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Abstract

Interconnection design can have a profound effect on the price and performance of a

digital system. This paper will describe a new simulation facility that is designed to allow the

user to describe an interconnection strategy, and simulate the behavior of the interconnected

system.

The user first writes a description of the interconnections using the hardware descriptive

language SLIDE. SLIDE has been specifically designed for interconnection and interface

description; the UNIBUS, for example, has been described in SLIDE. The description is then

compiled into SIMULA code, and linked by the user with other modules which probabilistically

model the hardware that would drive the interconnections. The simulation then proceeds

under interactive user control.

Thus, this simulator provides the capability to devise, debug, and evaluate digital

interconnection schemes.



L Introduction

Multiprocessing research and development has caused an increased interest in I/O and

Interconnection architectures. In fact, it has become important to document, simulate, and

even formally verify portions of entire systems, including their interconnections.

Naturally, the more detailed the interconnection description becomes, the more accurate

the simulation can be and the more information the description can contain. With current

simulation techniques, interconnections and their interfaces can be described and simulated

accurately at both the gate and circuit levels. Unfortunately, these techniques have

precluded simulation of large interconnected systems, since the resulting simulation programs

have been overly large and slow.

For this reason, existing lowHevel descriptive languages do not provide the kind of

hardware description needed for the above task; a description at a higher level is needed.

An obvious solution is to use a register-transfer language.

There is strong motivation for constructing behavioral descriptions of I/O hardware.1

Certainly, behavioral descriptions can convey the overall operation of interfaces to the

reader better than structural descriptions, since much of the unnecessary detail is eliminated

Simulations proceed more rapidly, and can encompass larger systems.

Research is currently underway at Carnegie-Mellon University to use such a behavioral

language called SLIDE2 for interface and interconnection and simulation description. The

SLIDE simulator is the subject of this paper.

The SLIDE simulator allows description and simulation of interconnection schemes like the

UNIBUS3 and the D-bus [1J. Eventually behavioral descriptions of processors and other

functional units will be linked to the interconnection descriptions, so that entire systems can

be interconnected and simulated.

In the process of designing SLIDE, the following design goals were kept in mind:

'BehevioreJ descriptions differ from structure! discretions because they describe only ths functions of the hordwer*
•nd not the hardware itself. Storage location! and reftster-transfers which •xist m ths hardware msy bo absent from
the behevtorsl description; control hsrdwsrs ts implicit rsthsr thsn •xpiicit A discussion of this distinction is found in
(21

28UDE (formerly GLIDE) is in acronym for Structured Unfusfe for Interfece Description snd Evsiustion [17J

is s ref tstered trsdemsrfc of Dtf its* Equipment Corporation.



-To provide a language which could be used to describe interface hardware
behaviorally In a stand-alone fashion; the language should not depend on timing
diagrams or state diagrams for completeness.

-To provide a language which is simple and not overburdened with obscure
constructs and primitives. It should be logically consistent in semantics and
syntax.

Previous research in the area of interface and I/O description has been done

[5, 11, 12, 15, 16]. However, this research has either produced gate level languages, circuit

level languages, or incomplete proposals such as the port descriptions of Bell and Newell [5]

and Curtis [7]. A recent proposal [12] does have some useful control constructs which are

similar to those of SLIDE. Further discussion of these topics can be found in [14].

There are already a number of general-purpose hardware descriptive languages; some, like

ISPS [3, 4] and DDL [9] have been exercised and a software base exists. Therefore it is

difficult to justify the development of yet another hardware descriptive language and

simulator. However, for reasons of either efficiency, ease of use or missing semantics,

current hardware descriptive languages do not provide the capabilities needed for the

interconnection descriptions being considered at CMU.

Section 2 of this paper describes the problems associated with I/O and interface

descriptions, and section 3 introduces the required capabilities of an I/O simulator. Section 4

is an overview of the simulator, sections 5 and 6 present salient features of the simulator,

and section 7 contains results from an example simulation.

2. The Nature of I/O and Interface Operation

Consider the following example system configuration which illustrates some basic aspects

of interface and I/O operation. A single bus connects a device, controller, CPU, and memory.

