
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Weighted Voting for Directories:
A Comprehensive Study

Joshua J. liloch. Dean S. Daniels and Alfred Z. Spcctor

April 15, 1984

Abstract

Weighted voting is used as the basis for a replication technique for directories. This technique affords
arbitrarily high data availability as well as high concurrency. Kfficicnt algorithms arc presented for all of the
standard directory operations. A structural property of the replicated directory that permits the construction
of an efficient algorithm for deletions is proven. Simulation results arc presented and the algorithm is
modeled and analyzed. The analysis agrees well with the simulation, and the space and time performance are
shown to be good for all possible configurations of the system.

Technical Report CMU-CS-84-114

Copyright © 1984 Joshua J. Bloch, Dean S. Daniels and Alfred Z. Spcctor

ITiis work was sponsored in part by the Defense Advanced Research Projects Agency, ARPA Order No. 3597,
monitored by the Air Force Avionics Laboratory under Contract F33615-81-K-1539 and in part by the NSF
under Contract MCS-8308805

The views and conclusions contained in this document arc those of the authors and should not be
interpreted as representing the official policies, cither expressed or implied, of any of the sponsoring agencies
or the US government.

i

Table of Contents
1 Introduction
2 Related Work and Motivation
3 Details of the Algorithm

3.1 Directory Representatives
3.2 Directory Suites
3.3 An Efficient Algorithm for the Real Predecessor Operation
3.4 Enhancements to the Real Predecessor Algorithm
3.5 Correctness Arguments
3.6 More on Synchronization and Recovery

4 Performance Characterization
4.1 Simulation Results
4.2 Analytic Model

4.2.1 Construction of the Model
4.2.2 Method of Analysis
4.2.3 Formulation of Balance Equations
4.2.4 Solution of Balance Equations
4.2.5 Results
4.2.6 Discussion of the model

4.3 Discussion of Performance Characterization
5 Discussion

Detailed Formulation of Balance Equations

11

List of Figures
Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:

A 3-2-2 Directory Suite - Initial Configuration
Directory Suite After Inserting M b "
Directory Suite After Deleting M b "
Directory Suite After Inserting "b M

Directory Suite After Deleting "b"
Directory Representative Operations
Compatibility of Directory Representative Lock Classes
Lookup Operation
Insert Operation

Directory Suite from Figure 5 After Inserting "bb"
Directory Suite from Figure 10 After Deleting M a"
Delete Operation
Suite for illustration of region of currency and related terminology
Effect of the insert operation on regions of currency, within write quorum
Effect of the delete operation on regions of currency, within write quorum
Real Predecessor Operation
Size Ratios for Various Directory Suites
Delete List Lengths for Various Directory Suites
Detailed Simulation Results for three 3-2-2 Directory Suites
Expected Composition Ratios in a 10 - (1 1 - W) - I f Suite
Expected Delete List Lengths in a 10 - (1 1 - W) - W Suite
Expected Composition Ratios in a (2/— 1) - / - / Suite
Expected Delete List Lengths in a (2 / - 1) - / - / Suite
A 4-2-3 Directory Suite Partitioned for Locality

1

1 Introduction

The goals of object replication on distributed computing systems arc increased parallelism, reduced

communications costs, and increased resilience in the presence of failures. In particular, replication can

permit increased data availability - continued access to objects despite failures of one or more storage nodes.

Unfortunately, it is difficult to achieve high performance and reliability while ensuring that the semantics of

replicated data objects arc identical to those of their non-rcplicalcd counterparts.

In this paper, we describe and analyze a scheme for replicating directories that permits concurrent

operations and arbitrarily high data availability. The semantics of the replicated directory arc typical of

directories stored on a single node: We define a directory as an abstract data object that maps keys to values.

Keys arc chosen from a large ordered set of constants called the key space. Directories arc accessed and

modified with the following operations:

• Inscrt(K:Key, V:\alue) - Associates the value V with the key K. Once inserted, the key is said to
be /// the directory. This operation is permitted only when K is not already in the directory.

• Update(K:Key, V:Value) - Associates the (new) value V with the key K.This operation is
permitted only when K is already in the directory.

• l)clctc(K:Key) - Removes K from the directory. This operation is permitted only when K is in the
directory. After this operation is performed, K will no longer be in the directory.

• Lookup(K:Kcy) Rcturiis(Hoolcan, Value) - Returns TRUE, and the value associated with K, if
K is in the directory. Returns FALSE and an undefined value if K is not in the directory.

Attempting to perform an operation that is not permitted provokes an error response but does not affect the

contents of the directory. Minor modifications of our scheme may be used to implement sets, multisets or

similar abstractions.

The replication algorithm described here is an extension of one initially presented by Daniels and

Spector [Daniels 83]. It is based on Gifford's weighted voting algorithm [Gifford 79, Gifford 81], and has

similar performance and reliability advantages. However, unlike Gifford's algorithm, this algorithm

efficiently associates a separate version number with each possible key at every replica. This permits

concurrent operations on different entries and solves certain problems in the implementation of the deletion

operation. Unlike most replication algorithms, which arc concerned with simple objects having only read and

write operations, this algorithm uses the semantic properties of directories, and thereby gains increased

performance.

This work on replication is part of the TABS (Transaction-based Systems) Project, which is studying

distributed systems that use a transaction facility to support operations on shared abstract data types [Schwarz

file://V:/alue

2

83a, Spector 83a]. The directory described in this paper is an example of a scriali/ablc, distributed abstract

data type that is constructed from a collection of more primitive, non-scrializahle, non-distributed types, each

of which use synchronization and recovery primitives supported by such a transaction facility. Additional

components of our research address synchronization, recovery, and communication issues. Groups at

Cornell, MIT, and Georgia Institute of Technology arc also investigating the wider use of

transactions [Allchin 83a, Allchin 83b, Birman 83, Liskov 82, Wcihl 83a, Weill! 83b].

In the following sections, we survey related replication work and provide motivation for our directory

replication algorithm. We describe the algorithm in detail and present efficient algorithms for each directory

operation. A basic structural property of tine replicated directory, which permits the construction of an

efficient algorithm for the Delete operation, is proven. We show that the algorithm's concurrency

performance can be improved by relaxing the synchronization requirements for the directory replicas.

Following this presentation of the algorithm, wc present performance data obtained by simulation and

develop a mathematical model of the system being simulated. We analyze the model and compare the results

of the simulation and die analysis. These results demonstrate that the algorithm's space and time

requirements are good in all possible possible configurations of the system. Finally, wc discuss the advantages

and uses of the algorithm.

2 Related Work and Motivation

There arc non-distributed and distributed approaches to data replication. In the non-distributed

approaches, a single controlling node utilizes dual-copy, or mirrored, storage. Data is written sequentially to

both copies, but read from only one. Should a controlling node crash, another node gains control of the

storage. Mirroring is commonly used on commercially available systems; for examples, sec descriptions of the

ACP or Tandem T16 systems [IBM Corporation 75, Bartlett 81].

We are more interested in replication techniques that use a distributed collection of cooperating nodes to

store replicas of the data. Many of diese techniques provide higher data reliability and availability than

mirroring, though they generally have higher overhead and complexity. In this section we briefly review the

fundamental distributed replication algorithms and develop a distributed replication strategy for directories

that is based on weighted voting. (See Lindsay for a more complete survey of some of these

approaches [Lindsay 79].)

One fundamental distributed replication strategy is unanimous update: any update operation must be done

on all replicas, but reads may be directed to any replica. This replication strategy guarantees data consistency

if the systems storing each replica guarantee data consistency locally. Unfortunately, the availability for

3

updates of any object is poor when large numbers of replicas arc used. Update availability can be increased

by using the communication system to buffer updates to replicas that arc not available. The SDD-l

distributed database system uses this approach [Rothnic 77].

In replication strategics based on keeping primary and secondary copies of data, the primary copy receives

all updates and then relays the updates to secondary copies [Alsbcrg 76]. An inquiry may be sent to a

secondary copy, but the result may not reflect the most current updates. Because responses to inquiries might

not reflect recent updates, it is difficult for a primary/secondary copy replication strategy to duplicate the

semantics of a non-rcplicatcd object. Techniques for alleviating this problem have been developed. For

example, each file open operation in the Locus distributed file system ensures the currency of data by

consulting a known synchronization site [Popck 81]. Locus maintains availability after synchronization site

failure by nominating a new synchronization site.

Gifford designed a strategy for replication of files, called weighted voting [Gifford 79, Gifford 81]. In this

strategy, a file is stored as collection of replicas, called representatives, each of which is assigned a certain

number of votes. A representative consists of a copy of the file and a version number. The entire collection

of representatives is called a file suite. Write operations modify each representative in a group called a write

quorum and associate a new version number with all of these representatives. The new version number is

higher dian any version number previously associated with this data. Read operations read from each

representative in a read quorum and return the data from the representative with die highest version number.

In the version of weighted voting described in this paper, write operations establish a higher version number

by incrementing die highest version number encountered in a read quorum.

A write quorum consists of any set of representatives whose votes total at least W and a read quorum

consists of any set of representatives whose votes total at least R. The constants R and Ware chosen so that

dieir sum is greater dian die total number of votes assigned to all representatives. Thus, every read quorum

has a non-null intersection with every write quorum and each inquiry is guaranteed to access at least one

current copy of die data. Current copies will always have a higher version number than non-current copies so

the read operation will always return current data.

Weighted voting has several attributes that make it particularly appealing as the basis for the design of a

replicated directory. First, the sizes of die read and write quorums may be varied to adjust die relative cost

and availability of reads and writes. For example, a unanimous update strategy may be specified if die data is

read much more frequently than it is written. Second, a representative widi zero votes may be used to store a

locally cached copy that is usually current. This situation naturally occurs if a single local site performs most

updates and always updates the cached copy. An example use of such a cache is in a distributed file system

4

where there is strong locality of file access. Last, the algorithm is simplified because consistency and recovery

arc primarily the responsibility of an underlying transaction facility that is assumed to exist on each

representative. The use of a common underlying transaction facility is advantageous because the facility can

simplify distributed applications that use other types of objects in addition to files.

While weighted voting is an appealing approach to replication, the basic algorithm cannot be directly

applied to directories without undesirable concurrency limitations. Lvcn though die semantics of directories

permit concurrent operations on different keys, only a single transaction at a time could modify the directory

if it were stored as a file suite. This is because each representative has a single version number, which causes

the serialization of operations that modify die directory.

It might seem diat these concurrency limitations could be overcome if each entry in a directory

representative were assigned a separate version number. An entry is the physical data associated with a key,

and consists of the key and an associated value. However, if such an approach were used, some

representatives might not have a version number for a key that was stored on other representatives. Because

of this fact, it is not always possible to determine from an arbitrary read quorum whether a particular key is in

the directory. This problem is illustrated in the example diat follows.

Consider a 3-rcprcscntativc directory suite having a read quorum of 2 and a write quorum of 2; we call this

a 3-2-2 directory suite. 1 Initially, each representative in the suite contains entries for keys "a" and "c", and

each entry has version number 1 as shown in Figure 1 . Subsequently an entry for "b" is inserted into

representatives A and B with version number I (Figure 2). If a request to look up the key "b" is sent to

representatives A and C at this point, representative A will respond "present with version number 1," and

representative C will respond "not present." If "b" is then removed from the directory by deleting its entry

from representatives B and C (Figure 3), requests to look up "b" on representatives A and C will still elicit the

responses "present with version number 1," and "not present." Thus, if a directory representative fails to

associate a version number with keys for which it has no entry, the responses from a read quorum may not be

sufficient to determine if a given key is in the directory.

The ambiguity demonstrated above is associated with deletions and will not occur if deletions are not

permitted. Alternatively, deletions could be implemented by marking entries to be deleted and then

performing a "garbage collection" operation periodically. However, that operation is expensive and would

The notation N-R-W will refer to a suite having N representatives, a read quorum size of R and a write quorum size of W. For
simplicity, all examples in this paper assume that each representative is assigned one vote. All results generalize to directory suites with
arbitrary distributions of votes.

value field is omitted from all figures for clarity.

