
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS: 
The copyright law of the United States (title 17, U.S. Code) governs the making 
of photocopies or other reproductions of copyrighted material. Any copying of this 
document without permission of its author may be prohibited by law. 



A R E P R E S E N T A T I O N O F 
C O M P L E T E L Y D I S T R I B U T I V E A L G E B R A I C L A T T I C E S . 

Glynn Winskel 
Computer Science Department 

Carnegie-Mellon University 
Pittsburgh, Pa. 

October 1983 

The research reported in this paper was supported in part by funds from the Computer Science 
Department of Carnegie-Mellon University, and by the Defense Advanced Research Projects Agency (DOD), 
ARPA Order No. 3597, monitored by the Air Force Avionics Laboratory under Contract F33615-81-K-
1539. The views and conclusions contained in it are those of the author and should not be interpreted as 
representing the official policies, either expressed or implied, of the Defense Advanced Research Projects 
Agency or the US Government. 



A R E P R E S E N T A T I O N O F C O M P L E T E L Y D I S T R I B U T I V E A L G E B R A I C L A T T I C E S . 

by 
Glynn Winskel 

Depar tment of C o m p u t e r Science 
Carnegie-Mellon University 

P i t t sburgh , Pennsylvania 15213 

It is easily seen tha t the left-closed ( = d o w n w a r d s - c l o s e d ) subsets of a part ia l order 
form a completely distr ibutive a lgebraic latt ice when ordered by inclusion. Here a converse 
is proved; any completely distr ibutive a lgebraic lattice is i somorphic to such a set of le f t-
closed subsets of a part ia l order. T h e part ia l order can be recovered from the latt ice as 
the order of the latt ice restr icted to its complete pr imes . 

1 B a s i c D e f i n i t i o n s . 

T h e following definitions are well-known, see e.g. [Gra, C L , J ] . 

For a par t ia l order L = (L , C ) , the covering relation -< is defined by 

2 ^ y ^ x C y & i ^ y & (Vz. xC.zC.y=>x = z or z = y) 

for x,y G L. 

Recall a directed set of a par t ia l order (L, • ) is a non-null subset S C L such tha t 
Vs, t e S3u eS.sQu&tQu. 

A complete lattice is a par t ia l order L = (L, • ) which has jo ins ( = s u p r e m a = l e a s t 
upper bounds ) U X and meets ( = i n f i m a = g r e a t e s t lower bounds) n X ° f a rb i t rary subsets 
X of L. We write x U y for U { x > V } > and xHy for Yl{x>V}• 

A n isolated (= £nite=compact) element of a complete lattice L = (L , C ) is an 
element x E L such t h a t for any directed subset S C L when x C [ J 5 there is s G S such 
t h a t x C s . (In a computa t iona l f ramework the isolated elements are t h a t information 
which a computa t ion can real i se—use or produce—in finite t ime—see [S].) 

When there are enough isolated elements to form a bas i s a complete latt ice is sa id 
to be algebraic i.e. an algebraic lattice is a complete latt ice L = (L, • ) for which x = 
[ J { e C x | e is isolated } for all x G L. 

L e t L = (L , C ) be a complete lat t ice . We are interested in these distr ibutivity laws: 

n u u n *,-,/(.) ( i ) 
i€lj<EJ(i) f€Ki€l 
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w h e r e K is t h e s e t of f u n c t i o n s / : J —> \JieI J{i) s u c h t h a t f(i) £ J(i)-} w h e n L s a t i s f i e s 

(1 ) i t is s a i d t o b e completely distributive. 

( • x ) n j / = U { x n 2 / | i e x } (2 ) 

w h e r e X C L a n d y € L ; w h e n L s a t i s f i e s (2 ) i t is c a l l e d a complete Heyting algebra. 

(UX)uy = I\{xUy\xeX} (3 ) 

w h e r e I C L a n d y £ L , 

x U (y n * ) = ( x U y ) n ( x U z) (4 ) 

w h e r e x>y,z £ L . T h i s finite d i s t r i b u t i v e l a w is e q u i v a l e n t t o i t s d u a l in a c o m p l e t e 

l a t t i c e — s e e [ G r a j . N o t e t h a t s i m p l e a r g u m e n t s b y i n d u c t i o n s h o w t h a t (4) i m p l i e s finite 

v e r s i o n s of ( 1 ) — i n w h i c h t h e i n d e x i n g s e t s a r e r e s t r i c t e d t o b e finite—and (2) a n d ( 3 ) — i n 

w h i c h t h e s e t X is r e s t r i c t e d t o b e finite. 

