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structure and the parsing strategies is currently under implementat ion. 
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1. In t roduct ion 
The task of typical natural language interface systems is much simpler than the general problem of 

natural language understanding. The simpli f ications arise because: 

1. the systems operate within a highly restricted domain of discourse, so that a precise set 

of object types can be established, and many of the ambiguit ies that come up in more 

general natural language processing can be ignored or constrained away; 

2. even within the restricted domain of discourse, a natural language interface system only 
needs to recognize a limited subset of all the things that could be said — the subset that 
its back-end can respond to. 

The most commonly used technique to exploit these limited domain constraints is semantic 

grammar [ 1 , 2, 9] in which semantically def ined categories (such as <ship> or <ship-attribute>) are 

used in a grammar (usually ATN based) in place of syntactic categories (such as <noun> or 

<adjective>). While semantic grammar has been very successful in exploit ing limited domain 

constraints to reduce ambiguit ies and eliminate spurious parses of grammatical input, it still suffers 

from the fragility in the face of extragrammatical input characterist ic of parsing based on transit ion 

nets [4]. Also, the task of restr icted-domain language definit ion is typically diff icult in interfaces 

based on semantic grammar, in part because the grammar definit ion formalism is not well integrated 

with the method of defining the object and actions of the domain of discourse (though see [6]). 

This paper proposes an alternative approach to restricted domain language recognit ion called 

entity-oriented parsing. Entity-oriented parsing uses the same notion of semantical ly-defined 

categories as semantic grammar, but does not embed these categories in a grammatical structure 

designed for syntactic recognit ion. Instead, a scheme more reminiscent of conceptual or case-frame 

parsers [ 3 , 1 0 , 1 1 ] is employed. An entity-oriented parser operates from a col lect ion of definit ions of 

the various entities (objects, events, commands, states, etc.) that a particular interface system needs 

to recognize. These definit ions contain information about the internal structure of the entities, about 

the way the entities will be manifested in the natural language input, and about the correspondence 

between the internal structure and surface representat ion. This arrangement provides a good 

framework for exploit ing the simpli f ications possible in restricted domain natural language 

recognit ion because: 

l . t h e entit ies form a natural set of types through which to constrain the recognit ion 

semantically. The types also form a natural basis for the structural definit ions of entities. 

2. the set of things that the back-end can respond to corresponds to a subset of the domain 

entities (remember that entities can be events or commands as well as objects). So the 

goal of an entity-oriented system will normally be to recognize one of a " top- level " class 

of entities. This is analogous to the set of basic message patterns that the machine 
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translation system of Wilks [11] aimed to recognize in any input. 

In addit ion to providing a good general basis for restricted domain natural language recognit ion, we 

claim that the entity-oriented approach also facilitates robustness in the face of extragrammatical 

input and ease of language definit ion for restricted domain languages. Entity-oriented parsing has 

the potential to provide better parsing robustness than more tradit ional semantic grammar techniques 

for two major reasons: 

• The individual definit ion of all domain entities facilitates their independent recognit ion. 

Assuming there is appropriate indexing of entities through lexical items that might appear 

in a surface descript ion of them, this recognit ion can be done bottom-up, thus making 

possible recognit ion of ell iptical, fragmentary, or partially incomprehensible input. The 

same definit ions can also be used in a more efficient top-down manner when the input 

conforms to the system's expectat ions. 

• Recent work [5 ,8 ] has suggested the usefulness of multiple construct ion-specif ic 

recognit ion strategies for restricted domain parsing, particularly for dealing with 

extragrammatical input. The individual entity definit ions form an ideal framework around 

which to organize the multiple strategies. In particular, each definit ion can specify which 

strategies are applicable to recognizing it. Of course, this only provides a framework for 

robust recognit ion, the robustness achieved still depends on the quality of the actual 

recognit ion strategies used. 

The advantages of entity-oriented parsing for language definit ion include: 

• All information relating to an entity is grouped in one place, so that a language definer will 

be able to see more clearly whether a definit ion is complete and what would be the 

consequences of any addit ion or change to the defini t ion. 

• Since surface (syntactic) and structural information about an entity is grouped together, 

the surface information can refer to the structure in a clear and coherent way. In 

particular, this allows hierarchical surface information to use the natural hierarchy 

defined by the structural information, leading to greater consistency of coverage in the 

surface language. 