5

Version Number: 1
Key: "a"

Version Number: 1
Key: "c"

Version Number: 1
Key: "a"

Version Number: 1
Key: M c"

Version Number: 1
Key: "a"

Version Number: 1
Key: "c"

Representative A Representative B Representative C

Figure 1: A 3-2-2 Directory Suite - Initial Configuration

Version Number: 1
Key: "a"

Version Number: 1
Key: "b"

Version Number: 1
Key: "c"

Version Number: 1
Key: "a"

Version Number: 1
Key: "b"

Version Number: 1
Key: "c"

Version Number: 1
Key: "a"

Version Number: 1
Key: "c"

Representative A Representative B Representative C

Figure 2: Directory Suite After Inserting "b"

Version Number: 1
Key: "a"

Version Number: 1
Key: " b "

Version Number: 1
Key: M c"

Version Number: 1
Key: "a"

Version Number: 1
Key: "c"

Version Number: 1
Key: "a"

Version Number: 1
Key: "c"

Representative A Representative B Representative C

Figure 3: Directory Suite After Deleting "b"

itself be a concurrency bottleneck. A third strategy is to eliminate the ambiguity by consulting additional

representatives whenever an inquiry to an initial set of representatives docs not result in a read quorum of

replies all indicating "present" or "not present." Unfortunately, this approach can drastically reduce

availability.

None of the solutions presented thus far satisfy our demands for concurrency and availability. What is

really needed is a scheme whereby version numbers can be associated with every possible key in die key space

6

at each representative. This can be accomplished by partitioning the key space into disjoint sets and

associating a version number with each set at every representative. Of course, die same partitions need not be

used at all representatives.

The key space could be partitioned at each representative by placing each key for which there is an entry in

a separate partition, and maintaining a single additional partition for all keys that do not have entries. In

other words, each representative keeps a version number for each entry and an additional version number for

use with "not present" responses. Under this scheme, deletions increment the "not present" version number.

Since the "not present" version number applies to a very large set of keys, this approach suffers from

concurrency limitations that arc similar to the limitations of the approach of having a single version number

per representative.

A more promising approach is to partition die key space into ranges on the basis of the order relation on the

keys. The simplest partitioning scheme is to divide the key space into a number of fixed ranges. However, it

is difficult to guarantee sufficient concurrency with such a static partitioning technique. If a small number of

ranges are used, then at most that number of transactions can modify a directory concurrently. If transactions

modify entries in more than one range, concurrency will be further limited. Kvcn if a large number of ranges

are used, an uneven distribution of accesses could limit concurrency.

A more general mediod of partitioning is to allow the partitions at each representative to vary over time, on

die basis of the entries currently in that representative. Such a dynamic partitioning technique is desirable for

directories having sizes or access patterns that vary widely over time. A simple method of dynamically

partitioning the key space at a representative is to create a partition for each key that has an entry in that

representative and a partition for each range of keys between successive entries. These ranges are called gaps.

This method forms the basis of our algorithm.

In this dynamic partitioning approach, lookup requests sent to a representative containing an entry for the

key being looked up return the version number of the entry. Lookup requests on keys for which no entry is

stored return the version number of the gap in which the key lies. Update requests increment the version

number of the entry for the key being updated, insertion requests split a gap, and deletions coalesce the gaps

and entries in a range of keys into a single gap. For example, using this approach, an entry for "b" would be

inserted into representatives A and B of Figure 1 with version number 1, which is one greater than the version

number of the gap between "a" and "c" (Figure 4) 3 . If a request to look up "b" were sent to representatives A

The directory representatives in Figure 4 contain the special keys LOW and HIGH, which delimit the first and last gaps in the
representatives.

7

Version Number: 0
Key: <Low>

Gap Version
Number: 0

Version Number: 1
Key: "a"

I Gap Version
Number: 0

Version Number: 1
Key: "b"

Gap Version
Number: 0

Version Number: 1
Key: "c"

Gap Version
Number: 0

Version Number: 0
Key: <High>

Version Number: 0
Key: <Low>

Gap Version
Number: 0

Version Number: 1
Key: "a"

Gap Version
Number: 0

Version Number: 1
Key: "b"

I Gap Version
Number: 0

Version Number: 1
Key: "c"

Gap Version
Number: 0

Version Number: 0
Key: <High>

Version Number: 0
Key: <Low>

Gap Version
Number: 0

Version Number: 1
Key: "a"

Gap Version
Number: 0

Version Number: 1
Key: "c"

Gap Version
Number: 0

Version Number: 0
Key: <High>

Representative A Representative B Representative C

Figure 4: Directory Suite After Inserting "b"

and C at this point, representadve A would respond "present with version number 1," and representative B

would respond "not present with version number 0." Using these responses, a client could determine that

there is an entry for "b" since that response has the larger version number. If "b" were subsequently deleted

from representatives B and C, then the two gaps on either side of "b" on representadve B would be coalesced.

On both representatives, the gap between "a" and "c" would be assigned version number 2 (Figure 5). Now,

if a request to look up "b" is sent to any two representatives, at least one will return "not present with version

number 2." This resolves the ambiguity that occurred in the initial example, when version numbers were

associated only with entries.

3 Details of the Algorithm

This section presents the details of the approach to directory replication sketched in the previous section.

The descriptions are illustrated with program text in a Pascal-like language that allows procedures to return

multiple values and includes a remote procedure call primitive. Remote procedure calls are written as

"Scnd(<proccdurc invocation>) to(<objcct instancc>)" and are assumed to return values in the same fashion

as a normal procedure invocation. These remote procedure calls have similar semantics to those of ARGUS

8

Version Number: 0
Key: <Low>

Gap Version
Number: 0

Version Number: 1
Key: "a"

] Gap Version
Number: 0

Version Number: 1
Key: "b"

I Gap Version
Number: 0

Version Number: 1
Key: "c"

Gap Version
Number: 0

Version Number: 0
Key: <High>

Version Number: 0
Key: <Low>

Gap Version
Number: 0

Version Number: 1
Key: "a M

Gap Version
Number: 2

Version Number: 1
Key: "c"

Gap Version
Number: 0

Version Number: 0
Key: <High>

Version Number: 0
Key: <Low>

Gap Version
Number: 0

Version Number: 1
Key: "a"

Gap Version
Number: 2

Version Number: 1
Key: "c"

Gap Version
Number: 0

Version Number: 0
Key: <High>

Representative A Representative B Representative C

Figure 5: Directory Suite After Deleting "b"

[Liskov 82], except that error responses, such as timeouts, arc not considered in these examples. Clarity is

emphasized over performance in the programs. Optimizations that would be used in practical

implementations are described in accompanying text.

Operations on directory representatives and directory suites are presented in the first two sections. The two

following sections develop an essential component of the deletion algoridim. Arguments for the correctness

of the replication algorithm arc then presented. The final section discusses ways of modifying the algoritiim's

synchronization policies to provide higher concurrency.

3.1 Directory Representat ives

In a replicated directory, each directory representative is an instance of an abstract object that stores one

copy of die directory data. Arbitrarily complex atomic transactions may be constructed using the basic

operations provided by directory representatives. Thus, directory representatives must synchronize

concurrent operations performed by different transactions and store critical information in a fashion that

recovers from failures. Gifford's weighted voting algorithm makes similar requirements of its file

representatives.

9

D1rRepLookup(x :key) R e t u r n s (b o o l e a n . v e r s i o n . v a l u e) ;
{ I f t h e r e i s an e n t r y f o r x , r e t u r n s TRUE, the v e r s i o n number o f

the e n t r y , and I t s v a l u e ; o t h e r w i s e r e t u r n s FALSE and the
v e r s i o n number o f the gap c o n t a i n i n g x .

Locks R e p L o o k u p (x , x) . }

D 1 r R e p P r e d e c e s s o r (x : k e y) R e t u r n s (k e y , v e r s i o n , v e r s i o n) ;
{ Returns the key and v e r s i o n number o f the e n t r y w i t h t h e l a r g e s t

key l e s s than x . A lso r e t u r n s t h e v e r s i o n number o f the gap
between x and I t s p r e d e c e s s o r . There need not be an e n t r y f o r x .

Locks RepLookup(y ,x) where y 1s the key r e t u r n e d . }

D 1 r R e p S u c c e s s o r (x : k e y) R e t u r n s (k e y , v e r s i o n . v e r s i o n) ;
{ Analogous t o above p r o c e d u r e .

Locks RepLookup(x .y) where y 1s the key r e t u r n e d . }

D 1 r R e p S u p e r s e d e r (x : k e y , v : v e r s 1 o n , y : k e y)
R e t u r n s (b o o 1 e a n , k e y . v e r s i o n , v a l u e) ;

{ Searches t h e range between x and y , s t a r t i n g f rom x . Returns TRUE,
t o g e t h e r w i t h t h e k e y , v e r s i o n number, and v a l u e o f the f i r s t
e n t r y examined between x and y (e x c l u s i v e) w i t h v e r s i o n
number g r e a t e r than v . Returns TRUE and the e n t r y f o r y 1f 1 t
e x i s t s and no e n t r y c l o s e r t o x has v e r s i o n number g r e a t e r
than v . Re turns FALSE 1f t h e r e 1s no e n t r y f o r y and no e n t r y
between x and y w i t h v e r s i o n number g r e a t e r than v .

Locks R e p L o o k u p (x . z) where z 1s the key r e t u r n e d or y i f no key
1s r e t u r n e d . }

D 1 r R e p I n s e r t (x : k e y , v : v e r s i o n , z : v a l u e) ;
{ C r e a t e s an e n t r y f o r key x w i t h v e r s i o n number v and v a l u e z .

Updates the e n t r y f o r key x 1f one a l r e a d y e x i s t s .

Locks R e p M o d 1 f y (x f x) . }

D 1 r R e p C o a l e s c e (1 : k e y , h : k e y , v : v e r s i o n) ;
{ D e l e t e s e n t r i e s f o r any keys between (b u t not I n c l u d i n g) 1 and h.

The r e s u l t i n g gap 1s ass igned v e r s i o n number v . An e r r o r i s
I n d i c a t e d 1f e n t r i e s do not e x i s t f o r keys 1 and h.

Locks R e p M o d 1 f y (l , h) . }

Figure 6: Directory Representative Operations

Every instance of a directory representative contains two distinguished keys, HIGH and LOW. HIGH is

greater than any key that can be inserted into the representative, and LOW is less than any key. HIGH and

LOW simplify the directory suite delete operation by ensuring that all keys have a real predecessor and real

successor in the directory. Real predecessor and real successor have an intuitive meaning, but arc defined

precisely in Section 3.2.

10

Directory representatives provide two operations that are analogous to typical directory primitives:

DirRcpLookup and DirReplnscrt. DirReplnscrt is defined to be useful for both the Insert and Update

operations on directory suites. In addition, directory representatives provide specialized operations that arc

used to implement the directory suite deletion operation: DirRepPredecessor, DirRepSucccssor,

DirRepSuperseder, and DirRepCoalcsce. Figure 6 gives procedure headings for each of these operations.

DirRepPredecessor returns the key and version number of the entry in the representative that is the

immediate predecessor of the key passed as an argument: it also returns the version number of the gap

between the keys. DirRepSucccssor is analogous to DirRepPredecessor. Deletions are performed on a

directory representative using the DirRepCoalcsce operation, which deletes any entries appearing in a range

between two specified entries and assigns a single version number to the resultant gap. Thus, DirRepCoalcsce

coalesces a range of keys into a single gap.

DirRepSuperseder is used in implementing die delete operation on directory suites. The operation searches

a range starting with key x and ending with key y, and returns die entry closest to x with a version number

greater than the one passed as a parameter. If the search reaches key y without locating an entry to return,

then die entry for y (if any) is returned. The operation locates the first entry diat "supersedes" a gap with die

specified version number.

F,ach directory representative must synchronize the concurrent operations of different transactions. While

tliis might be accomplished in many ways, die discussion presented here will assume that type-specific locking

is used [Korth 83, Schwarz 83a]. In type-specific locking, every operation on an abstract object acquires a lock

diat is a member of die set of locks associated with diat object. A lock compatibility relation is used to

determine whether a lock may be acquired by a particular transaction.

The lock classes used in synchronizing a directory representative are die obvious analogues of the lock

classes for a single-copy directory, given by Schwarz [Schwarz 83a]. However, instead of locking single keys,

the lock classes arc generalized to lock an entire range of keys and the granting of a lock depends on whether a

range of keys to be locked intersects the range of keys already locked by some other transaction. Inquiry

operations (DirRepLookup, DirRepPredecessor, DirRepSucccssor, and DirRepSuperseder) set

RcpLookup(a,T) locks, where the range of keys explicitly or implicitly accessed by the operation is those keys

greater than or equal to a and less than or equal to T . A RepModify(a,T) lock is obtained on the keys of

entries modified by the DirReplnscrt and DirRepCoalcsce operations.

The lock compatibility relation for operations on directory representatives is illustrated in Figure 7. In the

figure, [CT...T] and [O-\..T'] are arbitrary non-intersecting ranges of keys, and [<X...T] and [<T"...T"] arc arbitrary

11

intersecting key ranges. Locks arc compatible except that a RepModify lock may not specify a range which

intersects the range already specified by another RcpModify lock, a RepModify lock may not specify a range

which intersects the range already specified by a RepLookup lock, and a RepLookup lock may not specify a

range which intersects a range already specified by a RepModify lock. For example, the compatibility relation

specifics that a transaction may not be granted a RepModifyCa'V") lock if another transaction already holds a

RepI\1odify(a,T) lock.

