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Abstract

Beginning with the recentiy introduced 'balanced sorting network’ that sorts an input vector of size
N=2" and consists of n identical blocks where each block is composed of n phases of N/2
comparators per phase, we propose a shufile-exchange type layout consisting of a single blcck with
the output recirculated back as input until sorting is achieved. The main advantage of the proposed
design is that no comparator in the network is critical in the sense that any faulty comparator can be
bypassed without distuibing the functionality of the network (just its speed). The novelty of the design
is that the robustness is derived [rom the underlying algorithm. The network will sort in ihe presence
of many faulty comparators. Moreover, of the N log N/2 comparators, only N pairs of comparators
are critical. That is, the network fails only when both comparators in any of these pairs fail. These
results enable one to build large sorting networks on a single wafer so that a high percentage of the
fabricated wafers can be used; some of the wafers will sort very quickly (the ones with no faulty
components), most will sort at somewhat slower than optimal speeds, but only a few will fail to be
useful as sorting networks {due to too many, badly placed faults). :



The advent of VLS| technology is impacting almost all aspects of society. Unfortunately, one of the
major problems facing VLSI technology increasing manufacturing costs is the low vield in mass
production of chips and wafers. That is, although it is cheap to produce large quantities of a single
chip or wafer, only a small fraction of them function carrectly. The rest are rendered useless due to
random flaws introduced during the fabrication process. The flaws tend to have the most adverse
effect on the active elements (e.g., gates, transistors) and less effect on the wires. :

One way of increasing the yield is by employing designs that function despite fabrication flaws. We
present a layout for a sorting network that can withstand many faulty components. Although a smail
network can usually fit on a single chip, a much larger network could be made to fit on a single waler,
Previously known sorting networks shared the property that almost all the components (comparators)
are crucial, and soc large networks produced on a singlte wafer would be expensive due to the
resulting low yield. This is not the case with our layout; most faulty comparators can be bypassed and
stilt allow the network to sort, albeit somewhat slower,

Related work can be classified into two different areas, sorting networks and fault-tolerant systems,
There has been much research in sorting networks and the related area of raralle! sarting algorithms.
Batcher [Batcher 68] introduced the Bitonic network as well as the Odd-Even network (see also
[Knuth 68]) both requiring O({ log M?) steps to sort input vectors of size N (see also, Hong and
Sedgewick [Hong and Sedgewick 82) and Perl {[Perl 83) for additional insights into such networks).
There has also been much research in sorting algorithms for parallel processors, some parts of which
are relevant to sorting networks, for example, Valiant [Valiant 75), Borodin and Hopcroft [Borodin and
Hopcroft 82], and Kruskal [Kruskal 83]. Rief and Valiant {Reif and Valiant 83] give an algorithm that
requires O( log N) expected time to sort on a particular type of network, whereas, Ajtai et. al [Ajtai el
al 83] recent!y showed that there are O(Nlog N) sized networks that can sort in O(logN) steps,
although the large constants make their network impractical. Winsiow and Chow [Winslow and Chow
83] review and compare various sorting machines that make different assumptions about how the
input and the output are connected to the machine.

The structure of the paper is as follows: We first describe the 'balanced sorting network’, which has
recently been introduced {Dowd et al 83a, Dowd et al 83b]. The ’'crucial comparators’ are then
identified and their effect analyzed. The third section first reviews the layout proposed in the
introductory paper and then modifies the layout in two ways: first to reduce the number of critical
comparators and then to eliminate all of them. An analysis of the increased yield is also presented.

1. The Balanced Sorting Network

In this section we review the design and layout of the “balanced sorting netwark" introduced by
Dowd et. al [Dowd et al 83a). The network requires [ log V! stages of N/2 comparators to sort N items
and consists of a sequence of log N identical merging blocks, where each block possesses a highly
regular, recursive design (see Figure 1-1 for a merging network of size 16). A novel aspect of the
network is that the blocks are identical -- not smaller recursive versions as in those of Batcher
[Batcher 68).