The device controller is reading data in and writing it to memory; at the same time, the CPU is

executing a program, and therefore accessing memory for instructions and data. At any time,

either the device controller or the CPU might be transferring information across the bus. At

the same time, either or both might be requesting the bus for future transactions. Between

the two devices there are four processes, two for bus requests and two for bus transactions.

At any time a maximum of three can be executing (only one bus transaction can occur at a

time). This illustrates an inherent property of interface and I/O operation - complex control

flow. More precisely:

-There can be multiple sequences of events executing concurrently and
independently of each other.



-An event in one sequence can alter the execution order of another sequence.

-The time steps between events can be different for different sequences.

-The onset of execution of one sequence can initiate or terminate another
sequence.

Each sequence of events in reality represents an independent control environment or a finite

state machine; we shall refer to these sequences hereafter as processes.

Thus, a language designed to describe this genre of control flow must possess powerful

and unconventional control constructs. The simulator must provide:

-Priority orderings between processes.

-Timing dependencies, timeouts, and data I/O at fixed bit rates.

-Execution of interprocess synchronization primitives such as signal and wait.

-Initiation, termination and suspension of processes.

-Event sequencing internal to a process.

-Communication between processes.

In addition to these, the simulator should execute operations common to I/O such as bit

manipulation, code conversion, FIFO buffering, parity and error checking, synchronous I/O,

and combinational logic4

3. Novel Constructs of SLIDE '

This section introduces the novel constructs of the SLIDE language. These include the
process (a construct for nonprocedural execution), the delay statement (a timeout construct)*
and other I/O related primitives.

3 .1 . The Process

In the same way that routines are the central unit of execution in most programming

4A moro oxUnstv* ditcuMton of those primitfcwt CM bo found in [13].



languages, processes are the central unit of execution in SLIDE descriptions.^ A process is

an independent executing environment — a piece of hardware such as a device controller or

a bus arbiter. Within each process, variables (registers, lines, etc.) can be declared, and other

processes (called subprocesses) can be defined Consequently, a SLIDE description is

composed of layers of nested processes (much like an ALGOL program is composed of layers

of nested routines).

A SLIDE description consists of one main process which syntactically encompasses all other

subprocesses (much like an ALGOL program consists of one main program which encompasses

all subroutines). Variables global to the entire description are declared within the main

process. Variables which are local to a subprocess are declared within that subprocess.

Since each process describes a piece of hardware, each is an independent executing

environment, and all processes which are executing do so in parallel. Processes which need

to communicate with each other can do so by using global variables (e.g. by asserting a

shared line).

Processes are started (called Initialization) nonprocedural^. When each process (except

for the main process) is defined, the conditions-under which it is to be initiated are given. A

priority mechanism exists which can be used to allow some processes to terminate execution

or mutually exclude execution of others.

3.2. The DELAY Statement and Parallel Statement Execution

Aside from the usual statements such as assignment, if-then-else, loops, and subroutines,

SLIDE has a powerful delay statement which allows delays and timeouts to be described. This

statement is used to delay the execution of a process until some condition occurs and/or a

timeout occurs. Within a process, complex statements can be executed in parallel or

sequentially.

X Other I/O Related Primitives

Otter I/O related primitives which have been incorporated into the SLIDE language are

those to:

-describe transitions (from low-to-high or high-to-low) as well as levels (low or
high).

UN "description" h»r» and not "profram" to amphaaiza that SLIDE describes tha opanrttotr of a piccr of
hardware. Corr*spondmf ly, w* UN "axacuta" to moan "tha operation of tha actions daacribad."



-declare combinational logic via the comb declaration. The output of this logic is
expected to change asynchronously after the input changes.

•declare synchronous lines via the sync declaration.

-declare FIFO buffers via the buffer declaration.

-declare associative memory tables via the table declaration.

-do I/O related operations such as packing and unpacking bit slices.

i

3.4. Requirements For a I/O Hardware Descriptive Language

This section has discussed some of the constructs in SLIDE which make it useful for

describing I/O hardware. We feel that these constructs should necessarily be included rn any

I/O hardware descriptive language. To summarize, these constructs include:

-A nonprocedural executing environment such as the SLIDE process.
Nonprocedurality and priorities are important in I/O hardware descriptions
where many processes do not execute until some condition becomes true.
Examples of this are interrupts, bus arbiters, device controllers, etc.

