
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

C M U - C S - 8 4 - 1 1 0

Executable Interface Definitions using
Form-Based Interface Abstractions

Philip J . Hayes

March 1, 1984

Abstract
The integral bit-map displays and considerable computational power of the new generation of
personal workstations offer the possibility of excellent user interfaces. Yet this potential is often
unfulfilled because of the cost and complexity of building user interfaces that fully exploit the
available resources. A solution to this problem is to define user interfaces through a language
embodying appropriate interface abstractions. Such interface definitions can be interpreted by a
central interface system to realize an interface that a user can interact with. If the interface
abstractions employed are at a suitably high level, the task of constructing individual interfaces is
much simplified, with the complexities of exploiting sophisticated interface hardware limited to the
construction of the central interface system.

A specific set of interface abstractions is presented. The abstractions are oriented around a form-
filling metaphor of communication between user and application program. They are suitable for
defining command interfaces for many, but not all, applications. An attempt is made to delimit their
range of applicability.

An interface system that runs on a Perq, a powerful personal workstation, is described. This interface
system can interpret interface definitions expressed in a language embodying the interface
abstractions just mentioned. The result of this interpretation is a graphical interface with many
user-friendly features. An example of an interface definition and the interface that results from it is
given.

To Appear in: /Advances in Human-Computer Interaction, H. R. Hartson, Ed., Ablex, 1984.

Th is research was sponsored by the Defense A d v a n c e d Research Pro jects A g e n c y (D O D) , A R P A O r d e r No. '3597, monitored by

the Air F o r c e Avionics Laboratory Under Cont ract F33615-81-K-1539. T h e v iews and conc lus ions conta ined in this document

are those of the author and should not be interpreted as representing the official pol icies, either e x p r e s s e d or implied, of the

Defense A d v a n c e d Research Projects A g e n c y or the U S Government .

Table of Contents
1. Introduction
2. Form-based abstractions for command interaction

2.1. Details of the form-based abstractions
2.2. Comparison with abstractions based on transition networks

3. C O U S I N - S P I C E

3.1. Overview of C O U S I N - S P I C E
3.2. An example C O U S I N - S P I C E interface
3.3. The C O U S I N - S P I C E interface definition language
3.4. Possible extensions to C O U S I N - S P I C E

4. Conclusion
Acknowledgements
References

List of Figures
Figu re 1: External definition of a user interface
Figu re 2: Form for simple print application
Figu re 3: Form for interactive print application
Figu re 4: C O U S I N form for the dover print application
Figure 5: Asking for a menu for the U n p r i n t a b l e C h a r a c t e r s field

1

1. Introduction
Good human-computer interfaces have always been expensive and time-consuming to construct,

and the more capable and sophisticated an interface is, the worse this problem becomes. The cost of

good interfaces is due not only to their initial design and implementation, but also to the extensive

refinement process of testing, evaluation, and subsequent modification always necessary to produce

truly usable interfaces. Since it is not uncommon for a user interface of modest sophistication to take

up the majority of its application system's code, these costs are high even when interaction is

conducted through simple alphanumeric terminals. The stakes, however, have been raised

dramatically by the present generation of powerful personal computers which can devote previously

undreamt of physical and computational resources to support interaction with their users. The

integral bit-map displays and pointing devices of these machines can provide menus, forms, and

many other kinds of graphical interaction (e.g. [7,18]). In addition, their often considerable

computational power can be used for automatic correction of spelling and other errors (e.g. [2,4]),

highly responsive and integrated help systems (e.g. [3, 14]), and knowledge-based user modelling

and support (e.g. [5, 8]). As the best of the interfaces running on such machines show, these

capabilities can offer users facilities qualitatively superior to interfaces based on alphanumeric

terminals. Yet the high cost of building and refining interfaces to exploit the advanced capabilities

often means that they go unused or misused; it is, for instance, unfortunately all too common to see

high-resolution bit-map displays used as "glass teletypes". In short, advanced interface features all

too often turn into an embarrassment of riches that system builders cannot adequately exploit.

This paper advocates, both in general terms and by reference to a specific implementation, an

approach to interface construction which can reduce the cost of developing good interfaces to

acceptable levels. In essence, the approach is to spread the high cost of developing interfaces over a

large number of applications by building a single central computer program, called an interface

system, to provide user interfaces for all the different applications. The interface system finds the

details of the interface required by each application in an external, declarative data base, called an

interface definition1 — one interface definition for each application. These interface definitions are

executable in the sense that they can be interpreted by the interface system to produce the required

interface behaviour for each different application. This results in the situation shown in Figure 1,

where the user communicates with the application only indirectly through the interface system. This

diagram also shows that the interface definition must, in fact, define two interfaces — the user

interface, plus an application interface through which the interface system talks to the application.

. T h e terms interface system and interface definition d o not have a widely accepted technical meaning, but th roughout this
paper, they will have the meanings specif ied above .

2

However, the latter interface is invisible to the user, and in what follows, we shall be concerned largely

with the user interface and the language used for interface definitions.

a p p l i c a t i o n < > i n t e r f a c e

system

"7F

2t

i n t e r f a c e

d e f i n i t i o n

User

Figu re 1: External definition of a user interface

For the approach just outlined to be effective, the interface definition language must be at a level

much more abstract than the programming languages normally used for interface implementation. It

should instead be built round abstractions of the kinds of communication required by the

applications. When such abstractions are used, the approach has clear advantages as a method of

interface construction and refinement:

• The interface definition will be much smaller and therefore easier and quicker to
construct and modify than a conventionally implemented interface.

• Since the definition is external to the application, many modifications can be made
without corresponding changes to the application itself. In other words, changes can be
made to the interface definition that alter the user interface without also changing the
application interface. This encourages experimentation with different interface
characteristics and a more extensive, and presumably more effective, refinement phase.

In addition, there are several reasons to believe the approach will result in superior interfaces that

need much less refinement than those produced on an individually tailored basis:

• Since all the details of interaction are managed by a single interface system, there will be
a basic level of consistency across all applications using it.

• A significant part of refining an interface involves low-level details of interaction, such as

Introduction 3

how best to interpret mouse-movement or keystrokes for menu selection. If the interface
definition language is based on appropriate abstractions of the communication needs of
the applications, these details will be abstracted out of the interface definitions and
confined to the interface system interpreting the definitions. Thus, the details need be
worked out only once and not for each new application, thereby allowing them to be
evaluated far more carefully and refined far more thoroughly.

• The other major part of interface refinement involves working out the interplay and
interference between various aspects of the interaction: for instance, finding good ways
of combining command giving through both menu and command lines, or ensuring
adequate prompting for missing command arguments. A sufficiently high level of
abstraction in the interface definition language would result in a set of interface
frameworks in which these details have already been worked out. This would reduce the
refinement task largely to one of selecting between the various interface frameworks.

The interface definition language used in the implementation discussed later in this paper operates at

the level of abstraction envisioned by the second rather than the third of the preceding itemized

paragraphs.