• Since entity definit ions are independent, the information necessary to drive recognit ion 

by the multiple construct ion-specif ic strategies mentioned above can be represented 

directly in the form most useful to each strategy, thus removing the need for any kind of 

"grammar compi la t ion" step and allowing more rapid grammar development. 

In the remainder of the paper, we make these arguments more concrete by looking at some 

fragments of an entity-oriented language defini t ion, by outl ining the control structure of a robust 

restr icted-domain parser driven by such definit ions, and by tracing through some worked examples of 

the parser in operat ion. These examples also shown describe some specific parsing strategies that 

exploit the control structures. A parser incorporat ing the control structure and the parsing strategies 
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is currently under implementat ion. Its design embodies our experience with a pilot entity-oriented 

parser that has already been implemented, but is not descr ibed here. 

2. Example Entity Definit ions 
This section presents some example entity and language definit ions suitable for use in entity-

oriented parsing. The examples are drawn from the domain of an interface to a database of col lege 

courses. Here is the (partial) definit ion of a course. 

[ 
Ent i tyName: Col legeCourse 
Type: S t r u c t u r e d 
Components: ( 

[ComponentName: CourseNumber 
Type: I n t e g e r 
Grea te rThan: 99 
LessThan: 1000 

] 
[ComponentName: CourseDepar.tment 

Type: Col 1egeDepartment 

] 
[ComponentName: CourseClass 

Type: Co l legeClass 

] 
[ComponentName: C o u r s e l n s t r u c t o r 

Type: C o l l e g e P r o f e s s o r 
] • 

y 
Sur faceRepresen ta t i o n : 

[Syn taxType: NounPhrase 
Head: ( course | seminar | 

SCourseOepartment SCourseNumber | . . . ) 
A d j e c t i v a l C o m p o n e n t s : (CourseOepartment . . . ) 
A d j e c t i v e s : ( 

[ A d j e c t i v a l P h r a s e : (new | most r e c e n t ) 
Component: CourseSemester 
Va lue : CurrentSemester 

3 
' ) 

PostNominalCases: ( 
[ P r e p o s i t i o n : ( ? i n t e n d e d f o r | d i r e c t e d to | . . . ) 

Component: CourseClass 
] 
[ P r e p o s i t i o n : ( ? t a u g h t by | . . . ) 

Component: C o u r s e l n s t r u c t o r 
] 

' ) ' 

] 

3 
For reasons of space, we cannot explain all the details of this language. In essence, a course is 

defined as a structured object with components: number, department, instructor, etc. (square 

brackets denote at t r ibute/value lists, and round brackets ordinary lists). This definit ion is kept 

separate from the surface representation of a course which is def ined to be a noun phrase with 

adjectives, postnominal cases, etc.. At a more detailed level, no te . the special purpose way of 
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specifying a course by its department juxtaposed with its number (e.g. Computer Science 101) is 

handled by an alternate pattern for the head of the noun phrase (dollar signs refer back to the 

components). This allows the user to say (redundantly) phrases like "CS 101 taught by Smi th" . Note 

also that the way the department of a course can appear in the surface representation of a course is 

specified in terms of the CourseDepartment component (and hence in terms of its type, 

CollegeDepartment) rather than directly as an explicit surface representation. This ensures 

consistency throughout the language in what will be recognized as a descript ion of a department. 

Coupled with the ability to use general syntactic descriptors (like NounPhrase in the descript ion of a 

SurfaceRepresentat ion), this can prevent the kind of patchy coverage prevalent with standard 

semantic grammar language definit ions. 

Subsidiary objects like CollegeDepartment are defined in similar fashion. 

[ 
Ent i tyName: Col legeDepartment 
Type: Enumerat ion 
EnumeratedValues: ( 

ComputerScienceDepartment 
MathematicsDepartment 
Hi s to ryDepar tment 

S u r f a c e R e p r e s e n t a t i o n : 
[SyntaxType: Pa t te rnSe t 

P a t t e r n s : ( 
[ P a t t e r n : (CS | Computer Science | Comp Sci | . . . ) 
Va lue : ComputerScienceDepartment 

] 

i 
i 

] 

CollegeCourse will also be involved in higher-level entities of our restricted domain such as a 

command to the data base system to enrol a student in a course. 
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Ent i tyName: Enrol Command 
Type: S t r u c t u r e d 
Components: ( 

[ComponentName: E n r o l l e e 
Type: Co l l egeStuden t 

] 
[ComponentName: E n r o l l n 

Type: Col legeCourse 
] 

) 
S u r f a c e R e p r e s e n t a t i o n : 

[Syn taxType: Imperat iveCaseFrame 
Head: ( e n r o l | r e g i s t e r | i n c l u d e | . . . ) 
D i r e c t O b j e c t : ( S E n r o l l e e ) 
Cases: ( 

[ P r e p o s i t i o n : ( i n | i n t o | * . . . ) 
Component: E n r o l l n 

] 
) 

] 
] 

These examples also show how all information about an entity, concerning both fundamental 

structure and surface representat ion, is grouped together and integrated. This supports the claim 

that entity-orfented language definit ion makes it easier to determine whether a language definit ion is 

complete. 

