
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

A U T O M A T I C A N D HIERARCHICAL V E R I F I C A T I O N

OF

A S Y N C H R O N O U S CIRCUITS

U S I N G

T E M P O R A L LOGIC*

by
B. Mishra and E . M. Clarke

Department of Computer Science
Carnegie-Mellon University

Pittsburgh, Pennsylvania 15213

September, 1983

A b s t r a c t

Establishing the correctness of complicated asynchronous circuit is in general quite
difficult because of the high degree of nondeterminism that is inherent in such devices.
Nevertheless, it is also very important in view of the cost involved in design and testing
of circuits. We show how to give specifications for circuits in a branching time temporal
logic and how to mechanically verify them using a simple and efficient model checker. We
also show how to tackle a large and complex circuit by verifying it hierarchically.

f.This research was partially supported by NSF Grant Number MCS-8216706.

Contents

0. Introduct ion . 1

1. C T L and Model Checker- 2

2. Verif ication of Circuits . 4

3. E x t e n d e d E x a m p l e . 6

4. Hierarchical Verification of Circuits . 12

5. Conclus ion . 20

6. A c k n o w l e d g e m e n t . • 21

7. References . 21

A p p e n d i x . 22

0. Introduction.

Verification of the correctness of asynchronous circuits has been considered an im
portant problem for a long time. But, a lack of any formal and efficient method of
verification has prevented the creation of practical design aids for this purpose. Since
all the known techniques of simulation and prototype testing are time-consuming and not
very reliable, there is an acute need for such tools. Moreover, as we build larger and more
complex circuits, the cost of a single design error is likely to become even higher. In this
paper, we describe an automatic verification system for asynchronous circuits, in which
the specifications are expressed in a propositional temporal logic. We illustrate the use of
our system by verifying a version of the self-timed queue element given in [MC80].

Bochmann [B082] was probably the first to recognize the usefulness of temporal logic
to describe circuits; he verified an implementation of a self-timed arbiter using linear
temporal logic and what he called "reachability analysis". The work of Malchi and Owicki
[M082] identified additional temporal operators required to express interesting properties
of a circuit and also gave specifications of a large class of modules used in self-timed
systems.

Although these researchers have contributed significantly toward developing an ade
quate notation for expressing the correctness of asynchronous circuits, the problem of
mechanically verifying a circuit using efficient algorithms still remains unsolved. In this
paper we show how a simple and efficient algorithm, called a model checker, can be used
to verify various temporal properties of an asynchronous circuit. Roughly speaking, our
method works by first building a labelled state-transition graph for an asynchronous cir
cuit. This graph can be viewed as a finite Kripke Structure. Then by using the model
checker we determine the truth of various temporal formulae in this Kripke Structure. As
a result, it is possible to avoid the complexity associated with proof construction.

Most complex circuits are built out of relatively less complex modules in a hierarchical
manner. Hence it should be possible to verify these circuits in a hierarchical manner, i.e.
to verify the correctness of a larger module, given the premises that the smaller modules
are correct. A hierarchical approach to verification is important in practice, because it
enables us to verify circuits incrementally, to localize faults to small submodules and most
importantly, to handle large circuits without a large growth in complexity. We show
how the hierarchical method can be incorporated in a mechanical approach to circuit
verification.

1

The paper is organized as follows: Section 1 contains a brief description of the
syntax and semantics of CTL, the temporal logic used in this paper, and also explains the
algorithms used in the model checker. In Section 2, we give a simple step-by-step method
used to verify circuits. In Section 3, we illustrate these methods by establishing some
interesting properties of a Self-Timed Queue (FIFO) Element. In Section 4, we introduce
a Hierarchical method to be used in verifying large and complex circuit and study some of
the model-theoretic properties of the operation of "restriction" on a Kripke Structure. The
paper concludes by pointing out the shortcomings of our approach and with a discussion
of some remaining open problems.

1. CTL a n d Mode l C h e c k e r .

The logic that we use to give the specifications of a circuit is a propositional temporal
logic of branching time, called CTL (Computation Tree Logic). This logic is essentially
the same as that described in [CES83], [EC80] and [BMP81].

The syntax for CTL is given below:

Let P be the set of all the atomic propositions in the language, £ . Then

1. Every atomic proposition P in P is a formula in CTL.

2. If fi and f2 are CTL formulae, then so are -> / i , f\ A f2) VX/ i , 3 X / i , V[/i U f2]
and 3{h U f2\.

In this logic the propositional connectives - i and A have their usual meanings of
negation and conjunction. The temporal operator X is the nexttime operator. Hence the
intuitive meaning of VX/i (3X/ i) is tha t fi holds in every (in some) immediate successor
state of the current state. The temporal operator U is the until operator. The intuitive
meaning of V[/i U f2] (3[/i U f2]) is that for every computation path (for some computation
path), there exists an initial prefix of the path such that f2 holds at the last state of the
prefix and fi holds at all other states along the prefix.

We also use the following syntactic abbreviations:

ft V f2 = - (- / i A - / 2) , ft -> h ft V /a, and ft^f2 = {ft -> / 2) A {ft - fi)

VF/ i = V[t rue U ' / i] which means for every path, there exists a state on the path
at which / i holds.

3 F / i = 3 [t r u e U fi] which means for some path, there exists a state on the path
at which f\ holds.

2

VG/i 3F - i fx which means for every path, at every node on the path fi holds.

3 G / i =-» VF -« / i which means for some path, at every node on the path / i holds.

V[/i W f2] =-> 3[(/i A f2) U (i / i A /2J] which means that for every computation
path, and for every initial prefix of the path, if f2 holds at all the states along the prefix
then fi holds at all the states along the same prefix.

3[/ i W f2] = - i V[(/i A f2) U (-« f\ A /2)] which means that for some computation
path, and for every initial prefix of the path, if f2 holds at all the states along the prefix
then fi holds at all the states along the same prefix.

In the last two formulae W is the while operator. The formula V[/i W f2] (3[/i W f2\)
is read as "for every (some) path f\ while f2\

The semantics of a CTL formula is defined with respect to a labelled state-transition

graph. A CTL structure is a triple M = (S,R,II) where

1. S is a finite set of states.

2. R is a total binary relation on 5 (it! C S X S) and denotes the possible transitions
between states.

3. II is an assignment of atomic proposition to states, i.e. II : S h-> 2P.

A path is an infinite sequence of states (sq, s\, s2, . . .) such that V t[(s t-, G R]> For
any structure M = (5 , R, II) and state sq E S, there is an infinite computation tree with
root labelled sq such that s —> t is an arc in the tree iff (s, t) £ R.

