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Abstract

Due to the rise in both the use of hardware descriptive languages and the interest in

communications link design, the need to verify descriptions of communication links has become

an important step in the design cycle. This paper discusses some of the issues involved in

automatically verifying hardware descriptions written in SLIDE, an I/O hardware descriptive

language.

We describe a communications link in terms of its synchronization mechanism, which

contains synchronization hardware and a synchronization protocol. A syntax is introduced

which is amenable to describing synchronization mechanisms and to automatic verification of

the mechanisms. A synchronization capsule is used to describe a synchronization mechanism;

processes and roles are used to describe the synchronization hardware and synchronization

protocol respectively. A path expression is used to specify the design specs.

A formalism is introduced which can be used to automatically verify the synchronization

mechanism described by a synchronization capsule. This formalism is based upon Petri Nets

and Vector Addition Systems.

This paper was created with the aid of the text processing program
SCRIBE and the graphics programs SPACS and SPXIMG. The files for
this paper reside in two subdirectory master files, VER.MAS and
VERPIC.MAS on account [X375JW76] on CMU-10D.
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1. Introduction

This paper describes the work done over the past year on verification issues in SLIDE, an

I/O hardware descriptive language. At least a cursory Knowledge of SLIDE [Parker

78, Wallace 79] and the aims of the CMU-DA group at Carnegie-Mellon University [Parker

79a] is assumed. Someone without this knowledge may still be interested in Chapters 3, 4f 5,

and 7, and should definitely read Chapter 2 on terminology.

1.1 The Importance of Hardware Descriptive Languages

With the advent of LSI and VLSI technology, the need for digital hardware design

techniques which differ from the ad hoc techniques used previously has risen. This is

because of the complexity of the circuits which can now be implemented in VLSI. Hardware

descriptive languages (HDLs), such as ISPS [Barbacci 78], are an attempt to formalize the

design procedure. An entire central processor (processor, memory, etc.) can be modeled by

an ISPS description. This description can then serve as a formal basis for documentation,

simulation, verification, and computer aided design of the actual hardware.

For a complete discussion of HDLs see [Barbacci 75] and [CHDL 75].

1.2 The Importance of Communications Links

Another result of VLSI technology has been the increased availability of inexpensive

processors and large memories, two components which have traditionally been the most

expensive components of a computer. Consequently, it has become economically feasible to

combine many processors and memories to form a multi-computer network, or to use one or

more processors and memories as components in a larger system.

As a result of this, a third component, the communications link, is beginning to receive its

share of attention [Chen 74, Pagel]. This can be attributed to the following reasons:

1. The cost of the communications link has risen relative to the costs of processors
and memories.

2. As processor and memory speed increases, the communications link is becoming
the bottleneck in computers.

3. Because components connected to the communications link are becoming more
intelligent, more complex links are possible (and more complex links are needed).

For the purposes of this paper, a communications link is anything that interconnects

processors, memories, peripherals, or other communication links. This includes buses,

crosspoint switches, interfaces, etc.



Because of the increased interest in communications link design, much research is beginning

to be conducted on this topic [Chen 74, Ansi 79, Levy 78, Burr 79]. Part of this research at

Carnegie-Mellon University has resulted in an I/O hardware descriptive language (IOHDL)

designed specifically for writing descriptions of communication links. The language, called

SLIDE for Structured Language for Interface Description and Evaluation, is amenable to

writing descriptions of peripherals, controllers, interfaces, buses, and other communications

related hardware [Parker 78, Wallace 79].

1.3 The Need for Verification

We need confidence in the systems we design; i.e. we need verifiably correct hardware.

Consequently, we want to write verifiably correct hardware descriptions. From these we can

produce correct hardware, assuming our computer aided design procedures preserve

correctness.

The need to verify correct operation is stronger when designing communication links. This

is because most communication links have a synchronization mechanism which synchronizes

the actions of various independent processes connected to the link. This synchronization

mechanism usually includes a piece of hardware which synchronizes the actions of the various

processes, and a protocol which each of the processes must obey for the communications link

to operate correctly. For example, a bus usually has a bus arbiter which arbitrates between

pending bus requests, and a protocol which all processes interfaced to the bus must obey.

The design of a synchronizing mechanism tends to be error prone. This is because:

1. The mechanism can be complex.

2. Loci of control can reside in many independent processes.

When verifying SLIDE descriptions, we want to verify the correct operation of the

synchronizing mechanism, and make sure that all processes utilizing the mechanism obey the

protocol. Although this work was conducted with SLIDE in mind, the results can be applied to

any HDL which allows interaction between independent processes.

The use of HDLs represents a step which blurs the distinction between hardware design

and software design. Consequently, there are many parallels between the efforts to verify

hardware descriptions and those to verify software. Specifically, concepts such as

abstraction and encapsulation (introduced later in this paper) have their roots in software

language design and software verification.



1.4 Methodology for Automatic Verification of SLIDE Descriptions

This paper provides a framework for a SLIDE verification system. As mentioned

previously, we want to verify the synchronization between independent processes. We call

this global verification and distinguish it from local verification which is determining whether

an individual process performs its intended function. Although local verification is an

important issue, we will not be concerned with it here.

SLIDE provides a good starting point for a language which is amenable to verification. It is

behavioral; that is it describes the behavior of hardware without describing an

implementation. Also, actions arc described explicitely in SLIDE, at a high (register transfer

like) level as opposed to a low (gate) level.

We take the attitude that we want to write verifiably correct SLIDE descriptions; we should

have verification in mind when we design hardware. Also, we believe it is instructive for the

designer to structure his design using the constructs of abstraction and encapsulation

(described later) to aid in the design and verification procedure. The SLIDE syntax should

provide adequate facilities to do these things. This is a strong parallel to the software

structured programming design methodology.

We will describe a modified SLIDE syntax (called V-SLIDE for "Verifiable SLIDE") which

provides these facilities. We will also outline some techniques which can be automated that

will do global verification on a V-SLIDE description.

The feasibility and limitations of these techniques will be discussed as they are introduced.

1.5 Outline of Paper

The goal of this paper is to explore the many different issues involved in automatically

verifying SLIDE descriptions. The paper is filled with ideas which are crying to be

implemented. Unfortunately, there was no time to both explore all of the verification issues

involved and implement the findings. In that respect, this work is incomplete. However,

techniques are outlined, and possible implementations are sometimes suggested.

Chapter 2 discusses some basic terminology. Chapter 3 discusses our views on

verification. Chapter 4 introduces the V-SLIDE syntax. Chapters 5 and 6 introduce Petri

Nets and Vector Addition Systems, the formalisms we will be using, and Chapter 7 discusses

the techniques for automatic verification.



2. Terminology

This chapter describes some terms which are basic to this paper. Other terminology is

introduced when needed.

Process: An independent executing environment, a piece of hardware. In SLIDE, a
process is the part of a SLIDE description which describes an
independent executing environment. The difference between the
description and the hardware described is only one of representation.

Processes can interact with one and another in various ways.

We draw a constant analogy between processes and Petri Nets (Chapter
5).

Execution, actions: A process executes. In doing so, it performs zero or more time ordered
actions which are described by SLIDE statements. In a Petri Net, actions
are represented by transitions, and execution is represented by the
firing of transitions.

Blocked: The execution of a process may be blocked if one of its actions (such as
a delay statement) can not (yet) execute completely (occur). In a Petri
Net, this is represented by a transition which is partially enabled.
Blocking may or may not be temporary.



3. Verification of Hardware Descriptive Languages

This chapter is an introduction to our views on verification, the types of verification we

are concerned with, and our solutions.

3.1 Reasons for Verification

We see automatic verification as a necessary and natural step in the design cycle.

Verification, combined with adequate simulation and testing, gives us confidence in the system

we are creating.

Verification is important now that complex hardware is being designed and implemented

with the aid of HDLs. This is especially true when designing communications links where

many independent processes interact.

3.1.1 SLIDE Design Cycle

Figure 3-1 shows the SLIDE design cycle. The initial design is formulated into a SLIDE

description which includes verification specifications. This description is run through the

automatic verifier which determines if the description is "correct", and checks for various

design flaws. The results of verification may lead to subsequent redesign and reverification.

The SLIDE description can then be compiled and simulated. Results here may lead to more

redesign, a different parameterization, or a different design altogether. Finally, when the

simulation of the SLIDE description operates as intended, the circuits for the hardware will be

automatically built.

3.2 Types of Verification

We are concerned with the verification of the synchronization of independent processes.

This is called global verification. The types of things we would like to verify are:

" Error recovery: The ability to recover from faults.

- Reliability: Freedom from the occurence of faults.

- • - Specs: There are certain invariants which describe how hardware should
* ' operate. These are called its "specifications" or "specs". We want to verify that
~ a SLIDE description adheres to its specs.

The verifier could use either the original description or the compiled GDB for input. In fact, using the GDB would be
simpler since the GDB has a regular syntax The current compiler, however, takes standard SLIDE as input, whereas fhe
verifier will take a modified SLIDE, called V-SLIDE, as input. Instead of changing the current compiler, it might be
simpler in the short run to create a preprocessor which translates V-SLIDE into SLIDE. This way, a designer can write
one description in V-SLIDE and then use the verifier, preprocessor and compiler, simulator, and other software
packages.
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For example, the specs for a bus would indicate that no two processes can be
using the bus concurrently, that a certain priority relationship exists between
processes, that a certain protocol must be followed by all processes using the
bus, etc. We would want to verify that the bus hardware and all processes using
the bus adhered to these specs.

Unnecessary constraints on concurrency: Although a SLIDE description should
adhere to its specs, it should allow as much concurrency as possible. This gives
maximum throughput.

Unnecessary constraints on concurrency don't always indicate design errors.
Doing something sequentially rather than concurrently may be an economic
decision. For example, the specs for a bus may indicate that the next process to
use the bus may be selected while the current process is using the bus. The
designer, however, may opt for sequential operation. The verifier should point
out to the designer any unnecessary constraints on concurrency (including this
one).

Deadlock: If a process is blocked pending arrival of a control signal which will
never arrive, the process is cieadlocked. This may happen if several processes
are cyclically waiting for signals from one another, or if a signal is lost [Huen
73]. This is similar to deadlock in the classical software sense [Habermann 69].*

Starvation: If execution of one or more processes effectively blocks execution of
another, the blocked process is starved, and the system is in a starvation state.

Huen discusses another type of deadlock which may arise when a SLIDE description is implemented in
hardware [Huen 73, ChaptV). This deadlock arises due to errors in the implementation process, not in the actual
design. We will not be concerned with this.