-A delay and timeout construct such as the SLIDE delay statement. This goes
hand in hand with the nonprocedurality discussed above. It allows a process to
delay execution until some condition becomes true, subject to a timeout
condition.

-An ability to specify actions in parallel, as well as sequentially. The need for this
Is obvious, and most hardware descriptive languages provide this.

- I /O related primitives such as those discussed in Section 3.3.

4. An Overview of the Simulator

The SLIDE simulator is a tool that will answer a number of questions a systems designer

might raise with respect to an interface or interconnection strategy. These questions include:

-Does the design function as planned

-Is the design sensitive to wirelengths and other timing dependencies

-What is the effect of occurrence of exception conditions on operation of the
proposed design

-What are the bottlenecks which limit speed of operation of the design

-What is the average device latency and is the maximum allowable latency
exceeded



*Is resource allocation with the proposed strategy vulnerable to starvation and/or
deadlock problems, and does it add an "acceptable" amount of overhead or not

It should be noted here that some properties of interconnection strategies (deadlocks, for

example) may only be discovered through formal verification procedures, such as that

proposed by Wallace [18]. However, simulation does provide a design aid which, if properly

constructed and used, can provide a designer significant assistance in answering the above

questions.

4.1 . Operational Overview

The SLIDE simulator is a subset of a more powerful, multi-level simulator currently under

construction at Carnegie-Mellon. This latter simulator is somewhat similar to one reported on

by Hill [10]. It is designed to allow a user to simulate digital systems whose components may

be any combination of gate and register-transfer level modules.

The language of choice for the simulator was SIMULA-67, an ALGOL based discrete-event

simulation language [6J At present, the user can write descriptions of digital hardware in

SIMULA and incorporate them into the simulator environment. Then, through interactive

commands, the user can wire together various functional modules, and run simulations on the

digital system thus modelled.

The SLIDE simulator uses this simulator as a "core", allowing the user to simulate

interconnections and interfaces. We illustrate the SLIDE simulator and its relationship to the

core by the following example.

Suppose the user wants to simulate an interface between a bit-serial data link and a

word-serial bus. Data comes from a source attached to the data link. It is transferred

through the interface to the word-serial bus, and into a memory module on the bus. A

priority arbitration device is responsible for resource allocation on the word-serial bus. This

example is shown in Figure 4-1 .

To model this system, the user would write four SLIDE descriptions or modules: one to

describe the interface, one the source, one the memory, and one the resource allocator. As

shown in Figure 4-2 for a two-description case, the user would compile each SLIDE source

file, then enter the compiler outputs into a preprocessor. The preprocessor would produce a

single SIMULA source program that, when linked with a pre-compiled core, would be a

runnable simulator. It would contain four functional modules, one for each SLIDE description.

The user could then wire together the modules via interactive commands, and proceed to test
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Figure 4 - 1 : Example Interconnection Scheme
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the behavior of the configuration.

One interesting aspect of the preprocessor [8] is that the SIMULA code generated from the

SLIDE modules does not have to be properly structured syntactically. For example,

declarations can be generated and inserted, on the fly, as the SLIDE descriptions are

compiled. The preprocessor will clean up and reorder the SIMULA code for the SIMULA

compiler.

Various properties of each SLIDE description may be parameterised. This is done by

allowing numbers in a SLIDE description to be replaced by special identifiers called

simulation time parameters (STP). STP's are bound interactively, by the user,for each

instance of a SLIDE functional module in the simulator.

4.2. Simulator Commands

The capabilities of the SLIDE simulator are only partly reflected in the commands available

to the user at present. This is because the SLIDE simulator is still under development,

especially at the user interface. The following list of currently implemented commands

therefore does not represent the maximum performance level of the program.

ADO <label>: <device> <parameters> <name> <name> . . . <nam*>;

e. g. ADO BILL: INVERTER Ul U2;
ADD SUE : DELAY U2 U3;

The ADD command creates the data structures for the ports of <device>. The resulting

module is labelled to distinguish it from other instances of <device> in the simulator.

