NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Weighted Voting for Directories:
A Comprehensive Study

Joshua J. Bloch, Dean 8. Danicls and Alfred 7. Spector
April 15, 1984

Abstract

Weighted voting is used as the basis for a replication technique for directories. This technique affords
arbitrarily high data availability as well as high concurrency. Efficicnt algorithms arc presented for all of the
standard dircctory operations. A structural property of the replicated directory that permits the construction
of an efficient algorithm for delctions is proven. Simulation resuits arc presented and the algorithm is
modeled and analyzed. The analysis agrees well with the simulation, and the space and time performance are
shown to be good for all possible configurations of the system.

Technical Report CMU-CS-84-114

Copyright © 1984 Joshua J. Bloch, Dean S. Daniels and Alfred Z. Spector

This work was sponsored in part by the Defense Advanced Rescarch Projects Agency, ARPA Order No. 3597,
monitored by the Air Force Avionics Laburamry under Contract F33615-81-K-1539 and in part by the NSF
under Contract MCS-8308805

The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implicd, of any of the sponsoring agencics
or the US government.

Table of Contents

1 Introduction
2 Related Work and Modivation
3 Details of the Algorithm
3.1 Directory Representatives
3.2 Dircctory Suites
3.3 An Efficient Algorithm for the Real Predecessor Operation
3.4 Enhancements to the Real Predecessor Algorithm
3.5 Correctness Arguments
3.6 Morc on Synchronization and Recovery
4 Performance Characterization
4.1 Simutation Results
4.2 Analytic Model
4.2.1 Construction of the Model
4.2.2 Mcthod of Analysis
4.2.3 Formulation of Balance Equations
4.2.4 Solution of Balance [iquations
4.2.5 Resuits
4.2.6 Discussion of the model
4.3 Discussion of Performance Characterization
5 Discussion
|. Detailed Formulation of Balance Equations

List of Figures

Figure 1:
Figure 2;
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7
Figure §:
Figure 9:

Figure 10:
Figure 1:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17;
Figurc 18:
Figure 19;
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:

A 3-2-2 Dircctory Suite - Initial Configuration

Dircctory Suite After Inserting "b"

Dircctory Suite After Delcting "b”

Dircctory Suite After Inserting "b"

Directory Suite After Deleting "b"

Directory Representative Operations

Compatibility of Directory Representative 1.ock Classes

Lookup Operation

Insert Opcration
Directory Suite from Figure 5 After Inserting “bb"
Directory Suite from Figure 10 After Deleting "a”
Delete Operation
Suite for illustration of region of currency and related terminology
Effect of the insert operation on regions of currency, within write quorum
Effect of the delete operation on regions of currency, within write quorum
Real Predecessor Operation
Size Ratios for Various Directory Suites
Delete List |engths for Various Directory Suites
Detailed Simulation Results for three 3-2-2 Directory Suites
Expected Composition Ratios in a 10 - (11 = W) - W Suite
Expected Delete List Fengths ina 10 - (11— W) - W Suite
Expected Composition Ratios in a (2i—1) - i - i Suite
Expected Delete List Lengths in a (2i—=1) - i - i Suite
A 4-2-3 Dircctory Suite Partitioned for Locality

1 Introduction

The goals of object replication on distributed computing systems are increased parallelism, reduced
communications costs, and increased resilience in the presence of failures. I particular, replication can
permit increased data availabiliry - continued access o objects despite failures of one or more storage nodes.
Unfortunately, it is difficult to achieve high performance and relinbility while ensuring that the semantics of

replicated data objects are identical to those of their non-replicated counterparts.

[n this paper. we describe and analyze a scheme for replicating directories that permits concurrent
operations and arbitrarily high data availability. ‘Ihe semantics of the replicated directory are typical of
directories stored on a single node: We define a direciory as an abstract data object that maps &eys to values.
Keys are chosen from a large ordered set of constants called the key space. Dircctories are accessed and

modified with the following operations:

o Insert(K:Key, V:Value) - Associales the value V with the key K. Once inserted, the key is said to
be in the directory. "T'his operation is permitted only when K is not alrcady in the dircctory.

o Update(K:Key, V:Value) - Associates the (new) value V with the key K. This operation is
permitted only when K is already in the dircctory.

¢ Delete(K:Key) - Removes K from the dircetory. This operation is permitted onty when K is in the
directory. After this operation is performed, K will no longer be in the directory.

e Lookup(K:Key) Returns(Boolean, Value) - Returns TRUFE. and the value associated with K, if
K is in the directory. Returns FALSE and an undefined value if K is not in the directory.

Attempting to perform an operation that is not permitted provokes an error response but does not affect the
contents of the directory. Minor modifications of our scheme may be used to implement scts, multisets or

sitnitar abstractions.

The replication algorithm described here is an extension of one initiaily presented by Danicls and
Spector [Danicls 83]. It is based on Gifford’s weighted voting algorithm [Gifford 79, Gifford 81}, and has
similar performance and reliability advantages. However, unlike Gifford's algorithm, this algorithm
cfficicntly associates a separate version number with cach possible key at every replica. This permits
concurrent operations on different entrics and solves certain problems in the implementation of the deletion
operation. Unlike most replication algorithms, which are concerncd with simple objects having only read and
write opcrations, this algorithm uses the semantic propertics of dircctories, and therchy gains incrcased

performance,

This work on replication is part of the TABS (Transaction-based Systems) Project, which is studying

distributed systems that usc a transaction facility to support operations on shared abstract data types [Schwarz

file://V:/alue

83a, Spector 83a). The dircctory described in this paper is an example of a scrializable, distributed abstract
data type that is constructed from a collection of more primitive, non-serializable, non-distributed types, cach
of which use synchronization and recovery primitives supported Dy such a transaction facility. Additional
components of our rescarch address synchronization, recovery, and communication issues. Groups at
Comell, MIT, and Georgia Institute of ‘Technology are also investigating the wider use of
transactions [Allchin 83a, Allchin 83b, Birman 83, Liskov 82, Weihl 83a, Weihl 83b].

In the following sections, we survey related replication work and provide motivation for our dircctory
replication algorithm, We describe the algorithm in detail and present efficient algorithms for cach directory
operation. A basic structural property of the replicated directory, which permits the construction of an
cfficient algorithm for the Delete operation, is proven. We show that the algorithm’s concurrency
performance can be improved by relaxing the synchronization requirements for the dircctory replicas.
Following this presentation of the algorithm, we present performance data obtained by simulation and
develop a mathematical model of the system being simulated. We analyze the maodel and compare the results
of the simulation and the analysis. ‘These results demonstrate that the algorithm’s space and time
requirements are good in all possible possible configurations of the system. Finally, we discuss the advantages

and usces of the algorithm,

2 Related Work and Motivation

There are non-distributed and distributed approaches to data replication. In the non-distributed
approaches, a single controlling node utilizes dual-copy, or mirrored, storage. Data is written sequentially to
both copies, but read from only onc. Should a controlling node crash, another node gains control of the
storage. Mirroring is commonly used on commercially available systems; for examples, sce descriptions of the
ACP or Tandem T16 systems [IBM Corporation 75, Bartlett 81].

We are more interested in replication techniques that usc a distributed collection of cooperating nodes to
store replicas of the data. Many of these techniques provide higher data reliability and availability than
mirroring, though they generally have higher overhead and complexity, In this section we bricfly review the
fundamental distributed replication algorithms and develop a diétributcd replication strategy for directorics
that is based on weighted voting. (Scc lLindsay for a more complete survey of some of these

approaches [Lindsay 79].)

One fundamental distributed replication strategy is unanimous update: any update opcration must be done
on all replicas, but reads may be directed to any replica. This replication strategy guarantees data consistency

if the systems storing cach replica guarantee data consistency locally. Unfortunately, the availability for

updates of any object is poor when large numbers of replicas are used. Update availability can be increased
by using the communication system to buffer updates to replicas that are not available. ‘The SDD-1

distributed databasc system uses this approach [Rothnie 77).

In replication strategics based on keeping primary and sccondary copics of data, the primary copy reccives
all updates and then relays the updates w secondary copies [Alsberg 76). An inquiry may be sent to a
secondary copy, but the result may not reflect the most current updates. Because responscs to inquirics might
not reflect recent updates, it is difficult for a primary/secondary copy replication strategy to duplicate the
semantics of a non-replicated object. “Techniques for alleviating this problemn have been developed. For
example, cach file open operation in the locus distributed file system ensures the currency of data by
consulting a known synchronization site {Popek 81]. Locus maintains availability after synchronization site

failure by nominating a new synchronization site,

Gifford designed a strategy for replication of files, called weighted voting [Gifford 79, Gifford 81], In this
strategy, a file is stored as collection of replicas, called representatives, cach of which is assigned a certain
number of votes. A representative consists of a copy of the file and a version number. The cntire collcction
of representatives is called a file suite. Write operations modify cach representative in a group called a write
quorum and associate a new version number with all of these representatives. ‘The new version number is
higher than any version number previously associated with this data. Read operations read from each
representative in a read quorum and return the data from the representative with the highest version number.
In the version of weighted voting described in this paper, write operations cstablish a higher version number

by incrementing the highest version number encountered in a read quorum,

A write quorum consists of any sct of representatives whose votes total at least W and a read quorum
consists of any set of representatives whose votes total at least R. The constants R and W are chosen so that
their sum is greater than the total number of votes assigned to all representatives. Thus, every read quorum
has a non-null intersection with every write quorum and cach inquiry is guaranteed to access at least one
current copy of the data. Current copics will always have a higher version number than non-current copies so

the read operation will always return current data.

Weighted voting has several attributes that make it particularly appcaling as the basis for the design of a
replicated directory. First, the sizes of the read and write quorums may be varicd to adjust the relative cost
and availability of reads and writes. For example, a unanimous update strategy may be specified if the data is
read much more frequently than it is written. Second, a representative with zero votes may be used to store a
locally cached copy that is usually current. This situation naturally occurs if a single local site performs most

updates and always updates the cached copy. An cxample use of such a cache is in a distributed file system

where there is strong locality of file access. Last, the algorithm is simplified because consistency and recovery
are primarily the responsibility of an underlying transaction facility that is assumed to exist on cach
representative. The use of a common underlying transaction facility is advantageous because the facility can

simplify distributed applications that usc other types of objects in addition to files.

While weighted voting is an appealing approach to replication, the basic algorithm cannot be dircetly
applicd to directories without undesirable concurrency limitations, Lven though the semantics of directorics
permit concurrent operations on different keys, only a single transaction at a time could maodify the directory
if it were stored as a file suite. This is because cach representative has a single version number, which causes

the serialization of operations that modify the directory.

It might scem that these concurrency limitations could be overcome if cach emfry in a dircctory
represenlative were assigned a separate version number, An entry is the physical data associated with a key,
and consists of the key and an associated value, However, if such an approach were used, some
representatives might not have a version number for a key that was stored on other representatives, Because
of this fact, it is not always possible to determine from an arbitracy read quorum whether a particular key is in

the dircctory. ‘This problem is itlustrated in the example that follows.

Constder a 3-representative dircctory suite having a read quorum of 2 and a write quorum of 23 we call this
a 3-2-2 directory suite.! Initially, each representative in the suite contains entries for keys "a™ and "¢, and
cach cntry has version number 1 as shown in Figure 12 Subsequently an entry for "b” is inscrted into
representatives A and B with version number 1 (Figure 2). If a request to look up the key "b™ Is sent to
representatives A and C at (his point, representative A will respond “present with version number 1,” and
representative C will respond "not present.” If "b™ is then removed from the directory by deleting its entry
from representatives B and C (Figure 3), requests to look up "b" on representatives A and C will still elicit the
responses "present with version number 1, and "not present.” Thus, if a directory representative fails to
associate a version number with keys for which it has no entry, the responses from a read quorum may not be

sufficicnt to determine if a given key is in the directory.

The ambiguity demonstrated above is associated with deletions and will not occur if deletions are not
permitted. Alternatively, delctions could be implemented by marking entries to be deleted and then

performing a "garbage collection” operation periodically. However, that operation is cxpensive and would

1'l'he nolation N-R-W will refer to a suite having N representatives, a read quorum size of R and a write quorum size of W. For
simplicity, all cxampics in this paper assume that each representative is assigned one vote. All results peneralize to directory suiles with
arbitrary distribulions of votes,

2The value field is omitted from all figures for clarity.