Lock Held
Lock Requested None RcpModify(a,r) RepLookup(a,T)

Ri'pModify(a",r") OK No No
RcpModiry(a',r') OK OK OK
RcpLookup(<j",r") OK No OK
RepLookup(<7V) OK OK OK

Note: [a..r] intersects [O"..T"] and[o..r\ does not intersect [a\.r*]

Figure 7: Compatibility of Directory Representative Lock Classes

As specified above, the lock compatibility relation is sufficiently strong to guarantee that the actions of

transactions operating on a directory representative are scrializablc [Traigcr 82], provided that two phase

locking is used. This form of synchronization simplifies the correctness arguments given in Section 3.5.

(Section 3.6 presents modifications to these locking rules diat permit greater concurrency.)

Each directory representative is responsible for recovery processing. Recovery processing is necessary to

undo the effects of partially completed transactions cither after a crash or when a transaction abort is

requested by a client. In any recovery scheme it is necessary for a directory representative to record enough

information reliably to redo or undo the effects of those operations that modify the state of die representative.

The details of recovery processing arc specific to the implementation of a directory representative and depend

on the recovery approach used by the transaction system underlying the representative's implementation.

Gray et al., Lindsay ct al., and Schwarz and Spector, among others, present more details on general recovery

algorithms [Gray 81, Lindsay 79, Schwarz 83b].

To redo insert and update operations, the representative must have available the key, version number, and

value of the modified entry. To undo updates, the old value and version number of the entry must also be

recorded. Inserts arc undone by coalescing the gaps on either side of the entry which was inserted. It is not

necessary to record an old version number when performing an insertion, since the version number of the

gaps on either side of an inserted key is the same as the old version number.

12

A coalesce operation may be redone in a straightforward manner, providing that the recovery system redoes

operations in the order in which they were originally performed. An error would occur if a coalesce operation

were redone before the insertions of the entries at either end of the range to be coalesced were redone. To be

prepared to undo a coalesce operation, a representative must reliably record the key, value, version numbers

of all entries deleted by die coalesce operation, and the version numbers of the gaps between entries.

3.2 Directory Sui tes

A directory suite consists of a set of directory representatives, an assignment of votes to representatives, and

the read and write quorum sizes R and W. Operations on directory representatives arc combined to

implement a replicated directory based on the weighted voting rules described in Section 2. Directory suites

implement the operations Lookup, Insert, Update, and Delete, as specified in Section 1.

The Lookup operation sends DirRepLookup requests to a read quorum of representatives and returns the

resulting entry 4 with the highest version number. Code for this operation is given in Figure 8.

Operations diat modify the directory suite must ensure that the version number of a modified entry is

higher than any version number that had been previously associated with die entry's key. In addition, the

Delete operation must exercise care not to coalesce too large a region and thereby inadvertently assert the

nonexistence of keys that arc in the directory.

The Insert operation is quite simple. Insert first looks up the key to be inserted in a read quorum to obtain

the highest version number currently associated with the key. A version number one higher dian tliis number

is used for the new entry, which is dicn inserted into a write quorum ofrcprescntatives. Figure 9 illustrates

diis operation. The Update operation is similar.

Delete must delete an entry from a write quorum by coalescing a range of keys that includes the entry to be

deleted and assigning a version number to die resulting gaps that is higher than that of any entry contained in

the gaps. To avoid asserting the nonexistence of keys that arc actually in the directory, the range to be

coalesced may not contain keys in the directory other than the one to be deleted. Delete coalesces a range that

extends from the real predecessor of the key to be deleted to its real successor, thereby ensuring that there arc

no keys in the directory that lie in the coalesced range. The real predecessor of a key k is the the largest key

less than k that is in the directory. The real successor of a key is defined analogously. The entries between a

key's real predecessor and its real successor on a representative comprise the key's delete list on that

representative.

^Figure 8 shows Lookup returning a version number as well as a boolean and the value associated with the key. The version number is
used by the procedures Insert, and Delete. A user would ignore this number.

13

L o o k u p (k : k e y) R e t u r n s (b o o l e a n . v e r s i o n , v a l u e)
{ Re turn T r u e , t h e v e r s i o n number, and t h e v a l u e of t h e e n t r y f o r k

1f i t e x i s t s ; F a l s e o t h e r w i s e . }
var

{ read quorum has R members }
quorum : a r r a y [l . . R] of D i r R e p ;
r e p s v e r , b e s t v e r : v e r s i o n ;
v a l , b e s t v a l : v a l u e ;
1 s i n , b e s t l s l n : b o o l e a n ;
1 : I n t e g e r ;

beg in
{ c o l l e c t a read quorum f o r t h i s o p e r a t i o n }
quorum := C o l l e c t R e a d Q u o r u m () ;

b e s t v e r := LowestVers lon - 1 ; { a c o n s t a n t }
{ send I n q u i r i e s t o each quorum member }
f o r 1 := 1 t o R do

beg in
1 s 1 n , r e p s v e r , v a l Send(D1rRepLookup(k)) t o q u o r u m [1] ;
i f r e p s v e r > b e s t v e r then

beg in
b e s t v e r : a r e p s v e r ;
b e s t v a l : a v a l ;
b e s t l s i n : * 1 s i n

end
end;

r e t u r n (b e s t i s 1 n , b e s t v e r , b e s t v a l)
end

Figure 8: Lookup Operation

Locating the real predecessor and real successor of a key that is to be deleted is complex. There may be

ghost entries located between the key to be deleted and its real predecessor or real successor. A ghost is

defined as an entry for a key that is no longer present in the directory suite. In addition, the real predecessor

or real successor of a key might not be present in some members of the write quorum.

These problems arc partially illustrated in Figure 10. In this figure, the real successor of the entry "a" is the

entry "bb". However "bb" does not appear in representative C, and the ghost of entry "b" appears between

"a" and "bb" in representative A. To delete "a" from representative A and C, the real successor, "bb", must

first be located and then copied to representative C. The coalescing of the range from LOW to "bb"

eliminates the ghost of entry "b" from representative A, as shown in Figure 11.

The Delete operation is illustrated in Figure 12. Finding the real predecessor and successor of a key is the

heart of this operation. The straightforward procedure given by Daniels and Spcctor [Daniels 83] for

performing the real predecessor operation suffers from a serious drawback: it requires that messages be sent

between the node determining the real predecessor and the nodes containing each member of a read quorum,

14

I n s e r t (n k e y : k e y , n v a l : v a l u e) ;
{ I n s e r t a new e n t r y w i t h key nkey and v a l u e nva l }
var

{ w r i t e quorum has W members }
quorum : a r r a y [l . . W] o f D l r R e p ;
1 : I n t e g e r ;
k : k e y ;
ver : v e r s i o n ;
v a l : v a l u e ;
1s1n: b o o l e a n ;

beg in
{ f i r s t , lookup key t o f i n d the c u r r e n t v e r s i o n number }
1 s 1 n , v e r , v a l : = L o o k u p (n k e y) ;
{ v a l I g n o r e d }
1f 1s1n then R e p o r t E r r o r () ;

{ f i n d a w r i t e quorum }
quorum :» C o l l e c t W r 1 t e Q u o r u m () ;

{ The new e n t r y ' s v e r s i o n number must be h i g h e r than I t s
p r e v i o u s v e r s i o n number as r e t u r n e d by t h e Lookup c a l l }

v e r : a v e r + l ;

{ I n s e r t t h e e n t r y in each quorum member }
f o r 1:« 1 t o Id do

S e n d (D 1 r R e p I n s e r t (n k e y , v e r , n v a l)) t o (q u o r u m [1])

end

Figure 9: Insert Operation

for every ghost between the key being deleted and its real predecessor in all representatives of the quorum.

While this message traffic can be reduced by including more information in each message, and while the

simulations and analysis show that average performance is not too bad, the number of fixed length messages

that must be transmitted for a single Delete operation is potentially unbounded. 5 All other directory suite

operations, as presented previously [Daniels 83], require only a constant number of fixed length

communications; it would be highly desirable to have an algoridim for the real predecessor operation (hence

the Delete operation) that has tliis property as well.

3 .3 An Efficient Algorithm for the Real P r e d e c e s s o r Operation

An algorithm for finding the real predecessor must in effect prove that a certain key is the real predecessor.

Such a proof involves showing that all intervening entries in each representative of a read quorum are

superseded by a gap with a higher version number in some other representative of the quorum. The number

of ghosts between an entry and its real predecessor is potentially unbounded in each representative, so at first

'in fact, it is bounded by 2R * (the size of the key space), but for all practical purposes, this is unbounded.

15

Version Number: 0
Key: <Low>

Gap Version
Number: 0

Version Number: 1
Key: "a"

Gap Version
Number: 0

Version Number: 1
Key: "bM

•

Gap Version
Number: 0

Version Number: 3
Key: M bb M

Gap Version
Number: 0

Version Number: 1
Key: "c"

Gap Version
Number: 0

Version Number: 0
Key: <High>

Version Number: 0
Key: <Low>

Gap Version
Number: 0

Version Number: 1
Key: "a"

Gap Version
Number: 2

Version Number: 3
Key: M bb M

Gap Version
Number: 2

Version Number: 1
Key: "c"

I Gap Version
Number: 0

Version Number: 0
Key: <High>

Version Number: 0
Key: <Low>

Gap Version
Number: 0

Version Number: 1
Key: "a"

Gap Version
Number: 2

Version Number: 1
Key: "c"

I Gap Version
Number: 0

Version Number: 0
Key: <High>

Representative A Representative B Representative C

Figure 10: Directory Suite from Figure 5 After Inserting "bb"

the prospects for the existence of an algorithm that requires only a constant number of fixed length messages
appear dim.

However, directory suites have a property that constrains the system states that can occur. Because of this

property, the minimum version number necessary for an entry to be current in a region guaranteed to contain

the real predecessor can be determined in one round of messages. With diis information, a single additional

round of messages suffices to find the real predecessor. To state and prove the property that permits this

efficient location of Uic real predecessor, we must introduce several terms.

A region is a set of keys; that is, a subset of the key space. In keeping with previous usage, we define a range

as a region containing every key in die key space between some key and another key. The notation (kltk2)

refers to the range from kx to k2 excluding kx and k2, the endpoints of die range.

16

Version Number: 0
Key: <Low>

Gap Version
Number: 3

Version Number: 3
Key: "bb"

1 Gap Version
Number: 0

Version Number: 1
Key: "c"

•

Gap Version
Number: 0

Version Number: 0
Key: <High>

Version Number: 0
Key: <Low>

Gap Version
Number: 0

Version Number: 1
Key: "a"

Gap Version
Number: 2

Version Number: 3
Key: "bb"

Gap Version
Number: 2

Version Number: 1
Key: "c"

Gap Version
Number: 0

Version Number: 0
Key: <High>

Version Number: 0
Key: <Low>

Gap Version
Number: 3

Version Number: 3
Key: "bb"

Gap Version
Number: 0

Version Number: 1
Key: "c"

Gap Version
Number: 0

Version Number: 0
Key: <High>

Representative A Representative B Representative C

Figure 11: Directory Suite from Figure 10 After Deleting "a"

A gap between entries having keys kx and k2 in a representative is said to cover the region (kvk2) and all of

its subregions. The remaining terms arc defined in the context of an enure directory suite. A gap g is said to

be current over the region r if the following conditions hold:

1. ìTie gap g covers r.

2. No gap in some other representative covering any (non-null) subset of r has a higher version
number than g does.

3. No entry in some other representative for a key in r has a higher version number dian g does.

A gap's region of currency is the entire region over which it is current.