The notion of specifying the interaction required by an application program at a level more abstract

than the implementation language of the application is not a new one. There are three basic

manifestations of the idea:

1. as a package of subroutines calls (e.g. [16]) that can be inserted into the code for the
application to provide interface actions,

2. as a non-executable external description of an application's interface, (e.g. [9,12]),

3. as an executable external definition of the interaction required by an application
(e.g. [4, 6,19, 20]).

The approach this paper advocates clearly falls into the third category. Let us examine briefly

arguments against the first two.

Subroutine packages are a useful first step in sharing the effort of interface construction and

refinement across several applications. Diligent use of a comprehensive package across applications

can achieve much of the consistency of executable external interface definitions. However,

modifying an interface implemented through subroutine calls involves changing (and therefore

recompiling and relinking) the application source code. This makes it much less convenient to

experiment with variations of an interface than if external interface definitions are used. Moreover,

though low-level interaction details can be refined centrally using subroutine packages, the interplay

and interference between different aspects of the interaction cannot be refined in the application-

independent way envisaged above for executable external interface definitions. It is also difficult to

enforce the use of subroutine packages and thus ensure consistency both within and across

4

applications. It is always tempting for an application builder to bypass the abstraction provided by the

package to achieve some special effect, and this is easily done by copying and modifying the relevant

subroutine from the package. Such modifications are impossible if the abstractions are implemented

externally to the application.

Non-executable external descriptions of an application interface are used to analyze and compare

interactions and to predict performance of the interface described, but are not used to produce a

simulation of the final interaction. While such descriptions can be used to predict some aspects of

the performance of the interface described, it is unlikely that such analysis can ever be as effective as

one obtained from direct human factors evaluation of a working interface. A major problem relates to

the level of abstraction used in such descriptions. If it is low enough to provide enough details for a

complete description of the interaction, the task of constructing it is almost equivalent to that of

implementing the interface in a more conventional language. On the other hand, evaluation of a

description expressed in terms of higher-level abstractions will depend on assumptions about how

the abstractions employed will be realized at the detailed level, and may thus not be valid for all

possible realizations. Suppose, for instance, the high-level description specifies presentation of a

menu at a certain point in the interaction, but does not (because of the degree of abstraction) specify:

whether the menu is fixed or variable size, whether it is scrollable, whether it will obscure other

relevant information, etc.. Evaluation of the description may depend on any of these details, thus

forcing the person doing the evaluation to make assumptions about them. Since these assumptions

may be invalid for some realizations of the description, the evaluation as a whole may also be invalid.

By making an external interface description executable, and thus using it as the definition of the

interface rather than merely a description, these problems are avoided. Execution or interpretation of

the definition results in a working and therefore testable interface in which the abstractions used are

inevitably made completely concrete. In this way, valid evaluations may be obtained for interfaces

defined at an arbitrarily high level of abstraction. Of course, the evaluations are only valid for the

specific interface system used to execute the definition, but this is not a problem if that interface

system is the one that eventually runs the interface for the end user.

The remainder of this paper demonstrates by example how executable external interface definitions

expressed at a high level of abstraction can be used to develop and implement user interfaces. It first

presents a specific set of interface abstractions designed for a certain class of command interactions.

It then describes an implemented interface system that interprets interface definitions expressed in a

language embodying these abstractions. This interface system runs on a powerful personal

computer and makes extensive of its powerful graphics capabilities. See [4] for an earlier interface

system using similar interface abstractions in the context of an alphanumeric terminal.

Form-based abstractions for command interaction 5

2. Form-based abstractions for command interaction
The goal of providing application systems with user interfaces through executable definitions

external to the applications themselves is critically dependent on finding suitable abstractions of the

interactions required by the applications. This section presents the set of interface abstractions

employed by the implemented interface system described in the next section, and compares them

with the currently most commonly used type of interface abstractions — those based on recursive

transition networks.

While appropriate for many interface situations, the abstractions presented below are not adequate

for all forms of interaction (see [17] for some efforts in this direction). In particular:

• The abstractions cover a coarse-grained style of command interaction in which the user
repeatedly specifies a command together with a set of dependent parameters subject to
specific semantic restrictions.

• It is not possible using the abstractions to specify every way of realizing coarse-grained
command interaction. The abstractions make strong assumptions about the style of
interface as well as the style of interaction. In particular, they are not suitable for
describing arbitrary existing interfaces. —

Nevertheless, these abstractions are very useful since coarse-grained command interaction is so

common. It is the typical style of interaction at the top level of an operating system interface through

which application subsystems are initially invoked. It is also the natural style for many common

applications (e.g. electronic mail systems, compilers, symbolic debuggers, etc.). It is different,

however, from the finer-grained kind of command interaction that occurs, for instance, with a screen-

oriented text editor or a graphics drawing package. This is not to say that fine-grained interaction will

not arise in any realization of the abstractions for coarse-grained interaction, but only that the

abstractions themselves are not suitable for defining it.

2 . 1 . Details of the form-based abstract ions

The abstractions presented here for coarse-grained command interaction are centered round a

form-based metaphor of communication. They suppose that the user and the application he wants to

use have certain specific pieces of information that they wish to exchange one or more times during

an interactive session: the input parameters (number of copies, files to print, font to use, etc.) for a

print command, the output list of messages for an electronic mail application, the invocation of the

delete command and the list of messages to be deleted for that same application. Using these

abstractions, an interface definition for a given application specifies a form containing a field for each

such piece of information the user and application need to exchange. Such a definition can be

interpreted to realize a user interface in the following way:

6
Details of the form-based abstractions

• The interface system interpreting the definition keeps track of a current value for each

field of the form.

• The user is presented with a graphical representation of the form which shows the
current values for each field which he may modify as appropriate.

• The application can also access and update the current field values.

Figure 2 shows this for a hypothetical print application. The fields of the form correspond mostly to

the input parameters of the application (the pieces of information that the user needs to give to the

application) with an additional field for feedback and error messages from the application to the user

(the information the application needs to give to the user). Using this arrangement, the user interface

from the point of view of the application is very simple: it is just a set of named fields containing

values. All the details of how the user actually sees the values in those fields or gets new values into

them are taken care of by the interface system.

P r i n t

F i l e s t o p r i n t :

C o p i e s : 1 F o n t : G A C H A 8

Number o f Columns;

Long l i n e s : T r u n c a t e

print rociiltq

Figu re 2: Form for simple print application

The general advantages of implementing user interfaces through interpretation of abstract external

definitions of those interfaces have already been discussed. However, the high level of the specific

interface abstractions presented here provide other advantages. In particular, form-based interface

Form-based abstractions for command interaction 7

abstractions form a good basis for the following kinds of user-friendly behaviour:

• Correct ion of erroneous or abbrev iated input: Each form field can be given a type
(e.g. positive integer for the "number of copies" field, readable file for the "files to print"
field of our print application). Using these types, the interface system can detect and
inform the user of any invalid values that he might place in an input field. When it is
possible to generate the complete set of correct values for a given type (e.g. the
dynamically determined set of available files for file types, or the enumerated set for
enumeration types), the system can attempt to spelling-correct an incorrect value. A
complete set of available values also makes it possible for the user to fill the fields
through unique abbreviations and/or menu selection.