C l e a r l y if a c o m p l e t e l a t t i c e is c o m p l e t e l y d i s t r i b u t i v e , i.e. s a t i s f i e s ( 1 ) , t h e n it a l s o 

s a t i s f i e s ( 2 ) , (3) a n d ( 4 ) . 

T h e f o l l o w i n g d e f i n i t i o n s a r e p e r h a p s l e s s s t a n d a r d . G i v e n a p a r t i a l o r d e r P , w e s h a l l 

o r d e r t h e s e t of l e f t - c l o s e d s u b s e t s of P b y i n c l u s i o n . T h e p o i n t s o f P c a n b e r e c o v e r e d 

a s t h e c o m p l e t e p r i m e s in t h i s o r d e r of l e f t - c l o s e d s u b s e t s . ( C o m p u t a t i o n a l l y , s t r u c t u r e s 

l ike P , a n d a c c o m p a n y i n g s t r u c t u r e s of l e f t - c l o s e d s u b s e t s , c a n b e a s s o c i a t e d w i t h s e t s o f 

e v e n t s o r d e r e d b y a c a u s a l d e p e n d e n c y r e l a t i o n — s e e [ N P W , W , W l , F T ] . ) 

2 D e f i n i t i o n . L e t P = ( P , < ) b e a p a r t i a l o r d e r . A s u b s e t X o f P is left-closed iff 

P'<PEX =>P' ex 

for p , p ; £ P. 

L e t X b e a s u b s e t of P. D e f i n e t h e left-closure o f X t o b e 

{x]=def{p,eP\^pex.p'<P}. 

B y c o n v e n t i o n w e w r i t e [p] fo r [ { p } ] = {pf E'P \ p ; < p } w h e n p 6 P . 

3 D e f i n i t i o n . L e t L = (L, C ) b e a c o m p l e t e l a t t i c e . A complete prime of L is a n 

e l e m e n t p € L s u c h t h a t 

p C U - ^ = > 3 x 6 X . p C x 

T h e l a t t i c e L is prime algebraic iff x = U { p Q x \ p is a complete prime}, fo r a l l x G L. 

T h e d e f i n i t i o n of p r i m e a l g e b r a i c w a s i n t r o d u c e d in [ N P W ] . H o w e v e r , i t t u r n s o u t t h a t 

t h e c o n c e p t w a s a l r e a d y f a m i l i a r in a n o t h e r g u i s e ; for c o m p l e t e l a t t i c e s i t is e q u i v a l e n t t o 

a l g e b r a i c i t y w i t h c o m p l e t e d i s t r i b u t i v i t y . F i r s t l y w e r e c a l l a t h e o r e m f r o m [ N P W ] . A 
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prime algebraic complete latt ice can always be represented, to within i somorphism, as the 
latt ice , ordered by inclusion, of the left-closed subset s of its complete pr imes . 

4 T H E O R E M . 

(i) Let P = ( P , < ) be a partial order. Its left-closed subsets ordered by inclusion, 
( £ ( P ) , C ) , form a prime algebraic complete lattice; the complete primes of ( J C ( P ) , C ) 
have the form [p] for p £ P. The partial order P is'isomorphic to ( { [p] | p G P } , C ) ; the 
restriction of the ordering on left-closed subsets to the complete primes, with isomorphism 
given by the map [p], for p G P . 

(ii) Let L = (L , C ) be a prime algebraic complete lattice. Let P = ( P , < ) be the 
partial order consisting of the complete primes of L ordered by the restriction < = C \P 
of C to P . Then 9 : ( L ( P ) , C ) = L where 6{X) = U X for X G L{P), with inverse <f> 
given by <£(x) = { p G P | p E x } f°r £ G L . 

Proof. 

(i) Le t P = ( P , < ) be a part ia l order. It is easy to see t h a t L ( P ) is a complete lattice 
in which joins are unions and meets are intersections. 

Suppose x is a complete pr ime of ( L ( P ) , C ) . Then obviously x = ( J { [p] | p G x } 
which implies x = [p] for some p G P . To see the converse, consider an element of the 
form [p], for p G P . If [p] C for X C L ( P ) then p G X for some x G X . B u t x is 
left-closed so [p] C x. T h u s [p] is a complete p r ime . 

It is easy to see t h a t the m a p p H-> [p], for p G P , is an order i somorphism between P 
and ( { [p ] I p G P } , C ) . 

(ii) Le t L = (L , C ) be a pr ime algebraic complete latt ice . Le t P = ( P , < ) be the 
complete pr imes of L ordered by the restrict ion of C . 

Obviously the m a p s 9 and <f> are monotonic i.e. order preserving. We show they are 
mutua l inverses and so give the required i somorphism. 

