
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

C M U - C S - 8 4 - 1 3 S

Enti ty-Oriented Parsing

Philip J. Hayes

9 June 1984

Abst rac t

An entity-oriented approach to restr icted-domain parsing is proposed. In this approach, the

definit ions of the structure and surface representation of domain entities are grouped together. Like

semantic grammar, this allows easy exploitation of limited domain semantics. In addit ion, it facilitates

fragmentary recognit ion and the use of multiple parsing strategies, and so is particularly useful for

robust recognit ion of extragrammatical input. Several advantages from the point of view of language

definit ion are also noted. Representative samples from an entity-oriented language definit ion are

presented, along with a control structure for an entity-oriented parser, some parsing strategies that

use the control structure, and worked examples of parses. A parser incorporat ing the control

structure and the parsing strategies is currently under implementat ion.

To appear in Proceedings of Co ling 84.

This research was sponsored by the Air Force Office of Scientif ic Research under Contract
AFOSR-82-0219

1

1. In t roduct ion
The task of typical natural language interface systems is much simpler than the general problem of

natural language understanding. The simpli f ications arise because:

1. the systems operate within a highly restricted domain of discourse, so that a precise set

of object types can be established, and many of the ambiguit ies that come up in more

general natural language processing can be ignored or constrained away;

2. even within the restricted domain of discourse, a natural language interface system only
needs to recognize a limited subset of all the things that could be said — the subset that
its back-end can respond to.

The most commonly used technique to exploit these limited domain constraints is semantic

grammar [1 , 2, 9] in which semantically def ined categories (such as <ship> or <ship-attribute>) are

used in a grammar (usually ATN based) in place of syntactic categories (such as <noun> or

<adjective>). While semantic grammar has been very successful in exploit ing limited domain

constraints to reduce ambiguit ies and eliminate spurious parses of grammatical input, it still suffers

from the fragility in the face of extragrammatical input characterist ic of parsing based on transit ion

nets [4]. Also, the task of restr icted-domain language definit ion is typically diff icult in interfaces

based on semantic grammar, in part because the grammar definit ion formalism is not well integrated

with the method of defining the object and actions of the domain of discourse (though see [6]).

This paper proposes an alternative approach to restricted domain language recognit ion called

entity-oriented parsing. Entity-oriented parsing uses the same notion of semantical ly-defined

categories as semantic grammar, but does not embed these categories in a grammatical structure

designed for syntactic recognit ion. Instead, a scheme more reminiscent of conceptual or case-frame

parsers [3 , 1 0 , 1 1] is employed. An entity-oriented parser operates from a col lect ion of definit ions of

the various entities (objects, events, commands, states, etc.) that a particular interface system needs

to recognize. These definit ions contain information about the internal structure of the entities, about

the way the entities will be manifested in the natural language input, and about the correspondence

between the internal structure and surface representat ion. This arrangement provides a good

framework for exploit ing the simpli f ications possible in restricted domain natural language

recognit ion because:

l . t h e entit ies form a natural set of types through which to constrain the recognit ion

semantically. The types also form a natural basis for the structural definit ions of entities.

2. the set of things that the back-end can respond to corresponds to a subset of the domain

entities (remember that entities can be events or commands as well as objects). So the

goal of an entity-oriented system will normally be to recognize one of a " top- level " class

of entities. This is analogous to the set of basic message patterns that the machine

2 Introduct ion

translation system of Wilks [11] aimed to recognize in any input.

In addit ion to providing a good general basis for restricted domain natural language recognit ion, we

claim that the entity-oriented approach also facilitates robustness in the face of extragrammatical

input and ease of language definit ion for restricted domain languages. Entity-oriented parsing has

the potential to provide better parsing robustness than more tradit ional semantic grammar techniques

for two major reasons:

• The individual definit ion of all domain entities facilitates their independent recognit ion.

Assuming there is appropriate indexing of entities through lexical items that might appear

in a surface descript ion of them, this recognit ion can be done bottom-up, thus making

possible recognit ion of ell iptical, fragmentary, or partially incomprehensible input. The

same definit ions can also be used in a more efficient top-down manner when the input

conforms to the system's expectat ions.