• Interact ive error resolution: If it proves impossible to correct an incorrect field value
or complete an abbreviated value uniquely, the interface system can use its knowledge of
the field's type to resolve the problem through interaction with the user (e.g. the system
can tell the user that the field is incorrect and present him with a menu of all possible
values). The system can also base its interaction on an unsuccessful attempt at
automatic correction (e.g; if there are several equally likely spelling corrections of an
incorrect input, the user can be presented with a menu of the alternatives). Since fields
can have defaults as well as types, the user's attention can also be drawn to fields that do
not have defaults and for which the user has not supplied a value.

• Integral on- l ine help: The display of a form with mnemonically named fields is in itself a
form of on-line help. Through it the user can determine what kinds of information can be
communicated to the application (input fields) and what assumptions the application is
currently making (defaults). This information can be supplemented by making the field
type information available to the user on request. More complete help can be provided in
response to such requests if there is a way for the application builder to include a brief
text description of the purpose of each field and the application as a whole in the
application definition.

• Automatically generated on-l ine documentat ion: With the inclusion of text
explanations of purpose mentioned in the last item, form definitions contain most of the
information a user is likely to wish to know about individual commands. In addition to
being displayed as a graphical form, this information can be formatted automatically into
on-line documentation. The result is consistent and uniform in organization, and will
always be up-to-date with changes in the application that are visible to the user since
these changes will naturally be reflected in changes to the interface definition. See [3] for
a detailed description of how this documentation was produced in an earlier interface
system using form-based interface abstractions.

The form-based interface abstractions we have described so far are appropriate for non-interactive

applications. They provide ways for applications to acquire their initial parameters (through input

fields) and to report their intermediate and final results (through output fields), but they do not provide

any way for the application to interact with the user in a command loop. Command loops in which an

application repeatedly accepts, executes, and displays the results of commands from the user are a

very common form of coarse-grained command interaction, so it is important to include support for

8
Details of the form-based abstractions

them in our interface abstractions. Three new concepts are involved:

• Command fields: command fields represent commands that the user can issue to the
application in a command loop. They have an associated list of other fields in the same
form which correspond to their parameters. The user issues a command to the
application by changing the value of a command field. If the values in all the parameter
fields of a command field are valid and up-to-date (see below), any change to that
command field is reported immediately to the application.

• Act ive fields: active fields are like command fields in that changes to their values by the
user are reported to the application immediately. The difference is that they have no
associated parameters, so that the reporting is unconditional. Active fields can be used
for fields representing parameters that are rarely changed, so that it would be inefficient
for the application to retrieve their value for every command. Fields which are neither
command nor active fields are called static fields. The values of static fields are reported
to the application only on demand.

• Confirmation f ields: confirmation fields have a timeliness attribute which may be set to
up-to-date or out-of-date. If the attribute is set to out-of-date, the value will not be
available to the application until the user has explicitly confirmed as correct the value
currently in the field. Confirmation fields represent parameters to application commands
that need to be confirmed by the user for each new command invocation.

Using these abstractions, a straightforward way to provide command loop interfaces is as follows:

• The form contains a command field for each command provided by the application.
These command fields have binary On/Off values, and can be thought of by the user as
'buttons' that execute the corresponding command when pressed. The list of parameter
fields associated with each such command field contains (unsurprisingly) the other fields
in the form that provide the parameters to the command it represents.

• After initialization, the application waits to be informed that the user has pushed such a
command button. Recall that the application is not informed of such a button push
unless all the parameter fields are correct and up-to-date.

• When notification of a command button push arrives, the application retrieves the values
of the parameter fields associated with the command, setting the ones that require
confirmation to out-of-date (for the next time they are used). The application then
executes the command, and waits for the next one.

From the point of view of the application, this arrangement is a straightforward parameters-first verb-

last kind of command loop. However, as we shall see from the implementation described in the

following section, the error correction and feedback provided by an interface system using these

abstractions can make interaction appear much more friendly and supportive from the user's point of

view.

Figure 3 shows how we could adapt the form of our hypothetical print command to this

arrangement. Two button-style command fields are shown. The 'Hardcopy' command actually

Form-based abstractions for command interaction 9

produces hard copy on the printer from the files named in 'Files to print'. The 'MakePressFile'

command does not actually print the files, but translates them into a file in the binary format, called

press format, required by the printer. The parameters for 'Hardcopy' are all the fields in the form

except 'MakePressFile' and 'Press file name' (which specifies the name to be given to the press file

created by 'MakePressFile'), while those for 'MakePressFile' are all the fields except 'Hardcopy'.

Again, this level of abstraction allows various user-friendly features to be provided by the interface

system that implements the abstractions, including highlighting all the parameter fields for a given

command field on request, and highlighting any incorrect or out-of-date parameter fields when the

user tries to execute a command.

P r i n t

Hardcopy MakePressF i l e

F i l e s t o p r i n t :

C o p i e s : 1 F o n t : Gacha8

Number of Columns:

Long l i n e s : ^ X T r u n c a t e

Press f i l e name:

P r i n t r e s u l t s

Figu re 3: Form for interactive print application

Even within the restricted context of coarse-grained command loop interaction, different

applications have differing interaction needs and this particular style of command loop interface may

not suit all of them. However, there are several other possible methods of combining the abstractions

we have outlined to obtain command loop interfaces of slightly different styles. Some application

10
Details of the form-based abstractions

commands, for instance, have a small number of parameters that are usually specified differently for

each invocation of the command, and a much larger number that are usually defaulted. The

'Hardcopy' command above is an example with one non-defaulted parameter, 'Files to print', and four

other usually defaulted parameters. In such cases, it is inefficient and unnecessary for the application

to retrieve each parameter each time the command is invoked. A solution is to specify the usually

defaulted parameters as active fields and have the application note their values whenever the user

changes them. Only parameters that are not usually defaulted are actually listed as parameters to the

command in the form. Note that this style of interaction requires the application to maintain an

internal data structure duplicating the values of the defaulted parameters which are already stored

once in the form. In the basic style outlined above, no such parallel structure was necessary.

Another variation in interface style is obtained through command fields which take on one of several

application commands as values instead of just being binary-valued buttons. In the case of the print

application, this would mean a field, say 'PrintCommand', that could take two values: 'Hardcopy' and

'MakePressFile'. A restriction of this arrangement is that both application commands then have to

have the same list of parameters. It is also awkwardness for the user to issue the same command

twice in a row.

Yet another possibility is to let command fields take a parameter of the command as their value. For

instance, the 'MakePressFile' field might be required to have a writable file as its value, which would

be interpreted as the file into which to write the press formatted output. This arrangement is most

effective when, as in this case, there is exactly one non-defaultable parameter which is used by that

command and no others.