 Specifically, a basic unit of the network is a two input, two output comparator transforming the

arbitrary order of the two input elements into nondecreasing order. Each phase of the balanced
merging network is composed of N/2 of these comparators with the first phase comparing elements
x(0) with x(N—1),x(1) with X(N=2),+ - x(N/2=1) with X(N/2), where x is the input vector. Taking
the approach of an 'oblivious’ algorithm in that even though the first phase does not guarantee a
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Figure 1-1: A Balanced Merging Block of Size 16

partition of the input into two halves, we pretend that it does and so continue to apply the same
procedure to both halves of the output of the first phase recursively. Thus, log N phases comprise a
merging network. We number the phases from 1to log N. ’

Figure 1-1 dapicts a balanced merging network for N =16 elements using Knuth's [Knuth 68}
comparator-network representation where horizontal lines represent the input lines x(N0<i<N, and
vertical lines represent comparisons between the elements on the corresponding input lines. Since
the output of a merging network (from now on we call such a merging network a block) may not be
sorted, we continue to apply these blocks until sorting is obtained. {(Figure 1-2 shows the full
palanced sorting network for size 8.)

Each block, as its name implies, is a merging network, however, it is not easily observed exactly
what is being merged. The first phase of the merging network applied to a recursively balanced
vector partitions the elements so that the N/2 smallest elements are in the first half of the vector and
the N/2 largest elements are in the second half of the vector. Moreover, each half is recursively
balanced so that each subsequent phase acts recursively to sort the input.

The balanced sorting netwark is very similar to the bitonic and the odd-even sorting networks
introduced by Batcher [Batcher 68]. These networks also consist of [ log N]* stages with a stage
composed of N/2 comparators. Moreover, they are both build upon merging networks, however,
despite their similarity, there is no permutation between the input lines of either of Batcher's two
networks and the balanced sorting network. The differences between the balanced network and
those of Batcher are evident from the following lemma which is satisfied by neither the odd-even nor
bitonic merge networks.
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Figure 1-2: A Balanced Sort Network of Size 8

Lemma 1;

i) If no exchange occurs during a block, then the input of the block is sorted.

ii) A network which sorts any input can be constructed by serially composing a finite
number of blocis.

Proof:

i) A single block performs all comparisons x(i—1) with x() for 1 <i<n {among others)
and thus if no exchange occurs the input must be sorted.

iiy Each exchange decreases the number of inversions (that is, pair of elements which
are out of order}. Since a permutation has at most (1) inversions, part (i) implies
that (7) blocks suffice to sort. [J

In addition to differentiating between the sorting networks, this lemma is important in two respects.
It demonstrates that only some of the comparisons are needed to sort. it also suggest a procedure for
deciding when the output is sorted. The following implementation strategy, which is assumed
throughout the rest of the paper, arises from these observations.

Since a succession of identical blocks are required, only one block is actuaily needed. The output
of the block is recircuiated back as input (see Figura 1-3), Moreover, by the first part of the lemma,
the decision to recirculate can be based on whether any exchanges occurred within a biock. Not only
does this aliow a faster completion time for certain input vectors and the elimination of a logN
Counter, but it also enables a more fault tolerant network, as wiil be shown later.

2. Critical Comparators

In this section we identify the 'critical comparators’ of the recirculating network (see Figure 1.3),
Since many fabricated chips, or more significantly, wafers, are likely to contain faulty comparators, it
is desirable that the fabricated product still sort once the faulty comparators are bypassed. Recall
that we are considering a recirculating network consisting of one block of comparators with the
output recirculated back whenever there is at least one exchange occurring in the block. We
compare a complete balanced sorting network with one missing some of its comparators. The term
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Figure 1-3: A Single Block Balanced Sort Network of Size 8

iteration is used to indicate the movement of data through one btock of the complete network and the
term pass refers to the movement of data through one block of the incomplete network. When some
comparators are missing, there will usually be more passes than iterations to produce the sorted
output for a given input.

Consider a size 8 network with an input vector X consisting of all zeros except for a one in the fourth
position, i.e. x(3)=10r x= {0,0,0,1,0,0,0,0] (the result after the sort should be [0,0,0,6,0,0.0,1]). Itis
easy to see that the x(3):x(4) comparison (a first phase comparison) is crucial. Without it, the 1 will
never change its position. On the other hand, the x[4]:x[7] comparator {a second phase camparator)
is not crucial. In the first block, the first phase exchanges x[3] with x(4], the next phase does
nothing, the third phase exchanges x[4] with x[5]. A second pass through the block will produce the
sorted output using the x{5):x[6] comparator in the second phase and the x[6):x[7} comparator in
the third phase.