• Recent work [5 ,8] has suggested the usefulness of multiple construct ion-specif ic

recognit ion strategies for restricted domain parsing, particularly for dealing with

extragrammatical input. The individual entity definit ions form an ideal framework around

which to organize the multiple strategies. In particular, each definit ion can specify which

strategies are applicable to recognizing it. Of course, this only provides a framework for

robust recognit ion, the robustness achieved still depends on the quality of the actual

recognit ion strategies used.

The advantages of entity-oriented parsing for language definit ion include:

• All information relating to an entity is grouped in one place, so that a language definer will

be able to see more clearly whether a definit ion is complete and what would be the

consequences of any addit ion or change to the defini t ion.

• Since surface (syntactic) and structural information about an entity is grouped together,

the surface information can refer to the structure in a clear and coherent way. In

particular, this allows hierarchical surface information to use the natural hierarchy

defined by the structural information, leading to greater consistency of coverage in the

surface language.

• Since entity definit ions are independent, the information necessary to drive recognit ion

by the multiple construct ion-specif ic strategies mentioned above can be represented

directly in the form most useful to each strategy, thus removing the need for any kind of

"grammar compi la t ion" step and allowing more rapid grammar development.

In the remainder of the paper, we make these arguments more concrete by looking at some

fragments of an entity-oriented language defini t ion, by outl ining the control structure of a robust

restr icted-domain parser driven by such definit ions, and by tracing through some worked examples of

the parser in operat ion. These examples also shown describe some specific parsing strategies that

exploit the control structures. A parser incorporat ing the control structure and the parsing strategies

Introduct ion 3

is currently under implementat ion. Its design embodies our experience with a pilot entity-oriented

parser that has already been implemented, but is not descr ibed here.

2. Example Entity Definit ions
This section presents some example entity and language definit ions suitable for use in entity-

oriented parsing. The examples are drawn from the domain of an interface to a database of col lege

courses. Here is the (partial) definit ion of a course.

[
Ent i tyName: Col legeCourse
Type: S t r u c t u r e d
Components: (

[ComponentName: CourseNumber
Type: I n t e g e r
Grea te rThan: 99
LessThan: 1000

]
[ComponentName: CourseDepar.tment

Type: Col 1egeDepartment

]
[ComponentName: CourseClass

Type: Co l legeClass

]
[ComponentName: C o u r s e l n s t r u c t o r

Type: C o l l e g e P r o f e s s o r
] •

y
Sur faceRepresen ta t i o n :

[Syn taxType: NounPhrase
Head: (course | seminar |

SCourseOepartment SCourseNumber | . . .)
A d j e c t i v a l C o m p o n e n t s : (CourseOepartment . . .)
A d j e c t i v e s : (

[A d j e c t i v a l P h r a s e : (new | most r e c e n t)
Component: CourseSemester
Va lue : CurrentSemester

3
')

PostNominalCases: (
[P r e p o s i t i o n : (? i n t e n d e d f o r | d i r e c t e d to | . . .)

Component: CourseClass
]
[P r e p o s i t i o n : (? t a u g h t by | . . .)

Component: C o u r s e l n s t r u c t o r
]

') '

]

3
For reasons of space, we cannot explain all the details of this language. In essence, a course is

defined as a structured object with components: number, department, instructor, etc. (square

brackets denote at t r ibute/value lists, and round brackets ordinary lists). This definit ion is kept

separate from the surface representation of a course which is def ined to be a noun phrase with

adjectives, postnominal cases, etc.. At a more detailed level, no te . the special purpose way of

4 Example Entity Definit ions

specifying a course by its department juxtaposed with its number (e.g. Computer Science 101) is

handled by an alternate pattern for the head of the noun phrase (dollar signs refer back to the

components). This allows the user to say (redundantly) phrases like "CS 101 taught by Smi th" . Note

also that the way the department of a course can appear in the surface representation of a course is

specified in terms of the CourseDepartment component (and hence in terms of its type,

CollegeDepartment) rather than directly as an explicit surface representation. This ensures

consistency throughout the language in what will be recognized as a descript ion of a department.

Coupled with the ability to use general syntactic descriptors (like NounPhrase in the descript ion of a

SurfaceRepresentat ion), this can prevent the kind of patchy coverage prevalent with standard

semantic grammar language definit ions.