Starvation is analogous to deadlock since a process is blocked. Its occurence,
ft however, depends on the dynamic behavior of the entire system.
V

The possibility of starvation in a system is common. For example, if saturated
with high priority interrupts, an interrupt mechanism would not be able to honor
any low priority interrupts. Any possibilities of starvation should be pointed out
to the designer. ^

Reception: If a process receives a control signal when it is not in a state to
honor it, and consequently, the signal is lost, a reception error has occured. This
may happen if two communicating processes become unsynchronized [West 78].

Overflow: There are two types of overflow errors: overflow of lines (when
information is output over a line too fast, and interference occurs) and overflow
of buffers (when buffers are written into faster than they are read from). We
want to verify that no errors can occur due to overflow.

3.3 Our Solutions

The rest of this paper discusses our methods for automatically verifying the above. We

will propose a syntax that is built upon SLIDE and is amenable to verification. Using this

syntax, a designer can specify both the hardware specs and the hardware description.

We will not be concerned with error recovery or reliability. This is because these are

areas of their own, and a lot of research is currently being conducted here (for example see

[IEEE 78]).

For the other verification issues, we will propose a formalism which can be used to aid in

verification.
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4. .V-SLIDE Syntax

This chapter introduces the V-SLIDE ("Verifiable SLIDE") syntax. We discuss what

motivated us to develop this syntax and the syntax itself. A simple example, a handshake,

and then a more complex example based on the UNIBUS* are given. We then discuss the

problem of interconnecting V-SLIDE descriptions in various configurations.

4.1 Motivation

We need a syntax which is conducive to writing verifiable descriptions and to automatic

verification. By "writing verifiable descriptions" we mean that the designer should (1) design

with verification in mind, and (2) structure his design in such a way as to minimize the

possibility of a design error.

The V-SLIDE syntax should support these things. Specifically, it should provide facilities

for [Ichbiah 79, Page4-1]:

1. Encapsulation: Knowledge about common actions should be collected in one place,
called a capsule. Things defined within a capsule may be local and are not
visible outride the capsule; others may be exported and are visible outside the
capsule. Encapsulation enhances maintainability since a change in the actions has

. only to be effected at a single place.

2. Abstraction: There should exist a clear distinction between the abstract name of
an action and its definition. Definitions of common actions should be
encapsulated together; only the names of the actions are exported. A process
can then use the abstract action name and not be concerned with its definition.

3- A total design system: Any system may be composed of many pieces of hardware
which are described by many V-SLIDE descriptions residing in separate files.
Actions used in one description (file) will be defined in another. This concept of
definition and instantiation goes hand in hand with the concepts of encapsulation
and abstraction.

4. Formally specifying the design specs: We need a formal syntax for specifying the
design specs to the verifier. These formal design specs should be an integral
part of the hardware description, but they should be separate from the actual
design. They are redundant in that they should be implied by the design.

UNIBUS is a registered trademark of Digital Equipment Corporation
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4.2 Proposed Syntax

In this section, we discuss the proposed V-SLIDE syntax which is essentially an extension

to SLIDE. We focus on the concepts involved — not on trying to develop a rigid syntax.

4.2.1 The Module

The module is to V-SLIDE what the main process is to SLIDE. Each V-SLIDE description

(file) is exactly one module.

A module is a capsule. Within a module, there are hardware declarations (registers, lines,

etc.), process declarations, and synchronization capsule declarations (discussed later). Any

hardware declared immediately within a module (i.e. not within one of the processes or

synchronization capsules) is considered global. These registers, lines, etc. form the "hooks"

that allow many modules to be interconnected.

The concept of a module was introduced for two reasons:

1. It keeps the concept of a process consistent. A process describes a piece of
hardware; a module is a capsule.

2. Since a module contains no statements, it eliminates the need for the dummy loop
statement which is always included in a SLIDE main process.

4.2.2 Tho Process

The process in V-SLIDE is exactly the same as a process in SLIDE. It describes an

independent piece of hardware and may contain hardware declarations, subprocesses, and

statements.

4.2.3 The Synchronization Capsule

A synchronization mechanism synchronizes the actions of the independent processes which

use the mechanism (see Section 1.3). It usually consists of two closely related parts:

1. Hardware which synchronizes I he actions of the processes. This is called the
synchronization hardware.

2. A protocol which must be followed by all processes using the mechanism for it to
operate correctly. This is called the synchronization protocol.

For example, a bus usually consists of an arbiter which synchronizes the actions of processes

which access the bus (this is the synchronization hardware) and a protocol which these
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processes must adhere to (this is the synchronization protocol).

A synchronization capsule describes a synchronization mechanism. It consists of a header,

a path expression, hardware declarations, processes, and roles. Before discussing these, we

will introduce the concept of an abstract action.

4.2.3.1 Abstract Actions

An abstract action has two parts: a name and a definition. The definition is given only

once, and the name refers to the definition.

There are three types of abstract actions:

1. An assignment abstract action has a definition which consists of one or more
parallel assignments.

2. A delay abstract action has a definition which consists of a single SLIDE delay
statement (with or without a timeout).

3. A conditional abstract action has a definition which consists of a V-SLIDE
condition which evaluates to true (1) or false (0). It is usually used in an IF
statement to control the performance of other abstract actions.

An abstract action occurs when the statements which define it complete. For an

assignment abstract action, this is immediate. For a delay abstract action, this happens

whenever the condition which the delay statement is delaying on becomes true. Conditional

abstract actions either occur immediately if the condition is true, or do not occur at all if the

condition is false. Abstract actions are performed by actors.

A word about notation. We use "a.b" to refer to action "b" performed by actor "a".

Similarly, we use Mal.a2.b" to refer to action MbH performed by an actor "a l" who is also actor

"a2w. We use "«*(a.b)w to refer to the number of occurences of "a.b". The V-SLIDE syntax

uses this notation except where the actor is implied by context in which case the "a." is

omitted.

4.2.3.2 Header

We will now discuss the parts of a synchronization capsule.

The header states the name of the capsule and the names of the roles defined within it

which will be exported (roles are discussed later). Figure 4-1 shows a sample header for a

capsule by the name of "shake" with two exported roles defined within it. The roles* names

are "shaker 1" and "shaker2M. Note that in all V-SLIDE examples, reserved words are in upper
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case; identifiers are in mixed lower and upper case.

SYNCHRONIZATION CAPSULE shake (ROLES s h a k e r l , shaker2) :

Figure 4 - 1 : Synchronization Capsule Header

4.2.3.3 Path Expression

The path expression (PE) is used for verification purposes only. It indicates the design

specs to the verifier by specifying which sequences of abstract action occurences are

allowable.

We use the PE syntax defined in [Andler 79a] with a few modifications. Specifically, we

use "NEXT" not V to indicate sequential operation, and we use V not V to indicate parallel

operation. This is consistent with SLIDE notation.

Also, any appearance of an abstract action name in a predicate (see [Andler 79a]) refers to

the number of times that abstract action has occured.

Figure 4-2 shows a sample PE. Each abstract action name consists of two parts separated

by a dot ("."). The first part indicates which process or role is to perform the action (e.g.

"shaker 1 H or "shaker2"). We call this the actor. The second part indicates the action's name

(e.g. "shake", "waitshake", etc.).

PATH
(shakerl.shake NEXT
shaker2.wa i t shake NEXT-
shaker2.ack NEXT
shakerl.wa»tack NEXT
shakerl.unshake NEXT
shaker2.waitunshake NEXT
shaker2.unack)*

END:

Figure 4-2: Path Expression

It is important to realize that the PE is a formal way of indicating the design specs to the

verifier; it is not part of the design (i.e. it can be ignored by the simulator). In this example,

the PE indicates that the action "waitshake" performed by actor "shaker2" must occur after

the action "shake" performed by actor "shakerl" but before action "ack" performed by actor

"shaker2". After the ?xtion "unack" performed by actor "shaker2" occurs, the whole



sequence may repeat.

Also, there is a significant but subtle difference between the use of "NEXT" and V in PEs

and in processes or roles. In the former, they order the occurence of actions; in the later,

they order the execution of statements.

From now on we use the notation discussed in Section 4.2.3.1.

Figure 4-3 shows a sample PE which uses predicates. Here, "requestor.req" can occur

many times. Concurrently, "granlor.granta" can occur if the number of pending requests is

between 1 and 3 inclusive, or "grantor.grantb" can occur if the number is greater than 3.

The "LET ... IN" construct defines a macro which is local to the PE.

Using the interpretation that the action "req" represents a request by the requestor, and

the actions "granta" and "grantb" represent different types of grants from the grantor, this

PE indicates that the requestor can make many requests, and the grantor concurrently makes

two different types of grants depending on the number of pending requests.

PATH
! pr is the number of pending requests !
LET

pr = / /(requestor, rcq) - //(grantor, grant a) - //(grantor, grantb)
IN

requestor , req* :
( grantor ,granta [pr>0 AND pr<4]
+ grantor ,grantb [pr>3] )*

END:

Figure 4-3: Path Expression With Predicates

Different actors can perform distinct actions with similar names or they can perform the

same actions. We differentiate between these cases as follows. First, if a similar action name

is used by more than one actor, such as "Requestorl.Req" and "Requestor2.Reqi-, then these

are distinct actions, and each has its own distinct definition. The names are considered

overloaded. The occurence of one does not effect the occurence of the other except where

indicated in the PE. Overloading can be used to advantage as will be shown in a later

example.

Second, if the same actor action pair is used more than once in the PE, then these refer to

one action with one definition and one common occurence.
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Third, if an action such as "Busllser.GrabBus" is qualified by another actor as in

-Requestorl.BusUser.GrabBus" or HRequestor2.BusUser.GrabBus" (meaning action "GrabBus"

performed by actor "BusUser" who is also actor "Requestor 1" or ltRequestor2lf respectively),

then these refer to different occurences of the same action* (This is done in the memory bus

description discussed at the end of this chapter.) ^

4.2.3.4 Hardware Declarations

Any hardware declarations (registers, lines, etc.) within a synchronization capsule are

considered local to that capsule. The hardware declared may be accessed by processes and

roles defined within the capsule, but not from outside the capsule.

4.2.3.5 Processes

Processes within synchronization capsules serve two purposes. They define the

synchronization hardware, and they give the definitions of the abstract actions performed by

the processes and used in the PE.

Abstract action definitions are given in parenthesis after the abstract actions9 names.