<parameters> is optionally used by non- SLIDE functional modules, for passing of

device-related parameters. The remainder of the command field does the wiring for the ports

of <device>. A one-to-one correspondence exists between each <name> and a port of the

device, by the left to right position of <name>. For each name, a wire model is created and

labelled with <name>. Then it is connected to the corresponding port. So for BILL in the

above example, Wl is the name of a wire that is connected to port 1. W2 is the name of a

wire that is connected to port 2, and to port 1 of SUE. The conceptual results of these two

ADO commands are shown in Figure 4-3.

ALL

This command prints out the accumulated connection information from all the ADD's that
have been done so far.
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Figur* 4-3: Results of example ADO commands
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DUMP <filename>

This command dumps out the accumulated connection information to a file called <filename>.

GET <filenam#>

This command retrieves the connection information in <filename> and implements it.

So* the user could build up a test interconnection using AD&s% then scam it using DUMP. At

any time* even on a different simulation run, he or she could recreate the interconnections by

GETting the appropriate file.

PROBE <wire>

e. g, PROBE ABC
-PROBE XYZ

This command turns on a trace for the named wire. Whenever this wire is written to, the

state of the wire and the current simulated time will be output to the terminal. -PROBE

<wire> turns off the trace on <wire>.

WHAT<label>
m. g. UHAT SUE

This command causes the entire state of the device <label> to be output.

SIMULATE

This causes the actual functional model of each device specified in the ADD commands to be

created. It is at this point that any simulation time parameters specified in the original SLIDE

description are bound by the user. .

GO <number>

Run the simulator for <number> microseconds.

UNTIL <number>

Run the simulator until simulated time equals <number>.
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FREEZE

I
This command causes the core image of the simulation program to be saved. This allows

easy restarts for simulation tests that start at a certain point, but then are personalized via

various parameter combinations, for example.

This brief overview of the SLIDE simulator is followed first by a description of the core

simulator and then by a discussion of the SLIDE simulator itself.

5. The Multi-Level Simulator: Structure and Function

The multi-level simulator provides a decentralized, dynamically alterable environment for

the interconnection and simulation of digital systems. This simulator structure is based on the

discrete event-driven simulation primitives provided by SIMULA-67 [6J

A simulation program written in SIMULA uses special coroutines called processes. For a

process to execute, it must be scheduled by placing it in a special linked list called the event

list. The list is ordered by the simulation time associated with each process. The process at

the front of the list is due to resume execution, and the time associated with this process is

considered to be the "current" simulation time. A process can be removed from the list and

rescheduled at a later time. Thus, time moves ahead in jumps, and the simulation is

event-driven.

5.1. Data Structures of the Simulator

The structure of this simulator is characterized by three classes of dynamic data structures

and the operations performed on them. These are: The Element, the Chain and the

Simulation Process (SP). Together, the Element, Chain and the SP completely specify the

behavior of a given digital device or circuit module.

The Element and the Chain constitute the common external characteristics of the device

modules; the internal structural and functional differences have been abstracted away. The

SP contains the information internal to a device module - the meat of a device description. It

is a general data structure which references a number of SIMULA processes. Figure 5-1

illustrates the partitioning concept.

The Element is designed as a passive vehicle for the interconnection of device modules.

Each Element contains a set of records representing the "ports'9 of a device. Ports can be

connected to other ports, and the state of the data represented by the ports of a device

module indicates the externally visible state of the device.
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Figure 5 -1 : Partitioning of a Digital Device in the Multi-level Simulator
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The active part of the interconnection mechanism resides in the Chain. One Chain is

associated with each element; the chain is responsible for the actions and reactions of a

device with respect to its ports. The Chain also acts as an intermediary between the SP and

the Element, which do not interact directly. The chain is implemented as a coroutine, whose

actions are performed in zero time and are invisible to the SIMULA scheduler.