Subsidiary objects like CollegeDepartment are defined in similar fashion.

[
Ent i tyName: Col legeDepartment
Type: Enumerat ion
EnumeratedValues: (

ComputerScienceDepartment
MathematicsDepartment
Hi s to ryDepar tment

S u r f a c e R e p r e s e n t a t i o n :
[SyntaxType: Pa t te rnSe t

P a t t e r n s : (
[P a t t e r n : (CS | Computer Science | Comp Sci | . . .)
Va lue : ComputerScienceDepartment

]

i
i

]

CollegeCourse will also be involved in higher-level entities of our restricted domain such as a

command to the data base system to enrol a student in a course.

Example Entity Definit ions 5

Ent i tyName: Enrol Command
Type: S t r u c t u r e d
Components: (

[ComponentName: E n r o l l e e
Type: Co l l egeStuden t

]
[ComponentName: E n r o l l n

Type: Col legeCourse
]

)
S u r f a c e R e p r e s e n t a t i o n :

[Syn taxType: Imperat iveCaseFrame
Head: (e n r o l | r e g i s t e r | i n c l u d e | . . .)
D i r e c t O b j e c t : (S E n r o l l e e)
Cases: (

[P r e p o s i t i o n : (i n | i n t o | * . . .)
Component: E n r o l l n

]
)

]
]

These examples also show how all information about an entity, concerning both fundamental

structure and surface representat ion, is grouped together and integrated. This supports the claim

that entity-orfented language definit ion makes it easier to determine whether a language definit ion is

complete.

3. Control St ructure for a Robust Enti ty-Oriented Parser
The potential advantages of an entity-oriented approach from the point of view of robustness in the

face of ungrammatical input were outl ined in the introduct ion. To exploit this potential while

maintaining eff iciency in parsing grammatical input, special attention must be paid to the control

structure of the parser used. Desirable characterist ics for the control structure of any parser capable

of handling ungrammatical as well as grammatical input include:

• the control structure allows grammatical input to be parsed straightforwardly without

considering any of the possible grammatical deviations that could occur;

• the control structure enables progressively higher degrees of grammatical deviation to be

considered when the input does not satisfy grammatical expectat ions; .

• the control structure allows simpler deviations to be considered before more complex
deviations.

The first two points are self-evident, but the third may require some explanation. The problem it

addresses arises particularly when there are several alternative parses under considerat ion. In such

cases, it is important to prevent the parser from considering drastic deviations in one branch of the

parse before considering simple ones in the other. For instance, the parser should not start

hypothesizing missing words in one branch when a simple spelling correct ion in another branch

6 Control Structure for a Robust Entity-Oriented Parser

would allow the parse to go through.

We have designed a parser control structure for use in entity-oriented parsing which has all of the

characterist ics listed above. This control structure operates through an agenda mechanism. Each

item of the agenda represents a different continuation of the parse, i.e. a partial parse plus a

specif ication of what to do next to cont inue that partial parse. With each continuation is associated

an integer flexibility level that represents the degree of grammatical deviation implied by the

cont inuat ion. That is, the flexibility level represents the degree of grammatical deviation in the input if

the continuation were to produce a complete parse without f inding any more deviation.

Continuations with a lower flexibility are run before cont inuat ions with a higher flexibility level. Once

a complete parse has been obtained, cont inuat ions with a flexibility level higher than that of the

continuation which resulted in the parse are abandoned. This means that the agenda mechanism

never activates any cont inuat ions with a flexibility level higher than the level representing the lowest

level of grammatical deviation necessary to account for the input. Thus effort is not wasted exploring

more exotic grammatical deviations when the input can be accounted for by simpler ones. This

shows that the parser has the first two of the characterist ics listed above.

In addition to taking care of alternatives at different flexibility levels, this control structure also

handles the more usual kind of alternatives faced by parsers — those representing alternative parses

due to local ambiguity in the input. Whenever such an ambiguity arises, the control structure

duplicates the relevant continuation as many times as there are ambiguous alternatives, giving each

of the dupl icated continuations the same flexibility level. From there on, the same agenda mechanism

used for the various flexibility levels will keep 'each of the ambiguous alternatives separate and ensure

that all are investigated (as long as their flexibility level is not too high). Integrating the treatment of

the normal kind of ambiguities with the treatment of alternative ways of handling grammatical

deviations ensures that the level of grammatical deviation under consideration can be kept the same

in locally ambiguous branches of a parse. This fulfills the third characterist ic listed above.