Figure 4-4 shows how abstract actions are defined in a process or role. Line 1 defines the

conditional abstract action "Checklnlerrupt". Lines 3 and 5 define the assignment abstract

actions "Ack" and "Unack". Line 4 defines the delay abstract action "WaitDropInterrupt".

Only abstract action names are exported from the capsule, not the definitions.

[1] IF Checklnterrupt ( intr EQL 1) THEN
[ 2] BEGIN

[3] Ack (sync «- / ) :

[4] WaitDropInterrupt (DELAY UNTIL intr EQL \) NEXT

[5] Unack (sync <- \)

[6] END NEXT

Figure 4-4: Portion of Process or Role

4.2.3.6 Roles

Roles are used only within synchronization capsules. They define the synchronization

protocol by defining a template which processes assuming the roles must adhere to. A

process assumes a role by indicating this in its own process definition. Many processes can

assume the same role.

Each role also gives the definitions of abstract actions used in the PE and performed by
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processes assuming that role. Abstract action definitions are given in the same manner as

discussed for processes (see Figure 4-4).

4.3 A Simple Example - A Handshake

Figure 4 -5 shows the description of a synchronization mechanism for a bidirectional

handshake. Figure 4-6 and 4-7 show the descriptions of two processes which handshake

using this mechanism.

The handshake works as follows: the process assuming the role of "shaker1" (e.g.

"controller") starts the handshake by raising the "11" line. Then the process assuming the

role of "shaker2" (e.g. "interface") acknowledges by raising the "12" line. "Shaker 1" then

drops the "11" line, and wshaker2" drops the "12" line.

MODULE cont ro l IerModule:

PROCESS c o n t r o l l e r (ROLES handshake.shaker1);

shake; waitack NEXT
unshake

END;
END;

Figure 4-6: Process Assuming Role of Shaker 1

There are a few things about this example worth noting:

- The synchronization mechanism described is merely a protocol between two
processes. Consequently for this example, there is no synchronization hardware
and no processes defined within the synchronization capsule. The roles
"shaker 1" and "shaker2" define the synchronization protocol.

- Definitions for the abstract actions used in the PE are given in the roles. These
definition are encapsulated within the roles. Only the names of abstract actions
and the names of roles are exported from a synchronization capsule.

- Process "controller" states that it is to assume role "shakerl" by indicating this
in its process header. When an abstract action name is used within this process,
this is called an instantiation. It is like a macro call. The definition of the
abstract action should be substituted for the name of the action by the
preprocessor or compiler. The order of instantiations should match the template
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MODULE handshake:

SYNCHRONIZATION CAPSULE shake (ROLES shakerl, shaker2)t

PATH
(shakerl.shake NEXT
shaker2.waitshake NEXT
shaker2.ack NEXT
shakerl.waitack NEXT
shakerl.unshake NEXT
shakcr2.waitunshake NEXT
shaker2.unack)*

END:

OCAL LINE ll<>, I2<>;

ROLE shakerl;
OEGIN
shake (II <- /)} waitack (DELAY UNTIL 12 EQL /) NEXT
unshake (II •- \)

END:

ROLE shaker2:
BEGIN
waitshake (DELAY UNTIL II EQL /) NEXT
ack (12 •- / ) : wai tunshake (DELAY UNTIL II EQL \) NEXT
unack (12 •- \)

END;

END Jof synchronization capsule shake!;
END I of module handshake!:

Figure 4-5: Handshake Module



18

MODULE intcrfaccModulc;

PROCESS Interface (ROLE handshake.shaker2):

waitshake NEXT
ack; uaitunshake NEXT
unack

END:
END;

Figure 4-7: Process Assuming Role of Shaker2

defined by the corresponding role in module "handshake".

- Process "controller" indicates in its process header that the role "shakerl* is
defined in module "handshake". By convention, module "handshake" should be
described in the file "HANDSHSLI". This allows the definition of abstract actions
to be automatically accessed during preprocessing or compilation.

4.4 A Complex Example - A Memory Bus

The V-SLIDE description of a memory bus, called MemBus, which is based on the UNIBUS is

contained in Appendix I. The system operates as follows (see Figure 4-8):

- Memory is connected to a bur* which consists of address lines (18 bits) and data
lines (16 bits) and a read/write line (1 for read, 0 for write).

- There are many processes which wish to access memory. The processes are
called bus masters; memory is called the bus slave (line 2440).

- An arbiter arbitrates between pending bus requests. There are two priority
levels, 1 and 2, with 1 having priority over 2. The request and grant lines are
daisy chained .

MemBus is essentially a simplified UNIBUS — it exhibits the synchronization of the UNIBUS

while avoiding the complexities which are unneeded for our purpose. Since this is not an

exercise in bus design, we have ignored timing considerations such as data skew.

In a V-SLIDE description, we uso "DC 1o indicate that a line is to be daisy chained.
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Figure 4-8: MemBus Diagram

The V-SLIDE description in Appendix I consists of three parts:

1. Module "MemBusH defines the bus synchronization mechanism. It contains two
synchronization capsules:

- Synchronization capsule "Arbit" (line 280) describes the requestor
protocol (roles "Requestor lw and HRequestor2w) and the arbiter hardware
(processes "Grantor 1M and "GrantorZ"). A process interfaces to the bus
by assuming the role of "Requestor 1" or "Requestor2". The process must
adhere to the template defined by the role.

- Synchronization capsule "MasterSlave" (line 1410) defines the
master/slave protocol for transfering data across the bus.

Any process that assumes the roles of "Requestorlw (line 860) or HRequestor2H

(line 1140) automatically assumes the roles of "BusUser" and "Master" also. The
abstract actions "WaitBusFree", "GrabBus", and "RelBus" are defined in the
wBusUserw role (line 1280) which is local to the capsule.

Hardware declared immediately within the module (lines 80 through 130 which
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should be developed and this scheme should be incorporated in V-SLIDE. The problems

mentioned above can not be addressed until this is done.

4.6 Conclusions

This section discusses how V-SLIDE is amenable to verification and discusses how V-SLIDE

could be made a more general and practical language.

4.6.1 Meeting Our Goals

It is enlightening to see how the V-SLIDE syntax provides the facilities mentioned in the

first section of this chapter. Specifically, it should provide facilities for writing verifiable

descriptions and for automatic verification. These are:

1. Encapsulation: The synchronization capsule provides an encapsulation facility for
synchronization mechanisms. Action definitions and hardware used by the
mechanism are encapsulated within the capsule.

2. Abstraction: The synchronization capsule also provides a level of abstraction for
using a synchronization mechanism. Only abstract roles and abstract action
names are exported from a synchronization capsule. A process interfaces with
the mechanism via these abstract roles and actions. The abstract action
definitions are hidden from the process.

3. A total dosifin system: Actions used in one description (file) usually are defined
in another. The correspondence between action instantiation and definition is
made when a process assumes a role. At that time, it indicates which description
(file) that role is defined in (see lines 1120 and 1440 of the MemBus description
in Appendix I). The abstract action definition can then be accessed automatically.

4. Formally specifying the design specs: The path expression is a formal
representation of the design specs. It defines which sequences of abstract
action occurences are allowable.

Automatic verification will be discussed fully in the next chapters. It is important to realize

that the synchronization capsule defines a synchronization mechanism completely. The

processes define the synchronization hardware, and the roles define the synchronization

protocol. Consequently, automatic verification can be performed on each synchronization

capsule in isolation. This is important because we want the correctness of the mechanism to

be independent of the various ways processes can be interconnected with the mechanism.

There is some necessary redundancy in a synchronization capsule. This comes from:

1. The desire to include the design specs in the capsule. Since these should be
implied by the design (if the design is correct), they are redundant. They are,
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however, needed for verification.

2. The desire to specify the synchronization mechanism completely in the capsule.
This lead to the concept of roles which specify the synchronization protocol.
Since all processes using the mechanism should adhere to the protocol (if they
are correct), the roles are redundant. Once again, however, they are needed foe.
verification.

3. The desire to have a clear distinction between the PE which specifies the design
specs, the processes which specify the synchronization hardware, and the roles
which specify the synchronization protocol.

4.6.2 Discussion of Syntax

The V-SLIDE syntax is not complete or very general. It was introduced to illustrate a

number of basic concepts (encapsulation, abstraction, etc.) and could be extended in a number

of ways, including:

- Adding parameters to abstract actions.

- Allowing more complex abstract action definitions with more than one statement
separated by "NEXT" or ";".

- Extending the concept of a role, allowing a more general template specification.

- Adding abstract data types and combining the concepts of abstract data type
capsule and synchronization capsule.

If the V-SLIDE syntax were extended appropriately, more complex examples (such as the

UNIBUS) could be described easily. Also in the MemBus description in Appendix I, the

address, data, and read/write lines could be encapsulated in the synchronization mechanism

giving a neater and more complete description.

In our experience, specifying the PE has required a lot of thought and a good

understanding of the mechanism being described. Although possibly time consuming,

specifying the PE has shed some light on how our mechanism operated. This has reinforced

our believe that proper structuring of the hardware description aids in the construction of

correct hardware.

The V-SLIDE syntax is amenable to hardware design rather than to the documentation of

existing hardware. This is because the abstractions are intended to hide the details of the

design.
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5. Petri Nets and Vector Addition Systems: An Introduction

This chapter introduces Petri Nets and Vector Addition Systems. Both are equivalent

formalisms for control structures and can be used to represent the synchronization of

concurrent processes [Petri 62] [Cooprider 76] [Hack 74] [Huen 73] [Karp 69] [Kini 75 } We

will define these formalisms with our uses in mind. For complete definitions, see the

references. [Cooprider 76] is a good introduction to Petri Nets. [Huen 73, ChaptIV] is an

introduction to Vector Addition Systems.

Later chapters will show how Petri Nets and Vector Addition Systems can be used in the

verification procedure.

5.1 Standard Petri Nets

We will use the introduction to standard Petri Nets given in [Cooprider 76]:

Petri Nets are directed graphs with two types of vertices, places (or conditions)
and transitions (or events1). An arc in a Petri Net can connect only dissimilar
vertices, that is, a place to a transition or a transition to a place. Places are
usually denoted by circles, transitions by bars ...

In addition, the places of a Petri Net are occupied by zero or more tokens; any
allocation of tokens to the places of a Petri Net is called a marking. Often the
description of a Petri Net includes the initial marking.