The truth in a structure is expressed by M,sq (= / , meaning that the temporal
formula / is satisfied in the structure M at state 5q. The semantics of temporal formulae
is defined inductively as follows:

80 \= p iff p e n{s0).

so\=^f iffso^f.

SO f= fl A /2 #F S 0 1= / l a n d 5 0 H /2-

so \= VX/i ifffor all states t such that (5o,i) G i?, i f= / i .

s 0 | = 3 X / i z^for some state t such that (s 0 ,*) G R, t (= / i .

so h= V (/ i u h] iff for all paths (*„, Sl,s2,...), 3i>o[*. | = h A V 0 < ; « [s y | = / j]] .

so (= 3[/i U /2] #ffor some path (s 0 , «i, s2,...), 3t>o[s; | = f2 A V 0<y<i[sy (= A]]-

From these it is quite easy to see that the semantics of U , the until operator can be
easily given in terms of a least fixed-point characterization:

V[/i U / 2] = ^ . / 2 V (/ , A V X /) .

3[/i U / 2] = / i J . / 2 V (A A 3 X y) .

The Model Checker for CTL can now be thought of as an algorithm that determines
the satisfiability of a given temporal formula }\ in a model M, by computing these fixed
points. A full description of the algorithm is given in [CES83],

In order to determine if a CTL formula / is true in a structure M = (S, i? , 77), the
algorithm labels each state of S so tha t when the algorithm terminates, the label of each
state s G S, label(s), will be equal to {/' £ sub(f) | M,s \= / ' } , where each element of
sub(f) is either a subformula of / or the negation of the subformula. Hence M, s \= f iff
f G label[s) at the termination of the algorithm.

The labelling algorithm works in several stages. In the i t h stage the algorithm labels
the states by the subformulae of length i. The labels assigned in the earlier stages,
corresponding to the subformulae of length less than i are used to perform the labelling in
this stage. It can be shown that the algorithm makes at most n = | / | stages of computation
and that the total amount of the work involved in each stage is 0 (| | 5 | | + Hence the
time complexity of the Model Checker is 0 (| / | • + ||#||))- The algorithm is also fairly
simple, since it involves only a few straightforward graph theoretic algorithms.

2. Verification of Circuits.

Given a circuit to be verified, the steps involved in using the Model Checker to assert
the correctness of the temporal specifications are as follows:

Step 1. Building the Model.

The structure associated with the circuit is essentially a finite state-transition graph,
with its vertices corresponding to the distinct states and the edges corresponding to the
(possibly nondeterministic) transition between the states. The initial label associated with
each state is the set of propositions true in that state. This labelled state-transition graph
can be built using the following simple algorithm:.

4

begin
L := {initial state}]
while L 7^ 0 do
choose a state, say s from L and delete it from L;

for all sets of inputs, possible in s do
simulate s with this set of inputs]
let V be the set of new states;
for each sf £ L1 do

s' is a successor of s;
if sf has not been visited then

add sf to L;
end;

end;
end;

end.

Algorithm 2.1
The Algorithm to build the Kripke Structure for an Asynchronous Circuit.

Step 2* Giving the Specifications of the Circuit in CTL.

This corresponds to the specifications of the temporal behaviour of the circuit. It
usually involves structural properties (i.e. the specifications for different components of
the circuit, specifications of the signalling scheme used for communication with various
other modules, etc.), safeness properties and liveness properties. It should probably be
pointed out that one need not give the complete specification of the circuit in order to
verify some selected properties of the circuit using the model checker.

Step S. Verifying the Circuit using the Model Checker.

This step involves the model checker which checks the truth of the specification (a
formula in CTL) in the structure constructed in the step 1. The working of the Model
Checker is described in the previous section.

5

3. E x t e n d e d E x a m p l e .

We illustrate the ideas presented so far by verifying some interesting properties of an
asynchronous circuit. The example chosen for this purpose is one element of a Self-timed
(FIFO) Queue , which originally appeared in an article by C. Seitz on self-timed system
[MC80].

Output cell

O u t p u t
Link
(2 0)

R e q O u t

Inv

Figure. 3.1.
Queue (FIFO) element

a. Se l f -Timed F I F O Q u e u e Element : The electrical circuit shown in figure.
3.1 is an implementation of a single FIFO queue element combined with some input and
output logic. This circuit is of very practical importance; in pipeline processes in which
operation times are variable, increased throughput can be achieved by interconnecting
the processing elements through queues. The implementation uses simple asynchronous
control and hence, can be used to build very fast and area-efficient queues.

6

The inner cell is intended to be replicated as many times as the number of words -
the queue is to be able to store, and the same control will operate a queue of any word
length. The input cell and the output cell can be thought of as logic circuits converting
the two-cycle signalling scheme at the input link to a four-cycle signalling scheme at the
internal link and vice versa. The inner cell can be thought of as a latch that stores the
state of the cell (i.e. whether the cell is full or empty), together with logic to generate
a load signal and a set of static registers to store the bits. However, the design shown is
not speed-independent, and uses the 3/2-rules. That is one may expect misoperation if
particular sets of 3 gates have a smaller cumulative propagation delay time than other sets
of 2 gates.

In the following subsections we specify and verify some interesting properties of the
Queue element with a single inner cell.

b . T e m p o r a l Specif icat ions for t h e Se l f -T imed Q u e u e E l e m e n t : We give
examples of the ways in which various properties of a circuit can be given in CTL. In
case of the Queue Element some of the structural properties tha t we might like to specify,
are that the two-cycle signalling used at the input links and the output links is safe and
live. Recall that the structural properties are specifications for various components and
signalling schemes and thus, may be considered as premises that must be true in any CTL
structure modelling the circuit. Hence the request signal must satisfy the following safeness
and liveness conditions. (In the following CTL specifications we will use symbols Req and
Ack for the request and the acknowledgement signals respectively.)