'Formally, the union of all regions over which it is current

17

D e l e t e (d e l k : k e y) ;
{ D e l e t e the key d e l k f rom t h e d i r e c t o r y }
var

quorum: a r r a y [l . . W] o f D l r R e p ;
1 : I n t e g e r ;
1s1n: boolean
succ , p r e d , k: k e y ;
p v a l , s v a l , v a l : v a l u e ;
p v e r , s v e r , r e p v e r , v e r : v e r s i o n ;

beg in
{ f i n d a w r i t e quorum }
quorum := C o l l e c t W r l t e Q u o r u m () ;

{ F ind the predecessor and successor of d o l k }
s u c c , s v a l , s v e r , v e r := R e a l S u c c e s s o r (d e l k) ;
p r e d , p v a l , p v e r , r e p v e r :» R e a l P r e d e c e s s o r (d e l k) ;

{ The v e r s i o n number o f the c o a l e s c e d gap
must be h i g h e r than the maximum of any
v e r s i o n numbers i n t h e range c o a l e s c e d }

ver M a x (r e p v e r , v e r) ;
1 s 1 n , r e p v e r , v a l : = L o o k u p (d e l k) ; { 1s1n , v a l I g n o r e d }
ver := M a x (r e p v e r , v e r) ;

{ Ensure the predecessor and successor
e x i s t i n e v e r y member o f the quorum)

f o r 1 :» 1 t o W do
beg in

1 s 1 n , r e p v e r , v a l : » Send(D1rRepLookup(succ)) t o (q u o r u m [1]) ;
{ r e p v e r , v a l I g n o r e d }
1f not 1s1n then

S e n d (D 1 r R e p I n s e r t (s u c c , s v e r , s v a l)) t o (q u o r u m [1]) s

1 s 1 n , r e p v e r , v a l : * Send(D1rRepLookup(pred)) t o (q u o r u m [1]) ;
{ r e p v e r , v a l I g n o r e d }
1f not 1s1n then

S e n d (D 1 r R e p I n s e r t (p r e d , p v e r , p v a l)) t o (q u o r u m [1])
end;

{ c o a l e s c e the range 1n each member }
f o r 1:« 1 t o W do

S e n d (D 1 r R e p C o a l e s c e (p r e d , s u c c , v e r + 1)) t o (q u o r u m [1])

end

Figure 12: Delete Operation

For example, consider the suite in Figure 13. Gap g covers ("c",HIGH) and all of its subrcgions, e.g.

("d'VT'). Gap g is current over ("g'V'k"), for example. (Alphabetical ordering on the keys is assumed.) Gap

gs region of currency is (, , c , , , "d , ,)U(M e , , ,HIGH). We are now ready to state and prove the property.

THEOREM. In any occurring system state, every gap's region of currency can be expressed as the union of

ranges whose endpoints arc keys currently in the directory.

18

Version Number: 0
Key: <Low>

I Gap Version
Number: 1

Version Number: 2 I Key: "b"

4

Gap Version
Number: 1

Version Number: 0
Key: <High>

Representative A Representative B Representative C

Figure 13: Suite for illustration of region of currency and related terminology

The proof is by structural induction. For the base case, we observe that die theorem holds for a suite in its

initial state: each representative contains a single gap whose region of currency is (LOW,HlGH), and the

directory contains the (dummy) keys LOW and HIGH.

For the induction step, we must show diat if the theorem holds for a given system state, dicn it holds for all

states reachable from that state via a single Insert, Update or Delete operation. We shall consider these

operations in turn. For each operation, we must show that the gaps contained in the representatives

comprising the write quorum and the gaps contained in the representatives outside the write quorum satisfy

the required condition after the operation. We further subdivide diesc gaps into those whose region of

currency changes as a result of the operation and those whose region of currency remains unchanged.

First we show that the induction holds for for Inserts. The Insert operation docs not remove any key from

the directory, so any range whose endpoints were in the directory prior to the Insert will still have its

endpoints in the directory after the Insert. Therefore, all gaps whose region of currency remains unchanged

by the Insert will still sadsfy the induction hypodicsis after the operation (given only diat dicy satisfied it

before). Thus, we need only consider the gaps whose regions of currency arc altered by die Insert operation.

Version Number: 0
Key: <Low>

Gap Version
Number: 3

Version Number: 2
Key: "c"

Gap Version
Number: 2

Gapg

Version Number: 0
Key: <High>

Version Number: 0
Key: <Low>

Gap Version
Number: 1

Version Number: 3
Key: "d"

Gap Version
Number: 4

Version Number: 1
Key: "e"

Gap Version
Number: 2

Version Number: 0
Key: <High>

19

The regions of currency of gaps in representatives outside of the write quorum for an Insert operation arc

affected only if they arc current over the region where k is the key being inserted. The new entry for this

key will have a higher version number than these gaps, so the insertion will have the effect of removing {k\

from their regions of currency. By hypothesis, die region of currency of each of these gaps is expressible as a

union of ranges whose endpoints are keys in the directory. One of these ranges must contain k. Let us call

this range (kx%ki\ (Of course die values of kx and k2 may be different for each such gap.) When {k} is deleted

from such a gap's region of currency, the resulting region will be equivalent to the original region, with (k{,k2)

replaced by (k{,k)\J(k,k2). But K k{ and k2 arc all in the directory after the insertion, so die induction

hypodicsis is preserved in all representatives outside of the write quorum.

Within the write quorum one of two things can happen. If an entry is already present for kj no gap's

region of currency will be affected by the operation. If no entry for k exists, then the gap into which the key

falls will be split into two new gaps. Let us call them g, and g2. By the induction hypodicsis, if k is in the

region of currency of the gap being split, it falls in some range that is bounded by keys in the directory and is

contained entirely in the region of currency. Let us call this range (k{tk2). Then g^s region of currency will

consist of die union of all of the ranges in the original gap's region of currency before kx and (k{tk), and g2's

region of currency will consist of the union of all of the ranges in the original gap's region of currency after k2

and (k,k2). (Figure 14) If the key being inserted falls outside of die original gap's region of currency, g^s

region of currency will consist of die ranges in the original gap's region of currency before k and g2's region of

currency will consist of the all such ranges after k. Thus, the induction hypothesis is preserved in all

representatives for Insert operations.

Next we show that the induction holds for Update operations. Like Insert operations, we need only

consider the gaps whose regions of currency are altered by the operation, as Updates do not remove any keys

from the directory. No gaps in representatives outside of the write quorum have their regions of currency

affected by this operation. It increases only die version number associated with the key being updated, k, and

no gap could have had {k} in its region of currency before the update operation took place. The highest

version number associated with k at that time belonged to an entry and not a gap, as updates can only occur

on keys that arc already in the directory. Within the write quorum the effects of the Update operation on

regions of currency arc identical to those of the Insert operation, and the identical argument shows diat the

induction hypodicsis is preserved.

Finally we show that the induction holds for Delete operations. In each representative in the write quorum,

a new gap is created whose region of currency is (p,s), where p is the real predecessor of the key being deleted

7
This entry is necessarily a ghost, as the Insert operation would not be permitted if k were already in the directory.

20

Before lnsert("mM)

Representative r Region of Currency

After lnsert(MmM)

Region of Currency Representative r

Figure 14: Effect of the insert operation on regions of currency, within write quorum

and s the real successor. If p was not already present in a representative, it is inserted. The region of currency

of the new gap extending upwards from p consists of the ranges before p previously in the region of currency

of the gap from which the new gap was split off. Similarly, if s is inserted, die gap extending downwards from

s will have as its region of currency the ranges after s previously in die region of currency of die gap from

which this gap was split off. (Figure 15). The keys p and s arc, by definition, currently in the directory, so all

of the gaps whose regions of currency are modified satisfy the induction hypodicsis. Furthermore, all gaps

whose region of currency previously contained a range bounded by k were modified in the fashion described

above, so none of the gaps whose region of currency remains unchanged relics on the fact that k is in the

directory in order to satisfy die induction hypothesis. Thus, die induction hypodicsis holds within the write

quorum.

21

Before Delete("kM)

Representative r Region of Currency

After Delete(Mk")

Region of Currency Representative r

Key: "b"

Key: "d"

Key: "f"

Key: M k M

Key: "vM

H—-Real Predecessor

Ghosts

Figure 15: Effect of the delete operation on regions of currency, within write quomm

Outside of die write quorum the situation is as follows: The new gap in the rcprcscntadvcs of die write

quorum covers (p,s). Gaps whose regions of currency did not intersect this region arc unaffected. The new

gap has a higher version number than all others in this region. Any portions of other gaps' regions of

currency that lie in diis region are deleted from the gaps' regions of currency. This deletion has the effect of

removing ranges entirely contained within (p,s). Any range that had k as one endpoint must have had p or s

as its other endpoint, and must have fallen into this category. Thus the gaps outside of die write quorum in a

Delete operation satisfy the induction hypothesis. This completes die proof.

We arc now ready to describe the real predecessor algorithm. First, the node doing the real predecessor

22

determination for the key k asks each representative in the read quorum for the version number of the gap

covering die key /; immediately preceding k in the key space, and die entry delimiting die gap on the low side.

The gap returned in response to this request with the highest version number is current over die region {/?}.

Let us call this gap gcurr. By the theorem, gcurr must be current over some range containing p that is bounded

by keys currently in the directory. Thus, this "current range" must extend from //s real predecessor to ps real

successor, exclusive. But p s real predecessor is also Afs real predecessor, so we know that k's real predecessor

lies in gcwr or on its boundary. Since any key (or gap) that intersects gcurr and has a higher version number

than that of g€urr must lie outside of its region of currency, the closest such key (or gap) to k delimits the

current range in which k lies, if such a key (or gap) exists. By die theorem, if it exists it is a key (not a gap) and

it is £'s real predecessor. If no such key exists, die current range extends all the way to gcurr^ low boundary,

and the key delimiting it is /t's real predecessor.

The node doing the determination proceeds by passing both gcur/s version number and the key delimiting

Scun o n the ' o w s ^ c to each representative in the read quorum. The representatives return dicir entry closest

to k diat "supersedes" diis gap (i.e. lies in the gap and has a higher version number dian it does). If they have

no entry that supersedes the gap dicn they check to see if they have an entry for die key delimiting the gap. If

so, dicy return it; if not, they return a message saying that they have no candidate for the real predecessor.

Then the node doing the determination merely selects die candidate closest to k. If several entries return

candidates equally close, of course die one with the highest version number is selected. This entry is

guaranteed to be the real predecessor. A formal statement of die algoridim is given in Figure 16.

3 .4 Enhancements to the Real P r e d e c e s s o r Algorithm

As in the other procedures presented, efficiency is sometimes sacrificed for clarity in the RcalPrcdecessor

procedure of Figure 16. There are several addidonal improvements that would be made in any practical

implementation of the algorithm. Firstly, the procedure would check if the second round of information

exchange were necessary before doing it. If die closest predecessor key returned in response to the first

request for information has a higher version number than any of die returned gaps that cover it, then this key

must be the real predecessor, and there is no need to continue searching.

lliis technique can be used to reduce message traffic even more by having each representative return

several gaps and entries preceding the key being deleted radicr than just one. The procedure would check if

any entry for which it had information (entry or covering gap) from all representatives had a higher version

number than any covering gap. If this were die case, then the closest such entry would represent the real

predecessor, and no second stage would be necessary. The number of entries returned by the rcprcscntadves

in the first stage of the algoridim controls a performance trade off between execution time at the nodes and

23

R e a l P r e d e c e s s o p (k : k e y) R e t u r n s (k e y , v a l u e . v e r s i o n . v e r s i o n) ;
{ R e t u r n s the k e y , v a l u e and v e r s i o n number o f k ' s r e a l p r e d e c e s s o r ,
and the h i g h e s t v e r s i o n number 1n t h e range bounded by k and k ' s
r e a l p r e d e c e s s o r , e x c l u s i v e . }
var quorum: a r r a y [l . . R] of D l r R e p ,

GapVer: a r r a y [l . . R] o f v e r s i o n ,
P r e d K e y V a l : a r r a y [l . . R] o f v a l u e ,
PredKey: a r r a y [l . . R] o f k e y ,
MaxGapRep,1: I n t e g e r ,
MaxGapVer .Rea lPredVer ,CandVer : v e r s i o n ,
MaxGapKey,RealPredKey,CandKey: k e y ,
R e a l P r e d V a l , CandVa l : v a l u e ;

beg in
quorum : a C o l l e c t R e a d Q u o r u m () ;
{ C o l l e c t I n f o on predecessor gaps 1n each rep 1n the read quorum

& f i n d out which rep has t h e gap w/ t h e h i g h e s t v e r s i o n number . }
MaxGapVer : a - 1 ; {Lower than any r e a l v e r s i o n number}
f o r 1 : a 1 t o R do

beg in
G a p V e r [1] , P r e d K e y [1] , P r e d K e y V e r [1] , P r e d K e y V a l [1] :«

S e n d (D 1 r R e p P r e d e c e s s o r (k)) t o q u o r u m [1] ;
1f G a p V e r [1] > MaxGapVer then

beg in
MaxGapRep :=» 1 ;
MaxGapVer :» G a p V e r [1]

end
e n d ;

{Key d e l i m i t i n g Max gap 1s our I n i t i a l c a n d i d a t e f o r r e a l p r e d }
D ~ ~ " , n — ' * ' - " - MaxGapKey :» PredKey[MaxGapRep];

PredKeyVer[MaxGapRep];
PredKeyVal [MaxGapRep] ;

{ F i n d c l o s e s t e n t r y which supersedes Max gap 1n any rep in the
read quorum. T h i s w i l l be t h e r e a l p r e d e c e s s o r . }

f o r 1 : • 1 t o R do
1f 1 <> MaxGapRep then

beg in
CandFlag ,CandKey ,CandVal ,CandVer : •

Send(D1rRepSuperseder (k ,MaxGapVer ,MaxGapKey)
t o q u o r u m [1] ;

1f CandFlag { I f t h i s rep has a c a n d i d a t e f o r r e a l p r e d . . . }
{and I t ' s c l o s e r than the c l o s e s t c a n d i d a t e thus f a r , or

e q u a l l y c l o s e w i t h a h i g h e r v e r s i o n number t h e n . . . }
and (CandKey [1] > RealPredKey

or (CandKey • RealPredKey and CandVer > R e a l P r e d V e r)) the
beg in { T e n t a t i v e l y s e l e c t the c a n d i d a t e }

RealPredKey : a CandKey;
R e a l P r e d V a l : a CandVa l ;
Rea lPredVer : • CandVer

end
end;

{ S e l e c t e d c a n d i d a t e 1s r e a l p r e d e c e s s o r . Re turn 1 t . }
R e t u r n (R e a l P r e d K e y . R e a l P r e d V a l , R e a l P r e d V e r , M a x G a p V e r)

end

RealPredKey
Rea lPredVer
Rea lPredVa l

Figure 16: Real Predecessor Operation

24

intcr-nodc message traffic. If many entries arc returned, it is likely that the second round of information

exchange will not be necessary; however, the execution time at each node is proportional to the number of

entries sent. The number of entries between the key being deleted and it real predecessor will on average be

half of the key's delete list size. Thus, the formula developed in Section 4.2.4 that enables us to predict the

average length of a delete list can aid in choosing an appropriate number of entries to return in the first stage.

