabic). Therefore, 

T 2 will be blocked. If subsequently becomes blocked while attempting to access an object already locked 

by T 2 , a deadlock will occur. Both transactions arc dicn blocked attempting to form dependencies that are 

part of proscribed relations. Although these relations may involve different objects, or even different types, a 

cycle in the union of the two relations is effectively prevented. This is exactly the behavior required to 

achieve consistency among cooperative types. On the other hand, if Tj completes successfully the lock is 

released and the dependency of T 2 on T^ is permitted to form. Since the L(<j) —• M ( j ) dependency cannot 

lead to cascading aborts, one may conclude (after the fact) that delaying T ? was unnecessary. 

By contrast, a transaction T 3 that performs die operation Dirlnsert(D, °Giraffe",capa) need not be blocked, 
because the < L ^ _̂  M(a') dependency relation is not proscribed. Accordingly, row 2, column 3 of the 
compatibility table indicates that a {DirModify("Giraffe")} lock is compatible with a {DirLookup(MZcbra")} 
lock. 

Although not a formal proof, this example characterizes the set of legal schedules permitted by the 

implementation, and shows how the lock classes, compatibility table, and locking protocol combine to 

guarantee that the legal schedules correspond to the consistent schedules defined in die last section. They 

capture die idea that, for this abstract data type, synchronization of access depends on the operations being 

performed, the particular entries in die Directory they attempt to reference, and their outcome. Because locks 

are on Directory objects, not components of directories, the technique also handles phantoms: entries that are 

mentioned in operations but are not present in the Directory. 

6.3 Strictly FIFO Queues 

Type-specific locking can also be used in implementations of the Queue data type of Section 4.2. As in the 

preceding example, assume a idealized implementation operating under conditions of mutual exclusion. To 

implement stricdy FIFO Queues supporting only QEnter and QRemove operations, two lock classes are 

sufficient: {QEnter(a)} and {QRcmove(cr)}. As in the case of Directories, locks on Queues identify the 

particular entry to which the operation requesting the lock refers. Since Queue entries are not identified by 

key strings, it is assumed that at QEnter time, each element is assigned an identifier unique to the Queue 

instance. These identifiers correspond to those used in defining the dependency relations. Thus, a 

{QEnter(a)} lock indicates that an element with identifier a has been entered into the Queue by an 

incomplete transaction. Likewise, a {QRemove(a)} lock indicates that the element with identifier a has been 

removed form the Queue by an incomplete transaction. 

The protocol for the Queue operations is: 

^ T S f t t l R G H , PENNSYLVANIA ' • "* 
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• QEnter operations must obtain a {QKntcr(cr)} lock, where a is the newly-assigned identifier for 
the entry to be added. This lock is held until end-of-transaction. 

• QRemove operations must obtain a {QRcmovc(a)} lock, where a is the identifier of die entry at 
the head of die Queue. This lock is held until end-of-transaction. Note that obtaining a 
{QRcmove(cr)} lock docs not necessarily imply that an entry a is actually in die Queue, because 
the transaction diat made the entry may have since aborted. If so, die QRemove operation must 
request a [QRcmovc(cr')} lock on the new headmost entry, a\ 

Table 2 shows the lock compatibility tabic for Queues. As usual, the symbols a and a' represent the 

identifiers of two different elements. Because die clement identifiers arc unique, certain situations (e.g. 

attempting to enter an clement with the same identifier as an clement already removed) cannot occur. The 

compatibility function is undefined in these cases, so die table entries arc marked 4NA' for 'Not Applicable'. 

Lock Held 
QEnter(a) QRcmove(a) 

Lock Requested QEnter(a) NA NA 
QEnter(a') No OK 

QRemovc(cr) No NA 
QRcmove(cr') OK No 

Table 2: Lock Compatibility Table for Queues 

The lock compatibility table reflects the limited concurrency of this type. Once a QRemove operation has 

retrieved the entry with identifier cr, some enu-y with identifier a' becomes the head element of the Queue. 

But other transactions will be blocked trying to obtain the {QRemove(a')} lock needed to remove it, until the 

first transaction completes. Multiple QEnter operations on behalf of different transactions interact in the 

same way. The incompatibility of {QRemovc(a)} with {QEnter(cr)} ensures that an uncommitted entry-

cannot be removed from the Queue, thereby eliminating a potential cause of cascading aborts. 