Flexibility levels are additive, i.e. if some grammatical deviation has already been found in the input,

then finding a new one will raise the flexibility level of the continuation concerned to the sum of the

flexibility levels involved. This ensures a relatively high flexibility level and thus a relatively low

likelihood of activation for cont inuations in which combinat ions of deviations are being postulated to

account for the input.

Since space is limited, we cannot go into the implementation of this control structure. However, it is

possible to give a brief descript ion of the control structure primitives used in programming the parser.

Control Structure for a Robust Entity-Oriented Parser 7

Recall first that the kind of entity-oriented parser we have been discussing consists of a col lect ion of

recognit ion strategies. The more specif ic strategies exploit the idiosyncratic features of the

ent i t ies/construct ion types they are specific to, while the more general strategies apply to wider

classes of entities and depend on more universal characterist ics. In either case, the strategies are

pieces of (Lisp) program rather than more abstract rules or networks. Integration of such strategies

with the general scheme of flexibility levels described above is made straightforward through a

special split function which the control structure supports as a primitive. This split funct ion allows the

programmer of a strategy to specify one or more alternative cont inuat ions from any point in the

strategy and to associate a different flexibility increment with each of them. The implementation of

this statement takes care of restarting each of the alternative cont inuat ions at the appropriate t ime

and with the appropriate local context.

Some examples should make this account of the control structure much clearer. The examples will

also present some specif ic parsing strategies and show how they use the split funct ion descr ibed

above. These strategies are designed to effect robust recognit ion of extragrammatical input and

efficient recognit ion of grammatical input by exploit ing entity-oriented language definit ions like those

in the previous sect ion.

4. Example Parses
Let us examine first how a simple data base command like:

Enrol Susan Smith in CS 101

might be parsed with the control structure and language definit ions presented in the two previous

sections. We start off with the top-level parsing strategy, RecognizeAnyEntity. This strategy first tries

to identify a top-level domain entity (in this case a data base command) that might account for the

entire input. It does this in a bottom-up manner by indexing from words in the input to those entities

that they could appear in. In this case, the best indexer is the first word, 'enrol ' , which indexes

EnrolCommand. In general, however, the best indexer need not be the first word of the input and we

need to consider all words, thus raising the potential of indexing more than one entity. In our

example, we would also index CollegeStudent, CollegeCourse, and CollegeDepartment. However,

these are not top-level domain entities and are subsumed by EnrolCommand, and so can be ignored

in favour of it.

Once EnrolCommand has been identif ied as an entity that might account for the input,

RecognizeAnyEntity initiates an attempt to recognize it. Since EnrolCommand is listed as an

imperative case frame, this task is handled by the ImperativeCaseFrame recognizer strategy. In

contrast to the bottom-up approach of RecognizeAnyEntity, this strategy tackles its more specif ic task

8 Example Parses

in a top-down manner using the case frame recognit ion algorithm developed for the CASPAR parser

[8]. In particular, the strategy will match the case frame header and the preposition ' in ' , and initiate

recognit ions of fillers of its direct object case and its case marked by ' in ' . These subgoals are to

recognize a CollegeStudent to fill the Enrollee case on the input segment "Susan Smi th ' " and a

CollegeCourse to fill the Enrolln case on the segment "CS 1 0 1 " . Both of these recognit ions will be

successful, hence causing the ImperativeCaseFrame recognizer to succeed and hence the entire

recognit ion. The resulting parse would be:

[I n s t a n c e O f : EnrolCommand
E n r o l l e e : [I n s t a n c e O f : Co l legeStudent

F i rs tNames: (Susan)
Surname: Smith

]
E n r o l l n : [I n s t a n c e O f : Col legeCourse

CourseDepartment: ComputerScienceDepartment
CourseNumber: 101

]
]

Note how this parse result is expressed in terms of the underlying structural representation used in

the entity definit ions without the need for a separate semantic interpretation step.