In fact, the limiting behavior described in Section 4.2.5 shows that that the second stage of the algorithm can

almost always be avoided if several entries arc returned in the first stage.

Rvcn if die second stage is required, it may not be necessary to ask for additional information from all of the

representatives in the read quorum. Any representative that has already sent entry or gap information for the

entire range that has been determined to contain the real predecessor has no more information to add and

need not participate in die second round.

Finally, die real predecessor and real successor can be determined simultaneously by putting requests and

responses for both tasks in each message, dius reducing by almost one-half the message traffic required to

find the real predecessor and successor. In the actual implementation, there would be a single

"Real Neighbors" procedure instead of separate Real Predecessor and RealSuccessor procedures. The

procedure would initially ask for gaps and entries surrounding the key on both sides. If diis did not provide

enough information to find the key's real predecessor and successor, it would send a request for a

"supcrscder" of cither or both "current gaps," as required.

The algorithm, with the improvements described, is extremely fast in die average and worst cases. In fact,

under an appropriate model it is optimal with respect to die number of fixed length messages required.

However, die notion is somewhat difficult to formalize and a proof would be tedious. The average

performance of this algoridim is close enough to the trivial lower bound of one exchange of messages with

each member of a read quorum that there is no practical reason to attempt to prove optimality.

The procedure, including the improvements, is easy to implement. It also has the following useful property.

The correctness of the algoridim does not depend on the fact that the key whose real predecessor is being

determined is actually in the directory. Thus, one can locate the real neighbors of any key, regardless of

whether it is in die directory.

25

3.5 Correc tnes s Arguments

The correctness of a directory suite's operations depends on Lookup always returning current information

about a key. Because every read quorum intersects every write quorum, Lookup will return current

information as long as that information has a version number greater than that of any non-current

information and as long as there are no concurrency anomalies. These correctness conditions arc the same as

those required for Gifford's file replication algoridim.

Two phase locking and the lock compatibility matrices specified in Section 3.1 arc strong enough to

guarantee the scrializability of transactions at any single representative. Traigcr ct al. pYaigcr 82] have shown

that if all nodes participating in a distributed transaction execution follow two phase locking protocols that

guarantee the scrializability of transactions at individual nodes, then the resulting global schedule is

equivalent to some serial schedule of transactions. Thus, the directory replication algorithm is free from

concurrency anomalies.

The Insert and Update operations both set die version number of the entries they modify to be greater dian

the greatest version number previously associated with the keys of those entries. Therefore, the current data

for each key has a version number greater dian that of any non-current data for that key.

Delete coalesces the range between the real predecessor and real successor of die key to be deleted. By the

definitions of real predecessor and real successor, there can be no current entries (other dian the entry to be

deleted) in the range to be coalesced. The operation assigns to the gap covering die coalesced range a new

version number diat is higher than any version number previously associated with any key in that range.

Therefore, as with Insert and Update, the current data for each key in the range has a version number greater

than that of any non-current data for that key.

3 .6 More on Synchronization and Recovery

Directory representatives, as described in Section 3.1, arc synchronized to ensure that all transactions using

their operations can be made serializablc. In addition, all information in a representative is recoverable and

operations can be completely redone or undone by recovery processing. Thus, arbitrary directory

representative operations may be composed in atomic transactions. This property simplifies the correctness

arguments for die directory replication algorithm by allowing the algoridim to ignore the consequences of

concurrency anomalies and failures during directory suite operations. However, the use of directory

representative operations is not arbitrary, and the restrictions that the directory replication algorithm imposes

on their use can be exploited to enhance the synchronization and recovery performance of directory

representatives. The resultant directory representative objects arc non-serial izable[Schwavz 83a].

g
For ihcsc transactions to be seriali/ablc, all other types of objects used by the transaction must also preserve serializability.

26

The basis for improvements to concurrency and simplification of recovery in Delete is GifFord's observation

[GifTord 81] that data and its version number in one representative may be replaced at any time by more

current data with a higher version number from another representative. It is easy to see that the contents of

the directory, as observed by die results of Insert, Update, Delete, and Lookup operations arc unaffected by

such a replacement. Of course, care must be taken to prevent an independently executing update from being

overwritten with the data and version number from the other representative. A read lock on the data being

replaced is sufficient concurrency control for this purpose.

Improvements to concurrency and recovery can be accomplished with modifications to DirRepCoalcscc.

The Delete operation is the only invokcr of DirRepCoalesce and it always passes the real predecessor and real

successor of a key to be deleted as arguments; dicrcforc the only current entry modified by DirRepCoalesce is

the entry being deleted from the directory. To increase concurrency and simplify recovery, the

DirRepCoalesce operation can be redefined to take three additional arguments. The first new argument is the

key of die entry being deleted. If the transaction performing die DirRepCoalesce is aborted this key is used to

determine die entry that must be restored. When die DirRepCoalesce operation is undone, the gaps on cither

side of the entry being deleted receive the current version numbers for those gaps, which arc determined

along with the real predecessor and real successor and passed as the second and third additional arguments to

DirRepCoalesce. It is unnecessary to restore any ghost entries during die undo of a DirRepCoalesce

operation.

Concurrency can be increased by releasing the RcpModify locks set by DirRepCoalesce on all keys, except

for the key of die entry actually being deleted, as soon the operation completes. The RcpModify locks must

be acquired temporarily to make certain that no active transactions have read (and therefore set RepLookup

locks on) the old version numbers of the gaps being coalesced. The locks do not need to be retained, because

the operation docs not modify data other than version numbers in these gaps, and version numbers are used

in very well defined ways by the weighted voting algorithm. While it is an important example of the use of a

non-serializable object, this change in locking rules increases concurrency only slightly because the only keys

made accessible to concurrent transactions arc diosc for which there arc no entries in the directory. This

change in locking mlcs also increases the chances of deadlock. .

Finally, RepLookup locks on data beyond die real predecessor and real successor of a key being deleted

need not be held beyond the first phase of the RcalPrcdeccssor and RealSuccessor operations. These locks

arc obtained only to guarantee that die algorithm for determining the real predecessor and successor sees a

consistent version of the directory suite. It should also be noted that the operations of inserting the real

predecessor and real successor into representatives arc additional examples of copying current data and

therefore only RepLookup locks need be temporarily obtained for these insertions.

27

4 Performance Characterization

In this section, we present the results of simulations and construct and analyze a model of die directory

replication algorithm. The system studied in both the simulations and the model consists of a directory suite

initially containing a certain number of keys into which inserts, updates and deletes occur at regular intervals

with equal likelihood. The keys to be inserted arc chosen randomly from those not in the directory, and the

keys to be updated or deleted arc chosen randomly from those in the directory. Read and write quorums are

selected randomly.

We concentrate on two performance measures. The first, which we call the size rath* is the ratio of entries

in a directory representative to keys in the directory. The size ratio indicates the storage required at each

representative as a function of the storage required for a single site directory. A size ratio of one indicates that

a node has exactly as many entries as a single site directory containing the same keys. The simulations

measure the size ratio directly, while die analytic model allows us to break the size ratio down into dirce

composition ratios based on a classification of directory entries into three categories. The size ratio is die sum

of the three composition ratios.

The second performance measure, delete list length, is the average number of ghost entries in the range to

be coalesced during a deletion on a representative. This measure indicates the amount of work that must be

done at each node while searching for die real predecessor and successor, and while performing the coalesce

operation during deletes. These two steps are the only parts of any of our procedures that do not run in

constant time. Thus the delete list size characterizes the only non-obvious component of the time

requirement of our algorithm.

4.1 Simulation Results

Figures 17 and 18 show the size ratios and delete list lengths measured in simulations for a variety of

directory configurations. In the simulations, each directory suite initially contained one diousand entries.

The duration of each simulation was twenty thousand operations, and performance measures were gathered

during the final ten diousand operations.

More detailed simulation results for 3-2-2 directory suites with one hundred, one diousand, and ten

thousand keys initially in the directory arc shown in Figure 19. The duration of each of these simulations was

two hundred thousand operations, with performance data gathered during die final one hundred thousand

operations. These additional simulations indicate that none of die results depend on the initial number of

keys in die directory suite; Thus, time and space requirements arc proportional to the number of keys in the

directory, just as in a single site directory.

28

1.2

1.1

1.0

.9

.8

.7

.6 I

1

•

Actual

I J Predicted

i •
3-2-2 3-1-3 5-3-3 5-2-4 9-5-5 9-4-6 9-3-7

Figure 17: Size Ratios for Various Directory Suites

9-2-8 9-1-9
Configuration

•8 r

.6

I

Actual

| J Predicted

1
3-2-2 3-1-3 5-3-3 5-2-4 9-5-5 9-4-6 9-3-7 9-2-8 9-1-9

Configuration

Figure 18: Delete List Lcngdis for Various Directory Suites

29

100 Kntries 1000 Hntrics 10000 Entries

Avg Max Std Dcv
1.11 1.27 0.03

Si/e Ratio
Avg Max Std Dev
1.11 1.19 0.02

Avg Max Std Dev
1.11 1.13 0.01

Avg Max Std Dcv
0.44 9 0.81

Delete IJst Size
Avg Max Std Dev
0.44 9 0.81

Avg Max Std Dev
0.44 10 0.81

Figure 19: Detailed Simulation Results for three 3-2-2 Directory Suites

4.2 Analytic Model

The algorithm as applied in the simulations was modeled and analyzed to predict various performance

characteristics. The goals of the analysis were to increase our confidence in the simulations by corroborating

dicir results, to gain further insight into the behavior of the algorithm, and to produce a fast, reliable mcdiod

for determining die performance of the algorithm.

In this section, we describe die model and our method of analysis, and present the analysis. A set of

formulae to predict performance characteristics arc derived in the analysis. These formulae arc used to check

the results obtained from the simulations and predict performance trends exhibited by the algorithm under

various conditions.

4.2.1 Construction of the Model

The system can be modeled as a Markov chain in a straightforward fashion. One state corresponds to each

possible contents of the endre directory suite, henceforth called a system state. The transitions correspond to

the changes in system state effected by die operations.

In the simulations, the system appeared to display equilibrium behavior: each system attribute being

monitored approached an average value that did not vary over multiple runs of sufficient length. For a

Markov model to be of use to us in calculating these values, it too must display this equilibrium behavior. It

is sufficient diat the model achieve stochastic equilibrium. The simplest class of Markov chains achieving

stochastic equilibrium are those diat arc finite and irreducible. (By finite, we mean diat dicy contain a finite

number of states, and by irreducible, we mean that each state can be reached from every other state.) It is

desirable that our model belong to this class.