An arc from a place to a transition designates an input place to that transition;
an arc from a transition to a place designates an output place from a transition.
When there is a token on every input place to a transition, it is enabled and may
fire, otherwise it is disabled. If a transition fires, it takes one token from every
input place and places one token on every output place.

Petri Nets are interpreted by selecting sequences of firings. Any enabled
transition is selected and the marking of the Petri Net altered by the rule stated
above. Another enabled transition is then selected and the net marking altered
again. This process is repeated indefinitely as long as there remains an enabled
transition. Any marking which can be obtained in this manner is reachable from
the initial marking.

Note that the firing of one transition may disable another transition which was
previously enabled. This can happen when two transitions share an input place;
this configuration in a Petri Not is called a conflict.

... Nothing guarantees that any transition in a net must fire. However, it is
useful to assume that an enabled transition will eventually fire. This assumption
translates into the requirement that every process which is not blocked will be
scheduled at some time and will progress.

When used to represent the synchronization of concurrent processes, the

will UB» "action" not "event"



features of the Petri Net usually correspond to specific aspects of the computation.
Places describe stales of processes /or conditions on data. Transitions describe
actions, and the firing of a transition denotes the occurence of that action/
Tokens often denote processes, so that the "flow" of a token through the net can
reflect the "progress" of a particular process. (The Petri Net does not, however,
actually distinguish one token from another, so the correspondence is entirely that
of the user of the net.) Other tokens represent counters or values in semaphores
or messages.

5.2 Priority Petri Nets

A priority Petri Net is the type of Petri Net we will be working .with. From now on, when

we refer to a Petri Net, we mean a priority Petri Net unless we explicitely state that the net

is "standard".

A priority Petri Net (for our purposes) is a standard Petri Net with the following additions:

1. Weighted arcs: An arc may specify that it removes or places more than one
token. This is merely an abbreviation for standard Petri Nets.

2. Self looping: A place may be both the input place and the output place of the
same transition.

3. Priorities: Each transition has a priority which establishes a partial ordering
between the firing of transitions. A transition may not fire if there exists some
other enabled transition with a higher priority. The highest priority is 0; the
lowest is oo.

4. Data places and control places: We distinguish between data places (d-places)
which represent the values of data, and control places (c-places) which
represent the state of a process.

5. Semantic assertions: Each transition has associated with it a (possibly null)
semantic assertion which is a condition. Whenever all input c-places of the
transition are enabled, the semantic assertion should be true. If it isn't, this
represents an error. We will discuss this fully in Chapter 7.

6. Names: Each place and transition in the net has a (possibly null) name.

When representing a Petri Net graphically, we use bars for transitions, circles for places,

arrows for arcs, and numbers for tokens (representing the number of tokens in a place). The

priority of a transition ir. beside it followed by a colon (V ) . The name of a place or transition

is written near it. If an arc is weighted, that weight is written alongside the arc. If a place is

an input and output place of the same transition, a two-headed arrow is sometimes used

instead of two single-headed arrows.
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Figure 5 - 1 : Priority Petri Net Graph

5.3 Vector Addition Systems

Petri Nets and Vector Addition Systems (VASs) are equivalent formalisms for control

structures. VASs, however, are more amenable to mathematical manipulation. For our

purposes, we will use a VAS as a mathematical representation of a Petri Net. The VASs we

will use are capable of modeling self looping and are called "Modified Vector Addition

Systems" in [Hucn 73]. First we will present the mathamatical definition of a VAS, then we

will discuss the relationship between a Petri Net and a VAS in Section 5.5.

The following notation will be used when discussing VASs:

1. The relationship < between two r-dimensional vectors y and z is defined as
follows:

y < z iff y[\] < z[i], »=l,2,...,r

where integers in brackets denote components of a vector.

2. O or Or represents the zero vector of r dimensions.

3. N represents the natural (non-negative) integers including oo\

l In Ibis context, oo represents some arbitrarily large number such that oo-i / «o.
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4. -/V represents the non-positive integers including -co.

5. The binary operator + represents addition, not logical OR.

Definition; An r-dimensional standard Vector Addition System (VAS) V is a pair V - (m^ D)

where:

1. m Q

2. D is a finite set of pairs of r-dimensional integer vectors which are called the
displacement vectors,

3. Each rf < D is a pair of r-dimensional vectors of the form rf « (d ,rf*) where
rf1 € - N r , and d2 ( Nr.

The reachability set R(V) is the set of vectors of the form
m 0 + ^1 ^ l 2 + ^2 + ^2 + — + ^s + ^s

such that V i = l,2,...,s:

1. </j < D,

2. m0 + d± 1 + c*!2 + c/21 • ^2 2 * ~ * ^ j 1 + rfi2 ^ °-

5«4 Priority Vector Addition Systems

A priority Vector Addition System (PVAS) is an equivalent formalism for priority Petri Nets.

This is the type of VAS we will be working with, and unless stated otherwise, we are refering

to a PVAS.

Definition: A r-dimensional priority Vector Addition System (PVAS) PV is a pair

PV = (m 0 , D) where:

1. m 0 c /Vr,

2. D is a finite set of triplets which are called the displacement vectors.

3. Each rf c D is a triplet of the form d = (dl,d2,d3) where dl ( -/Vr, and d2 ( W,
and d3 < N (rf3 is the priority).

The reachability set f?(PV) is the set of vectors of the form:
m0 + d l 1 * rfl2 + ^2* + c /22 + - * ^s1 + rfs2

such that V i « l,2^..f5:
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1. <*j < Df

2. m0 + rfj 1 + </j2 4 c^1 4 rf2
2 + ... + rfj1 • c/j2 £ O,

3. there does not exist e < D such that c^ < cfj (higher priority)

and m0 • rf|1 • cfj2 + c^1 + rf2
2 + - + e1 • e 2 ^ 0.

5.5 Creating a Priority VAS From a Priority Petri Net

This section gives an algorithm for converting a priority Petri Net into an equivalent PVAS.

In subsequent chapters, we will discuss how a V-SLIDE description can be translated into a

Petri Net and how verification tests can be performed on a PVAS.

A Petri Net expressed as a VAS has the following characteristics:

1. The number of places in the Petri Net is equal to the dimension of the VAS, r.

2. For each transition in the Petri Net, there is a corresponding displacement vector
in D. Furthermore, the number of transitions, M, in the Petri Net is equal to the
number of vectors in D.

3. For all d C D,

dl < - /V r ,

and d2 c N r ,

and d3 ( N.

4. d^ indicates to the input places of a transition, </2 indicates to the output places,
and d^ corresponds to the priority of the transition.

5. The initial marking, MQ, of the Petri Net is identical to the vector mQ.

6. If there is a marking of the Petri Net, Mj, reachable from the initial marking, MQ,
then there is a corresponding vector, mj ( ft(V), and if marking M^ can be
reached from Mj by the firing of transition Tj, then 3 m^ < f?(V) such that
mj + tfjl + rfj2.

Item 6. illustrates the correspondence between transitions firing in a Petri Net and vectors

being added in a PVAS. This concept is central to the use of PVASs.

The following algorithm which converts a Priority Petri Net into a PVAS is a modification of

Huen's PN-VAS algorithm [Huen 73, Page 148].

Algorithm PN-VAS: A priority Petri Net with r places and M transitions can be expressed as

an equivalent PVAS PV - (mQ, D) of dimension r by the following steps:
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1. Name the places P j , P2,..., Pr and the transitions T j , T21 ~9

2. Construct the vector HIQ of dimension r as follows:

- For every place Pj that is initially empty, mQ[i]=O,

'*- - For every place P^ that is initially nonempty, mQ[k] is assigned the
number of tokens initially in place P .̂

3. The set D is composed of M vectors (c/j, do?...? d\$) each of dimension r. For
each transition Tj, a displacement vector cf^= (dp\ d^t d^) is constructed as
follows:

- If there is an input place Pj to transition Tj with weight w, then
d\ [i] = -w, else rfj* - 0,

- If there is an output place Py from transition Tj with weight w, then
rfj^fu] = w, else c/j^[u] • 0,

- Set dk to the priority of Tj.

Figure 5-2 shows the PVAS corresponding to the Petri Net in Figure 5 - 1 .

PV « (niQt D)

mQ « (1, 0, «>, 1, 0)

D -

rfj = ((-1, 0, -00, 0, 0), (1, 1, oo-l, 0, 0), 00)
d2 = ((0, 0, -oo , - l , 0), (0, 0, 00, 0, 1), 0)
d3 « ((0, -1 , 0, 0, -1), (0, 0, 1, 1, 0), 0))

Figure 5-2: PVAS Corresponding to Petri Net in Figure 5-1

5.6 Properties of Petri Nets and VASs

There are three basic properties of Petri Nets and VASs, reachability, liveness, and safety.

Reachability has been discussed above.

We will use Huen's definitions for liveness and safety for Petri Nets [Huen 73, Page 17A]:

A transition T of a Petri Net is live at a marking M if from every marking M* that
can be reached from M, there exists a firing sequence which fires T. If every
transition in a Petri Net is live, the net is live.

A Petri Net is safe if none of its places ever contain more than one token at a
time.



29

A displacement vector d of a VAS is live at a vector v if from every vector v* that can be

reached from i/f there exists an additive sequence which includes rf. If every displacement

vector in a VAS is live, the VAS is live.

An r-dimensional VAS V is safe if • ^

V v C R(V): v £ l r

Current research is concerned with whether reachability, liveness, and safety of Petri Nets

and VASs are decidable [Hack 74] [van Leeuwen 74] [Nash 73] [Schmid 76} For the

applications we will be concerned with, reachability, liveness, and safety are decidable [Huen

7 3 }
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6. Creating Petri Nets From V-SLIDE

This chapter discusses how a Petri Net can be built from a V-SLIDE description of a

synchronization mechanism. Chapter 5 discussed how a PVAS can be built from a Petri Net.

Subsequent chapters will discuss how verification can be performed on a PVAS.

We will introduce basic transformations which can be applied to the parts of a V-SLIDE

description to build a Petri Net. Then we will continue our previous examples of a handshake

by presenting its corresponding Petri Net.

6.1 Modeling With Petri Nets

We will model a synchronization mechanism with a Petri Net. This is done by building a

Petri Net from the V-SLIDE synchronization capsule which describes the synchronization

mechanism. We can do this because the capsule is a complete description of the mechanism.

Since we are using a Petri Net to model a synchronization capsule, sometimes the model is

not exact. We will try to point out discrepancies when they occur.