Versicn Number: 1
Key: "a"

Version Number: 1
Key: "a™

Version Number: 1
Key: "a"

Version Number: 1

Key: "¢"

Version Number: 1

Key: "¢

Version Number; 1
Key: "¢"

Representative A

Representative B

Representative C

Figure 1: A 3-2-2 Dircctory Suite - Initial Configuration

Version Number: 1
Keay: "a"

Version Number: 1
Key: "a"

Version Number: 1
Key: "a"

Version Number: 1
Key: "b"

Version Number: 1
Key: "h"”

Version Number: t
Key: "¢"

Versien Number: 1
Key: "c"

Version Number: 1
Key: "¢"

Representative A

Figure 2:

Representative B

Representative C

Directory Suite After [nserting b

Version Number; 1
Key. "a"

Versian Number: 1
Key: "a"

Version Number: 1
Key: uau

Version Number: 1
Key: "b"

Version Number: 1
Key: "c"”

Version Number: 1
Key: "¢"

Version Number: 1
Key: "¢”

Representative A

Representative B

Representative C

Figure 3: Dircctory Suite After Deleting "b"

itself be a concurrency bottleneck. A third strategy is to climinate the ambiguity by consulting additional
representatives whenever an inquiry to an initial set of representatives does not result in a read quorum of

replies all indicating “present” or “not present.” Unfortwnately, this approach can drastically reduce
availability. '

None of the solutions presented thus far satisfy our demands for concurrency and availability. What is

reaily nceded is a scheme whereby version numbers can be associated with every possible key in the key space

at cach representative. This con be accomplished by partitioning the key space into disjoint sets and
associating a version number with cach set at every representative. OF course, the same partitions nced not be

uscd at all representatives.

‘The key space could be partitioned at cach representative by placing cach key for which there is an cntry in
a separate partition, and maintaining a single additional partition for all keys that do not have entrics. In
other words, each representative keeps a version number for cach entry and an additional version number for
use with "not present” responses. bnder this scheme, deletions increment the "not present” version number,
Since the "not present” version number applies to a very large set of keys, this approach suffers from
concurrency limitations that are simitar to the limitations of the approach of having a single version number

per repiresentative,

A more promising approach is to partition the key space into ranges on the basis of the order relation on the
keys. ‘The simplest partitioning scheme is to divide the key space into a number of fixed ranges. However, it
is difficult to guarantce sufficient concurrency with such a siatic partitioning technique. tfa small humber of
ranges are used, then at most that number of transactions can modify a directory concurrently. If transactions
modify entrics in more than one range, concurrency will be further limited. Even if a large number of ranges

arc used, an uncven distribution of accesses could limit concurrency.

A more general method of partitioning is to allow the partitions at cach representative to vary over time, on
the basis of the entries currently in that representative. Such a dynamic partitioning technique is desirable for
directorics having sizes or access patterns that vary widely over time. A simple method of dynamically
partitioning the key space at a rcpresentative is to create a partition for each key that has an cntd in that
representative and a partition for cach range of keys between successive cntrics. These ranges arc called gaps.

This method forms the basis of our algorithm.

In this dynamic paititioning approach, lookup requests sent to a representative containing an entry for the
key being looked up return the version number of the entry. Lookup requests on keys for which no entry is
stored return the version number of the gap in which the key lies. Update requests increment the version
number of the entry for the key being updated, insertion requests split a gap, and deletions coalesce the gaps
and entrics in a range of keys into a single gap. For cxample, using this approach, an entry for "b" would be
inserted into representatives A and B of Figure 1 with version number 1, which is onc greater than the version

number of the gap between "a” and "c" (Figurc 4)3. Ifa request to look up "b" were sent to representatives A

3'l'he dircclory representatives in Figure 4 contain the special keys LOW and HIGH, which delimit the first and last gaps in the
representatives.

Version Number: 0 Version Number: Q Version Number: 0
Key: Low> Key: <Low> Key: <Low>

Gap Version Gap Version Gap Version

Number: 0 Number: 0 Number:
Version Number: 1 Version Number: 1 Version Number: 1
Key: "a" Key: "a" Key: "a"

A

Gap Version Gap Version i

Number:; 0 Number: 0
Version Number: 1 Version Number: 1 Gap Version
Key: "b" Key: "b" Number: 0

Gap Version Gap Version

Number: 0 Number: 0 A

¥

Version Number: 1 Version Number: 1 Version Number: 1
Key: "c" Key: "¢" Key: "¢"

Gap Version Gap Version Gap Version

Number: 0 Number: Q Number: Q
Version Number: 0 Version Number: 0 Version Number: 0
Key: <High> Key: <High> Key: <High>

Representative A Representative B Representative C

Figure 4: Directory Suite After Inserting "b™

and C at this point, representative A would respond “present with version number 1," and representative B
would respond "not present with version number 0." Using these responses, a client could determine that
there is an entry for "b" since that response has the larger version number. If"b" were subsecquently deleted
from representatives B and C, then the two gaps on cither side of "b™ on representative B would be coalesced.
On both representatives, the gap between "a” and "¢ would be assigned version number 2 (F igure 5). Now,
if a request to look up "b" is sent to any two representatives, at least one will return "not present with version
number 2.” This resolves the ambiguity that occurred in the initial example, when version numbers were

associated only with entries.

3 Details of the Algorithm

This section presents the details of the approach to directory replication sketched in the previous section.
‘The descriptions are illustrated with program text in a Pascal-like language that ailows procedures to return
multiple values and includes a remote procedure call primitive. Remote procedure calls are written as
"Send(<procedure invocation>) to{<object instance>)” and are assumed to return values in the same fashion

as a normal procedure invocation. These remote procedure calls have similar semantics to those of ARGUS

Version Numbes: 0 Version Number: 0 Version Number: 0
Key: {Low> Key: <Low> Key: {Low>
Gap Version Gap Version Gap Version
Number: 0 Number: 0 Numbes: G
Version Number: 1 Version Number: 1 Version Number: t
Key: "a" Key: "a" Key: “a"
Gap Version
Number: 0
Version Number; 1 Gap Version Gap Version
Key: "b" Number: 2 Number: 2
Gap Version
Number: 0
Version Number: 1 Version Number: 1 Version Number: 1
Key: "¢" Key: "c" Key: "¢
A Gap Version Gap Version Gap Version
l Number: 0 Number: 0 Number; 0
Version Number: Version Number: 0 Version Number: 0
Key: <High> Key: <High> Key: <High>
Representative A Representative B Representative C

Figure 5: Directory Suite After Deleting "b"”

[Liskov 82}, except that crror responses, such as timcouts, are not considered in these examples. Clarity is
emphasized over performance in the programs. Optimizations that would be used in practical

implementations are described in accompanying text.

Operations on directory representatives and directory suites are presented in the first two sections, The two
following scctions develop an cssential component of the deletion algorithm. Arguments for the correctness
of the replication algorithm are then prescnted. ‘The final section discusses ways of modifying the algorithm's

synchronization policics to provide higher concurrency.

3.1 Directory Representatives

In a replicated directory, cach directory representative is an instance of an abstract object that stores one
copy of the dircctory data. Arbitrarily complex atomic transactions may be constructed using the basic
opcrations provided by dircctory representatives. Thus, directory representatives must synchronize
concurrent operations performed by different transactions and store critical information in a fashion that
recovers from failures. Gifford’s weighted voting algorithm makes similar requirements of its file

representatives.

DirReplookup(x:kay) Returns(boolean,version,value);

{ If there is an entry for x, returns TRUE, the version number of
the entry, and 1ts value; otherwise returns FALSE and the
version number of the gap containing x.

Locks RepLookup{x,x). }

DirRepPredecassor(x:key) Returns(key, version, version);

{ Returns the key and version number of the entry with the largest
key less than x. Also returns the version number of the gap
between x and {its predecessor. There need not be an antry for x,

Locks RepLookup(y,x) where y is the key returned. }

DirRepSuccessor(x:key) Returns(key,version,version);
{ Analogous to above procedure.

Locks ReplLookup(x,y) where y 1s the key returned.}

D1rRopSuparseder(x:key.v:vers1on,y:key)
Returns(boolean,key,version,value);

{ Searches the range between x and y, starting from x. Returns TRUE,
together with the key, version number, and value of the first
entry examined between x and y (exclusive) with version
number greater than v. Returns TRUE and the entry for y if 1t
exists and no entry closer to x has version number greater
than v. Returns FALSE if there is no entry for y and no entry
between x and y with version number greater than v.

Locks RepLookup(x,z) where z 1is the key returned or y if no key
is returned.}

D1rRepInsert(x:key.v:vers1on.z:va109):) .
{ Creates an entry for key x with version number v and value z.
Updates the entry for key x if one already exists.

Locks RepModify(x,x).}

B1rRepCoaTGsce(1:key,h:key.v:version);

{ Deletes entries for any keys between (but not 1inc¢luding) 1 and h.
The resulting gap 1s assigned version number v. An error is
indicated 1f entries do not exist for keys 1 and h.

Locks RepModify(1,h). }

Figure 6: Dircctory Representative Operations

Every instance of a directory representative contains two distinguished keys, HIGH and LOW. HIGH is
greater than any key that can be inscrted into the representative, and LOW is less than any key. HIGIH and
LOW simplify the directory suite delete operation by cnsuring that all keys have a real predecessor and real
successor in the dircctory. Real predecessor and real successor have an intuitive meaning, but are defined

precisely in Section 3.2,

10

Dircctory representatives provide two operations that are analogous o typical dircctory primitives:
DirRepl.ookup and DirReplusert. Dirlkepinsert is defined w0 be useful for both the Insert and Update
operations on dircctory suites, In addition, directory represcutatives provide specialized operations that are
used 0 implement the directory suite deletion operation: DirRepPredecessor, DirRepSuccessor,

DirRepSuperseder, and DirRepCoulesce. Figure 6 gives procedure headings for cach of these operations.

DirRepPredecessor returns the key and version number of the entry in the representative that is the
immediate predecessor of the key passed as an argwinent: it also returns the version number of the gap
between the keys. DirRepSuccessor is analogous to DicRepPredecessor. Deletions are performed on a
directory representative using the DirRepCoalesce operation, which deletes any eatries appearing in a range
belween two specified entrics and assigns a single version nuimnber to the resultant gap, Thus, DirRepCoalesce

coalesces a range of keys into a single gap.

DirRepSuperseder is used in imptementing the delete operation on directory suites. ‘The operation scarches
a range starting with key x and ending with key y, and returns the entry closest to x with a version number
ercater than the one passed as a parameter. If the search reaches key y without locating an entry to return,
then the entry for y (if any) is returned. The operation locates the first entry that "supersedes™ a gap with the

specified version number.

Fach directory represcntative must synchronize the concurrent operations of different transactions. While
this might be accomplished in many ways, the discussion presented here will assume that type-specific locking
is used [Korth 83, Schwarz 83a). In type-specific locking, every operation on an abstract object acquires a lock
that is a member of the set of locks associated with that object. A lock compatib'ility rclation is used to

determine whether a lock may be acquired by a particular transaction.

The lock classes used in synchronizing a directory representative are the obvious analogues of the lock
classes for a singlc-copy dircctory, given by Schwarz [Schwarz 83a). However, instead of locking single keys,
the lock classcs are generalized to lock an entire range of keys and the granting of a lock depends on whether a
range of keys to be locked intersects the range of keys already locked by some other transaction. Inquiry
operations (DirRepLookup, DirRepPredecessor, DirRepSuccessor, and DirRepSuperseder) sct
Repl.ookup(o,r) locks, where the range of keys explicitly or implicitly accessed by the operation is those keys
greater than or equal to o and less than or cqual to 7. A RepModify(a,7) lock-is obtained on the keys of

entries modificd by the DirReplnsert and DirRepCoalesce operations.

The lock compatibility relation for operations on dircctory representatives is illustrated in Figure 7. In the

figure, [¢...7] and [¢’...7"] arc arbitrary non-intersecting ranges of keys, and [0...7] and [¢"...r"] are arbitrary

t

intersecting key ranges. Focks are compatible .cxccpl that a RepModifly lock may not specify a range which
interseets the range already specified by another RepMadify lock, a RepModify lock may not specily a range
which intersects the range already specified by a Replookup lock, and a Repl.ookup lock may not specify a
range which intersects a range already specified by a RepModily fock. For example, the compatibility refation
specifies that a transaction may not be granted a RepModily(o”,7") lock if another transaction already holds a
RepModify(o.7) lock.

l.ock Held

Lock Requested None RepModify(o.r) Repl.ookup(o,r)
RepModify(e™, 7" OK No No
RepMaodily(o®, ") OK OK OK
Replookup(c”, v OK No OK
Repl.ookup(o’.7") oK OK 9].4

Note: [a..7] intersects[a”..1") and [o..7] does not intersect [o"..7"]

Figure 7: Compatibility of Directory Representative Lock Classcs

As specificd above, the lock compatibility relution is sufficiently strong (o guarantee that the actions of
transactions operating on a directory representative are serializable [Fraiger 82]. provided that two phase
locking is used. This form of synchronization sinplifics the correctness arguments given in Scction 1.5.