Safeness Conditions for the Request Signal.

l .VG((-ReqAAck)-> V[-nReq W Ack])

2.VG((ReqA -Ack) -> V[Req W -Ack])

These two CTL formulae essentially express tha t if the Req and Ack signals are non-
equipotential then the Req signal will remain in its stable logic value while Ack signal is in
its stable value. In other words, Req will not be given unless acknowledgement to previous
request signal has arrived.

Liveness Conditions for the Request Signal.

1. VG((ReqAAck) — VF(-Req))

2. VG((-ReqA -Ack) -> VF(Req))

These two CTL formulae express the property that if the Req and Ack signals are
equipotential then eventually the Req signal will change its logic value, thus indicating an
arrival of a request.

7

In a similar manner, we can specify the properties of the response signal.

Safeness Conditions for the Response Signal.

1. VG((ReqAAck) -> V[Ack WReq])

2. VG((-ReqA -Ack) -> V[-Ack W -Req])

Informally, they express the fact that Ack will not be given unless there has been a
Req signal to cause it.

Liveness Conditions for the Response Signal.

l.VG((ReqA -Ack) -> VF(Ack))

2.VG((-ReqAAck) -> VF(-Ack))

That is, if there had been a Req signal then eventually there will be an Ack signal in
response to the request.

We can also give the safeness and the liveness properties of the FIFO Queue element
in CTL. The following is a representative list of some of the properties, and by no means,
exhaustive and complete. In the CTL formulae given below, Reqln stands for request at
the input links, Ackln, for acknowledgement at the input links, ReqOut, for request at the
output links, AckOut, for acknowledgement at the output links and Fulll, for the state of
the queue element when it holds some data.

Some Safeness Properties of the Queue Element.

l.VG(-n (ReqIn=AckIn)A - (ReqOut=AckOut) -+ V[- (ReqIn=AckIn) U (ReqOut=
AckOut)])

This formula states tha t if there have been a Reqln and a ReqOut, then Ackln will
not be given until AckOut has arrived.

Some Liveness Properties of the Queue Element.

l .VG(- (ReqIn=AckIn)A - F u l l l - * VF(A))

This formula states tha t if there has been a Reqln, and the memory element was
empty, then eventually it will be loaded with the input data.

8

2.VG(Fulll-> VF(-. (ReqOut=AckOut)))

Tha t is the Queue Element is full then eventually a request at the output links will be
generated in order to move the data to the next element in the queue.

3.VG((ReqOut=AckOut) -> VF(-Full l))

Tha t is if the acknowledgement arrives at the output links thus indicating that the data
stored in the current Queue Element has been moved to the next element, then eventually
the Queue Element will mark its state as empty.

In the next subsection we show how these specifications can be verified automatically
by using a Model Checker.

c. Ver i f ica t ion of t h e C i r c u i t : As a first step for the verification of the circuit, we
build a labelled finite state-transition graph corresponding to the circuit given in figure.
3.1, using the algorithm given in section 2. For this model, we assume that each gate of
the circuit has one unit delay. This is done in order to take care of the speed-dependent
properties of the circuit. This is equivalent to assuming that for any state in the graph,
any of the successor states is arrived at after one unit gate-delay. The label associated
with each state is the set of nodes in the circuit which assume the logical value 1 in that
state. The nodes of the circuit are — Ackln, Reqln, D, A, FullO, Fulll, C, B, E l , E2, E3,
ReqOut and AckOut. The initial state corresponds to the situation when Reqln and Ackln
as well as ReqOut and AckOut are equipotential.

Now,the model checker can take a description of the model and a temporal formula
specifying some property of the circuit, and determine t ruth of the formula in tha t model.
However the circuit shown does not obey the 3/2 rule as advertised, and the model checker
determines tha t the safeness property of the queue element, given in the previous subsection
is not true.

Informally, the problem can be described as follows: When an AckOut is received in
response to the ReqOut signal, the AckOut signal travels via two different electrical paths
— one involving three inverters and the other involving four gates. This creates a race
condition and produces a glitch of about one gate delay on the ReqOut bus. Though this
glitch may not always be able to drive the bus to create a spurious ReqOut, it has the
potential to do so. However, this problem can be easily rectified by making the inverters
slow or by putt ing five inverters on tha t path instead of three. The labelled state-transition
graph for the corrected circuit is shown in figure. 3.2.

9

10

The state-transition graph shown in figure. 3.2. is only one portion of the complete
state-transition graph for the FIFO Queue Element and corresponds to the initial state
where both Reqln and Ackln are both at logical-zero value and both ReqOut and AckOut
are at logical-zero value. But the state in which both Reqln and Ackin are at logical-
zero and both ReqOut and AckOut are at logical-one can not be reached from this state-
transition graph. In fact the state-graph with this situation as the initial condition is
symmetric to the one shown and the complete state-transition graph consists of both of
these components.

time: (1453 168)
|= AG(((~ Reqln & Ackln) I (Reqln & ~ Ackln)) &
((~ ReqOut & AckOUt) | (ReqOut. & ~ AckOut)) -> [< 7 sees.]
A[((~ Reqln & Ackln) I (Reqln & ~ Ackln)) U
((ReqOut & AckOut) | (" ReqOut & ~ AckOut))])

t

time: (2263 300)
|= AG(((~ Reqln & Ackln) I (Reqln & " Ackln)) & (~ Fulll) -> AF(A))

[< 8 sees.]
t

time: (2694 300)
|= AG(Fulll -> AF(((~ ReqOut & AckOut) | (ReqOut & ~ AckOut))))

[< 8 sees.]
t

time: (3150 300)
|= AG(((ReqOut & AckOut) | (~ ReqOut & ~ AckOut)) -> AF(~ Fulll))

[< 7 sees.]
t

Figure. 3.3
A sample run using the Model Checker.

11

A sample run using the model checker is shown in figure. 3.3. In the formula shown
A stands for V, E for 3, I for V, & for A, ~ for - i and -> for — S i m i l a r l y , G, F, U and
W will stand for G, F , U and W , respectively. The first component of " t ime :" is the
cumulative time in 60th of a second; the second component is the portion of the cumulative
time allocated to 'garbage collection'. The number to the right of each formula gives the
time taken to determine the truth of the formula.