Before presenting the main theorem, we introduce some notation and quote a few lemma's proved
in [Dowd et al 83al.

o Greek letters represent a string of bits with a superscript to indicate the number of bits.
For example akJ B{'l 1 indicates a string of k bits, the first (high order) k—jbits of which
are denoted by a*~J and the last bitis 1. We omit superscripts of 1.

+ Comparators are specified by the indices of the lines they compare; the two indices are
separated by a colon (:). For exampie, the first phase of a size 16 network contains the
comparator 0:15. The indices will often be written in a binary templet form in which
some of the bits are left unspecified in order to represent a set of comparators.



We first identify the critical comparators with the following definition and later show that these are
indeed the only comparators that are required for sorting.

Defirition 2: In a balanced sorting network of size N=2" the critical comparators of
the j+ 1¥ phase are of the form
a/Q 1701 3 4/ gr=Gm),
The other (Niog N/2)—N comparators are referred to as noncritical.
Proposition 3: in a size N = 2" balanced sorting network, the j”’ phase compares all
pairs of entries whose indices have identical high-order (leftmost) j—1 bits and

complementary low-order (rightmost) n—(j—1) bits. In the abave notation, comparisons in
the j phase are between elements whose indices are of the form

aj_lﬂn_(j—l) . aj-lf)'”_(j-l)

Definition 4: The level i chains are all those with the same rightmost / bits. The level i
cochains are all those with the same or complementary rightmost i+ 1 bits.

Lemma 5: Applying the i phase (/< i< n) to an input whose level n—(j—1) cochains are
sorted, preserves this property.

Lemma &: Applying the #* phase (+1<i<n) to an input whose levei #—j chains are
sorted preserves this property.

The next theorem will make use of the following lemma. The proof of this lemma explicitly identifies
a set of three comparators for each noncritical comparator whose combined effect is the same as that
of the noneritical comparator.

Lemma 7: Given an input vector x of size N = 2% in which the level n—(j~1) chains are
sorted, let k <, and remove the following noncritical comparator from the 4% phase:
ak-]oﬁn-k . ak"llﬁ”"k.
After a pass through the deficient block it will be the case that the missing comparison will
be compensated, i.e. its effect realized. Mare precisely, after a pass it is the case that:
x(a*"1087 k< x(ak=11 fr=k,

Proof: Three other comparators, one phase k and two phase r, (k<r< n), will be shown
to accomplish the effect of the missing comparator (see Figure 2-1). Since the removed
comparator is noncritical, we can write 87~k as 190 yn=(k+a+1) for some a=0. This is
because stage ; critical comparators can be characterized as having their rightmost
n—{j—1) bits consist of either all 0's or ali 1's (Definition 2), The three other comparators
are;

1. (Phase k) ak-:olal;n-(lc+a+1) s gk=t 10agyn—{k+a+1)
2. (Phase r ak-101a07n-(k+ a+1) . ak-101a1;n—(k+a+1)
3. (Phase r) ak-x]_oao.{n—(k+a+1) : ak-llgal;n-(k+a+1)]

For shorthand we write a, p, and » for a*-1, 019 and Qy"~(k+a+1) regpectively. Using
this notation, we replace the comparator apy : afiy with the following:



o (phasek) au¥ ! apy

e(phaser) apv:aps and a@v: apiy

in order to differentiate the value in the vector at each phase, we superscript the vector
with a phase number i for the value before the i phase comparison.

As a result of the phase k comparison we have xk+Yapp) < xk+Yajiv). By a previous
lemma, this is still true at phase r. This, along with the fact that after a comparison, the
smaller value is placed into the position with the smaller index and the larger value into the
position with the larger index, we have:

x " i{apr) = min {x(apy), x(apv)}

< x"(app)
< x(afr)
< max {x(afr). x(afi)}
=,xr+l(ap'.;)
O
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Figure 2-1: The boldface comparators compensate for the
missing dotted one

The next theorem shows that the critical comparators are really the only critical ones.

Theorem &: Given a size N=27 balanced sorting network consisting of one block with
the output of the block recirculated back as input whenever there is at least one exchange,
then the critical comparators are the oniy ones needed to eventually produce a sorted
output.

Proof: We need to show that the network sorts with noncritical comparators removed



and will not sort if a critical comparator is removed. The proof consists of two parts. In the
first part we first consider the removal of one noncritical comparator.

(i) Assume a noncritical comparator is removed from the k™ phase and consider the A
iteration.

Case k> ; Bylemma 6, the phases after j+ 1 have no effect.