(Scction 3.6 presents modifications to these focking rules that permit greater concurrency.)

Each dircctory representative is responsible for recovery processing. Recovery processing is necessary to
undo the cffects of partially completed transactions cither after a crash or when a transaction abort is
requested by a client. In any recovery scheme it is necessary for a dircctory representative to record enough
information rcliably to redo or undo the effects of thosc opcrations that modify the state of the representative,
The details of recovery processing are specific to the implementation of a dircctory representative and depend
on the recovery approach used by the transaction system underlying the representative’s implementation.
Gray ct al,, Lindsay et al., and Schwarz arid Spector, among others, present more details on general recovery
algorithms [Gray 81, Lindsay 79, Schwarz 83b].

To redo insert and update operations, the representative must have available the key, version number, and
value of the modified entry. To undo updates, the old value and version number of the entry must also be
recorded. Inserts are undone by coalescing the gaps on cither side of the cntry which was inserted. 1t is not
necessary to record an old version number when performing an insertion, since the version number of the

gaps on cither side of an inserted key is the same as the old version number.

12

A coalesce operation may be redonc in a straightforward manner. providing that the recovery system redocs
operations in the order in which they were originally performed. An error would occur if a caalesce operation
were redone before the insertions of Lie entries at cither end of the range w be coalesced were redone. "o be
prepared to undo a coaslesce operation, a representative must reliably record the key, value, version numbers

of all entries deleted by the coalesce operation, and the version numbers of the gaps between cntrics,

3.2 Directory Suites

A directory suite consists of a set of directory representatives, an assignment of votes to representatives, and
the read and write quorum sizes R and W. Operations on directory representatives are combined to
implement a replicated directory based on the weighted voting rules described in Scction 2. Directory suites

implement the operations Lookup, Insert, Update, and Delete, as specified in Section 1.

‘The Lookup operation scnds DirReplookup requests to a read quorum of representatives and returns the

resulting entry? with the highest version number. Code for this operation is given in Figure 8.

Operations that modify the directory suite must ensurc that the version number of a modified entry is
higher than any version number that had been previously associated with the entry’s key. In addition, the
Delete operation must excreise care not to coalesce too large a region and thereby inadvertently assert the

nonexistence of keys that arc in the directory.

The Insert operation is quite simple. Insert first looks up the key to be inserted in a read quorum to obtain
the highest version number currently associated with the key. A version number onc higher than dis number
is used for the new entry, which is then inserted into a write Quorum of-representatives. Figure 9 illustrates

this operation. The Update operation is similar.

Delete must delete an entry from a write guorum by coalescing a range of keys that includes the entry to be
deleted and assigning a version number to the resulting gaps that is higher than that of any entry contained in
the gaps. To avoid asserting the noncxistence of keys that arc actually in the directory, the range to be
coalesced may not contain keys in the directory other than the one to be deleted. Delete coalesces a range that
extends from the real predecessor of the key to be deleted to its real successor, thereby ensuring that there are
no keys in the dircctory that lic in the coalesced range. The real predecessor of a key & is the the largest key
less than & that is in the directory. The real successor of a key is defined analogously. The entries between a
key's real prcdcceﬁsur and its rcal successor on a represcntative comprise the key's defete list on that

representative,

4I’tgurc 8 shows Lookup relurning a version number as well as a boolean and the value associated with the key. The version number is
used by the procedures Insert, and Delete. A user would ignore this number.

13

Lookup(k:key) Returns(boolean,version,value)
{ Return True, the version number, and the value of the entry for k
it it exists: False otherwise. }

var
{ read guorum has R members }
guorum : array{1..R] of DirRep;
repsver, bestver : version;
val, bestval : value;
isin, bestisin : boolean;
1 : integer;

begin

{ collect a read quorum for this operation}
quorum := CollectReadQuorum{);

bestver := LowestVersion - 1; { a constant }
{ send inquiries to each quorum member }
for i := 1 to R do
begin
isin,repsver,val := Send(DirRepLookup(k)) to quorum[i];
if repsver>bestver then
begin
bestver := repsver;
bestval := vail;
bestisin := isin
end
end;
return(bestisin,bestver,bestval)
end

Figure 8: Lookup Operation

Locating the rcal predecessor and real successor of a key that is to be deleted is complex. There may be
ghost entries located between the key to be deleted and its real predecessor or real successor. A ghost is
defined as an entry for a key that is no longer present in the directory suite. In addition, the real predecessor

or rcal successor of a key might not be present in some members of the write quorurt.

ThmcpmbhmsmcmanyHMﬁmmdhlqumlﬂ.h1mbf@um,mcmmsmxmmwofmcmuw"iﬂsme
muf%ﬁiHmwwr%ﬁ%mmnmmmmnnmmwmchQamUmgmmdmmy%"@mmsmmmn

"_mn

"a" and "bb" in representative A. To delete "a” from representative A and C, the real successor, "bb", must
first be located and then copied to representative C.The coalescing of the range from LLOW to "bb"

climinates the ghost of entry "b” from representative A, as shown in Figure 11,

The Delete operation is illustrated in Figure 12. F inding the rcal predecessor and successor of a key is the
heart of this operation. The straightforward procedure given by Danicls and Spector [Danicls 83] for
performing the real predecessor operation suffers from a serious drawback: it requires that messages be sent

between the node determining the real predecessor and the nodes containing cach member of a read quorum,

14

Insert(nkey:key,nval:value);
{Insert a new entry with key nkey and value nval }
var

{ write quorum has W members }

quorum : array[1l..W] of DirRep;

1 : integer;

k : key:

ver : version;

val : value;

isin: booclean;

begin
{ first, Tookup key to find the current version number }
isin,ver,val:= Lookup{nkey};
{ val ignored }
if isin then ReportError();

{ find a write quorum }
quorum := CollectWriteQuorum();

{ The new entry's version number must be higher than fts
previous version number as returned by the Lookup call }
ver:=var+l;

{ Insert the entry in each quorum member }
for i:= 1 to W do
Send(DirRepInsert(nkey.ver,nval)) to{quorum[i])

end .
Figure 9: Insert Opcration
for every ghost between the key being deleted and its rcal predecessor in all representatives of the quorum.
While this mcssage traffic can be reduced by including morc information in cach message, and while the
simulations and analyéis show that average performance is not too bad, the number of fixed length messages
that must be transmitted for a single Delete operation is potentially unbounded.® All other dircctory suite
opcerations, as presented previously [Danicls 83], require only a constant number of fixed length
communications; it would be highly desirable to have an algorithm for the real predecessor operation (hence

the Delete operation) that has this property as well.

3.3 An Efficient Algorithm for the Real Predecessor Operation

An algorithm for finding the rcal predecessor must in cffect prove that a certain key is the real predecessor.
Such a proof involves showing that all intervening entrics in cach representative of a read quorum are
superseded by a gap with a higher version number in some other representative of the quorum. The number

of ghosts between an entry and its real predecessor is potentially unbounded in cach representative, so at first

Sln fact, it is bounded by 2R * (the size of the key space), but for all practical purposes, this is unbounded.

Version Number: 0
Key: {Low>

Version Number: 0
Key: {Low>

Version Number: 0
Key: {Low>

Gap Version
Numbaer: 0

Gap Version
Number: 0

Gap Version
Number: 0

Version Number: 1
Key: "a”

Version Number; 1
Key: "a"

Version Number: 1
Key: "a"

Gap Version
Number: 0

Version Number: 1
Key: "b"

Gap Version
Number: 0

A

Gap Version
Number: 2

r

Version Number: 3
Key: "bb”

Version Number: 3
Key: "bb"

Gap Version
Number: 0

Gap Version
Number; 2

A

Gap Version
Number: 2

v

Version Number: 1
Key: "¢*

Version Number: 1
Key: "¢"

Version Number: 1
Key: "¢”

Gap Version .
Number: 0

Gap Versian
Number: 0

Gap Version
Number: 0

Version Number: O
Key: <High>

Version Number: 0
Key: <High»>

Version Number: 0
Key: <High>

Representative A

Representative B

Representative C

Figure 10: Dircctory Suite from Figure 5 After Inscrting "bb"

the prospects for the existence of an algorithm that requires only a constant number of fixed length messages
appear dim. '

However, directory suites have a property that constrains the system states that can occur. Becausc of this
property, the minimum version number necessary for an entry to be current in a region guaranteed to contain
the real predecessor can be determined in one round of messages. With this information, a single additional
round of messages suffices to find the real predecessor. To state and prove the property that permits this

efficient location of the real predecessor, we must introduce several terms.

A region is a sct of keys; that is, a subset of the key space. In keeping with previous usage, we define a range
as a region containing cvery key in the key space between some key and another key. The notation (k. k)

refers to the range from £, to &, excluding k, and k,, the endpoints of the range.

16

Version Number: 0
Key: {Low>

Version Number: 0
Key: {Low>

Versian Number: 0
Key: <Low>

Gap Version
Number: 3

¥

Gap Version
Number: 0

Version Number: 1
Key: "a”

A

Gap Version
Number; 2

A 4

(Gap Version
Number: 3

v

Version Number: 3

Key: "bb"

Version Number: 3
Key: "bb"

Version Number: 3
Key: "bh"

Gap Version
Number: O

Gap Version
Number: 2

Gap Version
Number: 0

Version Number: 1
Key: "¢"

Version Number: 1

Key: "¢

Version Number: 1
Keay: "¢"

Gap Version
Number: 0

Gap Version
Number; 0

Gap Version
Number: O

Version Number: 0
Key: <High>

Version Number: O
Key: (High>

Version Number: 0
Key: <High>

Representative A

Representative B

Representative G

Figure 11: Dircctory Suite from Figure 10 After Deleting "a”

A gap between entries having keys &, and k; in a representative is said to cover the region (k,.4;) and all of

its subregions. The remaining terms are defined in the context of an entire directory suite. A gap g is said to

be current over the region rif the following conditions hold:

1. The gap gcovers r.

2. No gap in some other representative covering any (non-null) subsct of r has a higher version
number than g does.

3. No entry in some other representative for a key in 7 has a higher version number than g does.

A gap's region of currency is the entire region over which it is current.’

6Fonnally‘ the union of all regions over which it is current,

17

Delete(deik: key);
{ Delete the key delk from the directory }
var

quorum: array[1..W] of DirRep;

i: integer;

isin: boolean

succ, pred, k: key:

pval, sval, val: value;

pver, sver, repver, ver: version:

begin
{ find a write quorum }
quorum := CollectWriteQuorum();

{ Find the predecsessor and successor of delk }
succ,sval,sver,ver := RealSuccessor{deik);
pred,pval,pver,repver := RealPredecessor({delk);

{ The version number of the coalesced gap

must be higher than the maximum of any

version numbers in the range coalesced }
var := Max{repver, ver);
isin,repver,vat:=Lookup(delk); { 1sin, val ignored }
ver := Max(repver, ver);

{ Ensure the predecessor and successor
exist in every momber of the quorum)
for 1 := 1 to W do
begin
isin,repver,val:= Send(DirReplLookup(succ)) to{quorum{i]);
{repver,val ignored}
1f not isin then
Send(DirRepInsert(succ,sver,sval}) to (quorum{1]);

isin,repver,val:= Send(DirRepLookup(pred)) to(quorum[{1]);
{repver,val ignored}
if not isin then
Send(DirRepInsert(pred,pver,pval)) to (quorum[i])
end;

{ coalesce the range in each member }
for i:= 1 to W do -
Send(DirRepCoalesce(pred,succ,ver+l)) to (quorum{1])

end
Figure 12: Delete Operation

For example, consider the suite in Figure 13. Gap g covers ("c¢".HIGH} and all of its subregions, c.g.
("d"."f"). Gap g is current over ("g","k™), for exampie. (Alphabcetical ordering on the keys is assumed.) Gap
g's region of currency is ("c¢”,"d")U ("¢" HIGH). We arc now ready to state and prove the property.