6.4 WQueues 

For a comparable idealized implementation of WQueues supporting only WQEnter and WQRemove, the 

same lock classes may be used as for FIFO Queues. The major difference between the two types shows up in 

the lock compatibility function, given by Table 3. To reflect the allowability of interleaved WQEnter 

operations by different transactions, the table entry in row 2, column 2 defines {WQEnter(a)} and 

{WQEnter(a')} locks to be compatible. Similarly, the entry in row 4, column 3 now permits multiple 

transactions to perform WQRemove operations. The only remaining restriction is the one in row 3, column 2 

that prevents uncommitted entries from being removed. This prevents cycles in the proscribed < F ^ _^ R ^ 

dependency relation and, because the lock is held until end-of-transaction, also prevents cascading aborts. 
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Lock Held 
WQLnter(a) WQRemove(a) 

Lock Requested WQFnter(a) NA NA 
WQEntcr(a) OK OK 

WQRcmovc(a) No NA 
WQRcmovc(a') OK OK 

Table 3: Lock Compatibility Table for WQueues 

The locking protocol for the WQueue operations is substantially the same as the one for die Queue 

operations. The only difference is that a WQRcmovc operation that is unable to obtain the required 

{WQRemovcfcr)} lock on the element at die head of the WQueue docs not block. Instead, WQRemove 

searches down the WQueue for some other element with identifier <r\ for which a {\VQRcniove(cO} lock can 

be obtained. This reflects the property of WQueues that permits elements farther down the WQueue to be 

removed when the head clement is uncommitted. If no element can be found, the operation is blocked until 

an inserting transaction commits. 

6.5 Summary 

The examples in this section have shown how type-specific locking can be used for synchronization in 

implementations of several data types. The examples show how locking can be used to prevent cycles in 

proscribed dependency relations, including cycles containing several types of objects. They also indicate how 

locking can be used to prevent cascading aborts. 

A full discussion of the syntax and implementation of type-specific locking mechanisms is beyond the scope 

of diis paper. Further work is needed to determine the specific primitives required for definition of new 

object types, locking, unlocking, conditional locking, etc. Another area requiring further study is the 

relationship between the locking mechanism and other synchronization mechanisms that are used for mutual 

exclusion and to signal events. It appears, however, that implementation of a type-specific locking 

mechanism is often no more complex or expensive than implementations of standard locking. Unlike 

predicate locking schemes [Eswaran 76], the set of locks that apply to a particular object can easily be 

determined. It is also not difficult to determine what processes may be awakened in response to an event such 

as transaction completion. 
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7 S u m m a r y 

This paper has been concerned with synchronizing transactions that access shared abstract types. In our 

model, four properties distinguish such types from others: 

• Operations on them are permanent. 

• They support failure atomicity of transactions. 

• They do not permit cascading aborts. 

• They contribute to preserving ordering properties of groups of transactions. 

These properties arc not independent, and the mechanisms that are used to achieve them are therefore related 

as well. 

Schedules and dependencies arc useful in understanding the interaction between concurrent transactions. 

The well-known consistency property of serializability can be redefined as a special case of orderability with 

respect to a dependency relation. The specific dependency relation depends on how much semantic 

knowledge is available concerning operations on objects. When Read operations are distinguished from 

Write operations, serializability requires orderability with respect to a less restrictive dependency relation than 

when this distinction is not made. Dependencies can also be used to characterize schedules that arc not prone 

to cascading aborts. 

Additional type-specific semantic knowledge about operations can allow additional concurrency. The 

interleaving specifications for Directories and Queues developed in Sections 4.1 and 4.2 were stated in terms 

of orderability with respect to type-specific dependencies. To increase concurrency further, the WQueue 

sacrifices serializability while preserving orderability with respect to a less restrictive dependency. When 

several abstract types are combined in a transaction, orderability must be guaranteed with respect to the 

relation that is the union of the proscribed relations of the individual types. 

Section 6 described a locking mechanism for implementing the synchronization required by the types 

described in Section 4. By allowing locks that consist of a type-specific lock class and instance-specific data, 

the mechanism provides a powerful framework for using type-specific semantics in synchronization. This 

mechanism is suitable for use in transactions containing multiple types, and it can also be used to prevent 

cascading aborts. The implementation of Directories shows how type-specific locking permits a uniform 

treatment of the problem of phantoms. Locks need not be directly associated with particular components of 

objects, which facilitates the separation of synchronization from other type representation issues. The 

examples of various Queue types show the mechanism's flexibility. 
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This paper has not provided a complete discussion of the issues involved in the specification and 

implementation of shared abstract types. For example, we have not discussed the construction of compound 

shared abstract types, which use other shared abstract types in their implementation. (However, Schwarz 

[Schwarz 82] gives an example of this.) In addition, we have hardly mentioned recovery considerations, 

though we believe logging mechanisms as described by Lindsay [Lindsay 79] can be extended to meet the 

needs of shared abstract types. Recovery is discussed more fully in a related paper [Schwarz 83]. Finally, we 

have not discussed specific algorithms for coping with deadlocks. 

Clearly, the definition and implementation of shared abstract types is more difficult than the definition and 

implementation of regular abstract types. However, once these types arc implemented, programmers can 

construct arbitrary transactions that invoke operations on the types. These transactions should greatly 

simplify the construction of reliable distributed systems. Though this paper has focused entirely on 

synchronization, we believe that this topic is central to understanding how transactions can be used as a basic 

building block in the implcmentadon of distributed systems. 
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