The several command styles mentioned here are initial attempts at larger scale interface

abstractions. As mentioned in the introductory section, such larger scale abstractions would allow

the interplay and interference between different aspects of the interaction to be worked out once and

for all and made available to application systems within a single abstraction. We have not yet reached

the stage of incorporating abstractions at this level into the interface definition language explicitly, but

are still experimenting with them as styles of use of the lower-level abstractions already described.

Exactly what the higher-level abstractions turn out to be will depend on how the lower-level

abstractions finally end up being used in the context of the implemented interface system described

in the next section. This interface system interprets interface definitions expressed in the lower-level

abstractions. We are currently constructing and refining interfaces to real applications using these

facilities.

Form-based abstractions for command interaction 11

2.2. Compar ison with abstract ions based on transit ion networks

Before going on to the implementation, it may be worthwhile to contrast the form-based interface

abstractions described above with the type of interface abstraction most frequently proposed or used

as a basis for command interface definitions or descriptions. This other approach to interface

abstraction is based on the recursive transition network (e.g. [1,6, 19, 20]), or its formal equivalent,

the context-free grammar (e.g. [12,15]). There is a good deal of variation between the different

attempts to use transition networks or context-free grammars to define interfaces (see [6,19, 20] in

this volume for instance). However, to a first approximation (using the network rather than the

grammar formulation), they all operate along the following lines. Nodes of the network correspond to

different states or modes of the interface. Arcs linking nodes have an input and/or output event

associated with them. The network is interpreted by starting at some designated initial node and

repeatedly traversing arcs to respond to input events and/or to generate output events.

The main abstraction here is the notion of interface modes between which transitions occur as a

result of user or system actions. This interface model is, therefore, well suited to scrolled teletype-

style interfaces in which the user and system take turns in typing on the same linear typescript. Such

interfaces typically have several distinct states, transitions between which are directly determined by

user input. Since the only possible interface events are typing on the typescript by either system or

user, the transition net model can provide a complete and accurate interface definition for such

interfaces.

The suitability of transition net models to other types of interface, particularly graphical interfaces,

is, however, less clear. Many graphical interfaces are modeless (or close to it), and often involve

interface events, particularly feedback events, that are not connected with mode changes. The

lowest levels of graphical feedback, such as cursor tracking, can be handled uniformly at the lexical

level of the transition net models, in a* way similar to character echoing or long-line wrapping for

teletype-style interfaces. However, other kinds of feedback are more specialized and would be quite

awkward to handle at the lexical level. A graphical interface using the form in Figure 3, for instance,

might want to provide additional feedback by changing the cursor to one shape when the user moved

it over a command field whose parameters were all correct and up-to-date, and to a different shape

when it was moved over a command field with incorrect or out-of-date parameters. This cursor

changing is a state transition of a kind, but the corresponding state transition diagram would be quite

large and unwieldy. It is also hard for a transition net scheme to account for interface events that

might be going on strictly in parallel. The system might be printing a message out in one of the fields,

for instance, at the same time as the user is moving the cursor. Or the user might be typing

characters (with one hand) at the same time as he was moving the cursor, with the destination of the

12
Comparison with abstractions based on transition networks

characters on the screen possibly being determined by the position of the cursor. The form-based

interface abstractions presented above thus (perhaps not too surprisingly) appear better able to

describe graphical form-based interfaces than the recursive transition net or context-free language

models.

3. COUSIN -SPICE

The previous section discussed in general terms an approach to executable interface definition

centered round form-based interface abstractions. In this section, we will examine how this approach

has been put into practice in the C O U S I N - S P I C E interface system.

3 . 1 . Overv iew of C O U S I N - S P I C E

The C O U S I N - S P I C E interface system operates in the context of the S P I C E project [10] of Carnegie-

Mellon University Computer Science Department. The goal of S P I C E is to provide an individual

researcher with an excellent computational environment based on a powerful personal computer

linked together in a high-bandwidth network with mainframes and other personal machines. The

current target machine for S P I C E is the Perq[11], a personal workstation with an integral high-

resolution bit-map display and pointing device, 1 MByte of main memory, and a 1 MIPS processor.

User interfaces are, naturally, a major concern of the S P I C E project, but the richness of the hardware

resources available means that all the problems outlined in the introduction apply to the construction

of interfaces for application systems. Most application builders do not have the resources of time and

effort necessary to develop interfaces that exploit the hardware adequately. Consequently, scrolled

teletype-style interfaces have been the norm. As we have argued, this is a situation in which

significant practical benefits are likely to result from providing interfaces through an interface system

operating from external interface descriptions.

C O U S I N - S P I C E interprets external interface definitions to provide a variety of S P I C E applications with

mutually consistent, user-friendly interfaces that fully exploit the available hardware resources. The

interface definitions used by C O U S I N - S P I C E are expressed in the form-based interface abstractions

introduced in the previous section. Since it is relatively simple to modify interfaces produced in this

way, we hope that interfaces implemented through C O U S I N (sometimes we will omit the ' -SP ICE ') will

be subjected to an extensive refinement process. This refinement process should not only result in

truly excellent interfaces, but, when done for a sufficient number of applications, should also help us

to formulate the higher-level interface abstractions discussed in the previous section. While all

interface evaluation and refinement done so far for C O U S I N interfaces has been based on informal

C O U S I N - S P I C E 13

observations of the interfaces in use, we hope eventually to incorporate more thorough human

factors evaluation procedures into the refinement loop.

To use the facilities provided by C O U S I N - S P I C E , an application builder must do two things:

1. Write an interface definition in the language interpreted by C O U S I N - S P I C E . This defines a
form-based interface of the kind we have been examining.

2. Write the application in such a way that it does not communicate directly with the user,
but instead communicates with the C O U S I N - S P I C E interface system. C O U S I N

communicates with each application in terms of the values of the fields in the form
defined for that application.

Once the application builder has done this, C O U S I N can control all interaction between the user and

the form defined by the interface definition, thus providing a cooperative, graphically-oriented

interface for the application. While this arrangement allows the application builder to produce

powerful interfaces with minimal effort, it also imposes certain constraints which should be made

explicit here:

• C O U S I N can only provide interfaces to those applications suited to form-based
interaction. However, since C O U S I N forms are appropriate for most coarse-grained
command interaction (though see Section 3.4), the range of applicability of C O U S I N is still
very wide.

• Since C O U S I N ' S interface abstractions are based on forms, there may be styles of
interaction that would be suitable for a given application that cannot be implemented
through C O U S I N . On the other hand, the uniformity of C O U S I N interfaces across a variety
of applications may be more important than getting the interface "exactly" right for any
given application.

• C O U S I N cannot be used directly with existing applications. The applications must be
modified to communicate directly with C O U S I N according to C O U S I N ' S pre-established
protocol.

An example of a C O U S I N interface definition, and the user interface that C O U S I N provides from it will

provide a more concrete picture of C O U S I N .

3.2. An example C O U S I N - S P I C E interface

In C O U S I N - S P I C E , an interface definition consists of a form name definition followed by a sequence

of field definitions. Each field definition consists of a set of attributes with each attribute defining

some aspect of the appearance or behaviour of that field as it appears to the user in the form. For

instance, here is a definition for a slightly extended version of the print application we have been

using for examples.