THEOREM. In any occurring system state, every gap’s region of currency can be expressed as the union of

ranges whose endpoints are keys currently in the directory.

18

Version Number: O Version Number: 0 Version Number: 0
Key: <Low> Key: CLow> Key: <L.ow>
i Gap Version Gap Version
i Number: 1 Number: 1
Gap Version
Number: 3
Version Number: 2
Key: "b"
Version Number: 2 4
Key: "c"
y \ 4
I Version Number: 3
Key: "d"
Gap Version
. Number: 4 Gap Version
Gap Version Number; 1
Number: 2 Version Number: 1
Key: "e"
Gap g Gap Version
Number: 2
4 v
Version Number: 0 Version Number: 0 Version Number: 0
Key: <High> Key: {High> Key: {High>
Representative A Representative B Representative C

Figure 13: Suite for illustration of region of currency and related terminology

The proof is by structural induction. For the base case, we observe that the theorem holds for a suite in its
initial state: each representative contains a single gap whose region of currency is (LOW HIGH), and the
directory contains the (dummy) keys LOW and HIGH.

For the induction step, we must show that if the theorem holds for a given system state, then it holds for all
states reachable from that statc via a single Insert, Update or Delete operation. We shall consider these
operations in turn. For cach operation, we must show that the gaps contained in the represcntatives
comprising the write quorum and the gaps contained in the representatives outside the write quorum satisfy
the required condition after the operation. We further subdivide these gaps into those whose region of

currency changes as a result of the operation and those whose region of currency remains unchanged.

First we show that the induction holds for for Inserts. The Insert operation does not remove any key from
the dircctory, so any range whose endpoints were in the directory prior to the Insert will still have its
endpoints in the directory after the Insert. Therefore, all gaps whose region of currency remains unchanged
by the Insert will still satisfy the induction hypothesis after the operation (given only that they satisfied it

before). Thus, we need only consider the gaps whose regions of currency are altered by the Insert operation.

19

‘IThe regions of currency of gaps in representatives outside of the write quorum for an Insert operation are
affected only if they arc current over the region { &}, where £ is the key being inserted. ‘The new entry for this
key will have a higher version number than these gaps, so the insertion will have the offect of removing { &}
from their regions of currency. By hypothesis, the region of currency of cach of these gaps is expressible as a
union of ranges whose endpoints are keys in the directory. One of these ranges must contain k. .ot us eall
this range (k.,). (Of course the values of &, and k, may be different for cach such gap.) When {4} is deleted
from such a gap's region of currency. the resulting region will be cquivalent to the original region. with (k.k,)
replaced by (k. K)U(kk,). But & & and &, arc all in the dircctory after the inscrtion. so the induction

hypothesis is preserved in all representatives outside of the write quorun.

Within the write quorum one of two things can happen. {f an cntry is already present for £, no gap's
region of currency will be affected by the operation. If no entry for & cxists, then the gap into which the key
falls will be split into two new gaps. l.ct us call them & and g,. By the induction hypothesis, if & is in the
region of currency of the gap being split, it falls in somc range that is bounded by keys in the directory and is
contained entircly in the region of currency. Let us call this range (k.k,). Then g's region of currency will
consist of the union of all of the ranges in the original gap's region of currency before k, and (k,.k), and g,'s
region of currency will consist of the union of all of the ranges in the original gap's region of currency after k,
and (k.k,). (Figure 14) If the key being inserted falls outside of the original gap's region of currency, g’s
region of currency will consist of the ranges in the original gap’s region of currency before & and &,'s region of
currency will consist of the all such ranges after £ Thus, the induction hypothesis is preserved in all

representatives for Insert operations.

Next we show that the induction holds for Update operations. Like Insert operations, we neced only
consider the gaps whosc regions of currency are altered by the operation, as Updates do not remove any keys
from the directory. No gaps in representatives outside of the write quorum have their regions of currency
atfected by this operation. It increases only the version number associated with the key being updated, &, and
no gap could have had {k} in its region of currency before the update operation took place. The highest
version number associated with & ac that time belonged to an entry and not a gap, as updatcs can only occur
on keys that are alrcady in the directory. Within the write quorum the effects of the Update operation on
regions of currency are identical to those of the Insert operation, and the identical argument shows that the

induction hypothesis is preserved.

Finally we show that the induction holds for Delete opcrations. In cach representative in the write quorum,

a new gap is created whose region of currency is (p,s), where p is the real predecessor of the key being deleted

7This cntry is necessarily a ghost, as the Insert operation would not be permitted if & were already in the directory.

Before Insert("m"})

Representative r

Key: "g"

Gapg

Region of Currency

20

After Insert("m")

Region of Currency

Representative r

[Key: "g"

Gapg

[Key: "m"

I Key: "r"

4+—Pr | | |

Gap g

[Key: "r"

Figure 14: Effect of the insert operation on regions of currency, within write quorum

and s the real successor. If p was not alrcady present in a representative, it is inserted. The region of currency
of the new gap extending upwards from p consists of the ranges before p previously in the region of currency
of the gap from which the new gap was split off. Similarly, if s is inserted, the gap extending downwards from
s will have as its region of currcncy the ranges after s previously in the region of currency of the gap from
which this gap was split off. (Figure 15). The keys p and s are, by definition, currently in the directory, so all
of the gaps whose regions of currency are modificd satisfy the induction hypothesis. Furthermore, all gaps
whose region of currency previously contained a range bounded by & were modified in the fashion described
above, so nonc of the gaps whose region of currency remains unchanged relics on the fact that & is in the

dircctory in order to satisfy the induction hypothesis. Thus, the induction hypothesis holds within the write

quorum.

21

Before Delete("k") ' After Delete("k")
Representative r Region of Currency Region of Currency Representative r
[Key: "b" 7—1—'~Real Predecessor Key: "b" —l
] ¥ f

A

v A4

uey: i j Real Successor / uey: i —l

Figure 15: Effect of the delete operation on regions of currency, within write quorum

Outside of the write quorum the situation is as follows: The new gap in the representatives of the write
quorum covers (p,s). Gaps whose regions of currency did not interseet this region are unaffected. ‘The new
gap has a higher version number than all others in this region. Any portions of other gaps' regions of
currency that lie in this region are deleted from the gaps’ regions of currency. This deletion has the effect of
removing ranges entircly contained within {p.5). Any range that had k as one cndpoint must have had por s .
as its other endpoint, and must have fallen into this category. Thus the gaps outside of the write quorum in a
Delete vperation satisfy the induction hypothesis. This compietes the proof.

We are now ready to describe the real predecessor algorithm. First, the node doing the real predecessor

22

determination for the key & asks cach representative in the read quorum for the version number of the gap
covering the key p immediately preceding & in the key space, and the entry delimiting the gap on the low side.
'I'he gap returned in response to this request with the highest version number is current over the region {p}.
l.et us call this gap gu.. By the theorem, g, must be current over some range containing p that is bounded
by keys currently in the directory. Thus, this "current range" must extend from p's real predecessor to p's real
successor, exclusive, But p's real predecessor is also &'s real predecessor, so we know that &'s real predecessor
ties in g, 0r on its boundary. Since any key (or gap) that intersects g, and has a higher version number
than that of g, must lic outside of #ts region of currency, the closest such key (or gap) to & delimits the
current range in which £ lies, if such a key (or gap) exists. By the theorem, il it cxists it is a kev (not a gap) and
it is &'s real predecessor. 1f no such key exists. the current range extends all the way w g, 's low boundary,

and the key delimiting it is &'s reai predcecessor.

The node doing the determination proceeds by passing both g, 's version number and the key delimiting
Beyrr ON the low side to cach representative in the read quorum. The representatives return their entry closest
to k that "supersedes” this gap (i.c. lics in the gap and has a higher version number than it does). I they have
no entry that supersedes the gap then they check to sce if they have an entry for the key delimiting the gap. If
so, they return it; if not, they return a message saying that they have no candidate for the real predecessor.
Then the node doing the determination mercly sclects the candidate closest w k. I several entries return
candidates cqually close, of course the one with the highest version ‘number is sclected. This entry is

guaranteed to be the real predecessor. A formal statement of the algorithm is given in Figure 16,

3.4 Enhancements to the Real Predecessor Algorithm

As in the other procedures presented, cfficiency is somcetimes sacrificed for clarity in the RealPredecessor
procedure of Figure 16. There are scveral additional improvements that would be madc in any practical
implementation of the algorithm. Firstly, the procedure woutd check if the sccond round of information
exchange were necessary before doing it. If the closest predecessor key returned in response to the first
request for information has a higher version number than any of the returned gaps that cover it, then this key

must be the real predecessor, and there is no need to continue scarching,

This technique can be used to reduce message traffic even more by having each representative return
several gaps and entries preceding the key being deleted rather than just one. The procedure would check if
any cntry for which it had information (cntry or covering gap) from all representatives had a higher version
number than any covering gap. If this were the case, then the closest such entry would represent the real
predecessor, and no sccond stage would be necessary. The number of entries returned by the representatives

in the first stage of the algorithm controls a performance trade off between cxecution time at the nodes and

23

RealPredecessor(k:key) Returns{key,value,version,version);
{Returns the key, value and version number of k's real predacessor,
and the highest version number in the range bounded by k and k's
real predecessor, exclusive.}.
var quorum: array{1..R] of DirRep,
GapVer: array[1..R] of version,
PredKeyVal: array{1..R] of value,
PredKey: array(1..R] of kay,
MaxGapRep,1: 1integer,
MaxGapVer,RealPredVer,CandVer: version,
MaxGapKey,ReaiPredKey,CandKey: kay,
RealPredVal, CandVal: valus;
begin
quorum := CollectReadQuorum();
{Collact info on predecessor gaps in each rep 1n the read quorum
& find out which rep has the gap w/ the highest version number.}
MaxGapVer :2 -1:; {Lower than any real version number}
for 1 := 1 to R do
begin
GapVar[1].PredKey[1].PradKeyVer[i].PredKeyVal[1] H
Send(DirRepPredacessor(k)) to quorum{i];
if GapVer[1] > MaxGapVer then
begin
MaxGapRep := i;
MaxGapVer := GapVer[1])
end
and;

{Key delimiting Max gap is our initial candidate for real pred}
RealPredKey := MaxGapKey := PredKey[MaxGapRep];
RealPredver := PredKeyVer[MaxGapRep];
RealPredvVal := PredKeyVal[MaxGapRep];
{Find closest entry which supersedes Max gap 1n any rep in the
read quorum. This will be the real predacessor, }
for 1 := 1 to R do
if 1 <> MaxGapRep then
begin
CandFlag,CandKey,CandvVal,CandVer :=
Sand(D1rRepSuparseder(k.MaxGapVer,MaxGapKey)
to quorum[i];
1f CandFlag {(If this rep has a candidate for real pred...}
{and 1t's closer than the closest candidate thus far, or
equally close with a higher version number then. ..}
and (CandKey[1] > RealPredKey
or (CandKey = RealPredKey and CandVer > RealPreadVer)) then
begin {Tentatively select the candidate}
RealPredKey := CandKey;
ReailPredval := CandVal;
RealPredVer := CandVer
and
end;
{Selected candidate is real predecessor. Return it.}
Return(Raa1PredKey.Rea]PredVaI.Raa1PradVer,MaxGapVer)
end

Figure 16: Rcal Predecessor Operation

24

inter-node message traffic. If many entries arc returned, it is likely that the second round of information
exchange will not be necessary: however, the execution time at cach node is proportional to the number of
entrics sent. “The number of entries between the key being deleted and it real predecessor will on average be
half of the key's delete list size. “Thus. the formula developed in Section 4.2.4 that cnables us to predict the
average length of a delete Tist can aid in choosing an appropriate number of entrics to return in the first stage.
In fact, the limiting behavior described in Section 4.2.5 shows that that the second stage of the algorithm can

almost always be avoided if several entrics are returned in the first stage.

Even if the second stage is required, it may not be necessary to ask for additional information from all of the
represcntatives in the read quorum. Any representative that has already sent entry or gap information for the
entire range that has been determined to contain the real predecessor has no more information to add and

need not participate in the second round.

Finally, the real predecessor and real successor can he determined simultancously by putting requests and
responses for both tasks in cach message, thus reducing by almost one-half the mcssagﬁ traffic required to
find the real predecessor and successor. In the actual implementation, there would be a single
"RealNcighbors” procedure instead of separate RealPredecessor and RealSuccessor procedures. The
procedure would initialty ask for gaps and entries surrounding the key on both sides. If this did not provide
cnough information to find the key’s real predecessor and successor, it would send a request for a

"superseder” of cither or both "current gaps,™ as required.