4. Hierarchical Verification of Circuits.

The scheme given so far can be practical only for very small circuits. This is because
it suffers from the problem that the state transition graph may have number of states,
exponential in number of gates. However, this problem can be avoided, if circuits are
verified in a hierarchical manner. That is, first small modules are verified and then bigger
module is verified assuming that the smaller modules it is composed of are correct. Since
at any hierarchical level, the number of small modules that a big module is composed of is
relatively small, this method is amenable to proving correctness of large circuits without
a large growth of the time complexity. Moreover, hierarchical verification permits the
localization of faults to small submodules, thus allowing the designer to rectify the fault
by redesigning the appropriate submodule.

In a hierarchical approach, the state transition graph for a circuit is built out of the
descriptions of the constitueut submodules. We obtain short a description of a module by
using an operation called 'restriction'. If L is the language for the module with a set of
atomic propositions P, corresponding to the input, output and internal nodes, then the
operation restriction on L, obtains a U with atomic propositions P1corresponding to the
input and the output nodes only.

Roughly speaking, the effect of restriction .is to make the internal nodes invisible, since
in building the state transition graph for the bigger module, we only require input-output
behaviour of the constituent submodules. But when the internal nodes are made invisible,
certain portions of the state graph will have same labelling of the atomic (input and output)
propositions. The restriction operation defines exactly when such states can be collapsed
into a single state.

Unfortunately, when we restrict a CTL structure to obtain a smaller structure, some
formulae that are true in' the former structure may not be true in the restricted structure.
However, by appropriately constraining CTL, we can show that the formulae in the con
strained logic have the desirable property that the t ruth properties of such formulae are
preserved with respect to the restriction operation. All of the formulae used in section 3.
have the desired syntax.

12

Let the CTL structure for 1 be M = (S,R,n). Let P be the set of all atomic
propositions in the language L, consisting of I , the set of atomic propositions corresponding
to the inputs; 0, the set of atomic propositions corresponding to the outputs and Int, the
set of atomic propositions corresponding to the internal nodes of the circuit. That is P =
I U 0 U Int. Let fj be the language with the atomic propositions, Pf = I U 0. Define
lip* : S H-> 2P' to be the restriction of H to />', t'.e. V a € s = n(s) D P '] . Now we
can define a relation £ (£ C 5 X 5) over the set of states of M such that

s£sf iff for some path (s 0 , s i> . . . , sn) of X , n > 0, s = s0 and sn = s' and for each
predecessor of st-, (1 < i < n), i7/?/.(s(.) = Hpi(si).

It is quite easy to see that the relation <f over 5 , is reflexive and transitive but not
symmetric. The transitive closure of £ can be defined as

£* = £ u £ 2 U < f 3 U . . . U < f N U . . .

The £-closure of a state s is defined by <?*(s) = {s' | 5<f V } = {s' | 5<f s '} , since £ is a
transitive relation, i.e. £ * = £.

For a set of sets {uy}, max({uy}) will denote the set of all distinct sets in {uj} maximal
under inclusion. We define a mapping p : 5 ^ 2 5 such that for each s g S ,

(p(s) = msx({Hi | s e Hi A 3 3 . 6 5<?*(s t-) = iy,-}),

i.e. £>(s) is the set of maximal <f-closures containing s. We consider the following subsets
of 5 ,

A = (p{S)= \J<p(s).
ses

Since every element s £ S belongs to at least one subset H{ of A, A is called a
decomposition of S and the iJ t-'s are called the blocks of the decomposition. We will say s
dominates sf, if s£sf. We define the dominant states of Hi, dom(iJ :) as the set of states
that dominate every other states in Hi'

The decomposition A naturally leads to a substructure of a model M (notation M* =
(S',R',nf) = M/A) . The states of M' will be the blocks of A. A block H{ of A, when
considered as an element of 5 ' , will be denoted by Ht-. Let R1 [R! C S ' X 5') be the total
binary relation on 5 ' , corresponding to R and induced by the decomposition A i.e.

(Hi, Hj) G R', for i •=£ j iff for some st- £ -fft-, £ sy) £ and sy ^JT t-.

(Hi, Hi) £ i? ; iff for some 5 t - , Sj £ JT,-, <f st- and (st-, sy) £ i2.

13

Similarly, let i l ' : Sf H-> 2p' be the mapping corresponding to 27 and induced by the -
decomposition A, i.e.

n\Hi) = Pf n f i n{s).

The model W = (5 ' , i?', 77') is called a restriction of M = (S,R, II) with respect to
P' C P .

In the following theorem, we show that there are CTL formulas whose truth-properties
are not preserved with respect to restriction.

THEOREM 4.1. There exists a CTL structure M = II) and a formula 7 where 7 is
a CTL formula such that

M, sq \= 7 but «M',i?o a n ^ so € dom(Ho).

Proof. We give counter-examples involving formulae of the form VXP, 3 X P and V[3FPi U
ft].

We first give a model M = (S,R, II) over a language L such that M, sq f= VXP and
M,s0 f= 3 X P , but *A',H0 VXP and M',H0 ^ 3 X P , where M' is a restriction of M
and so G dom(^o)«

Define M = (S,R,II) over a language L with the set of propositions P,

P = {Pin, P'in, Pint} and
5 = {sq, si, s2} and
R = {(s0> s l) . (51> s 2) , (S2, S2)}

and i l to be i7 (s 0) = {-Pin, Pint}, i7(*i) = { ^ n } and iT(s 2) = { P j n , P < n t } . Clearly,
At, so (= VXP, n and A(,«o | = 3 X P , n . Now if we take restriction of M for language L'
with the set of propositions P',

then we get M' == (S', R', W) where

— {Hq,H\},

R' = {{H0,H1),{HUH1)}

and i J ' to be n'(HQ) = {Pin} and /7 ' (i? i) = { P ' i n } . It can be easily seen that M',H0 ^
V X P i n and M ' , # o V- 3 X P i n .

14

A [E F P t U P 2]

Figure. 3.2.
Counter-Example for Theorem J^.l.

15

Similarly, we present a model M = (S ,P ,77) such that M,s0 |=-i V[(3FPX) U P 2] ,
but M',H0 V[(3FPi) U P2] , where X ' is a restriction of M and s0 £ dom(H0).