Case k </ Starting with level n—{(j—1) sorted chains, we must show that after another
iteration it must be the case that the Jevel n~ Jchains are sorted. The first k—1 phases are
the same in both the networks. By the previous lemma (Lemma 7) the effect of phase kis
accomplished by the end of the pass. By lemma 5 it is clear that the first & phases of the
subsequent pass does no harm. Therefore by the 4+ 1 phase of the second pass, the
items have the desired property required at the k+ 1 phase of the corresponding iteration.

At most twice the number of passes are needed to compensate for the removal of one
noncritical comparator. The nexi quesiion to ask is what nappens if two nencritical
comparators are bypassed? Let NC, and NC, ke two noncritical comparators and let
COMP,, COMP,, COMP, be the three comparators used to compensate for NC,. If NC, is
not one of these three then no extra passes are required. On the cther hand , additionai
Passes may be required if NC, is one of these three. Suppose NC, is COMP,. Then no extra
passes are required since by the end of the block the effect of COMP, will have been
accomplished and thus the same for the effect of NC,. However, if NC, is COMP, then the
effect of COMP, may not occur untii the end of the block and so an additional pass will be
needed for COMP, and COMP, to have and elfect. Thus in the worst case, three times as
many passes will be needed if two noncritical comparators are removed.

(i) It is clear by inspection that the critical comparators are indeed critical. Consider a
phase j+ 1 critical comparator. It has the form /01701 g/ 107=G=1. In tater phases,
say phase rzj, the smaller indexed line will be compared to lines smailer than it
(i.e. 8771070V : @0 17~U=1). Thus if the maximum key is on line o/017-U=1 it will never
be swapped by any other comparison.

One may wonder why Lemma 7 does not apply in this case. Upon careful examinztion, it
is clear that for a critical comparator 37~f cannot be rewritten in the required form. O

In general, when ¢ noncritical comparators are removed, a factor of at most ¢ increase in the
number of passes will be required. Consider what happens if all the noncritical comparators from the
first phase are removed, leaving only one phase 1 comparator. It is not hard to see that a factor of
log N additional passes will be needed. Moreover, when all noncritical comparators are removed, the
network is reduced to bubble sort [Knuth].

Corollary 9: With only critical comparators, sorting takes N log N phases.

3. The Shuffle-Exchange Layout

Up to this point we described the network in terms of comparisons between the values on
"horizontal lines". In this section, we first review the shuffle-exchange layout for the balanced sorting
network as presented in [Dowd et al 83a], and then identify the critical comparators in this layout. A
slight modification to the layout halves the number of critical comparators. Simple replication can
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then eliminate the rest of the critical comparators. The section concludes with an analysis of the
increased robustness.

A shuffle exchange layout for ¥V = 2% ‘elements’ consists of a series of identical stages. Each stage
consists of N/2 two by two comparators, numbered 0 to N/2—1. if we number the lines through the
comparators in a stage from O to N-1 so that the lines through the i’ comparator are labeled 2i and
2i + 1 then output i from stage tis connected to input o(i) in stage t+ 1 where the permutation o is the
perfect shufile permutation (see [Clos 53, Benes 85)): if ig—y ig—y .- Ip i the binary expansion for i
then o(i) = ig=pig—3 - - lplk=1 (see Figure 3-1(a)).

0=000 ————-—-000=0 0=000,———000=0
1=001 001=1 ' 1=001 001=1
2=010 010=2 ‘ 2=010 010=2
3=011 011=3 3=011 011=3
4=100 100=4 4=100 100=4
5=101 101=5 5=101 101=5
6=110 110=6 6=110 110=6
72111 ——4———— 111=7 7=111 111=7
(a) SHUFFLE PERMUTATION ¢ (b) THE PERMUTATION 7
Figure 3-1:

Each comparator comparing input lines i and J, i <jcan be setinto four possible states:

1.State + : output{i) < output(j) (/arger value to the upper line)
2.State - : output(i) 2 output(j) (larger value to the lower lina)
3.State 0 : output{i) = input(i),

output(j) = input(j) {no exchange}
4.State 1 : output{i) = input(j).

output(j) = input(i) {exchange).