The partitioning of the digital circuit device modules into internal behavior and external
structure has an advantage* The external descriptions of, say a flip-flop and a
microprocessor, have many common features, and the internal differences are not visible
during the interconnection proess. Thus modules of arbitrary complexity and level of
abstraction may be interconnected in a consistent fashion because of the structuring of
device models in the simulator. An example of a simple device module representing an
inverter is given in Figure 5-2 . The SP is shown as SIMULA code, the Element is
represented as an abstract data structure, and the Chain is illustrated in its role as interface
between the two.

5.2. The Module Interconnections

Modules can be interconnected in two ways in this simulator - directly and via special wire
modules. Direct connections allow the data records at one port to be directly accessible by
all connected ports. This concept is useful, for example, when a CPU module has been
described as a number of submodules, whose ports exist only as an abstraction. (A Z80 CPU
has been described in this manner [8]). This method of interconnection allows structured
design and pretesting of each submodule.

The more common connection method for large system simulations is the wire connection,
meant to correspond to the usual physical interconnection of digital devices. A wire can be
considered a degenerate case of a digital module, having no SP or explicit ports. Through its
chain, the wire houses the actual wire data, identification information and procedures which
allow its logical behavior to be modelled An example of this type of connection is an
open-collector bus, since the data presented to the bus wires at a port might not reflect the
actual logic values on the bus. Thus, a wire connection is modelled as the direct access of
ports to the same wire device, not to each other. Wire types are distinguished by logical
behavior, data representation , and synchrony.

The user can interactively wire together the components of his system, producing a
structure like that shown in Figure 5-3 . Changes in the system being simulated can be made
by adding components without halting program execution.

During execution, the SP*s may write to ports by depositing data in the appropriate wire
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ELEMENT
D PORT 1

D PORT 2

DATA

INITIALISATION

WHILE TRUE DO
BEGIN

SCHEDULE S.P.;
DETACH;

END:

CHAIN

DATA

WHILE TRUE DO
BEGIN1

GET THE DATA AT PORT!;
COMPLEMENT IT;
WRITE THE RESULT TO P0RT2;
PASSIVATE:

END;

s.p,

Figure 5-2: Representation of an Inverter Module
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Figure 5-3: Representation of Device Interconnection by Wire
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device, via a series of references. The wire Chain coroutine is called, and it proceeds

through a linked list of ports associated with the wire, activating the Chain associated with

each port. This gives each relevant device the opportunity to schedule processes, and it

proceeds in zero simulation time. Delays are introduced only by the scheduling of processes

related to a device module and by explicit delays within each device module's SP.

6. The SLIDE Simulator: Structure and Function

At this point the reader should recall the example that was used in the overview of the

simulator in Section 4. To properly explain what happens after the test interconnection has

been built and the GO or UNTIL commands have been issued requires that the underlying

concepts of SLIDE simulation within the multi-level simulator core be explained

6.1. SLIDE Simulation Concepts

Although SLIDE devices will look like any other device to the core simulator, in terms of

their structure and their interconnection to other devices, there are significant complications

caused by the fact that SLIDE device modules are simulating the behavior of SLIDE

descriptions.

First, as we have said, each SLIDE module is a mapping of an independent SLIDE

description, each having its own SLIDE process structure. The process structure and hence

the particular scheduling constraints of a given SLIDE device are independent of all other

SLIDE devices. The multi-level simulator has already been seen to run in a decentralised

fashion; each device executes its own actions autonomously. Then it is consistent to make

each SLIDE device responsible for the scheduling of its associated processes. Therefore, the

SP of a SLIDE device has the control structures to handle the scheduling task.

i •
Second, SIMULA processes as such are not endowed with sufficient scheduling data

structures to correctly model SLIDE processes. A SLIDE process within a SLIDE description is

a member of a complex priority tree specified by the static nesting of the process in the

description and by explicit priority numbering. Initiation and termination of a SLIDE process

must always be referenced to the priority tree. This is clearly beyond the scope of a

SIMULA process. The concept of termination itself , implying the automatic garbage-collection

and recreation of a process and all its subprocesses, does not exist with SIMULA processes; it

must be built up.