Define M = (S,R, 77) over a language L with the set of propositions P

P = {P\>P2>PintuPint2}
5 = {5 0 , si, s2, 5 3 , 54} and

= {{SO, (5i, S 2), (Si, 5 3), (5 2 , 54)1 (53, 5 3), (54, 5 4)}

and 77 to be 77(S o) = {Pimi}, = 0, 77(5 2) = {Pint2}, 77(5 3) = { P i , P 2 } and
77(54) = {P2}. The labellings in figure 4.1 show that At, s 0 (=- . V[(3FP 2) U P 2] .

Now if we take restriction of M for language fj with the set of propositions P1 =
{ P i , P 2 } , then we get AC = (S' ,P ' ,77') where

S ' = { F 0 , # i , 7 7 2 } , and
P ' = {(77 0, Hi), (Ho, H2), (HuHj, (H2, H2)}

and 77' to be 77'(770) = 0, i l 'C^ i) = {^2} and 77'(IT2) = { P i , P 2 } . Now the labellings
in figure 4.1 show that AC,770 f= V[(3FPi) U P 2] . |

However, there exists a large subclass of CTL formulas with the desirable property
that if a formula in this subclass is satisfiable in the unrestricted CTL structure, M, then
it is satisfiable in the CTL structure, AC obtained by restriction. We call this subclass
C T L " .

Given a set of atomic propositions P:

1. Every atomic proposition P £ P is a propositional formula in CTL"".

2. If fi and f2 are propositional formulae in CTL"", then so are ^ / i , /1 A / 2 .

3. If fi is a propositional formula and f2 is a CTL"" formula, then V[/i U f2] and
3[/i U f2] are C T L " formulae.

THEOREM 4.2. Let 7 be a CTL~ formula in U: Then

M, s0 f= 7 iff M',Hq (= 7, where s0 £ dom(Ho).

Proof. From lemma 4.3. and 4.4. (see appendix for statement and proof of the lemmas.)
I '

16

With each model M, one can associate an automaton such tha t its states and transi- -
tions are same as that of M, but the transitions are additionally labelled with the set of
input signals that cause the transition and the set of output signals associated with the
transition, let A and A! be the automata associated with the models M and At', respec
tively. It can be easily shown tha t the relation <p is a weak homomorphism of A onto A!
and hence Af is a covering of A [GI68].The above result can be strengthened, if we notice
that*

<p-lN$a€*=N$a€., and

where MA and M A ' are the transition functions and where NA and NA are the output
functions of the automata A and A!, respectively.

THEOREM 4.3. Let A and A' be the automata associated with the models M and M',
respectively. Then the models At and At' are input-output equivalent in the sense that for
a sequence of input signals, x,

C <pN*, and<p-xN* = N*,

where NA and iV A ' are the output functions of the automata A and A!, respectively.

Proof. See appendix for a proof of the theorem. 3

Hence we see that even if the operation of restriction does not preserve all the CTL
formulas, the restricted model is equivalent to the original model in terms of its behaviour.
We show how to build At' from At in the following three steps. At' is essentially a restriction
of At with additional optimizations and labelling of the transitions of the state-transition
graph.

step 1. Relabel the vertices and the edges of the CTL structure At. (a) Label each
state by the subset of the propositions involving only the inputs and the outputs of the
module. (6) Label the edges between two states with the same set of atomic propositions,
by €.

step 2. Construct the blocks of Al, by first determining the dominant states using a
depth first search over the underlying graph. Build At' by replacing each block by a single
state. The graph can be optimized further by collapsing the "indistinguishable nodes" (i.e.
nodes with the same label and successor states) into single node.

step S. Label the edges of the graph by the set of input signals that causes the
transition and the set of output signals associated with the transition.

J.We represent the composition of functions (pi : D\ D2 and <p2 D2 H-> £) 3 by <pi<p2 : D\ H-> JO3.

The transition function is M : £ H-> (S > S) and the output function is N : E H-> (5 H-> 0) .

17

This construction is illustrated by taking the restriction of the state-transition graph
for the FIFO Queue Element shown in figure. 3.2. The states shown in groups are the
blocks constructed in step 2. The resulting labelled state-transition graph is shown in
figure. 4.2.

It should be mentioned that since we combine successive states in the operation of
step 2, the restricted model may not be a unit-delay model even if the original unrestricted
model was so. This notion is essentially captured in Theorems 4.1. and 4.2.

18

However, this does not pose a problem, since good design methodology forces the de
signer not to make the modules at higher level in the hierarchy speed-dependent. Moreover,
since a speed-dependent circuits must be small enough to fit in an equipotential region and
equipotential regions must be small enough that the potential on any wire in this area will
equalize in a "short" time for any large circuit, the modules at higher level have to be
speed-independent [MC80].

As the first step for verifying the correctness of a circuit using a hierarchical approach,
we construct a CTL structure for a module at some hierarchical level, using the CTL
structures for the submodules at the immediately lower level. In order to avoid building
large-sized CTL structures, we use the restriction operation on the CTL structures of the
submodules and obtain smaller descriptions of these. Moreover, the transitions of the
state-transition graph are additionally labelled with the associated set of input signals and
set of output signals, as explained earlier in this section.

Given two submodules A and B which are used to build a module C at a higher level
by connecting the inputs and outputs of A and J3, we show how to build a CTL structure
for the module C using an operation called "composition". It can be shown that the
composition operation is commutative and associative and hence can be generalized easily
to the case where a module consists of more than two submodules. The reader may note
a close analogy between the operations we define and the operations defined in [MI80].

Let the restricted models of the submodules A and B be Ma — (5a> P a > ^ a) and
Mb — [Sb, Rb, IIb), respectively. We assume that the propositions associated with A and
B are renamed so that the input and output nodes of A and B tha t are connected have the
same proposition associated with them. Furthermore, we make the important assumption
that these connections are made using "shorf bilateral wires.