F ir s t ly we show 9 o <f> = 1. T h u s we require x = [ J { p G P \ p Q x } for all x G L. B u t 
this is j u s t the condition of pr ime algebraic i ty . 

Now we show <f> o 9 = 1. L e t X G L{P, < ) . We require X = <f> o 0 ( X ) i .e. X = { p G 
^ I P E } • Clear ly X C { p G P | p C l U X } . Conversely if p C [ J X , where p is a 
complete pr ime, then certainly p C q for some q EX. However X is left-closed so p G X , 
showing the converse inclusion. 

T h u s we have establ ished the required i somorphism. | 
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5 C o r o l l a r y . A prime algebraic complete lattice is completely distributive (and so satisfies 
the distributive laws (2), (3) and (4), as well as (1)). 

Proof. T h e distr ibutive laws clearly hold for left-closed subset s ordered by inclusion and 
these represent all the pr ime a lgebraic complete latt ices to within i somorphism. | 

T h e next s tep is to show the pr ime a lgebraic complete latt ices are the completely 
distr ibutive a lgebraic latt ices . A key idea is tha t a lgebraic i ty implies a form of discreteness ; 
any dist inct comparab le pair of elements of an a lgebra ic latt ice are s epara ted by a covering 
interval. T h e proof uses Zorn's l e m m a . 

6 L e m m a . Let L = (L , C ) be ah algebraic lattice. Then 

Vx, j / £ L . x C t / & X 7 ^ t / = > 3z, z' £ L . x C z -< z1 C Y. 

Proof. Suppose x, y are dist inct elements of L such tha t x C y. Because L is a lgebraic 
there is an isolated element b such tha t b ^£ x & b \Z y. B y Zorn's l e m m a there is a 
m a x i m a l chain C of elements above x and strictly below x U b. A s 6 is i solated, from the 
construct ion of C we m u s t have x C L J C ^ x U f c C t / . . I 

In proving the next theorem we use such coverings to construct complete pr imes of 
a latt ice . T h e distr ibutive laws (2) and (3)—implied of course by (1 )—make it possible to 
find C - minimum coverings which correspond to complete pr imes . Algebra ic i ty ensures 
there are enough covering intervals , a n d so complete pr imes , for the latt ice to be pr ime 
a lgebraic . 

7 T h e o r e m . L e t L be a complete lattice. Then L is prime algebraic iff it is algebraic and 
satisfies the distributive laws (2) and (3). 

Proof. 

11 only if': 

Let L be a pr ime a lgebraic complete lat t ice . Le t P be the ordering of L restr icted to 
its complete pr imes . B y the previous theorem we know L = £ ( P ) so it is sufficient to 
prove propert ies for L ( P ) . We have a l ready seen the dis tr ibut ivi ty laws follow from the 
corresponding laws for sets . 

T h e isolated elements L ( P ) are easily shown to be precisely the left-closures of finite 

subset s of P. Suppose x £ L ( P ) is i solated. Obvious ly x = \J{[X] \ X C&n x}. B u t the 

set {[X] | X Q^n x } is clearly directed so, because x is i solated, x = [ X ] for some finite 

set X C P. Conversely, it is clear t h a t an element of the form [ X ] , for a finite X C P , is 
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necessari ly isolated; if [X ] C ( J S for a directed subset S of L ( P ) then X , and so [ X ] , is 
included in the union of a finite subset of 5 , and so in an element of S. Clearly now every 
element of H ( P ) is the least upper bound of the i solated elements below it, m a k i n g j L ( P ) 
a lgebra ic . 

T h u s L is an algebraic latt ice sat isfying the dis tr ibut ive laws (1), (2), (3) and (4). 

" i f ' : 

L e t L = (L , C ) be an a lgebraic latt ice sat is fying the dis tr ibut ive laws (2) a n d (3) . 

L e t x < x ' in L . Define pr[x , xf] = Yi{ 2/ G £ | x ' < x U y } . We show p = pr[x, xf] is a 
complete pr ime of L . Note first t h a t x[Jp = T\{xUy \ x' C x U y } = x ' by distr ibutive 
law (3). Now suppose p C | J Z f ° r some 
by the distr ibutive law (2). Write Z' = { z V\ p [z G Z } , so p = j j Z'. T h e n x' = x U p = 
* U ( U Z') = U { * U z1 | z' E Zf}. Clear ly x C x U z1 C x ; for all A s x ^ x 7 

we m u s t have i , = i | J ^ for some zf £ Zf; otherwise x = x U z9 for all z ' E giving 
the contradict ion x = [_[{ x U z1 \ z1 G } = x'. B u t then p \Z z* from the definition of 
p . However 2 ; = £ n P for some z E Z. Therefore p • z for some z £ Z. T h u s p is a 
complete pr ime of L . 