3. Control St ructure for a Robust Enti ty-Oriented Parser 
The potential advantages of an entity-oriented approach from the point of view of robustness in the 

face of ungrammatical input were outl ined in the introduct ion. To exploit this potential while 

maintaining eff iciency in parsing grammatical input, special attention must be paid to the control 

structure of the parser used. Desirable characterist ics for the control structure of any parser capable 

of handling ungrammatical as well as grammatical input include: 

• the control structure allows grammatical input to be parsed straightforwardly without 

considering any of the possible grammatical deviations that could occur; 

• the control structure enables progressively higher degrees of grammatical deviation to be 

considered when the input does not satisfy grammatical expectat ions; . 

• the control structure allows simpler deviations to be considered before more complex 
deviations. 

The first two points are self-evident, but the third may require some explanation. The problem it 

addresses arises particularly when there are several alternative parses under considerat ion. In such 

cases, it is important to prevent the parser from considering drastic deviations in one branch of the 

parse before considering simple ones in the other. For instance, the parser should not start 

hypothesizing missing words in one branch when a simple spelling correct ion in another branch 
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would allow the parse to go through. 

We have designed a parser control structure for use in entity-oriented parsing which has all of the 

characterist ics listed above. This control structure operates through an agenda mechanism. Each 

item of the agenda represents a different continuation of the parse, i.e. a partial parse plus a 

specif ication of what to do next to cont inue that partial parse. With each continuation is associated 

an integer flexibility level that represents the degree of grammatical deviation implied by the 

cont inuat ion. That is, the flexibility level represents the degree of grammatical deviation in the input if 

the continuation were to produce a complete parse without f inding any more deviation. 

Continuations with a lower flexibility are run before cont inuat ions with a higher flexibility level. Once 

a complete parse has been obtained, cont inuat ions with a flexibility level higher than that of the 

continuation which resulted in the parse are abandoned. This means that the agenda mechanism 

never activates any cont inuat ions with a flexibility level higher than the level representing the lowest 

level of grammatical deviation necessary to account for the input. Thus effort is not wasted exploring 

more exotic grammatical deviations when the input can be accounted for by simpler ones. This 

shows that the parser has the first two of the characterist ics listed above. 

In addition to taking care of alternatives at different flexibility levels, this control structure also 

handles the more usual kind of alternatives faced by parsers — those representing alternative parses 

due to local ambiguity in the input. Whenever such an ambiguity arises, the control structure 

duplicates the relevant continuation as many times as there are ambiguous alternatives, giving each 

of the dupl icated continuations the same flexibility level. From there on, the same agenda mechanism 

used for the various flexibility levels will keep 'each of the ambiguous alternatives separate and ensure 

that all are investigated (as long as their flexibility level is not too high). Integrating the treatment of 

the normal kind of ambiguities with the treatment of alternative ways of handling grammatical 

deviations ensures that the level of grammatical deviation under consideration can be kept the same 

in locally ambiguous branches of a parse. This fulfills the third characterist ic listed above. 

Flexibility levels are additive, i.e. if some grammatical deviation has already been found in the input, 

then finding a new one will raise the flexibility level of the continuation concerned to the sum of the 

flexibility levels involved. This ensures a relatively high flexibility level and thus a relatively low 

likelihood of activation for cont inuations in which combinat ions of deviations are being postulated to 

account for the input. 

Since space is limited, we cannot go into the implementation of this control structure. However, it is 

possible to give a brief descript ion of the control structure primitives used in programming the parser. 