An example C O U S I N - S P I C E interface

[
FormName: p r i n t

]

FieldName : " F i l e s to p r i n t "
MaxNumber : 25
MinNumber : 1
Purpose : " F i l e s to be p r i n t e d "

FieldName : Hardcopy
Va lueType : But ton
I n t e r a c t i o n M o d e : PushButton
ChangeResponse : Command
Parameters :

(
" F i l e s to p r i n t "

)
Purpose : "Produce hardcopy of the f i l e s to p r i n t "

]

FieldName : MakePressF i le
D e f a u l t S o u r c e : NoDefau l t
Va lueType : Bu t ton
I n t e r a c t i o n M o d e : PushButton
ChangeResponse : Command
Parameters :

(
" F i l e s to p r i n t "
PressFi leName

)
Purpose : "Produce a p ress f o r m a t t e d v e r s i o n of the f i l e s to p r i n t ,

but do not produce hard copy"
]

FieldName : Q u i t
Va lueType : But ton
I n t e r a c t i o n M o d e : PushButton
ChangeResponse : Command
Purpose : " E x i t the f i l e p r i n t i n g program

]

C O U S I N - S P I C E 15

FieldName : Copies
Va lueType : I n t e g e r
LowerBound : 1
UpperBound : 200
D e f a u l t V a l u e : 1
ChangeResponse : I n f o r m A p p l i c a t i o n
Purpose : "The number of c o p i e s to p r i n t of each f i l e "

FieldName : Font
D e f a u l t V a l u e : Gacha8
ChangeResponse : I n f o r m A p p l i c a t i o n
Purpose : "The f o n t in which to p r i n t the f i l e s "

FieldName : O r i e n t a t i o n
EnumeratedValues :

(
Landscape
P o r t r a i t

)
D e f a u l t V a l u e : P o r t r a i t
ChangeResponse : I n f o r m A p p l i c a t ion
Purpose : " P r i n t i n g o r i e n t a t i o n : Landscape i s ac ross l e n g t h of page,

P o r t r a i t a c r o s s w i d t h "

[
FieldName : LongLines
EnumeratedValues :

(
Wrap
T r u n c a t e

)
D e f a u l t V a l u e : Wrap
ChangeResponse : I n f o r m A p p l i c a t i o n
Purpose : "What to do w i t h l i n e s t h a t are too wide

]

16
An example C O U S I N - S P I C E interface

FieldName : " U n p r i n t a b l e C h a r a c t e r s "
EnumeratedValues :

(
Oc ta l R e p r e s e n t a t i o n
C a r e t C o n v e n t i o n
Omit

)
D e f a u l t V a l u e : Oc ta l R e p r e s e n t a t i o n
ChangeResponse : I n f o r m A p p l i c a t i o n
Purpose : "How to deal w i t h u n p r i n t a b l e c h a r a c t e r s :

use t h e i r t h r e e - d i g i t o c t a l r e p r e s e n t a t i o n (\ n n n) ,
use the c a r e t c o n v e n t i o n (?C = c o n t r o l - c) ,
o r omit them."

FieldName : NumberOfColumns
Va lueType : I n t e g e r
LowerBound : 1
UpperBound : 2
D e f a u l t V a l u e : 1
ChangeResponse : I n f o r m A p p l i c a t i o n
Purpose : "The number o f columns per page f o r n o n - p r e s s f i l e s '

]

c

FieldName : PressFi leName

? u r p o s e V f " S a m e ' f o r p ress f o r m a t t e d f i l e produced by MakePressF i l e command'

FieldName : "S tandard T y p e s c r i p t "
Va lueType : P o r t
I n t e r a c t i o n M o d e : T y p e s c r i p t F i e l d

]

A drawing of the user's view of the interface produced by C O U S I N - S P I C E using this definition is

shown in Figure 4. 3 Complete details of how the various elements of the form definition influence the

2 A simplified vers ion of the definit ion fo r the dover printing appl icat ion that runs on a Perq and uses C O U S , N - S P , C E to provide

its interface.

3 S i n c e the form is formatted automatically by C O U S . N to fit into a w i n d o w on the Perq s c r e e n whose size and shape can be

altered by the user, the al ignment of the f ields c a n vary .

C O U S I N - S P I C E 17

appearance and behaviour of the form are presented in Section 3.3. For now, it is sufficient to note

that each field definition is a property list of attribute/value pairs with one of the pairs specifying the

name of the field. Each field definition results in a field of the given name in the form, and the

appearance and behaviour of each form field are controlled by the other attribute/value pairs in the

field definition. Hardcopy, MakePressF i le , and Q u i t , for instance, have a speckled background

(not reproduced here), and are grouped on a line together because they have Command and

Pushbutton attributes. Note that the set of attributes given vary from one field to another. In fact, all

fields have all attributes, but in many cases, straightforward defaults are available (see Section 3.3).

Figure 4 also shows two unnamed fields in the form. A scrolled window is provided automatically at

the top of every form for help and other messages from C O U S I N to the user. Our example form also

contains a typescript field at the bottom (corresponding to the S tandard T y p e s c r i p t field in the

form definition) that the print application uses for messages to the user. Already this is a lot of

interface for a small amount of effort on the part of the application builder, and some example

interactions with the user will show how complete an interface it provides.

Suppose the user, with the form in the initial state shown in Figure 4, presses the Hardcopy

button. 4 The image of the button changes to inverse video (white on black) to acknowledge the push

and to indicate that the command cannot be executed because some of its parameters are incorrect.

The problem lies with the F i l e s to p r i n t field which has no value. So this field also changes to

inverse video to indicate that it is a parameter, but is incorrect. The user then types the name of a file

into the F i l e s to p r i n t field. This causes the image of that field to change to a grey background,

indicating it is a correct parameter of the pending command. The Hardcopy button also changes to

a grey background, indicating that all its parameters are correct — it only has one — and that it is,

therefore, ready to execute. Finally, the user presses Hardcopy again, the file that he named is

queued for printing, and Hardcopy and F i l e s to p r i n t revert to their initial backgrounds.

This is the user level view. To see the contribution of C O U S I N to this interaction, it is necessary to

dig below the surface. When the user first presses Hardcopy, C O U S I N notes from the interface

definition presented above that the I n t e r a c t i o n M o d e of Hardcopy is PushButton, and so

immediately changes Hardcopy to have the value 'on', providing feedback that this has happened by

changing the field to a grey background. In addition, since the ChangeResponse of Hardcopy is

Command, C O U S I N assumes that the user is attempting to execute a command and starts to check the

parameters listed for the field. In this case, there is just one parameter, F i l e s to p r i n t , which

By moving the mouse-contro l led cursor over the image of the button on the sc reen and cl icking the physical button on the
mouse.

18
An example C O U S I N - S P I C E interface

p r i n t .