The straightforward model described above does not possess cither of the requisite properties. It is not

finite, as version numbers can grow without bound. Repeatedly updating a single key produces an infinite

30

sequence of distinct states. Neither is die straightforward model irreducible: once the system leaves any state,

it can never get back to that state. This can be seen by observing that the version numbers associated with a

fixed key in a fixed representative in successive states form an increasing sequence. Any operation results in

the version number associated with some key increasing in some representative and it can never return to its

original value. However, the model displays an extremely high degree of lumpabili/y [Kcmcny 60]. That is to

say, many states arc practically identical to some other state, so sets of similar states can be lumped together to

produce a smaller, simpler model. We shall attempt to construct a new model that possesses the desired

properties by this process of lumping.

This is not the straightforward task that it might appear to be. Attempts to lump suites based on order

relations between version numbers am into complications. Kvcn if such an attempt succeeded, the model

produced might well be finite but not irreducible. An alternative approach, which involves abandoning the

version numbers completely, produces the desired result. Before we describe it, we must take care of some

preliminaries.

All of die entries in each representative of a directory suite can be divided into classes that correspond to

terms introduced previously. A current entry is an entry for a key diat is still in the directory that has highest

version number associated with that key in any representative. Current entries are the only entries that

contain up to date information. An outdated entry is a non-current entry for a key diat is still in the directory.

If an entry is outdated then some other representative contains an entry for the same key with a higher version

number. A ghost entry is an entry for a key diat is no longer in the directory suite. A ghost entry can be

thought of as the ghost of a key that used to "live" in the directory. It should be clear that all entries in a

representative fall into one and only one of these classes.

Let us call a representative with all version numbers removed and with the class of each entry (current,

outdated or ghost) appended to the entry the concise representation of die representative. Note that the

concise representation contains no explicit information about the gaps between entries. By extension, we call

the collection of concise representations of all representatives in a suite the concise representation of the suite.

The concise representation has two properties that make it extremely useful:

1. Given the concise representation of a system state, an operation to be performed on the suite
(Insert(kcy), Update(key) or l)clete(kcy)) and the write quorum selected for the operation, one
can determine the concise representation of die resulting system state. The proof of this fact is a
somewhat tedious case analysis, which is implicitly performed for other reasons in Appendix I.
The intuition behind the proof is diat version numbers are used solely to find out which class an
entry belongs to, when performing the various operations on the suite.

2. No useful information is "thrown away" in going from a system state to its concise representation.
All of the system attributes we care about arc fully determined by the concise representation of a
system state.

31

We arc now ready to describe the method by which wc simplify our model. We define a new model where

all system suites sharing each concise representation arc lumped together to form the states. Property 1 above

tells us that the induced transition probabilities in this model arc well defined. This is required for the model

to be a well defined Markov chain.

The new model is finite by the following argument. The key space is finite, and each representative contains

entries for some subset thereof. Hach entry belongs to one of the three classes; thus, dicrc arc only a finite

number of possible concise representations for representatives. A suite consists of a fixed number of

representatives, so there arc only a finite number of possible concise representations for system states. This

places a finite an upper bound on the number of states in our model.

Finally, die model is irreducible. From any system state, it is possible to reach a system state where all

representatives contain no entries. This can be accomplished as follows: first delete all of the keys in the

directory in any order with any write quorums. At this point, all of the representatives can only contain ghost

entries, and if a single key is inserted into die directory and then deleted using the same write quorum, all of

the representatives in the quorum will be completely empty. Repeat this insert/delete process as many times

as necessary to include each representative in at least one write quorum. All system states where none of the

representatives contain any entries have the same concise representation hence dicy are represented by a

single suite in die model. But this state also represents die initial system state, from which all other system

states can be reached. Thus, any state reachable from the initial state can be reached from every state.

The model achieves stochastic equilibrium, because it is Markovian, finite, and irreducible. There is one

other property that the model must have in order to fulfill our requirements: all system states represented by

each state must be "functionally identical" in the sense that they coincide in all attributes for which we wish to

utilize an equilibrium distribution. However, this is precisely what property 2 tells us. In fact die attributes in

question are for the most part aggregate information concerning the composition of a representative in terms

of class. (The reader can easily check that each attribute for which wc eventually require an equilibrium

distribution is fixed over single states in our model.)

4 .2 .2 Method of Analysis

Our model is guaranteed to achieve stochastic equilibrium, so it is theoretically possible to determine die

precise probability of being in any state. In practice, this would be impossible due to die huge size of die

system. Also, the resulting probability distribution would not be particularly informative as such, and the

processing necessary to derive any useful figures from it would be prohibitive due to its size. However, the

existence of this model proves diat any attributes common to all system states represented by each suite have

well defined average values. Thus it makes sense to formulate relationships among such averages and solve

for them.

32

The performance characteristics of primary concern to us arc all intimately related to the composition of

each representative in terms of the three classes into which entries are divided. As a consequence of the

existence of our model we can assert that a dynamic equilibrium exists in each of these classes in each

representative. These assertions can take the form of balance equations equating the rates of flow into and out

of each category in a single representative. Such equations hold equally well for all of the representatives in

the suite due to the symmetry of the system.

These balance equations arc naturally constructed in terms of three variables c\ o' and cL and the system

parameters N and defined in Section 4.2.3. In constructing die balance equations, we make some

simplifying assumptions in the form of approximations in the equations. Kach approximation will be noted

and justified. The resulting equations constitute a linear system than can be solved easily. The desired

performance measures can be derived from die variables, though we need to make a simplifying

approximation in one derivation.

33

4 . 2 . 3 Formulation of Balance Equations

The following variables arc used in formulating the balance equations. Small letters represent the

unknowns in the balance equations, capital letters represent constants (system parameters) and script capitals

represent stochastic variables.

C The number of current entries in an arbitrary (but fixed) representative.

O The number of outdated entries in an arbitrary (but fixed) representative.

Q The number of ghost entries in an arbitrary (but fixed) representative.

8 The total number of entries in an arbitrary (but fixed) representative.
Note thatS = C + 0 + g.

36 The number of keys currently in the directory.

<ík The number of entries in the delete list of a key k currently in the directory, in an arbitrary
(but fixed) representative. The delete list of a key consists of all of the ghost entries
between the real predecessor and real successor of the key in die representative.

3 (2 *€ S u i t e ^ *) ^ " ^ * s ^ c a v c r a 8 c delete list size in an arbitrary (but fixed) representative.
Note that 5 is only defined in states where 3 6 ^ 0 (i.e. die directory contains one or more
keys).

c' K[C/36] The expected value is taken over all states diat represent directories containing
one or more keys. C/3G is the fraction of keys in the directory that have current entries in
the representative under observation. Thus, c' is equal to the probability diat a randomly
chosen key in the directory has a current entry in the representative under observation.

o' K[0/3G] The expected value is taken over all states that represent directories containing
one or more keys. 0/96 is the fraction of keys in the directory that have outdated entries in
the representative under observation. Thus, oi is equal to the probability diat a randomly
chosen key in die directory has an outdated entry in die representative under observation.

d E[35] The expected value is taken over all states that represent directories containing one or
more keys, d is the expected size of a delete list for a key chosen at random from those in
the directory.

N The number of representatives in the directory suite being modeled.

W The write quorum size for die directory suite being modeled.

34

A formal statement of the rate balance assertion for current entries is:
Ephc number of entries entering the current class in a chosen representative in one operation]

= E[llic number of entries leaving the current class in a chosen representative in one operation].

The expected values arc computed over a space consisting of all the state transitions in our model. Analogous

assertions arc made for outdated and ghost entries. The expected values can be recast in terms of c', o9 and d.

These expansions, though relatively straightforward, are somewhat tedious, as they entail examining the inner

workings of the directory suite operations in great detail. They can be found in Appendix I.

The expansions yield the following balance equations, for current, outdated and ghost entries respectively:

(\+iv)c'+TTo'=2-n

4 . 2 . 4 Solution of Balance Equations

The solution of the balance equations derived in the previous section is:

/ 2W(N+ W)
c = NiN+iW)

, 4(N-W)

The first performance measure for which we desire a formula is the expected value of the average delete list

size:

E[<$]
= d.

The second performance measure is the expected value of the size ratio:

E[8/36]
= K[(c+o + g)/3G]
= K[C/3G]+E[0/9G] + E[g/3G]
= c ' + o '+E[g/3G].

The dircc terms of this expression (E[C/3G], E[0/3G] and E[(j/3G]) arc the composition ratios. While we

cannot cxacdy express die third term of tliis expression in terms of our unknowns wc can make a very good

approximation based on the fact that almost every ghost in a representative appears in two delete lists, diat of

its real predecessor and that of its real successor. The exceptions are the ghosts before the first key in the

directory and those after the last, which only appear in a single delete list. But in the vast majority of states,

very few ghosts fall into this category. Thus the sum of the sizes of all delete lists in a representative is

approximately equal to twice the number of ghosts. A formal statement of this assumption is:

35

2S = 2 j u s u i t c ^ .

Dividing both sides of this equation by 236 and taking expected values we get:

KW/SG]=K[(2ik€Suiic3*)/23G]

= iK[9]
_ d
— I •

Substituting back, our formula for the size ratio becomes:

K[8/3Gl = c / + c i / + f

4 . 2 . 5 Results

Figure 17 (p. 28) compares the average size ratios observed in the simulations with predictions obtained

from the formula developed in the previous section. Figure 18 (p. 28) compares iictual and predicted average

delete list lengths. The predicted values arc nearly identical to the observed values. We compared simulation

and analysis results for many other system attributes and observed this level of agreement uniformly.

Figure 20 shows die predicted average composition ratios in a 10 - (11— WO - Wsuite, for all possible values

of W. Figure 21 shows predicted delete list lengths for these suites. Varying the quorum sizes in a fixed size

directory suite in this manner controls a fairly complex performance tradeoff: increasing die write quorum

size while decreasing the read quorum size increases the cost of die write operation and the availability of the

system and decreases the cost of the read operation. In die delete operation, die work done at each node

decreases, but die number of messages that must be sent increases. At one end of the spectrum (vv= 10) there

is die universal update strategy; at the other (w=l) , there is a strategy where only a single representative is

written and all arc read. While the latter strategy would never be used, because aH directory operations

require reading from a read quorum, it is interesting to sec how performance varies over die spectrum. From

these graphs, one can sec that even when the system is stretched to an unreasonable extreme, performance

docs not degrade very much.

Figures 22 and 23 show respectively the predicted average composition ratios and delete list lengths in

(2 / - 1) - / - / suites. Increasing read quorum, write quorum and suite sizes simultaneously, as illustrated in

these graphs represents a fairly straightforward performance tradeoff: As the sizes increase, the availability of

the suite increases, but the number of messages diat must be transmitted for all operations increases as well.

Specifically, the number of representatives that can be destroyed while still maintaining availability of a

(2/— 1) - / - / suite is /— 1. The graphs show diat die amount of work at each node for a Delete operation, and

the size and makeup of each representative do not vary appreciably over the spectaim.

36

w

Figure 20: Expected Composition Ratios in a 10 - (11 - W) - W Suite

Finally, we present some fairly surprising results concerning the limiting behavior of the performance

measures. First let us examine the expected length of a delete list, d. Recall, the formula for d is:

Let us maximize it subject to the (real) constraints that N>\ and 1< W<N. As we would expect, this

expression grows when the suite size increases and when the write quorum decreases. Thus the expression

approaches its maximum when N tends to infinity and Wis set to 1, its lowest permissible value. So:

. lim AN-A A

d < N-* oo 7VTT = 4 .

In other words, the average size of a delete list will not grow beyond four, no matter what values we pick for

these parameters.

37

Figure 21: Expected Delete List Lengths in a 10 - (11 - W) - W Suite

A similar result holds Tor die size ratio (F[8/3G]). The expression for this quantity is:
2(N+ W)

Standard methods show that this expression, subject to die same constraints as before, also approaches its

maximum when IV= 1 and N tends to infinity. Thus its value is bounded by:

lim 2N+1 _ T
N-> oo 7VTT - l -

These two performance measures completely specify the time and space requirements of the system.
Therefore, performance cannot degrade without bound, regardless of what values we choose for the
parameters.

4 . 2 . 6 Di scuss ion of the model

The primary purpose of this section is to discuss the validity of die analysis and applicability of the results.