Control Structure for a Robust Entity-Oriented Parser 7 

Recall first that the kind of entity-oriented parser we have been discussing consists of a col lect ion of 

recognit ion strategies. The more specif ic strategies exploit the idiosyncratic features of the 

ent i t ies/construct ion types they are specific to, while the more general strategies apply to wider 

classes of entities and depend on more universal characterist ics. In either case, the strategies are 

pieces of (Lisp) program rather than more abstract rules or networks. Integration of such strategies 

with the general scheme of flexibility levels described above is made straightforward through a 

special split function which the control structure supports as a primitive. This split funct ion allows the 

programmer of a strategy to specify one or more alternative cont inuat ions from any point in the 

strategy and to associate a different flexibility increment with each of them. The implementation of 

this statement takes care of restarting each of the alternative cont inuat ions at the appropriate t ime 

and with the appropriate local context. 

Some examples should make this account of the control structure much clearer. The examples will 

also present some specif ic parsing strategies and show how they use the split funct ion descr ibed 

above. These strategies are designed to effect robust recognit ion of extragrammatical input and 

efficient recognit ion of grammatical input by exploit ing entity-oriented language definit ions like those 

in the previous sect ion. 

4. Example Parses 
Let us examine first how a simple data base command like: 

Enrol Susan Smith in CS 101 

might be parsed with the control structure and language definit ions presented in the two previous 

sections. We start off with the top-level parsing strategy, RecognizeAnyEntity. This strategy first tries 

to identify a top-level domain entity (in this case a data base command) that might account for the 

entire input. It does this in a bottom-up manner by indexing from words in the input to those entities 

that they could appear in. In this case, the best indexer is the first word, 'enrol ' , which indexes 

EnrolCommand. In general, however, the best indexer need not be the first word of the input and we 

need to consider all words, thus raising the potential of indexing more than one entity. In our 

example, we would also index CollegeStudent, CollegeCourse, and CollegeDepartment. However, 

these are not top-level domain entities and are subsumed by EnrolCommand, and so can be ignored 

in favour of it. 

Once EnrolCommand has been identif ied as an entity that might account for the input, 

RecognizeAnyEntity initiates an attempt to recognize it. Since EnrolCommand is listed as an 

imperative case frame, this task is handled by the ImperativeCaseFrame recognizer strategy. In 

contrast to the bottom-up approach of RecognizeAnyEntity, this strategy tackles its more specif ic task 
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in a top-down manner using the case frame recognit ion algorithm developed for the CASPAR parser 

[8]. In particular, the strategy will match the case frame header and the preposition ' in ' , and initiate 

recognit ions of fillers of its direct object case and its case marked by ' in ' . These subgoals are to 

recognize a CollegeStudent to fill the Enrollee case on the input segment "Susan Smi th ' " and a 

CollegeCourse to fill the Enrolln case on the segment "CS 1 0 1 " . Both of these recognit ions will be 

successful, hence causing the ImperativeCaseFrame recognizer to succeed and hence the entire 

recognit ion. The resulting parse would be: 

[ I n s t a n c e O f : EnrolCommand 
E n r o l l e e : [ I n s t a n c e O f : Co l legeStudent 

F i rs tNames: (Susan) 
Surname: Smith 

] 
E n r o l l n : [ I n s t a n c e O f : Col legeCourse 

CourseDepartment: ComputerScienceDepartment 
CourseNumber: 101 

] 
] 

Note how this parse result is expressed in terms of the underlying structural representation used in 

the entity definit ions without the need for a separate semantic interpretation step. 

The last example was completely grammatical and so did not require any flexibility. After an initial 

bottom-up step to find a dominant entity, that entity was recognized in a highly efficient top-down 

manner. For an example involving input that is ungrammatical (as far as the parser is concerned), 

consider: 

Place Susan Smith in computer science for freshmen 

There are two problems here: we assume that ' the user intended 'place' as a synonym for 'enrol ' , but 

that it happens not to be in the system's vocabulary; the user has also shortened the grammatically 

acceptable phrase, ' the computer science course for freshmen', to an equivalent phrase not covered 

by the surface representation for CollegeCourse as defined earlier. Since 'place' is not a synonym for 

'enrol ' in the language as presently def ined, the RecognizeAnyEntity strategy cannot index 

EnrolCommand from it and hence cannot (as it did in the previous example) initiate a top-down 

recognit ion of the entire input. 