The CTL structure of C = Ao B is given by Mc . = MaoB = (S a o B , P a o B > # A o b) ,

where SaoB C Sa X Sb- The assignment function IIaoB ' SaoB 2 P a U P b is defined by
(s a o b) = H(sa) U II(sb) where the state SaoB = (s a > s b) - The initial state of Mc is

The transition relation RaoB (RaoB C SaoB X Saob) is defined as follows. Assume
that there is a transition (s i a , s 2 a) € R a such that (s i a , $ 2 a) has associated with it,
the input set a and the output set /?. ' Similarly, assume tha t there is a transition
{s\b, $ 2 b) ^ ^ B s u c h ^ a t (sib, S2b) has associated with it the input set 7 and the output
set 8. Furthermore, assume that a is parttioned into disjoint subsets a! and a" such
that af is associated with the inputs of C (i.e. the input transitions for a! are generated
externally and the transitions for a " are generated internally.) Similarly, assume that 7
is parttioned into disjoint subsets 7 ' and 7 " . Then in the CTL structure for C, there will
be following transitions: (i) if a" = 0, then there is a transition ((siA, s i b) , ($ 2 A , « i b)) G

19

RaoB, with associated input a and output /3; (ii) if a" — 0 , then there is a transition -
((s i A i 5 i b) > ($ i a > ^ 2 b)) 6 - K A O B , with associated input 7 and output <5; and (iii) if (a) both
a" = 0 and 7 " = 0 , or (b) a" 7^ 0 and a" C 6 or (c) 7 " 7 ^ 0 and 7 " C /?, then there is a
transition ((s ia> s i b) ? (s2A> $ 2 b)) 6 # A o B > with associated input a U 7 and output /? U <$.'

The step of constructing the successor states for (s ia> s i b) can be thought of as
simulating C at (s i a > s i b) f ° r a U possible sets of inputs and can be easily incorporated
into algorithm 2.1. Now various properties of C with respect to the model Mc c a n be
determined using the model checker algorithm, as explained in the earlier sections.

5. Conclusion.

We have shown that it is possible to do automatic verification of asynchronous-circuit
efficiently. We have also indicated how this method can be extended to do hierarchical
verification of large and complex circuits. We believe that this approach may eventually
turn out to be quite practical.

However, there are many problems that need to be addressed before this approach is
made feasible in practice. In this paper we have used a unit-delay model for the circuit.
Similarly, it is quite easy to use a steady-state model, in which each state in the state-
transition graph corresponds to a stable state and only in response to an input change does
a state change occur. While the steady-state model is useful for speed-independent self-
timed circuits, the unit-delay model is needed to model properties of a speed-dependent
circuit. Unfortunately, even for the speed-dependent circuits the assumption that each
gate has one unit gate-delay is rather unrealistic, because two similar gates may have
different delays depending on process variations, fan-outs of a gate etc. Moreover, because
of various capacitive effects, the delay associated with a 0-to-l transition is not equal to
the one associated with a l-to-0 transition. It is felt that it is necessary to find models tha t
capture these properties better. Also, we do not know how to handle the effect of large
fan-out, charge sharing etc. In addition, we felt tha t CTL is rather weak for succinctly
expressing many properties of circuits. A notation based on temporal intervals [HMM83]
may be more suitable for this purpose.

An interesting area for future research is the usefulness of restriction operation in
the context of hierarchical verification. We have defined a "restriction" operation and
shown that the truth-properties of the CTL"" formulae are preserved with respect to the
operation of restriction. It appears tha t any weaker version of "restriction" will not
result in any substantial reduction of the size of the CTL structures and hence will make
hierarchical verification rather expensive. On the other hand, it seems any stronger version
of "restriction", will severely limit the class of CTL formulae tha t will be preserved with
respect to restriction.

20

6. A c k n o w l e d g e m e n t .

Thanks to Larry Rudolph of C-M. U. and Chuck Seitz of Caltech for helpful discus-
sions.

7. Refe rences .

[BMP81] M.Ben-Ari, Z. Manna and A.Pnueli, "The Logic of Nexttime", Eighth ACM
Symposium on Principle of Programming Languages, Williamsburg, VA, January 1981.

[B082] G. V. Bochmann, "Hardware Specification with Temporal Logic: An Example",
IEEE Transactions on Computers, Vol C-31,No. 3, March 1982.

[CES83] E.M.Clarke, E.A.Emerson and A. P. Sistla, "Automatic Verification of Fi
nite-State Concurrent Systems using Temporal Logic Specifications: A Practical Approach",
Tenth ACM Symposium on Principles of Programming Languages, Austin, Texas, January
1983.

[CM83] E.Clarke and B.Mishra, "Automatic Verification of Asynchronous Circuits",
in Proceedings of C-M. U. Workshop on Logics of Programs (ed. E. Clarke and D.Kozen),
Pittsburgh, PA, 1983 (to appear in Springer Lecture Notes in Computer Science).

[EC80] E.A.Emerson, E.M.Clarke, "Characterizing Properties of Parallel Programs
as Fixpoints", Proceedings of the Seventh International Colloquium on Automata, Lan
guages and Programming, Lecture Notes in Computer Science No. 85, Springer Verlag,
1981.

[GI68] A. Ginzburg, Algebraic Theory of Automata, Academic Press, New York .
London, 1968.

[HMM83] J. Halpern, Z. Manna and B. Moszkowski, A Hardware Semantics based on
Temporal Intervals, Report No. STAN-CS-83-963, Department of Computer Science,
Stanford University, Stanford University, Stanford, CA 94305, March 1983.

[MC80] C.A.Mead and L.A.Conway, Introduction to VLSI Systems, Reading, MA,
Addison-Wesley, 1980, Ch. 7.

[MI80] R. Milner, A Calculus of Communicating Systems, University of Edinburgh,
June 1980.

[M081] Y.Malchi and S.S.Owicki, "Temporal Specifications of Self-Timed Systems",
in VLSI Systems and Computations (Ed. H.T.Kung, Bob Sproull, and G.Steele), Com
puter Science Press, 1981.

21

Appendix

In the proof of the main theorem we made use of following technical lemmas.

L E M M A 4.1. If M9 = (S',R',IIf), is a restriction of M = (S,R,n), with respect to P9,

then

(i) For all *£ S', (i ^ j) (Hi, Hi) £ R' iff there exists a path from s\ to s9j
(s'{ G dom(Hi)} s'j G Hj) such that (s9

{ = sk,..., sh si+i, ..., s m = Sy) in M and for some
k < I < m, sk,.. .,si G Hi, 5 i + i #Hi and si+i,..., s m G Hj.

(ii) For all Hi G S', '(Hi, Hi) G Rf, iff there is a cycle in the block H{.

(Hi) For all s such that s £ H, n9(H) = n(s) f] Pf.