The last example was completely grammatical and so did not require any flexibility. After an initial

bottom-up step to find a dominant entity, that entity was recognized in a highly efficient top-down

manner. For an example involving input that is ungrammatical (as far as the parser is concerned),

consider:

Place Susan Smith in computer science for freshmen

There are two problems here: we assume that ' the user intended 'place' as a synonym for 'enrol ' , but

that it happens not to be in the system's vocabulary; the user has also shortened the grammatically

acceptable phrase, ' the computer science course for freshmen', to an equivalent phrase not covered

by the surface representation for CollegeCourse as defined earlier. Since 'place' is not a synonym for

'enrol ' in the language as presently def ined, the RecognizeAnyEntity strategy cannot index

EnrolCommand from it and hence cannot (as it did in the previous example) initiate a top-down

recognit ion of the entire input.

To deal with such eventualities, RecognizeAnyEntity executes a split statement specifying two

cont inuat ions immediately after it has found all the entities indexed by the input. The first

cont inuat ion has a zero flexibility level increment. It looks at the indexed entities to see if one

subsumes all the others. If it finds one, it attempts a top-down recognit ion as described in the

previous example. If it cannot find one, or if it does and the top-down recognit ion fails, then the

continuation itself fails. The second continuation has a positive flexibility increment and follows a

more robust bottom-up approach described below. This second continuation was established in the

Example Parses 9

previous example too, but was never activated since a complete parse was found at the zero flexibility

level. So we did not mention it. In the present example, the first cont inuat ion fails since there is no

subsuming entity, and so the second cont inuat ion gets a chance to run. Instead of insisting on

identifying a single top-level entity, this second cont inuat ion attempts to recognize all of the entit ies

that are indexed in the hope of later being able to piece together the various fragmentary recognit ions

that result. The entities directly indexed are Col legeStudent by " S u s a n " and " S m i t h " , 1

CollegeDepartment by "compute r " and "sc ience" , and CollegeClass by " f reshmen" . So a top-down

attempt is made to recognize each of these entit ies. We can assume these goals are fulfil led by

simple top-down strategies, appropriate to the SurfaceRepresentat ion of the corresponding entit ies,

and operat ing with no flexibility level increment.

Having recognized the low-level f ragments, the second cont inuat ion of RecognizeAnyEnti ty now

attempts to unify them into larger fragments, with the ultimate goal of unifying them into a descr ipt ion

of a single entity that spans the whole input. To do this, it takes adjacent fragments pairwise and

looks for entities of which they are both components , and then tries to recognize the subsuming entity

in the spanning segment. The two pairs here are Col legeStudent and Col legeDepartment (subsumed

by CollegeStudent) and Col legeDepartment and CollegeClass (subsumed by Col legeCourse).

To investigate the second of these pair ings, RecognizeAnyEnti ty would try to recognize a

Col legeCourse in the spanning segment 'computer science for f reshmen' using an elevated level of

flexibility. This goal would be handled, just like all recognit ions of Col legeCourse, by the

NominalCaseFrame recognizer. With no flexibility increment, this strategy fails because the head

noun is missing. However, with another flexibility increment, the recognit ion can go through with the

Col legeDepartment being treated as an adjective and the CollegeClass being treated as a

postnominal case — it has the right case marker, " f o r " , and the adjective and post-nominal are in the

right order. This successful f ragment unif icat ion leaves two fragments to unify — the old

Col legeStudent and the newly derived Col legeCourse.

There are several ways of unifying a Col legeStudent and a Col legeCourse — either could subsume

the other, or they could form the parameters to one of three database modif icat ion commands:

EnrolCommand, Wi thdrawCommand, and TransferCommand (with the obvious interpretat ions).

Since the commands are higher level entit ies than Col legeStudent and Col legeCourse, they would be

preferred as top-level fragment unifiers. We can also rule out TransferCommand in favour of the first

two because it requires two courses and we only have one. In addit ion, a recognit ion of

We assume we have a complete listing of students and so can index from their names.