To deal with such eventualities, RecognizeAnyEntity executes a split statement specifying two 

cont inuat ions immediately after it has found all the entities indexed by the input. The first 

cont inuat ion has a zero flexibility level increment. It looks at the indexed entities to see if one 

subsumes all the others. If it finds one, it attempts a top-down recognit ion as described in the 

previous example. If it cannot find one, or if it does and the top-down recognit ion fails, then the 

continuation itself fails. The second continuation has a positive flexibility increment and follows a 

more robust bottom-up approach described below. This second continuation was established in the 
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previous example too, but was never activated since a complete parse was found at the zero flexibility 

level. So we did not mention it. In the present example, the first cont inuat ion fails since there is no 

subsuming entity, and so the second cont inuat ion gets a chance to run. Instead of insisting on 

identifying a single top-level entity, this second cont inuat ion attempts to recognize all of the entit ies 

that are indexed in the hope of later being able to piece together the various fragmentary recognit ions 

that result. The entities directly indexed are Col legeStudent by " S u s a n " and " S m i t h " , 1 

CollegeDepartment by "compute r " and "sc ience" , and CollegeClass by " f reshmen" . So a top-down 

attempt is made to recognize each of these entit ies. We can assume these goals are fulfil led by 

simple top-down strategies, appropriate to the SurfaceRepresentat ion of the corresponding entit ies, 

and operat ing with no flexibility level increment. 

Having recognized the low-level f ragments, the second cont inuat ion of RecognizeAnyEnti ty now 

attempts to unify them into larger fragments, with the ultimate goal of unifying them into a descr ipt ion 

of a single entity that spans the whole input. To do this, it takes adjacent fragments pairwise and 

looks for entities of which they are both components , and then tries to recognize the subsuming entity 

in the spanning segment. The two pairs here are Col legeStudent and Col legeDepartment (subsumed 

by CollegeStudent) and Col legeDepartment and CollegeClass (subsumed by Col legeCourse). 

To investigate the second of these pair ings, RecognizeAnyEnti ty would try to recognize a 

Col legeCourse in the spanning segment 'computer science for f reshmen' using an elevated level of 

flexibility. This goal would be handled, just like all recognit ions of Col legeCourse, by the 

NominalCaseFrame recognizer. With no flexibility increment, this strategy fails because the head 

noun is missing. However, with another flexibility increment, the recognit ion can go through with the 

Col legeDepartment being treated as an adjective and the CollegeClass being treated as a 

postnominal case — it has the right case marker, " f o r " , and the adjective and post-nominal are in the 

right order. This successful f ragment unif icat ion leaves two fragments to unify — the old 

Col legeStudent and the newly derived Col legeCourse. 

There are several ways of unifying a Col legeStudent and a Col legeCourse — either could subsume 

the other, or they could form the parameters to one of three database modif icat ion commands: 

EnrolCommand, Wi thdrawCommand, and TransferCommand (with the obvious interpretat ions). 

Since the commands are higher level entit ies than Col legeStudent and Col legeCourse, they would be 

preferred as top-level fragment unifiers. We can also rule out TransferCommand in favour of the first 

two because it requires two courses and we only have one. In addit ion, a recognit ion of 

We assume we have a complete listing of students and so can index from their names. 
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EnrolCommand would succeed at a lower flexibility increment than WithdrawCommand,^ since the 

preposition ' in ' that marks the CollegeCourse in the input is the correct marker of the Enrolln case of 

EnrolCommand, but is not the appropriate marker for WithdrawFrom, the course-containing case of 

WithdrawCommand. Thus a fragment unif ication based on EnrolCommand would be preferred. Also, 

the alternate path of fragment amalgamation — combining CollegeStudent and CollegeDepartment 

into CollegeStudent and then combining CollegeStudent and CollegeCourse — that we left pending 

above cannot lead to a complete instantiation of a top-level database command. So 

RecognizeAnyEntity will be in a posit ion to assume that the user really intended the EnrolCommand. 

Since this recognit ion involved several signif icant assumptions, we would need to use focused 

interaction techniques [7] to present the interpretation to the user for approval before acting on it. 

Note that if the user does approve it, it should be possible (with further approval) to add 'place' to the 

vocabulary as a synonym for 'enrol ' since 'place' was an unrecognized word in the surface position 

where 'enrol ' should have been. 

For a final example, let us examine an extragrammatical input that involves cont inuat ions at several 

different flexibility levels: . . 

Transfer Smith from Compter Science 101 Economics 203 

The problems here are that 'Computer ' has been misspelt and the preposit ion ' to' is missing from 

before 'Economies' . The example is similar to the first one in that RecognizeAnyEntity is able to 

identify a top-level entity to be recognized top-down, in this case, TransferCommand. Like 

EnrolCommand, TransferCommand is an imperative case frame, and so the task of recognizing it is 

handled by the ImperativeCaseFrame strategy. This strategy can find the preposit ion ' f rom' , and so 

can initiate the appropriate recognit ions for fillers of the OutOfCourse and Student cases. The 

recognit ion for the student case succeeds without trouble, but the recognit ion for the OutOfCourse 

case requires a spelling correct ion. 