Third, each SLIDE scheduler within a SLIDE module needs to be invoked as the result of

many different events. For example, a process can be started or terminated due to a change

in a SLIDE variable. A process can also be initiated or terminated as a side-effect of some
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other process initiation/termination, due to the priorities, even if these processes do not

explicitly communicate at all. The SLIDE DELAY statement adds another complication by

allowing a process to reschedule itself at any time, and to be woken up on some set of

conditions6 (possibly subject to a timeout). Hence extra control structures are needed to

allow a simulating SLIDE device to evoke the scheduler at all significant events.

Fourth, we must consider the timing task in the simulation of a SLIDE description.

Maintaining time fidelity between communicating SLIDE processes is crucial for

interconnection simulations. Fortunately however, it is not necessary for every SLIDE action

to occur at the absolutely correct simulation time. Part of the compilation process includes

insertion of proper delays at correct points with respect to significant events, to reflect the

true passage of time. By not having to insert delays after non-significant events, such as

execution of statements having no direct or side-effect on process initiation or termination,

the simulation is speeded up at no cost to modelling accuracy.

Fifth, The multi-level (core) simulator concept of "wire" does not constitute a complete

solution to the modelling problem for SLIDE lines. Although1 some SLIDE lines (those declared

in a SLIDE main process) are global, some SLIDE lines are entirely local device descriptions.

These lines must be modelled within the SP. Even though each global line corresponds to a

port of the SLIDE module, so that "wires'* are used for communication across global lines,

some behavior of the global line is modelled internally to the SP. What results then is is a

distribution of line representation between the exterior and interior of a SLIDE module. The

necessity for this split in representation becomes more evident when one realises that SLIDE

lines are functionally more powerful than "wires". The actions of SLIDE lines can have wide

effects on SLIDE process execution, for example. As we shall see, this implies that SLIDE

lines be modelled as special SIMULA processes, and this goes beyond the multi-level simulator

"wire", which is designed to be independent of the SIMULA time axis.

6.2. General Functioning in SLIDE Simulations

With these important concepts presented, we now describe the general functioning of a

SLIDE device simulation. After variable initialisation, all SLIDE processes are given a chance

to begin executing if they can. According to the semantics of the SLIDE language, a process

may start executing whenever

Uts declared initialisation conditions become true, AND

w conditions art arithmetic tnd/or lof ic txprttstoftt of SLIDE vtriabfes
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2.all the processes of which it is a subprocess are executing, AND

3.no process at the same "process level" is executing and has a higher priority.

Processes that could have started but for the second two points above are put into a

special linked list. As each SLIDE process starts its execution, it checks the list to see if any

of the members can start up as a result of its initialisation. Also at this point, any executing

process which is at the same "process level" ,but of a lower priority than this process, is

terminated.

As a SLIDE process executes its actions, variables such as lines and registers will be

accessed. When a variable is written to, it is responsible for checking if any of the relevant

expressions of it is contained in are now true,7 and if they are, evoking the SLIDE scheduler.

It is possible that a process, by altering the data on a SLIDE variable, may cause its own

termination, for example, by allowing a higher priority process to start. If we are to ensure

an orderly execution of the SLIDE scheduler in such cases, the actions of the SLIDE variable

in this instance should be implemented as a special SIMULA process, as opposed to a

procedure called up by the SLIDE process. The variable is then free to cause what changes

It pleases on the SIMULA time axis without needing to return to a calling process that may

have been garbage-collected.

As each SLIDE process completes its actions (terminates), it is entered into the special

linked list mentioned above. The list is once again checked to see if any of its members can

begin execution.0

It should be noted that whenever a member of the list is being checked, it will be removed

from the list if its Boolean initiation conditions are found to be false. This ensures that

members of the list are only those that are likely to be started due to side-effects.

7. The Simulation Test Case

One test case for the simulator now exists. SLIDE modules have been written, compiled,

interconnected and simulated in order to demonstrate the simulator. This example is only one

oxproasions ara thoss which appaar in ths initiaJsaation conditions of a procass, or in a DELAY atatomont

* I n tormmatmf, tho old inatanco of • procoaa ts farbafo-colloctod, and a now instance of tho process ia created. It
is this now motanco that ontora tho Rat.
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of a genre of simulations that can be done with the SLIDE simulator.