Since the model itself is exact, the correctness of the assumptions embodied in the analysis determine its

validity. Therefore, we shall enumerate and examine the four assumptions:

1. In each balance equation, we assumed that the three operations (Insert, Update and Delete) occur
with equal probability, (p. 44)

2. In the balance equation for current entries, we assumed that the probability that a rcprcscntadve
contains an entry for die real predecessor of a randomly chosen key in the directory was equal to
the probability that it contained a randomly chosen key in the directory, (p. 45)

38

. 0 1 1 1 1 1 1 1 1 1

2 3 4 5 6 7 8 9 W
i

Figure 22: Expected Composition Ratios in a (2/— 1) - / - / Suite

3. In the balance equations for current and ghost entries we ignored the possibility of a ghost entry
becoming outdated or current in the Insert operation, (pp. 47,48)

4. In the formula for K[Q/3G] we assumed that each Ghost in a representative appeared in exactly
two delete lists, (p. 34)

The first assumption holds in all states of the model except those representing directories containing every

key in the key space or no keys at all. One cannot insert a key if there arc no more keys to insert, and one

cannot delete a key if there are no keys in the directory. However, these "boundary states" represent a

negligible fraction of all system states and occur with extremely low probability, assuming the key space is

reasonably large. If the key space is small, it takes a much shorter run of inserts to fill the directory or deletes

to empty it; thus these boundary states occur with much greater likelihood. In fact, die key space used in the

simulations was large enough that these states were never encountered.

39

1.0

6 8 9 10
i

Figure 23: Expected Delete List Lengths in a (2/— I) - / - / Suite

The second assumption concerns the probability that a representative contains an entry for the real

predecessor of a chosen key. In any given system state, the number of keys in the directory that have an entry

in a given representative can differ by at most one from die number of keys whose real predecessor has an

entry in this representative. This is so because all of the keys in the directory except die last one are die real

predecessor of another key in the directory. Thus, the probability diat a randomly selected key has an entry in

this representative differs by at most 1/3G from the probability that the real predecessor of a randomly

selected key has an entry in the representative. But if the key space is large, 3G will be large in the system

states diat occur with high probability and this assumption will be almost correct.

The third assumption is diat ghost entries cannot enter the outdated or current class in an Insert operation.

This actually occurs when a key that has been deleted from the directory is reinserted while a ghost for the

original incarnation of the key still exists in some representative. This event is extremely unlikely when the

key space is large compared to die number of entries in a representative. The simulations were not run long

enough for die directory to contain a sizable fraction of the key space, thus they erred in the same direction as

this assumption. This assumption would seem to break down in ghost prone configurations where N is much

greater than W. However, as long as the representatives contain ghosts for a negligible fraction of the key

space, the assumption remains valid.

The fourth assumption is very similar to the second. In fact, all ghosts in a representative except those

before the first key in the directory and after the last key in the directory do occur in two delete lists.

40

However, in all reasonably likely states, the ghosts arc fairly well distributed among the keys in the directory,

thus on average, only a small constant number of ghosts will be on only one delete list. For representatives

containing reasonably many entries, these few ghosts will be "swamped" by the ghosts that appear on two

delete lists, and 3S/2 will be almost identical to If the key space is reasonably large, the approximation

will be good in all reasonably likely states and the assumption will be valid.

In summary, all of the assumptions quickly become reasonable as the key space gets large. (This is the only

point where the key space size enters into our analysis. It was not used explicitly in any of die equations.)

None of the assumptions break down when N or W gets large (assuming the key space is large); thus, the

results concerning limiting behavior arc valid. This also implies that die formulae can be used with

confidence for any parameter values.

A note should be added concerning the equilibria observed in the simulations. These equilibria definitely

did not represent true equilibrium state distributions over our entire model. This is clearly demonstrated by

the fact that die simulations did not generate identical average values for the number of keys in the directory

(36) from run to run. The observed average values for 3G were clearly related to the initial number of keys in

the directory in each am. This is not at all surprising, when one considers that the number of states in the

model is exponential in the key space size, and the simulations were run for far fewer steps than die key space

size itself. We proved that a simulation of sufficient length would display equilibrium behavior over the

entire model, but our runs were not of sufficient length. 'This leaves unexplained the fact that the runs

exhibited predictable equilibrium behavior for all of the performance measures of concern to us.

The explanation for this phenomenon lies in die fact that our simplified model is still highly lumpable.

Moderately sized "clumps" of contiguous states widi reasonably high probabilities of occurrence, such as

those traversed in each run of the simulation, have the same average values for the performance variables as

those predicted for the entire model. In fact, it is likely that our model captures these clumps better than it

captures the entire state space, as die clumps tend not to contain the "boundary states" where the assumptions

break down.

4 .3 Discuss ion of Performance Characterization

The system simulated and analyzed was not entirely realistic. Read and write quorums would not be chosen

randomly in practice. A node would more naturally communicate with easily accessible nodes. Also, because

of the cost of establishing a communication session, the node would probably continue to communicate with

the same nodes until it had no need for further communication or a failure occurred. Thus, in practice, the

read and write quorums used by any given node would probably change infrequently. However, we strongly

conjecture that the performance observed under these conditions would be as good as or better than that of

the system studied.

41

One possible usage pattern for the system is the following: a single read/write quorum that changes

infrequently is used for all operations. This is a special case of the scenario described in the previous

paragraph. We performed additional simulations to investigate the behavior of the system under this usage

pattern.

These simulations were identical to die ones previously described except that before each Insert, Update,

and Delete operation, a decision to change the quorum was made with probability /?. Whenever it was

determined that the quorum was to change, a single, randomly chosen member of die quorum was replaced

with a representative chosen at random from those not already in the quorum. Thus, on any given iteration at

most one member of die write quorum changed. This usage pattern could occur if a directory suite were

being used by a single requester.

Simulations were performed on 3-2-2 directories initially containing 100 keys, with /; values of 0.1, 0.01,

0.001, and 0.0001. Two hundred thousand operations were performed in each simulation and data was

collected during die final one hundred diousand operations. The results show that as die value of p decreases,

the average delete list size decreases significantly from the value observed under random usage. An'average

delete list size of 0.44 was observed when die value of p was 0.1, 0.25 when the value of p was 0.01, 0.28 when

the value of p was 0.001, and 0.02 when the value of p was 0.0001. The size ratios did not change significantly

from the size ratios observed under random usage. These results indicate that the total number of outdated

and ghost entries remains close to the total under random usage, but they arc now concentrated outside of the

write quorum. Thus, the delete lists actually encountered tend to be shorter than those observed under

random usage.

The results of this simulation are consistent with our conjecture that the performance of the system will be

at least as good under any rcalisdc usage pattern as it was under die random usage studied in the simulations

and analysis.

5 Discussion

The comparison of weighted voting with non-distributed techniques such as mirroring is a complex topic

diat this paper will not attempt to cover. However, it appears that there is a clear tradeoff between function

and performance. Weighted voting provides higher survivability, reliability, availability, and easier

maintenance than mirroring, but requires more inter-node communication and incurs the inefficiency and

complexity of an underlying transaction mechanism. The advantages of weighted voting primarily result

from the storage of data at autonomous nodes that can be physically separated. Though the overhead of

transaction and communication mechanisms may be reduced (or accepted because of dicir utility in

42

constructing complex systems), directory suite operations will always require at least one non-local operation

to preserve availability.

Weighted voting may be used in various ways to implement replicated directories that support a high

volume of operations. If Lookup operations predominate, suite configurations with a large number of

representatives and a write quorum much larger than die read quorum permit intra-suitc parallelism. There

arc no easy solutions to die problems caused when a large collection of operations simultaneously attempt to

update information associated with the same key; however, any directory may be statically partitioned into

separate sub-directories in which concurrent operations can take place. Such sub-dircctorics can be

represented as directory suites, ferry [Terry 84] has analyzed the performance of various directory

partitioning schemes for Lookup operations.

Directory suites can also be configured to take advantage of locality of reference with respect to keys. In

particular, quorums can be chosen diat permit reads to be done locally and non-local writes to be distributed

among all the non-local representatives.9 For example, consider a 4-2-3 directory suite with key values in the

range of 1 to 100, and locality such that transactions of Type A operate on entries having keys 1 to 50, and

transactions of Type B operate on entries having keys 51 to 100. Wc assume that representatives Al and A2

are local to transactions of Type A and representatives Bl and B2 arc local to transactions of Type B. As

shown in Figure 24, Type A transactions read from representatives Al and A2 and direct their updates to Al,

A2, and cither Bl or B2. Transactions of type B behave analogously, in this example, all inquiries can be

done locally and the non-local write diat is required for modification operations is evenly distributed among

the remote representatives.

In read quorums for
keys: 1-50

In write quorums for
keys: 1-75

In read quorums for
keys: 1-50

In write quorums for
keys 1-50, 76-100

In read quorums for
keys: 51-100

In write quorums for
keys: 1-25, 51-100

In read quorums for
keys: 51-100

In write quorums for
keys: 26-100

Representative A1 Representative A2 Representative B1 Representative B2

Figure 24: A 4-2-3 Directory Suite Partitioned for Locality

The ways in which this algorithm will actually be used will become known once implementations are

available. Wc have begun an implementation and resolved some details not addressed in diis paper. For

Of course, failures that require the quorums to change will result in a performance loss.

43

example, our implementation stores data for directory representatives as B-trecs [Comer 79], and version

numbers for gaps are stored in fields in their bounding entries. We envision using version numbers

containing 48 or more bits to prevent cycling. When completed, the implementation will run on a

transaction-based system that we arc building on a modified version of the Accent kernel [Rashid 81, Spcctor

83b, Spcctor 83a], Our transaction manager uses write ahead log protocols described by Schwarz and

Spcctor [Schwarz 83b] for recovery from failures.

In summary, we have presented a replication algoridim for directories that exhibits favorable performance

and availability properties. As is the case with Gifford's algorithm, die exact configuration of suites can be

tailored to provide higher or lower availability, and higher or lower performance. This algorithm achieves

high concurrency while maintaining consistency by dynamically partitioning the key space into ranges at each

representative and associating a version number with each range. We have proven a property of directory

suites that permits all operations, including deletions, to be done in a small number of messages that depends

only on die size of die read and write quorums. Both simulation and analytic results show that the time and

space costs associated with using our algorithm are low.

Acknowledgments

James Driscoll suggested improvements to our initial dynamic partitioning algorithm diat resulted in the

algorithm presented in this paper. John Lchoczky provided invaluable assistance in die definition and

analysis of our analytic model. David Gifford, Solom Hcddaya, Cynthia Hibbard, and Robert Sansom read

and commented on drafts of this paper.

44

I. Detailed Formulation of Balance Equations

Let us first construct die balance equation for current entries. A formal statement of the rate balance -

assertion is:

KpTic number of entries entering the current class in a chosen representative in one operation]
= FJThc number of entries leaving the current class in a chosen representative in one operation].

These expected values arc computed over a space consisting of all of the possible state transitions in our

model. We expand the expectation values on both sides of die equation by breaking the space up into three

subspaccs: the transitions that result from Insert operations, Update operations and Delete operations:

P[Opr is Insert] x Kf The number of entries entering the current class in one Insert opr]
+ P[Opr is Update] x Effhc number of entries entering the current class in one Update opr]
+ PfOpr is Delete] x KfThc number of entries entering the current class in one Delete opr]

= P[Opr is Insert] x FJThc number of entries leaving the current class in one Insert opr]
+ P[Opr is Update] x EjThc number of entries leaving the current class in one Update opr]
+ P[Opr is Delete] x F(Thc number of entries leaving die current class in one Delete opr] .

We will assume diat all of the probabilities in diis equation arc 3 , as Inserts, Deletes and Updates occur with

almost equal likelihood. The reason that they do not occur with exactly equal likelihood is that Deletes and

Updates cannot occur in states where the directory contains no keys, and Inserts cannot occur in states where

die suite already contains every key in die key space. However, these states represent a negligible fraction of

the state space and diey all occur with extremely low probability. Kach term has one of dicsc factors, so under

the assumption, they all cancel out.

To derive the first balance equation in terms of the unknowns, we expand the expected values in the order

they appear in the equation. The first term is:

EjThe number of entries entering the current class in one Insert operation].

A single entry will enter the current class if and only if the representative under observation is chosen for the

write quorum of the Insert operation. Thus the expected value is merely the probability that the

representative is chosen. Since there are N representatives in the suite, and W arc chosen at random for the

write quorum, this is 77.

The second term is:

Efflie number of entries entering the current class in one Update operation].

Again, an entry can enter die current class only if die representative is chosen for the write quorum. This

time, however, the entry for the key being updated will not necessarily enter the current class, as the

representative could already have contained a current entry for this key. In diat case, no entry that was not

already current would become current. Thus, the value of the term is:
PfThe representative is chosen for die write quorum]

x (1 - Pffhe representative already contains a current entry for the key being updated]).

45

The probability that the representative is chosen for the write quorum is t£ . The key to be updated is chosen

at random from those in the suite so:

Pffhe representative already contains a current entry for the key being updated]
= PJThc representative contains a current entry for a randomly chosen key in the directory]
= c '

Thus, the value of the second term is:

The third term is:

KfThe number of entries entering the current class in one Delete operation].