6.2 Transformations

We will introduce transformations which transform the syntactic constructs of V-SLIDE into

pieces of a Petri Net. When these transformations are recursively applied to a

synchronization capsule and connected, an entire Petri Net is created.

lA/hen most transformations are applied, the results "look like" a Petri Net transition to all

input and output places connected to them. This is demonstrated in Figure 6-1 (a).

Graphically, a yet unapplied transformation is shown as a box. Notice that when

transformations are connected "box car" style (Figure 6-1 (b))f some input and output arcs

must be combined on the shared transitions.

We will now discuss the transformations for the various V-SLIDE constructs used within a

synchronization capsule. Believing that a "picture's worth a block of text," we will try to give

more graphical examples and less rhetorical comment. Unless stated otherwise, all places are

c-places, and all transitions have a priority of oo (lowest).

I

6.2.1 Hardware Declarations
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(a)

(b)

Figure 6 - 1 : Transformation Expansion and Connection

6.2.1.1 OCAL and OCAH LINEs

TTL open collector lines have two states: 0 and 1. An OCAL (open collector active low) line

is initially 0. After being set to 1 by a process, it remains 1 until that same process resets it

to 0 releasing the line. We will model a single bit OC line as having two d-places: wnH and

"-n" where HnH is the name of the line (see Figure 6-2 (a)). Initially, an OCAL line has no

tokens in wn" and oo tokens in m-*vT. An assignment of 1 to an OCAL line removes one token
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from H-nH and places it in Hn" (Figure 6-2 (O). An assignment back to 0 does the opposite. A

test to determine if the line is 1 checks for at least 1 token in "n". A test for 0 checks for oo

tokens in ^ n H . OCAH (open collector active high) lines are symmetric.

Without a more detailed V-SLIDE description, DC (daisy chained) lines are difficult to model.

The method chosen works correctly for the examples we have tried.

A single bit OCAL DC line is modelled as having three d-places, V, "-•n", and " n " 1 (Figure

6-2 (b)). Initially, there are no tokens in V or " n* " and oo tokens in %T. An assignment of

1 to the line removes one token from ^ n " and places it in "n". A test to determine if the line

is 1 checks for at least 1 token in "nH, removes it, and places it in " n* " (Figure 6-2 (d)). An

assignment of 0 to the line removes one token from "n" or " n ' " and places it In *-*n" (Figure

6-2 (e)). OCAH DC lines are symmetric.

6.2.1.2 Registers and Other Declarations

Registers and other types of lines can be modelled similarly. For example, see the Petri

Net model of a bit in [Cooprider 76, Page6]. Throughout the rest of this chapter, we will

assume that all lines are OCAL

6.2.2 Processes and Roles

The transformations for processes and roles are demonstrated in Figures 6-3 and 6-4

respectively. Note that the IN1T declaration is modelled as a multi-way fork with the c-place

"mutex" controlling mutual exclusion. The priorities assigned to the transitions ensure correct

operation.

aReady

ROLE a; BEGIN . . . END;

Figure 6-4: Role Transformation
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g

o ©
OCAL LINE g o ;

(a)

-r
O O ©

OCAL DC LINE r<>;

(b)

(c)

-r

H
IF r EQL 1 THEN a ELSE b

Figure 6-2: OCAL & OCAL DC Lines



INIT a WHEN acond

ELSE INIT b WHEN bcond

ELSE INIT c WHEN ccond;

Figure 6-3: Process Transformation

6.2.3 Blocks

Any sequence of V-SLIDE statements enclosed within BEGIN and END can be decomposed

into

BEGIN a NEXT b NEXT ... NEXT z END

where each a...z is of the form

*5 P> —5 f

where each a...f is a V-SLIDE statement (which may be complex). Using this decomposition

rule, the transformations for blocks of statements are given in Figures 6-5 and 6-6.

6.2.4 Abstract Actions

This section discusses the transformations for abstract Actions: the assignment abstract

action and the assignment statement, the delay abstract action and the delay statement, and

the conditional abstract action and the if statement.
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NEXT NEXT NEXT

BEGIN a NEXT b NEXT . . . NEXT z END

Figure 6-5: Block Transformation for NEXT

a; b; . . . ; z

Figure 6-6: Block Transformation for Semicolon

6.2.4.1 Assignment

A few words concerning the semantics of the SLIDE assignment statement are in order. If

a process assigns a 1 to an OCAL line, that line remains 1 until the same process assigns a 0

to it, releasing the line. Thus OCAL lines have the "wired or" property. If a process assigns

a 0 to an OCAL line, the line will not be 0 after the assignment if another process is holding

the line at 1. OCAH lines are symmetric. Modelling these types of assignments was discussed

in Section 6.2.1.1 and Figure 6-2.

An assignment of an upward transition ("/")* to an OCAL line has a slightly different effect

Don't confuse SLIDE "upward transitions" and "downward transition*" with Patri Net "transitions".
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than assigning a 1 to the same line. In the former case, the line is still set to 1, but it should

be 0 before the assignment is made. If the line is not 0 before the assignment is made, a

design error is evident. An assignment of a downward transition C\") has a symmetric effect.

We model this type of assignment the same as before, except we give the transition a

semantic assertion (see Section 5.2). Some examples are shown in Figure 6-7. Semantic

assertions are shown graphically in quotes ("...") besides the transition they apply to.

II

Figure 6-7: Transition Assignment Transformations

6.2.4.2 Delay

Simple delay statements of the form "DELAY .nH are modelled as a single c-place (see

Figure 6 -8 (a)).

In the more general delay statement, the timeout clause is ignored. We do this because we

are not concerned with error recovery or reliability, and we want to model worst case

performance. Statements of the form

DELAY .x UNTIL cond

are transformed into

DELAY UNTIL cond

Secondly, all delay statements of the form

DELAY UNTIL x EQL /
or
DELAY UNTIL y EQL \

are transformed into the equivalent
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DELAY UNTIL x EQL 0 NEXT DELAY UNTIL x EQL 1
or
DELAY UNTIL y EQL 1 NEXT DELAY UNTIL y EQL 0

After this is done, the_ transformations shown in Figure 6-8 (b) and (c) can be applied.

These transformations ensure that the transition does not fire until the condition is met. All

of the transitions in the transformation are given a 0 priority (highest) to ensure that the

transitions fire as soon as the condition becomes true.

The transformation for a more complex delay statement is shown in Figure 6-9. Here, the

transformation for "cond" takes one input token and returns a token on either the "true" arc

or the "false" arc.

' t

DELAY .n

(a)

DELAY UNTIL g EQL 1

(b)

p -P

DELAY UNTIL g EQL 1 AND p EQL 0

(c)

Figure 6-8: Delay Transformations
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DELAY UNTIL cond

Figure 6-9: Complex Delay Transformation

6.2.4.3 If

Every if statement must have an else clause before it is transformed into a Petri Net. Any

statement of the form

I F cond THEN a

is first transformed to

I F cond THEN a ELSE NOP

After this is done, the transformation shown in Figure 6-10 can be applied. Here again, the

transformation for tfcondtf takes one input token and returns a token on either the "true" arc

or the "false" arc. Figure 6-11 (a) shows the transformation for the conditional "g EQL 1"

where g is OCAL Default firings can be specified easily using priorities. Sometimes, this can

be used to avoid complex Petri Nets. For example, the partial nets in Figure 6-11 (a) and (b)

are equivalent. However, (b) is simpler; it has less arcs.

IF cond THEN a ELSE b

Figure 6-10: If Transformation
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o.
gEQL 1

(b)

Figure 6-11: Conditional Transformation

6.2.4.4 Occurrences

When an abstract action is transformed, a transition should be given the name of the

abstract action in such a way that the firing of this transition corresponds to the occurence

of the abstract action. The number of times this transition has fired corresponds to the

number of occurences to the abstract action. Examples for an assignment, delay, and

conditional abstract actions are given in Figure 6-12.

6.2.5 Other Constructs and Statemonts

6.2.5.1 Loop

The transformation for loop constructs of the form

WHILE cond DO a

is shown in Figure 6-13. The "until" form is similar.



sack -sack

AckGrant (r <-0; sack

(a) assignment

o
WaitGrant

WaitGrant (DELAY UNTIL g EQL 1)

(b) delay

J AckGrant

false

IF grant (g EQL 1) ...

(c) conditional

Figure 6-12: Occurences of Abstract Actions



WHILE cond DO a

Figure 6-13: Loop Transformation

6.2.5.2 Labels and Branches

A branch is modelled by a transition whose only output place preceeds the statement

branched to. For example, see Figure 6-14.

I
loop: g<- 1 NEXT BR loop NEXT

Figure 6-14: Branch and Label Transformation

6.2.5.3 Subroutines and Calls

A subroutine is modelled as shown in Figure 6-15 (a). A subroutine call is modelled as
shown in Figure 6-15 (b).



SUBR x;
BEGIN body END;

(a)

Figure 6-15: Subroutine and Call Transformations

6.2.5.4 Nop

A nop statement is modelled as a single transition. For example, see figure 6-16.

Figure 6-16: Nop Transformation
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6.3 A Simple Example - A Handshake

We will continue the example of the handshake introduced in Section 4.3 and Figures 4-59

4 -6 , and 4-7 . The Petri Net for the handshake example is shown in Figure 6-17. This Petri

Net was built using the transformations described above. A Petri Net for the MemBus

example has also been built using the transformations! but was too complex to include in this'

paper.

Some things worth noting about the Petri Net in Figure 6-17 are:

- The way abstract action names are given to the appropriate transitions.

- The semantic assertions used when assignments of upward or downward
transitions are made to lines. If there ever comes a time in the operation of the
net when all c-places to a transition are enabled, but the semantic assertion ("II
EQL 0", etc.) is not true a design error is evident.

r - All transitions have a priority of co (lowest) except transitions modelling
statements of the form "DELAY UNTIL cond" which have a priority of 0 (highest).
This ensures that the transition fires as soon as the condition becomes true.

* - A 0 test for an OCAL line checks for no tokens in the "-»n" place; a 1 test checks
for at least 1 token in the HnH place where V is the name of the line.

- We have assumed that both roles are ready to execute and have placed one
token in both places "shaker 1 Ready" and "shaker2Ready". This will be discussed
more in subsequent chapters.

6.4 Optimizing the Petri Net

A few words about optimizing the Petri Net are in order. By "optimization" we mean

making the net simpler: fewer places, transitions, and arcs. The verification techniques we

will use in later chapters are computationally proportional to the complexity of the Petri Net

obtained by the above transformations. Therefore, for complex problems, optimizing the net

may be worthwhile.