The layout realizing the balanced merging network (a single block of the balanced sorting network)
consists of log N shuffle exchange stages with all comparators set to the " +" state. Each stage
corresponds to a phase of the merging network. In order that the layout simulate the merging
network, the inputs into the layout must ke a certain permutation r of the inputs into the network,
where 7(20) = 2i and 7(2i-F1) = n—2i—1, that is, r fixes the location of the even inputs and reverses
the order of the odd inputs (see Figure 3-1(b)). The batanced sorting network can be realized with
log N successive shuffle-exchange blocks with the output of each black connected to the input of the
next block via the T permutation (see Figure 3-2).

Our plan is to first show the correspondence between the network z2nd the proposed layout, which
requires some additional notation, so that the critical comparators in the layout can be identified.

Definition 10: Let Line/(i} be the value on the i network line (see Figure 1-1) just
before the phase t comparisons (O<ign 1<t< loghN). In particular, Line'(i) are the input
values.

Definition 11: Let Inf(i} be the value of the " input line of the ' stage of the layout.
This is the value for the i{mod 2)t input into the {i/2] comparator (0<ign, 1<t< logN).
Note that during the t? stage comparator i compares In‘(2) and ni{2i+1).
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Figure 3-2: Shuffle-Exchange Layout for Sort Network of Size 16
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The initial relationship between the inputs of the layout and the network is given by:

In'(23 = Line!(2) and In'(2i+1) = Line'(n—2i—1)
Thus the first stage of comparators of the layout performs the same comparisons as the first phase of
the sorting network. Figure 3-3 tracks the movement through the layout over time with the numbers in
the figure corresponding to the location of the corresponding input line in the balanced merging
network. The motivation for the = permutation can easily be seen from first stage/phase.

We want to show that the comparisons performed during the " phase of the network are the same
as those performed during the ™ stage of the layout. Using the above notation, we quote the
following lemma from [Dowd et al 83a].

Lemma 12: For a size N=27 balanced merging network fi.e. a block) and its
corresponding shuffle layout, we have the foliowing correspondences between the lines of
the network and the inputs to the comparators in the layout: '

Inl{a”"10} = Line!{a""'0)
Int(a™ 1) = Linel(&""!1)

and for j>1,

N o™i 100y = Line/ (B20am/0)  Ini(a"ip/01) = Line/ (8720&771)
Ink o™ g-110) = Line/ (B?1a"71)  Ini(a" /g7 11) = Line/ (B 1a"7/0).

A natural question to ask is which comparators in the layout correspond to the critical comparators
of the network. It is clear that in the last stage all the comparators are critical. The following theorem
supplies the general answer.

Theorem 13: In the % stage, the critical comparators are those of the ferm:

(t=1) 107720: 017721
(L<t< logN) 1071810 1071871
(t= logN) B0 g7l

Proof: We show that the 'In()’ values of the above indices correspond to the 'Line()’
values whose indices are those of the networks critical comparators. Lemma 12 and
Definition 2 are used in the following equalities.

Case (1=1)

in}(1 0"~20) = Line!(1 0"~20)
Inl(1 0""21) = Line'(0 1772 1)

Case (1< ¢< log N) There are two cases arising from the low order bit of 8771,
Subcase (87'=8""%0)

Inf(1 07~1"1 =20 0) = Line/(87201 01 Q)

Inf(1 071 BI"20 1) = Line’(200 1771 1)

Subcase (8*71=B"1)
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Figure 3-3: Tracks movement through the layout. Numbers correspond to
horizontal lines of Figure 1-2,
Critical Comparators are shaded.

output
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In Figure 3-3, the critical comparators are shown. The input and output ports of each comparator
are tagged with the corresponding Line() indices of the network. The advantage of this layout, as
opposed to the shuffle-exchange layout for bitonic sort (see [Stone 71)), is that all the comparators
always piace the larger value on the bottom port (port 1). Note that for some of the comparators the
top input port (port 0} correspond to Line values whose indices are larger than those for the bottom
input port. Although this does not affect sorting, it does interfere with the application of the results
from the previous section. The matter can easily be remedied by simply switching the input ports for
these comparators.

4. A Single Block Layout

Having described the shulfls-exchange layout and identified the critical comparators, it is now
possible to describe additional implementation details. There are a few choices for laying out the
network: (i) include all’ (172X log NY stages with stages connected by either ¢ or 7, (ii) Use only one
stage of N/2 comparators connected by g, or (i) a compromise scheme consisting of one block of
log N stages with the output recirculated back as input. We will investigate the third option after
some discussion of all three.