Whenever a top-down parsing strategy fails to verify that an input word is in a specific lexical class, 

there is the possibility that the word that failed is a misspelling of a word that would have succeeded. 

In such cases, the lexical lookup mechanism executes a split statement. 3 A zero increment branch 

This relatively fine distinction between EnrolCommand and WithdrawCommand, based on the appropriateness of the 
preposition 'in', is problematical in that it assumes that the flexibility level would be incremented in very fine-grained steps. If 
that was impractical, the final outcome of the parse would be ambiguous between an EnrolCommand and a 
WithdrawCommand and the user would have to be asked to make the discrimination. 

3 
If this causes too many splits, an alternative is only to do the split when the input word in question is not in the system's 

lexicon at all. 
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fails immediately, but a second branch with a small positive increment tries spell ing correct ion against 

the words in the predicted lexical class. If the correct ion fails, this second branch fails," but if the 

correct ion succeeds, the branch succeeds also. In our example, the cont inuat ion involving the 

second branch of the lexical lookup is highest on the agenda after the primary branch has failed. In 

particular, it is higher than the second branch of RecognizeAnyEnti ty descr ibed in the previous 

example, since the flexibility level increment for spell ing correct ion is small. This means that the 

lexical lookup is cont inued with a spell ing correct ion, thus resolving the problem. Note also that since 

the spell ing correct ion is only attempted within the context of recognizing a Col legeCourse — the 

filler of OutOfCourse — the target words are limited to course names. This means spell ing correct ion 

is much more accurate and efficient than if correct ion were attempted against the whole dict ionary. 

After the OutOfCourse and Student cases have been successful ly fi l led, the ImperativeCaseFrame 

strategy can do no more wi thout a flexibility level increment. But it has not filled all the required cases 

of TransferCommand, and it has not used up all the input it was given, so it splits and fails at the 

zero-level flexibility increment. However, in a cont inuat ion with a positive flexibility level increment, it 

is able to attempt recognit ion of cases without their marking preposit ions. Assuming the sum of this 

increment and the spell ing correct ion increment are still less than the increment associated with the 

second branch of RecognizeAnyEnti ty, this cont inuat ion would be the next one run. In this 

cont inuat ion, the Imperat iveCaseFrameRecognizer attempts to match unparsed segments of the 

input against unfil led cases. There is only one of each, and the resulting attempt to recognize 

'Economics 203' as the filler of IntoCourse succeeds straightforwardly. Now all required cases are 

filled and all input is accounted for, so the ImperativeCaseFrame strategy and hence the whole parse 

succeeds with the correct result. 

For the example just presented, obtaining the ideal behaviour depends on careful choice of the 

flexibility level increments. There is a danger here that the performance of the parser as a whole will 

be dependent on iterative tuning of these increments, and may become unstable with even small 

changes in the increments. It is too early yet to say how easy it will be to manage this problem, but we 

plan to pay close attention to it as the parser comes into operat ion. 

5. Conclusion 

Entity-oriented parsing has several advantages as a basis for language recognit ion in restricted 

domain natural language interfaces. Like techniques based on semantic grammar, it exploits limited 

domain semantics through a series of domain-specif ic entity types. However, because of its suitability 

for fragmentary recognit ion and its ability to accommodate multiple construct ion-speci f ic parsing 
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strategies, it has the potential for greater robustness in the face of extragrammatical input than the 

usual semantic grammar techniques. In this way, it more closely resembles conceptual or case-frame 

parsing techniques. Moreover, enti ty-oriented parsing offers advantages for language defini t ion 

because of the integration of structural and surface representat ion information and the ability to 

represent surface information in the form most convenient to drive construct ion-speci f ic recogni t ion 

strategies directly. 

A pilot implementat ion of an enti ty-oriented parser has been completed and provides prel iminary 

suppor t for our claims. However, a more r igorous test of the enti ty-oriented approach must wait for 

the more complete implementat ion current ly being undertaken. The agenda-style control st ructure 

we plan to use in this implementat ion is descr ibed above, along with some parsing strategies it will 

employ and some worked examples of the strategies and control structure in act ion. 
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