F i l e s to p r i n t

Hardcopy M a k e P r e s s F i l e Q u i t

Copies

O r i e n t a t i o n P o r t r a i t

Font Gacha8

LongL ines Wrap

U n p r i n t a b l e C h a r a c t e r s O c t a l R e p r e s e n t a t i o n

NumberOfColumns

PressFi leName

Figu re 4: C O U S I N form for the dover print application

according to the form is required to contain between one and twenty five readable files. It actually

doesn't contain anything, so the field is incorrect, and C O U S I N indicates this to the user by the

inverted display. As soon as a parameter is found to be incorrect, C O U S I N also changes the command

field to have an inverted display. Normally, this happens fast enough that the user is not aware of the

intermediate change to grey.

At this stage, C O U S I N has established that the user is trying to issue a command, but has not

specified all the parameters of the command correctly. So, after giving the feedback just mentioned,

it simply waits for the user to take corrective action (or do whatever else he wants to: change another

field, ask for help, press a different command button, or even interact with an entirely different

application). As it happens, the user takes corrective action by inserting the name of a readable file

C O U S I N - S P I C E 19

into F i l e s to p r i n t . Since the constraints specified for this field are now satisfied, C O U S I N

removes the error feedback. Also, since the field is a parameter to the pending command, C O U S I N

replaces the error feedback with feedback indicating this fact (the grey background). Also, since all

parameters to that command are now correct (there was only one), the background of Hardcopy is

also changed to grey indicate that the command is ready to execute. Note that up to this point, the

application has not been involved in the interaction at all. It is only when the user presses Hardcopy

again that C O U S I N sends a message5 to the application saying that the Hardcopy command is being

issued and that all its parameters are complete and correct. The application then retrieves the

parameter it needs (by asking C O U S I N for the value of F i l e s to p r i n t) , tells C O U S I N it has finished

retrieving values from the form, 6 queues the file for printing, and waits for another command

notification from C O U S I N . The application's part in this fairly involved interaction is thus quite small.

This example shows how the user can get C O U S I N to prompt him for the parameters to commands.

He is, of course, free also to specify the parameters in advance of the command. For instance, by

typing the name of awritable file into P r e s s F i 1 eName, replacing F i l e s to p r i n t with the name of

another readable file, and pressing the MakePressF i le button, he would create a ready-to-print

version of the file named in F i l e s to p r i n t on the file named in PressFi leName. The action of

C O U S I N is similar to the previous case, the main difference being that when it comes to check the

parameters to the command being issued, it finds them both correct and thus transmits the command

to the application immediately. Note that if the user had not replaced the value of F i les to p r i n t ,

C O U S I N would not have issued the command immediately because F i l e s to p r i n t would have

been marked out of date from its previous use in the Hardcopy command. However, if the user really

wanted to use the same file again, he would only need to confirm the value and the command could

proceed.

So far, the user has interacted only with the two commands of the form and their required

parameters. The remainder of the form consists of optional parameters which users sometimes want

to change but which they usually are satisfied to leave with the default values. Suppose the user is

dissatisfied with the default handling of unprintable characters which the form lists as

Octa l R e p r e s e n t a t i o n . Before issuing his next print command, he can change the values in one of

several ways. By pointing at the field with the mouse-controlled cursor and clicking a mouse button,

C O U S I N and the appl icat ions it serves run as separate processes in the A c c e n t operat ing system on the Perq and all
communicat ion between them is handled by the in te rprocess communicat ion facility of that operat ing system.

T o avoid race condi t ions the user is not al lowed to c h a n g e the form after a command has been issued to the appl icat ion
until this notification is rece ived .

20
An example C O U S I N - S P I C E interface

he can change the field to another of its possible values, C a r e t C o n v e n t i o n . Repeated clicking will

cycle through the remaining values (in this case there is only one, Omi t) , and then go back to the first

and start again. C O U S I N supports value cycling on all fields like U n p r i n t a b l e C h a r a c t e r s whose

possible values are defined explicitly through an EnumeratedValues attribute. Alternatively, should

the user want to select from a menu of all the possible values of the field, a different keystroke will

cause a pop-up menu of the values to appear. If the user selects an element of this menu, the

corresponding value will be inserted in the field. Along with the menu, C O U S I N prints the Purpose

attribute of the field in the message area at the top of the form, so the situation immediately after

requesting the menu for U n p r i n t a b l e C h a r a c t e r s is as shown in Figure 5. In addition to facilitating

form-filling, the pop-up menus and help text comprise a simple, but uniform and consistent, help

system.

print. Hpw t o deal w i t h u n p r i n t a b l e c h a r a c t e r s :
use t h e i r t h r e e d i g i t o c t a l r e p r e s e n t a t i o n (\ n n n) .
use the c a r e t c o n v e n t i o n (t C = c o n t r o l - c) ,
or omit them.

F i l e s t o p r i n t

Hardcopy MakePressF i le Q u i t

Copies 1 Font Gacha8

O r i e n t a t i o n P o r t r a i t LongL ines Wrap

U n p r i n t a b l e C h a r a c t e r s O c t a l R e p r e s e n t a t i o n

NumberOfColumns

PressFi1eName

Or.t.al R e o r i e n t a t i o n
C a r e t C o n v e n t i o n

Omit

Figure 5: Asking for a menu for the U n p r i n t a b l e C h a r a c t e r s field

C O U S I N - S P I C E 21

Since the ChangeResponse for U n p r i n t a b l e C h a r a c t e r s is In formAppl i c a t i o n , C O U S I N

immediately informs the application when the user inserts a new, correct value into the field. All the

optional parameters for the print application are handled this way so that their values do not need to

be retrieved by the application for each Hardcopy or M a k e P r e s s F i l e command that the user

issues.

A final form-filling aid provided by C O U S I N is error-correction. If the user enters an incorrect value

into a field, C O U S I N immediately informs the user in the way described earlier that it is an error. In

addition, C O U S I N also attempts to spelling-correct the bad value against the set of possible correct

values if these are known, as they are for enumerated or file types. 7 If a unique correction is available,

the incorrect value is overwritten and the field is treated as though it were out of date so that the user

will be required to confirm the correction. If there are several equally likely corrections, they are

offered to the user in the form of a menu just like the menus produced in response to explicit user

requests, except that this menu contains only the potential corrections and not all the values that

could go in the field.

3.3. The C O U S I N - S P I C E interface definition language

As already described, the interface abstractions provided by C O U S I N are oriented round a form

made up of named, value-containing fields which are used for communication between user and

application. We have seen that there are different kinds of fields that behave differently from both the

user's and the application's points of view. This section presents the details of the language that the

application builder uses to define a C O U S I N form, and thus the details of the interface abstractions

that C O U S I N supports.

A C O U S I N form definition consists of a declaration of the name of the form, plus a sequence of field

definitions. Each field definition consists of a list of the following attributes (curly brackets ({ })

indicate a choice of one element from the set, angle brackets (<>) indicate an attribute of that type,

round brackets indicate lists):

Check ing and correct ion of file types is not implemented yet.