The algorithm, with the improvements described, is extremely fast in the average and worst cases. In fact,
under an appropriate model it is optimal with respect to the number-of fixed length messages -rcquircd.
However, the notion is somewhat difficult to formalize and a proof would be tedious. The average
performance of this algorithm is close ecnough to the trivial lower bound of one exchange of messages with

cach member of a read quorum that there is no practical reason to attempt to prove optimality.

The procedure, including the improvements, is casy to implement. It also has the following uscful property.
The correctness of the algorithm does not depend on the fact that the key whose real predecessor is being
determined is actually in the directory. Thus, one can locate the real ncighbors of any key, regardless of

whether it is in the directory.

25

3.5 Correctness Arguments

The correctness of a directory suite’s operations depends on Loeokup always returning current information
about a key. Because cvery read quorum interscets every write quorum, Lookup will return current
information as long as that informatien has a version number greater than that of any non-current
information and as long as there are no concurrency anomalics. ‘These correctness conditions are the same as

those required for Gifford’s file replication algorithm.

Two phase locking and the lock compatibility matrices specified in Section 3.1 are strong enough to
guarantee the serializability of transactions at any single representative, ‘I'raiger et al. [I'raiger 82] have shown
that i all nodes participating in a distributed transaction exccution follow two phase locking protocols that
guarantee the serializability of transactions at individual nodes, then the resulting global schedule is
equivalent to some serial schedule of transactions. Thus, the directory replication algorithm is frec from

concurrency anomalics.

The Insert and Update operations both set the version number of the entrics they modify to be greater than
the greatest version number previously associated with the keys of those entrics. Thercfore, the current data

for cach key has a version number greater than that of any non-current data for that key.,

Delete coalesces the range between the real predecessor and real successor of the key o be deleted. By the
definitions of real predecessor and real successor, there can be no current entries (other than the entry to be
deleted) in the range to be coalesced. The operation assigns to the gap covering the coalesced range a new
version number that is higher than any version number previously associated with any key in that range.
Therefore, as with Insert and Update, the current data for cach key in the range has a version number greater

than that of any non-current data for that key.

3.6 More on Synchronization and Recovery

Directory representatives, as described in Section 3.1, are synchronized to ensure that all transactions using
their operations can be made serializable.? In addition, all information in a representative is recoverable and
operations can be completely redone or undone by rccovery processing. Thus, arbitrary dircctory
representative operations may be composed in atomic transactions. ‘This property simplifics the correctness
arguments for the directory replication algorithm by allowing the algorithm to ignore the consequences of
concurrency anomalics and failures during directory suite opcrations. However, the use of dircctory
representative operations is not arbitrary, and the restrictions that the directory replication algorithm imposes
on their use can be cxpioited to enhance the synchronization and recovery performance of directory

representatives. The resultant directory represcntative objects are non-serializable [Schwarz 83a.

8Fur these transactions Lo be serializable, all other types of objects used by the transaction must also preserve serializability.

26

The basis for improvements to concurrency and simplification of recovery in Delete is Gifford's observation
[Gifford 81} that data and its version number in one representative may be replaced at any time by more
current data with a higher version number from another representative. [t is casy to see that the contents of
the directory, as obscrved by the results of Insert, Update, Delete, and Leokup operations are unaffected by
such a replacement. Of course, care must be taken to prevent an independently executing update from being
overwritten with the data and version number from the other representative. A read lock on the data being

replaced is sufficicnt concurrency control for this purpose.

Improvements to concurrency and recovery can be accomplished with modifications to DirRepCoalesce,
The Delete operation is the only invoker of DirRepCoalesce and it always passcs the real predecessor and real
successor of a key to be deleted as arguments; therefore the oaly current entry modified by DirRepCoalesce is
the cntry being deleted from the directory. To increase concurrency and simplify recovery, the
DirRepCoalesce operation can be redefined to take three additionat arguments. The first new argument is the
key of the entry being deleted. if the transaction performing the DirRepCoalesce is aborted this key is used to
determine the entry that must be restored. When the DirRepCoalesce operation is undone, the gaps on cither
side of the entry being deleted receive the current version numbers for those gaps, which are determined
along with the real predecessor and real successor and passed as the second and third additional arguments to
DirRepConlesce. 1t is unnccessary to restore any ghost entrics during the undo of a DirRepCoalesce

operation.

Concurrency can be increased by releasing the RepModify locks set by DirRepCoalesce on all keys, except
for the key of the entry actually being delcted, as soon the operation completes. 'The RepModifly locks must
be acquired temporarily to make certain that no active transactions have read {and therefore set RepLookup
locks on) the old version numbers of the gaps being coalesced. The locks do not need to be retained, because
the operation does not modify data other than version numbers in these gaps, and version numbers are used
in very well defined ways by the weighted voting algorithm. While it is an important example of the use of a
non-scrializable object, this change in lucking rules increases concurrency only slightly because the only keys
made accessibie to concurrent transactions arc those for which there are no entries in the directory. This

change in Jocking rules also increases the chances of deadlock.

Finally, RepLookup locks on data beyond the real predecessor and real successor of a key being deleted
need not be held beyond the first phase of the RealPredecessor and RealSuccessor operations. These locks
arc gbtained only to guarantee that the algorithm for determining the rcal predecessor and successor sees a
consistent version of the directory suite. It should also be noted that the operations of inserting the real
predecessor and real successor into representatives are additional examples of copying current data and

therefore only ReplLookup locks need be temporarily obtained for these insertions.

27

4 Performance Characterization

[n this section, we present the results of simulations and construct and analyze a madel of the directory
replication algorithm. ‘The system studied in both the simulations and the model consists of a directory suite
initially containing a certain number of keys into which inserts, updates and deletes occur at regular intervals
with cqual likelihood. The keys to be inserted arc chosen randomly from those not in the dircctory, and the
keys to be updated or deleted are chosen randomly from those in the directory. Read and write quorums are

sclected randomly.

We concentrate on two performance measures. ‘I'he first, which we call the size rario. is the ratio of entrics
in a dircctory representative 1o keys in the directory. The size ratio indicates the storage required at each
representative as a function of the storage required for a single site directory. A size ratio of one indicates that
a node has exactly as many entrics as a single site directory containing the same keys. 'The simulations
measure the size ratio directly, while the analytic model allows us to break the size ratio down into three
composition ratios based on a classification of dircctory entries into three categorics. ‘T'he size ratio is the sum

of the three composition ratios.

‘The second performance measure, delefe list length. is the average number of ghost entries in the range to
be coalesced during a deletion on a representative. This measure indicates the amount of work that must be
donc at cach node while searching for the real predecessor and successor, and while performing the coalesce
operation during deletes. These two steps are the only parts of any of our procedures that do not run in
constant time. Thus the delete list size characterizes the only non-obvious component of the time

requirement of our algorithm.

4.1 Simulation Results

Figures 17 and 18 show the size ratios and delete list lengths measured in simulations for a varicty of
dircctory configurations. In the simulations, cach directory suite initially contained one thousand entrics.
The duration of cach simulation was twenty thousand operations, and performance measures were gathered

during the final ten thousand opecrations.

More detailed simulation results for 3-2-2 dircctory suites with one hundred, one thousand, and ten
thousand kceys initially in the directory are shown in Figure 19. The duration of cach of these simulations was
two hundred thousand operations, with performance data gathered during the final one hundred thousand
operations. These additional simulations indicate that none of the results depend on the ititial number of
keys in the directory suite; Thus, time and space requirements are proportional to the number of keys in the

dircctory, just as in a single site dircctory.

28

Figure 18: Delete List Lengths for Various Dircctory Suites

1.2, NN Actual

A [] Predicted
N

1.0} < § \

3 MRNR
4N | NN |
NI MIMNR
6 N N N N
322 313 533 524 955 946 937 9'2'?:onfig$grion

Figure 17: Size Ratios for Various Directory Suites
8¢ N Actual
_ Predicted
N
N R
AL N § % N
N N N | N
\ N N | R
N N NEENEREN
LN NN INININIR
322 3183 533 524 955 946 937 9'2'?:onﬁgji-guon

e

e Y ‘,,,_-‘ ‘o

R s.w-ufl‘u P

TR

[N

29

100 Entrics 1000 Entries ' 10000 Entrics

Size Ratio

Avg Max Std Dev Avg Max Std Dev Aveg Max Std Dev

111 1.27 003 1L.11 1.19 0.02 L.LIT 1.13 0.01
Delete List Size

Avg Max Std Dev Avg Max Std Dev Avg Max Std Dey

044 9 081 044 9 081 044 10 081

Figure 19. Detailed Simulation Results for three 3-2-2 Directory Suites

4.2 Analytic Model

The algorithm as applicd in the simulations was modeled and analyzed to predict various performance
characteristics. 'The goals of the analysis were to increase our confidence in the simulations by corroborating

their resuits, to gain further insight into the behavior of the algorithm, and to produce a fast, reliable method
for determining the performance of the algorithm.

in this scction, we deseribe the model and our method of analysis, and present the analysis. A set of
formulae to predict performance characteristics are derived in the analysis. These formulac are used to check

the results obtained from the simulations and predict performance trends exhibited by the algorithm under
various conditions,

4.2.1 Construction of the Model

The system can be modcled as a Markov chain in a straightforward fashion. One state corresponds to each

possible contents of the entire directory suite, henceforth calted a sysrem state. The transitions correspond to
the changes in system state effected by the operations.

In the simutations, the system appeared to display equilibrium behavior: each system attribute being
monitored approached an average value that did not vary over multiple runs of sufficient length. For a
Markov model to be of use to us in calculating these values, it too must display this equilibrium behavior. It
is sufficient that the model achicve stochastic equilibrium. The simplest class of Markov chains achicving
stochastic equilibrium arc those that are finite and irreducible. (By finite, we mean that they contain a finite

number of states, and by irreducible, we mean that cach state can be reached from every other state.) It is
desirable that our model belong to this class. -

The straightforward model described above does not possess either of the requisite propertics. It is not

finite, as version numbers can grow without bound. Repeatedly updating a single key produces an infinite

30

sequence of distinet states. Neither is the straightforward model irreducible: once the system leaves any state,
it can never get back to that state. This can be scen by observing that the version numbers associated with a
fixed key in a fixed representative in successive states form an increasing sequence. Any operation results in
the version number associated with some key increasing in some representative and it can never rcturn to its
original valuc. However, the model displays an extremely high degree of fumpability [Kemeny 60). That is to
say. many states arc practically identical to some other state, so sets of similar states can be lumped together to
produce a smaller. simpler model. We shall attempt to construct a new model that possesses the desired

properties by this process of lumping.

‘This is not the straightforward task that it might appear to be. Attempts to lump states based on order
relations between version numbers run into complications. Even if such an attempt succeeded, the model
produced might well be finite but not irreducible. An alternative approach, which involves abandoning the
version numbers completely, produces the desired result. Before we deseribe it, we must take care of some

preliminaries.

All of the entries in cach representative of a directory suite can be divided into classes that correspond to
terins introduced previously. A current entry is an entry for a key that is still in the directory that has highest
version number associated with that key in any representative. Current entries are the only entries that
contain up to date information. An outdated entry is a non-current entry for a key that is still in the directory.
If an cntry is outdated then some other representative contains an entry for the same key with a higher version
number. A ghost entry is an entry for a key that is no longer in the directory suite. A ghost entry can be
thought of as the ghost of a key that used to "live" in the directory. It should be clear that all entries in a

representative fall into one and only one of these classes.

Let us call a rcpresentative with all version numbers removed and with the class of cach entry (current,
outdated or ghost) appended to the entry the concise representation of the representative. Note that the
concisc representation contains no explicit information about the gaps between cntries. By cxtension, we call
the collection of concisc representations of all representatives in a suite the concise representation of the suite,

The concise representation has two propertics that make it extremely uscful;

1. Given the concise representation of a system state, an operation to be performed on the suite
(Insert(kcy). Update(key) or Delete(key)) and the write quorum selected for the operation, one
can determinge the concise representation of the resulting system state. The proof of this fact is a
somewhat tedious casce analysis, which is implicitly performed for other reasons in Appendix [.
The inwition behind the proof is that version numbers are used solely to find out which class an
entry belongs to, when performing the various operations on the suite.