We will not develop a technique for optimization, but will give one example. Figure 6 -18

(a) shows the partial net obtained by using the transformations on the statements

r •- 0* sack «- 1

Figure 6 -18 (b) shows how this can be optimized into a single transition.



 



shaker 1 Ready

7
00

v

shaker2Ready

. 0
waitshake

from -*I2

1 ^
to12

ack

"12 EQL 0"

o
unshake

u EQL w \! yto -II :0
aitunshake

^

to -12

from 12

unack

"12 EQL T

Figure 6-17: Petri Net for Handshake Example



sack -'sack

(a) unoptimized

AckGrant

sack -sack

(b) optimized

AckGrant (r <-0; sack

J AckGrant

Figure 6-18: Optimization Example
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7. The Verification Procedure

This chapter completes the discussion of the verification procedure for V-SL1DE. We will

present techniques for verifying a synchronization mechanism and for verifying processes

which interface with that mechanism. We will also discuss a possible automatic verification

system for V-SL1DE.

7*1 General Method

The verification procedure for a V-SLIDE synchronization mechanism consists of two parts:

1. Verifying the synchronization capsule which describes the synchronization
mechanism. Specifically, we want to verify (see Section 3.2):

- Adherence to design specs.

- Freedom from unnecessary constraints on concurrency.

- Freedom from deadlock.

- Freedom from starvation.

- Freedom from reception errors.

- Freedom from overflows.

A synchronization mechanism which has the above properties is considered
correct.

2. Verifying that all processes which interface with the mechanism do so correctly.
That is, when a processes assumes a role, we must verify that it adheres to the
template defined in that role.

If we can be sure that (1) a synchronization mechanism is correct and (2) all processes

interfacing with the mechanism do so correctly, then we have increased our confidence that

the entire system is synchronizing correctly. We will now discuss these two parts of the

verification procedure.

7.2 Verifying the Synchronization Capsule

The first part of the verification procedure is to verify the synchronization capsule which

describes the synchronization mechanism. We do this by building a PVAS from the capsule

and then constructing a control flow tree for the PVAS [Karp 69, Huen 73]. Various tests can

be performed on the control flow tree to verify the synchronization capsule.



First we will discuss terminology and notation. Then we will present an algorithm for

building the control flow tree The algorithm is from [Huen 73]. Then we will discuss the

various verification tests.

7.2.1 Building tho Control Flow Tree

The following notation and terminology will be used when discussing PVAS control flow

trees:

- w is a quantity such that V n ( N:

n < w and
n + u/e=u/ = u / - n .

I.e., w is the classical infinity.

- A rooted tree is a directed graph such that one node (the root node X) has no
arcs directed into it, each other node has exactly one node directed into it, and
each node lies on a directed path from the root node X.

- If there is a directed arc from oi to fl, then cc is a predecessor of fl (or fl is a
successor of ot) and we write oc -* fl. If the arc from ot to fl is labeled with d,
then we write o(. -</-* fl.

- If od and fl are distinct nodes of a rooted tree, and there is a directed path from
oC to fl% then we write c/ -•-» fl. oi is a ancestor of fl, and fl is a descendant of
ot. Note that oc -» /? implies oi -»-> /?.

- If the sequence of labels of the path from ot, to /? is s « d i ^ t - . , ^ , then we

write:

oi -$->-* /? or
oi -€*!-> ... -tfn-* /?.

- We shall use Greek letters (c/, ft, X) to denote nodes of a tree, italic lower case
letters in the beginning of the alphabet (c, dt e) to denote displacement vectors
of the PVAS, and the end of the alphabet (p, q, 5) to denote sequences of
displacement vectors.

For a description of the control flow tree we will quote from [Huen 73]:

For a given VAS V « (mQ, D) of r dimensions, the following Algorithm T
constructs a control flow tree T(V) which is a rooted tree. Each node fl ( T(V) is
labeled with an r-dimcnsional vector lift) where each coordinate of lift) is an
element of N u [w}. The tree T(V) is a concise way of representing the states in
the reachability set R(V). The initial state is represented by the label of the root
node. States reachable from the initial state are shown by nodes lying on a path
directed from the root node. Any state that repeats an ancestor /sic/ state is
shown as a leaf of the tree T(V). Successors of such a state are not shown since
they are already in the tree. There is also the case in which a sequence of



displacement vectors can be added to a certain vector v < R(V) so that there is a
net increase in some coordinates of the resulting vector v* ... The same sequence
of displacement vectors can thus be added repeatedly to v* to generate new
vectors, thus producing infinitely many reachable states. The Algorithm T indicates
this situation by assigning a value w to those coordinates of v* that have a net
increase over the corresponding coordinates of the vector v.

Any state from which no further progress can be made will also be shown as a leaf of the

tree T(V).

To construct a control flow tree from a V-SLIDE synchronization capsule, first create a

Petri Net from the capsule (Chapter 6). Then start a number of instantiations of each role by

placing tokens in their "rolenameReady" c-places (discussed in Section 7.4). If the Petri Net

has M transitions and r places (re c-places and rd • r - re d-places), express the Petri Net as

an r-dimensional PVA5 with M displacement vectors (Chapter 5). In doing so, name the

c-places P j , ..., P r c , and name the d-places P r c + j , «., Pr Consequently, all c-places will have

PVAS coordinates < re, and all d-places will have coordinates 2 re + 1. Also create a vector,

A, which contains the (possibly null) semantic assertions for the corresponding transitions and

displacement vectors. After this, construct the control flow tree using Algorithm T (below).

Algorithm T: T(V) and the labels lift) are constructed recursively by the following steps

[Karp 69, Huen 73]:

1. Create a root node \ and label it

2. Let ft be the node in the tree being constructed:

- If 3 u such that </. ->-• ft and l{u) « lift), then ft is a leaf of T(V), and no
successors will be added to ft.

- Otherwise, V d < D such that

1. lift) + c/1* d2 >O, and

2. there does not exist an e such that e^ < d^ (higher priority) and
c1 + e 2 > O,

create a successor ft' to ft. The directed arc from ft to /T is labeled d.
The coordinates of / ( /O are determined as follows:

if 3 oi such that c/ -*-* ft? and l(u) < lift) + dl + d2,

then V i » l,2^..,r:

{ if IU)[\] < l(ft)[\) + dll\] + d2[i],

then Z(/O[i] is assigned the value w

else /(/?')[i] is assigned the value of l(u)[\] }
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else l(/T) is assigned the value of l(fi) + rf1 + d2.

- Also, for all d ( D such that

Kfi) • dl + d2 • h > 0

where A is a vector of re 0's followed by rd u/'s , if cTs corresponding
semantic assertion a is not true, inform the user of a design error .

3. Repeat step 2. until no new nodes can be added to the tree.

[Huen 73] proves that this algorithm will terminate.

Before proceeding, we must introduce some additional terminology:

- A directed path c/. -*-»-+ fi in tree T(V) is called a repeatable path if (1) fi is a
leaf of the tree T(V), and (2) *. is an ancestor of fi such that l(u)

- A number of paths p j , P2> •••» Pm °' a l r e e T ^ ) forms a subtree if each path pj
has at least one node in common with some other path p^. The nodes and
directed arcs of the subtree are the respective unions of the nodes and directed
arcs of the paths.

" A maximal subtree of repeatable paths is a subtree which contains at least one
repeatable path such that each repeatable path of T(V) is either entirely
contained within the subtree or is completely disjoint from the subtree. Also, if
any ancestor of a node is in the subtree, then that node must also be in the
subtree.

We will now discuss the various verification tests.

7.2.2 Adherence to Design Specs

We want to verify that all possible sequences of abstract action occurences are allowed by

the design specs specified by the PE. Each abstract action has a corresponding Petri Net

transition and PVAS displacement vector. The firing of that transition or addition of that

displacement vector (in step 2. of Algorithm T) corresponds to the occurence of the abstract

action.

The control flow tree built by Algorithm T gives us all of the possible sequences of

This condition checks for • transition (displacement vector) which has all c-places enabled.

This corresponds to the assignment of an upward or downward transition to a line where the line is hot
originally 0 (or 1).
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abstract action occurences. Each directed path from the root node X to a leaf is a possible

sequence. If the leaf is at the end of a repeatable path, then the sequence is infinitely long.

Verification of adherence to design specs consists of pattern matching each of the possible

sequences of abstract action occurences against the PE. The techniques for this should be

straight forward (e.g. see [Andler 79a] and [Andler 79b]).

7.2.3 Freedom from Unnecessary Constraints on Concurrency

We also want to verify that all allowable sequences of abstract actions are, in fact,

possible. This is symmetric to verifying adherence to design specs. We expand all of the

allowable sequences of abstract action occurences as specified by the PE, and match these

against the possible sequences in the control flow tree. Any sequences which are not in the

tree are indicative of an unnecessary constraint on concurrency.

7.2.4 Freedom from Deadlock

Freedom from deadlocks for a synchronization mechanism and liveness for a Petri Net are

closely related. If the Petri Net which models the synchronization mechanism is live, then it

can never be in a state such that the firing of any transition can be ruled out. Consequently,

none of the actions for the corresponding synchronization mechanism can ever be blocked,

and it is deadlock free [Cooprider 76, Huen 73]. The reverse is not true; a mechanism can be

deadlock free, but the corresponding Petri Net may not be live. For example, there may be

initialization actions which should only occur once. Nevertheless, this has not been the case

for the examples we have worked with, and we can use liveness as a test for freedom from

deadlocks. If the system can ever reach a state where some transitions are not live, the

designer can decide if this is a design error or a property of the system.

We can test whether a Petri Net (PVAS) is live by examining its control flow tree T(V)

[Huen 73} A Petri Net (PVAS) is live iff:

1. Each leaf of the tree T(V) is at the end of a repeatable path.

2. Each maximal subtree of repeatable paths of T(V) contains all displacement
vectors d < D as labels of its arcs.

This ensures that the Petri Net can never reach a state where the firing of any of its

transitions can be ruled out. Consequently, the corresponding synchronization mechanism can

never reach a state where the occurence of any of its actions can be ruled out.