10 Example Parses

EnrolCommand would succeed at a lower flexibility increment than WithdrawCommand,^ since the

preposition ' in ' that marks the CollegeCourse in the input is the correct marker of the Enrolln case of

EnrolCommand, but is not the appropriate marker for WithdrawFrom, the course-containing case of

WithdrawCommand. Thus a fragment unif ication based on EnrolCommand would be preferred. Also,

the alternate path of fragment amalgamation — combining CollegeStudent and CollegeDepartment

into CollegeStudent and then combining CollegeStudent and CollegeCourse — that we left pending

above cannot lead to a complete instantiation of a top-level database command. So

RecognizeAnyEntity will be in a posit ion to assume that the user really intended the EnrolCommand.

Since this recognit ion involved several signif icant assumptions, we would need to use focused

interaction techniques [7] to present the interpretation to the user for approval before acting on it.

Note that if the user does approve it, it should be possible (with further approval) to add 'place' to the

vocabulary as a synonym for 'enrol ' since 'place' was an unrecognized word in the surface position

where 'enrol ' should have been.

For a final example, let us examine an extragrammatical input that involves cont inuat ions at several

different flexibility levels: . .

Transfer Smith from Compter Science 101 Economics 203

The problems here are that 'Computer ' has been misspelt and the preposit ion ' to' is missing from

before 'Economies' . The example is similar to the first one in that RecognizeAnyEntity is able to

identify a top-level entity to be recognized top-down, in this case, TransferCommand. Like

EnrolCommand, TransferCommand is an imperative case frame, and so the task of recognizing it is

handled by the ImperativeCaseFrame strategy. This strategy can find the preposit ion ' f rom' , and so

can initiate the appropriate recognit ions for fillers of the OutOfCourse and Student cases. The

recognit ion for the student case succeeds without trouble, but the recognit ion for the OutOfCourse

case requires a spelling correct ion.

Whenever a top-down parsing strategy fails to verify that an input word is in a specific lexical class,

there is the possibility that the word that failed is a misspelling of a word that would have succeeded.

In such cases, the lexical lookup mechanism executes a split statement. 3 A zero increment branch

This relatively fine distinction between EnrolCommand and WithdrawCommand, based on the appropriateness of the
preposition 'in', is problematical in that it assumes that the flexibility level would be incremented in very fine-grained steps. If
that was impractical, the final outcome of the parse would be ambiguous between an EnrolCommand and a
WithdrawCommand and the user would have to be asked to make the discrimination.

3
If this causes too many splits, an alternative is only to do the split when the input word in question is not in the system's

lexicon at all.

Example Parses 11

fails immediately, but a second branch with a small positive increment tries spell ing correct ion against

the words in the predicted lexical class. If the correct ion fails, this second branch fails," but if the

correct ion succeeds, the branch succeeds also. In our example, the cont inuat ion involving the

second branch of the lexical lookup is highest on the agenda after the primary branch has failed. In

particular, it is higher than the second branch of RecognizeAnyEnti ty descr ibed in the previous

example, since the flexibility level increment for spell ing correct ion is small. This means that the

lexical lookup is cont inued with a spell ing correct ion, thus resolving the problem. Note also that since

the spell ing correct ion is only attempted within the context of recognizing a Col legeCourse — the

filler of OutOfCourse — the target words are limited to course names. This means spell ing correct ion

is much more accurate and efficient than if correct ion were attempted against the whole dict ionary.

After the OutOfCourse and Student cases have been successful ly fi l led, the ImperativeCaseFrame

strategy can do no more wi thout a flexibility level increment. But it has not filled all the required cases

of TransferCommand, and it has not used up all the input it was given, so it splits and fails at the

zero-level flexibility increment. However, in a cont inuat ion with a positive flexibility level increment, it

is able to attempt recognit ion of cases without their marking preposit ions. Assuming the sum of this

increment and the spell ing correct ion increment are still less than the increment associated with the

second branch of RecognizeAnyEnti ty, this cont inuat ion would be the next one run. In this

cont inuat ion, the Imperat iveCaseFrameRecognizer attempts to match unparsed segments of the

input against unfil led cases. There is only one of each, and the resulting attempt to recognize

'Economics 203' as the filler of IntoCourse succeeds straightforwardly. Now all required cases are

filled and all input is accounted for, so the ImperativeCaseFrame strategy and hence the whole parse

succeeds with the correct result.