P r o o f S k e t c h f o r (i)

(t=) Suppose there is a path, then s/ G Hi,. s/+i G Hj and 5 j+i $ Hi and (sj, si+\) £ R.
Hence by definition, (Hi,Hj) £ R9.

(=$) Suppose (Hi,Hj) £ R1 then there exist si £ Hi, si+i £ Hj such that s j + i $
Hi and (s j . s j + i) £ R. Then we claim that si+\ £ dom(Hy). (Assume to the contrary.
Let s t £ Hj dominate Then 5t<fsj+i. Hence for each predecessor of sj+i,
-ETp ' (s {+ i) = 21^ / (5^4.1) . Hence, si£*i+\ and 5j+i £ £*(si). £ Contradiction.)
Now given 5^ £ dom(iTi) and s9j £ fly we can find a path by concatenating the path from
s9

{ to si and 5 j+i to s 9j. such paths exist since s'{ £ dom(fli) and 5 j + i £ dom(fly).

P r o o f S k e t c h f o r («)

(=$) Suppose (Hi,Hi) £ i?' . Then for some 5 ; , 5 y £ Hi, Sj£si and hence there is a
path from Sj to s,-. Moreover (s,-, Sj) £ i 2 . Hence there is a cycle in fl{.

(<=) Suppose (sy, sy+ i , . . . , 5 ; , sy) is a cycle in Hi. Then there are two cases to consider.
In the first case, the cycle contains a state in dom(fl t) . Let sy be such a state. Then
Sj£si. On the other hand, if the cycle does not contain a dominating state, since there is
a path from sy to st- and all the states on the path are non-dominating states of Hi, Sj£s{.
Moreover, since S{,sy appear consecutively in the cycle, (s tysy) £ R. Hence by definition,
(Hi,Hi)eRf.

P R O O F S K E T C H F O R (Hi) Directly follows from the definitions of H9

? and H9. I

22

We extend the operation of restriction to a path in a CTL structure. Let p =
.) be a path in M. Then define

HoR>P'(8n+i,.. if (s 0 >. . . , sn) is a finite prefix of p such that

nvise,
and s 0 , . . . G #o-

Zpt(p) =) _ « o , . . . 5 n G i J 0 and 5 n + 1 ^ J Jq ;
i #0? H0y • • - i Otherwise,

L E M M A 4.2. L e t (, 0 | . . a n , * n + 1 , . . .) 6e a p a t * m X . 2%*n ^ ^ (5 o , . . . , sn, * n + 1 , . . .) w a
pai/i in M'.

Proof. From definition and lemma 4.1. |

L E M M A 4.3. Let 7 be a CTL~ formula in L'. Then

M',Hi (= 7 M,S{ f= 7, where st- E dom{Hi).

Proof. By induction on the structure the C T L - formula 7.

Basis Step: 7 is an atomic proposition P in P'. Then

M',Hi\= 7 => M',Hi\=P
= > P € i l ' (F t -)

=*• P £ n(si) D />' (Lemma 4.1.(iii))
=» p e n{Si)

=>M,Si\=7.

Induction Step: We only show the case for VU. Other cases are similar and hence
omitted. Let 7 = V[/i U / 2] . First we show tha t if for all paths (Hi,Hi+1,...) of M',

3k>i[M',Hk h= /2 AViKKklM'tHt | = / i]] ,

then for all paths (s,-, . . .) of M,

3P>,-[A(, s p f= / 2 A V t - < , < P [M , sq \= fx}].

23

Let I = (si, Si+i,...) be any path in M with S{ £ dom(iI t) and £ , p / (^) — t! =
(Hi,Hi+i,...) be the corresponding path in M'. By above, 3fc>;.M', i f fc (= / 2 - Let
p > z be the smallest index such tha t sp £ jjfc. Hence s p £ dom(iffc). By induction
hypothesis M,sp f= / 2 . Since V ; < g < p 3 t < j < f c S g £ if/, and Vi<i<kM',Hi f= / i and / i is a
propositional formula, we have V j < g < p . M ,Sg J= / i . Hence using the semantics of the U
operator, we get

M',Hi \= 7 M',Hi\= V [/ ^ U h\
for all paths (Hi, Hi+i,...) of M',

3 f c > < [. M , , F f c (= / 2 A V t -<j< f c [A(, , f f | h A]]

for all paths (s{, s t + i , . . .) of M,
3 p > z [M , Sp\= f2 A Vi<q<p[M, Sq \= fi}]

= > M , 5 , - (= V [A U / 2]

In the next lemma we will make use of following simple facts about a CTL formulae
and blocks Hk, which we state without proof,

F A C T 4.1. If a state of Hk satisfies a propositional formula g, then all the states of Hk

must satisfy g. 3

F A C T 4.2. Any quantified CTL~ formula f2 can be written in an expanded form

Qi[3i U Q2[ff2 U • • ' Q n [f f n U g n + 1] - . •]]

where Q i , Q 2 , . . . Q n

 a r e V°^h quantifiers V or 3 , and g\, g2,.. .gn+i are propositional

formula. I

F A C T 4.3. Ifgn+i holds in any state, so do the formula Qy [fify U Qy+i [ffy+i U • • •' Q n [f f n U
g n + i] - "]] / o r a " 1 < J < n - Similarlyf if Q x [f f t U Q T + i [g » + i U • • • Q n [? n U g n + i] - - -]]

ZioWs m any state so do the formula Qy[gy U Qy+i[<7y+i U • • • Q n [? n U ? n + i] ' • •]] for a^
1 < j < i. Conversely, if Qi[? i U . Q 2 [3 2 U • • • Q n [f f n U ffn+i]""]] holds in some state
then for some 1 < j < n, gj and Qy[gy U Qy+i[gy+i U • • • Q n [? n U flfn+i]---]] hold in
that state or g n + i holds in that state. I •

L E M M A 4.4. Let 7 be a CTL" formula in L'. Then

M, Si\=7 => M',Hi (= J , where s{ £ dom(Hi).