Since area arguments immediately eliminate option (i), we contrast the later two options. The fuli
unfolding of a block (instead of one stage of shuffle-exchange) enabies pipelining and thus very fong
keys can be sorted. If the high order bits match, then they can both be forwarded; as soon as a
difference is detected, the appropriate sorting can be done for the rest of the bits. Thus, a key can be
passing through many comparators at the same time. This is not possible in the single-staged network
{option (ii)). Moreover, pipelining reduces the connection or pin requirements per comparator. The
single-staged design requires the entire key to be stored in the comparator and to keep the same rate
of throughput, wider channels are needed.

Perhaps even more important is the simplicity of the logic required for the single block layout.
Besides ail the obvious benefits of a simpler logic, it alsc means that each comparator requires less
area (and fewer transistors). A single stage shuffle-exchange layout requires O((N/ log N)?) area
(see [Kleiiman et al 81]) for the connections (i.e. wires) and since there are N/2 comparators the total
area required is: '

Total Area of Single-Staged Layout is %,Va’;—’mz +CN/2

Whereas, for a single block, O(N?) wire area is needed? (see [Wise 81, Snir 81] and Figure 4-1) and,
although there are more comparators (N log N /72), they are simpler and hence require less area:

1 {Dowd et al 83a] shows that anly the first 2 phases are needed in the first two blocks, the first 3 phases in the third block,
.., the first k phases in the £ viock. Thus onty (1/2X log N)2 phases are actually needed.

2An appropriate placement of the comparators yields a block in which the first stage is connected to the second via an
inverse shuffle permutation. There are N crossovers and thus requires O (N) width. The top half of the second stage is
connected by a size N/z inverse shuffle to the top half of the third stage and similarly for the bottom hait. There are now half as
many crossovers, thereby requiring O(N)/2 width. Etc.
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Total Area of One Block Layout is W N+ ' N log N/2.

N Crossovers N/2 N/4

- - ]
Figure 4-1: One block of layout using O (M) wire area

Thus for specific application, the layout with minimal area depends on the relations between W, W',
CC.

Lemma 1 is used as a basis for deciding whether or not the output is sorted. The lemma refers to
the comparisons in the sorting networks: if there are no swaps during a block, then the output is
sorted. Due to the mapping, this condition is slightly different in the layout -- the output is sorted if
some of the comparators swap and some of them do not. It is easy to slightly modify the layout to
eliminate this unpleasantness (see Figure 4-2).

At first blush, an AND gate for N log N/2 boolean values appears to be required, however, the
decision to recirculate can be generated dynainically with a much smaller gate. A bit is associated
with each key indicating whether or not, based on the history of the key, a recirculation is needed, As
two keys pass through a comparator, this bit is updated appropriately. After the last stage of the
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block, the AND of these N/2 bits solves the recirculation decision.

4.1. Modifications

The layout just described can be modified to achieve greater robustness in the following way. The
comparators are grouped into pairs in such a way that during alternate passes the comparators in
each pair alternate roles. As a result, the pair becomes critical, requiring both comparators to fail in

order to declare the pair as faulty; the failure of any single comparator does not interfere with the
functionality,

Our modification affects all but the last stage which must be dealt with in a separate fashion. Figure
3-3 shows the critical comparators in one block of the shuffie layout. Note that it is our choice of 7
that causes the critical comparators to be in the bottom half of the layout. Indeed, choosing a slightly
different » places all the critical comparators on the top half of the layout. Let +' be such a
permutation defined as:

P(20) = N=2i—1and +'(2i+1) = 2i.

One Block (iog N stages) ’t

Input ; & Sorted
>Output

~rl

——— L

Figure 4-3: A Single block with the output circulated back by = or .
If there are no exchanges within the block, the output is sorted.

Consider a one-block recirculating layout in which the recirculation alternates between r and 1’
(see Figure 4-3). During even passes the critical comparators will be in the lower half and during odd
passes they will be in the upper half. Thus, any particular critical comparator in any but the last stage
is no longer critical; any single comparison in the network will be performed by two different
comparators in the layout, thereby allowing any single comparator to be bypassed,

In order to extend this property to the entire layout, we propose that the last stage be replicated
thereby making all comparators noncritical. Since there are N log N/2 comparators in a block, the
addition of N/2 will not be too costly. With this addition, we can now state:

Proposition 14: At the very worst, the loss of a single critical comparator will double the
sorting time, although generally one would expect a much smaller performance loss.
Moreover, of the (N( log N—1))/2 comparators, there are just N critical pairs. The layout
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will fail to sort only when both comparatcrs in a pair fail.