L]

2. No uscful information is "thrown away"” in going from a systcm state to its concise representation.
All of the system attributes we care about are fully determined by the concise representation of a
system state.

31

We are now ready to describe the method by which we simplify our model. We define a new model where
all system states sharing cach concise representation are lumped together to form the states. Property | above
tells us that the induced transition probabilitics in this model are well defined. This is required for the model

to be a well defined Markov chain.

The new model s finite by the following argument. The key space is finite, and cach representative contains
cntries for some subset thereof. Hach entry belongs to one of the three classes; thus. there are only a finite
number of possible concise representations for representatives. A suite consists of a fixed number of
representatives, so there are only a finite number of possible concise representations for system states. ‘This

places a finite an upper bound on the number of states in our model.

Finally, the model is irreducibie. From any system state, it is possible to reach a system state where all
representatives contain no entries. This can be accomptished as follows: {irst delete all of the keys in the
dircctory in any order with any write quorums. At this point, all of the representatives can only contain ghost
entries, and if a single key is inserted into the dircctory and then deleted using the same write quorumn, all of
the representatives in the quorum will be completely empty. Repeat this insert/delete Process as many times
as nccessary to include each representative in at Icast one write quorum, All sysiem states where none of the
representatives contain any entries have the same concise representation hence they are represented by a
single state in the model. But this state also represents the initiat system state, from which all other system

statcs can be reached. Thus, any state reachable from the initial state can be reached from every state.

The model achicves stochastic cquilibrium, because it is Markovian, finite, and irreducible. There is one
other property that the model must have in order to fulfill our requirements: all system states represented by
each state must be "functionally identical” in the sense that they coincide in all attributes for which we wish to
utilize an equilibrium distribution. However, this is precisely what property 2 tells us. In fact the attributes in
question are for the most part aggregate information concerning the composition of a representative in terms
of class. (The reader can casily check that cach autribute for which we cventually require an equilibrium

distribution is fixed over single states in our model.)

4.2.2 Method of Analysis

Our model is guaranteed to achieve stochastic cquilibrium, so it is theoretically possible to determine the
precisc probability of being in any state. In practice, this would be impossible duc to the huge size of the
system. Also, the resulting probability distribution would not be particularly informative as such, and the
processing necessary to derive any useful figures from it would be prohibitive due to its size. However, the
existence of this model proves that any attributes common to all system statcs represented by each state have
well defined average values. Thus it makes sense to formulate relationships among such averages and solve

for them.

32

The performance characteristics of primary concern to us arc all intimately related 0 the composition of
cach representative in terms of the three classes into which entrics are divided. As a consequence of (he
cxistence of our model we can assert that a dynamic equilibrium cxists in cach of these classes in each
representative. 'These assertions can take the form of balance equations cquating the rates of flow into and out
of cach category in a single representative. Such equations hold cqually well for all of the representatives in

the suite duc o the symmetry of the system.

'I'Iicsc batance cquations are naturaily constructed in terms of three variables ¢/, o/ and 4, and the system
parameters N and W, defined in Scction 4.2.3. In constructing the balance cguations, we make some
simplifying assumptions in the form of approximations in the equations. Fach approximation will be noted
and justified. The resulting cquations constitute a lincar system than can be solved casily. 'The desired
pcrformance measurcs can be derived from the variabies, though we nced to make a simplifying

approximation in one derivation,

33

4.2.3 Formulation of Balance Equations

The following vartables are used in formulating the balance cquations. Small letters represent the

unknowns in the balance equations, capital letiers represent constants (system parameters) and script capitals

represent stochastic variables,

c

O

‘The number of current entries in an arbitrary (but fixed) representative,
‘The number of vutdated entrics in an arbitrary {but fixed) representative.
The number of ghost entries in an arbitrary (but fixed) representative,

The total number of entries in an arbitrary (but fixed) representative.
Note that 8=C+ 0+ G.

The number of keys currentiy in the directory.

The number of entrics in the delete list of a key k currently in the directory, in an arbitrary
(but fixed) representative. ‘T'he delete list of a key consists of all of the ghost entries
between the reaf predecessor and real successor of the key in the representative,

(> ke Suite 1)/ 3. T is the average delete list size in an arbitrary (but fixed) representative.
Note that B is only defined in states where %6 7 0 (i.c. the directory contains one or more
keys).

E{C/%] The expected value is taken over all states that represent directories containing
one or more keys. €/ is the fraction of keys in the directory that have current entrics in
the representative under observation. Thus. ¢ is cquat to the probability that a randomly
chosen key in the directory has a current entry in the represcntative under obscrvation.,

E[G/36] The expeeted value s taken over all states that represent directories containing
onc or more keys. 0/3 is the fraction of keys in the directory that have outdated entries in
the representative under obscrvation, Thus, o’ is cqual to the probability that a randomly
choscn key in the directory has an outdated entry in the representative under observation.

E[9] The expected valuc is taken over ail states that represent directories containing one or
more keys, dis the expected size of a delete list for a key chosen at random from those in
the directory.

‘T'he rumber of representatives in the directory suite being modeled.

The write quorum size for the directory suite being modcled.

34

A formai statement of the rate balance assertion for current entrics is:

F[Vhe number of entries entering the current class in a chosen representative in one operation]
= K[T'he number of entries lcaving the current class in a chosen representative in one operation)].

The expected values are computed over a space consisting of all the state transitions in our model. Analogous
assertions are made for outdated and ghost entries. ‘The expected values can be recast in terms of ¢/, o’ and d.
These expansions, though relatively straightforward, are somewhat tedious, as they entail examining the inner

workings of the directory suite operations in great detail. They can be found in Appendix I.

The expansions yield the following balance equations, for current, outdated and ghost entries respectively:

(1+ '+ Ho'=2F
o'=¥Hc!
d= (" + o),

4.2.4 Solution of Balance Equations

The solution of the balance equations derived in the previous section is:

o= 2W1N+t l?
o' = 2“’5!\1—;%;
d = %502

‘The first performance measure for which we desire a formula is the expected value of the average delete list

size:

E[3]
=d.

The second performance measure is the expected value of the size ratio:

E[8/%]
= E{C+0+G)E%]
E[C/%]+ E]0/%] +1[G/%]
= ¢/4 o'+ K[§/36].
The three terms of this expression (K[C/%], E{0/%] and E[§/%]) arc the composition ratios. While we

cannot cxactly express the third term of this expression in terms of our unknowns we can make a very good

approximation bascd on the fact that almost cvery ghost in a representative appears in two delete lists, that of
its real predecessor and that of its real successor, The exceptions are the ghosts before the first key in the
directory and thosc after the last, which only a-ppear in a single delete list. But in the vast majority of states,
very fow ghosts fall into this category, Thus the sum of the sizes of all delete lists in a representative is

approximately equal to twice the number of ghosts. A format statement of this assumption is:

35

20 =2 ke suite e
Dividing both sides of this equation by 23 and taking expected values we get:

K1G/36]= EI(2 ke suie T4/ 25]
k(9]

Il

1
2
d
2
Substituting back, our formula for the size ratio becomes:

F(8/%]=c'+ o'+ 4.

_ AN+
= 3

4.2.5 Results

Figure 17 (p. 28) compares the average sive ratios obscrved in the simulations with predictions obtained
from the formula developed in the previous section. Figure 18 (p. 28) compares actual and predicted average
delete list lengths. ‘The predicted values are nearly identical o the observed values, We compared simulation

and anatysis results for many other system atuributes and observed this level of agreement uniformly,

Figure 20 shows the predicted average composition ratios in a 10 - (L1— #) - W suite, for all possible values
of W. Figure 21 shows predicted delete list lengths for these suites. Varying the quorum sizes in a fixed size
dircctory suite in this manner controls a fairly complex performance tradeofT: increasing the write quorum
size while decreasing the read quorum size increasces the cost of the write operation and the availability of the
system and decreases the cost of the read operation. In the delete operation, the work done at cach node
decreases, but the number of mcessages that must be sent increases. At onte end of the spectrum (w=10) there
is the universal update strategy: at the other (w=1), there is a strategy where only a single representative is
written and all arc read. While the latter strategy would never be uscd, because all dircctory operations
require reading from a read quorum, it is interesting to sce how performance varies over the spectrum. From
these graphs, one can sec that even when the system is steetched to an unreasonable extreme, performance

does not degrade very much.,

Figures 22 and 23 show respectively the predicied average composition ratios and dcleie list lengths in
(2i=1) - i - i suites. Increasing read quorum, write quorum and suite sizes simuitancously, as illustrated in
these graphs represents a fairly straightforward performance tradeoff: As the sizes increase, the availability of
the suite increases, but the number of messages that must be transmitted for alt upcrations increases as well,
Specifically, the number of representatives that can be destroyed while still maintaining availability of a
(2i=1)-i- isuite is i—1. The graphs show that the amount of work at cach node for a Delete operation, and

the size and makeup of cach representative do not vary appreciably over the spectrum,

36

=
4]

® Current Entries

» Qutdated Entries

+ Ghost Entries

o Ail Entries (Size Ratio)

~d
o

Expected Composition Ratio
:-t by
[0 Y

g
Q

'\7-
.o 'l s A 'S A L 'y i
1 2 3 4 5 6 7 a8 9 10

Figure 20: Expected Composition Ratios in a 10 - (11— W) - W Suite

Finally, we present some fairly surprising results concerning the limiting behavior of the performance

measures. First let us examine the cxpected length of a delete list, 4 Recall, the formula for d is:

s N=

.
l.et us maximize it subject to the (real) constrainis that N>1 and 1< W< N. As we would expect, this
cxpression grows when the suite size increases and when the write quorum decreases. Thus the expression

approaches its maximum when N tends to infinity and W is set to 1, its lowest permissible value. So:

lim aN=4
d< N> o T3 =4

In other words, the average size of a delete list will not grow beyond four, no matter what values we pick for

these parameters.

37

Figure 21: Expected Delete List Lengths in a 10 - (11— W) - W Suite

A similar result holds for the size ratio (F, [8/3]). The expression for this quantity is:
2{N+ g}
FLERK] .
Standard methods show that this expression, subject Lo the same constraints as before, also approaches its

maximum when W=1 and N tends to infinity. Thus its value is bounded by:

im N+2 _
N> o HF1 =2

These two performance measures completely specify the time and space requirements of the system.
Thercfore, performance cannot degrade without bound, regardless of what values we choose for the

parameters,

4.2.6 Discussion of the model

The primary purposc of this section is to discuss the validity of the analysis and apptlicability of the results.
Since the mode! itseif is exact, the correctness of the assumptions embodicd in the analysis determine its

validity. Therefore, we shall enumerate and examine the four assumptions:

1. In each bajance equation, we assumed that the three operations (Insert, Update and Delete) occur
with cqual probability. (p. 44) '

2. In the balance cquation for current ciitries, we assumed that the probability that a representative
contains an ¢ntry for the real predecessor of a randomly chosen key in the directory was equal to
the probability that it contained a randomly choscn key in the directory. {p. 45)

38

o 1.2¢ . o o
= o —o— < ° ©
g —
| =
L
% 1.0}
a e Current Entries
g- » Outdated Entries
8 + Ghost Entries
o o All Entries (Size Ratio)
o .8l
Q
3
LTJ \‘\‘_\—F
sl ——— —e - —e e
4L
21 . - » - +* ¥ —
al-‘-"’/'—')) i
_0 M i 1 A M 1 M N
2 3 4 5 6 7 8 9 10

Figure 22: Expected Composition Ratios in a (2i-; 1) - i- i Suite

3. In the balance equations for current and ghost entrics we ignored the possibility of a ghost entry
becoming outdated or current in the Insert operation. (pp. 47, 48)

4. In the formula for K[G/%] we assumed that cach Ghost in a representative appeared in exactly
two dcelete lists. (p. 34)

The first assumption holds in all states of the mode! except those representing dircctories containing every
key in the key space or no keys at all. One cannot insert a key if there are no more keys to insert, and one
cannot delete a key if there are no keys in the dircctory. However, these "boundary states™ represent a
negligible fraction of all system states and occur with extremely low probability, assuming the key space is
reasonably large. If the key space is small, it takes a much shorter run of inserts to fill the directory or deletes
to empty it; thus these boundary states occur with much greater likelihood. In fact, the key space used in the

simulations was large cnough that these states were never encountered.