22
The C O U S I N - S P I C E interface definition language

[
Name: <String>
V a l u e T y p e : {Integer, Boolean, String, Button, ReadableFile, WritableFile, Port}
MaxNumber: <lnteger>
MinNumber: <lnteger>
EnumeratedVal ues : (valuel value2 ...)
LowerBound: <lnteger>
UpperBound: <lnteger>
Def aul t S o u r c e : {NoDefault, ExplicitDefault, ApplicationDefault}
D e f a u l t V a l u e : <String>
ChangeResponse : {Passive, InformApplication, Command}
Parameters : (FieldNamel FieldName2...)
I n t e r a c t i o n M o d e : {Editln, PushButton, CycleButton,

DisplayOnly, Invisible, Typescript, Canvas}
]

These attributes taken together determine the appearance of the field to the user and the behaviour

of the field for both the application and the user. Most of the attributes have defaults which are used if

the attribute is not mentioned in a particular field definition, as is true in many cases in the example

form definition in the previous section. The meaning and default values of the attributes are:

Name: the name used to label the field on the screen for the user and to identify the field to

the application.

ValueType: The kind of object that is supposed to go in the field (default String). The last two
values require explanation:

Button: {On Off}', required when InteractionMode is PushButton. -

Port: For use when InteractionMode is Typescript or Canvas.

MaxNumber, MinNumber:
the minimum and maximum number of values permitted in the field (both default to

1).

Enumerated Values:
an initial list of possible values that the field is restricted to.

LowerBound, UpperBound:
on the value if the field has an integer value.

DefaultSource:

NoDefault: the field has no default (the default).
ExplicitDefault: the default is listed explicitly in the application description.
ApplicationDefaulfAhe field has a default which will be determined dynamically by

the application, so the user can leave this field empty and yet it
is still counted as having a correct value.

DefaultValue: the default value of the field; required when DefaultSource is ExplicitDefault.

C O U S I N - S P I C E 23

ChangeResponse:

Passive: only check for validity when a new value is entered; do not tell
the application (the default).

InformApplication: tell the application as well as checking for validity.

Command: first check the values of the fields listed as parameters, and

inform the application only if all these values are correct.

Parameters: the list of parameter fields for use when ChangeResponse is Command.

InteractionMode:
the way the field is presented to the user and the way he is allowed to interact with
it.
Editin: the user types the value into the field (the default).

PushButton: the field looks like a button, can be pushed, and has two values
(ButtonOn and ButtonOff); requires ValueType to be Button.

CycieButton: the field name does not appear, only the value; useful with
binary-valued enumerated value fields if the value names are
well chosen.

DispiayOnly: can only be modified by the application.
Invisible: the value is not displayed (for use with passwords).
Typescript: for typescript interaction between the application and user

directly, or for scrolled output from the application.8

Canvas: for any kind of free-form graphical output or direct user
interaction that the application builder wishes.

In summary, C O U S I N - S P I C E supports interface abstractions organized round the notion of a form

consisting of a set of named, value-containing fields that are used for communication between

application and user. The fields can be restricted to contain a specified number of values of a

specified type, can have a default value, and can be displayed to the user in a variety of ways. The

application builder can specify whether a user's changes to a field's value will be transmitted

immediately to the application or only upon demand. There is also the notion of a command field,

changes to whose values are transmitted immediately to the application providing that the values of

other (parameter) fields are correct.

Current ly , only one typescr ipt field is al lowed per form and it is always placed at the bottom of the form, using whatever
s p a c e remains in the form's window.

24
Possible extensions to C O U S I N - S P I C E

3 . 4 . Possible extensions to C O U S I N - S P I C E

The present version of C O U S I N - S P I C E supports the definition of interactive user interfaces at a high

level of abstraction. Preliminary use of the system suggests that the set of interface abstractions it

provides are sufficient for many, though not all (see below for an example), common applications

requiring coarse-grained command interaction. This section presents some of the deficiencies we

believe exist in the current version of C O U S I N - S P I C E , both in terms of the interface abstractions it

provides and the way it realizes them. That we can make this distinction and work on the two issues

independently underlines the importance of interface abstraction. It gives us the ability to work on a

major part of the interface refinement task (the part involving the way the abstractions are provided)

without changing any of the application systems that use the abstractions or their interface

definitions.

Areas where we plan to concentrate future efforts include:

• More comprehensive interface abstract ions : The interface abstractions supported
by the current version of C O U S I N - S P I C E largely concern communication between user and
application through a collection of independent fields. While the fields are grouped in a
dynamically generated, graphically displayed form, and the notion of some fields being
parameters to other command fields is supported, this falls well short of a comprehensive
abstraction of the complete set of interactive services required by even a simple
application. Missing concepts include a complete command listing for the application, a
distinction between optional and required parameters, a standard packaged command
format including both commands and parameters for transmitting commands to
applications, and no doubt others. Moreover, we think it unlikely that one comprehensive
interface abstraction will be adequate for the diverse communication needs found in
application systems. Therefore, we plan to develop and experiment with several
abstractions that are more complete.

• St ructured forms: Another deficiency of C O U S I N ' S current abstractions is the single-
level unstructured nature of forms — an ability to structure fields into groups and have
forms within forms is needed. Consider, for example, an electronic mail system. One
likely component of a form-based interface to such a system would be a field containing a
set of summaries of current messages. Each summary would have an inherent structure,
comprising, say, the sender, subject, and date of the corresponding message. The
interface designer might also wish to incorporate other elements of structure, say
command buttons for each summary to erase the corresponding message or display it
more fully. Since more than one summary may appear in the summaries field, a
subordinate level of structure would be needed for the application builder to do this.

• Display and layout issues: From preliminary experience, it seems unlikely that the
present automatic approach to form layout can provide forms that meet sufficiently high
standards of graphic design — at least not with the information provided through the
current set of interface abstractions. An obvious solution is to allow the application
builder to lay out a form himself through a graphical editor, but we would like to avoid this
approach if at all possible because the present implementation operates in the context of

C O U S I N - S P I C E

a window management system through which the user may change the size and shape of
windows at any time. A scheme by which the application builder could specify
constraints on the grouping and alignment of fields would be preferable. With the
development of the more comprehensive application abstractions mentioned above, it
might even be possible to make a default set of such constraints implicit in the more basic
aspects of an interface definition. Note also that once a suitable method for describing
form layout is established, there is no reason to restrict its use to the application builder.
Personalizable forms could be supported by allowing the end user to modify the layout
definition dynamically. We are currently working on a scheme along these lines in which
the form seen by the application is treated as an "abstract" form which can be mapped
onto what the user sees on the screen in various ways, the mapping itself being defined
by another form which the user or application builder will be able to view and modify
dynamically.

• Programming with applications: One of the most attractive features of the Unix
operating system [13] is that several applications can be joined together in pipelines to
accomplish a larger scale task. Communication along these pipelines is via character
streams so that it can be made transparent to an application whether it is communicating
with another application via pipeline or with the user via a terminal. It would be nice to
retain the power of pipelines for applications that communicate with the user via forms,
but clearly the character stream mode of communication is no longer feasible. We are
currently looking at ways to format the input and output of applications in terms of
structures that could be generated either by other applications or by an interface system
like C O U S I N . The issues here relate both to the way that commands are issued to an
application and to the way an application gives the "outside world "feedback about what
it is doing in response. The design of such communication is also highly related to the
more comprehensive interface abstractions mentioned above. Finally, given a composite
application comprised by a set of applications joined together via pipelines or more
complicated iterative control structures, it should be possible to define a form interface
for that composite application in just the same way as it is possible to define forms for
individual applications.