When a Delete operation occurs, entries for the real predecessor and real successor of the key being deleted

arc inserted into each member of the write quorum where they do not already appear. Of course they arc

inserted with their latest version number so they become additional current entries in those representatives.

This is the only way entries can enter the current class in a Delete operation. Thus the number of entries

entering the current class in the observed representative in one Delete operation is zero if the representative is

not chosen for the write quorum. If it is chosen for the write quorum, then one entry will become current if

the representative does not contain an entry for die real predecessor of die key being deleted, and another

entry will become current if die representative docs not contain an entry for the real successor.
We introduce some notation for events to simplify die discussion that follows:

/> = {The representative contains an entry for die real predecessor of the key being deleted}
S = {The representative contains an entry for the real successor of the key being deleted} .

On the basis of the previous observations, the value of the term being expanded is:

Pfrhe representative is chosen for the write quorum] xiPlI*] + P[SC])

= # ((l - P [/ >]) + (l - P [S])) .

While P[P] and P[S] cannot be exactly expressed in terms of our unknowns, they can be very closely

approximated. The key to be deleted is chosen at random from those in the directory, and its real predecessor

is merely the key immediately preceding it in the directory. If die key being deleted is the first key in the

directory, its real predecessor is the dummy key LOW, which is always present in every representative. Thus

the probability diat die real predecessor is present in the representative (Pf/']) is just slightly higher than the

probability that a randomly chosen key in the directory is present in the representative. For a huge key space

like the one used in the simulations they will be practically identical. By symmetry, die same argument holds

for the real successor. In fact, it shows that P[/>] = P[.V]. Therefore, we make the assumption that:

P[/ >]= P[The representative contains an entry for a randomly chosen key in die directory]
= P[Thc representative contains a current entry for a randomly chosen key in the directory]

+ P[rhe representative contains an outdated entry for a randomly chosen key in the dir.]
= c ' + o ' ,

46

The third term becomes:

2 # (l - (c ' + r/)).

Now we come to the terms on the right hand side of the balance equation. The first term on the right hand

side is:

Kf The number of entries leaving the current class in one Insert operation].

This term vanishes, as no entries leave die current class in Insert operations.

The second term on die right hand side is:
KflTic number of entries leaving the current class in one Update operation].

If die representative under observation contains a current entry for the key being updated, and the

representative is not chosen for the write quorum, then the current entry becomes outdated. Thus the value

of this term is:

(1 — P(Thc representative is chosen for the write quorum])
x PjThe representative contains a current entry for a randomly chosen key in die directory]

= < i - T) c .

The diird term on the right hand side is:
EpTic number of entries leaving the current class in one Delete operation].

[f die representative under observation contains a current entry for die key being deleted, the entry will leave

the current class regardless of whether or not the representative is chosen for die write quorum. If it is

chosen, the entry will be deleted outright; otherwise, die entry will become a ghost. Thus the value of this

term is:
P[rhc representative contains a current entry for die key being updated]

Combining all these terms, the balance equation for current entries is:

^ + ^ (l - c 0 + 2 f (l - (c / + ^)) = (l - ^) c / + c'.

Simplifying, we get:

(1 + 7v)c'+ wo =277.

We now construct the balance equation for outdated entries. By an argument identical to die one used in

the construction of the first balance equation, a formal statement of the rate balance assertion becomes:

47

FJThc number of entries entering the outdated class in one Insert operation]
+ Ep'hc number of entries entering the outdated class in one Update operation]
4- EfThc number of entries entering the outdated class in one Delete operation]

= EfThc iTumbcr of entries leaving the outdated class in one Insert operation]
+ EfThc number of entries leaving the outdated class in one Update operation]
+ E[rhc number of entries leaving the outdated class in one Delete operation].

We shall assume that entries cannot enter the outdated class in Insert operations, so the first term of the left

hand side of the equation vanishes. In fact, if a key is inserted when ghosts for a previous incarnation of that

key still remain in representatives outside of the write quorum for the Insert operation, those ghosts will

become outdated. However, this is an extremely unlikely event, hence this term of the equation is negligible

compared to the others. Furthermore, it is not expressible in terms of the unknowns.

Entries cannot enter the outdated class in the Delete operation, so the third term of the equation also

vanishes. In die Update operation an entry can become outdated as follows. If die representative is not

chosen for the write quorum and it contains a current entry for the key being updated, then the entry becomes

outdated. Thus the value of the second terms is:

(1 — PfThe representative is chosen for the write quorum])
x Pf The representative contains a current entry for a randomly chosen key in the directory]

Hntries cannot leave the outdated class in Insert operations, so the first term of the right hand side of the
equation vanishes. In an Update operation, an entry can leave the outdated class as follows. If the
representative, is chosen for the write quorum and it contains an outdated entry for the key being updated,
then this entry is replaced by a current one. Thus, the second term on the right hand side is:

PfThe representative is chosen for die write quorum]
x P[Thc representative contains an outdated entry for the key being updated]

= PfThe reprcsentadvc is chosen for the write quorum]
x P[The representative contains an outdated entry for a randomly chosen key in the directory]

= V.

In a Delete operation, an entry can leave the outdated class as follows: If the representative contains an

outdated entry for the key being deleted, then die entry disappears if the representative is chosen for the write

quorum, and it becomes a ghost if die representative is not chosen for die write quorum. Thus the diird term

on the right hand side is:

PfThe representative contains an outdated entry for the key being deleted]
= PfThe representative contains an outdated entry for a randomly chosen key in die directory]
= o'.

48

Putting it all together, the balance equation for outdated entries is:

i\-%)c'=%o'+o>.

Simplifying, Uiis becomes:

Finally, we construct the balance equation for ghost entries. A formal statement of die balance assertion

becomes:

K[The number of entries entering the ghost class in one Insert operation]
+ K[ITic number of entries entering the ghost class in one Update operation]
+ KpTic number of entries entering the ghost class in one Delete operation]

= KpTic number of entries leaving the ghost class in one Insert operation]
+ KpTic number of entries leaving die ghost class in one Update operation]
+ Efrhc number of entries leaving the ghost class in one Delete operation].

Entries can only enter the ghost class in Delete operations; thus, the first and second terms of the equation

vanish. An entry becomes a ghost in a representative if its key is being deleted and diat representative is not

chosen for the write quorum of the delete operation. Thus the second term is:

(1 — PpTic representative is chosen for the write quorum])
x PpTie representative contains an entry for a randomly chosen key in the directory]

= (l - # X c ' + o /) .

Entries rarely leave the ghost class in Insert operations, thus we shall assume the first term on the right hand

side vanishes. (This is essentially the same assumption we made on page 47 when constructing the balance

equation for outdated entries.) Entries cannot leave the ghost class in Update operations, thus the second

term on the right hand side actually docs vanish. If the representative is chosen for the write quorum of the

Delete operation then all of the ghosts constituting the delete list of the key being deleted will be removed

from the representative. Thus die third term of the right hand side is:
PPTie representative is chosen for the write quorum]

x EpTic size of the delete list of the the key being deleted]
= Pf Fhc representative is chosen for die write quorum]

x EP'he size of the delete list of the a randomly chosen key in the directory]

- W A = Ufa-

Putting the terms together, the balance equation for ghosts is:

(l - # X c ' + 0 O = # < / .

Simplifying:

rf=$pHf(c' + (/).

49

[Allchin 83a] J. F, Allchin, M.S. McKcndry.
Synchronization and Recovery of Actions.
In Proc. of the Second Principles of Distributed Computing Conference, pages 31-44. August,

1983.

[Allchin 83b] James K. Allchin, Martin S. McKcndry.
Facilities for Supporting Atomicity in Operating Systems.
Technical Report GIT-CS-83/1, Georgia Institute of Technology, January, 1983.

[Alsberg 76] P. A. Alsberg, J. D. Day.
A Principle for Resilient Sharing of Distributed Resources.
In Proc. 2nd International Confi on Software engineering, pages 562-570. October, 1976.

[Bartlett81] Joel Bartlctt.
A NonStop™ Kernel.
In Proc. flight h Symp. on Operating System Principles. ACM, 1981.

[Birman 83] K. P. Birman, D. Skccn, A. Hl Abbadi, W.C. Dietrich, T. Raeuchle.
Isis: An Environment for Constructing Fault-Tolerant Distributed Systems.
Technical Report 83-552, Cornell Unviersity, 1983.

[Comer 79] Douglas Comer.
The Ubiquitous B-Trce.
ACM Computing Surveys 11(2): 121-137, June, 1979.

[Daniels 83] Dean Daniels, Alfred Z. Spcctor.
An Algorithm for Replicated Directories.
In Proc. of the Second Principles of Distributed Computing Conference. August, 1983.

[Gifford 79] David K. Gifford.
Weighted Voting for Replicated Data.
In Proc. Seventh Symp. on Operating System Principles, pages 150-162. ACM, 1979.

[Gifford 81] David K. Gifford.
Information Storage in a Decentralized Computer System.
PhD thesis, Stanford University, 1981.
Available as Xerox Palo Alto Research Center Report CSL-81-8, March 1982.

[Gray 81] James N. Gray, et al.
The Recovery Manager of the System R Database Manager.
ACM Computing Surveys (2):223-242, June, 1981.

[IBM Corporation 75]
ACP System: Concept and Facilities
GH20-1473-1 edition, IBM Corporation, White Plains, New York, 1975.

[Kemcny 60] John G. Kcmcny, J. Laurie Snell.
Finite Markov Chains.
D. Van Nostrand & Co., New York, i960.

[Korth 83] Henry F. Korth.
Locking Primitives in a Database System.
Journal of the ACM 30(1), Jaunary, 1983.

50

[Lindsay 79] Bruce G. Lindsay, et al.
Notes on Distributed Databases.
IBM Research Report RJ2571, IBM Research Laboratory, San Jose, Ca., July, 1979.

[Liskov 82] Barbara I Jskov and Robert Scheifler.
Guardians and Actions: Linguistic Support for Robust, Distributed Programs.
In Proceedings of the Ninth ACM SIGACT-S1GPLAN Symposium on the Principles of

Programming Languages, pages 7-19. Albuquerque, NM, January, 1982.

[Popek 81] G. Popek et al.
LOCUS: A Network Transparent, High Reliability Distributed System.
In Proc. Eighth Symp. on Operating System Principles. ACM, 1981.

[Rashid 81] Richard Rash id, George Robertson.
Accent: A Communication Oriented Network Operating System Kernel.
In Proc. Eighth Symp. on Operating System Principles. ACM, 1981.

[Rothnie 77] J. B. Rothnic, N. Goodman, P.A. Bernstein.
The Redundant Update Methodology of S DD-1: A System for Distributed Databases (The

Eully Redundant Case).
Technical Report CCA-77-02, Computer Corporation of America, 1977.

[Schwarz 83a] Peter M. Schwarz, Alfred Z. Spector.
Synchronizing Shared Abstract Types.
Carncgic-Mcllon Report CMU-CS-83-163, Carnegie-Mellon University, Pittsburgh, PA,

November, 1983.
Revised edition of CMU-CS-82-128.

[Schwarz 83b] Peter M. Schwarz, Alfred Z. Spector.
Recovery of Shared Abstract Types.
Carncgic-Mcllon Report CM U-CS-83-151, Carnegie-Mellon University, Pittsburgh, PA,

October, 1983.

[Spector 83a] Alfred Z. Spector, Peter M. Schwarz.
Transactions: A Construct for Reliable Distributed Computing.
Operating Systems Review 17(2): 18-35, April, 1983.
Also available as Carncgic-Mellon Report CMU-CS-82-143, January 1983.

[Spector 83b] Alfred Z. Spector.
Modifying the Accent Kernel to Support TABS Recovery.
November, 1983.

[Terry 84] Douglas B. Terry.
An Analysis of Naming Conventions for Distributed Computer Systems.
In Proceedings of SIGCOMM 84 Symposium: Communications Architectures and Protocols.

June, 1984.
To appear. Also available as Department of Electrical Engineering and Computer Science

Technical Report UCB/CSD/83/156, University of California, Berkeley.

[rraiger 82] Irving L. Traigcr, Jim Gray, Cesarc A. Galticri, Bruce G. Lindsay.
Transactions and Consistency in Distributed Database Systems.
ACM Transactions on Database Systems 7(3):323-342, September, 1982.

51

[Wcihl 83a] W. Wcihl, B. I Jskov.
Specification and Implementation of Resilient, Atomic Data Types.
In Symposium on Programming Language Issues in Software Systems. June, 1983.

[Wcihl 83b] William F.. Wcihl.
Data Dependent Concurrency Control and Recovery.
In Proc. of the Second Principles of Distributed Computing Conference, pages 73-74. August,

1983.