4.2. Analysis :

A layout containing fewer critical comparators is more robust than one with more critical
comparators. We show the probability that an entire network funclions carrectly assuming a uniform
distribution of faulty comparators. A layout is said to function correctly if its faulty comparators can
be bypassed in such a way that it will eventually sort any given input vector.

We compare four layouts, all of which consist of a single block ot log N stages, with each stage
containing N/2 comparators:

1. All the comparators are crucial. This is the case of a single block layout of either of the
two Batcher networks.

2. N crucial comparators. The original proposed single block layout of the balanced sort
network.

3, N/2 crucial comparators and N/4 crucial pairs of comparators. This is the situation once
r and " are incorporated.

4. No crucial comparators and N crucial pairs of comparators. This can be easily
accomplished by replicating each of the N/2 comparators of the last stage.

Let p be the probability that a comparator is faulty. We assume that the faults are uniformly
distributed and independent. The following are the expected probabilities:

e Probability that each comparator works is (1~ p)
 Probability that a pair works is (1— %)

e Probability that the last phase works is (1~ p)¥/?

Layout (i) Layout (ji) Layout(iii) Layout (iv}
(1- pyNleaN/2 ~pV (-1 =-p2 (1-pPHY

Table 4-1: Probability whole network works

The curves in Figure 4-4 show the probabilities of the network of size N functioning for various
values of p.

5. Testing for Faulty Comparators

An additional nice feature about the balanced sorting network is that it is very easy to test for faulty
comparators within a single block. It is easy to devise an input vector that will test any single
comparator by direct examination of the network (i.e. Figure 1-1).

A single input vector checks for faulty critical comparators. Such a vector could simply be a list of
sorted numbers. With another input one can test that ali comparators perform a swap. Leti =

ip—1r ig=2 " *» lp. Then the input vector that causes all comparators to swap during the first pass is
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. 1 Layout (i)

2 Layout (ii}

3 Layout (iii)
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probability of a comparator fault (p) = .01

Figure 4-4: Probability of Network Working
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A

* 1 Layout (i)

2 Layout {ii}
3 Layout {iii)
4 Layout(iv)

1 la} n Lo -l
1000 2000 _ 3000 4000 5000

probability of a comparator fault (p) = .001

Figure 4-5: Probability of Network Working
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probability of a comparator fault (p} = .0001

Figure 4-6: Probability of Network Working



defined as follows:

E {0 JET MGG I N SERE
in other words, every other bit is complemented. Let y be the output vector after one pass though the
block. 1f y(i) = iyey, * " g4y, g -+ + . then itis easy to identify the phase k comparator that failed to
swap.

When actually constructing a single block recirculating sorting network as outlined above, one need
not initially permute the input by 7 or 1’ since the initial input is unordered®. If this is the case then the
test input vector just presented must first be permuted by 1.

Given an input that forces every comparator to execute a swap, it is then possible to design a self
modifying circuit. A single input bit indicates that the circuit is in debug mode. While in this mode
each comparator tests to see that it executes a swap. If a comparator does not swap then the
comparator can automatically disable itself (i.e. put itself into bypass mode).

6. Conclusion

Although the balanced sorting network has the same time and space requiremenis as that of the
bitonic sorting network, we have shown that its advantages are more than cosmetic. The network can
be realized as a highly robust shuffle-exchange layout. [t is thus possible to produce a fairly large
sorting network on a single wafer so that most of the wafers fabricated can be used.

The major 'trick' used in our design was the alternation of roles played by each comparator. It
would be interesting to find other algorithms ihat can exploit this trick. As the requirements for
large-scale paraliel processing grows, so does the need to develop 'rotust’ algorithms that can
function in the presence of many failures. Another requirement appears to be a simply compuied
function that indicates termination as well as the requirement for progress to occur at each iteration.

An immediate application of the results of this paper may be routing networks. Qur sorting network
can be considered to be a routing netwerk with each comparator sending an input value to the output
port corresponding to a certain bit in the destination address (instead of as the resuit of a
comparison). Although a single shuffle-exchange block can route an single input to any single
output, some permutations of N inputs require more than one pass. Perhaps our method can be used
to build a robust routing network?

3This may not be the case if the input is assumed to be "almost’ sorted.
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