• Integration into a complete sys tem: The present C O U S I N - S P I C E system is concerned
only with the interface between a user and an individual application program.
Applications, however, do not exist in isolation — a large set of more or less related
applications is normally offered to the user as part of an overall interactive computing
environment. Exactly which applications are offered depends on the purpose of the
environment; an office information environment would offer a quite different set from a
scientific computing environment such as S P I C E . The only contribution the present
C O U S I N system would make to this notion of an overall environment is to ensure the
individual interfaces are consistent across the various applications. More support is
needed for the overall environment, perhaps by including information about function and
relation to the rest of the environment in the interface definition of each application.
Using this information, on-line help indices could be constructed automatically. We hope
to experiment with this kind of integration of individual applications into an overall
environment as C O U S I N becomes more widely used for interfaces within the S P I C E

environment.

26

4. Conclusion
As interface hardware becomes increasingly capable and as interfaces show a corresponding

increase in sophistication and complexity, the need to share the burden of interface development

across application systems will become more and more critical. This paper has argued that the way

to share this burden is to provide an abstract language for interface definition and an interface system

to provide application interfaces by interpreting definitions in that language. A suitable level of

abstraction in the interface language not only reduces the amount of effort required by the application

builder to construct an interface, but also is likely to result in higher quality interfaces than if

application interfaces were constructed individually. The reasons for this are:

• the details of the interaction required to implement the various interface abstractions
need only be worked out once, and therefore a large amount of time and effort can be
devoted to their evaluation and refinement;

• in addition to facilitating construction of the initial interface, the abstracted interface
definition language makes it easy to change the interface and thus permits and
encourages rapid interface prototyping, evaluation, and refinement;

• interfaces are consistent across all the applications employing the interface system.

These arguments were supported and illustrated by a description of such an interface definition

language and an implemented interface system which supports it in the context of a powerful

personal computer. The abstractions provided by the language were oriented round a form-based

metaphor of communication. Interface definitions using them can be interpreted by the implemented

system to provide end user interfaces with the appearance of interactive graphical forms to a variety

of application systems. Many issues remain to be resolved in the abstractions provided by this

language and in the realization of these abstractions. Nevertheless, we believe that interface

technology is developing so rapidly that it will soon become impractical to develop interfaces for a set

of applications comprising a computing environment without usingIhe basic approach that this paper

has advocated — interface definition via a language containing a high level of interface abstraction.

Acknowledgements
The detailed design and implementation of the C O U S I N - S P I C E system are due largely to Rick Lerner

and Pedro Szekely.

The content and presentation of this paper have benefitted substantially from reviews by authors of

other papers in the collection in which it is to appear (see title page), and from comments by Pedro

Szekely, Howard Gayle, and Cynthia Hibbard.

References 27

References
1. Bleser, T. and Foley, J . D. Towards Specifying and Evaluating the Human Factors of User-
Computer Interfaces. Proceedings of Conference on Human Factors in Computer Systems,
Gaithersburg, Maryland, March, 1982, pp. 309-314.

2. Durham, I., Lamb, D. D., and Saxe, J . B. "Spelling Correction in User Interfaces." Comm. ACM 26

(1983).

3. Hayes, P. J . Uniform Help Facilities for a Cooperative User Interface. Proc. National Computer
Conference, AFIPS, Houston, June, 1982.

4. Hayes, P. J . and Szekely, P. A. "Graceful interaction through the COUSIN command interface."
International Journal of Man-Machine Studies 79, 3 (September 1983), 285-305.

5. Huff, K. E. and Lesser, V. R. Knowledge-Based Command Understanding: An Example for the
Software Development Environment. Computer and Information Sciences, University of Amherst,
Massachusetts, 1982.

6. Jacob, R . J . K. An Executable Specification Technique for Describing Human-Computer
Interaction. In Advances in Human-Computer Interaction, H. R. Hartson, Ed.,Ablex, New Jersey,
1984.

7. Kaczmarek, T., Lipkis, T., Mark, W., Robins, G., Sondheimer, N., Swartout, W., and Wilczynski, D.
The Consul/CUE Interface: An Integrated Interactive Environment. CHI '83 Conference: Human
Factors in Computing Systems, Boston, December, 1983.

8. Mark, W. Representation and Inference in the Consul System. Proc. Seventh Int. Jt. Conf. on
Artificial Intelligence, Vancouver, August, 1981, pp. 375-381.

9. Moran, T. P. "The Command Language Grammar: a representation for the user interface of
interactive computer systems." International Journal of Man-Machine Studies 15 (1981), 3-50.

10. Newell, A., Fahlman, S., and Sproull, R.F. Proposal for a joint effort in personal scientific
computing. Tech. Rept., Computer Science Department, Carnegie-Mellon University, August, 1979.

11. Perq. Three Rivers Computer Corp., 160 N. Craig St., Pittsburgh, PA 15213. .

12. Reisner, P. "Formal grammar and human factors design of an interactive graphics system."
IEEE Transactions on Software Engineering 7 (1981), 229-240.

13. Ritchie, D. M. and Thompson, K. "The UNIX Time-Sharing System." Comm. ACM 17,7 (July
1974), 365-375.

14. Robertson, G., Newell, A., and Ramakrishna, K. ZOG: A Man-Machine Communication
Philosophy. Tech. Rept., Carnegie-Mellon University Computer Science Department, August, 1977.

15. Schneiderman, B. "Multi-Party Grammars and Related Features for Defining Interactive
Systems." IEEE Transactions on Systems, Man, and Cybernetics (March 1982).

16. Shafer, S. A. CI Command Interpreter. In Unix Programmer's Manual (CMU additions), Bell
Labs, 1983, ch. 3.

17. Shaw, M., Borison, E., Horowitz, M., Lane, T., Nichols, D., and Pausch, R. "Descartes: A
Programming-Language Approach to Interactive Display Interfaces." ACM Sigplan Notices 18, 6
(June 1983), 100-111.

28

18. Teitelman, W. A Display Oriented Programmer's Assistant. Proc. Fifth Int. Jt. Conf. on Artificial
Intelligence, MIT, August, 1977, pp. 905-915.

19. Wasserman, A. I. and Shewmake, D. T. The Role of Prototypes in the User Software Engineering
(USE) Methodology. In Advances in Human-Computer Interaction, H. R. Hartson, Ed.,Ablex, New
Jersey, 1984.

20. Yunten, T. and Hartson, H. R. A Supervisory Methodology and Notation (SUPERMAN) for
Human-Computer System Development. In Advances in Human-Computer Interaction, H. R. Hartson,
Ed.,Ablex, New Jersey, 1984.