24

Proof. We prove this by induction over a labelled computation tree, rooted at S{ and
with branches corresponding to transitions in At. For the purpose of this proof we use
an initial portion of the tree with the root at Si, with branches corresponding to the
transitions in block Hi and leaves corresponding to the dominating states of the blocks.
Since 7 is in CTL"", it is either of the form g or Qi[<h U Q2[<72 U • • • Q n [f f n U g n +i] - * •]],
where g's are propositional formulae. At,s t- f= 7, by assumption. We now label the
tree as follows: if 7 = g, then we label st- with g. On the other hand, if 7 = Qi[ffi U
Q2[l72 U • • • Q n [^ n U <7n+i]• • *]]> then depending on whether Q i is V (3), for all (some)
computation paths starting from s2-, there exists an initial prefix of the path, such that
Q2[<72 U Qs[g3 U • • • Q n [g n U Sn + i j ' • *]] holds at the last state of the prefix and g\ at all
other states along the prefix. We label the states corresponding to the prefix with g\ and
continue the similar labelling procedure for all the last states of the prefix. Without loss
generality we assume that M, Si (= g\.

This process stops when either some non-leaf is found to satisfy gn+t or some leaf
is reached and the leaf satisfies Qy[<7y U Qy+i[gy+i U • • • Q n [< 7 n U grn+i]---]] for some
1 < j < n. Let j be called the characteristic index of tha t state with respect to the formula
Q l [f f l U Q 2 [f f 2 U - . . Q n [s n U f f n + 1] . . .]] /

Basis Step: Either the formula 7 is of the form g or 7 is of the form Qi [gi U Q2[<72 U *
' • • Q n f f f n U gf n + i] - • •]] and some non-leaf state of the initial portion of the computation
tree satisfies g n-fi-

In the first case, since M,Si (= g and g is a propositional formula, it is easy to show
tha t At',11 i | = g. In the second case, by Fact 4 . 1 . At, s2- (= gn+i, and as in the first case,
M',Hi |=ffn+i . By Fact 4 . 3 . M',Hi \= Q x ^ U Q 2 [g 2 U ^ Q n [(/ n U g n +i]---]] . Hence

Induction Step: Formula 7 is of the form Qi[ffi U Q 2 [? 2 U • • • Q n [l 7 n U g n +i]* • •]] and
g n + i does not hold in any non-leaf state. Let k be the maximum over the characteristic
indices of the leaves. Then there are two cases to consider:

Case A: Q i , Q 2 , . . . Qfc-i are all V quantifiers.

In this case all the leaves must satisfy Qy[gfy U Qy+i[gy+i U • • • Q n [{ 7 n U ffn+i]'" •]]
for some 1 < j" < A:. By induction on computation tree, we have for the corresponding
blocks H, M',H\= Qy[ffy U Q y + i f o + i U . . . Q n [f f n U gn+1y . .]]. By Fact 4 . 3 . M',E\=
Qi[ffi U Q 2 [f f 2 U • • • Q n [? n U gn+i]' -']]• But in the restricted structure M' , each of
these H is a successor of Hi. (By Lemma 4.1.(i)). Hence M',Hi \= Qi[<7i U Q 2 [f f 2 U
• • • Q n [? n U ffn+i]. • •]]. Hence M',Hi {= 7.

Case B: Q i , Q 2 , . - . Q a : - i are not all V quantifiers. Assume Q t l , Q i 2 , . . . Q i p , (1 <

*i ^ *2 < •' • < ip < k — 1) are 3 quantifiers.

25

We consider stages of labelling of the initial portion of the computation tree. By-
assumption Q i , . . . Q i 1 ~ i are all V quantifiers. In the first stage consider the labellings
associated with Q t , . . . Q u _ i . Now all the last states of the prefixes of the all the
computation paths (starting from S{) tha t are labelled in this stage, must satisfy Q t l [g^ U
Q t l + i[gr t l+i U • • • Q N [<7N U FLFN+i]* • •]]• At this point we stop if there is a state among these
tha t satisfies gix and Q t l [gix U Q t-1+i[gf t-1 + i U • • • Q n [g n U g n +i] - • •]]. If not, we consider
the next stage of labellings associated with Q 2 l + i , . . . Q l 2 _ i . Continuing in this fashion,
we may encounter one of the two situations: (i) Either we have found a state tha t satisfies
g{. and Q ^ ^ . U Q^.+i [jfy + i u

 • • • Q N [» N U ffn+i]"-]] for some ij 6 { i i , . . . , i P } I (") ° R

all the leaves must satisfy Qy [<7y U Qy+i [ffy+i U • • • Q N[FFN U ffn+i]- * •]] f ° r some 1 < j < k.
The second situation is handled in a manner similar to case A. Hence we consider the first
situation only.

Let 5 be the non-leaf state satisfying gij and Q0ij[gij U Q ^ + i [T7T\,- + i U • • • Q N [F F N U
S N + I] ' " ' •]]• Then there is a computation path from the root passing through the non-
leaf s and a leaf s m , where s m G dom(JT m) and s m satisfies Q m [g m U Q M + i [< 7 M + i U
* ' ' Q N [? N U JN+ i] * ' •]]> (*y < m < fc). Since s is a non-leaf state and g t j. is a propositional
formula, M7S{ \= g{. (Fact 4.1.) and M',Hi | = g^.

But M,sm \= Q M [? M U Q m + i [F F M + i U • • • Q N [F F N U grn+1]•••]]. Hence by Fact
4.3. M , s m | = Qi^g^. U Q ^ + x ^ + x U • • •QN[FLF N U T? n+i]---]], and by the induction
on the computation tree M,Hm \=_Qij[9ij U Q«V+i[I7»i+i. u

 / • - Q N [F F N U FFN+i]"-]]
But in the restricted structure M', Hm is a successor of Hi (Lemma 4.1.(i)) and hence
M',H{ (= Q ^ . U Q l V + i [f f t - i + i U - . .QNTFFN U FFN+i]---]]. By Fact 4.3. | =
QILFLFI U Q 2 [f f 2 U . . . Q N [F F N U < 7 N + i] H] - Hence | = f. •

THEOREM 4.3. Let A and A' 6e t/ie automata associated with the models M and M',
respectively. Then the models M and M' are input-output equivalent in the sense that for
a sequence of input signals, x,

N^CpN*, and

where NA and i V A ' are the output functions of the automata A and A', respectively.

Proof. Let x be 0 " i < 7 2 - y^fc- Then

• =M?ai£.<p-lMA...M?k

26

Similarly,

But since pip'1 D Is* we have

=> Is^N? C <pN*

27