T h a t L is pr ime a lgebraic follows provided for z G L9 we have z = U { P r [ : c > x'] | x 
x ; C z } . L e t z E L. Write w = U { P r [ x > x / ] | x x ; C z } . Clear ly it; C z. Suppose 
w z. Then , by the l emma, w C x -< xf C z for some x, x ; G I/. Write p = pr[x , x ' ] . 
T h e n p C. w m a k i n g x U p = a contradict ion a s x U P = a;'. T h u s each element of L is 
the least upper bound of the complete pr imes below it, as required. 

T h u s we have establ i shed the required equivalence between prime algebraic complete 
latt ices and a lgebraic latt ices sat is fying (2) a n d (3) . | 

8 C o r o l l a r y . Let L be a complete lattice. The following are equivalent: 
(i) L is isomorphic to ( J C ( P ) , C ) for some partial order P ; 

(ii) L is prime algebraic, 
(Hi) L is algebraic and completely distributive, 
(iv) L is algebraic and satisfies the distributive laws (2) and (3). 

Proof. Combining previous results . | 

In the special case when the a lgebraic latt ice satisfies a finiteness restriction we can 
obta in a similar representat ion of a lgebraic latt ices mentioning j u s t the finite distr ibutive 
law (4) . T h e finiteness restriction says every isolated element dominates only a finite 
number of e lements . T h e corresponding ax iom has been called ax iom F , somet imes ax iom 
I, in [ K P , B C , W ] . (This restriction arises natura l ly for computa t ions . When a par t ia l 
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order models the events and causa l dependency relation of a computa t ion it is generally 
true t h a t an event is causal ly dependent on only a finite set of events. T h e assoc ia ted 
left-closed subset s then satisfy the finiteness restriction.) 

9 D e f i n i t i o n . A n a lgebraic latt ice L = (L, C ) is sa id to sat isfy axiom F when {y £ L \ 
y • x } is finite for all i solated elements x £ L. 

1 0 T h e o r e m . Let L be an an algebraic lattice which satiGes axiom F. Then L is prime 
algebraic iff L satisfies the finite distributive law (4). 

Proof. T h e "only if" p a r t follows from theorem 7. T h e converse, "if" pa r t , follows from 
theorem 7 provided we can show tha t , in the presence of ax iom F , the finite distr ibutive 
law (4) implies the infinite d is tr ibut ive laws (2) a n d (3) . 

Le t L be an an a lgebraic latt ice which satifies ax iom F and the finite distr ibutive law 

(4) . 

We show L satisfies the infinite dis tr ibut ive law (2) . Le t X C L and y £ L. Clear ly 

| _ | {x I"! y | x £ X } C ( L J X ) n y. To show the converse inequality, suppose b is i solated 

and b C ( L J X ) I~l y . T h e n as 6 C | J X and 6 is i solated, for some finite X' C ^ n X we 

have 6 C L J X ' . T h u s . 

6 C ( U X ) n y = * 6 C ( U X ' ) n y 

=• b Q U { x N y I x e X' } (by the finite dis tr ibut ive law (4)) 

= 4 6 C U { z n y \x6X}. 

Therefore , because L is a lgebra ic , we have the converse inequality. Combining the in­
equalit ies we obta in (2), | J { xr\y\x£X} = (\J X) [~| V-

Now we show L satisfies the infinite dis tr ibut ive law (3) . L e t X C L and y £ L. 
Clear ly (Yi X) U y • Yl{ x\Jy \ x £ X }. We require the converse inequality. Suppose b is 
i solated a n d b C Yl{xUy \ x £ X } . T h e n & = ( N { * U y I * 6 X } ) N 6 = F I { {x Uy) FL 6 | 
x £ X } = Yl{(xr\b)\j{ynb) \ x £ X }. Now 6 dominates only a finite number of elements. 

T h u s there is some finite subset X' C£n X for which {xF\b \ x e X'} = {xf]b \ x E X}. 
So in addi t ion, b = U{{x H b) U {y H b) \ x EX} = F L { (« n b) U (y n &) | x £ X ' } . Now 
b y the finite dis tr ibut ive law (4), b = {U{ x Hb \ x E X'})U{y F\b) = ([{{ x H b | x 6 
X } ) U (Y n 6) = ( I ! X n 6) U (y n 6) C ( I I X ) U y. B y a lgebraic i ty we obta in F K a: U y | 
z £ X } C ( F L X ) U y- Combining the inequalities we obta in (3) . | 
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