The example contains the following configuration: (see Figure 7-1)

-The PDP-11 UNIBUS

-A UNIBUS CPU.

-A Peripheral Device attached to the bus.

-A small CMOS memory attached to the bus.

-A synchronous data link connected to the peripheral device and to a black box -
the source of the synchronous data.

The data link uses an SDLC-like protocol. The peripheral device converts received

synchronous data bits into 16 bit words, and writes them to the memory over the bus.

To expedite the test, the following simplifications were made:

-The CPU consists only of the processor status words and the bus arbitrator.

I -The data link protocol is always in information-transfer format.

-No error checking is done on the data link.

» The omitted details could be included; SLIDE could even be used for CPU description

although it is not intended for that purpose.

7.1. Peripheral Device Description

We focus now on the SLIDE description of the peripheral device module, which is the most

active module in the simulation. As shown in Figure 7-1, the peripheral device has two

independently executing functional sides. It has an input side, which is responsible for pulling

data off the synchronous line according to the protocol flag, address* data* flag. It also has a

UNIBUS interface side, which receives a 16 bit data word from the input side. The bus side is

responsible for transferring data words to memory according to the UNIBUS protocol.

The operation of this peripheral device was modelled with the SLIDE process structure

shown in Figure 7-2.

On the bus interface side, we have processes BMASTER and PASSGRANT, statically nested

inside a dummy process. BMASTER is one level of priority higher than PASSGRANT, which

merely passes grants along the bus when the peripheral device has not made a bus request
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Retire 7 - 1 : SLIDE Simulator Test Case

PERIPHERAL
DEVICE

/—"X BIT-SERIAL
/ \ CSYNCHRONOUS
\ *¥ DATA
V y SOURCE
>̂—s

PDP-11 UNIBUS
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Figure 7-2t SLIDE Process Structure of the Peripheral Device Model

MAIN PROCESS

SUBMAIN PROCESS: PRIORITY 0

GRAB PROCESS: PRIORITY 0 DUMMY PROCESS: PRIORITY 0

FLAGWAIT PROCESS: PRIORITY 0 BMASTER PROCESS: PRIORITY 1 PASSGRANT PROCESS:
PRIORITY 2

CHOMP PROCESS: PRIORITY 0
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Thus, PASSGRANT is always active unless BMASTER is active, since BMASTER has higher
priority9 .

When CHOMP has assembled a word of data, BMASTER is initiated and PASSGRANT is

terminated. When the transfer is completed, BMASTER terminates itself and PASSGRANT

starts again.

The SUBMAIN and DUMMY processes were used to encapsulate local SLIDE variables;

DUMMY isolated the bus interface side of the peripheral device (BMASTER, PASSGRANT) from

the data link side (GRAB, FLAGWAIT, CHOMP). MAIN, SUBMAIN and DUMMY contain no actions

except those embedded in subprocesses; thus they are "active" but asleep (not in a

busy-wait). This is achieved by using the "DELAY WHILE 1" instruction, which puts an active

process to sleep indefinitely.

GRAB, FLAGWAIT and CHOMP input data off the synchronous line, delete inserted zeros and

detect flags and addresses. When the peripheral device address is recognized, the bus

interface process is modified and 16-bit data words are assembled BMASTER requests the

UNIBUS when data begins to be assembled.

Other devices connected are BLBOX, the black box that generates data for the synchronous

line, and DELAY, a generalized delay gate with a variable delay parameter, logic type and

output bit width. In our example, we created a 75 nanosecond delay of open-collector logic

type to simulate the UNIBUS skew on the MSYN and SSYN lines.

7.2. Simulation Test Results

We began the simulation run by instantiating and interconnecting SLIDE modules. Then, the

simulation was started and values were traced.

Figure 9-1 shows the interconnection commands used to create the example configuration.