39

Figure 23: Expected Delete List Lengths in a (2i=1)- - iSuite

‘The second assumption concerns the probability that a representative contains an eatry for the real
predecessor of a chosen key. Tn any given system state, the number of keys in the directory that have an entry
in a given representative can differ by at most one from the number of keys whose real predecessor has an
entry in this representative. This is so because all of the keys in the dircctory except the last one are the real
predecessor of another key in the directory. Thus, the probability that a randomly sclected key has an entry in
this representative differs by at most 1/% from the probability that the reat predecessor of a randomly
sclected key has an entry in the representative. But if the key space is large, % will be farge in the system

states that occur with high probability and this assumption will be almost correct,

The third assumption is that ghost entries cannot enter the outdated or current class in an Insert operation.
This actually occurs when a key that has been deleted from the dircctory is reinserted while a ghost for the
original incarnation of the key stll exists in some representative. This event is extremely unlikely when the
key spacc is large compared to the number of entrics in a representative. “The simulations were not run long
enough for the directory to contain a sizable fraction of the key spacc, thus they erred in the same direction as
this assumption. 'This assumption would seem to break down in ghost prone configurations where & is much
greater than W, However, as long as the representatives contain ghosts for a negligible fraction of the key

space, the assumption remains valid,

The fourth assumption is very similar to the sccond. In fact, all ghosts in a representative except those

before the first key in the dircctory and after the last key in the directory do occur in two delete lists.

40

Haowever. in all reasonably likely states, the ghdsrs arc fairly well distributed among the keys in the directory,
thus on average, only a small constant number of ghosts will be on anly onc delete list. For representatives
containing reasonably many cntries, these few ghosts will be “swamped” by Lhe ghosts that appear on two
delete lists, and /2 will be almost identical to G/36. 1T the key space is reasonably large, the approximation

will be good in all reasonably likely states and the assumption will be valid.

In summary, al! of the assumptions quickly become reasonable as the key space gets large. (This is the only
point where the key space size cnters into our analysis. It was not used explicitly in any of the equations.)
None of the assumptions break down when N or W gets large {assuming the key space is large); thus, the
results concerning limiting behavior are valid. "This also implies that the formulae can be used with

confidence for any parameter vatucs,

A note should be added concerning the equilibria observed in the simulations. 'These cquilibria definitely
did not represent true cquilibrium state distributions over our entire modct. ‘This is clearly demonstrated by
the fact that the simulations did not generate identical average values for the number of keys in the directory
{36} from run to run, The observed average valucs for 3% were clearly related to the initial number of keys in
the directory in cach run, This is not at all surprising, when one considers that the number of states in the
maodel is exponential in the key space size, and the simulations were run for far fewer steps than the key space
size itself. We proved that a simulation of sufficient length would display equilibrium behavior over the
entire modcl, but our runs were not of sufficient length, This leaves unexplained the fact that the runs

exhibited predictable equilibrium behavior for all of the performance mcasures of concern to us.

The explanation for this pheriomenon lies in the fact that our simplified modcl-is still highly lumpable,
Moderately sized "clumps” of contiguous states with rcasonably high probabilities of occurrence, such as
those traversed in each run of the simulation, have the same average values for the performance variables as
those predicted for the entire model. In fact, it is likely that our model captures these clumps better than it
capturcs the entire state space, as the clumps tend not to contain the "boundary states” where the assumptions

break down,

4.3 Discussion of Performance Characterization

The system simulated and analyzed was not entirely realistic, Read and write quorums would not be chosen
randomly in practice. A node would more naturally communicate with casily accessible nodes. Also, because
of the cost of establishing a communication session, the node would probably continue to communicate with
the same nodes until it had no need for further commuaication or a failure occurred. Thus, in practice, the
read and write quorums used by any given node would probably change infrequently. However, we strongly
conjecture that the performance observed under these conditions would be as good as or better than that of

the system studiced,

41

One possible usage pattern for the system is the following: a single read/write quorum that changes
infrequently is used for all operations. ‘This is a special case of the scenario described in the previous
paragraph. We performed additional simulations (0 investigate the behavior of the system under this usage

pattern,

These simulations were identical to the ones previously described except that before cach Insert, Update,
and Delete operation, a decision to change the quorum was made with probability p. Whenever it was
determined that the quorum was to change, a single, randomly chosen member of the quorum was replaced
with a representative chosen at random from those not already in the quorum. Thus. on any given iteration at
most onc member of the write quorum changed. This usage pattern could oceur if a dircctory suite were

being used by a single requester.

Simulations were performed on 3-2-2 dircctorics initially containing 100 keys, with p values of 0.1, 0.01,
0.001, and 0.0001. ‘I'wo hundred thousand operations were perfurmed in cach simulation and data was
collected during the final one hundred thousand operations. ‘The results sirow that as the .valuc of p decreases,
the average delete list size decreases significantly from the value observed under random usagﬁ. An average
delete list size of 0.44 was observed when the value of p was 0.1, 0.25 when the value of pwas 0.01, 0.28 when
the value of p was 0.001, and 0.02 when the value of p was 0.0001. The size ratios did not change significantly
from the size ratios obscrved under random usage. ‘These results indicate that the total number of outdated
and ghost entrics remains close to the total under random usage, but they are now concentrated outside of the
write quorum. ‘Thus, the delete lists actually encountered tend to be shorter than those observed under

random usage.

The results of this simulation are consistent with our conjecture that the performance of the system will be
at least as good under any realistic usage pattern as it was under the random usage studied in the simulations

and analysis,

5 Discussion

The comparison of weighted voting with non-distributed techniques such as mirroring is a complex topic
that this paper will not attempt to cover. However, it appears that there is a clear tradeoff between function
and performance. Weighted voting provides higher survivability, rcliability, availability, and casicr
maintenance than mirroring, but requires more inter-node communication and incurs the incfficiency and
complexity of an underlying transaction mechanism. The advantages of weighted voting primarily result
from the storage of data at autonomous nodes that can be physically scparated. Though the overhead of

transaction and communication mcchanisms may be reduced (or accepted because of their utility in

42

constructing complex systems). dircctory suite operations will always require at least one non-local operation

o preserve availability,

Weighted voting may be used in various ways to implement replicated directorics that support a high
volume of operations. [f Lookup operations predomninate, suite configurations with a large number of
representatives and a write quorum much larger than the read quorum permit intra-suite paralletism, ‘T'here
are no casy solutions to the problems caused when a large collection of operations simultancously attempt to
update information associated with the same key: however, any directory may be statically partitioned into
scparaic sub-dircctories in which concurrent operations can take place. Such sub-dircctorics can be
represented as directory suites. ‘l'erry [l'erry 84] has analyzed the perforinance of various directory

partitioning schemes for Lookup operations.

Directory suites can also be configured to take advantage of locality of reference with respect to keys. [n
particular, quorums can he chosen that permit reads to be dong locally and non-local writes to be distributed
among all the non-local representatives.” For example, consider a 4-2-3 directory suite with key values in the
range of 1 to 100, and locality such that transactions of Type A operate on entrics having keys 1 w 50, and
transactions of T'ype B operate on entrics having kcys 51 to 100, We assume that representatives Al and A2
are local to transactions of Type A and representatives Bl and B2 are local to transactions of Type B. As
shown in Figure 24, Type A transactions read from representatives Al and A2 and direct their updates to Al,
A2, and cither Bl or B2, ‘Transactions of type B behave analogously. In this exampile, all inquiries can be
done locally and the non-local write that is required for modification operations is cvenly distributed among

the remote representatives.

In read quorums for In read querums for In read quorums for In read quorums for
keys: 1-50 keys: 1-50 keys: 51-100 keys: 51-100

In write quorums for In write quorums for In write quorums for In write quorums for
keys: 1-75 keys 1-50, 76-100 keys: 1-25, 51-100 keys: 26-100

Representative A1

Representative A2

Representative B1

Representative B2

Figure 24: A 4-2-3 Directory Suite Partitioned for Locality

The ways in which this algorithm will actually be used will become known once implementations are

available. We have begun an implementation and resolved some details not addressed in this paper. For

90(' course, failures that require the quorums to change will result in a performance loss.

43

example, our implementation stores data for 'dirccmry representatives as B-trees [Comer 79], and version
numbers for gaps arc stored in fickds in their bounding cntrics. We envision using version numbers
containing 48 or more bits to prevent cycling. When completed, the implementation will run on a
transaction-based system that we arc building on a modificd version of the Accent kernel [Rashid 81, Spector
83b, Spector 83a). Our transaction manager uses write ahead tog protocols described by Schwarz and

Spector [Schwarz 83b] for recovery from failures.

In summary, we have presented a replication algorithin for dircctories that exhibits favorable performance
and availability propertics. As is the case with Gifford's algorithm, the exact configuration of suites can be
tailored to provide higher or lower availability, and higher or lower performance. [his algorithm achieves
high concurrency while maintaining consistency by dynamically partitioning the key space into ranges at cach
representative and associating a version number with cach range. We have proven a property of directory
suites that permits all operations, including deletions, to be done in a small number of messages that depends
only on the size of the read and write quorums. Both simulation and analytic results show that the time and

space costs associated with using our algorithm are low.
Acknowledgments

James Driscoll suggested impmveﬁmnts to our initial dynamic partitioning algorithm that resulted in the
algorithm presenied in this'papcr. John Lehoczky provided invaluable assistance in the definition and
analysis of our analytic model. David Gifford, Solom Heddaya, Cynthia Hibbard, and Robert Sansom read
and commented on drafts of this paper.

44

|. Detailed Formulation of Balance Equations

[.et us first construct the balance equation for current cntrics. A formal statement of the rate balance -
assertion is:

F{The number of entries entering the current class in a chosen representative in one operation)
= K[I'hc number of entrics lcaving the current class in a chosen representative in one operation].

These cxpected values are computed over a space consisting of all of the possible state transitions in our
model. We cxpand the expectation values on both sides of the equation by breaking the space up into three
subspaces: the transitions that result from Insert operations, Update operations and Delete operations:

P[Opr is Insert] X E[T'he number of entries entering the current class in onc Insert opr]
+ P[Opris Update] x E[Fhe number of entries entering the current class in one Update opr]
+ P[Opr is Delete] x F{The number of entrics entering the current class in one Delete opr]
= PlOpr is Insert] X E[1'he number of entries leaving the current class in one Insert opr]
+ P{Opr is Update] x E[he number of entrics leaving the current class in one Update opr}
+ P{Opr is Delete] x EfThe number of entrics leaving the current class in one Delete opr] .

We will assume that all of the probabilitics in this cquation are }, as lnserts, Deletes and Updates occur with
almost equal likelihvod. The reason that they do not occur with exactly equal likelihood is that Deletes and
Updates cannot occur in states where the dircctory contains no keys, and Inserts cannot occur in states where
the suite alrcady contains every key in the key space. However, these states represent a negligible fraction of
the state space and they all occur with extremely ow probability. Each term has one of these factors, so under

the assumption, they all cancel out.

'Fo derive the first balance equation in terms of the unknowns, we expand the ¢xpected values in the order

they appear in the equation. The first term is:
E[The number of entrics entering the current class in one Insert operation] .

A single entry will enter the current class if and only if the representative under observation is chosen for the
write quorum of the Insert operation. Thus the expected value is mercly the probability that the
representative is chosen. Since there are A representatives in the suite, and W arc chosen at random for the

write quorum, this is % .

The second term is:
Efthe number of entrics entering the current class in one Update operation] .

Again, an cntry can enter the current class only if the representative is chosen for the write quorum. This
time, however, the entry for the key being updated will not nccessarily enter the current class, as the
representative could already have contained a current entry for this key. In that case, no entry that was not

already current would become current. Thus, the value of the term is:

P[The representative is chosen for the write quorum] _
X {1 — P[The representative alrcady contains a current entry for the key being updated]) .

45

‘The probability that the representative is chosen for the write quorum is 7”5 . ‘The key to be updated is chosen

at random from those in the suite so:

P[The representative alrcady contains a current entry for the key being updated]
P[I'he representative contains a current entry for a randomly chosen key in the directory]
= ¢/

I

Thus, the value of the sccond term is:

Fa—en.

The third term is:
E[The number of entrics entering the current class in one Delete operation] .

When a Delete operation occurs, entries for the real predecessor and real successor of the key being deleted
are inserted into cach member of the write quorum where they do not aircady appear. Of course they are
inserted with their latest version number so they become additional current entrics in those representatives.
This is the only way entrics can enlter the current class in a Delete operation. Thus the number of entrics
entering the current class in the observed representative in one Delete operation is zero if the representative is
not chosen for the write quorum. If it is chosen for the write quorum, then one entry will become current if
the representative does not contain an entry for the real predecessor of the key being deleted, and another

entry will become current if the representative does not contain an entry for the real successor.