We distinguish between a displacement vector (transition or action) being deadlocked and
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being critically deadlocked. If there exists a leaf of the control tree which is not at the end

of a repeatable path, then all displacement vectors are deadlocked at that node (state). For

each maximal subtree of repeatable paths of T(V), any d i D which is not a label of one of its

arcs is deadlocked from all the nodes in the subtree. For each node of the tree ©d, let dl(u)

be the set of displacement vectors (transitions or actions) which are deadlocked from that

state. Then for each d < dl(u)f if 3 i *= l,...,rc such that l(u)[i] + cf*[i] > 0, then d is critically

deadlocked. That is, a critically deadlocked displacement vector (transition or action) at node

ot is deadlocked and has at least one of its input c-places enabled. This corresponds to an

action in the system which is partially (but not fully) enabled.

The distinction is made because a critically deadlocked transition is very indicative of a

design error. Any initialization actions or the like will be shown to be deadlocked but not

critically deadlocked.

7.2.5 Freedom from Starvation

We can test whether a starvation problem exists by examining the control flow tree T(V).

If there is a repeatable path which does not contain all displacement vectors d C Df then it is

possible that the system could remain on this path, and a starvation problem exists. All

displacement vectors (transitions or actions) not on the repeatable path are starved (we can

ignore those which are deadlocked). Once again, it may be worthwhile to distinguish between

starvation and critical starvation.

7.2.6 Freedom from Reception Errors

If a Petri Net is safe, then no part of the net receives a token until the previous token has

been handled. This is an indication that the corresponding synchronization mechanism is free

of reception errors. Other reception errors (such as lost signals) will show up as a deviation

from the design specs or as a deadlock. We can test if a Petri Net is safe by examining its

control flow tree [Hucn 73} A Petri Net is safe iff the label of every node u of the control

flow tree T(V) has components < 1.

For our purposes, we are only concerned with the c-places, not, the d-places which could

have any number of tokens in them. If any node u of the control flow tree T(V) has a

component J(c/.)[i] > 1 (where i •= lr..,rc), then this may indicate a reception error.
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7.2.7 Froodom from Ovorflow Errors

The limited formalism we have developed can not be used to detect overflow errors. We

have ignored the problems of modelling FIFO buffers and iterative loop constructs with Petri

Nets. If the modelling techniques were extended appropriately, then it could be possible to

test for overflow errors by examining the control flow tree. We will leave this for future

work.

7.3 Verifying the Role Instantiations

Once the synchronization capsule has been verified and is correct, we must ensure that all

processes which interface with the mechanism described by the capsule do so correctly.

That is, each process which assumes a role (called a role instantiation) must adhere to the

template defined by that role.

This can be verified by pattern matching the body of the process against the template

defined by the role. The pattern matching is performed by applying the following

transformations to the process body. These steps are done for each process and for each

role assumed by that process (one at a time).

1. Discard any statements and any actions not defined within the current role.

2. Collapse redundant semicolons and "NEXT"s.

3. Transform any occurence of Ha NEXT BEGIN b END NEXT c" into
Ma NEXT b NEXT cH.

The result should match the current role definition exactly.

For an example, we will continue our discussion of MernBus. If we want to ensure that

process HClockProcessw adheres to the template defined in the role "Requestor 1", we apply

the above transformations to the body of "ClockProcess". The result is shown in figure 7 - 1 .

Here, the match with the role definition for wRequestorlH is exact except for the "NEXT" after

the action "AckGrant" in "ClockProcess". In this case, the error is a minor one which the

designer may choose to ignore.

At first, it may seem that a "NEXT" could be used by a process where a V was used in the

role's template. In this last example, in fact, this was true. However, it is not true in general

as demonstrated by Figure 7-2 where the process has used a "NEXT" between action "Req*

and action "WaitGrant" instead of the semicolon. Here, this is a serious design error since the

use of "NEXT" may cause the grant signal to be missed. This is because the definition of



BEGIN
Req: WaitGrant NEXT
AckGrant NEXT
WnitBusFree NEXT
GrabBus NEXT
WaitDropGrant NEXT
UnackGrant NEXT
ReI Bus

END

Figure 7 -1 : Verifying "ClockProcess"

"WaitGrant" is "DELAY UNTIL gl EQL / - 1 .

BEGI N
Rcq NEXT WaitGrant NEXT
AckGrant NEXT
WaitBusFrco NEXT
GrabBus NEXT
WaitDropGrant NEXT
UnackGrant NEXT
ReI Bus

END

Figure 7-2: Incorrect Use of "NEXT"

7.4 V-SLIDE Verification System

In this section we will discuss a possible automatic verification system for V-SLIDE. This

should tie together many of the concepts introduced so far.

As mentioned in Chapter 3, we see verification as a necessary and natural step in the

design cycle. Consequently, the verification system should be easy to use.

The user runs the verifier and specifies the name of the module (file) which is to be

verified. If the module contains a synchronization capsule, a Petri Net is built. For each role

defined within the capsule, the user is asked the number of instantiations which are to be

started. This number of tokens is put in the "rolenameReady" c-place in the Petri Net (e.g.

Of coureo I ho definition is not visible out Bide I he "Arbil" capsule, so making • decision on using "NEXT" versus V
based on the definition would subvert the verification procedure. Consequently, the role should be adhered to exactly
unless the actions are totally unrelatod.



55

the c-place named "aReady" in Figure 6-4). Then the PVAS and control flow tree are

constructed, and the various verification tests are performed (Section 7.2).

If a design error is uncovered, the verifier should provide a trace of the abstract action

occurences which lead up to the error. This trace can be read directly from the tree T(V).

If any processes within the module assume a role, correct interfacing should be verified by

the technique discussed in Section 7.3. Any discrepancies should be pointed out to the user.

For an example, we will use our Mem Bus description in Appendix I. We want to verify the

"MemBus" module and the modules for all processes which interface with the bus (e.g.

modules "Clock" and "Memory"). A hypothetical dialog is shown in Figure 7-3. (User input is

underlined.)

7*5 Discussion

In this section, we will discuss the problems and advantages of the verification methods

used.

7.5.1 Problems

One major problem with these techniques is modelling V-SLIDE with Petri Nets. The

modelling of open collector and daisy chained lines discussed in Chapter 6 may not always be

correct. Modelling more complex structures such as arrays, buffers, etc. is ad hoc. To offset

this disadvantage slightly, we are concerned with a restricted environment, the

synchronization capsule. The use of complex structures in a synchronization capsule is

uncommon. However, if the concept of a synchronization capsule was extended, this may no

longer be true.

Another problem is the complexity of Petri Nets. Nets of even modest complexity become

unwieldy and graphically unintelligible. This is a moot point though since all handling of Petri

Nets is done by machine; complexity is irrelevant. However, graphical feedback may be

handy.

A final problem is the size of the control flow tree. Hack [Hack 74] has suggested that the

size of the tree is on the order of Ackerman's function applied to the number of transitions

and places of the corresponding Petri Net. This indicates that optimization of the Petri Net

(Section 6.4) may be an rmportant step. From our experience, an example similar to MemBus

had a control flow tree of moderate size (about 100 nodes). Handling a tree an order of

magnitude larger than this should not be a problem if an "efficient" language such as BLISS

[Wulf 71] is used.
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•L v e r i f y
V-SLIDE VERIFICATION SYSTEM

Module to ver i fy : McmDus
[Using f i l e "MEMBUS.SL1")
[Verifying SYNCHRONIZATION CAPSULE "Arbit"
How many instantiations of role "Rcquestorl"! 2.
How many instantiations of role "Requestor2"i $}
Results:

[Verifying SYNCHRONIZATION CAPSULE "MasterSlave*
How many instantiations of role "master"J 1
How many instantiations of role "slave"! 1
Results:

Module to verify: Clock
[Using file "CLOCK.SLI"]
[Verifying roles
Process "ClockProcess" does not adhere to template defined in

role "Requestorl" in module "MemBus".
Discrepancy is ...

Process "ClockProcess" adheres to template defined in role
"Busllser" in module "MemBus".

Process "ClockProcess" adheres to template defined in role
"Master" in module "MemBus".

Module to ver i fy : Memory
[Using f i l e "MEMORY.SLI "]
[ V e r i f i c a t i o n of roles
Process "Memory" adheres to template defined in role

"Slave" in module "MemBus".

Figure 7-3: Verification Dialog for MemBus

The designer of the verification system should make a tradeoff decision. He can verify the

The verifier won't ask about role "BusUcer" because this role is local to the capsule.
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control flow tree one path at a time and conserve memory. Or he can build the entire tree

and save execution lime by combining paths of the tree which repeat another path. From our

experience, much of the control flow tree will be duplicated Consequently, the later decision

may be best since the memory cost may be small while the execution time savings may be

large. . -

7.5.2 Advantages

The one overriding advantage of the techniques discussed is that they are quite amenable

to automation. Not only is the designer encouraged to structure his design with V-SLIDE, but

also automatic verification is as painless as running a program.
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8. Contributions of This Paper

This paper has made four contributions to the area of communications link design by

hardware descriptive languages. First, we defined a synchronization mechanism and identified

its two closely related parts: the synchronization hardware and the synchronization protocol.

Second, we identified the types of verification we would like to perform on a

synchronization mechanism. These are:

- Error recovery.

- Reliability.

- Adherence to design specs.

- Freedom from unnecessary constraints on concurrency.

- Freedom from deadlock.

- Freedom from starvation.

- Freedom from reception errors.

- Freedom from overflow.

Third, we introduced a syntax which was amenable to writing verifiable hardware

descriptions and to automatic verification. This syntax included the concepts of encapsulation,

abstraction, and abstract action definition and instantiation. We also introduced the concepts

of a synchronization capsule which describes a synchronization mechanism, and a role which

describes a synchronization protocol.

Forth and last, we developed a formalism which could be used to automatically verify

synchronization mechanisms. This formalism involved translating hardware descriptions into

Petri Nets and then to Vector Addition Systems. Verification tests could then be performed

on the control flow tree for the Vector Addition System.

The ideas expressed in this paper could be implemented together or separately. In

particular, the implementation of a language similar to V-SL1DE would aid the designer by

allowing him to structure his design properly. Also, the verification techniques described

could be applied to any hardware descriptive language which allows synchronizing processes

(e.g. SLIDE), although V-SL1DE would be more amenable to this.
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Additional Comments

After review of the work presented in this paper, it has been brought to our attention that

the path expressions (PEs) used in this paper can be simplified considerably while maintaining

all verifiable properties. We took the attitude that all abstract action names must appear in

the PE. If this restriction is relaxed, we find that most delay abstract actions (we have

usually named these "wait...") can be removed from the PE. The PE still specifies the design

specs, but does so in a cleaner and more understandable way. The order of occurences of

abstract actions should be enforced by the roles and processes since they still use the delay,

abstract actions.