First, an ARBIT device is created from the SLIDE module of the same name, and it is called

*AA1", distinguishing it from other ARBIT devices we may want to use. At this point, the user

has already been given a list of the ports available for interconnection and their names, e.g.,

"B8SY corresponds to port 6". At interconnection time, the user may rename these ports to

avoid confusion between multiple copies of devices, and list the names of ports, in order to

the interconnector. Ports are then connected by name correspondance. So, ARBIT device

AA1 might have a BBSY port (port 6) which we will name BBSY1. ARBIT device AA2 might

initiation condition, for PASSGRANT arc "INIT PASSGRANT WHEN 1"
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have a BBYS port which we will name BBSY2. (Thus the instantiated devices and their

interconnections may not have names corresponding to labels in the SLIDE modules

themselves.) The ports which are named at interconnection time are given in terms of

increasing port numbers from left to right

In our example (Figure 9-1), "A" causes a wire labelled "A" to be created and port 1 of

ARBIT device AA1 to be connected to it. "D" causes port 2 to be connected to wire TT. On

line two of this example, we add a DEVICEB module named AB2 to the system model. (This is

the SLIDE module for the peripheral device.) By typing "A" at the port 1 position of AB2, we

connect it to wire A.

The most interesting connection of wires is the daisy-chain of bus grant wires on the

UNIBUS. DEVICEB and MEM0RY(AC3) each have a grant-in and grant-out line, at ports 9 and

10 and 10 and 11 respectively. The bus arbiter has the grant line emanating from port 19.

By connections shown in the example (Figure 9-1), we achieve the setup shown in Figure 7-3.

The ADD command causes devices to be connected at the element level. The SIMU

command then causes the chain and simulation process for each device to become present.

The connections that have been made are checked for compatibility at this point and any

parameters given in the original SLIDE module are given values at this point. In our example

in Figure 9 - 1 , we see that .PER was the period of the sync line, J\DDR is the SDLC address,

and .TOPME is the address to put the first word in memory.

The trace facility command, PROBE (PR) caused each wire being probed to output its state

whenever it is written to, whether the value on the wire had changed or not.

Once these preliminary commands were executed, we ran the simulation for .239 usec with

the UNTIL 0.239 command.

Figure 9-2 shows the tracing on the sync line, called "INTO*. It had a period of 30

nanoseconds for this example, so every period the wire got written to, and a trace output

resulted. This trace output printed the current simulation time, along with the wire name. On

the next line, the logic type, bit width and current wire value were displayed This figure

shows data on the wire coming after the flag and address. Note the zero insertion after 5

one's, which adheres to the SDLC protocol.

Bus connections were displayed by showing all device ports that are connected to each

wire, along with the values each of them are putting on the bus.

Figures 9-3 to 9-7 shows the peripheral device actions over the UNIBUS. The device first

gets control of the bus from the bus arbitrator, then acts as a bus master to write data to
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Figur* 7-3: Daisychaining of UNIBUS NPG Line

NPG

AAl: ARBIT

NPGIN NPGOUT

AB2: DEVICEB

X X
NPGIN NPGOUT

AC3: MEMORY



27

the bus memory (bus slave).

In order to illustrate the power of the simulator, a second simulation was run, with the

period of the sync line adusted above the UNIBUS data rate. Because of inadequate protocol

or buffering between parts of the device interface, every other data word was lost, as shown

in Figure 9-8.

A third test was run to illustrate the effect of a stuck line on the UNIBUS. MSYN was stuck

high and then the memory device attempted a read, and raised SSYN. The peripheral device

operated normally until it delayed waiting for SSYN to be lowered. The memory held SSYN

and waited for MSYN to go down; MSYN was stuck, and the bus hung up. The results of this

are seen in Figures 9-9 to 9-10.

8« Conclusions and Future Research

The purpose of the research described in this paper was to demonstrate that behavioral

simulation of interconnections is possible and useful. While the man-machine interaction of

the simulator is still under development, the simulator itself has been demonstrated as a

viable CAO tool.

Future efforts involve testing the simulator on less-detailed, multiprocessor configurations!

using the simulator to test proposed bus standards for the National Bureau of Standards, and

increasing the capabilities of the simulator to include central processor simulations. Likely

candidates for testing are ARPANET-like structures and parts of the CM* multiprocessor bus

structure.
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I. Test Simulation Traces

This appendix contains the simulator traces for the test runs described in Section 7.
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Figure 9-1: First Test Run : Trace 1
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Figure 9*2: First Test Run : Trace 2
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