We introduce some notation for cvents to simplify the discussion that follows:

P = {The representative contains an entry for the real predecessor of the key being deleted}
3 = {The representative contains an entry for the real successor of the key being deleted} .

On the basis of the previous observations, the value of the term being expanded is:
P[The representative is chosen for the write quorum] x(P[£¢]+ P{S¢])
= F((L-P[P)+(1-PISD).

While P[] and P{S] cannot be exactly expressed in terms of our unknowns, they can be very closely
approximated. The key to be deleted is chosen at random from thosc in the dircctory, and its real predecessor
is merely the key immediately preceding it in the dircctory. If the key being deleted is the first key in the
dircctory, its rcal predecessor is the dummy key LOW, which is always present in every representative. ‘Thus
the probability that the real predecessor is present in the rcprcséntntivc (P[7]) is just slightly higher than the
probability that a randomly chosen key in the directory is present in the representative. For a huge key space
like the one used in the simulations they will be practically identical. By symmetry, the same argument holds
for the real successor. In fact, it shows that P[?]=P[S]. Therefore, we make the assumption that:

P[P)=P[The rcpresentative contains an entry for a randomly chosen key in the dircctory]
= P[The representative contains a current entry for a randomly choscn key in the directory]
+ P{The representative contains an outdated eatry for a randomly chosen key in the dir.]
=c¢'+ 0o,

The third term becomes;

2=’ + o).

Now we come to the terms on the right hand side of the balance equation. The first term on the right hand
side is:
E[1'he number of cntries leaving the current class in one Insert operation] .

This term vanishes, as no entries lcave the current class in Insert operations.

The second term on the right hand side is:
E[I'he number of entrics leaving the current class in onc Update operation] .

If the representative under observation contains a current entry for the key being updated, and the
representative is not chosen for the write quorum, then the current entry becomes outdated. Thus the value

of this term is;

(1 — P[The representative is chosen for the write quorum])
x P{I'he representative contains a current entry for a randomly chosen key in the directory]

=(1—7’§¥)c’.

The third terim on the right hand side is:
E[T'he number of entrics leaving the current class in onc Delete operation] .

I the representative snder observation contains a current entry for the key being deleted, the entry will leave
the current class regardless of whether or not the representative is chosen for the write quorum. If it is

chosen, the entry will be deleted outright; otherwise, the entry will become a ghost. Thus the value of this

term is; .
P{The representative contains a current entry for the key being updated]

=c’.

Combining all these terms, the balance equation for current entries is:
¥+ wl—e)+2x (1= +oN=(1—F)c' +¢’.
Simplifying, we get:

A+ Eye'+ Kor=2%.

We now construct the batance cquation for outdated entrics. By an argument identical to the one used in

the construction of the first balance cquation, a formal statement of the rate balance asscrtion becomes:

47

E[T'he number of entries entering the outdated class in one Insert operation]
+ EfT'he number of entrics entering the outdated class in once Update operation)
+ EK[The number of entries entering the outdated class in one Delete operation]
= K[The iumber of entries leaving the vutdated class in one Insert operation]
+ Ff'he number of entries leaving the outdated class in one Update operation]
+ F[I'he number of entries leaving the outdated class in one Delete operation] .

We shall assume that entries cannot enter the outdated class in Insert operations, so the first term of the left
hand side of the equation vanishes. [n fact. if a key is inserted when ghosts for a previous incarnation of that
key still remain in representatives outside of the write quorum for the lasert operation, those ghosts will
become outdated. However, this is an extremely unlikely event, hence this term of the equation is negligible

compared to the others. Furthermore, it is not expressible in terms of the unknowns.

Entrics cannot enter the outdated class in the Delete operation, so the third term of the equation also
vanishes. In the Update operation an entry can become outdated as follows. If the representative is not
chosen for the write quorum and it contains a current entry for the key being updated, then the entry becomes
outdated. Thus the value of the sccond terms is:

(1 = P[The representative is chosen for the write quorum])
x P[T'he representative contains a current entry for a randomly chosen key in the directory]

= (1-H)e’.

Entrics cannot lcave the outdated class in Insert operations, so the first term of the right hand side of the
cquation vanishes. In an Update operation, an cntry can leave the outdated class as follows. [f the
representative.is chosen for the write quorum and it contains an outdated entry for the key being updated,

then this entry is replaced by a current one. Thus, the second term on the right hand side is:

P[The representative is chosen for the write quorum]
X P[T'he representative contains an outdated entry for the key being updated]
P[The representative is chosen for the write quorum)
x P[The representative contains an outdated entry for a randomly chosen key in the directory]

Il

=7kaa’.

In a Delete operation, an entry can lcave the outdated class as follows: If the representative contains an
outdated entry for the key being deleted, then the entry disappears if the representative is chosen for the write
quorum, and it becomes a ghost if the representative is not chosen for the write quorum. Thus the third term

on the right hand side is;

P[The representative contains an outdated entry for the key being deleted)
P[The representative contains an outdated entry for a randomly chosen key in the directory]

=0,

43

Putting it all together, the balance equation for outdated entrics is:
(1=Fye'=Ho'+ 0.

Simplifying, this becomes:
Finally, we construct the balance cquation for ghost entrics. A formal statement of the balance assertion

becomes:

E[The number of entrics entering the ghost class in onc lnsert operation]
+ F[I'hc number of entries entering the ghost class in one Update operation]
+ F[I'he number of entrics entering the ghost class in one Delete operation]
= E[The number of entries lcaving the ghost class in one Insert operation]
-+ F[The number of entrics lcaving the ghost class in onc Update operation]
+ K[The number of entries lcaving the ghost class in one Delete operation] .

Entries can only enter the ghost class in Delete operations; thus, the first and sccond terms of the equation
vanish. An entry becomces a ghost in a representative if its key is being deleted and that representative is not
chosen for the write quorum of the delete operation. Thus the second term is:

(1 = P[The representative is chosen for the write quorum])}
x P[The representative contains an entry for a randomly chosen key in the dircctory)

= (1= ¥)c’+0).

Entries rarcly lcave the ghost class in Insert operations, thus we shall assume the first tcrm on the right hand
side vanishcs. (This is essentially the same assumption we made on page 47 when constructing the balance
equation for outdated entrics.) FEntries cannot leave the ghost class in Update operations, thus the second
term on the right hand side actually does vanish. 1f the representative is chosen for the write quorum of the
Delete operation then all of the ghests constituting the delete list of the key being deleted will be removed

from the representative. Thus the third term of the right hand side is:

P[The represcntative is chosen for the write quorum]
x ¥ The size of the delete list of the the key being deleted]
= P[The representative is chosen for the write quorum]
X EfThe size of the delete list of the a randomly chosen key in the directory]

K.

hi

Puiting the terms together, the balance equation for ghosts is:
(1- #)c'+0)=Hd.
Simptifying:

d= 32 (e’ + o).

[Allchin 83aj

[Allchin 83b]

[Alsberg 76]

[Bardet 81]

[Birman 83]

[Comer 79]

[Danicls 83]

[Gifford 79]

[Gifford 81]

[Gray 81]

49

1. E. Allchin, M.S. McKendry. A

Synchronization and Recovery of Actions.

In Proc. of the Second Principles of Distributed Computing Conference, pages 31-44. August,
1983.

James E. Allchin, Martin S. McK endry.,
Facilities for Supporting Atomicity in Operating Systems.
‘Technical Report GI'T-CS-83/1, Georgia Institute of Technology, January, 1983.

P. A. Alshberg, J. ID. Day.
A Principle for Resilient Sharing of Distributed Resources.
In Proc. 2nd International Conf. on Software Engineering, pages 562-570. October, 1976.

Joel Bartlett.
A NunSwp[M Kernel,
In Proc. Eighth Symp. on Operating System Principles. ACM, 1981.

K. P. Birman, 1. Skeen, A. E! Abbadi, W.C. Dietrich. I Racuchle.
Isis: An Environment for Constructing Fault-Tolerant Distributed Systems.
Technical Report 83-552, Cornell Unviersity, 1983.

Douglas Comer.
The Ubiquitous B-Tree.
ACM Computing Surveys 11(2):121-137, June, 1979,

DDean Danicls, Alfred 7. Spector.,
An Algorithm for Replicated Directories.
In Proc. of the Second Principles of Distributed Computing Conference. August, 1983,

David K. Gifford ,
Weighted Voting for Replicated Data.
In Proc. Seventh Symp. on Operating System Principles, pages 150-162. ACM, 1979,

David K. Gifford. :

Information Storage in a Decentralized Computer System.

PhDD thesis, Stanford University, 1981.

Available as Xerox Palo Alto Research Center Report CSL-81-8, March 1982.

James N. Gray, ct al.
‘The Recovery Manager of the System R Database Manager,
ACM Computing Surveys (2):223-242, June, 1981.

[TBM Corporation 75]

[Kemeny 60)

[Korth 83]

ACP System: Concept and Facilities
GH20-1473-1 edition, IBM Corporation, White Plains, New York, 1975.

John G. Kemeny, I, Laurie Snell.
Finite Markov Chains,
. Van Nostrand & Co., New York, 1960,

Henry F. Korth.
Locking Primitives in a Database System.
Journal of the ACM 30(1), Jaunary, 1983.

50

[L.indsay 79] Bruce G. [Lindsay, et al.
Notes on Distributed Dalabases.
IBM Rescarch Report RJ2571, IBM Rescarch Laboratory, San Josc, Ca., July, 1979.

[l.iskov 82] Barbara 1.iskov and Robert Scheifler,
Guardians and Actions: Linguistic Support for Robust, Distributed Programs,
In Proceedings of the Ninth ACM SIGACT-S5IGPLAN Symposium on the Principles of
Programming Languages, pages 7-19. Albuquerque, NM, January, 1982,

[Popek 81} G. Popek ct al.,
LLOCUS: A Network Transparent, High Reliability Distributed System,
In Proc. Eighth Symp. on Operating Systemn Principles. ACM, 1981,

[Rashid 81] Richard Rashid, George Robertson.
Accent: A Communication Oricnted Network Operating System Kernel,
In Proc. Eighth Symp. on Operating System Principles. ACM, 1981,

[Rothnic 77) 1. B. Rothnie, N. Goodman, P.A. Bernstein,
The Redundant Update Methodology of SDD-1: A System for Distributed Databases (The
Fully Redundant Case). ,
Technicat Report CCA-77-02, Computer Corporation of America, 1977,

[Schwarz83a] Peter M. Schwarz, Alfred 7. Spector,
Synchronizing Shared Abstract Types.
Carncgic-Mcllon Report CMU-CS-83-163, Carncgie-Mecllon University, Pittsburgh, PA,
November, 1983,
Revised cdition of CMU-CS-82-128.

{Schwarz83b] Pecter M. Schwarz, Alfred Z. Spector.
Recovery of Shared Abstract Types.
Carncgic-Mcllon Report CMU-CS-83-151, Carnegic-Mellon University, Pittsburgh, PA,
October, 1983,

[Spector 83a] Alfred 7. Spector, Peter M. Schwarz,
Transactions: A Construct for Reliable Distributed Computing.
Operating Systems Review 17(2):18-35, April, 1983.
Also available as Carncgic-Mellon Report CMU-CS-82-143, January 1983.

[Spector 83b] Alfred Z. Spector.,
Modifying the Accent Kerne! to Support TABS Recovery.
November, 1983.

[Terry 84] Douglas B. Terry,
An Analysis of Naming Conventions for Distributed Computer Systems.
In Proceedings of SIGCOMM 84 Symposium: Communications Architectures and Prolocols.
June, 1984.
To appcar. Also available as Department of Electrical Engineering and Computer Science
Technical Report UCB/CSD/83/156, University of California, Berkeley.

[Traiger 82] Irving L. Traiger, Jim Gray, Cesare A. Galticri, Bruce G. Lindsay.
Transactions and Consistency in Distributed Database Systems.
ACM Transactions on Database Systems 7(3):323-342, Scptember, 1982,

51

[Weihl 83a] W. Weihl, B. Liskov.
Specification and Implementation of Resilient, Atomic Data T'ypes.
In Symposium on Programming Language Issues in Software Systems. June, 1983.

[Wcihl 83b] William E. Wcihl,
Data Dependent Concurrency Control and Recovery.

In Proc. of the Second Principles of Distributed Computing Conference, pages 73-74. Au gust,
1983,