For the example just presented, obtaining the ideal behaviour depends on careful choice of the

flexibility level increments. There is a danger here that the performance of the parser as a whole will

be dependent on iterative tuning of these increments, and may become unstable with even small

changes in the increments. It is too early yet to say how easy it will be to manage this problem, but we

plan to pay close attention to it as the parser comes into operat ion.

5. Conclusion

Entity-oriented parsing has several advantages as a basis for language recognit ion in restricted

domain natural language interfaces. Like techniques based on semantic grammar, it exploits limited

domain semantics through a series of domain-specif ic entity types. However, because of its suitability

for fragmentary recognit ion and its ability to accommodate multiple construct ion-speci f ic parsing

12 Conclus ion

strategies, it has the potential for greater robustness in the face of extragrammatical input than the

usual semantic grammar techniques. In this way, it more closely resembles conceptual or case-frame

parsing techniques. Moreover, enti ty-oriented parsing offers advantages for language defini t ion

because of the integration of structural and surface representat ion information and the ability to

represent surface information in the form most convenient to drive construct ion-speci f ic recogni t ion

strategies directly.

A pilot implementat ion of an enti ty-oriented parser has been completed and provides prel iminary

suppor t for our claims. However, a more r igorous test of the enti ty-oriented approach must wait for

the more complete implementat ion current ly being undertaken. The agenda-style control st ructure

we plan to use in this implementat ion is descr ibed above, along with some parsing strategies it will

employ and some worked examples of the strategies and control structure in act ion.

Acknowledgements
The ideas in this paper benefited considerably f rom discussions with other members of the Multipar

g roup at Carnegie-Mel lon Computer Science Department, part icularly Jaime Carbonel l , Jill Fain, and

Steve Minton. Steve Minton was a co-designer of the control structure presented above, and also

found an eff icient way to implement the split funct ion descr ibed in connect ion with that control

s t ructure.

References
1 . Brown, J . S. and Burton, R. R. Multiple Representat ions of Knowledge for Tutorial Reasoning. In

Representation and Understanding, Bobrow, D. G. and Coll ins, A., Ed.,Academic Press, New York,

1975, pp. 311-349.

2 . Bur ton, R. R. Semantic Grammar: An Engineering Technique for Construct ing Natural Language

Understanding Systems. BBN Report 3453, Bolt, Beranek, and Newman, Inc., Cambridge, Mass.,

December, 1976.

3 . Carbonel l , J . G., Boggs, W. M., Mauldin, M. L , and Anick, P. G. The XCALIBUR Project: A Natural

Language Interface to Expert Systems. Proc. Eighth Int. Jt. Conf. on Artif icial Intel l igence, Karlsruhe,

August , 1983.

4 . Carbonel l , J . G. and Hayes, P. J . "Recovery Strategies for Parsing Extragrammatical Language."

Computational Linguistics 10 (1984).

5 . Carbonel l , J . G. and Hayes, P. J. Robust Parsing Using Mult iple Construct ion-Speci f ic Strategies.

In Natural Language Parsing Systems, L. Bole, Ed.,Springer-Verlag, 1984.

6 . Grosz, B. J . TEAM: A Transportable Natural Language Interface System. Proc. Conf. on Applied

Natural Language Processing, Santa Monica, February, 1983.

References 13

7. Hayes P. J . A Const ruct ion Speci f ic Approach to Focused Interact ion in Flexible Parsing. Proc. of

19th Annual Meeting of the Assoc. f o r C o m p u t . Ling., Stanford University, June, 1981, pp. 149-152.

8 . Hayes, P. J . and Carbonel l , J . G. Mult i -Strategy Parsing and its Role in Robust Man-Machine

Communica t ion . Carnegie-Mel lon University Computer Science Department, May, 1981.

9 . Hendrix, G. G. Human Engineer ing for Appl ied Natural Language Processing. Proc. Fifth Int. Jt.

Conf. on Arti f icial Intel l igence, MIT, 1977, pp. 183-191.

1 0 . Riesbeck, C. K. and Schank, R. C. Comprehens ion by Computer : Expectat ion-Based Analysis of

Sentences in Context . Tech . Rept. 78, Computer Sc ience Dept., Yale University, 1976.

1 1 . Wilks, Y. A. Preference Semant ics. In Formal Semantics of Natural Language, Keenan,
Ed. ,Cambridge University Press, 1975.