To demonstrate this, the module for the bidirectional handshake discussed in Section 4.3

and shown in Figure 4-5, Page 16, is shown in Figure 8 -1 . The only changes have been made

in the PE where the delay abstract actions have been removed. The resulting PE is much

more understandable than the original.

The PEs in the MemBus description in Appendix I could be simplified similarly.



60

MODULE handshake;

SYNCHRONIZATION CAPSULE shake (ROLES shaker1, shaker2)j

PATH
(shaker1.shake NEXT
shaker2.ack NEXT
shnkcrl.unshakc NEXT
shnker2.unack)*

END;

OCAL LINE ll<>, I2<>;

ROLE shakcrl:
BEGIN

shake (II <- / ) ; waitack (DELAY UNTIL 12 EQL /) NEXT
unshake (II «- \)

END:

ROLE shaker2:
BEGIN

waitshake (DELAY UNTIL II EQL /) NEXT
ack ( 1 2 - / ) ; waitunshake (DELAY UNTIL II EQL \) NEXT
unack (12 «- \)

END:

END I of synchronization capsule shake];
END lof module handshake];

Figure 8-1: Handshake Module (Modified)
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I. V-SLIDE Description of MemBus

LI Module MemBus

10 MODULE MemBus;
20
30 !
40 The following declarations are considered global and are
50 available to any process which assumes any of the roles
60 defined in this module.
70 !
80 OCAL LINE
90 a<17:0>? ! memory address lines (18 bits) !

100 d<15:0>, ! memory data lines (16 bits) !
110 r w o ; ! read/write line !
120
130 MACRO ! values for the read/write line !
131 read := 18,
132 write := 88;
140
150 !
160 The following capsule describes the bus arbitration
170 mechanism. Bus masters interface with the bus by assuming
180 roles of "Requestorl" or "Requestor2". Doing this, they
190 automatically assume the roles of "BusUser" and "Master"
200 also. Memory interfaces with the bus by assuming the
210 role of "Slave".
220
230 The role names "Requestorl11 and "Requestor2" as well as
240 all abstract action names are exported from the module.
250 The role name "BusUser11 as well as the lines "rl", "r2"f

260 "gl", " g 2 \ "sack", and "bbsy" are local to the module.
270 !
280 SYNCHRONIZATION CAPSULE Arbit (ROLES Requestorl, Requestor2);
290
300 PATH
310 LET ! pending requests !
320 prl = //(Requestorl.Req) - #(Grantorl.Grant) f
330 pr2 = //(Requestor2.Req) - #(Grantor2.Grant)
340 IN
350
360 Requcs tor1.Req*;
370 Requestor2.Reqv<;
380
390 ((Grantorl.Grant [prl>B] NEXT
400 Requestorl.UaitGrant NEXT
410 Roquestori.AckGrant NEXT
420 (Grantorl.UaitAckGrant NEXT Grantorl.DropGrant);
430 (Requestorl.BusUser.UaitBusFree NEXT
440 Requestorl.BusUser.GrabBus) NEXT
450 Requestorl.UaitDropGrant NEXT
460 Requestorl.UnackGrant NEXT
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470 Grantorl.UaitUnackGrant)
480
490 +(Grantor2.Grant [pr2>0 AND prl-B] NEXT
500 Requestor2.UaitGrant NEXT
510 Requestor2.AckGrant NEXT
520 (Grantor2.UaitAckGrant NEXT Grantor2.DropGrant);
530 (Requestor2.BusUser.UaitBusFree NEXT ^
540 Requestor2.BusUser.GrabBus) NEXT
550 Requestor2.UaitDropGrant NEXT
5G0 Requestor2.UnackGrant NEXT
570 Grantor2.UaitUnackGrant))*;
580
590 (BusUser.UaitBusFree NEXT
G00 BusUser.GrabBus NEXT
Gl0 BusUser.Re I Bus)*
820 END ! of path !?
630
640 !
650 The following declarations are encapsulated.
660 !
670 OCAL LINE ! The request lines !
680 rlo f r2<>;
690
700 OCAL LINE ! The daisy chained grant lines !
710 gl<>, g2<>;
720
730 OCAL LINE ! The selection acknowledge line !
740 sacko;
750
760 OCAL LINE ! The bus busy, line !
770 bbsyo;
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790

see
810
826
830
840
850
8G8
870
880
890
900
910
920
930
940
950
960
970
980
990
1000
1010
1020
1030
1040
1050

1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1272

INIT Grantor1 WHEN rl
ELSE I NIT Grantor2 WHEN r2;

The following role defines the actions which a process
at priority level 1 must follow to access the bus.
I

ROLE Requestorl (ROLES BusUser, Master)}
BEGIN

Req (rl «- 1);
UaitGrant (DELAY UNTIL gl EQL /) NEXT

AckGrant (sack «- /; rl «- \ ) ;
UlaitBusFree NEXT

GrabBus NEXT
UaitOropGrant (DELAY UNTIL gl EQL B) NEXT

UnackGrant (sack •- \) NEXT
Re IBus

END;

The following process defines the granting mechanism
for priority level 1.

PROCESS Grantori;
BEGIN

Grant (gl «- / ) ;
UaitAckGrant (DELAY UNTIL sack EQL / ) NEXT

DropGrant (gl «- \ ) ;
UaitUnackGrant (DELAY UNTIL sack EQL \ )

END;

The following role defines the actions which a process
at priority level 2 must follow to access the bus.
!
ROLE Requestor2 (ROLES BusUser, Master);

BEGIN
...similar to Requcstori...

END;

The following process defines the granting mechanism
for p r i o r i t y level 2.

I
PROCESS Grantor2;

BEGIN
...similar to Grantorl...

END;



1274 The fol lowing role defines the protocol for
1276 grabbing the bus.
1278 !
128B ROLE DusUser;
1298 BEGIN
1308 UaitBusFree (DELAY UNTIL NOT bbsy) NEXT
1318 GrabBus (bbsy «- /) NEXT
1328 RelBus (bbsy •- \)
1338 END;
1348
1358 END ! of synchronization capsule arbit !;
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1378
1388
1398
1408
1418
1428
1438
1448
1458
1468
1478
1438
1498
1588
1518
1528
1538
1540
1558
15G8
1578
1588
1598
1688
1610
1628
1638
1640
1658
1668
1678
1688
1698
1780
1718
1728
1738
1748
1758

The following capsule defines the master/slave protocol
for transfer ing data across the bus.

SYNCHRONIZATION CAPSULE fiasterSlave (ROLES Master, Slave);

PATH
(Master.UaitSIave NEXT
Master.ShakeSIave NEXT
Slave.UaitShakeSlave NEXT
Slave.AckMaster NEXT
Master.UaitAckMaster NEXT
Master.UnshakeSlave NEXT
SIave.WaitUnshakeSIave NEXT
Slave.UnackMaster)>v

END ! of path !;

OCAL LINE ! master and slave synch lines !
msyno, ssyno;

ROLE Master;
BEGIN

WaitSlave (DELAY UNTIL ssyn EQL 8) NEXT
ShakeS I ave (msyn «- / ) ;

WaitAckMaster (DELAY UNTIL ssyn EQL /) NEXT
UnshakeSlave (msyn «- \)

END;

ROLE Slave;
BEGIN

WaitShakeSlave (DELAY UNTIL msyn EQL /) NEXT
AckMaster (ssyn «- / ) ;

WaitUnshakeSIave (DELAY UNTIL msyn EQL \) NEXT
UnackMaster (ssyn «- \)

END;

END ! of synchronization capsule MasterSlave !;

END I of module MemBus !;
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1.2 Module Clock

1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
18G0
1870
1880
1890
1900
1910
1920
1930
1940
1950
19G0
1970
1980
1990
2000
2010
2020
2030
2040
2050
20G0
2070
2080
2090
2100
2110
2120
2130
2140
2150
21G0
2170
2180
2190
2200
2210
2220

MODULE Clock;

PROCESS ClockProcess (ROLES MemBus.Requestorl);

i

Local registers,
l

REGISTER ClockReg<15:0>, ClockAddr<17:8>;

BEGIN

Now we make a bus request and wait for a grant.
Then we ack the grant.

Req; WaitGrant NEXT
AckGrant NEXT

Now we wait till the bus is free and then grab it.

UaitBusFree NEXT
GrabBus NEXT

Now we start two parallel sections of code.
The first waits until the grant is dropped, and then drops
the acknowledgement. The second does a read-modify-wri te
operation with memory.

BEGIN
UaitDropGrant NEXT
UnackGrant

END;

BEGIN
a «- ClockAddr; rw «- read NEXT ! Set up for read cycle !
UaitSlove NEXT ! Wait till slave is ready
ShakeSlove; ! Handshake with slave ...

Uai tAckfiaster NEXT ! and wait till slave acks
ClockReg «- d; ! Read data ... !

UnshokeSlave NEXT ! and finish handshake !

...modify ClockReg here.
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2238 d «- ClockReg; ru •- write NEXT ! Set up for write cycle !
2240 UaitSlave NEXT ! Wait till slave is ready
2250 ShakeSlave; ! Handshake with slave ...
2268 Wai tAckMaster NEXT ! and wait for ack !
2278 UnshakeSlave NEXT ! Finish handshake !
2288 d «- 0; a «- 0; rw •- B ! Release Mne9 !
2298 END NEXT
2388
2310 !
2328 Now release the bus.
2338 !
2348 Re I Bus
2358
23B8
2378 END;
2388
2390 END ! of module Clock I;
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1.3 Module Memory

2400
2410
2420
2430
2440
2450
24G0
2470
2480
2490
2500
2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690
2700
2710
2720
2730
2740
2750
2760
2770
2780

MODULE Memory;

INIT MemProcess UHEN TRUE;

PROCESS MemProcess (ROLES MemBus.Slave);

I

Memory (16 bit). The top address is set by
the simulation time parameter ".TopMem".

I

CMOS REGISTER m[B:.TopMem]<15:B>;

BEGIN
WHILE TRUE DO

BEGIN

Uait until the handshake cycle is started by the
master, and then do the read or write operation.
;

UaitShakeSlave NEXT
IF ru EQL read

THEN d «- mta]

ELSE mla) «- d NEXT

Now ack the master and uait for the master to
drop the handshake.

I

AckMaster; UaitUnshakeSlave NEXT

Now release the data lines and finish the
handshake cycle.
!

d «- 0; UnackMaster
END

END;

END ! of module Memory !;
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